A GENETIC-BASED INTELLIGENT INTRUSION DETECTION SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HALIL OZBEY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
INDUSTRIAL ENGINEERING

SEPTEMBER 2005



Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan OZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Caglar GUVEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Tayyar SEN
Supervisor

Examining Committee Members

Assoc. Prof. Dr. Levent KANDILLER (METU.IE)

Assoc. Prof. Dr. Tayyar SEN (METULIE)
Assoc. Prof. Dr. Yasemin SERIN (METULIE)
Dr. Ayten TURKCAN (METULIE)

Prof. Dr. Ayse KIPER (METU,CENG)




I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also
declare that, as required by these rules and conduct, | have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Halil Ozbey

Signature

il



ABSTRACT

A GENETIC-BASED INTELLIGENT INTRUSION DETECTION SYSTEM

OZBEY, Halil
M.Sc., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Tayyar SEN
September 2005, 139 pages

In this study we address the problem of detecting new types of intrusions to
computer systems which cannot be handled by widely implemented knowledge-
based mechanisms. The solutions offered by behavior-based prototypes either
suffer low accuracy and low completeness or require use data eplaining abnormal
behavior which actually is not available. Our aim is to develop an algorithm which
can produce a satisfactory model of the target system’s behavior in the absence of

negative data.

First, we design and develop an intelligent and behavior-based detection
mechanism using genetic-based machine learning techniques with subsidies in the
Bucket Brigade Algorithm [8]. It classifies the possible system states to be normal
and abnormal and interprets the abnormal state observations as evidences for the

presence of an intrusion.

Next we provide another algorithm which focuses on capturing normal behavior of
the target system to detect intrusions again by identifying anomalies. A compact
and highly complete rule set is generated by continuously inserting observed states

as rules into the rule set and combining similar rule pairs in each step.

Experiments conducted using the KDD-99 data set have produced fairly good
results for both of the algorihtms.

Keywords:  Intrusion Detection, Genetic Algorithms, Machine Learning

v



oy4

GENETIK TABANLI AKILLI BIR SALDIRI TESPIT SISTEMI

OZBEY, Halil
Yiiksek Lisans, Endiistri Miithendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Tayyar SEN
Eyliil 2005, 139 sayfa

Bu calismada bilgisayar sistemlerinde yeni tip saldirilarin tespit edilmesi sorunu
ele alimmistir. Yaygin olarak kullanilan bilgi-tabanli mekanizmalar bu soruna karsi
caresiz kalmaktadir. Davranis tabanli prototipler ya hassasiyet ve biitiinliik
sorunlar1 yagamakta ya da gercekte elde olmayan anormal durum verisine gerek
duymaktadir. Amacimiz hedef sistem i¢in negatif veri kullanmadan tatminkar bir

davranis modeli liretebilecek bir algoritma gelistirmektir.

Ilk olarak Kova Birligi Algoritmasi’na [8] tesvikler eklenmis genetik tabanli
makine Ogrenimi teknikleri kullanan davranig tabanli akilli bir algoritma
gelistirilmistir. Bu algoritma olas1t durumlari normal ve anormal olmak {izere iki
smifa ayirtp anormal gozlemleri bir saldirmin varliginin  kanitlar1 olarak

yorumlamaktadir.

Daha sonra normal davranisi kavramaya odaklanip yine saldirilari anormal
durumlar saptayarak algilayan bir model sunulmaktadir. Normal durum verilerinin
siirekli olarak eklenip her adimda benzer kural ikililerinin birlestirilmesi ile az yer
kaplayan ama yiliksek derecede biitiinliik arz eden bir kural kiimesi elde

edilmektedir.

KDD-99 veri kiimesi ile yapilan testlerde oldukca iyi sonuglar alinmustir.

Anahtar Kelimeler: Saldir1 Tespiti, Genetik Algoritmalar, Makine Ogrenimi.



vi



ACKNOWLEDGEMENTS

First of all I would like to present deepest gratitude to my thesis supervisor Assoc.
Prof. Dr. Tayyar Sen for his guidance and timely help. It is a great pleasure to

study under his supervision.

Most special thanks go to every member of my family for their endless love
support and encouragements. Without their support this thesis would not be

possible.

I would like to thank my dear friend Bora Kat for listening my boring explanations
about every detail of this work and handing bright ideas in return. I also wish to
thank my friends Oguz Solyali, Oncii Akyildiz and Tahir Fidan for continuous and

intimate moral support.

I want to express my appreciation to my collaborator Alptekin Cakircali for
making time out of things for me. His presence meant chance of focusing on this

study just in time I need.

vii



TABLE OF CONTENTS

PLAGIARISM ..ottt sttt e e eneen il

ABSTRACT ...ttt ettt et e s sabee e v

OZ oottt v

DEDICATION ...ttt sttt et sttt st e bt et s e b e vi

ACKNOWLEDGEMENTS ..ottt vii

TABLE OF CONTENTS ....oottetieieetee ettt enaens viii
CHAPTER

1. INTRODUCTION ..ottt ettt ettt s 1

2. LITERATURE REVIEW ....ooiiiiiiiiiieieeeee et e 6

2.1  Intrusion Detection SYStemMS........cccuereerierierienieeienienieneeneeeeee e 6

2.1 1 OVEIVIEW ..ottt 6

2.1.2  Intrusion Detection Mechanisms ............cccccureveinincininenennns 7

2.1.3  Data Mining Techniques Used in IDS ...........cccccoevvveviveieinennnnn 9

2.1.4  Efficiency Measures for IDS..........ccccvveviviiiiieeve e, 11

2.2 Genetic AIZOTTtRMS .......oouiiviiiiiiiiiieiceeeeeeee e 12

2.3 Genetic-Based Machine Learning (GBML) and Classifier Systems 17

24 GBML N ID oot 24

3. INTRUSION DETECTION MODELS.......cccctiiiiieieeeeneeieee e 27

3.1 Intrusion Detector A........oceeiiieiiieiieeiie ettt 27

3.2 Intrusion Detector B........ccccooiiiiiiiiiinieiiiieeeee 34

4. COMPUTATIONAL EXPERIMENTS .....ccoiiiiiiiinieieeieseeieeee e 38

4.1  EFFICIENCY MEASURES ..ot 38

4.2  CONDUCT OF EXPERIMENTS.......cooteiieieeieeeeeeeeee e 38

4.3 RESULTS oottt 41

5. CONCLUSION ...ttt sttt sttt 44

REFERENCES ...ttt sttt ae e 46

APPENDICES ...ttt et s e e e seeseeneens 51

AL State DEefINItION .....evuieiiiieriieieeeeee ettt 50



B. ANOVA ANALYSES ...eooiiiiiieeiiieiiecie ettt sttt sire et e e b e ssaeensees 52

C. Single Factor Test ResSults ..........cccoeviieiiiiieiiicieeieeeeeee e 67
D. Full Factorial Test ReSUIts ........cooiiiiiiiiiiieicieeeceeeeeee e 72
E. C Code for Intrusion Detector-A ...........cocvveieeieieiiieeeiee e 100
E. C Code for Intrusion Detector-B ..........ccccooieiiiniininiiiniiiiieneceeeeeee, 127

X



CHAPTER 1

INTRODUCTION

Intrusion detection is the act of detecting non-permitted, inappropriate, illegal use
of computer resources. It is a highly complicated and ambiguous issue due to wide
variety in types and specifications of the computer systems, profiles of the possible

intruders, and forms of gaining access.

In today’s fast evolving world, needs for computing facilities are expanding
rapidly. Fast development in information and computing technologies offers
various solutions to all types of needs, ranging from the simplest to the most
complicated ones. The solutions come in the form of high-tech hardware such as
faster processing chips, network elements communicating faster with astonishing
instruments; as well as in the form of software like more functional and more
attractive operating systems or package programs. However, the large scales of the
projects and the limited time offered by competitive markets exert excessive
pressure on developers. The result is systems with many bugs and vulnerabilities

down to both hardware and software.

In 1980 the first suggestion to use audit trails for systems security by Anderson [3]
did not receive much attention. On those days, the idea of computer security was
limited to setting security permissions on sensitive data and requiring authorization
for accessing systems. Neither the importance of bugs and vulnerabilities nor the
need for intrusion detection systems was recognized until the Internet (Morris)
Worm crashed more than 6000 computers connected to internet and paralyzed the
internet for five days in 1988. Since then it has been admitted that no professional
system can be built without bugs and vulnerabilities, and intrusion detection has to

be a part of the systems security issue.



Intrusions are almost always harmful to the users and administrators of the target

resources. The damages may occur in several ways such as:

» Loss of critical information and data.

s Theft of confidential information and data.
= Damage on hardware.

= Production or service downtime.

» Loss of reputation.

= Negative effect on customer relations.

In 2005 E-Crime Watch™ Survey [11], conducted among 819 security executives
and law enforcement personnel, by CSO magazine in cooperation with the United
States Secret Service and the Carnegie Mellon University Software Engineering
Institute’s CERT® Coordination Center, “Respondents report an average loss of
$506,670 per organization due to e-crimes”. Intrusions deteriorate the productivity

and efficiency of computer systems.

There have been several approaches to the intrusion detection problem with
different detection mechanisms using various data mining techniques, and
detection system architectures. Most of the commercial intrusion detection systems
use knowledge-based detection mechanisms in which the accumulated knowledge
from the previous experiences is used to detect the intrusions. Expert Systems,
Signature Analysis, Colored Petri Nets, State Transition Analysis are among the
techniques used to implement knowledge-based mechanisms. Relatively low CPU
power needs and high accuracy in detecting known attack types are the two
prevalent features of the knowledge-based systems leading them to be the choice

of producers.

However knowledge-based systems must be updated by an external source
regularly and new intrusion types pose considerably high risks on targets protected
by these systems since they can detect only the previously known intrusion types
and have nothing to do with a new type of attack. That is why new virus threats are

most effective on the very first day of their appearance. A research by Moore [27]



revealed that “On July 19, 2001 more than 359,000 computers were infected with
the Code-Red (CRv2) worm in less than 14 hours” doubling the number of
infected computers every 37 minutes. Figure 1 shows the number of infected hosts
by CRv2 in UTC time. Worse than that, according to Moore et al. [28] Sapphire
worm (also called SQL Slammer) “was the fastest computer worm in history. As it
began spreading throughout the Internet, it doubled in size every 8.5 seconds. It
infected more than 90 percent of vulnerable hosts within 10 minutes.” Its

distribution after 30 minutes of its release can be seen in Figure 2.

Code Red Horm - infected hosts=s
4EEEEE T T T

158888

jgaaas -

Zoee8s

Zoaaas -

156888

infected hosts

laaaas -

SEEEE -

& 1 1 1
ga: 88 as: a8 1e:88 ga: 88

BF~19 time CUTC) BF <28

Figure 1 Number of Infected Hosts by CRv2 over UTC Time.

A solution to the problem caused by the new attack types is offered by the
behavior-based intrusion detection mechanisms. These type of systems concentrate
on the behavior of the target systems, usually the system states or the state
transitions are classified to be normal and abnormal. Assuming that intrusions
trigger anomalies in the target systems, the deviations from the normal behavior

are identified to indicate presence of an intrusion.

Performance of behavior-based systems does not depend on whether the attack is a

new type or a known one because they detect the intrusion attempts by modeling



and monitoring the behavior of the target system. However, even in simplest
systems capturing the behavior is not an easy task. The large number of system
parameters that can be used to model the system behavior result in huge numbers
of possible system states to be classified and therefore substantial CPU power is
required. On the other hand, limitations on CPU power may lead to high rates of
false alarms. Thus, the efficiency of the tools used to model the system behavior is
important. Expert Systems, Statistics, Neural Networks, User Intention
Identification and Computer Immunology are among the tools that have been used

for behavior-based intrusion detection.

Sat Jan 25 06:00;00 2003 (UTC) http://uww,caida, org

Number of hosts infected with Sapphire: 74855 Copyright {(C) 2003 UC Regents

Figure 2 Geographic Spread of Sapphire in First 30 Minutes after Release.

In a recent work, Dasgupta and Gonzales [3] successfully used Genetic Based
Machine Learning also called Classifier Systems with Bucket Brigade Algorithm
as a tool for modeling the target system behavior. However their system needs data
representing both positive (normal) states and negative (abnormal) states. In their
study they assume that they have high level knowledge (i.e. exactly which states
are normal and which are not) and that they can use both positive and negative

states in the training period. Although it is easy to obtain the normal states from a



target system in operation it is almost impossible to obtain abnormal states
especially the ones which will occur during an unknown attack type. In designing
our first model we propose using subsidies in the Bucket Brigade Algorithm to
modifying the model of Dasgupta and Gonzales [3] so that it can work in the

absence of negative data.

Another way to deal with the huge number of states while using effective
modeling tools is concentrating on only the normal behavior and reducing the
possible number of normal states. It is possible to plant a host in a network with no
specific purpose, for nobody’s use but as a honey trap for intruders. For these
hosts, many parameters become fixed since such systems normally do nothing,
therefore the number and diversity of the normal states is relatively low. This gives
the chance of producing rule set representations that cover the normal states with
high completeness. Then a state is identified to be normal if it is covered by the
rule set and abnormal otherwise. Our second model builds a rule set that represents
the normal states with high completeness and using minimum possible number of

rules.

To sum up, we build two genetic based intrusion detection mechanisms. The first
one uses Classifiers with Bucket Brigade Algorithm. Subsidies used to promote
the rules representing negative cases as a novel practice. The second model uses
not all but some principles of genetic algorithm such as binary state representation
and combination of rules to obtain better ones. In order to simulate the
mechanisms, codes for both models have been developed and have been tested

with KDD-99 data set for performance evaluation.

In Chapter 2, literature on intrusion detection, genetic algorithms and Genetic
based machine learning is provided. In Chapter 3, the two intrusion detection
mechanisms are presented including the operational details. We present and

discuss the computational results in Chapter 4.

In Chapter 5 we discuss the conclusions and directions for further research.



CHAPTER 2

LITERATURE REVIEW

In this section first we outline the previous approaches to intrusion detection (ID),
next we explain the genetic algorithms (GA’s) and genetic based machine learning

(GBML), and finally we describe the use of GBML in ID.

2.1 INTRUSION DETECTION SYSTEMS

2.1.1 Overview

Intrusion Detection Systems (IDS) are the software tools acting like the burglar
alarms for a computer system which may be a host (server, workstation,
mainframe), or a whole system composed of several hosts and an interconnecting
network (Local Area Network [LAN], Wide Area Network [WAN], Virtual
Private Network [VPN]). After all security measures have been taken, computers
systems may and usually do contain backdoors for the penetration of the intruders
due to the bugs and vulnerabilities residing in. IDS monitor and protect a target

system by identifying presence of intrusions and ceasing them if possible.

An overall picture of an IDS may be seen in Figure 3. A sensor or a probe is the
component, which collects the valuable data for detection mechanism, in direct
interaction with the target system, by issuing system commands or continuously
reviewing the system logs. An audit trail is a compact piece of information about
the monitored parameters of the target system. The detection mechanism is an
algorithm or a set of algorithms combined with data storage and mining tools used
to perform the actual detection and is the most important component in an IDS.
The performance of an IDS usually refer to the performance of the detection
mechanism In the next three sections we outline the detection mechanisms, data

mining tools and the performance measures used for the IDS in the literature.



DETECTION MECHANISM

‘;UDITS DETECTION RESULT
A 4
ALERT |
SENSORS EFFECTORS "| ADMINISTRATORS
A
PROBES AUDITS ACTIONS
\ 4 A 4

TARGET SYSTEM

Figure 3 An overall picture of an Intrusion Detection System.

2.1.2 Intrusion Detection Mechanisms

The detection mechanism is like the brain of an IDS. The data mining tools to
store, search and retrieve the related data and algorithms to recognize monitored

conditions to identify an intrusion are considered within the detection mechanism.

IDSs can be divided into two major categories according to their detection
mechanisms: knowledge-based systems and behavior-based systems. In
knowledge-based systems, methods used by the intruders in the previously
identified intrusion events are profiled according to their distinguishing properties.
These profiles are stored in databases in form of definition signatures or transition
patterns or command sequences. The audit trails of modified files, monitored
parameters of the system, the successive commands issued by users, are

continuously compared to those profiles. Best examples are the antivirus software.

These systems are very accurate (i.e. they have very low false alarm rates) and
they achieve very high completeness (i.e. they detect almost all attacks). However
their profile databases have to be updated by an external source regularly and they
are very weak against new types of attacks since the new attack type has not been
profiled at the moment of intrusion. Expert systems [14], [19], [25]; Signature
Analysis [2], Petri Nets [24], and State Transition Analysis [29], [20] techniques



have been utilized to implement the knowledge based intrusion detection

mechanism and they will be briefly explained later in this section.

In behavior-based systems, on the other hand, the operational behavior of the
target system is regarded as the reference for detection rather than attack profiles.
Several parameters of the target system at various levels are observed for quite a
long period of time to construct a model to explain the behavior of the target
system. This model is then used to classify the system behavior to be either normal
or abnormal. The deviations from the normal behavior are interpreted to indicate
presence of an intrusion. The underlying assumption for these systems is that an
intrusion would cause anomalies in the system behavior. Hence the behavior of the

system has to be defined carefully so that it can reveal important details.

The behavior of the target system may be defined in terms of system states, in case
of state-based systems where the transition-based system define the system
behavior using transitions between states. A system state is a specific combination
of all monitored parameters. Although the type and number system parameters to
be monitored vary in different systems, we present a list offered by Dasgupta and

Gonzales [3].

» User level.
» Type of users and user privileges.
» Login/logout period and location.
= Access of resources.
» Type of software/program use.
» Type of commands use.

= System level.
» Cumulative per user CPU usage.
» Usage of real and virtual memory.
= Amount of swap space currently available.
=« Amount of free memory

» [/O and disk usage.



= Process level.
»  The number of processes and their types.
= Relationship among processes.
» Time elapsed since the beginning of the process.
» Current state of the process (running, blocked, waiting)
= Percentages of process times (user process time, system process
time, idle time)
= Packet (network) level.
» Number of connections and connection status. (established,
time wait, close wait)
= Average number of packets sent and received.
= Type of connection (remote/local)

= Protocol and the port used.

The ability to detect new types of attacks is the prevalent advantage of behavior-
based systems. These systems do not use profiles obtained from the previous
experiences, unlike the knowledge-based systems. Therefore lack of knowledge
about novel attacks does not impose any burden. All attacks can be detected by
these systems as long as the attacks cause deviations from the normal behavior of

the system.

Characteristic high false alarm rates are the main drawbacks of these systems. The
complexity in modeling the system behavior arises due to the large number of
possible system states which require relatively high computational power and

significant memory space.

As for the techniques used in behavior based intrusion detection, statistics [17],
[18], [21], [22]; expert systems [34], [10]; neural networks [13], [31]; user

intension identification [32], [33] may be counted.

2.1.3 Data Mining Techniques Used in IDS

Expert systems are mainly used for knowledge based intrusion detection [14], [19],

[25] by setting up rule sets through extraction of expertise knowledge on previous



attacks. Also it is possible to attach additional features to them. Garvey and Lunt
[14] have designed an expert system for intrusion detection using model based
reasoning. Expert systems never fail to test the known cases however it may be
difficult to detect new types of attacks, the rule sets may grow enormously large
and they may require substantial CPU power. Debar et al. [7] state that “Owing to
the processor speed issue, expert system shells are used only in prototypes. Main
use of expert systems in behavior based systems is policy-based usage profiles,
however, statistical methods prove better, when large amount of information is

present.

Signature analysis [2] has been used only in knowledge based systems. They are
very similar to expert systems but the attacks are identified as some repetitive
patterns in the system logs, network packets and ID sensors, thus the rule sets are
significantly simplified. This technique has been implemented in many
commercial packages due to its processing performance however inability to

define new attack types is the main weakness for this model as well.

Colored Petri Nets [24] have also been used for some sort of signature analysis.
Their simplicity and generality in representation is advantageous but matching a
complex signature against an audit trail may become computationally very

expensive.

Porras and Kemmerer [29] have proposed State Transition Analysis which defines
an attack as a series of state transitions and operates by detecting special series.
This idea has been first implemented in UNIX by Ilgun [20] and to other systems

later on.

Statistics is widely used in behavior based systems to define normal system
behavior. Login, logout times, session durations are the most common statistical
measures. However many statistical models are too simple to represent the overall
system behavior. Recently some complex models have been developed and put in

production by Javitz and Valdes [21] and Javitz et al. [22].

Neural Networks have been used in behavior based systems by Gallinari et al.[13]

10



and Sarle [31]. Neural networks emulate the way neurons work and although it has
not been fully explained how they work, they can be used for a way of machine
learning. After a Neural Network learns the normal behaviors of the actors in the
system they can be used to predict normal behavior and detect intrusions. Their
advantage over statistics is that they can easily grasp (learn) non-linear
relationships. On the other hand, they are computationally intensive and not very

common.

User Intention Identification has been developed for the SECURE-
NET project [33] by Spyrou and Darzentas. The high level tasks by the users are
defined as the actions lists and when actions of a user do not resemble any of the

action lists then an alarm is raised.

Computer Immunology is another technique developed by Forest el al. [12] which
focuses on the normal behavior of system services rather than the user actions. A
good sample of audits representing the appropriate system behavior is collected
first then a list of good system call series is extracted. Then an intrusion alarm is
raised when an unexpected sequence is met. These systems potentially have very
low false alarm rates; however they provide no protection against intrusions,

which are caused by configuration errors in system services.

Intrusion detection systems may also be categorized according to their behavior on
detection, the system is active if it takes an evasive action to stop the intruder on
detection and passive if it just generates an alert; according to their audit source
location, which may be the system log files, network packages, application log
files and IDS sensor alerts; according to their detection paradigm the system is
state based if it monitors the state of the systems and it is called transition based if

it monitors the transitions between system states.

2.1.4 Efficiency Measures for IDS

Measuring the efficiency of the IDSs is a rather complicated issue due to the
diversity of the target systems and protection needs. Significance of the measures

may differ along with the conditions and purposes; moreover different measures

11



may be required. Here we present three basic measures proposed by Porras and

Valdes [30].

First, accuracy is the ability to raise true alarms, which may also be defined as the
ratio of true ones to all alarms. As the ratio of false alarms increases, accuracy
declines. The second, completeness is the ability to detect all intrusions which may
be measured by the ratio of detected ones in all intrusions. As the number of the
non-detected intrusions increase the completeness declines. However it is almost
impossible to evaluate the completeness for a real system outside the laboratory
because the absolute knowledge of all attacks is unavailable and the number of

undetected intrusions cannot be easily determined.

Accuracy and completeness are complementary to each other hence must be used
together, using one without the other may lead to very improper conclusions. In
case a system raises an alarm to only one audit in thousands and if it is true then
the system is hundred percent accurate but totally incomplete and on the other
extreme a system raising an alarm for everything would be hundred percent
complete since it has raised an alarm for every intrusion as well as every normal

audit.

The third measure performance is the ability to perform detection tasks quickly
which is be measured by rate of processing the audits. As the number of audits
processed per unit CPU power increases, the performance of the system rises. An
ID system must have relatively high performance so that it can be used in real

time.

2.2 GENETIC ALGORITHMS

Genetic Algorithms (GAs) are adaptive search and optimization algorithms which
imitate the mechanisms of biological evolution. After the pioneering works of
John Holland in the 60’s, GAs has been widely studied, experimented and applied
in many fields in engineering world. GAs not only provide alternative methods for
solving problems, but also consistently outperform other traditional methods in

most of those problems. Many of the real world problems that are involved finding

12



optimal parameters might prove difficult for traditional methods but ideal for GAs.
However, because of its outstanding performance in optimization, GAs have been
wrongly regarded as a function optimizer. In fact, there are many ways to view
genetic algorithms. Perhaps most users come to GAs looking for a problem solver,
but this is a restrictive view. In the next section Genetic Based Machine Learning

is outlined.
Like the mechanism the glossary used in GA’s is taken from the field of biology.

» An individual is a candidate solution represented by a chromosome.

» A chromosome is a string in usually binary form and represents the
candidate solution according to a predefined syntax like a vector of
variables.

= A geneis a variable in the chromosome or the space set aside in the
chromosome for the storage of the variable which is interpreted
according to the syntax

» The locus of a gene is the place of the space of the variable.

» Anallele is a possible value for a variable.

» Crossover is a procedure in which new candidate solutions are
produced from the existing ones by mating parent chromosomes to
reproduce the offspring.

» Mutation is random alteration in a chromosome, so that the
diversity in the population is increased.

» Fitness or the strength of a chromosome is the measure of the

quality of the solution represented.

The basic idea behind the GAs is that a pool of many chromosomes can be evolved
to contain the optimal solution. In consecutive iterations the quality of candidate
solutions can be augmented by applying the principles of biological evolution such
as survival of the fittest, elimination of the weak, and reproduction of the better.
Hopefully the optimal or a close to optimal solution will be included in the

population after a number of iterations.

13



GENERATE A RANDOM
POOL OF CHROMOSOMES
(SET OF CANDIDATE SOLUTIONS)
(POPULATION)

A 4

EVALUATE STRENGTH OF EACH
CHROMOSOME
(CANDIDATE SOLUTION)
(INDIVIDUAL)

A

A 4

REPRODUCE STRONG (FIT)
CHROMOSOMES

A 4

ELIMINATE WEAK
CHROMOSOMES

SATISFIED WITH
CURRENT
SOLUTION?

TERMINATE

Figure 4 General view of genetic algorithms operation.

14



General operation of the genetic algorithms is available in Figure 4. First task is to
create the initial population. Then the algorithm operates in an iterative manner. In
each iteration, strength of each chromosome is evaluated using a fitness function.
The weak ones are replaced by new chromosomes which have been reproduced
from the fittest ones using the genetic operators such as cross over and mutation.
After sufficient number of iterations optimal or near-to-optimal solutions are

obtained.

To obtain successful results from the implementation of the genetic algorithms,

four elements of the genetic algorithm must be clearly identified.

Syntax of a chromosome defines the way the variables are organized, the way
values of a variable are coded and interpreted. Candidate solutions to each problem
can be represented by a number of different manners. Binary Representation, Gray
Encoding, Diploid Binary Encoding, Permutation Representation, Random Key
Representation and domain specific representations have been used up to date.
Usually the nature of the genetic operators in the algorithms is highly dependent
on the syntax. In particular problems, the syntax of the chromosome may be the

key feature determining the performance of the algorithm.

The fitness function is used to evaluate the quality of a candidate solution. In many
cases it is the same thing as the objective function in Linear Programming
formulation of the problem; however the result of the function may be scaled
linearly or exponentially. Also it may be the result obtained from an evaluation

procedure rather than a simple function.

Creation procedure for the initial population may be randomly generating the
individuals or individuals may be obtained by hybridizing the possible values of
variables so that the possible values of the variables are covered as much as

possible.

The genetic operators to be used are usually the key components of the genetic
algorithm. Four operations to be performed are parent selection, crossover,

mutation and replacement. The vital dilemma while establishing the characteristics

15



of the operators is the balance between exploration and exploitation. That is the
algorithm must continuously widen the area it has searched by generating
individuals with diverse characteristics so that it is not stuck to inferior solutions,
however at the same time it must focus on the candidate solution which has
relatively better qualities so that it can obtain better results in short time. Several

alternatives have been proposed for each operation and operator.

Selecting continuously strong parents may hinder exploration and cause premature
convergence of the population meaning losing its diversity before exploring
sufficiently large part of the problem domain. However increasing the randomness
in parent selection may turn the algorithm into simple random search. Fitness
Proportionate Selection, Ranking Selection, Tournament Selection, Truncation

Selection, and Gene Pool Recombination are among the alternatives.

The crossover operator is probably the most important operator of the genetic
algorithm. If it can reproduce new individuals with high quality features while
preserving the diversity it may guarantee the success. One Point Crossover, Multi-
Point Crossover, Uniform Crossover, PMX, Edge Recombination and other

problem specific crossover techniques have been used.

Mutation is used to increase the diversity in the pool. It serves as a source of
missing characteristics when used in small ratios but also may cause damage to the
high quality genes and may cause serious problems especially when stability of the
pool is important. Changing the value of randomly chosen bit, Interchange of two

genes, Random permutation of elements between two points have been used.

Elimination of the weak individuals is obligatory to create for new individuals
since the population can not continuously grow. The vital dilemma of exploration
and exploitation is on charge as in other parts. Obtaining better individuals — the
main objective — is impossible without eliminating the weak; however eliminating
weak may also mean loss of diversity. Also the stability of the pool may be an
important property as in case of the classifier systems. Replace all Policy, Elitist

Policy and Steady-State Replacement are some of the adopted strategies.

16



Another point of decision is when to terminate the algorithm. The run may be
terminated after a predetermined number of generations or after the same pool is
observed for a predetermined number of steps or when the population is
converged. Details of simple GAs can be found in [15] and [26] among a number

of such references.

2.3 GENETIC-BASED MACHINE LEARNING (GBML)
AND CLASSIFIER SYSTEMS

In this section we outline the most common GBML approach; the Classifier
Systems with Bucket Brigade Algorithm emphasizing the four important elements

of the genetic algorithms. A Classifier System consists of three main components

1) Rule and message system (RMS)
2) Apportionment of Credit System (ACS)
3) Genetic Operators.

Rule and message system defines the syntax and interpretation of a chromosome.
The Apportionment of the Credit System serves as a fitness measure working
jointly with the RMS. When any input is received from the environment, the RMS
is used to determine the corresponding output. In the same time ACS is used to
recalculate the fitness of the rules that have taken part in the determination of the
output. After several iterations with the RMS-ACS cycle, when the strengths of the
rules get differentiated the weak rules are eliminated and children of strong rules
are produced using the genetic operators. General operation of a GBML system

can be seen in Figure 5.

The knowledge is regarded as the ability to give the correct output to any input,
which in turn may be defined as the ability to classify the input in correct output
classes. If a system can classify all input into correct classes of output then the task
of responding correctly to an input will be reduced to determining the output class
of the input. Thus a genetic-based machine learning system is called a classifier

system.

17



GET INPUT FROM THE

A 4
A

ENVIONMENT

A 4

DETERMINE THE OUTPUT
USING RMS

— REEVALUATE THE FITNESS OF
THE RULES THAT HAVE TAKEN
PART IN RMS USING ACS

SUFFICIENT
NUMMBER OF
ITERATIONS?

NO

REPRODUCE CHILDREN OF
STRONG RULES USING GENETIC
OPERATORS

A 4

ELIMINATE WEAK RULES FROM
THE RULE SET

Figure 5 General GBML Operation.

18



The knowledge, learned by a classifier system is stored by the rules in rule set.
Each rule in the rule set defines an output class and determines the set of inputs
belonging to that class. Therefore a rule is sometimes called a classifier. A rule
may also be called a chromosome since it is represented by binary strings and
treated as the subject of the operations in the genetic algorithm where the rule set

may be viewed as the pool of chromosomes.

The rule storage performs the functions of the long term memory. It knows the
correct response to an input by the classes defined by the rules. When a new
chromosome is created a new class or some new classes may be created so that
some new knowledge is learned. Throughout the employment of the algorithm the
rules may gain more strength as long as they lead to correct classifications, similar
to reinforcement learning of human and animals. When the rules become weak
after repeated failures in giving correct response the rules leading to those
classifications get eliminated and incorrect information is disposed as in case of

forgetting things.

A chromosome (also called a rule or a classifier) is a simple binary or ternary
string which represents the message and action to be fired when a condition is
matched. A rule may be one of the various forms but the most common form is
<condition>:<message>:<action>. Also it may reduce to <condition>:<action>, or
<condition>:<message> when the message and action parts are identical. A rule is

interpreted as “if <condition> then <message> or <action>

1100:0101:0
L » Action
|

L » Message
» Condition

Figure 6 A rule with binary string.

19



Let there be a system with n parameters and each parameter have 2' levels. Let R
be a rule for this system and C be its condition, M its message and A its action. Let
bij a bit i.e. bjj € {0,1}. Let the condition C be combination of n meaningful parts
Ci, C2, ... , €y €ach of which is an | bit string i.e. C; = bj1bjz...bjj... by representing a
level of a parameter of the environment. Then the condition C (=c;c;...c,) would
be an nl bit string which may be interpreted as “level of p; is ¢; for each i”. The
message part is in exactly same form with a binary condition. However the
message part is usually not meaningful for interpretation. It serves to the formation
of chains in the messaging system which provides means for storage of complex
knowledge. The action part is also a binary string representing the output to the
environment, the length of action part may vary according to the number of
outputs to the environment. A sample rule can be seen in Figure 6 The digits in the
condition part may also include ‘#’ character which means match both ‘0’ and “1°.
In this type of rules the condition part is a ternary string rather than a binary one. A

rule ternary string may be seen in Figure7.

1#0#:0101:0
L » Action

L » Message
» Condition

Figure 7 A rule with ternary string.

As stated before the rules are kept in a rule-storage. When an input is received
from the environment as the information to be classified it is put in the message
board. Only rules whose condition part matches the current message in the
message board can respond. When multiple matching rules exist an auction is held.
Every matching rule has to bid an amount which is computed using an expression.
The bid amount is deducted from the strength of the rule, total bid is added to the

strength of the activating rule which may also be the environment when the

20



activating message is received from the environment as the input to the system.
The winner rule fires its message to the message board. Then the cycle is repeated
until there is no matching rule for a message. When there is no matching rule for a
message the rule which has fired the non-matching message fires its action. The
action is produced. The term action is used to denote the output to the
environment. The Rule and Messaging System outlined in this paragraph has been
shown to work as a complete production system. An important point to be noted
about the Rule and Messaging System is that it provides means for storage of
complex information in simple rules by formation of rule chains via their messages

posted in the message board.

The Apportion of Credit Algorithm serves as a means to evaluate the fitness of the
rules. When the action is sent out to the environment a negative or positive payoff
is received from the environment. The Apportionment of Credit System is utilized
to apportion the payoff to the rules involved in the production of the action as the
name implies. When an auction is held, sum of all bids are paid to the rule which
has fired the message. Thus a rule can gain strength when it fires its message and
its message is matched by other rules. When a rule fires its action the payoff from
the environment is paid directly to the rule which has fired the action. Thus a rule
can also gain strength when it fires a correct action. This happens when its
message is not matched by other rules so that it can fire its message. As more and
more inputs are received, the rule chains which produce correct actions gain more
strength while the chains producing incorrect actions become weaker. The
apportionment of credit System works like a service based economy. The strength
of the environment is treated like the strength of any rule. All the rules and the

environment start with same strength value and the strengths of the rules.

The Rule and Message System and the Apportionment of Credit System constitute
the Bucket Brigade Algorithm which is very valuable due to three main reasons.
First the basic functionality of a learning system is to respond to an input, BBA
provides Rule and Message system for this function. Second, a learning system

must store complex information; the chain structure in use of rules provides means

21



for storing complex information in very simple rules. Third, lack of an immediate
fitness function for the rules would be detrimental for the Genetic Algorithm but
the Apportionment of Credit Systems helps us in the calculation of strengths of the

rules.

In operation, only after several steps with the Rule and Message system and
Apportionment of Credit system, the strengths of the rules diversifies and one can
distinguish the strong rules from the weak ones. Therefore the genetic operators
are applied to eliminate the weak rules and produce children of stronger rules in
return once after several steps unlike many implementations of the genetic

algorithms where genetic operators are applied at each iteration.

Sum of strength of all rules in the rule set is constant in a cycle because the
Apportionment of Credit System does not add subtract any strength to the rule set
it just rearranges the strength among the rules. This causes one of the difficulties in
implementation of classifier systems which is the problem of inactive rules.
Condition parts of some rules do not match any input from the environment or the
messages from other rules. These rules do not gain any additional strength
however they do not lose any strength either. Since the total amount of strength in
the rule set is constant these rules get stuck in the middle of the rule set when the
rules are ranked according to their strengths. They do nothing useful for the
production of a correct output to any input and they occupy valuable space in the
rule storage. Solution to this problem is use life tax. At each step very small
amount of strength is deducted from each rule so that a rule gets eliminated after
sufficient number of steps unless it gains strength by involving in the production of

correct outputs.

Also for the interested readers Genetic-Based Machine Learning and Classifier

systems is explained in detail in [8] and [15].

22



ENVIRONMENT

PUT THE
MESSAGE OF THE
WINNIG RULE TO

MESSAGE BOX

| PUT THE INPUT AS
A MESSAGE IN THE
MESSAGE BOX

\ 4

SEARCH FOR
MATCHING RULES

A

HOLD AN
AUCTION

y

NMR > 1

YES

FIRE ACTION OF THE
LATEST AUCTION
WINNER RULE AND
TERMINATE

IN THE RULE SET

WHAT IS THE
NUMBER OF
MATCHING
RULES?

HAS AN
AUCTION
BEEN HELD?

NO

A 4

FIRE THE DEFAULT
ACTION TO
ENVIRONMENT

A 4

TERMINATE

Figure 8 Rule and Messaging system.

23




2.4 GBML IN ID

Dasgupta and Gonzales [3] used GBML for intrusion detection in their work for
the first time. They model the behavior of target system based on the system states.
The chromosomes of the genetic algorithms can be regarded as a vector of
independent variables; the state definition for the target system may combine a
diverse set of parameters. Therefore they monitor the target system at multiple

levels.

101010101 ---101010101
\_Y_/\_Y_)

S1 S2 Sn

Figure 9 A System State.

When all data for n such parameters collected from the target system the data can
be fused into a binary sting representing state of the target S system with n

parameters (si, Sp, ... , Sn) as in Figure 9.

After representing the system state as a binary string, they create rules for the
classifier system in form of <condition>:<message>:<action> as described in the
previous section. Then Rule and Messaging System is used to produce the decision
of the system based on the current Rule Set. The Effectors use the system
commands to apply the decision if necessary. The Apportion of Credit System
reevaluates the strength of the rules involved in the decision of the most recent
action in accordance with the correctness of the action produced and payoff
received. The Genetic Operators are used to eliminate weak and reproduce strong
rules periodically. Flow chart for such an ID system using GBML is available in

Figure 10.

24



ENVIRONMENT

\ 4
PROBE PROBE SYSTEM
COMMANDS OUTPUTS OUTPUT AS
7Y EFFECTIVE
A

SENSORS EFFECTORS

v /
PROBE DECIDED
OUTPUTS ACTION

DATA FUSION

v
FORMATTED STRING

REPRESENTING
SYSTEM STATE

A 4

ACTION PRODUCTION BY APPORTIONMENT
RULE AND MESSAGE OF CREDIT
SYSTEM

i 1l

MESSAGE BOX RULE STORAGE

RULE ELIMINATION AND
REPRODUCTION BY
GENETIC OPERATORS

Figure 10 A Genetic-Based Intrusion Detection System.

25



They assumed that they had the high level knowledge on the system data and used
a randomly generated data to train the system. After a certain training period they
have observed a substantial increase in the performance of the intrusion detection
system. One of their key assumptions is that they may use both positive and
negative samples which are critical for the training of their system. They could do
that since they used generated data based on their high level knowledge
assumption. However this is not the reality for an actual system. Although it is
possible to obtain the positive data in almost every system, the negative it is almost

impossible to obtain the negative.

26



CHAPTER 3

INTRUSION DETECTION MODELS

In this section we clarify two genetic based models for intrusion detection. Our
main aim is to design a learning system that can complete training in the absence
of negative data. In the first model we develop a Michigan style classifier system
starting with the model of Dasgupta and Gonzales [3] and improving their system
by the use of subsidies so that only positive data (data representing the normal
states of the target system) are sufficient for the training of the intrusion detection
system. Next we develop a second model focusing only on the positive cases.
Using not all but only some principles of the genetic based machine learning, it is
possible to design an intrusion detection system which focuses on mastering only
the normal cases and detecting everything else as indications in intrusion. The
second model achieves 100% percent accuracy and completeness at the cost of

additional need for CPU time in training period.

While building the models — following the general approach in the literature — we
focus on the detection mechanism and place the components like the sensors and
effectors out of our scope. We assume that the data are ready in the form of binary
strings representing the system states and ready to be processed by the classifier

system.

3.1 INTRUSION DETECTOR A

Intrusion Detector A (ID-A) is an intelligent ID system. When it is supplied with
the data representing the normal states it can build up a classifier rule set from

scratch and distinguish the normal and abnormal system states using it.

System states are vectors of several variables in binary representation. An instance
of system states with two variables both with four possible values (00, 01, 10,

01) may be seen in Figure 11.

27



1001
Q‘J—>Varia‘ble 2

Variable 1

Figure 11 A Four-Bit System State.

A classifier rule for ID-A is a string consisting of three parts. First, the condition
part is a string containing only three characters i.e. ‘0°, ‘1’ and ‘X’ meaning either
‘0’ or ‘1. It is interpreted as “if the state is ...” and may be exactly same as a state
like the one in Figure 11. In this case it matches only one state. By using whatever
symbol ‘x’ it may be used to match multiple states. A condition matching both

1001 and 1011 states may be seen in Figure 12.

10x1
‘ Lli’ Condition for variable 2
Condition for variable 1

Figure 12 A four bit condition.

Second the message part of a rule is similar to a system state string value, it may
contain only ‘0’ and ‘1’. It does not have any direct interpretation, but is necessary
for the rule and messaging algorithm for the formation of rule chains. This will be
clarified later in this section. An important point to be noted is the length of the

system state, where the condition part and the message part are be equal.

Third, the action part is of any length (one bit in our case) binary string

representing possible output of the system meaning that it represents the classes

28



into which the input is classified. When a rule has the right to fire its action it
becomes the output of the system. In our system we have just two possible output
types (two classes) for any possible input. First is “normal”, meaning no intrusion
is present (represented by 0) and second is “abnormal” meaning an intrusion is

present (represented by 1).

When the pieces are put together, a rule with four bit condition, four bit message

and one bit action would look like the one in Figure 13.

10x1:0101:1
L » Action

L » Message
» Condition

Figure 13 A Four-Bit Classifier Rule.

In Table 1 we present how the output is generated in a classifier system which is a
very simplified version of the one used in ID-A. In the first step a random rule set
with four rules for four bit system states has been generated. Strength of each rule
(SoR) and the strength of environment (SoE) is defaulted to 1.00. And the message
box (MB) is empty. In step two an input (1001) has been inputted from the
environment and has been put into the message box. In step three, the rule set has
been searched and condition of rule 2 (10x1) and condition of rule 3 (100x) has
been found to be matching to the system state in the message box (1001). An
auction will be held to determine which rule will be firing its message. In step
four, the two rules have bid for the auction. The bid amount is ten percent of the
strength of the rule for rules and the bids have been paid to the owner of the
activating message which is the environment in this case. In step five, the winner
of the auction is announced to be rule 2. The tie has been broken randomly since
the bids of the two rules were equal. Rule 2 has fired its message (1010) and the

message has been placed to the message board. In step six, the rule set has been

29



searched for matching conditions to the new message and condition of rule 4
(101x) has been found to be matching to the message in the message board
(1010). In step seven, rule 4 has paid its bid to the owner of the activating
message which is rule 2. Although rule 4 is the only matching the message an
implicit auction has been held for the payment of the bid to the activator. In step
eight, rule 4 has fired its message as the winner of the auction and the message has
been placed in the message board. In step nine, the rule set has been searched for a
rule whose condition matches the latest message. Since there is no message
matching to the message the owner of the message (rule 4) is allowed to fire its
action (‘0’ meaning the input represented a normal system state) as the output of
the system to the environment. In step ten, rule 4 has been awarded with the ten
percent of the strength of the environment since the output has been found to be
correct. If the output had been incorrect rule 4 would be penalized by deducting

ten percent of its strength to be added to the environment.

Now the system is ready for receiving another message representing a state of the
target system. After several steps from the environment are generated, the rules
and the rule chains producing correct outputs will gain more strength while the
rules and the chains producing incorrect ones will lose their strengths. This is the

basis for the fitness evaluation.

However the inactive rules may pose a problem as stated before. To overcome this
problem some very little amount of strength (1/1000 of strength of a rule) is

deducted from each rule as the life tax.

A negative rule, describing one or more negative states but no positive ones, is
said to be a strong one since it would produce only correct outputs; the reverse is
true for a strong positive rule. If the training data set included both positive and
negative data both strong positive rules and strong negative rules would be gaining
strength producing correct outputs to the inputs of their types. However in the
absence of the negative data strong negative rules will not match to any positive
data. Throughout the iterations they will get weakened due to the life tax and will
finally get eliminated but this is not desired. In order to deal with this, we use

subsidies for negative rules.

30



Table 1 Output Generation in a Four-Bit Classifier System with Four Rules.

Rules SoR| MB |[SoE Rules SoR| MB |SoE
O0x0x:0011:1 [1.00 Ox0x: 0011:1 |1.00

1 | 1oxi:1010:0 [1.00 100 6 | 10x1: 1010:0 [0.90] .., 120
100x:0110:1 |[1.00 100x: 0110:1 |0.90
101x:1100:0 |1.00 101x: 1100:0 |1.00

Rules SoR| MB |SoE Rules SoR| MB |SoE
Ox0x:0011:1 [1.00 Ox0Ox: 0011:1 |1.00

2 | 10x1:1010:0 [1.00{ ;001 100 f | 10x1: 1010:0 [1.00|, ., 120
100x:0110:1 |[1.00 100x: 0110:1 |0.90
101x:1100:0 |[1.00 101x: 1100:0 |0.90

Rules SoR| MB |[SoE Rules SoR| MB |SoE
O0x0x:0011:1 [1.00 Ox0x: 0011:1 |1.00
3 | 10x1:1010:0 [1.00 8 | 10x1: 1010:0 [1.00

1001 11

100x:0110:1 |1.00 1.00 100x: 0110:1 |0.90 0011.20
101x:1100:0 |1.00 101x: 1100:0 |0.90

Rules SoR| MB [SoE Rules SoR| MB |SoE
O0x0x:0011:1 [1.00 Ox0x: 0011:1 |1.00
4 10x1:1010:0 [0.90 9 10x1: 1010:0 |1.00

100x:0110:1 [0.90 10011120 100x: 0110:1 |0.90 110011.20
101x:1100:0 |1.00 101x: 1100:0 |0.90

Rules SoR| MB [SoE Rules SoR| MB |SoE
O0x0x:0011:1 [1.00 Ox0x: 0011:1 |1.00

5 | 10x1:1010:0 [0.90f 14141 50 10| 10x1: 1010:0 [1.00] ;010 108
100x:0110:1 [0.90 100x: 0110:1 |0.90
101x:1100:0 |[1.00 101x: 1100:0 |1.02

In each step life tax is collected only from the rules with positive action (rules
firing ‘0’ as the action, meaning the input state is a positive [normal] state) and the
collected tax is distributed to the rules with negative action (rules firing ‘1’ as the

action, meaning the input state is a negative [abnormal] state).

To explain how the effect of using life tax and subsidies in fitness evaluation of
rules, in Table 2, we present a categorization of the rules according to the type of

states they describe and the actual actions they contain coded in their action parts.

31



When data available are describing only the positive states, the rules describing
positive states (left column in Table 2) will be matching to the input, from these
the rules with positive actions will be producing true positive outputs and these
rules should be kept in the rule set. These rules gain strength each time they
produce a true output and achieve higher ranks and they are naturally kept in. On
the other hand, those rules describing positive states but containing negative
actions will be matching to the input but will be producing false negative output

therefore these rules will be losing strength each time they get activated.

Table 2 A Classification of Rules in the Rule Set.

Describing Positive States

Describing Negative States

= Strong positive rule. m Weak positive rule.
m Matching to the positive data. m Not matching to the positive data.
Positive = Producing true positive output = Not producing output
Action g p put. p g output.
= Should be kept in the rule set. m Should be removed from the rule set.
v Promoted naturally by the algoritm. v Demoted by the life tax.
= Weak positive rule. = Strong negaitive rule.
= Matching to the positive data. m Not matching to the positive data.
Negative . .. .
Agtion = Producing false positive output. = Not producing any output.
= Should be removed from the rule set. | = Should be kept in the rule set.
v/ Demoted naturally by the algoritm. v/ Promoted by subsidies.

Since negative states are not included in the input data, the rules describing
negative states will not be matching to the input hence will not be producing any
output (right column in Table 2). Therefore the Rule and Messaging System and
Apportionment of Credit System mechanisms of the Bucket Brigade Algorithm
cannot either strengthen or weaken these rules. Hence their strength must be
evaluated by other means. A rule describing negative states but containing positive

action is a weak rule and its strength must be decreased. This is done by life tax.

32



Life tax is collected only from the rules containing positive action. The rules
describing negative data and having positive action is a strong rule. They do not
match to the positive input and so not lose any strength since they do not produce
any incorrect output. Their strengths are increased by the subsidies. In each turn
the total life tax collected from the rules with positive action is distributed equally

among those with negative action.

To the best of our knowledge, the use of subsidies in such a classifier system to
promote the rules which describe a class of input for which the data are missing is

novel to this study.

Up to now we have explained the syntax of the chromosomes and the fitness
evaluation which are the critical components of the genetic based machine learning
algorithms. Now we wrap up this section by giving the details of the population

initialization and the genetic operators used in the algorithm.

The initial population is created randomly. Creation of a rule is as follows. For
each bit (character) in a rule a random number is generated using Prime modulus
multiplicative linear congruential generator. For the message and action parts the
probabilities of selecting one and selecting zero as the next character are equal and
sum up to one. When generating the condition part it is necessary allocate some
probability to the match any character ‘x’ while probabilities of selecting one and
zero is still equal and summing up to 1. The probability of selecting the next
character P(x) is calculated according to the following formula, where n(states) is
the number of all possible states (i.e. 2'° = 1024 when ten bit states are used),
n(rules) is the number of rules used in the rule set, and n(bits) is number of bits in

a system state.

n(states)
0. n(rules)
n(bits)

)
P(x) =

3.1)

If incidentally the generated rule happens to be same as one of the existing rules it

is simply discarded.

33



After a predetermined steps (usually n(states) for small problems) with the Bucket
Brigade Algorithm the weak rules are eliminated and new rules are reproduced.
We want a strong and stable rule set and to preserve the stability each time we
eliminate and reproduce only one rule. The weakest rule is eliminated from the
rule set. The parents are selected randomly to avoid premature conversion. The
two parents are mated using single point crossover. The new rule is added to the
rule set as well as its parents. Also every rule is mutated with 1/1000 probability in

each step.

In the test period no genetic operations takes place, only production of output is
conducted in which bids are announced but not paid, no life tax is collected and no

subsidy is paid.

3.2 INTRUSION DETECTOR B

Intrusion Detector B (ID-B) is another intrusion detection system. It is similar to
ID-A in that it uses the same state representation for the target system, and it uses
the idea of combining existing rules to obtain more useful ones. However it is not
a complete genetic based machine learning algorithm and the rule combination is

not a genetic operator like crossover.

As stated before it is not reasonable to assume that we may have data for both the
normal and abnormal cases to be used in the training period. Therefore our main
assumption is that in the training period data only for normal cases will be
available to the ID system. Basic idea in building ID-B is that, if a system can
produce a compact representation of the normal states with high completeness (i.e.
covering almost all of the normal states) in the training period, then in the test
period the system can classify the states as normal if they are covered by the rule

set and abnormal otherwise.

ID-B uses the same state representation with the ID-A which has been explained in
the previous section. A sample state is available in Figure 9 on page 28. The rules
used by ID-B and the generation mechanism are simpler compared to the ID-A.

Actually ID-B uses only the condition parts of the rules of ID-A. The rule set is a

34



set of conditions matching the states. The rules represent only the normal states so
a state is said to be normal if the state matches any of the rules; and abnormal
otherwise. To be able to successfully detect all anomalies and achieve low false
alarm rates, the states encountered in the training period must be exhaustive (i.e.

all possible normal states should be contained in the training data).

In the training period, since all inputs from the environment represent normal
cases, in each step the input message representing a normal state is inserted in the
rule set. By this way we assure that we do not miss any normal state even if the
ID-B encounters a normal state only once in the training period. However if we
insert each state as a rule to rule set and keep it as it is, we would need a
substantial amount of memory space to store the rule set and full CPU power to
search the rule set. Therefore after the insertion of a rule, the rule set is searched to
find out if it is possible to compact it. If it is possible to compact the rule set, it is
compacted until no more compacting is possible in anyway. Also the rule set is

further reduced before a test.

Table 3 Combination of two rules.

| Rule || States Represented |

0000
0100

0010
0110

0000
0100
0010
0110

First Rule 0x00

Second Rule 0x10

Combined Rule 0xx0

By compacting the rule set, we mean combining every possible pair of rules into a
single rule. Two rules with all bits identical but one, where one rule contains ‘0’ in

the non-identical bit and the other has ‘1’ can be combined by keeping all identical

35



bits and putting an ‘x’ in place of the non-identical one. ‘0x10’ and ‘0x00’ can be

combined into ‘0xx0’ as in Table 3.

Reducing the rule set denotes removing the rules which represent a subset of the
states represented by another rule. In reduction the less general rules are removed
and more general rules are kept. A rule is said to be more general as it contains
more ‘X’ characters. In Table 4 a rule set containing three rules have been reduced

to contain only one rule while representing the same set of states.

Table 4 Reduction in rule set.

| Rule Set || States Represented |

0xx0 8288

Non-Reduced 01x0 0010
0010

0110

0000

0100
0xx0

Reduced XX 0010

0110

In the first step of Table 5, “0001” has been inputted as the message representing
the state of the target system and has been inserted in the rule set. There is no
possibility of compacting the rule set since there is only one rule in it. In the
second step, “0000” has been inputted and placed in the rule set. In the third step,
the rule set has been searched and it the two rules “0000” and “0001” has been
combined into “000x™. In the step four, state “0000”, in step five “0101” and in
step six “0100” have been inputted and have been placed in the rule set. In step
seven, “0100” and “0101” have been combined into “010x”, and in step eight
“000x” and “010x” has been combined into “0Ox0x”. In step nine, the reduction is
illustrated. The rule “0000” is contained by the rule “0x0x”. The more general rule
is kept and the less general is removed to reduce the data set hence “0000” is

removed.

36



Table 5 ID-B Operation in training period.

| Input Message | Rule set |

[1] 0001 | o001 |
) 0000 0000
0001
| 3] | ooox |
A 0000 0000
000x
0101 0000
5 000x
0101
0100 0000
000x
6
0100
0101
0000
7 000x
010x
0000
8
0x0x
|9| 0x0x

37



CHAPTER 4

COMPUTATIONAL EXPERIMENTS

4.1 EFFICIENCY MEASURES

A discussion of the efficiency measures for the intrusion detection systems have
been presented in Section 2.1.4. We use accuracy, completeness and performance
to evaluate our system. Accuracy is the ability to raise true alarms rather than false
ones, measured by the ratio of true alarms to all alarms. Completeness is the ability
to detect all intrusions, measured by the ratio of the true intrusion alarms to all
intrusions. Performance is the ability to perform detection tasks quickly. The
training and testing times can be used to evaluate the training performance and test

performance respectively.

4.2 CONDUCT OF EXPERIMENTS

Shared data sets are used to evaluate the efficiency of the IDS. These data sets are
usually of two parts; the training data and the test data. Training data mainly
contains exhaustive information about the normal operation of the target system.
Behavior-based systems may use it for building a model in different ways using

various techniques such as:

» Parameter estimation in systems employing statistical techniques
= Rule extraction in systems employing expert systems

» Training periods of learning systems

Practically training data are not needed for the knowledge-based systems since
they use profiles of the previous intrusions rather than the target system behavior.
Although the training data may also contain data for known attack types these can
be easily removed especially if the focus is on detection of new attack types. The

test data are similar to the training data however they are usually smaller in size

38



and contain data for new intrusion types in addition to the known intrusion types

and normal data.

One of such shared data sets is the KDD-99 data set [23], which has been used in
The Third International Knowledge Discovery and Data Mining Tools
Competition. The competition was held in conjunction with The Fifth International
Conference on Knowledge Discovery and Data Mining. The focus of the

conference and the competition was intrusion detection.

This data set is based on a previous work by Defense Advanced Research Projects
Agency (DARPA) and Massachusetts Institute of Technology (MIT) Lincoln
Laboratories. In 1998, for the DARPA Intrusion Detection Evaluation Program,
MIT Lincoln Labs set up an environment which simulated a typical US Air Force
LAN and operated the network for nine weeks as if it was a true network but

peppered with some attacks.

For the KDD-99 data set, raw data for the first seven weeks was processed into
five million network connections to be used as the training data. The raw data for
the final two weeks was converted into two million connections to be used as the
test data. The training data included data for 24 attack types which were assumed
to be known, and the test data contained 14 additional attack types assumed to be
novel. School of Information and Computer Sciences at University of California,
Irvine has published a reduced version called the 10 percent data set as well as the
full data. This is the primary data set used in recent work in the field. To evaluate
the performance of our models and to compare them to the related studies we
perform computational experiments with the 10 percent version of the KDD-99

dataset.

As stated before our main aim is to develop detection algorithms which can
operate in the absence of negative data in the training period. Therefore, we
remove the data for the intrusion attempts in the training data, before beginning the

experiments.

39



In the experiments a 21-bit state definition is used which is given in Appendix A.
The first row in the Table 9 shows the number and the location of the bits allocated
for a variable. The name of the variable is located in the second row. The
following rows illustrate the bit streams used in that location and their meaning.
For example the first 5 bits of the state definition is dedicated for the service used
in a connection and “00000” stands for “auth” (i.e. authentication service). The
abbreviations used in Table 9 are the standard abbreviations used in KDD-99 Data
Set. The normal data in the training part of the KDD-99 Data Set and the whole
test data have been converted to a training input which can be used directly by the

ID-A and ID-B algorithms.

The only parameter used by ID-B algorithm is the number of bits in the state
definition which has a fixed value of 21. Therefore it has been run only once. The
result of this experiment is available in Table 7. On the other hand, ID-A algorithm

has seven parameters which are:

e NR : Number of rules in the rule set (Initial population size)
e NS : Number of steps between two iterations of genetic operations.
e NE :Number of rules (chromosomes) eliminated in an iteration.

e BR :Bidrate.
e RPR :Reward/ penalty rate.
e TR :Life tax rate.

e MR : Mutation rate.

Table 6 Factor Levels

NR| NS |[NE| BR RPR TR MR
128] 400] 1] 0.0003| 0.00030000[ 0.00000001] 0.00001000
416]1000] 4] 0.001] 0.00100000{ 0.0000001]| 0.00005000
480] 2400 0.008 0.008]  0.000001

40



For testing ID-A, first, single factor tests are performed where only one parameter
is changed while all other parameters are fixed. The results of these tests are
available in Appendix C. Then a full factorial design is used with the levels of
parameters shown in Table 6. The results of these tests can be seen in Appendix D.
The experiment runs have been performed on an IBM PC compatible computer
with a P-IV 1.6 GHz processor and 256 Megabytes of memory. Pseudo random
number series have been used in all experiments which are obtained using Linear

Conruential Generators. All tests are replicable.

In order to find out the effects of the parameters and their interaction on the
performance of the algorithm Analysis of Variance (ANOVA) is used. For these
analyses General Linear Model option of Minitab 13.30 is utilized. The ANOVA
tables, normality and residual vs. fit plots, main effect plots and interaction plots

are available in Appendix B.

4.3 RESULTS

In this section we discuss the results of the experiments with KDD-99 data set. The
best result obtained from the experiments with ID-A is available in Table 7 and the

result obtained from the experiment from ID-B is available in Table 8.

Table 7 The best result obtained from ID-A

NB|NR| NS [NE| BR | RPR TR MR [ % Acc| % Comp | TrT| TeT
211 416]1000] 4] 0.001| 0.0003] 0.000001] 0.00005 95.6 89.7] 39.0] 62.0

Table 8 Result of ID-B

TrT|TeT|% Acc|{% Comp
618.4( 16.2 95.3 99.3

41



Both of the models have produced fairly good results. Although some recently
published studies slightly outperform our results, an important point to be noted
here is that those systems use both knowledge-based and behavior-based models in
a hybrid manner where our system consists of only a behavior based model hence
such a comparison is not fair. Knowledge-based systems detect known attack types
with 100 percent accuracy and completeness and the debate is for the unknown
attack types. Both of our models can be integrated to knowledge-based systems

making superior results possible.

As stated in the previous section, we have conducted several tests to understand
the effects of the parameters and their relation on the performance of the ID-A
algorithm. Results of these tests are available in Appendix D as well as the
ANOVA analyses in Appendix C. The first thing to be noted from these analyses
is that the variation left to error terms is relatively high for all performance
measure both in models for main factors and in models containing the interaction.
This shows that the changes in the main factors and in the interaction terms are
insufficient to explain the variation in the performance measures. However it is
still possible to derive some conclusions both from the single factor tests and the

ANOVA tables.

Table 18 and Table 19 clearly shows that increasing Mutation Rate and increasing
Number of Rules to be Elimininated in each genetic operation step deteriorates
both Accuracy and Completeness, In Table 24 it is possible to observe increasing

tax rate increases the completeness and limits the accuracy.

Although the variance left to error term is high we also observe that the NS, NE,
BR, RPR and the NS-NE, BR-RPR interactions are the significant factors for
accuracy. The significant factors for completeness are NR, NS, NE, BR, RPR and
NR-BR and NR-RPR interactions.

The most significant factor exlaining the training and testing times (TrT and TeT)
is the number of rules (NR) in the rule set (initial population size). This is also

intuitively correct because the complexity of the algorithm depends on NR.

42



One can easily observe that ID-A can achieve very high accuracy and
completeness ratios, however the good performance is not steady. This is because
the idea of using subsidies conflicts with one of the underlying principles in the
Bucket Brigade Algorithm, the rule chains. The algorithm uses the rules in chains
to produce the output for an input. However the subsidies are distributed on an
individual basis. This may and usually do break the chain structure causing
instability and low performance. In the production of an output, all of the activated
rules fire their messages, and none of them fire its action except the last activated
rule. Therefore action of the rules in a chain is not so important except for the last
rule in the chain. However the subsidies are distributed to all rules according to
their actions. This causes an improper assessment of the fitness of the rules,

instability in the rule set leading to poor results.

ID-B achieves very high accuracy completeness values accompanied with very
high training performance. That is because it is somewhat easier to build compact
and complete rule set in the absence of negative data especially when the training
data are guarantied to be completely normal. The drawback of this algorithm is the
low training performance (i.e. long training time) due to the compacting task
performed in each step of the training. Complexity of compacting is O(n”) and is
likely to trigger long training period for real systems, however this is in a way
tolerable especially if the mechanism is installed on a honey trap (a machine with
no specific duty but serving as an attractive target for intruders). A honey trap
would have a reduced number of normal states meaning smaller sized problem and
configuration changes are unlikely to occur in such systems that is frequent

trainings are not expected.

43



CHAPTER 5

CONCLUSION

In this study we have focused on the design of two behavior-based intrusion
detection algorithms for detection of novel attacks when only normal data are

available for training.

First we provide a model which uses genetic-based machine learning algorithms as
the detection mechanism. This model is a modified version of the model provided
by Dasgupta and Gonzales. The idea of using subsidies in the Bucket Brigade
Algorithm is original to this study. Our main observation is that for appropriate
conditions subsidies may provide means for the creation of strong negative rules,
hence allow deduction of knowledge about the abnormal behavior. However, the
interference of subsidies with the chain structure of the rules causes a turbulent
environment in the rule set where stability is necessary to attain high accuracy and

completeness values.

Next we provide another algorithm which uses the same state representation with
the previous model to implement an original approach. This mechanism builds up
a very compact and relatively complete rule set representing the normal behavior
by inserting the normal states into the rule set as rules and combining similar rule
pairs when possible. It can attain high accuracy and completeness values using
minimal CPU power in the test period. However it requires substantial run time in

the training period.

Both models have been coded in C and tested using the 10 percent version of the
KDD-99 data set which is the primary data set used to evaluate the intrusion
detection tools. The results of the tests have been used in Analysis of Variance

(ANOVA) to determine the significance of the factors.

44



We have observed that the first algorithm can produce rule sets that can detect the
intrusion attempts very accurately and completely; however, the performance is
not steady and may change considerably between similar parameter sets. Also in
ANOVA analyses we have observed that the substantial share of the variance is
left to error term meaning that the factors (i.e. the parameters used in the test
setup) are not significant in explaining the change in the outcome. This may also
be interpreted as an evidence of the turbulent environment in the rule set due to the

conflict between the idea of using subsidies and the principle of rule chains.

The second algorithm has only one parameter, the number of bits in the state
definition which is constant throughout the experiments. Hence it has been run
only once and demonstrated fairly high accuracy and completeness. However this
algorithm is very sensitive on the ‘“absence of negative data in training”
assumption. If this algorithm is exposed to negative data in the training period the

performance will rapidly decline.

Adapting Pitt style classifiers in the first algorithm may be a sound precaution to
avoid instability problems although the advantage of using rule chains will be lost
but the simplicity may provide better results. Another factor which may be used to
increase and stabilize the performance may be a fuzzy control system which may

be used in further studies.

45



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

J. P. Anderson. Computer Security Threat Monitoring and Surveillance.
Technical Report. James P. Anderson Co., Fort Washington, PA., April
1980.

Cisco Systems. Cisco Secure Intrusion Detection System (NetRanger)
Overview. Available at http://www.cisco.com/univercd/cc/td/doc/product/
1aabu/csids/csids2/220ug/overview.htm. September 2005.

W. H. Chen, S. H. Hsu and H.-P. Shen, Application of SVM and ANN for
intrusion detection, Computers & Operations Research, Volume 32, Issue
10, October 2005, Pages 2617-2634.

D. Dasgupta and F. A. Gonzales. An Intelligent Decision Support System for
Intrusion Detection and Response. In Lecture Notes in Computer Science
(publisher: Springer-Verlag) as the proceedings of International Workshop
on Mathematical Methods, Models and Architectures for Computer
Networks Security (MMM-ACNS), May 21-23, 2001, St. Petersburg, Russia.

H. Debar, M. Dacier, M. Nassehi, and A. Wespi. Fixed vs. variable-length
patterns for detecting suspicious process behavior. In Jean-Jacques
Quisquater, Yves Deswarte, Catherine Meadows, and Dieter Gollmann,
editors, Computer Security - ESORICS 98, Vol. 1485 of Lecture Notes in
Computer Science, pages 1-16. Springer, 1998.

H. Debar, M. Dacier, and A. Wespi. Reference audit information generation
for intrusion detection systems. In Reinhard Posch and Gyorgy Papp, editors,
Information Systems Security, Proceedings of the 14th International
Information Security Conference IFIP SEC'98, pages 405-417, Vienna,
Austria and Budapest, Hungary, 1998. Chapman & Hall.

H. Debar, M. Dacier and A. Wespi. A Revised Taxonomy for Intrusion-
Detection Systems. Technical Report. RZ 3176 (#93222) 10/25/99. IBM
Research, Zurich Research Office. 1999.

B. de Boer. Classifier Systems: A useful approach to machine learning?
Masters thesis. Leiden University. 1994.

D. E. Denning. An Intrusion-Detection Model. IEEE Transactions on
Software Engineering, 13(2):222-232, 1987.

C. Dowell and P. Ramstedt. The ComputerWatch data reduction tool. In
Proceedings of the 13th National Computer Security Conference, pages 99-
108, Washington, DC, October 1990.

46



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Chief Security Officer Magazine. E-Crime Watch™ Survey. Available at
http://www2.csoonline.com/info/release.html?CID=5429. September 2005.

S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology.
Communications of the ACM, 40(10):88-96, October 1997.

P. Gallinari, S. Thiria, and F. Fogelman-Soulie. Multilayer perceptrons and
data analysis. In Proceedings of the IEEE Annual International Conference
on Neural Networks (ICNN88), Vol. I, pages 391-399, San Diego, CA, July
1988.

T. Garvey and T. Lunt. Model-based intrusion detection. In Proceedings of
the 14th National Computer Security Conference, pages 372-385, October
1991.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley. 1989.

F. A. Gonzales, D. Dasgupta and R. Kozma. Combining Negative Selection
and Classification Techniques for Anomaly Detection. Journal IEEE
Transactions on Evolutionary Computation. 6:281-291. 2002.

P. Helman and G. Liepins. Statistical foundations of audit trail analysis for
the detection of computer misuse. IEEE Transactions on Software
Engineering, 19:886-901, September 1993.

P. Helman, G. Liepins, and W. Richards. Foundations of intrusion detection.
In Proceedings of the Fifth Computer Security Foundations Workshop, pages
114-120, Franconic, NH, June 1992.

N. Habra, B. Le Charlier, A. Mounji, and I. Mathieu. Asax: Software
architecture and rule-based language for universal audit trail analysis. In Y.
Deswarte, G. Eizenberg, and J.-J. Quisquater, editors, Proceedings of the
Second European Symposium on Research in Computer Security
(ESORICS), Toulouse, France, November 1992, Vol. 648 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Germany/

K. Ilgun. Ustat: A real-time intrusion detection system for UNIX. In
Proceedings of the 1993 IEEE Symposium on Research in Security and
Privacy, pages 16-28, Oakland, CA, May 1993.

H. S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In
Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 316-326, May 1991.

H. S. Javitz, A. Valdez, T. F. Lunt, A. Tamaru, M. Tyson, and J. Lowrance.
Next generation intrusion detection expert system (NIDES) —1. Statistical
algorithms rationale —2. Rationale for proposed resolver. Technical Report
A016 — Rationales, SRI International, 333 Ravenswood Avenue, Menlo
Park, CA, March 1993.

47



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

University of California, Irvine School of Information and Computer
Sciences. KDD Cup 1999 Data. Available at http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html. September 2005 .

S. Kumar and E. Spafford. A pattern matching model for misuse intrusion
detection. In Proceedings of the 17th National Computer Security
Conference, pages 11-21, October 1994.

T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection
expert system. In Proceedings of the 1988 Symposium on Security and
Privacy, pages 59-66, Oakland, CA, April 1988.

Z. Michalewics. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag. Third Edition. 1996.

D. Moore. The Spread of Code Red Worm (CRv2). Available at
http://www.caida.org/analysis/security/code-red/coderedv2
analysis.xml. September 2005.

D. Moore V. Paxson S. Savage C. Shannon S. Staniford and N. Weaver. The
Spread of the Sapphire/Slammer Worm. Available at http://www.caida.org/
outreach/papers/2003/sapphire/sapphire.html, September 2005.

P. A. Porras and R. Kemmerer. Penetration state transition analysis - A rule-
based intrusion detection approach. In Proceedings of the Eighth Annual
Computer Security Applications Conference, pages 220-229. IEEE
Computer Society Press, November 1992.

P. A. Porras and A. Valdes. Live traffic analysis of TCP/IP gateways. In
Proceedings of the 1998 ISOC Symposium on Network and Distributed
System Security (NDSS'98), San Diego, CA, March 1998. Internet Society

W. S. Sarle. Neural networks and statistical models. In Proceedings of the
Nineteenth Annual SAS Users Group International Conference, April, 1994,
pages 1538-1550, Cary, NC, April 1994. SAS Institute.

P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre, J. Darzentas, C. Gigante,
D. Karagiannis, P. Kess, H. Putkonen, and T. Spyrou. SECURENET: A
network-oriented intelligent intrusion prevention and detection system.
Network Security Journal, 1(1), November 1994.

T. Spyrou and J. Darzentas. Intention modeling: Approximating computer
user intentions for detection and prediction of intrusions. In S.K. Katsikas
and D. Gritzalis, editors, Information Systems Security, pages 319-335,
Samos, Greece, May 1996. Chapman & Hall.

H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session
activity. In Proceedings of the 1989 IEEE Symposium on Research in
Security and Privacy, pages 280-289, 1989.

48



[35] D. Vincenzetti and M. Cotrozzi. Atp - Anti tampering program. In
Proceedings of the Fourth USENIX Security Symposium, pages 79-89, Santa
Clara, CA, October 1993.

49



APPENDIX A

State Definition

Table 9 State Definition

5 Bits (1-5) 4 Bits (6-9) 2 Bits (10-11)
service flag src_bytes
Bit Stream Meaning Bit Stream| Meaning | Bit Stream Meaning
00000 Jauth 0000 |OTH 00 src bytes < 20
00001 |domain 0001 |REJ 01 20 < src bytes < 500
00010 |domain u 0010 RSTO 10 500 £ src bytes < 1250
00011 Jeco i 0011 |RSTOSO 11 1250 < src bytes

00100 Jecr i

0100 RSTR

00101 [finger 0101 S0
00110 |[ftp 0110 S1
00111 |ftp data 0111 S2
01000 |http 1000 S3
01001 |icmp 1001 SF
01010 |IRC 1111 |o/w

01011 [link

01100 |[ntp u

01101 J]other

01110 |pop 3

01111 |private

10000 |Jred i

10001 |remote job

10010 |shell

10011 |smtp

10100 |ssh

10101 |telnet

10110 |tftp u

10111 [time
11000 |tim i

11001 Jurh i

11010 Jurp i

11011 |X11

11111 Jo/w

50




Table 9 State Definition (Continued)

1 Bit (12) 2 Bits (13-14)
src_bytes dst_bytes
Bit Stream Meaning Bit Stream Meaning
0 src bytes # 2599 00 dst bytes < 125
1 src_bytes = 2599 01 125 < dst _bytes < 150
10 150 < dst _bytes < 250
11 250 < dst bytes
Table 9 State Definition (Continued)
1 Bit (15) 1 Bit (16) 1 Bits (17)
hot count srv_count
Bit Stream| Meaning | Bit Stream| Meaning | Bit Stream Meaning
0 hot < 1 0 count < 5 0 srv count < 4
1 hot 2 1 1 count = 5 1 srv_count 2 4

Table 9 State Definition (Continued)

2 Bits (18-19)

dst host count

Bit Stream Meaning
00 dst host count < 40
01 40 < dst_host count < 200
11 200 < dst host count

Table 9 State Definition (Continued)

2 Bits (20-21)
dst host same src port rate
Bit Stream Meaning
00 dst host same src port rate < 0.15
01 0.15 < dst_host same_src port rate < 0.80
10 0.80 < dst _host same src port rate < 0.95
11 0.95 < dst host same src port rate

51




APPENDIX B

ANOVA Analyses

Table 10 ANOVA Analysis for Main Effects on Accuracy

Analysis of Variance for AC, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
NR 2 143.7 143.7 71.8 0.16 0.856
NS 2 2348.8 2348.8 1174.4 2.54 0.079
NE 1 3870.4 3870.4 3870.4 8.38 0.004
BR 2 2150.7 2150.7 1075.4 2.33 0.0098
RPR 2 27790.3 27790.3 13895.2 30.08 0.000
TR 2 790.3 790.3 395.2 0.86 0.425
MR 1 602.4 602.4 602.4 1.30 0.254
Error 959 443057.3 443057.3 462.0

Total 971 480753.9

Table 11 ANOVA Analysis for Significant Main Effects
and Interactions on Accuracy

Analysis of Variance for AC, using Adjusted SS for Tests

Source DF Seqg SS Adj SS Adj MS F =
NS 2 2348.8 2348.8 1174.4 2.60 0.075
NE 1 3870.4 3870.4 3870.4 8.58 0.003
BR 2 2150.7 2150.7 1075.4 2.38 0.093
RPR 2 27790.3 27790.3 13895.2 30.79 0.000
NS*NE 2 4120.4 4120.4 2060.2 4.57 0.011
NS*BR 4 1992.6 1992.6 498.1 1.10 0.353
NS*RPR 4 932.0 932.0 233.0 0.52 0.724
NE*BR 2 761.6 761.6 380.8 0.84 0.430
NE*RPR 2 14.3 14.3 7.2 0.02 0.984
BR*RPR 4 9883.0 9883.0 2470.7 5.48 0.000
Error 946 426889.8 426889.8 451.3

Total 971 480753.9

52




Table 12 ANOVA Analysis Main Effects on Completeness

Analysis of Variance for CO,

using Adjusted SS for Tests

Source DF Seqg SS Adj SS Adj MS F =
NR 2 7149.8 7149.8 3574.9 5.58 0.004
NS 2 5618.3 5618.3 2809.1 4.38 0.013
NE 1 2749.2 2749.2 2749.2 4.29 0.039
BR 2 8682.2 8682.2 4341.1 6.77 0.001
RPR 2 28812.1 28812.1 14406.0 2.48 0.000
TR 2 2174.5 2174.5 1087.2 1.70 0.184
MR 1 193.5 193.5 193.5 0.30 0.583
Error 959 614598.7 614598.7 640.9
Total 971 669978.4

Table 13 ANOVA Analysis for Significant Main Effects

and Interactions on Completeness

Analysis of Variance for CO, using Adjusted SS for Tests
Source DF Seqg SS Adj SS Adj MS F P
NR 2 7149.8 7149.8 3574.9 5.76 0.003
NS 2 5618.3 5618.3 2809.1 4.53 0.011
NE 1 2749.2 2749.2 2749.2 4.43 0.036
BR 2 8682.2 8682.2 4341.1 7.00 0.001
RPR 2 28812.1 28812.1 14406.0 3.21 0.000
NR*NS 4 1222.7 1222.7 305.7 0.49 0.741
NR*NE 2 1614.5 1614.5 807.2 1.30 0.273
NR*BR 4 3805.2 3805.2 951.3 1.53 0.190
NR*RPR 4 10025.8 10025.8 2506.4 4.04 0.003
NS*NE 2 6802.8 6802.8 3401.4 5.48 0.004
NS*BR 4 4784.6 4784.6 1196.1 1.93 0.104
NS*RPR 4 562.7 562.7 140.7 0.23 0.924
NE*BR 2 1172.9 1172.9 586.4 0.95 0.389
NE*RPR 2 146.0 146.0 73.0 0.12 0.889
BR*RPR 4 9716.7 9716.7 2429.2 3.91 0.004
Error 930 577112.9 577112.9 620.6
Total 971 669978.4

53




Table 14 ANOVA Analysis Main Effects on Training Performance

Analysis of Variance for TrT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
NR 2 376650 376650 188325 9208.52 0.000
NS 2 129 129 65 3.16 0.043
NE 1 260 260 260 12.69 0.000
BR 2 276 276 138 6.76 0.001
RPR 2 19 19 9 0.46 0.629
TR 2 83 83 41 2.03 0.133
MR 1 7 7 7 0.35 0.556
Error 959 19613 19613 20

Total 971 397037

Table 15 ANOVA Analysis for Significant Main Effects
and Interactions on Training Performance

Analysis of Variance for TrT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
NR 2 376650 376650 188325 9659.69 0.000
NS 2 129 129 65 3.32 0.037
NE 1 260 260 260 13.31 0.000
BR 2 276 276 138 7.09 0.001
NR*NS 4 197 197 49 2.53 0.039
NR*NE 2 88 88 44 2.26 0.105
NR*BR 4 613 613 153 7.86 0.000
NS*NE 2 11 11 5 0.27 0.760
NS*BR 4 282 282 70 3.61 0.006
NE*BR 2 88 88 44 2.25 0.106
Error 946 18443 18443 19

Total 971 397037

Table 16 ANOVA Analysis Main Effects on Test Performance

Analysis of Variance for TeT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
NR 2 3198550 3198550 1599275 1332.64 0.000
NS 2 19071 19071 9536 7.95 0.000
NE 1 9795 9795 9795 8.16 0.004
BR 2 2638 2638 1319 1.10 0.334
RPR 2 5549 5549 2774 2.31 0.100
TR 2 1027 1027 514 0.43 0.652
MR 1 1649 1649 1649 1.37 0.241
Error 959 1150877 1150877 1200

Total 971 4389156

54




Table 17 ANOVA Analysis for Significant Main Effects
and Interactions on Test Performance

Analysis of Variance for TeT, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F P
NR 2 3198550 3198550 1599275 1328.74 0.000
NS 2 19071 19071 9536 7.92 0.000
NE 1 9795 9795 9795 8.14 0.004
NR*NS 4 5666 5666 1416 1.18 0.319
NR*NE 2 1520 1520 760 0.63 0.532
NS*NE 2 1499 1499 749 0.62 0.537
Error 958 1153055 1153055 1204
Total 971 4389156
3 .
-‘,n'
2
o
o 11
o
w
©s 04
£
)
z '
=
2 ,',f
.
-3 . .
T T T T T T
-3 -2 -1 0 1 2

Standardized Residual

Figure 14 Normal Probability Plot of ANOVA Analysis
for Main Effects on Accuracy

2 (] we®, o
¥ " -.-f' ‘-.l s " (1]

© * '. -.\ :'-".Q'-- .:.: " ll'?n’
g 1— .t '. ., ‘."‘ u_ﬂ'-=. o e "i‘.l.v.-.- ..“ -\r-
o ® e e, * oy TN .-1',:': 3] w-"‘ . - .-‘ .
g I R T AR, w-ﬁa-\*:i"-.-..
o tlaeleea tall oy TR AL A '&"1.-:1.7. ,,,,,,,,,
3 R N _""'-J"‘""'"'?; I
’l‘ .I :. : --- .-‘-.l. .-.-l. ® _'. .‘ X :}.ﬁ -=; . '] . a
R R LI, { T R
% * R T T PRI R 'q‘k--'.'!' .s -
c ..'. -- ] . - .' o go ¥ ® sge 0
) e Y * =..'-l'- ge” "

-2 — ® L] » - ® . e
0 2 L] . . l: .-. . ® . s . - R

. * . % .
. . .
3 ® . -
T T I ‘
50 60 70 80
Fitted Value

Figure 15 Residuals vs Fit Plot of ANOVA Analysis
for Main Effects on Accuracy

55




Normal Score
o
|

I I I [ I I
-3 -2 -1 0 1 2

Standardized Residual

Figure 16 Normal Probability Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Accuracy

2+ * .
" e U K
_ ° . (I ' 2 .‘ .,
(3“ 1 ' ; : ;i ; :; f : : ;:.l.l 'ia:'l'. . -
2 Pl e S g '5 e !fi]'! 5 ik
LR ol e, H I .
§ . ! ‘e a1 g 8 Lo 2 !l it ll!l'::!l :: !
2 e i”’il"’i; ””” - ) ""l"’;”_."’.’.’_’;'f’Igl:i?l_’d’"’.”;’ = fiE!
L HE N oty .
N 1 e 2, :i - "i':!: ! LN
= — ® H s ® e e *o
g ! . H t:: ° ':._! l‘.' I.".I "an
c [ ] - . l.. - . :
2 5 : . ' 3 L l ' .
(2} 8 - » .,
[ L]
3 ¢
I I I I
50 60 70 80
Fitted Value

Figure 17 Residuals vs Fit Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Accuracy

56



NS NE BR RPR

70.0

N\ =

w | N N

@)
<
62.5 —
60.0
N o S S o S & o o
w® S P & & &FF& & &£
N Ny SRR S Q
Figure 18 Plot of Significant Main Effects on Accuracy
o o 3 N N\ & O N
w N N ™ RN S & &
175
NS
+ 2400
165
+ 1000
. 400 T5
175
k7 NE —_ ————
.- 4 T~ _ \
~_ — N
\i
. 155
175
. BR
=~ . + 0.0080
e T ;>’;' +65
T * 0.0010
» 0.0003 T5
_a 175
S _— = N RPR
— + 0.0500
165
S IS . P = 0.0010
7 » 0.0003 15

Figure 19 Plot of Effects of Interactions on Accuracy

57



3% L]
-
2— /
o
[e) 14 -
o
n
® 0
IS
S
z 7
2
3
-2 -1 0 1 2 3

Standardized Residual

Figure 20 Normal Probability Plot of ANOVA Analysis
for Main Effects on Completeness

..I
L * n‘
T o AT Y TR BRI ek
-g ...p—..' "L '_\ *
7 My LA s
o
r 1 . T
- .: N e ® '.l‘- ‘.. -----
I A LN AL .
T saigre: e A
§ 0o LY T YR h L.
9 ".-'\.u-, {'.- v we @ ":' L T I
S - ".l.l.“""l' o
n 4 P HOR - T
"l".,“""- .-".
-2 —| : I I T I
10 20 30 40 50
Fitted Value

Figure 21 Residuals vs Fit Plot of ANOVA Analysis
for Main Effects on Completeness

58



3 5
'-l
27
g i
O
n
T 07
£
]
z
-2
l./
-3
T T T T T T
2 -1 0 1 2 3

Standardized Residual

Figure 22 Normal Probability Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Completeness

37 -
T - 4
S 2 yedgfl ., et )
ol geiote by
% ety piz' s B d
. . t sog el
e g R S Ll B
8 0 L o, se'% s *° D
N aw ® .g..l-:- : ." ot -'i} B
T otz UPR TR (L TR ST D il LI L
ks T ',u.}v A eIRA A
2 4 il e 8 PRI
8 1 k- i ‘- A ;.'.'. ° '.-
()] 1 "F : 'l’ P
LI
® am®
2
I T \ \ T \
0 10 20 30 40 50

Fitted Value

Figure 23 Residuals vs Fit Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Accuracy

59



CcoO

32

29

26

23

20

NR

NS

NE

BR

RPR

Figure 25 Plot of Effects of Interactions on Completeness

60




Normal Score
o
|

Standardized Residual

Figure 26 Normal Probability Plot of ANOVA Analysis
for Main Effects on Training Performance

Standardized Residual
T

Fitted Value

Figure 27 Residuals vs Fit Plot of ANOVA Analysis
for Main Effects on Training Performance

61



Normal Score
o
|

I T I I I I I I I
-3 -2 -1 0 1 2 3 4 5

Standardized Residual

Figure 28 Normal Probability Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Training Performance

%
Ty
.

[
=

o
o & T dop A i o=
u?* LI
£+ ot Wedn et F "a~ 3
PHTY

Ll oaad A9
Iy

Standardized Residual
T
")
=31
f

" e B

I I T T I I T
0 10 20 30 40 50 60

Fitted Value

Figure 29 Residuals vs Fit Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Training Performance

62



TrT

50

40

30

20

NS

BR

QS O
QQ Q‘Q

& ™

Figure 30 Plot of Significant Main Effects on Training Time

S Q
S o $ S
N2 ® Ny (199 N N o Q
e . D LU — .
480 | mommme—— - e ——— -
416
— & @ N — o
NS
+ 2400
= -— Y
= 1000
® 400
NE
.4
———————s ——————*
=1
BR
+ 0.0080
P ittt =3 $==c=cc—-
= 0.0010
= 0.0003

Figure 31 Plot of Effects of Interactions on Training Time

¥ 60

+40

T20

+ 60

+40

+20

T 60

f40

T20

+ 60

+40

+20



o’

Normal Score
o
|

I I I I I I I I I
-3 -2 -1 0 1 2 3 4 5

Standardized Residual

Figure 32 Normal Probability Plot of ANOVA Analysis
for Main Effects on Test Performance

Standardized Residual
T

| |
0 100 200
Fitted Value

Figure 33 Residuals vs Fit Plot of ANOVA Analysis
for Main Effects on Test Performance

64



3 L
-..."
2 — f‘..‘
o
o 17
(&)
wn
T 0
e
o
z 7
-2 —
o
-3 4 ..
I T T T T T T T I
3 2 A 0 1 2 3 4 5

Standardized Residual

Figure 34 Normal Probability Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Test Performance

57
47 L]
E . .
= 3 c . b e
[0] 2 — . l. : o . j
14 oL, . :
(]
® 1 e I I THEE: i
._g H H " ]
L]
& OIIi ************************************************* I*"I"- NN II =
° . I [ {
c « B ol b
-1 - [ 3 1
8 ETH I
] i | [
2 M I :l N 0 3 ._ °
0y ° I! [ ] .- (]
® ° .
-37 ® °
I I I I
20 70 120 170

Fitted Value

Figure 35 Residuals vs Fit Plot of ANOVA Analysis
for Significant Main Effects and Interactions on Test Performance

65



170 NR NS NE
140
110 - e ~——
= — =
C
80 —
50 —
N w® ©W® & R s
Figure 36 Plot of Significant Main Effects on Test Performance
P w® Y S '\QQQ f),b‘QQ N x
NR T E * 110
+ 480 T T - ————— .,
+ 100
416
+ 50
® 128 - — —e
NS +150
e2400
oo 1100
= 1000
T 50
s 400
NE 1150
« 4
-« ———
 —— 1100
+ 50

Figure 37 Plot of Effects of Interactions on Test Performance

66




APPENDIX C

Single Factor Test Results

Table 18 Test Results for changing MR,
where NR =128, NS = 100, NE =1, BR = 0.008 RPR = 0.001, TR = 0.00000001

MR % Acc|% Comp| TrT | TeT
0.0000000005] 92.4 97.1 6.5] 14.0
0.000000001 92.4 97.1] 6.5| 13.8
0.000000005] 92.4 97.1 6.5| 14.0
0.00000001 92.4 97.1 6.6] 14.0
0.00000005] 92.4 97.1] 6.7 14.1
0.0000001 92.4 97.1] 69| 143
0.0000005] 92.4 97.1] 69| 14.2
0.000001 92.4 97.1 7.0] 143
0.000005| 92.3 97.1 7.0] 144
0.00001 93.0 99.31 7.11 12.0
0.00005]  90.3 95.0 7.5| 12.8

0.0001 56.2 9.11 8.2 29.3
0.0005| 59.3 24.21 7.8] 28.0
0.001 13.7 2.0 9.2 444
0.005 86.3 924 7.8] 13.3
0.01 74.1 31.1] 8.1 225

0.05 85.3 99.11 5.5 10.2

Table 19 Test Results for changing NE, where NR =128, NS = 100,
BR =0.008 RPR =0.001, TR = 0.00000001, MR = 0.00001

NE [ % Acc | % Comp | TrT | TeT
1 93.1 96.4] 8.5 11.5
2 94.4 22.0 8.6] 352
3 82.0 11.9( 7.7| 24.7
4 92.0 93.3] 8.5 16.0
5 83.2 71.8] 10.7| 22.3
6 22.7 0.6] 11.9] 30.4
7 96.5 75.5] 9.2| 22.4
8 65.0 3.1] 10.8] 32.5
9 71.7 12.5| 12.9] 43.7

10 47.3 3.4 9.8] 22.9

67



Table 20 Test Results for changing NR, where NS =100, NE = 1,
BR =0.001, RPR =0.001, TR =0.00000001, MR = 0.00001

NR | % Acc | % Comp | TrT | TeT
64 96.3 68.1 3.6] 9.5
96 95.7 68.0 7.0] 14.2
128 93.1 96.4| 85| 114
160 87.2 15.3] 12.0] 42.6
192 54.3 59| 14.1] 42.6
224 95.4 25.3] 20.8| 53.7
256 85.1 3.4] 20.4| 81.8
288 74.5 8.6| 29.6| 98.7
320 71.7 18.9 30.1] 73.4
352 72.9 15.9( 37.6] 126.4
384 70.5 21.2| 38.5[135.4
416 97.1 84.5| 52.8| 65.5
448 92.6 25.7| 63.2| 181.5
480 91.1 72.1( 77.6] 78.7
512 89.2 34.7| 51.8| 179.8

Table 21 Test Results for changing NS, where NR =128, NE =1, BR = 0.001
RPR =0.001, TR = 0.00000001, MR = 0.00001

NS | % Acc | Y% Comp | TrT | TeT
200 98.7 81.5| 8.9 20.0
400 98.4 67.3] 7.4| 20.8
600 94.0 39.1] 10.4| 45.4
800 60.4 17.8] 6.9 379

1000 81.6 72.7] 8.2| 20.2

1200 14.3 2.8] 82| 193

1400 18.5 43| 8.3]| 20.8

1600 31.8 1.3] 9.5| 26.2

1800 70.2 0.6] 7.1 343

2000 72.0 12.2] 9.8] 51.6

2200 13.0 2.6] 10.7] 30.8

2400 91.7 69.9] 8.1] 29.8

2600 34.7 8.5 7.7 23.0

2800 30.3 6.0 84| 27.1

3000 48.2 6.4 8.8| 373

68



Table 22 Test Results for changing BR, where NR =128, NS = 100, NE =1,
RPR =0.001, TR = 0.00000001, MR = 0.00001

BR % Acc | % Comp | TrT | TeT
0.0001 89.2 2.1] 10.8] 33.6
0.0002 65.9 7.2] 10.4] 50.3
0.0003 84.7 92.0] 84| 13.2
0.0004 36.9 8.0 10.9[ 27.8
0.0005 97.7 68.4] 9.3] 22.5
0.0006 74.8 8.7 8.5 23.6
0.0007 96.4 69.1] 9.4| 18.6
0.0008 93.3 72.8| 10.7] 16.2
0.0009 78.9 40.5] 9.0 36.7

0.001 93.1 96.4] 9.11 11.9
0.002 60.0 30.4| 12.3] 16.9
0.003 84.5 66.4| 8.5 20.2
0.004 65.9 18.9] 12.3] 32.6
0.005 67.5 10.9] 13.2] 27.1
0.006 91.6 20.5] 9.6] 26.2
0.007 79.5 23.3| 10.5] 25.2
0.008 93.0 99.3] 6.5 11.5
0.009 94.6 959 9.1] 143
0.01 74.7 27.8] 8.7] 20.1
0.02 95.3 71.9] 9.5| 13.8
0.03 37.8 11.1] 8.0] 24.9
0.04 97.5 69.3| 8.6] 17.7
0.05 39.1 8.7/ 10.0[ 18.5
0.06 79.2 70.6] 8.2] 12.9
0.07 37.2 12.8] 8.7| 24.8
0.08 76.1 764 9.4| 16.2
0.09 76.4 75.8] 9.9] 15.8
0.1 44.8 10.7) 8.2] 30.3

69



Table 23 Test Results for changing RPR, where NR =128, NS = 100, NE =1,
BR =0.008, TR = 0.00000001, MR =0.00001

RPR % Acc | % Comp [ TrT | TeT
0.0001 88.3 76.5 8.0 18.5
0.0002 68.5 4.7 9.0] 24.4
0.0003 81.3 922 6.8] 12.0
0.0004 82.7 13.6[ 10.2] 25.8
0.0005 68.9 28.0 7.3] 31.6
0.0006 75.2 44| 94| 223
0.0007 75.6 6.3] 10.2[ 435
0.0008 84.5 30.3] 10.1] 29.6
0.0009 83.0 70.2( 10.9] 18.9

0.001 93.0 99.3| 7.0] 12.0
0.002 73.3 29.8[ 10.2] 29.9
0.003 73.8 8.1] 11.7[ 30.9
0.004 62.8 1.1] 11.7] 26.4
0.005 82.3 28.8 9.9] 33.8
0.006 71.5 29.6| 9.6] 352
0.007 66.3 46.5 8.4] 29.8
0.008 30.5 4.6| 10.0] 27.1
0.009 94.6 14.1| 10.0] 254
0.01 94.5 71.6[ 10.9] 16.9
0.02 98.8 72.9( 10.7] 18.7
0.03 12.8 1.5] 82| 50.2
0.04 89.9 2.8] 10.8] 27.3
0.05 94.5 94.8[ 11.0] 13.2
0.06 89.8 289 11.2] 33.3
0.07 85.5 67.1] 9.1] 184
0.08 94.9 72.8( 11.3] 14.7
0.09 19.7 2.0] 12.3] 55.1
0.1 90.9 69.0 9.5] 18.5

70



Table 24 Test Results for changing TR, where NR =128, NS = 100, NE =1,
BR =0.001, RPR =0.001, MR =0.00001

TR % Acc | % Comp | TrT | TeT
0.00000000 63.5 89 7.1 29.8
0.00000001 63.5 8.9 7.3 29.7
0.00000001 93.0 99.3] 6.5 11.6
0.00000005 80.8 31.9] 8.6] 27.6
0.00000010 86.1 78.8] 7.2] 12.9
0.00000050 79.2 27.5|] 11.7] 38.2
0.00000100 84.2 90.7| 8.2| 14.2
0.00000500 84.5 27.7] 10.2] 23.8
0.00001000 73.3 35.6] 7.7 22.5
0.00005000 77.4 35.8] 8.1] 34.7
0.00010000 80.5 100.0{ 5.2 10.0
0.00050000 80.5 100.0 7.8[ 15.2
0.00100000 80.5 100.0 6.6 11.2
0.00500000 80.5 100.0{ 7.4 10.5

71



APPENDIX D

Full Factorial Test Results

NR : Number of rules in the rule set (Initial population size)

NS : Number of steps between two iterations of genetic operations.
NE : Number of rules (chromosomes) eliminated in an iteration.
BR : Bid rate.

RPR : Reward / penalty rate.

TR : Life tax rate.

MR : Mutation rate.

% Acc : Percent accuracy.

% Comp : Percent completeness.
TrT : Training time.

Tet : Testing time.

Table 25 Test Results for ID-A, where NR= 128, NS= 400, NE= 1, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 91.9 10.0] 11.0] 66.0
0.0003{ 0.00000001] 0.00005 83.3 55.1]1 10.9] 39.1
0.0003[ 0.0000001| 0.00001 83.3 929 7.0 124
0.0003[ 0.0000001] 0.00005 84.7 96.5] 7.2] 12.5
0.0003[ 0.000001| 0.00001 60.1 11.9] 8.1] 23.6
0.0003[ 0.000001] 0.00005 60.1 11.9] 8.1] 23.7
0.001] 0.00000001| 0.00001 16.7 1.8] 8.5] 21.9
0.001] 0.00000001| 0.00005 73.6 10.1] 11.2] 46.3
0.001] 0.0000001| 0.00001 78.9 72.5] 7.0 13.0
0.001] 0.0000001{ 0.00005 52.2 6.9 8.1] 28.0
0.001] 0.000001| 0.00001 75.7 27.7] 14.9] 43.5
0.001]  0.000001{ 0.00005 90.9 76.6] 9.3| 17.4
0.05] 0.00000001] 0.00001 98.8 11.2] 9.7 38.6
0.05] 0.00000001| 0.00005 4.6 0.2 93] 29.8
0.05] 0.0000001] 0.00001 59.2 10.6] 9.3] 30.1
0.05] 0.0000001]| 0.00005 81.2 68.0] 9.7] 19.9
0.05] 0.000001] 0.00001 37.0 49] 9.0] 30.3
0.05] 0.000001]| 0.00005 44.8 9.6[11.1] 44.0

72



Table 26 Test Results for ID-A, where NR= 128, NS= 400, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 66.4 0.8] 11.5] 35.5
0.0003{ 0.00000001] 0.00005 93.8 73.4] 10.8] 18.7
0.0003[ 0.0000001| 0.00001 92.4 68.7] 11.9] 224
0.0003[ 0.0000001] 0.00005 89.0 74.6] 11.8] 20.3
0.0003[ 0.000001| 0.00001 89.8 68.7] 8.1 274
0.0003[ 0.000001] 0.00005 81.9 94.8] 7.5 11.6
0.001] 0.00000001| 0.00001 98.4 67.3] 7.3] 20.9
0.001] 0.00000001| 0.00005 98.9 73.11 6.8] 17.7
0.001] 0.0000001| 0.00001 79.2 32.11 7.1] 18.5
0.001] 0.0000001| 0.00005 63.4 37.4] 6.0] 45.2
0.001] 0.000001| 0.00001 58.6 30.8] 6.3] 19.2
0.001]  0.000001{ 0.00005 56.5 12.1] 6.9] 28.8
0.05] 0.00000001] 0.00001 52.3 6.1 9.4| 38.1
0.05] 0.00000001| 0.00005 45.2 6.0 9.5] 27.9
0.05] 0.0000001] 0.00001 10.5 0.8] 7.8] 32.5
0.05] 0.0000001]| 0.00005 23.4 6.6] 74| 263
0.05]  0.000001] 0.00001 85.1 67.5] 9.7] 18.8
0.05]  0.000001] 0.00005 78.1 25.6] 9.1 27.6

Table 27 Test Results for ID-A, where NR= 128, NS= 400, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 82.6 94.7] 8.7 22.2
0.0003{ 0.00000001] 0.00005 13.8 2.8] 8.4] 36.5
0.0003[ 0.0000001| 0.00001 94.4 71.11 11.6] 16.9
0.0003[ 0.0000001] 0.00005 93.4 67.9] 10.7] 25.5
0.0003[ 0.000001| 0.00001 94.8 84.6] 8.7] 14.8
0.0003[ 0.000001] 0.00005 18.7 03] 9.1] 33.6
0.001] 0.00000001| 0.00001 87.9 1.0] 11.0] 32.5
0.001] 0.00000001| 0.00005 51.1 39[11.3] 33.8
0.001] 0.0000001| 0.00001 4.4 0.3 9.3] 30.4
0.001] 0.0000001{ 0.00005 37.7 5.8] 8.8] 21.8
0.001] 0.000001| 0.00001 90.1 71.8] 10.4| 184
0.001]  0.000001{ 0.00005 45.2 16.7) 8.0 29.0
0.05] 0.00000001] 0.00001 88.9 70.0] 11.3] 18.0
0.05] 0.00000001] 0.00005 54.8 4.2] 10.5] 26.2
0.05] 0.0000001] 0.00001 71.5 03[ 11.2] 50.1
0.05] 0.0000001]| 0.00005 92.5 89.7] 7.7] 13.6
0.05]  0.000001] 0.00001 87.4 66.6] 10.1] 25.3
0.05] 0.000001]| 0.00005 80.3 1.3] 10.6] 48.2

73



Table 28 Test Results for ID-A, where NR= 128, NS= 400, NE= 4, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 63.8 1.8] 89| 26.4
0.0003{ 0.00000001] 0.00005 85.3 74.7] 8.5 15.9
0.0003[ 0.0000001| 0.00001 44.8 7.0 89| 18.7
0.0003[ 0.0000001] 0.00005 91.8 37.91 10.0] 32.6
0.0003[ 0.000001| 0.00001 81.9 21.71 8.2 19.2
0.0003[ 0.000001] 0.00005 81.9 21.71 8.2 19.1
0.001] 0.00000001| 0.00001 97.2 88.0] 9.3] 18.2
0.001] 0.00000001| 0.00005 97.5 68.9] 9.1 18.7
0.001] 0.0000001| 0.00001 89.4 25.8] 8.5] 19.2
0.001] 0.0000001| 0.00005 90.5 57.0] 7.6] 34.2
0.001] 0.000001| 0.00001 77.4 33.3] 8.5] 26.3
0.001]  0.000001{ 0.00005 89.0 67.7) 7.7 15.3
0.05] 0.00000001] 0.00001 61.2 2.7]10.1] 27.8
0.05] 0.00000001| 0.00005 86.3 26.5] 9.1 18.7
0.05] 0.0000001] 0.00001 17.0 3.1 8.5] 30.4
0.05] 0.0000001]| 0.00005 82.7 33.7] 10.1] 30.7
0.05]  0.000001] 0.00001 80.2 25.71 8.7 18.7
0.05]  0.000001] 0.00005 98.5 8.7 10.5[ 22.6

Table 29 Test Results for ID-A, where NR= 128, NS= 400, NE= 4, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 89.2 24.71 10.5] 30.7
0.0003{ 0.00000001] 0.00005 92.4 89.6] 11.9] 12.5
0.0003[ 0.0000001| 0.00001 92.9 88.7] 7.5] 13.8
0.0003[ 0.0000001] 0.00005 93.4 88.4] 9.2] 153
0.0003[ 0.000001| 0.00001 78.2 75.2] 7.1] 43.6
0.0003[ 0.000001] 0.00005 95.7 31.3] 8.2] 33.2
0.001] 0.00000001| 0.00001 94.7 65.7] 9.8] 17.2
0.001] 0.00000001| 0.00005 95.6 73.6] 11.2] 18.6
0.001] 0.0000001| 0.00001 90.7 50.8] 8.8] 28.7
0.001] 0.0000001{ 0.00005 92.5 90.3] 9.0 13.4
0.001] 0.000001| 0.00001 92.3 259 8.8] 34.5
0.001]  0.000001{ 0.00005 76.3 20.71 9.1 29.6
0.05] 0.00000001] 0.00001 62.7 26.3] 10.8] 29.8
0.05] 0.00000001] 0.00005 62.7 26.3] 10.8] 29.8
0.05] 0.0000001] 0.00001 92.1 18.9] 6.6] 19.5
0.05] 0.0000001]| 0.00005 87.2 9.8] 6.6] 21.5
0.05]  0.000001] 0.00001 79.7 78.2] 8.3] 16.2
0.05] 0.000001]| 0.00005 14.4 1.9] 8.0] 33.2

74



Table 30 Test Results for ID-A, where NR= 128, NS= 400, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 18.4 3.0 6.5] 18.9
0.0003{ 0.00000001] 0.00005 78.0 80.7] 6.4] 13.0
0.0003[ 0.0000001| 0.00001 32.6 2.6] 84| 263
0.0003[ 0.0000001] 0.00005 47.9 10.3] 7.9] 18.6
0.0003[ 0.000001| 0.00001 46.5 8.5 9.1 26.8
0.0003[ 0.000001] 0.00005 76.0 33.2] 7.9] 153
0.001] 0.00000001| 0.00001 73.6 2.5] 9.6] 42.0
0.001] 0.00000001| 0.00005 75.7 49| 8.7 31.0
0.001] 0.0000001| 0.00001 59.1 25.71 9.5 36.0
0.001] 0.0000001| 0.00005 91.2 78.71 7.9] 16.5
0.001] 0.000001| 0.00001 23.4 3.8] 8.1] 334
0.001]  0.000001{ 0.00005 93.1 25.6] 9.2] 24.2
0.05] 0.00000001] 0.00001 46.5 1.1| 7.4| 34.0
0.05] 0.00000001| 0.00005 10.2 0.6] 83| 28.7
0.05] 0.0000001] 0.00001 54.1 23.0] 10.2| 21.0
0.05] 0.0000001]| 0.00005 56.7 721 77| 23.7
0.05]  0.000001] 0.00001 89.3 27.2] 8.8] 23.5
0.05]  0.000001] 0.00005 89.9 66.9] 9.2| 15.7

Test Results for ID-A, where NR= 128, NS= 1000, NE= 1, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 35.1 9.0{ 10.2] 29.4
0.0003{ 0.00000001] 0.00005 73.6 21.5] 12.3] 45.9
0.0003[ 0.0000001| 0.00001 92.8 70.1] 10.2] 16.1
0.0003[ 0.0000001] 0.00005 92.0 72.6] 11.2] 17.5
0.0003[ 0.000001| 0.00001 27.7 8.2 7.3 20.9
0.0003[ 0.000001] 0.00005 74.2 20.9] 9.0 34.3
0.001] 0.00000001| 0.00001 24.2 43] 9.5] 29.2
0.001] 0.00000001| 0.00005 314 7.1 8.6] 323
0.001] 0.0000001| 0.00001 72.3 38.9] 9.0] 31.6
0.001] 0.0000001{ 0.00005 36.8 1.7] 8.6] 30.3
0.001] 0.000001| 0.00001 50.5 13.4] 8.3| 36.1
0.001]  0.000001{ 0.00005 76.3 8.6] 8.8 25.5
0.05] 0.00000001] 0.00001 20.5 4.4]10.8] 274
0.05] 0.00000001] 0.00005 62.3 5.8] 9.5] 35.9
0.05] 0.0000001] 0.00001 86.4 66.3] 9.3] 199
0.05] 0.0000001]| 0.00005 3.8 0.2 93| 35.8
0.05]  0.000001] 0.00001 55.6 15.1] 9.6] 33.5
0.05] 0.000001]| 0.00005 33.8 10.0] 9.5| 22.7

75



Table 31 Test Results for ID-A, where NR= 128, NS= 1000, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 55.9 12.2] 8.7 28.0
0.0003{ 0.00000001] 0.00005 87.7 44.71 8.9 26.0
0.0003[ 0.0000001| 0.00001 85.2 82.7| 11.2] 24.0
0.0003[ 0.0000001] 0.00005 33.5 7.3] 89| 28.2
0.0003[ 0.000001| 0.00001 97.8 66.0] 9.5| 174
0.0003[ 0.000001] 0.00005 97.0 67.9] 9.2| 14.7
0.001] 0.00000001| 0.00001 81.6 72.7] 8.2] 20.1
0.001] 0.00000001| 0.00005 50.4 13.9] 7.8] 40.6
0.001] 0.0000001| 0.00001 80.2 70.2] 7.6] 13.6
0.001] 0.0000001| 0.00005 79.0 68.8] 9.6] 13.2
0.001] 0.000001| 0.00001 60.1 31.7] 7.7 46.4
0.001]  0.000001{ 0.00005 43.2 13.7) 7.3] 40.1
0.05] 0.00000001] 0.00001 35.5 63| 82| 20.5
0.05] 0.00000001| 0.00005 26.1 6.9 82| 19.9
0.05] 0.0000001] 0.00001 17.8 0.4 12.9] 33.6
0.05] 0.0000001]| 0.00005 57.2 23.0] 9.6 27.9
0.05]  0.000001] 0.00001 37.2 5.6 9.9 24.2
0.05]  0.000001] 0.00005 52.3 3.3[ 11.2] 24.7

Table 32 Test Results for ID-A, where NR= 128, NS= 1000, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 91.8 13.8] 10.6] 41.5
0.0003{ 0.00000001] 0.00005 78.8 23.7] 11.1] 29.7
0.0003[ 0.0000001| 0.00001 73.5 19.1] 10.9] 28.0
0.0003[ 0.0000001] 0.00005 40.6 25| 11.5] 513
0.0003[ 0.000001| 0.00001 21.1 4.2]1 10.5] 24.6
0.0003[ 0.000001] 0.00005 91.7 20.3] 11.3] 38.1
0.001] 0.00000001| 0.00001 41.8 15.1] 8.4] 38.4
0.001] 0.00000001| 0.00005 57.6 1.3] 85| 394
0.001] 0.0000001| 0.00001 58.0 0.8 10.4] 24.8
0.001] 0.0000001{ 0.00005 95.3 13.3] 9.5| 53.2
0.001] 0.000001| 0.00001 82.8 69| 7.6] 21.0
0.001]  0.000001{ 0.00005 24.7 5.6 10.3] 40.6
0.05] 0.00000001] 0.00001 28.3 4.1] 8.5] 299
0.05] 0.00000001] 0.00005 27.7 4.1] 8.3] 31.6
0.05] 0.0000001] 0.00001 48.7 11.6] 10.7] 26.8
0.05] 0.0000001]| 0.00005 59.3 14.5] 9.9| 41.7
0.05]  0.000001] 0.00001 43.0 6.8] 11.3] 33.3
0.05] 0.000001]| 0.00005 30.9 1.2] 9.7] 393

76



Table 33 Test Results for ID-A, where NR=128, NS=1000, NE=4, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 64.5 59 7.3] 36.0
0.0003{ 0.00000001] 0.00005 54.0 7.61 7.7 29.7
0.0003[ 0.0000001| 0.00001 94.0 68.0] 9.8] 18.2
0.0003[ 0.0000001] 0.00005 86.5 94.6] 9.3] 13.8
0.0003[ 0.000001| 0.00001 81.2 35.8] 10.4| 36.4
0.0003[ 0.000001] 0.00005 89.1 72.4] 9.9| 17.0
0.001] 0.00000001| 0.00001 59.7 0.9{ 10.1] 30.4
0.001] 0.00000001| 0.00005 85.6 70.4] 10.2] 19.1
0.001] 0.0000001| 0.00001 96.4 68.6] 11.6] 23.7
0.001] 0.0000001| 0.00005 99.4 65.5] 10.3] 14.6
0.001] 0.000001| 0.00001 94.5 68.0] 7.1 249
0.001]  0.000001{ 0.00005 71.3 47.8] 7.71 29.2
0.05] 0.00000001] 0.00001 87.8 2.0] 10.8] 31.6
0.05] 0.00000001| 0.00005 84.6 2.1]110.4] 33.2
0.05] 0.0000001] 0.00001 94.7 24.2]1 10.9] 21.0
0.05] 0.0000001]| 0.00005 83.2 69.6] 10.0] 15.6
0.05]  0.000001] 0.00001 42.5 5.1{11.5] 36.1
0.05]  0.000001] 0.00005 71.5 16.3] 11.2] 31.7

Table 34 Test Results for ID-A, where NR= 128, NS= 1000, NE= 4, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 43.5 1.3] 10.6] 32.1
0.0003{ 0.00000001] 0.00005 62.3 11.6] 10.7] 34.7
0.0003[ 0.0000001| 0.00001 90.8 84.7 7.5| 18.5
0.0003[ 0.0000001] 0.00005 53.7 3.7] 8.7] 58.5
0.0003[ 0.000001| 0.00001 84.3 92.5] 8.0 17.2
0.0003[ 0.000001] 0.00005 82.1 29.71 9.8] 27.5
0.001] 0.00000001| 0.00001 35.5 4.6] 10.4] 45.4
0.001] 0.00000001| 0.00005 89.0 69.4] 9.8] 18.1
0.001] 0.0000001| 0.00001 98.9 30.8] 9.7| 30.6
0.001] 0.0000001{ 0.00005 94.6 77.5] 9.8] 19.5
0.001] 0.000001| 0.00001 80.3 76.0] 7.8] 16.1
0.001]  0.000001{ 0.00005 55.1 2191 7.71 424
0.05] 0.00000001] 0.00001 78.7 749 6.2] 16.2
0.05] 0.00000001] 0.00005 86.3 67.8] 7.1 17.5
0.05] 0.0000001] 0.00001 86.3 13.9] 9.9| 27.2
0.05] 0.0000001]| 0.00005 75.1 22.01 7.9] 23.1
0.05]  0.000001] 0.00001 33.2 59 9.0] 35.3
0.05] 0.000001]| 0.00005 45.5 1.8] 8.8] 25.5

71



Table 35 Test Results for ID-A, where NR= 128, NS= 1000, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 57.9 11.4] 9.3] 33.1
0.0003{ 0.00000001] 0.00005 42.6 9.9 9.3] 32.0
0.0003[ 0.0000001| 0.00001 91.7 90.3]1 10.2] 17.0
0.0003[ 0.0000001] 0.00005 84.0 15.3] 10.0] 42.6
0.0003[ 0.000001| 0.00001 79.8 39.8] 6.7] 28.9
0.0003[ 0.000001] 0.00005 56.3 6.7 9.8] 25.2
0.001] 0.00000001| 0.00001 81.2 9.5 7.2] 22.5
0.001] 0.00000001| 0.00005 88.7 20.1] 10.5] 35.2
0.001] 0.0000001| 0.00001 49.3 2.8] 10.4] 41.9
0.001] 0.0000001| 0.00005 94.8 28.6] 10.9] 28.2
0.001] 0.000001| 0.00001 21.6 4.8] 9.71 50.1
0.001]  0.000001{ 0.00005 80.1 75.7] 9.6] 16.3
0.05] 0.00000001] 0.00001 29.6 6.7] 99| 24.8
0.05] 0.00000001| 0.00005 10.0 1.8] 9.0] 40.5
0.05] 0.0000001] 0.00001 97.6 65.5] 9.4| 16.6
0.05] 0.0000001]| 0.00005 83.3 9.7 8.8] 22.6
0.05]  0.000001] 0.00001 22.8 1.4] 9.1] 39.2
0.05]  0.000001] 0.00005 49.1 6.8] 9.0] 37.6

Table 36 Test Results for ID-A, where NR=128, NS= 2400, NE=1, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 62.2 2471 9.0 434
0.0003{ 0.00000001] 0.00005 83.2 25.2] 9.4| 33.1
0.0003[ 0.0000001| 0.00001 42.8 14.3] 10.3] 34.5
0.0003[ 0.0000001] 0.00005 45.9 15.7] 10.3] 36.9
0.0003[ 0.000001| 0.00001 72.1 3.3] 10.9] 33.6
0.0003[ 0.000001] 0.00005 25.1 59 9.8] 37.1
0.001] 0.00000001| 0.00001 89.3 67.4] 9.7| 21.0
0.001] 0.00000001| 0.00005 99.2 66.5] 10.2] 24.9
0.001] 0.0000001| 0.00001 81.5 34.0] 11.4] 27.5
0.001] 0.0000001{ 0.00005 96.7 73.9] 10.8] 20.2
0.001] 0.000001| 0.00001 84.6 67.8] 10.0] 21.8
0.001]  0.000001{ 0.00005 16.0 2.2] 9.7] 34.8
0.05] 0.00000001] 0.00001 28.4 6.2[11.2] 413
0.05] 0.00000001] 0.00005 54.3 19.7) 11.2] 48.1
0.05] 0.0000001] 0.00001 74.3 5.0] 11.0] 40.5
0.05] 0.0000001]| 0.00005 83.7 20.2] 10.5] 39.7
0.05]  0.000001] 0.00001 89.8 67.6] 10.5] 16.5
0.05] 0.000001]| 0.00005 65.2 3.9[10.6] 38.8

78



Table 37 Test Results for ID-A, where NR= 128, NS= 2400, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 89.6 72.3] 8.0 24.8
0.0003{ 0.00000001] 0.00005 38.8 1.9] 9.7] 40.4
0.0003[ 0.0000001| 0.00001 80.0 7231 12.4] 23.5
0.0003[ 0.0000001] 0.00005 37.0 6.4/ 10.0] 41.9
0.0003[ 0.000001| 0.00001 65.7 24| 11.8] 284
0.0003[ 0.000001] 0.00005 91.5 0.8] 9.8] 46.0
0.001] 0.00000001| 0.00001 91.7 69.9] 8.1 30.0
0.001] 0.00000001| 0.00005 27.2 7.4 82| 37.9
0.001] 0.0000001| 0.00001 55.5 22,11 7.7 44.6
0.001] 0.0000001| 0.00005 97.5 68.3] 9.8] 25.2
0.001] 0.000001| 0.00001 56.2 20.6] 13.4] 42.1
0.001]  0.000001{ 0.00005 95.5 52.6] 14.5] 37.9
0.05] 0.00000001] 0.00001 36.8 2.1]113.4] 24.8
0.05] 0.00000001| 0.00005 45.8 4.9] 10.8] 27.6
0.05] 0.0000001] 0.00001 14.7 2.8] 8.6] 29.0
0.05] 0.0000001]| 0.00005 83.4 2.5]10.1] 31.5
0.05]  0.000001] 0.00001 23.5 3.8] 9.8] 25.5
0.05]  0.000001] 0.00005 87.0 68.1] 11.6] 22.2

Table 38 Test Results for ID-A, where NR= 128, NS= 2400, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 97.3 66.2] 9.3] 19.3
0.0003{ 0.00000001] 0.00005 69.9 8.7 9.1 49.3
0.0003[ 0.0000001| 0.00001 98.2 65.9] 10.1] 20.8
0.0003[ 0.0000001] 0.00005 75.5 1.0] 9.6] 44.1
0.0003[ 0.000001| 0.00001 95.3 66.6] 10.2] 20.7
0.0003[ 0.000001] 0.00005 95.3 66.6] 10.2] 20.7
0.001] 0.00000001| 0.00001 60.6 4.7]1 11.9] 36.2
0.001] 0.00000001| 0.00005 28.3 2.1 11.3] 34.6
0.001] 0.0000001| 0.00001 68.6 2.4]13.4] 44.7
0.001] 0.0000001{ 0.00005 41.3 0.3 14.8] 54.4
0.001] 0.000001| 0.00001 45.4 0.4 9.0] 323
0.001]  0.000001{ 0.00005 34.3 4.9]12.3] 40.7
0.05] 0.00000001] 0.00001 70.4 09| 9.2] 335
0.05] 0.00000001] 0.00005 47.1 5.6{ 10.9] 35.4
0.05] 0.0000001] 0.00001 44.2 6.1 9.5| 37.9
0.05] 0.0000001]| 0.00005 69.9 14.7) 11.2] 52.8
0.05]  0.000001] 0.00001 73.0 5.2{ 10.7] 26.5
0.05] 0.000001]| 0.00005 19.2 2.8] 11.8] 49.5

79



Table 39 Test Results for ID-A, where NR=128, NS=2400, NE=4, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 87.1 72.5] 9.9] 15.2
0.0003{ 0.00000001] 0.00005 95.8 74.5] 10.1] 16.5
0.0003[ 0.0000001| 0.00001 46.8 6.2| 84| 28.4
0.0003[ 0.0000001] 0.00005 97.9 87.4] 83| 17.1
0.0003[ 0.000001| 0.00001 85.3 93.0] 7.4| 12.0
0.0003[ 0.000001] 0.00005 31.9 4.5] 8.1] 34.8
0.001] 0.00000001| 0.00001 99.1 66.9] 11.0] 21.0
0.001] 0.00000001| 0.00005 86.3 90.2] 8.8] 14.1
0.001] 0.0000001| 0.00001 61.7 13.3] 10.1] 39.7
0.001] 0.0000001| 0.00005 39.0 3.00 93] 20.5
0.001] 0.000001| 0.00001 82.2 95.7] 6.8] 11.5
0.001]  0.000001{ 0.00005 89.3 89.8] 7.1] 18.6
0.05] 0.00000001] 0.00001 59.4 2.2110.0] 30.9
0.05] 0.00000001| 0.00005 26.7 6.8] 10.1] 47.3
0.05] 0.0000001] 0.00001 61.5 4.1] 9.4] 25.2
0.05] 0.0000001]| 0.00005 36.2 0.9 10.8] 33.6
0.05]  0.000001] 0.00001 61.9 12.6] 12.6] 37.5
0.05]  0.000001] 0.00005 96.8 15.9(11.2] 41.1

Table 40 Test Results for ID-A, where NR=128, NS=2400, NE=4, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 98.8 39.8] 9.0] 36.6
0.0003{ 0.00000001] 0.00005 24.5 2.0] 9.1] 35.0
0.0003[ 0.0000001| 0.00001 89.0 38.5] 8.5| 449
0.0003[ 0.0000001] 0.00005 88.4 21.1] 8.6] 44.5
0.0003[ 0.000001| 0.00001 48.4 16.4] 9.6] 44.0
0.0003[ 0.000001] 0.00005 91.2 7541 9.0] 15.1
0.001] 0.00000001| 0.00001 50.9 9.4 8.0] 39.7
0.001] 0.00000001| 0.00005 79.7 73.8] 8.6] 23.6
0.001] 0.0000001| 0.00001 49.8 17.0] 8.4| 41.7
0.001] 0.0000001{ 0.00005 69.1 35.7] 8.6] 34.5
0.001] 0.000001| 0.00001 92.4 10.4] 8.4| 47.5
0.001]  0.000001{ 0.00005 64.8 38.8] 6.3| 27.6
0.05] 0.00000001] 0.00001 33.8 8.9 10.3[ 353
0.05] 0.00000001] 0.00005 57.3 4.3]12.7] 39.9
0.05] 0.0000001] 0.00001 37.4 73] 93| 22.7
0.05] 0.0000001]| 0.00005 59.0 22.0] 8.6] 29.3
0.05]  0.000001] 0.00001 15.2 0.3 10.5] 35.1
0.05] 0.000001] 0.00005 2.1 0.4 12.3] 30.6

80



Table 41 Test Results for ID-A, where NR= 128, NS= 2400, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 79.2 67.7] 8.7] 18.8
0.0003{ 0.00000001] 0.00005 31.8 9.2 85| 37.4
0.0003[ 0.0000001| 0.00001 80.7 96.2] 7.6] 10.6
0.0003[ 0.0000001] 0.00005 73.2 28.3] 7.6 334
0.0003[ 0.000001| 0.00001 81.5 87.9] 8.6] 13.9
0.0003[ 0.000001] 0.00005 80.7 96.0] 8.2] 15.1
0.001] 0.00000001| 0.00001 47.9 6.4] 11.5] 40.3
0.001] 0.00000001| 0.00005 65.7 11.0] 10.5] 234
0.001] 0.0000001| 0.00001 433 8.7 12.0[ 41.7
0.001] 0.0000001| 0.00005 53.0 7.41 10.8] 38.6
0.001] 0.000001| 0.00001 98.3 67.9] 10.5] 24.8
0.001]  0.000001{ 0.00005 88.3 19.4] 9.6] 23.6
0.05] 0.00000001] 0.00001 69.4 21.0] 10.2|] 35.8
0.05] 0.00000001| 0.00005 45.7 59[11.9] 30.7
0.05] 0.0000001] 0.00001 55.1 23] 11.5] 483
0.05] 0.0000001]| 0.00005 64.5 3.4[10.9] 39.2
0.05]  0.000001] 0.00001 91.3 91.2] 10.0] 44.5
0.05]  0.000001] 0.00005 91.9 73.0] 8.8] 154

Table 42 Test Results for ID-A, where NR= 416, NS= 400, NE= 1, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 60.0 18.6] 38.2| 154.5
0.0003{ 0.00000001] 0.00005 72.7 50.3] 38.0] 121.3
0.0003[ 0.0000001| 0.00001 58.5 27.1] 39.7] 158.6
0.0003[ 0.0000001] 0.00005 81.0 44.8] 52.3| 85.9
0.0003[ 0.000001| 0.00001 76.2 52.9] 34.6] 143.3
0.0003[ 0.000001] 0.00005 67.8 35.8]42.3]165.4
0.001] 0.00000001| 0.00001 81.8 77.8] 45.5] 76.6
0.001] 0.00000001| 0.00005 86.1 80.5] 36.1] 77.1
0.001] 0.0000001| 0.00001 87.6 20.6] 46.7] 127.1
0.001] 0.0000001{ 0.00005 65.6 34.4] 39.7] 125.2
0.001] 0.000001| 0.00001 70.3 28.0] 38.7] 129.3
0.001]  0.000001{ 0.00005 70.2 33.2] 37.0] 190.6
0.05] 0.00000001] 0.00001 30.7 5.5[51.6]124.2
0.05] 0.00000001] 0.00005 59.3 25.0]1 43.7| 87.6
0.05] 0.0000001] 0.00001 243 2.5147.6]121.8
0.05] 0.0000001]| 0.00005 88.5 70.0] 48.9] 82.9
0.05]  0.000001] 0.00001 40.8 8.6] 41.2]162.4
0.05] 0.000001]| 0.00005 85.2 43.0] 37.0{ 112.0

81



Table 43 Test Results for ID-A, where NR= 416, NS= 400, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 63.6 4.5]52.8] 83.6
0.0003{ 0.00000001] 0.00005 75.5 7.1{ 50.0] 149.7
0.0003[ 0.0000001| 0.00001 88.7 76.7] 48.3] 58.2
0.0003[ 0.0000001] 0.00005 10.6 1.3] 45.1] 88.5
0.0003[ 0.000001| 0.00001 42.6 8.11 47.3[128.4
0.0003[ 0.000001] 0.00005 56.3 20.3] 40.6] 146.8
0.001] 0.00000001| 0.00001 95.8 69.6] 50.1| 70.6
0.001] 0.00000001| 0.00005 63.6 10.7] 45.2] 128.2
0.001] 0.0000001| 0.00001 76.7 29.4] 42.0] 61.7
0.001] 0.0000001| 0.00005 50.6 10.5] 42.7] 102.6
0.001] 0.000001| 0.00001 79.7 34.8] 39.91170.7
0.001]  0.000001{ 0.00005 62.8 17.3] 43.0| 167.1
0.05] 0.00000001] 0.00001 72.4 4.5] 53.0] 167.7
0.05] 0.00000001| 0.00005 56.6 8.9] 54.0[ 153.4
0.05] 0.0000001] 0.00001 24.2 3.1{ 46.6] 134.6
0.05] 0.0000001]| 0.00005 53.6 8.4] 49.7| 183.8
0.05]  0.000001] 0.00001 80.3 23.1] 43.6] 136.7
0.05]  0.000001] 0.00005 92.8 77.7] 44.4] 74.3

Table 44 Test Results for ID-A, where NR= 416, NS= 400, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 87.3 2.7] 48.9] 106.1
0.0003{ 0.00000001] 0.00005 78.2 25.0] 51.0] 74.2
0.0003[ 0.0000001| 0.00001 77.0 64.9] 45.9] 234.3
0.0003[ 0.0000001] 0.00005 99.5 15.3] 48.4] 165.2
0.0003[ 0.000001| 0.00001 73.0 11.0] 48.4] 189.4
0.0003[ 0.000001] 0.00005 96.8 68.91 46.0| 82.4
0.001] 0.00000001| 0.00001 78.8 71.1141.7] 55.2
0.001] 0.00000001| 0.00005 76.6 73.8] 46.5] 70.8
0.001] 0.0000001| 0.00001 65.0 3.4{ 42.4] 159.9
0.001] 0.0000001{ 0.00005 41.7 14.3] 41.8] 189.0
0.001] 0.000001| 0.00001 74.6 18.0] 38.7| 124.2
0.001]  0.000001{ 0.00005 76.3 22.4] 38.2| 137.9
0.05] 0.00000001] 0.00001 12.2 0.6] 44.0] 87.9
0.05] 0.00000001] 0.00005 93.4 74.7]1 43.4] 57.3
0.05] 0.0000001] 0.00001 94.0 67.3]143.3] 68.6
0.05] 0.0000001]| 0.00005 69.7 29.9] 44.01 200.9
0.05]  0.000001] 0.00001 84.6 71.3]147.3] 64.4
0.05] 0.000001]| 0.00005 22.4 4.3] 48.8]125.9

82



Table 45 Test Results for ID-A, where NR= 416, NS= 400, NE= 4, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 85.8 18.0] 39.1] 129.1
0.0003{ 0.00000001] 0.00005 84.3 23.9] 38.7] 168.2
0.0003[ 0.0000001| 0.00001 55.4 13.3] 40.8] 162.6
0.0003[ 0.0000001] 0.00005 80.9 73.41 39.9] 71.5
0.0003[ 0.000001| 0.00001 79.2 31.2]44.5| 151.8
0.0003[ 0.000001] 0.00005 75.1 8.1] 44.3[ 153.5
0.001] 0.00000001| 0.00001 75.6 49.7] 40.3] 93.8
0.001] 0.00000001| 0.00005 52.7 7.4] 44.1] 134.0
0.001] 0.0000001| 0.00001 30.5 4.3]142.7|154.4
0.001] 0.0000001| 0.00005 30.5 4.3]42.7] 154.3
0.001] 0.000001| 0.00001 324 6.4 39.7| 131.3
0.001]  0.000001{ 0.00005 65.1 30.1] 39.2| 147.5
0.05] 0.00000001] 0.00001 95.3 40.5] 48.6] 141.5
0.05] 0.00000001| 0.00005 75.6 37.3]142.0]1101.9
0.05] 0.0000001] 0.00001 70.0 5.5 44.8] 159.2
0.05] 0.0000001]| 0.00005 75.6 23.5] 46.2] 80.1
0.05]  0.000001] 0.00001 83.3 94.3142.6] 80.2
0.05]  0.000001] 0.00005 70.9 26.2]1 43.2| 115.6

Table 46 Test Results for ID-A, where NR= 416, NS= 400, NE= 4, BR= 0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 62.6 7.3] 48.0] 128.1
0.0003{ 0.00000001] 0.00005 80.1 4.4] 45.6] 102.1
0.0003[ 0.0000001| 0.00001 70.5 28.0] 48.4] 66.5
0.0003[ 0.0000001] 0.00005 95.0 8.3 42.1{ 119.1
0.0003[ 0.000001| 0.00001 46.8 5.8{ 44.5] 93.1
0.0003[ 0.000001] 0.00005 72.6 16.3] 44.2| 118.2
0.001] 0.00000001| 0.00001 90.6 27.11 48.7] 161.2
0.001] 0.00000001| 0.00005 80.9 7.71 45.3]131.8
0.001] 0.0000001| 0.00001 92.5 17.7] 44.8] 166.6
0.001] 0.0000001{ 0.00005 86.6 89.3] 38.4] 48.6
0.001] 0.000001| 0.00001 84.1 28.8] 47.1] 134.1
0.001]  0.000001{ 0.00005 49.7 20.7] 39.3] 129.8
0.05] 0.00000001] 0.00001 34.8 4.5] 46.9] 145.9
0.05] 0.00000001] 0.00005 81.8 18.3] 48.2] 153.2
0.05] 0.0000001] 0.00001 97.9 67.91 40.6] 82.0
0.05] 0.0000001]| 0.00005 30.5 5.3/ 39.9]128.0
0.05]  0.000001] 0.00001 74.7 31.3]141.3]152.9
0.05] 0.000001]| 0.00005 60.3 7.9] 43.0] 124.9

83



Table 47 Test Results for ID-A, where NR= 416, NS= 400, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 45.8 5.4 38.2] 74.1
0.0003{ 0.00000001] 0.00005 31.3 2.9]48.6] 121.0
0.0003[ 0.0000001| 0.00001 91.3 15.9] 43.8] 78.2
0.0003[ 0.0000001] 0.00005 98.2 72.6] 41.6] 82.6
0.0003[ 0.000001| 0.00001 64.3 36.3] 35.4] 83.5
0.0003[ 0.000001] 0.00005 91.9 72.0] 42.3] 52.1
0.001] 0.00000001| 0.00001 60.9 14.9] 45.21 123.1
0.001] 0.00000001| 0.00005 95.3 19.2] 47.41 103.6
0.001] 0.0000001| 0.00001 71.0 12.2] 50.9] 159.8
0.001] 0.0000001| 0.00005 42.2 14.4] 38.2] 162.0
0.001] 0.000001| 0.00001 84.6 68.7] 39.9] 67.5
0.001]  0.000001{ 0.00005 59.4 2.4]41.5]166.3
0.05] 0.00000001] 0.00001 59.2 5.8] 44.7[ 119.8
0.05] 0.00000001| 0.00005 86.1 25.3] 45.2] 126.8
0.05] 0.0000001] 0.00001 77.9 29.0] 43.8] 83.1
0.05] 0.0000001]| 0.00005 24.1 1.5] 44.3] 155.9
0.05]  0.000001] 0.00001 51.4 3.3 45.9] 148.0
0.05]  0.000001] 0.00005 514 3.3] 45.9] 148.0

Table 48 Test Results for ID-A, where NR=416, NS=1000, NE=1, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 69.4 35.5137.2|174.4
0.0003{ 0.00000001] 0.00005 54.1 20.4| 41.6] 122.6
0.0003[ 0.0000001| 0.00001 54.9 17.5] 43.5| 174.5
0.0003[ 0.0000001] 0.00005 79.9 22.2| 41.9]132.5
0.0003[ 0.000001| 0.00001 68.4 24.8] 40.8] 145.8
0.0003[ 0.000001] 0.00005 58.1 16.1] 37.9]1110.3
0.001] 0.00000001| 0.00001 90.8 67.6] 38.1] 163.7
0.001] 0.00000001| 0.00005 58.1 15.7] 36.0] 103.3
0.001] 0.0000001| 0.00001 70.0 36.2] 38.6] 136.9
0.001] 0.0000001{ 0.00005 56.9 19.7] 39.8]| 153.4
0.001] 0.000001| 0.00001 84.0 53.11 48.5|171.1
0.001]  0.000001{ 0.00005 72.7 20.3]144.2|117.4
0.05] 0.00000001] 0.00001 78.0 26.1] 38.6] 128.5
0.05] 0.00000001] 0.00005 22.7 4.8] 40.5] 81.0
0.05] 0.0000001] 0.00001 47.2 15.91 42.7] 150.3
0.05] 0.0000001]| 0.00005 39.5 12.9] 42.8] 142.5
0.05]  0.000001] 0.00001 48.9 21.3] 34.8] 162.5
0.05] 0.000001]| 0.00005 67.6 39.8] 45.11200.4

84



Table 49 Test Results for ID-A, where NR= 416, NS= 1000, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 50.6 16.6] 38.6| 117.9
0.0003{ 0.00000001] 0.00005 82.5 77.9145.9] 101.3
0.0003[ 0.0000001| 0.00001 29.1 8.6 41.5| 83.7
0.0003[ 0.0000001] 0.00005 49.8 11.4] 42.9] 141.6
0.0003[ 0.000001| 0.00001 76.6 23.91 46.4| 185.3
0.0003[ 0.000001] 0.00005 97.3 68.9]141.9] 654
0.001] 0.00000001| 0.00001 69.8 6.2 48.2] 115.8
0.001] 0.00000001| 0.00005 65.6 30.5] 43.6] 170.0
0.001] 0.0000001| 0.00001 75.4 8.6] 46.8[ 129.5
0.001] 0.0000001| 0.00005 86.8 13.91 47.6| 147.4
0.001] 0.000001| 0.00001 62.0 8.2] 43.6[ 151.8
0.001]  0.000001{ 0.00005 84.1 11.6] 44.9] 97.7
0.05] 0.00000001] 0.00001 70.1 11.4] 48.6] 199.4
0.05] 0.00000001| 0.00005 56.4 13.3] 46.8] 159.3
0.05] 0.0000001] 0.00001 4.5 0.7] 44.5[142.1
0.05] 0.0000001]| 0.00005 64.4 22.21 49.11 180.7
0.05]  0.000001] 0.00001 80.2 13.3]1 46.2| 171.3
0.05]  0.000001] 0.00005 97.8 32.7] 51.4] 153.9

Table 50 Test Results for ID-A, where NR= 416, NS= 1000, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 17.2 0.9[47.7|111.8
0.0003{ 0.00000001] 0.00005 30.9 2.7] 41.8] 140.7
0.0003[ 0.0000001| 0.00001 16.8 1.1] 46.3] 105.7
0.0003[ 0.0000001] 0.00005 34.0 4.0] 45.8] 230.7
0.0003[ 0.000001| 0.00001 51.2 7.0 40.3] 135.7
0.0003[ 0.000001] 0.00005 30.7 3.21 47.3] 110.5
0.001] 0.00000001| 0.00001 59.1 17.6] 40.3]| 128.7
0.001] 0.00000001| 0.00005 90.8 72.71 39.2] 84.1
0.001] 0.0000001| 0.00001 77.3 35.7] 51.91267.7
0.001] 0.0000001{ 0.00005 79.6 18.4] 45.8]| 155.9
0.001] 0.000001| 0.00001 69.5 7.3] 41.1] 144.2
0.001]  0.000001{ 0.00005 69.4 5.8] 42.5] 169.5
0.05] 0.00000001] 0.00001 54.4 9.5 53.4] 80.6
0.05] 0.00000001] 0.00005 53.7 5.6] 54.1] 164.5
0.05] 0.0000001] 0.00001 52.2 3.8] 47.51223.7
0.05] 0.0000001]| 0.00005 38.1 3.9] 46.5] 89.1
0.05]  0.000001] 0.00001 52.8 8.7] 58.4/205.0
0.05] 0.000001]| 0.00005 43.2 3.9 56.6] 87.5

85



Table 51 Test Results for ID-A, where NR=416, NS=1000, NE=4, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 43.2 13.5] 37.5| 129.1
0.0003{ 0.00000001] 0.00005 87.5 42.0] 38.0{ 111.8
0.0003[ 0.0000001| 0.00001 60.5 23.9] 36.8| 141.6
0.0003[ 0.0000001] 0.00005 58.9 18.2] 36.5| 148.1
0.0003[ 0.000001| 0.00001 79.5 29.4] 39.9] 153.1
0.0003[ 0.000001] 0.00005 92.6 41.8] 40.1] 98.2
0.001] 0.00000001| 0.00001 88.5 22.5] 45.1] 166.8
0.001] 0.00000001| 0.00005 93.6 25.0]1 41.9]1173.6
0.001] 0.0000001| 0.00001 74.6 14.31 40.7| 177.2
0.001] 0.0000001| 0.00005 36.5 12.2] 34.5|115.4
0.001] 0.000001| 0.00001 79.4 30.3] 48.1] 169.5
0.001]  0.000001{ 0.00005 81.4 52.0] 48.6] 144.2
0.05] 0.00000001] 0.00001 71.6 24.2| 44.8]| 137.5
0.05] 0.00000001| 0.00005 51.6 11.8] 41.3]118.8
0.05] 0.0000001] 0.00001 79.3 35.4149.21176.8
0.05] 0.0000001] 0.00005 6.1 0.9] 33.2] 106.4
0.05]  0.000001] 0.00001 63.8 28.4] 44.7] 55.3
0.05]  0.000001] 0.00005 89.0 3.3] 48.7] 124.1

Table 52 Test Results for ID-A, where NR= 416, NS= 1000, NE= 4, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 50.9 17.3] 40.0] 99.0
0.0003{ 0.00000001] 0.00005 85.2 91.4] 42.5| 42.0
0.0003[ 0.0000001| 0.00001 89.1 82.91 50.5] 72.6
0.0003[ 0.0000001] 0.00005 58.5 19.9] 46.9] 156.2
0.0003[ 0.000001| 0.00001 89.2 20.8] 41.4] 152.3
0.0003[ 0.000001] 0.00005 95.6 89.71 39.0] 62.0
0.001] 0.00000001| 0.00001 65.7 22.8{41.4]172.4
0.001] 0.00000001| 0.00005 95.0 40.9] 44.1| 143.4
0.001] 0.0000001| 0.00001 223 4.1142.1]111.9
0.001] 0.0000001{ 0.00005 66.0 30.2] 38.1] 112.0
0.001] 0.000001| 0.00001 59.8 5.0{ 44.0] 83.2
0.001]  0.000001{ 0.00005 67.4 41.3] 53.3] 135.2
0.05] 0.00000001] 0.00001 68.4 8.8 41.5[175.3
0.05] 0.00000001] 0.00005 42.9 8.2] 42.4[ 108.5
0.05] 0.0000001] 0.00001 29.0 5.2| 43.8] 140.4
0.05] 0.0000001]| 0.00005 71.4 25.6] 45.3] 166.9
0.05]  0.000001] 0.00001 89.0 92.5] 39.7] 54.1
0.05] 0.000001]| 0.00005 62.2 24.71 39.9] 151.7

86



Table 53 Test Results for ID-A, where NR= 416, NS= 1000, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 71.4 29.4] 43.4] 108.0
0.0003{ 0.00000001] 0.00005 77.0 6.6 51.4] 101.5
0.0003[ 0.0000001| 0.00001 88.6 67.0] 50.5| 97.7
0.0003[ 0.0000001] 0.00005 61.2 11.7] 47.3] 140.8
0.0003[ 0.000001| 0.00001 44.1 12.1| 47.5| 201.8
0.0003[ 0.000001] 0.00005 83.3 75.4]1 42.0] 120.7
0.001] 0.00000001| 0.00001 86.6 45.21 50.1] 181.3
0.001] 0.00000001| 0.00005 39.8 12.1]1 40.9] 79.5
0.001] 0.0000001| 0.00001 89.2 67.3]147.0] 90.2
0.001] 0.0000001| 0.00005 40.7 10.1] 41.5] 134.8
0.001] 0.000001| 0.00001 65.3 21.7] 45.3] 158.5
0.001]  0.000001{ 0.00005 66.6 28.7] 42.7] 154.2
0.05] 0.00000001] 0.00001 85.0 5.2 48.6]178.1
0.05] 0.00000001| 0.00005 79.2 5.8] 41.9]182.3
0.05] 0.0000001] 0.00001 3.9 0.5] 46.8] 136.2
0.05] 0.0000001]| 0.00005 61.3 22.3] 43.4]162.6
0.05]  0.000001] 0.00001 52.5 13.0] 50.2| 87.4
0.05]  0.000001] 0.00005 89.8 79.8] 44.8] 55.3

Table 54 Test Results for ID-A, where NR=416, NS= 2400, NE=1, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 69.7 27.31 37.71 159.4
0.0003{ 0.00000001] 0.00005 53.8 16.2] 37.4]| 146.4
0.0003[ 0.0000001| 0.00001 44.4 13.8] 34.6| 110.2
0.0003[ 0.0000001] 0.00005 74.6 51.6] 40.1]176.9
0.0003[ 0.000001| 0.00001 84.7 46.6] 45.7] 152.4
0.0003[ 0.000001] 0.00005 85.6 46.5| 44.9] 153.7
0.001] 0.00000001| 0.00001 67.4 29.0] 35.5] 173.1
0.001] 0.00000001| 0.00005 70.3 36.9] 36.5| 192.0
0.001] 0.0000001| 0.00001 70.8 39.4] 39.3] 144.9
0.001] 0.0000001{ 0.00005 66.7 26.7| 44.8] 139.5
0.001] 0.000001| 0.00001 55.1 10.8] 43.0] 130.1
0.001]  0.000001{ 0.00005 42.8 14.8] 35.31 100.4
0.05] 0.00000001] 0.00001 74.4 4.41449] 91.1
0.05] 0.00000001] 0.00005 92.0 34.1] 44.9] 105.3
0.05] 0.0000001] 0.00001 66.1 12.3137.9|112.4
0.05] 0.0000001]| 0.00005 75.8 5.7/ 37.5]113.1
0.05]  0.000001] 0.00001 48.7 15.4] 51.4] 123.0
0.05] 0.000001]| 0.00005 48.4 19.2] 44.4]| 104.6

87



Table 55 Test Results for ID-A, where NR= 416, NS= 2400, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 58.6 26.8] 44.2] 150.2
0.0003{ 0.00000001] 0.00005 64.2 36.5] 47.5] 163.8
0.0003[ 0.0000001| 0.00001 46.0 11.9] 40.8| 171.9
0.0003[ 0.0000001] 0.00005 84.7 25.7] 48.1] 133.8
0.0003[ 0.000001| 0.00001 97.6 87.71 50.9] 70.9
0.0003[ 0.000001] 0.00005 61.0 17.9]148.9] 111.3
0.001] 0.00000001| 0.00001 91.4 5.1141.6[110.4
0.001] 0.00000001| 0.00005 79.7 24.7| 44.2| 157.3
0.001] 0.0000001| 0.00001 92.7 28.7] 40.2| 171.5
0.001] 0.0000001| 0.00005 90.1 18.9] 40.8] 178.8
0.001] 0.000001| 0.00001 69.1 6.7 47.5] 150.9
0.001]  0.000001{ 0.00005 96.0 26.7| 43.1] 167.3
0.05] 0.00000001] 0.00001 42.7 11.3] 36.9]| 187.7
0.05] 0.00000001| 0.00005 50.8 14.2] 42.3] 166.7
0.05] 0.0000001] 0.00001 37.5 5.7 40.5] 217.7
0.05] 0.0000001]| 0.00005 73.6 18.7] 37.3] 182.9
0.05]  0.000001] 0.00001 31.5 7.0] 48.6] 142.6
0.05]  0.000001] 0.00005 77.4 13.0] 52.1] 129.5

Table 56 Test Results for ID-A, where NR= 416, NS= 2400, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 55.3 1.1] 49.5] 89.2
0.0003{ 0.00000001] 0.00005 20.6 1.3] 57.7]208.2
0.0003[ 0.0000001| 0.00001 67.3 6.4] 45.8]| 139.0
0.0003[ 0.0000001] 0.00005 74.4 9.1 43.5] 151.3
0.0003[ 0.000001| 0.00001 68.0 10.0] 39.6] 103.7
0.0003[ 0.000001] 0.00005 56.2 9.1 39.5] 129.0
0.001] 0.00000001| 0.00001 29.7 3.5 38.4] 158.2
0.001] 0.00000001| 0.00005 87.3 72.5] 45.91100.7
0.001] 0.0000001| 0.00001 77.7 13.5] 42.0| 173.0
0.001] 0.0000001{ 0.00005 63.5 1.2] 40.8] 180.6
0.001] 0.000001| 0.00001 80.3 21.3] 37.2] 129.8
0.001]  0.000001{ 0.00005 57.8 6.5] 36.9] 120.6
0.05] 0.00000001] 0.00001 35.9 2.9149.8]111.1
0.05] 0.00000001] 0.00005 62.0 8.0 44.8[ 113.6
0.05] 0.0000001] 0.00001 95.2 66.5] 45.9] 98.3
0.05] 0.0000001]| 0.00005 57.0 6.0 54.0] 87.1
0.05]  0.000001] 0.00001 96.1 69.4] 55.3| 86.4
0.05] 0.000001]| 0.00005 89.8 84.6] 49.0] 93.7

88



Table 57 Test Results for ID-A, where NR=416, NS=2400, NE=4, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 45.9 15.7] 39.5| 171.9
0.0003{ 0.00000001] 0.00005 59.9 19.2] 41.5| 168.1
0.0003[ 0.0000001| 0.00001 55.6 12.7]1 41.5|118.4
0.0003[ 0.0000001] 0.00005 83.2 3.8] 34.2] 126.6
0.0003[ 0.000001| 0.00001 72.7 28.1] 46.3] 133.1
0.0003[ 0.000001] 0.00005 78.2 27.5] 48.5[171.9
0.001] 0.00000001| 0.00001 79.0 42.0]1 45.4 113.4
0.001] 0.00000001| 0.00005 68.5 25.2] 46.0] 178.5
0.001] 0.0000001| 0.00001 71.2 21.2| 43.5] 137.5
0.001] 0.0000001| 0.00005 84.8 31.2]51.2|116.4
0.001] 0.000001| 0.00001 70.9 27.6] 36.5] 115.1
0.001]  0.000001{ 0.00005 54.1 23.5] 38.2 112.6
0.05] 0.00000001] 0.00001 13.1 0.9] 43.6] 150.7
0.05] 0.00000001| 0.00005 47.5 5.8/ 50.3] 121.9
0.05] 0.0000001] 0.00001 82.6 59.6] 44.6] 140.7
0.05] 0.0000001]| 0.00005 90.2 19.9149.3] 83.4
0.05]  0.000001] 0.00001 62.9 33.7] 42.9] 116.1
0.05]  0.000001] 0.00005 78.9 71.9137.3] 52.3

Table 58 Test Results for ID-A, where NR= 416, NS= 2400, NE= 4, BR= 0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 55.1 24.7] 35.9]1 135.3
0.0003{ 0.00000001] 0.00005 78.5 41.1] 39.3] 137.1
0.0003[ 0.0000001| 0.00001 67.8 24.5] 39.6] 152.1
0.0003[ 0.0000001] 0.00005 82.1 76.3] 34.3] 54.9
0.0003[ 0.000001| 0.00001 79.4 41.5] 44.8] 164.3
0.0003[ 0.000001] 0.00005 94.9 24.6] 42.6] 142.8
0.001] 0.00000001| 0.00001 90.4 18.7] 44.9] 129.8
0.001] 0.00000001| 0.00005 55.4 13.2] 45.0] 138.7
0.001] 0.0000001| 0.00001 77.4 34.21 50.9] 173.7
0.001] 0.0000001{ 0.00005 95.5 10.2] 49.3]| 141.1
0.001] 0.000001| 0.00001 21.2 3.0{ 41.8/102.8
0.001]  0.000001{ 0.00005 80.0 22.7] 45.4] 190.9
0.05] 0.00000001] 0.00001 23.9 1.6] 41.8]134.3
0.05] 0.00000001] 0.00005 69.9 15.3]1 41.8]| 176.2
0.05] 0.0000001] 0.00001 68.1 13.2 43.4] 115.1
0.05] 0.0000001]| 0.00005 37.6 7.6] 39.8] 143.7
0.05]  0.000001] 0.00001 64.1 6.4] 43.6] 116.5
0.05] 0.000001]| 0.00005 35.3 9.7/ 38.9] 118.4

89



Table 59 Test Results for ID-A, where NR= 416, NS= 2400, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 39.5 6.7] 42.7| 93.2
0.0003{ 0.00000001] 0.00005 69.6 2.4] 49.6] 108.0
0.0003[ 0.0000001| 0.00001 56.6 7.5 42.8] 174.5
0.0003[ 0.0000001] 0.00005 76.5 3.7 53.0] 153.8
0.0003[ 0.000001| 0.00001 62.4 0.6 39.6] 132.4
0.0003[ 0.000001] 0.00005 70.5 8.6 43.2(213.3
0.001] 0.00000001| 0.00001 97.2 67.5] 48.11 92.4
0.001] 0.00000001| 0.00005 90.7 75.2148.7] 70.4
0.001] 0.0000001| 0.00001 57.4 10.4] 48.6] 224.9
0.001] 0.0000001| 0.00005 50.4 10.0] 40.1] 95.6
0.001] 0.000001| 0.00001 72.2 12.2] 40.4| 177.3
0.001]  0.000001{ 0.00005 74.0 45.8] 40.2] 199.5
0.05] 0.00000001] 0.00001 98.3 14.4] 46.4]| 162.5
0.05] 0.00000001| 0.00005 48.1 4.3]44.11107.6
0.05] 0.0000001] 0.00001 25.1 0.3[ 46.6[ 111.8
0.05] 0.0000001]| 0.00005 93.6 71.3]145.3] 69.9
0.05]  0.000001] 0.00001 88.3 58.4] 44.8]| 134.0
0.05]  0.000001] 0.00005 86.7 66.5] 46.9] 67.1

Table 60 Test Results for ID-A, where NR= 480, NS= 400, NE= 1, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 46.9 10.4] 56.1] 187.0
0.0003{ 0.00000001] 0.00005 75.2 52.3] 51.6] 163.1
0.0003[ 0.0000001| 0.00001 70.1 47.91 51.6] 216.5
0.0003[ 0.0000001] 0.00005 72.9 40.3] 50.4] 182.5
0.0003[ 0.000001| 0.00001 78.9 24.4] 58.6]211.8
0.0003[ 0.000001] 0.00005 89.9 52.4]1 60.1] 188.8
0.001] 0.00000001| 0.00001 72.7 47.11 69.4| 174.7
0.001] 0.00000001| 0.00005 69.7 48.4] 60.7] 186.3
0.001] 0.0000001| 0.00001 71.2 25.11 66.9] 196.8
0.001] 0.0000001{ 0.00005 71.2 25.11 66.9] 196.9
0.001] 0.000001| 0.00001 49.6 10.6] 50.2] 189.3
0.001]  0.000001{ 0.00005 67.9 38.3] 54.9] 121.2
0.05] 0.00000001] 0.00001 37.6 7.31 57.5[175.9
0.05] 0.00000001] 0.00005 36.1 11.4] 56.4| 171.7
0.05] 0.0000001] 0.00001 56.1 8.8] 57.5[130.2
0.05] 0.0000001]| 0.00005 74.5 23.4] 68.7] 174.2
0.05]  0.000001] 0.00001 70.4 38.1] 64.2]1222.7
0.05] 0.000001]| 0.00005 79.3 23.5] 59.3] 162.5

90



Table 61 Test Results for ID-A, where NR= 480, NS= 400, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 94.8 17.6] 52.8] 122.3
0.0003{ 0.00000001] 0.00005 92.6 81.4] 53.6] 100.7
0.0003[ 0.0000001| 0.00001 49.4 13.5] 53.21192.0
0.0003[ 0.0000001] 0.00005 84.8 23.8] 55.5] 154.1
0.0003[ 0.000001| 0.00001 67.7 10.8] 59.8] 149.4
0.0003[ 0.000001] 0.00005 75.0 18.4] 57.7] 206.0
0.001] 0.00000001| 0.00001 64.6 25.6] 52.0] 234.8
0.001] 0.00000001| 0.00005 91.1 68.6] 57.4| 116.2
0.001] 0.0000001| 0.00001 93.0 18.6] 51.5| 189.1
0.001] 0.0000001| 0.00005 88.0 19.2] 59.6] 148.8
0.001] 0.000001| 0.00001 50.3 17.91 47.3] 213.5
0.001]  0.000001{ 0.00005 82.2 7221 51.2] 87.1
0.05] 0.00000001] 0.00001 51.0 16.8] 55.8]| 158.4
0.05] 0.00000001| 0.00005 60.2 11.0] 50.5| 174.3
0.05] 0.0000001] 0.00001 14.7 2.8]49.7] 135.7
0.05] 0.0000001]| 0.00005 41.2 7.7] 49.0] 205.5
0.05]  0.000001] 0.00001 46.4 10.4] 48.6] 181.0
0.05]  0.000001] 0.00005 62.0 33.0] 55.8]224.2

Table 62 Test Results for ID-A, where NR= 480, NS= 400, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 93.4 74.6] 43.0] 108.1
0.0003{ 0.00000001] 0.00005 74.3 20.6] 52.4| 157.3
0.0003[ 0.0000001| 0.00001 64.6 20.8] 45.2] 186.0
0.0003[ 0.0000001] 0.00005 72.1 5.6 59.9]172.5
0.0003[ 0.000001| 0.00001 47.3 4.5] 62.1] 259.9
0.0003[ 0.000001] 0.00005 85.6 77.9] 62.1] 96.4
0.001] 0.00000001| 0.00001 54.9 6.5 70.3] 153.1
0.001] 0.00000001| 0.00005 50.3 2.9] 66.8]201.3
0.001] 0.0000001| 0.00001 29.2 6.1 55.3] 179.0
0.001] 0.0000001{ 0.00005 90.9 66.3] 58.5| 109.5
0.001] 0.000001| 0.00001 50.9 12.9] 61.0] 192.5
0.001]  0.000001{ 0.00005 86.9 69.1] 65.3]110.4
0.05] 0.00000001] 0.00001 20.7 3.3] 50.2] 228.5
0.05] 0.00000001] 0.00005 99.4 66.1]1 49.2] 90.5
0.05] 0.0000001] 0.00001 86.4 65.8] 50.4] 109.0
0.05] 0.0000001]| 0.00005 453 1.1 48.1] 145.4
0.05]  0.000001] 0.00001 22.0 0.6 55.2{119.2
0.05] 0.000001]| 0.00005 81.0 72.3] 54.2] 96.2

91



Table 63 Test Results for ID-A, where NR= 480, NS= 400, NE= 4, BR= 0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 55.8 8.3] 56.5[181.2
0.0003{ 0.00000001] 0.00005 87.4 21.7] 52.6] 140.8
0.0003[ 0.0000001| 0.00001 81.1 90.8] 56.0] 59.2
0.0003[ 0.0000001] 0.00005 70.4 17.6] 53.9] 128.4
0.0003[ 0.000001| 0.00001 89.1 79.51 59.2] 99.8
0.0003[ 0.000001] 0.00005 86.5 54.7] 58.0| 197.4
0.001] 0.00000001| 0.00001 79.4 28.4] 65.4] 159.8
0.001] 0.00000001| 0.00005 70.5 12.9] 53.0] 180.8
0.001] 0.0000001| 0.00001 58.8 16.8] 48.9] 167.7
0.001] 0.0000001| 0.00005 79.5 6.9] 65.51222.9
0.001] 0.000001| 0.00001 92.3 38.8] 55.3] 121.3
0.001]  0.000001{ 0.00005 90.0 85.3] 49.1] 80.2
0.05] 0.00000001] 0.00001 91.0 86.5] 55.1] 68.3
0.05] 0.00000001| 0.00005 38.6 4.6] 46.3] 126.7
0.05] 0.0000001] 0.00001 44.1 5.8] 62.2] 166.7
0.05] 0.0000001]| 0.00005 45.1 9.8] 60.7| 153.7
0.05]  0.000001] 0.00001 61.3 6.9] 59.3] 142.7
0.05]  0.000001] 0.00005 61.5 9.3 55.0] 141.5

Table 64 Test Results for ID-A, where NR= 480, NS= 400, NE= 4, BR= 0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 77.7 22.3] 52.1 75.7
0.0003{ 0.00000001] 0.00005 75.2 5.0 67.4]222.3
0.0003[ 0.0000001| 0.00001 87.8 16.2] 55.2| 175.1
0.0003[ 0.0000001] 0.00005 64.1 37.2]1 48.6] 147.0
0.0003[ 0.000001| 0.00001 75.6 54.9] 59.21172.1
0.0003[ 0.000001] 0.00005 89.5 19.8] 59.2] 208.3
0.001] 0.00000001| 0.00001 77.2 37.1] 50.8] 149.1
0.001] 0.00000001| 0.00005 86.8 27.7] 56.9]1214.8
0.001] 0.0000001| 0.00001 80.4 19.3] 60.1] 288.9
0.001] 0.0000001{ 0.00005 80.8 19.6] 56.9] 241.1
0.001] 0.000001| 0.00001 94.4 69.2] 57.6] 89.1
0.001]  0.000001{ 0.00005 76.3 22.5] 58.1] 127.5
0.05] 0.00000001] 0.00001 233 4.2] 50.9]253.5
0.05] 0.00000001] 0.00005 36.8 7.7 53.0] 115.8
0.05] 0.0000001] 0.00001 13.4 2.3]52.0|161.9
0.05] 0.0000001]| 0.00005 86.4 70.2] 53.4] 72.0
0.05]  0.000001] 0.00001 67.9 33.5]144.21176.9
0.05] 0.000001]| 0.00005 60.4 19.4] 43.8] 188.2

92



Table 65 Test Results for ID-A, where NR= 480, NS= 400, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 69.4 4.8] 57.0] 195.2
0.0003{ 0.00000001] 0.00005 89.3 20.1] 55.8] 152.3
0.0003[ 0.0000001| 0.00001 51.3 3.9150.4] 128.1
0.0003[ 0.0000001] 0.00005 94.2 68.1] 49.5| 75.9
0.0003[ 0.000001| 0.00001 31.5 3.6 51.2] 104.0
0.0003[ 0.000001] 0.00005 56.1 8.9] 51.8[132.7
0.001] 0.00000001| 0.00001 243 4.0] 44.1] 156.5
0.001] 0.00000001| 0.00005 453 10.5] 49.91 110.3
0.001] 0.0000001| 0.00001 59.5 8.4] 56.3[114.2
0.001] 0.0000001| 0.00005 82.5 67.2] 50.3] 91.0
0.001] 0.000001| 0.00001 84.7 31.4]52.0|1171.7
0.001]  0.000001{ 0.00005 80.4 2.5]61.1]124.0
0.05] 0.00000001] 0.00001 64.8 23.0] 46.8] 244.7
0.05] 0.00000001| 0.00005 48.5 3.1 50.9] 150.6
0.05] 0.0000001] 0.00001 94.6 68.7] 59.6] 92.9
0.05] 0.0000001]| 0.00005 72.4 9.5] 54.5] 180.5
0.05]  0.000001] 0.00001 31.1 4.7] 45.5] 101.7
0.05]  0.000001] 0.00005 51.2 6.5 47.8] 187.6

Table 66 Test Results for ID-A, where NR=480, NS=1000, NE=1, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 68.9 38.3] 54.2|182.4
0.0003{ 0.00000001] 0.00005 87.4 66.9] 50.9] 163.0
0.0003[ 0.0000001| 0.00001 68.1 39.5] 53.1| 156.9
0.0003[ 0.0000001] 0.00005 68.3 39.7] 51.7]204.7
0.0003[ 0.000001| 0.00001 68.9 46.1] 50.0] 144.1
0.0003[ 0.000001] 0.00005 76.0 30.8] 56.6] 170.5
0.001] 0.00000001| 0.00001 74.3 37.4] 64.1] 194.9
0.001] 0.00000001| 0.00005 74.8 36.2] 65.9]176.7
0.001] 0.0000001| 0.00001 78.0 47.3] 57.6] 230.8
0.001] 0.0000001{ 0.00005 83.2 78.8] 59.0] 135.0
0.001] 0.000001| 0.00001 86.0 28.1] 53.5]193.7
0.001]  0.000001{ 0.00005 58.3 25.6] 54.1] 130.2
0.05] 0.00000001] 0.00001 25.0 3.7 56.8] 139.7
0.05] 0.00000001] 0.00005 66.9 36.5] 50.3] 210.1
0.05] 0.0000001] 0.00001 82.9 21.7] 65.7] 204.6
0.05] 0.0000001]| 0.00005 90.4 15.5] 58.5|194.9
0.05]  0.000001] 0.00001 51.8 12.8] 55.9] 164.6
0.05] 0.000001]| 0.00005 45.7 11.9] 54.6] 181.8

93



Table 67 Test Results for ID-A, where NR= 480, NS= 1000, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 60.7 17.9] 54.3] 149.1
0.0003{ 0.00000001] 0.00005 97.5 70.0] 66.2] 103.8
0.0003[ 0.0000001| 0.00001 33.9 6.3 67.4] 126.9
0.0003[ 0.0000001] 0.00005 49.2 18.1] 53.0| 218.2
0.0003[ 0.000001| 0.00001 55.2 13.3] 58.8] 185.8
0.0003[ 0.000001] 0.00005 55.6 11.1] 59.9] 187.6
0.001] 0.00000001| 0.00001 24.4 5.6{ 49.3] 105.2
0.001] 0.00000001| 0.00005 89.7 73.7] 55.0] 90.2
0.001] 0.0000001| 0.00001 59.5 29.3] 48.7] 159.1
0.001] 0.0000001| 0.00005 86.7 19.3] 58.6] 212.3
0.001] 0.000001| 0.00001 53.1 24.3] 62.2] 209.6
0.001]  0.000001{ 0.00005 87.3 46.6] 59.8] 199.2
0.05] 0.00000001] 0.00001 79.4 41.4] 51.9] 160.1
0.05] 0.00000001| 0.00005 49.3 4.8]52.7|187.4
0.05] 0.0000001] 0.00001 79.5 71.6] 47.4] 67.0
0.05] 0.0000001]| 0.00005 27.6 6.5] 48.7] 130.3
0.05]  0.000001] 0.00001 41.9 11.7] 54.0| 181.4
0.05]  0.000001] 0.00005 38.0 7.0{ 57.0{ 179.8

Table 68 Test Results for ID-A, where NR= 480, NS= 1000, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 35.2 6.3 70.3] 169.9
0.0003{ 0.00000001] 0.00005 41.0 6.5] 61.2] 118.3
0.0003[ 0.0000001| 0.00001 79.4 1.7 47.6] 173.0
0.0003[ 0.0000001] 0.00005 62.4 5.3 47.5]115.2
0.0003[ 0.000001| 0.00001 83.3 0.5[61.9]113.1
0.0003[ 0.000001] 0.00005 58.7 1.3] 62.0] 148.8
0.001] 0.00000001| 0.00001 45.1 3.0{ 67.5] 161.5
0.001] 0.00000001| 0.00005 94.2 12.4] 72.6| 272.1
0.001] 0.0000001| 0.00001 61.8 5.2 63.7] 215.6
0.001] 0.0000001{ 0.00005 81.9 4.9] 57.4]213.8
0.001] 0.000001| 0.00001 90.5 74.8] 61.9]110.7
0.001]  0.000001{ 0.00005 55.5 1.9] 61.3] 181.2
0.05] 0.00000001] 0.00001 55.9 4.0] 50.1]223.2
0.05] 0.00000001] 0.00005 34.6 0.5] 55.5]149.2
0.05] 0.0000001] 0.00001 74.1 2.8] 50.0] 144.9
0.05] 0.0000001]| 0.00005 93.3 71.2]47.1] 88.8
0.05]  0.000001] 0.00001 21.9 3.1 54.6] 191.0
0.05] 0.000001]| 0.00005 39.3 4.8] 54.7] 200.6

94



Table 69 Test Results for ID-A, where NR=480, NS=1000, NE=4, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 69.6 10.2] 56.5| 173.6
0.0003{ 0.00000001] 0.00005 40.7 8.1 52.2 181.5
0.0003[ 0.0000001| 0.00001 52.2 17.6] 49.1] 174.5
0.0003[ 0.0000001] 0.00005 74.3 10.2] 49.6] 192.6
0.0003[ 0.000001| 0.00001 81.9 44.4] 60.0] 136.6
0.0003[ 0.000001] 0.00005 83.6 78.3] 61.4| 123.6
0.001] 0.00000001| 0.00001 70.6 42.0] 53.4] 175.8
0.001] 0.00000001| 0.00005 82.1 34.1] 50.5] 156.5
0.001] 0.0000001| 0.00001 73.8 12.8] 65.4| 173.8
0.001] 0.0000001| 0.00005 66.1 34.1] 60.1]204.8
0.001] 0.000001| 0.00001 68.8 25.9] 56.8] 146.6
0.001]  0.000001{ 0.00005 41.1 10.6] 52.4]| 163.0
0.05] 0.00000001] 0.00001 67.7 21.7] 52.7] 153.8
0.05] 0.00000001| 0.00005 73.6 3.8] 54.6] 164.9
0.05] 0.0000001] 0.00001 55.9 9.6] 66.8] 225.9
0.05] 0.0000001]| 0.00005 88.6 14.4] 56.7| 218.4
0.05]  0.000001] 0.00001 67.6 4.1] 53.0] 154.0
0.05]  0.000001] 0.00005 76.4 7.7 56.7 178.7

Table 70 Test Results for ID-A, where NR= 480, NS= 1000, NE= 4, BR= 0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 59.4 21.6] 56.5]200.7
0.0003{ 0.00000001] 0.00005 83.7 74.6] 58.2| 73.0
0.0003[ 0.0000001| 0.00001 86.3 42.91 49.01 203.7
0.0003[ 0.0000001] 0.00005 63.0 14.1] 56.9] 207.3
0.0003[ 0.000001| 0.00001 62.8 22.6] 53.1] 91.5
0.0003[ 0.000001] 0.00005 60.9 17.7) 47.7]1 176.3
0.001] 0.00000001| 0.00001 79.8 20.0] 53.1] 139.9
0.001] 0.00000001| 0.00005 48.2 2.4] 63.8| 138.4
0.001] 0.0000001| 0.00001 64.9 25.0] 54.0] 178.3
0.001] 0.0000001{ 0.00005 84.3 12.1] 51.3] 128.2
0.001] 0.000001| 0.00001 85.0 27.8] 49.0] 182.6
0.001]  0.000001{ 0.00005 73.2 14.7] 48.8] 180.2
0.05] 0.00000001] 0.00001 78.5 70.6] 45.8] 76.1
0.05] 0.00000001] 0.00005 81.4 71.6] 46.8] 78.1
0.05] 0.0000001] 0.00001 87.2 66.7] 50.1] 67.5
0.05] 0.0000001]| 0.00005 44.4 17.2] 47.6] 151.3
0.05]  0.000001] 0.00001 51.4 10.8] 51.8] 157.5
0.05] 0.000001]| 0.00005 50.5 10.1] 55.8| 163.4

95



Table 71 Test Results for ID-A, where NR= 480, NS= 1000, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 82.6 73.7] 58.5] 74.5
0.0003{ 0.00000001] 0.00005 35.2 8.8] 44.6[ 175.7
0.0003[ 0.0000001| 0.00001 76.2 21.3]145.9]1310.4
0.0003[ 0.0000001] 0.00005 52.1 7.0 43.7| 151.7
0.0003[ 0.000001| 0.00001 71.2 5.9( 61.8] 144.8
0.0003[ 0.000001] 0.00005 60.0 4.1] 64.7]214.1
0.001] 0.00000001| 0.00001 88.5 16.5] 64.3] 124.9
0.001] 0.00000001| 0.00005 55.3 13.3] 52.5| 87.4
0.001] 0.0000001| 0.00001 87.9 75.2148.1] 99.3
0.001] 0.0000001| 0.00005 67.2 14.6] 48.0] 140.7
0.001] 0.000001| 0.00001 86.3 67.9] 59.2] 87.9
0.001]  0.000001{ 0.00005 84.1 90.9] 58.7| 50.0
0.05] 0.00000001] 0.00001 79.9 1.1] 55.4] 115.7
0.05] 0.00000001| 0.00005 77.1 6.3 55.7|173.4
0.05] 0.0000001] 0.00001 84.1 30.9] 49.7] 155.1
0.05] 0.0000001]| 0.00005 67.3 12.8] 48.5] 105.8
0.05]  0.000001] 0.00001 73.7 24.11 59.4| 221.6
0.05]  0.000001] 0.00005 55.6 8.4] 69.8[273.4

Table 72 Test Results for ID-A, where NR=480, NS=2400, NE=1, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 63.3 26.0] 49.5] 174.1
0.0003{ 0.00000001] 0.00005 70.9 31.6] 52.4| 175.4
0.0003[ 0.0000001| 0.00001 75.9 37.8] 58.1]1199.3
0.0003[ 0.0000001] 0.00005 58.9 22.4] 56.0] 183.1
0.0003[ 0.000001| 0.00001 66.7 26.2] 58.5] 169.3
0.0003[ 0.000001] 0.00005 80.7 26.8] 58.8] 177.4
0.001] 0.00000001| 0.00001 81.5 86.4] 55.7] 162.0
0.001] 0.00000001| 0.00005 74.1 62.5] 51.4| 147.2
0.001] 0.0000001| 0.00001 87.5 36.9] 61.3| 171.6
0.001] 0.0000001{ 0.00005 67.3 44.11 49.0] 127.5
0.001] 0.000001| 0.00001 84.0 33.1] 64.9] 181.2
0.001]  0.000001{ 0.00005 64.1 37.3]161.6]217.9
0.05] 0.00000001] 0.00001 36.3 10.1] 46.2| 173.5
0.05] 0.00000001] 0.00005 48.5 14.91 47.3] 179.1
0.05] 0.0000001] 0.00001 56.2 22.9] 64.7] 189.8
0.05] 0.0000001]| 0.00005 55.2 16.7] 60.5| 163.8
0.05]  0.000001] 0.00001 64.7 13.1] 64.6] 171.5
0.05] 0.000001]| 0.00005 51.6 18.0] 56.1] 143.5

96



Table 73 Test Results for ID-A, where NR= 480, NS= 2400, NE= 1, BR=0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 92.1 8.2] 55.5[179.9
0.0003{ 0.00000001] 0.00005 95.9 73.9] 53.6] 82.2
0.0003[ 0.0000001| 0.00001 79.8 16.8] 58.4] 193.5
0.0003[ 0.0000001] 0.00005 80.0 78.7] 62.7] 144.2
0.0003[ 0.000001| 0.00001 78.6 36.5] 67.4] 200.7
0.0003[ 0.000001] 0.00005 75.6 22.6] 70.4] 195.5
0.001] 0.00000001| 0.00001 65.2 22.7] 50.91 197.6
0.001] 0.00000001| 0.00005 64.3 23.5] 53.9] 182.3
0.001] 0.0000001| 0.00001 91.3 15.9] 51.4|131.2
0.001] 0.0000001| 0.00005 93.7 7.2| 54.8]| 158.0
0.001] 0.000001| 0.00001 51.1 19.2] 52.6] 222.0
0.001]  0.000001{ 0.00005 76.2 21.6] 58.6] 185.4
0.05] 0.00000001] 0.00001 46.3 12.0] 54.8] 152.1
0.05] 0.00000001| 0.00005 82.6 10.0] 63.8] 200.6
0.05] 0.0000001] 0.00001 49.8 11.7] 58.8] 159.4
0.05] 0.0000001]| 0.00005 67.2 15.9] 61.2] 165.1
0.05]  0.000001] 0.00001 79.7 4.4] 61.4] 165.5
0.05]  0.000001] 0.00005 96.1 15.8] 64.1|1 177.9

Table 74 Test Results for ID-A, where NR= 480, NS= 2400, NE= 1, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 53.9 0.4] 50.7] 124.5
0.0003{ 0.00000001] 0.00005 62.1 9.4] 48.9] 142.7
0.0003[ 0.0000001| 0.00001 90.1 0.6 57.3] 167.0
0.0003[ 0.0000001] 0.00005 15.8 0.1 56.2] 112.9
0.0003[ 0.000001| 0.00001 82.3 0.7 66.5] 149.2
0.0003[ 0.000001] 0.00005 51.9 0.3 59.9] 98.8
0.001] 0.00000001| 0.00001 84.3 5.1 78.5]293.5
0.001] 0.00000001| 0.00005 58.7 0.1 71.5] 184.9
0.001] 0.0000001| 0.00001 60.0 1.7] 49.3] 165.1
0.001] 0.0000001{ 0.00005 80.5 2.7] 52.4]214.5
0.001] 0.000001| 0.00001 65.8 4.6] 67.4]132.3
0.001]  0.000001{ 0.00005 53.2 0.7 68.9] 155.9
0.05] 0.00000001] 0.00001 91.1 2.8] 56.3] 153.9
0.05] 0.00000001] 0.00005 68.8 0.4] 56.3] 203.0
0.05] 0.0000001] 0.00001 11.9 1.3] 51.5]182.0
0.05] 0.0000001]| 0.00005 90.1 0.7] 53.5] 190.3
0.05]  0.000001] 0.00001 94.3 10.6] 52.6] 188.0
0.05] 0.000001]| 0.00005 77.9 2.0]57.3]1193.4

97



Table 75 Test Results for ID-A, where NR=480, NS=2400, NE=4, BR=0.0003.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 87.5 39.8] 54.7] 224.9
0.0003{ 0.00000001] 0.00005 70.0 41.2] 48.2| 178.9
0.0003[ 0.0000001| 0.00001 90.2 32.0] 61.2] 186.6
0.0003[ 0.0000001] 0.00005 73.2 38.6] 52.4|204.9
0.0003[ 0.000001| 0.00001 89.0 35.2] 58.8] 190.0
0.0003[ 0.000001] 0.00005 73.6 11.1] 57.8] 146.7
0.001] 0.00000001| 0.00001 93.7 50.0] 57.0] 161.9
0.001] 0.00000001| 0.00005 45.7 12.1] 53.21 139.0
0.001] 0.0000001| 0.00001 55.6 18.7] 55.1] 152.4
0.001] 0.0000001| 0.00005 96.8 40.0] 54.6] 174.0
0.001] 0.000001| 0.00001 85.4 22.2] 58.3]163.7
0.001]  0.000001{ 0.00005 73.0 45.4] 53.4] 172.1
0.05] 0.00000001] 0.00001 27.7 2.4]53.1]176.1
0.05] 0.00000001| 0.00005 48.5 1.7] 55.91106.3
0.05] 0.0000001] 0.00001 67.7 28.1] 63.8] 167.9
0.05] 0.0000001]| 0.00005 43.2 11.7] 57.3] 238.5
0.05]  0.000001] 0.00001 64.5 28.7] 50.5| 164.4
0.05]  0.000001] 0.00005 54.9 16.7] 48.5] 163.2

Table 76 Test Results for ID-A, where NR= 480, NS= 2400, NE= 4, BR= 0.001.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 91.7 70.4] 69.0] 97.0
0.0003{ 0.00000001] 0.00005 83.7 69.0] 49.8] 90.3
0.0003[ 0.0000001| 0.00001 51.4 7.2 56.2] 166.2
0.0003[ 0.0000001] 0.00005 85.4 22.5] 63.3]169.2
0.0003[ 0.000001| 0.00001 50.3 19.2] 57.31 207.4
0.0003[ 0.000001] 0.00005 57.2 22.6] 54.5[207.0
0.001] 0.00000001| 0.00001 72.5 44.11 49.91217.6
0.001] 0.00000001| 0.00005 73.4 26.0] 50.5]221.7
0.001] 0.0000001| 0.00001 79.0 8.0] 52.4[ 104.5
0.001] 0.0000001{ 0.00005 67.4 13.0] 51.6] 163.8
0.001] 0.000001| 0.00001 81.3 51.2] 69.0] 208.2
0.001]  0.000001{ 0.00005 92.1 23.3] 51.2| 198.4
0.05] 0.00000001] 0.00001 59.6 12.8] 56.8] 189.9
0.05] 0.00000001] 0.00005 54.4 11.2| 61.5|234.2
0.05] 0.0000001] 0.00001 24.6 5.5] 46.7]| 153.5
0.05] 0.0000001]| 0.00005 31.3 10.0] 44.4] 141.7
0.05]  0.000001] 0.00001 13.7 1.5 51.2] 146.6
0.05] 0.000001]| 0.00005 11.3 1.2] 51.2] 89.1

98



Table 77 Test Results for ID-A, where NR= 480, NS= 2400, NE= 4, BR= 0.008.

RPR TR MR | % Acc| % Comp | TrT| TeT
0.0003{ 0.00000001| 0.00001 99.2 66.0] 64.2] 105.5
0.0003{ 0.00000001] 0.00005 92.6 78.9]1 61.9] 82.4
0.0003[ 0.0000001| 0.00001 74.5 4.3] 51.6] 166.2
0.0003[ 0.0000001] 0.00005 83.4 70.0] 59.1] 89.5
0.0003[ 0.000001| 0.00001 83.9 71.7] 58.7] 113.8
0.0003[ 0.000001] 0.00005 40.1 8.8] 58.3[241.9
0.001] 0.00000001| 0.00001 52.8 7.4] 63.8] 275.7
0.001] 0.00000001| 0.00005 65.3 2.1] 70.0] 203.0
0.001] 0.0000001| 0.00001 38.7 6.9] 56.1]200.2
0.001] 0.0000001| 0.00005 33.6 3.9] 58.2] 150.9
0.001] 0.000001| 0.00001 93.5 71.0] 73.2] 136.2
0.001]  0.000001{ 0.00005 41.3 1.7 57.4] 133.0
0.05] 0.00000001] 0.00001 88.0 4.2] 56.6]224.9
0.05] 0.00000001| 0.00005 83.1 9.0] 56.1]262.3
0.05] 0.0000001] 0.00001 92.4 67.0] 57.2] 105.2
0.05] 0.0000001]| 0.00005 95.8 4.1] 55.11159.8
0.05]  0.000001] 0.00001 44.1 12.6| 54.1]213.5
0.05]  0.000001] 0.00005 28.0 5.9{ 62.7] 248.9

99



#include
#include
#include
#include

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

/* Set the default seeds for all 100

static 1
{
1973272
1933576
1511192
75253
726370
1922803
336157
1046574
2122378
78130
1997049
1004818
498067
1814496
1432404
1116780
1053920
1433700
190641
927711
}i
#define
#define
#define
#define
#define
#define
struct 1

APPENDIX E

Code for Intrusion Detector A

<stdio.h>
<stdlib.h>
<string.h>
<time.h>

DEFAULT STRENGTH 1.0

ZERO CHAR '0'
ONE_CHAR '1'

MATCH ANY CHAR 'x'

MODLUS 2147483647
MULT1 24112
MULT2 26143

RAND RATIO 20
RAND RATIO 21
RAND RATIO 30
RAND RATIO 31
RAND RATIO 32

ong zrng[] =
1,

912, 281629770,
050, 913566091,
140, 1259851944,
171, 1964472944,
533, 403498145,
170, 1385516923,
058, 1432650381,
445, 68911991,
830, 640690903,
110, 852776735,
139, 922510944,
771, 773686062,
494, 2087759558,
276, 536444882,
475, 619691088,
070, 277854671,
743, 786262391,
034, 1244184613,
742, 1645390429,
160, 364849192,

list head ptr(list)
list next ptr(list)
list condition ptr(list)
list message ptr(list)
list action ptr(list)
list strength ptr(list)

ist node ({

0.

[cNeoNeoNe]

5

@ P =G

20006270,
246780520,
824064364,

1202299975,
993232223,
76271663,
1120463904,
2088367019,
1774806513,
1187867272,
2045512870,
403188473,
493157915,
1663153658,
119025595,
1366580350,
1792203830,
1147297105,
264907697,
2049576050,

100

streams. */

1280689831,
1363774876,
150493284,
233217322,
1103205531,
413682397,
595778810,
748545416,
2132545692,
1351423507,
898585771,
372279877,
597104727,
855503735,
880802310,
1142483975,
1494667770,
539712780,
620389253,
638580085,

((list)->head ptr)
((list)->next ptr)
((list)->condition ptr)
((list)->message ptr)
((list)->action ptr)
((list)->strength ptr)

2096730329,
04901985,
242708531,
1911216000,
762430696,
726466604,
877722890,
622401386,
2079249579,
1645973084,
243649545,
1901633463,
1530940798,
67784357,
176192644,
2026948561,
1923011392,
1545929719,
1502074852,
547070247



char *condition ptr;

char *message ptr;

char *action ptr;

double *strength ptr;
struct list node *next ptr;

}i

struct list {
struct list node *head ptr;
int size;
double *strength of environment ptr;

}i

struct secondary list node {
struct list node *hosted node ptr;
struct secondary list node *next ptr;

}s

struct secondary list {
struct secondary list node *head ptr;

}i

void generate rule set(struct list *rule set ptr);

struct list node *create one rule ptr();

void generate condition(char *new condition ptr);

void generate message (char *new message ptr);

void generate action(char *new action ptr);

void train(struct list *rule set ptr);

void process one training step (struct list *rule set ptr, char
*input message ptr);

struct list node *choose node for action ptr (struct list
*rule set ptr, char *input message ptr);

struct list node *hold an auction ptr (struct list *rule set ptr,
double *activator strength ptr, char *input message ptr);

char check for loop (struct secondary list *loop list ptr, struct
list node *auction winner ptr);

double collect life tax(struct list *rule set ptr);

void pay subsidies(struct list *rule set ptr, double
total subsidy);

void process genetic operations (struct list *rule set ptr);

void eliminate weak rules (struct list *rule set ptr);

struct list node *choose a rule to be eliminated ptr(struct list
*rule set ptr);

void reproduce strong rules(struct list *rule set ptr);

struct list node *reproduce one rule (struct list *rule set ptr);

void choose two rules(int *first parent index ptr, int
*second parent index ptr, int number of rules);

void cross over(char *child ptr, char *first parent ptr, char
*second parent ptr);

void test(struct list *rule set ptr);

void process_one test step (struct list *rule set ptr, char
*input message ptr, char *correct action ptr);

struct list node *test choose node for action ptr (struct list
*rule set ptr, char *input message ptr);

struct list node *test hold an auction ptr (struct list
*rule set ptr, double *activator strength ptr, char
*input message ptr);

101



struct list *list init ptr ();

struct list node *list alloc node memory ptr();

struct list *list duplicate ptr(struct list
*list to be duplicated ptr);

void list copy node (struct list node *destination node ptr,
struct list node *source node ptr);

void list print (struct list *list to be printed ptr);

void list print node (struct list node *node to be printed ptr,
char as _a single node);

void list insert (struct list *list to be inserted to ptr, struct
list node *node to be inserted ptr);

void list insert as head(struct list *list to be inserted to ptr,
struct list node *node to be inserted ptr);

void list insert next(struct list *list to be inserted to ptr,
struct list node *node to be inserted after ptr, struct
list node *node to be inserted ptr);

struct list node *1list locate ptr (struct list
*list to be located in ptr, struct list node
*node to be located ptr, char *same exists ptr);

int list compare two nodes (struct list node
*first list node to compare ptr, struct list node
*second list node to compare ptr);

void list destroy list (struct list *list to be destroyed ptr);

void list remove head (struct list *list to be removed from ptr);

void list remove next (struct list *list to be removed from ptr,
struct list node *previous node ptr);

struct list node *list get node by index ptr (struct list
*list to get from ptr, int node index);

void list destroy node (struct list node
*node to be destroyed ptr);

struct secondary list node *create secondary list node ptr(struct
list node *node to be hosted ptr);

struct secondary list *secondary list init ptr ();

void secondary list insert as head(struct secondary list
*secondary list to be inserted to ptr, struct
secondary list node *secondary list node to be inserted ptr);

void secondary list destroy list (struct secondary list
*secondary list to be destroyed ptr);

void secondary list remove head (struct secondary list
*secondary list to be removed from ptr);

void secondary list destroy node (struct secondary list node
*secondary list node to be destroyed ptr);

char message match condition (char *message, char *condition);

char chars match (char state char, char condition char);

void mutate rule(struct list node *rule to be mutated ptr);

void mutate bit2(char *bit to be mutated ptr);

void mutate bit3(char *bit to be mutated ptr);

char rand char2();

char rand char3();

float lcgrand(int stream);

void lcgrandst (long zset, int stream);

long lcgrandgt (int stream);

/* Global Variables */
FILE *out file ptr;
int num bits;

int num rules;

102



int num_ steps;
int num eli;
double bid rate;
double rp rate;
double tax rate;
double mut rate;

int number of true positive;
int number of true negative;
int number of false positive;
int number of false negative;

int main () {
struct list *rule set ptr;

FILE *param file ptr;
extern FILE *out file ptr;
extern int num bits;
extern int num rules;
extern int num steps;
extern int num eli;

extern double bid rate;
extern double rp rate;
extern double tax rate;
extern double mut rate;

/* Open the Parameters File */

param file ptr = fopen("ida.prm","r");
/* Make sure that it is opened */
if (param file ptr == NULL) {
printf ("\n\nERROR: main : NO PARAMETERSS FILE PRESENT
P I\n\n") ;

printf ("\n\nSO QUITTING!!!\n\n");
system ("PAUSE") ;
exit (1) ;

}

/* Open (create if necessary) The Output File */

out file ptr = fopen("ida.out","a+");

/* Make sure that it is opened */

if (out file ptr == NULL) {
printf ("\n\nERROR: main : OUTPUT FILE CAN NOT BE OPENED

CREATED! ! '\n\n") ;

printf ("\n\nSO QUITTING!!!\n\n");
system ("PAUSE") ;
exit (1) ;

}

/* Start Processing the Parameter sets */

/* Read One Set of Parameters */

fscanf (param file ptr, "%d %d %d %d $1f %1f $1f %1f",
&num_bits, &num rules, &num steps, &num eli, &bid rate,
&rp rate, &tax rate, &mut rate);

printf ("%d %d %d %d %f %f %$f $f\n", num bits, num rules,
num_steps, num eli, bid rate, rp rate, tax rate,
mut rate);

fprintf (out file ptr, "%10d, %10d, %10d, %10d, %15.10f,
%$15.10f, %15.10f, %15.10f, ", num bits, num rules,
num_steps, num eli, bid rate, rp rate, tax rate,

103



mut rate);

/* Reset the Random Number Stream */
lcgrandst (1, 0);

/* Initialize the list that will accomodate the Rule Set */
rule set ptr = list init ptr();

/* Generate the Rule Set */

generate rule set(rule set ptr);

/* Train the Rule Set */

train(rule_set ptr);

/* Test the Rule Set */

test (rule set ptr);

/* Destroy the Rule Set */

list destroy list (rule set ptr);

return(0) ;

void generate rule set(struct list *rule set ptr) {
struct list node *new rule ptr;

while (rule set ptr->size < num rules) {
new rule ptr = create one rule ptr();
list insert(rule_set ptr, new rule ptr);

struct list node *create one rule ptr() {
struct list node *new rule ptr;

new rule ptr = list alloc node memory ptr();
generate condition(new rule ptr->condition ptr);
generate message (new_rule ptr->message ptr);
generate_ action(new_rule ptr->action ptr);

* (new_rule ptr->strength ptr) = DEFAULT STRENGTH;

return (new _rule ptr);

void generate condition(char *new condition ptr) {
int bit counter;

for (bit counter = 0; bit counter < num bits; bit counter++) {
*new_condition ptr = rand char3();
new_condition ptr++;

}

*new condition ptr = NULL;
void generate message (char *new message ptr) {
int bit counter;
for (bit counter = 0; bit counter < num bits; bit counter++) {

*new _message ptr = rand char2();
new _message ptr++;

104



}

*new message ptr = NULL;
void generate action(char *new action ptr) {
*new_action ptr = rand char2();

new_action ptr++;
*new_action ptr

NULL;

void train(struct list *rule set ptr) {

FILE *training file ptr;

extern FILE *out file ptr;

char *input message ptr;

int training step_ counter;

double training start time;

double training end time;

double training duration;

/* Open The Training File */

training file ptr = fopen("id.trn","zr");
/* Make sure that it is opened */
if (training file ptr == NULL) {
printf ("\n\nERROR: main : NO TRAINING FILE PRESENT
P I\n\n") ;

printf ("\n\nSO QUITTING!!!\n\n");
system ("PAUSE") ;
exit (1) ;

}

/* Reset Input Message Counter */

training step counter = 0;
/* Allocate Memory for an Input Message */
input message ptr = (char *)malloc((num bits + 1) *

sizeof (char));

/* Get Training Start Time */
training start time = clock();

/* Start Training (Train until End of Training File) */
while (!feof (training file ptr)) {
training step counter++;
/* Scan an Input Message */
fscanf (training file ptr, "%s", input message ptr);
/* Process One Training Step */
/*list print(rule set ptr);
system("pause") ; */
process one training step(rule set ptr,
input message ptr);
/* Process Genetic Operations once in num steps Steps */
if ((training step counter % num steps) == 0) {
process _genetic operations (rule set ptr);
}
}
/* Get Training End Time */
training end time = clock();

105



/* Close the Training File */
/* Compute Training Time */
training duration = (training end time -
training start time)/CLOCKS_ PER_ SEC;
/* Output the Training Time */
fprintf (out file ptr,"%10.3f,", training duration);
}

void process one training step (struct list *rule set ptr, char
*input message ptr) {

double total tax;

struct list node *active rule ptr;

double mut prob;

int mut rule index;

struct list node *mut rule ptr;

active rule ptr = NULL;

total tax = 0.0;

active rule ptr = choose node for action ptr(rule set ptr,
input message ptr);

if (*(active_rule ptr->action ptr) == '0") {
* (active rule ptr->strength ptr) += rp rate *
(* (rule_set ptr->strength of environment ptr));

*(rule set ptr->strength of environment ptr) *= (1 -
rp rate);
}
else if (*(active rule ptr->action ptr) == '1"){

*(rule set ptr->strength of environment ptr) += rp rate *
(* (active_rule ptr->strength ptr));
* (active rule ptr->strength ptr) *= (1 - rp rate);

}
total tax = collect life tax(rule set ptr);
pay subsidies(rule set ptr, total tax);

mut prob = lcgrand(0);
if (mut prob < mut rate) {
mut rule index = ((double)num rules)*lcgrand(0);
mut rule ptr = list get node by index ptr(rule set ptr,
mut rule index);
mutate rule(mut rule ptr);

}

struct list node *choose node for action ptr (struct list
*rule set ptr, char *input message ptr) {
struct secondary list *loop list ptr;
struct list node *auction winner ptr;
struct list node *previous_auction winner ptr;
struct secondary list node

*secondary list node for auction winner ptr;

char loop warning;

loop list ptr = secondary list init ptr();

106



auction winner ptr = NULL;
previous auction winner ptr = NULL;

auction winner ptr =
hold an auction ptr(rule set ptr,rule set ptr-
>strength of environment ptr,input message ptr);
while (auction winner ptr != NULL) {
secondary list node for auction winner ptr =
create secondary list node ptr(auction winner ptr);
secondary list insert as head (loop list ptr,
secondary list node for auction winner ptr);
previous auction winner ptr = auction winner ptr;
auction winner ptr = hold an auction ptr(rule set ptr,
previous auction winner ptr->strength ptr,
previous auction winner ptr->message ptr);
loop warning = check for loop (loop list ptr,
auction winner ptr);
if (loop warning == 1) {
mutate rule(auction winner ptr);
secondary list destroy list (loop list ptr);
loop list ptr = secondary list init ptr();

}
secondary list destroy list(loop list ptr);

return (previous auction winner ptr);

}

struct list node *hold an auction ptr (struct list *rule set ptr,
double *activator strength ptr, char *input message ptr) {
struct list node *current rule ptr;
struct list node *auction winner ptr;
struct secondary list *bidder list ptr;
struct secondary list node *current bidder host ptr;
double bid of current rule;
double total strength;
double rand num;

current rule ptr = list head ptr(rule set ptr);
bidder list ptr = secondary list init ptr();
auction winner ptr = NULL;

bid of current rule = 0.0;

total strength = 0.0;

while (current rule ptr != NULL) {

if (message match condition (input message ptr,
list condition ptr(current rule ptr))) {
bid of current rule = bid rate *
(*list strength ptr(current rule ptr));

*(list strength ptr(current rule ptr)) *= (1 -
bid rate);
*activator strength ptr = *activator strength ptr +

bid of current rule;

107



current bidder host ptr =
create secondary list node ptr(current rule ptr
);
secondary list insert as head(bidder list ptr,
current bidder host ptr);
}
current rule ptr = list next ptr(current rule ptr);

}
current bidder host ptr = list head ptr(bidder list ptr);

while (current bidder host ptr != NULL) {
total strength += (* (current bidder host ptr->
hosted node ptr->strength ptr));
current bidder host ptr =
list next ptr(current bidder host ptr);
}
rand num = (double) (total strength*lcgrand(0));
current bidder host ptr = list head ptr(bidder list ptr);
if (rand num > (* (current bidder host ptr->hosted node ptr->
strength ptr))) |
rand num -= (*(current bidder host ptr->hosted node ptr->
strength ptr));
current bidder host ptr =
list next ptr(current bidder host ptr);
1

while (rand num > (* (current bidder host ptr->
hosted node ptr->strength ptr))) {
rand num -= (* (current bidder host ptr-> hosted node ptr
->strength ptr));
current bidder host ptr =
list next ptr(current bidder host ptr);
}
auction winner ptr = current bidder host ptr->
hosted node ptr;

secondary list destroy list (bidder list ptr);

return (auction winner ptr);

}

char check for loop (struct secondary list *loop list ptr, struct
list node *auction winner ptr) {
char loop warning;
struct secondary list node *current loop list node ptr;
struct list node *current node ptr;

loop warning = 0;
current loop list node ptr = list head ptr(loop list ptr);
while (current loop list node ptr != NULL) {

current node ptr = current loop list node ptr->

hosted node ptr;

if (list compare two nodes

(current node ptr,auction winner ptr) == 0) {
loop warning = 1;

}

current loop list node ptr =

108



list next ptr(current loop list node ptr);
}

return (loop warning) ;

}

double collect life tax(struct list *rule set ptr) ({
struct list node *current rule ptr;
double total tax;

current rule ptr = NULL;
total tax = 0.0;

current rule ptr list head ptr(rule set ptr);
while (current rule ptr != NULL) {
if (*(current rule ptr->action ptr) == '0") {
total tax += tax rate * *(current rule ptr->
strength ptr);
* (current rule ptr->strength ptr) *= (1 - tax rate);
}
current rule ptr = list next ptr(current rule ptr);
}
return (total tax);

}

void pay subsidies(struct list *rule set ptr, double
total subsidy) {

struct list node *current rule ptr;

double subsidy per rule;

int number of rules for subsidy;

current rule ptr = NULL;
subsidy per rule = 0.0;
number of rules for subsidy = 0;

current rule ptr = list head ptr(rule set ptr);
while (current rule ptr != NULL) {
if (*(current rule ptr->action ptr) == '1") {
number of rules for subsidy++;
}
current rule ptr = list next ptr(current rule ptr);
}
subsidy per rule = total subsidy /
number of rules for subsidy;
current rule ptr = list head ptr(rule set ptr);
while (current rule ptr != NULL) {
if (*(current rule ptr->action ptr) == "'1") {
* (current rule ptr->strength ptr) +=
subsidy per rule;
}

current rule ptr = list next ptr(current rule ptr);

void process genetic operations (struct list *rule set ptr) {
eliminate weak rules (rule set ptr);
reproduce strong rules (rule set ptr);

109



void eliminate weak rules (struct list *rule set ptr) ({
struct list node *prior rule ptr;
int rules eliminated;
prior rule ptr = NULL;

for (rules eliminated = 0; rules eliminated < num eli;
rules _eliminated++) {
prior rule ptr =
choose a rule to be eliminated ptr(rule set ptr);

if (prior rule ptr == NULL) {
list remove head(rule set ptr);
}
else {
list remove next(rule set ptr, prior rule ptr);

struct list node *choose_a rule to be eliminated ptr(struct list
*rule set ptr) {

struct list node *current rule ptr;

struct list node *rule at back ptr;

struct list node *prior to weakest rule ptr;

double lowest strength;

current rule ptr NULL;

rule at back ptr = NULL;

prior to weakest rule ptr = NULL;
lowest strength = 0.0;

current rule ptr = list head ptr(rule set ptr);
lowest strength = *(current rule ptr->strength ptr);

while (current rule ptr != NULL) ({
if ((* (current rule ptr->strength ptr)) <
lowest strength) {

prior to weakest rule ptr = rule at back ptr;
}
rule at back ptr = current rule ptr;
current rule ptr = list next ptr(current rule ptr);

}

return (prior to weakest rule ptr);

void reproduce strong rules(struct list *rule set ptr) ({
struct list node *new rule ptr;
struct list *parent list ptr;

new rule ptr = NULL;
parent list ptr = list duplicate ptr(rule set ptr);
while ((rule set ptr->size) < num rules) {
new rule ptr = reproduce one rule(parent list ptr);
list insert(rule_set ptr, new rule ptr);

110



list destroy list (parent list ptr);
}

struct list node *reproduce one rule (struct list *rule set ptr)

int first parent index;

int second parent index;

struct list node *first parent ptr;
struct list node *second parent ptr;
struct list node *new rule ptr;

first parent index = 0;
second parent index = 0;
first parent ptr = NULL;
second parent ptr = NULL;
new rule ptr = NULL;

choose two rules(&first parent index, &second parent index,
rule set ptr->size);

first parent ptr = list get node by index ptr(rule set ptr,
first parent index);

second parent ptr =list get node by index ptr(rule set ptr,
second parent index);

new rule ptr = list alloc node memory ptr();

cross_over (new rule ptr->condition ptr, first parent ptr

-> condition ptr, second parent ptr->condition ptr);
cross_over (new_rule ptr->message ptr, first parent ptr->
message ptr, second parent ptr->message ptr);
cross_over (new_rule ptr->action ptr, first parent ptr->
action ptr, second parent ptr->action ptr);
* (new_rule ptr->strength ptr) = DEFAULT STRENGTH;

return (new_ rule ptr);

void choose two rules(int *first parent index ptr, int
*second parent index ptr, int number of rules) {

}

*first parent index ptr = (int) (number of rules *
lcgrand (0));
*second parent index ptr = (int) (number of rules *
lcgrand(0));
while (*first parent index ptr == *second parent index ptr)
*second parent index ptr = (int) (number of rules *
lcgrand(0));

void cross_over(char *child ptr, char *first parent ptr, char

*second parent ptr) {

int parent len;
int crossing point;

parent len = 0;

crossing point = 0;

if (strlen(first parent ptr) == strlen(second parent ptr)) {
parent len = strlen(first parent ptr);

}

111

{

{



void

else {
printf ("There is something wrong here cross over");
}

crossing point = (int) ((parent len - 1) * lcgrand(0));
strncpy(child ptr, first parent ptr, crossing point);

child ptr = child ptr + crossing point;
second parent ptr = second parent ptr + crossing point;

strncpy (child ptr, second parent ptr, (parent len -
crossing point));

child ptr = child ptr + (parent len - crossing point);

*child ptr = NULL;

test (struct list *rule set ptr) {
FILE *test file ptr;

char *input message ptr;

char *correct action ptr;

double test start time;
double test end time;
double test duration;

extern int number of true positive;
extern int number of true negative;
extern int number of false positive;
extern int number of false negative;

/* Open The Test File */
test file ptr = fopen("id.tst","r");
/* Make sure that it is opened */

if (test file ptr == NULL) {

printf ("\n\nERROR: main : NO TEST FILE PRESENT !!!\n\n");

printf ("\n\nSO QUITTING!!!\n\n");
system ("PAUSE") ;
exit (1),

}

/* Allocate Memory for an Input Message and Correct Action*/

input message ptr = (char *)malloc((num bits + 1) *
sizeof (char));

correct action ptr = (char *)malloc(2*sizeof (char));
/* Reset Oupput Counters */

number of true positive = 0;

number of true negative = 0;
number of false positive = 0;
number of false negative = 0;

/* Get Test Start Time */

test start time = clock();

/* Start Test (Process Test until End of Test File */
while (!feof (test file ptr)) {

112



/* Scan an Input Message and Correct Action */
fscanf (test file ptr, "%s %s", input message ptr,
correct action ptr);
/* Process One Test Step */
process one_test step(rule set ptr, input message ptr,
correct action ptr);

}

/* Get Test End Time */

test end time = clock();

/* Close The Test File */

fclose(test file ptr);

/* Compute Test Time */

test duration = (test _end time -
test start time)/CLOCKS PER SEC;

/* Output the Test Time */

fprintf (out file ptr,"%10.3f,", test duration);

/* Output the Test Results */

fprintf (out file ptr,"%10d,%10d,%10d, $10d\n",
number of true positive, number of false positive,
number of true negative, number of false negative);

}

void process _one test step (struct list *rule set ptr, char
*input message ptr, char *correct action ptr) {
struct list node *active rule ptr;

extern int number of true positive;
extern int number of true negative;
extern int number of false positive;
extern int number of false negative;

active rule ptr = NULL;

active rule ptr = test choose node for action ptr
(rule_set ptr, input message ptr);

if (((active rule ptr->action ptr) == NULL) &&
((*correct action ptr) == '0")) {

number of false negative++;
}
else if (((active rule ptr->action ptr) == NULL) &&
((*correct action ptr) == "'1")){
number of true negative++;
}
else if (((*(active rule ptr->action ptr))
((*correct action ptr) == '0")) {
number of true positive++;
}
else if (((*(active rule ptr->action ptr))
((*correct action ptr) == "'1")){
number of true negative++;

'0') &&

'1') &&

}
else if (((*(active_rule ptr->action ptr)) == '0") &&
((*correct action ptr) == "'1")){

number of false positive++;
}
else if (((*(active_rule ptr->action ptr)) == '1") &&
((*correct action ptr) == '0")){

113



number of false negative++;

struct list node *test choose node for action ptr (struct list
*rule set ptr, char *input message ptr) {

struct secondary list *loop list ptr;

struct list node *auction winner ptr;

struct list node *previous auction winner ptr;

struct secondary list node

*secondary list node for auction winner ptr;

char loop warning;

loop warning = 0;
loop list ptr = secondary list init ptr();

auction winner ptr = NULL;
previous auction winner ptr = NULL;
auction winner ptr =

test hold an auction ptr(rule set ptr,rule set ptr->
strength of environment ptr,input message ptr);

while (auction winner ptr != NULL) {

}

secondary list node for auction winner ptr =
create secondary list node ptr(auction winner ptr);
secondary list insert as head (loop list ptr,
secondary list node for auction winner ptr);
previous auction winner ptr = auction winner ptr;
auction winner ptr =
test hold an auction ptr(rule set ptr,
previous auction winner ptr->
strength ptr,previous auction winner ptr->
message_ ptr);
loop warning = check for loop (loop list ptr,
auction winner ptr);
if (loop warning == 1) {
auction winner ptr = NULL;
previous auction winner ptr = NULL;

secondary list destroy list(loop list ptr);

return (previous_auction winner ptr);

struct list node *test hold an auction ptr (struct list
*rule set ptr, double *activator strength ptr, char
*input message ptr) {

struct list node *current rule ptr;

struct list node *auction winner ptr;

struct secondary list *bidder list ptr;

struct secondary list node *current bidder host ptr;

double bid of current rule;

double total strength;

double rand num;

current rule ptr = list head ptr(rule_ set ptr);
bidder list ptr = secondary list init ptr();

114



auction winner ptr = NULL;
bid of current rule = 0.0;
total strength = 0.0;

while (current rule ptr != NULL) {
if (message match condition (input message ptr,
list condition ptr(current rule ptr))) {

current bidder host ptr =
create secondary list node ptr(current rule ptr);
secondary list insert as head(bidder list ptr,
current bidder host ptr);
}
current rule ptr = list next ptr(current rule ptr);
}
current bidder host ptr = list head ptr(bidder list ptr);
while (current bidder host ptr != NULL) {
total strength += (* (current bidder host ptr->
hosted node ptr->strength ptr));
current bidder host ptr =
list next ptr(current bidder host ptr);
}
rand num = (double) (total strength*lcgrand(0));
current bidder host ptr = list head ptr(bidder list ptr);
if (rand num > (* (current bidder host ptr->hosted node ptr->
strength ptr))) {
rand num -= (* (current bidder host ptr->hosted node ptr->
strength ptr));
current bidder host ptr =
list next ptr(current bidder host ptr);

}

while (rand num > (* (current bidder host ptr->
hosted node ptr->strength ptr))) {
rand num -= (* (current bidder host ptr->hosted node ptr->
strength ptr));
current bidder host ptr =
list next ptr(current bidder host ptr);

auction winner ptr = current bidder host ptr->
hosted node ptr;

secondary list destroy list (bidder list ptr);

return (auction winner ptr);

}
struct list *list init ptr () {
struct list *list to be init ptr;

/* Allocate memory for the List */
list to be init ptr=malloc(sizeof (struct list));
/* Make sure that it has been allocated */
if (list to be init ptr==NULL) {
printf ("\n\nlist init ptr: ERROR : NOT ENOUGH MEMORY
list to be init ptr\n");

115



fprintf (stderr, "\n\nlist init ptr: ERROR : NOT ENOUGH
MEMORY : list to be init ptr\n");
system ("PAUSE") ;
exit (1) ;
}
/* Allocate memory for the strength of environment */
list to be init ptr->strength of environment ptr =
malloc (sizeof (double)) ;
/* Make sure that it has been allocated */
if ((list to be init ptr-> strength of environment ptr) ==
NULL) |
printf ("\n\nlist init ptr : ERROR : NOT ENOUGH MEMORY
strength of environment ptr\n");
fprintf (stderr, "\n\nlist init ptr : ERROR : NOT ENOUGH
MEMORY : strength of environment ptr\n");
system ("PAUSE") ;
exit (1) ;
}

/* Set initial Values */

list to be init ptr->head ptr = NULL;

list to be init ptr->size=0;

*(list _to be init ptr->strength of environment ptr) =
DEFAULT STRENGTH;

return(list to be init ptr);

}

struct list node *list alloc node memory ptr () {
struct list node *new node ptr;
extern int num bits;

new node ptr NULL;
new node ptr = malloc(sizeof (struct list node));
if (new node ptr == NULL) ({
printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH
MEMORY : new node ptr\n");
fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT
ENOUGH MEMORY : new node ptr\n");
system ("PAUSE") ;

exit (1) ;

}

new node ptr->condition ptr = (char *)malloc((num bits + 1)
*sizeof (char));

if (new _node ptr == NULL) {

printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH
MEMORY : new node ptr->condition ptr\n");
fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT
ENOUGH MEMORY : new node ptr->condition ptr\n");
system ("PAUSE") ;

exit(1);

}
new node ptr->message ptr = (char *)malloc((num bits + 1)
*sizeof (char));

if (new node ptr == NULL) ({

printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH
MEMORY : new node ptr->message ptr\n");

116



fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT
ENOUGH MEMORY : new node ptr->message ptr\n");
system ("PAUSE") ;

exit (1) ;
}
new node ptr->action ptr = (char *)malloc(2*sizeof (char));
if (new node ptr == NULL) ({

printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH
MEMORY : new node ptr->action ptr\n");

fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT
ENOUGH MEMORY : new node ptr->action ptr\n");

system ("PAUSE") ;

exit (1) ;

}

new node ptr->strength ptr = (double *)
malloc (2*sizeof (double)) ;

if (new _node ptr == NULL) ({

printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH
MEMORY : new node ptr->strength ptr\n");
fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT
ENOUGH MEMORY : new node ptr->strength ptr\n");
system ("PAUSE") ;
exit (1) ;
}
return (new node ptr);

}

struct list *list duplicate ptr(struct list

*list to be duplicated ptr) {
struct list *duplicate list ptr;
struct list node *duplicate node ptr;
struct list node *current node ptr;
struct list node *tail node ptr;

duplicate list ptr = list init ptr();
tail node ptr = NULL;

current node ptr = list head ptr(list to be duplicated ptr);
duplicate node ptr = list alloc node memory ptr();

list copy node (duplicate node ptr, current node ptr);

list insert as head(duplicate list ptr, duplicate node ptr);
tail node ptr = duplicate node ptr;

current node ptr = list next ptr(current node ptr);
while (current node ptr != NULL) ({
duplicate node ptr = list alloc_node memory ptr();

list copy node (duplicate node ptr, current node ptr);
list insert next(duplicate list ptr, tail node ptr,
duplicate node ptr);

tail node ptr = duplicate node ptr;
current node ptr = list next ptr(current node ptr);

}

return(duplicate list ptr);

}

void list copy node (struct list node *destination node ptr,
struct list node *source node ptr) {

117



strcpy ((destination node ptr->condition ptr),
(source node ptr->condition ptr));

strcpy ((destination node ptr->message ptr), (source node ptr
->message ptr));

strcpy ((destination node ptr->action ptr), (source node ptr->
action ptr));

(* (destination node ptr->strength ptr)) = (*(source node ptr
->strength ptr));

destination node ptr->next ptr = NULL;

}

void list print (struct list *list to be printed ptr) {
struct list node *current node ptr;

printf ("\n Size = %d\n", list to be printed ptr->size);

printf (" Strength of Environment = %$f\n",
*(list_to be printed ptr->strength of environment ptr)):;

printf (" Fommm Fommm Fo—m - Fommm -
+\n") ;

printf (" | Condition | Message | Action | Strength
[\n") ;

printf (" t——————————— - t——————— -
+\n") ;

current node ptr = list head ptr(list to be printed ptr);
while (! (current node ptr==NULL)) {

list print node (current node ptr , 0);
current node ptr=list next ptr(current node ptr);

}

void list print node (struct list node *node to be printed ptr,
char as_a single node) {

if (as_a single node == 1) {
printf (" o= fomm to—————- t-—————-
-—=+\n") ;
printf (" |  Condition | Message | Action |
Strength [\n");
printf (" Fomm Fomm Fo—————— tm—————
-——+\n") ;
}
printf (" | %s | %s | %s | $f£ |\n",

node to be printed ptr->condition ptr,
node to be printed ptr->message ptr,
node to be printed ptr->action ptr,
*(node to be printed ptr->strength ptr)):;
printf (" t——————————— t——————————— - -
+\n") ;
}

void list insert (struct list *list to be inserted to ptr, struct
list node *node to be inserted ptr) {

struct list node *node to be inserted after ptr;

char *same exists ptr;

same exists ptr = (char *)malloc(sizeof (char));
*same exists ptr = 0;

118



node to be inserted after ptr =
list locate ptr(list to be inserted to ptr,
node to be inserted ptr, same exists ptr);
if (*same exists ptr != 1) {
if (node to be inserted after ptr == NULL) ({
list insert as head(list to be inserted to ptr,
node to be inserted ptr);
}

else {
list insert next(list to be inserted to ptr,

node to be inserted after ptr,
node to be inserted ptr);

}

void list insert as head(struct list *list to be inserted to ptr,
struct list node *node to be inserted ptr) {

node to be inserted ptr->next ptr=list to be inserted to ptr-
>head ptr;
list to be inserted to ptr->head ptr=node to be inserted ptr;
(list _to be inserted to ptr->size)++;

}

void list insert next(struct list *list to be inserted to ptr,
struct list node *node to be inserted after ptr, struct
list node *node to be inserted ptr) {

node to be inserted ptr-> next ptr =
list next ptr(node to be inserted after ptr);
node to be inserted after ptr->
next ptr=node to be inserted ptr;
(list _to be inserted to ptr->size)++;

}

struct list node *list locate ptr (struct list
*list to be located in ptr, struct list node
*node_to be located ptr, char *same exists ptr) {
struct list node *current node ptr;
struct list node *node at back ptr;

*same exists ptr 0;

node at back ptr = NULL;

if (! ((list_to be located in ptr->head ptr)==NULL)) {
current node ptr = list to be located in ptr->head ptr;

while ((list compare two nodes (node to be located ptr,

current node ptr) > 0)) {
node at back ptr=current node ptr;
current node ptr=list next ptr(current node ptr);

if (current node ptr==NULL) {

break;
}
}
if ((current node ptr != NULL) &&
(list compare_ two nodes (node to be located ptr,
current node ptr) == 0)) {

119



*same exists ptr = 1;

}
return (node_at back ptr);

}

int list compare two nodes (struct list node

*first list node to compare ptr, struct list node

*second list node to compare ptr) {
int overall comparison result, condition comparison result,
message_ comparison_ result, action comparison result;

condition comparison result =
strcmp (first list node to compare ptr->
condition ptr,second list node to compare ptr-
>condition ptr);
if (condition comparison result == 0) {
message_comparison result =
strcmp (first list node to compare ptr->
message ptr,second list node to compare ptr->
message ptr);
if (message comparison result == 0 ) {
action comparison result =
strcmp (first list node to compare ptr->
message ptr, second list node to compare ptr->
message ptr);
if (action comparison result == 0) {
overall comparison result = 0

’

}
else
overall comparison result =
action comparison result;

}
else {
overall comparison result =
message_comparison result;

}
else(
overall comparison result = condition comparison result;

}

return (overall comparison result);

}

void list destroy list (struct list *list to be destroyed ptr) {
while ((list to be destroyed ptr->head ptr) != NULL) ({
list remove head (list to be destroyed ptr);

free (list to be destroyed ptr->strength of environment ptr);
free(list to be destroyed ptr);

void list remove head (struct list *list to be removed from ptr) {
struct list node *node_ to be removed ptr;

120



node to be removed ptr =
list head ptr(list to be removed from ptr);
if (node to be removed ptr == NULL) {
printf ("There is something wrong here
list_remove head\n");
}
list to be removed from ptr->head ptr =
list next ptr(node to be removed ptr);
list destroy node(node to be removed ptr);
(list to be removed from ptr->size)--;

}

void list remove next (struct list *list to be removed from ptr,
struct list node *previous node ptr) {
struct list node *node_ to be removed ptr;

node to be removed ptr = list next ptr(previous node ptr);
if (node to be removed ptr == NULL) {
printf ("There is something wrong here!
list remove next\n");
}
previous node ptr->next ptr =
list next ptr(node to be removed ptr);

list destroy node(node to be removed ptr);
(list to be removed from ptr->size)--;

}

struct list node *list get node by index ptr (struct list
*list to get from ptr, int node index) {

struct list node *current node ptr;

int index;

current node ptr = NULL;
index = 0;

current node ptr = list head ptr(list to get from ptr);

for(index = 0; index < node index; index++) {
current node ptr = list next ptr(current node ptr);

}

return (current node ptr);

}

void list destroy node (struct list node
*node to be destroyed ptr) {

free (node to be destroyed ptr->condition ptr);
free (node to be destroyed ptr->message ptr);
free (node_to be destroyed ptr->action ptr);
free (node to be destroyed ptr->strength ptr);

free (node to be destroyed ptr);
1

struct secondary list node *create secondary list node ptr(struct

121



list node *node to be hosted ptr) {
struct secondary list node *new secondary list node ptr;

new secondary list node ptr = malloc(sizeof (struct
secondary list node));

new secondary list node ptr->hosted node ptr =
node to be hosted ptr;
new secondary list node ptr->next ptr = NULL;

return (new_secondary list node ptr);

}
struct secondary list *secondary list init ptr () {
struct secondary list *secondary list to be init ptr;

secondary list to be init ptr = malloc(sizeof (struct
secondary list));
if (secondary list to be init ptr==NULL) {
printf ("\n\nlist init ptr: ERROR : NOT ENOUGH MEMORY
list to be init ptr\n");
fprintf (stderr, "\n\nlist init ptr: ERROR : NOT ENOUGH
MEMORY : list to be init ptr\n");
system ("PAUSE") ;
exit (1) ;
}

secondary list to be init ptr->head ptr=NULL;

return (secondary list to be init ptr);

}

void secondary list insert as head(struct secondary list

*secondary list to be inserted to ptr, struct secondary list node

*secondary list node to be inserted ptr) {
secondary list node to be inserted ptr->

next ptr=secondary list to be inserted to ptr->head ptr;

secondary list to be inserted to ptr->
head ptr=secondary list node to be inserted ptr;

}

void secondary list destroy list (struct secondary list
*secondary list to be destroyed ptr) {

while ((secondary list to be destroyed ptr->head ptr) !=

NULL) {

secondary list remove head
(secondary list to be destroyed ptr);
}
free (secondary list to be destroyed ptr);

}

void secondary list remove head (struct secondary list
*secondary list to be removed from ptr) {
struct secondary list node
*secondary list node to be removed ptr;

122



}

void

secondary list node to be removed ptr =

list head ptr(secondary list to be removed from ptr);
if (secondary list node to be removed ptr == NULL) {

printf ("there is something worng here! 65381741\n");
1
secondary list to be removed from ptr->head ptr =

list next ptr(secondary list node to be removed ptr);
secondary list destroy node

(secondary list node to be removed ptr);

secondary list destroy node (struct secondary list node

*secondary list node to be destroyed ptr) {

}

char

char

void

free(secondary list node to be destroyed ptr);

message _match condition (char *message, char *condition)
char match;
int bit counter;

match = 1;
if ((strlen(message) == (num bits)) && (strlen(condition)
(num _bits))) {

for(bit counter = 0; bit counter < num bits;

bit counter++) {

{

if ((chars_match (* (message + bit counter), * (condition

+ bit counter))) == ) {
match = 0;
}
}
}
else {
printf ("\nLTM : state match condition : state = %s\n",
message) ;
printf ("\nLTM : state match condition : condition =
%$s\n", condition);

printf ("There is something wrong here 5486721");
system ("pause") ;

}

return (match) ;

chars match (char state char, char condition char) {
char match;

match = 0;

if ((state char == condition char) || (condition char ==
MATCH ANY CHAR)) {

match=1;
}

return (match) ;

mutate rule(struct list node *rule to be mutated ptr) {
char random trunc;

123



random_trunc = ((double) (2 * num bits)) * lcgrand(0);

if (random trunc < num bits) {
mutate bit3(((rule to be mutated ptr->condition ptr) +
random_trunc)) ;

}

else if (random trunc < (2 * num bits)) {
mutate bit2(((rule_to be mutated ptr->message ptr) +
random trunc - num bits));

}

else {

mutate bit2(rule to be mutated ptr->action ptr);

}
}

void mutate bit2(char *bit to be mutated ptr) {
if (*bit to be mutated ptr == ZERO CHAR) {
*bit to be mutated ptr = ONE CHAR;
}
else {
*bit to be mutated ptr = ZERO_CHAR;
}
}

void mutate bit3(char *bit to be mutated ptr) {
float random number;

random number = lcgrand(0);
if (*bit to be mutated ptr == ZERO CHAR) {
switch ((random number <= 0.5) + (random number <= 1)) {
case 2 : {
*bit to be mutated ptr = ONE CHAR;
break;
}
case 1 : {
*bit to be mutated ptr = MATCH ANY CHAR;
break;
}
default : {

printf ("There is something Wrong Here
mutate bit3 1");

}
}

else if (*bit to be mutated ptr == ONE CHAR) {
switch ((random number <= 0.5) + (random number <= 1)) {

case 2 : {
*bit to be mutated ptr = ZERO_CHAR;
break;

}

case 1 : {
*bit to be mutated ptr = MATCH ANY CHAR;
break;

}

default : {

printf ("There is something wrong here!
mutate bit3 2");

124



}

}
else if (*bit to be mutated ptr == MATCH ANY CHAR) {

switch ((random number <= 0.5) + (random number <= 1)) {
case 2 : {
*bit to be mutated ptr = ZERO_CHAR;
break;
}
case 1 : {
*bit to be mutated ptr = ONE CHAR;
break;
}
default : {

printf ("There is something wrong here!
mutate bit3 3");

}

char rand char2() {
float random number;
char new rand char;

new_rand char=0;
random number = lcgrand(0);

switch ((random number<=RAND RATIO 20)+(random number <=
RAND RATIO 20 + RAND RATIO 21)) ({
case 2 : {
new_ rand char= ZERO_ CHAR;
break;
}
case 1 H
new rand char= ONE CHAR;
break;
}
default : {
printf ("there is something worng here!");
}
}

return (new_rand char);

char rand char3() {
float random number;
char new rand char;

new_rand char=0;
random number = lcgrand(0);

switch ((random number <= RAND RATIO 30) +
(random number<=RAND RATIO 30 + RAND RATIO 31)+ (random number
<= RAND RATIO 30 + RAND RATIO 31 + RAND RATIO 32)) {
case 3 : {
new rand char = ZERO CHAR;

125



break;
}
case 2 : {
new rand char = ONE CHAR;
break;
}
case 1 :
new rand char= MATCH ANY CHAR;
break;
}
default : {
printf ("there is something worng here!");
}
}
return (new_rand char);

}

float lcgrand(int stream) {
long zi, lowprd, hi31l;

zi = zrng[stream];

lowprd = (zi & 65535) * MULT1;

hi31l = (zi >> 16) * MULT1l + (lowprd >> 16);
z1i = ((lowprd & 65535) - MODLUS) +

(hi31l & 32767) << 16) + (hi31 >> 15);

(

(

(

(
if (zi < 0) zi += MODLUS;

(

(

(

lowprd = i & 65535) * MULT2;
hi31l =
z1i = lowprd & 65535) - MODLUS) +

)
z
zi >> 16) * MULT2 + (lowprd >> 16);
(
(

((hi31 & 32767) << 16) + (hi31 >> 15);
if (zi < 0) zi += MODLUS;
zrng[stream] = zi;
return (zi >> 7 | 1) / 16777216.0;
}

void lcgrandst (long zset, int stream) { /* Set the current zrng
for stream "stream" to zset. */
zrng[stream] = zset;

}

long lcgrandgt (int stream) {/* Return the current zrng for stream
"stream". */
return zrng[stream];

126



APPENDIX F

Code for Intrusion Detector B

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define MATCH ANY CHAR 'x'

#define list head ptr(list) ((list)->head ptr)
#define list next ptr(list) ((list)->next ptr)

struct list node {
char *condition ptr;
struct list node *next ptr;

}i

struct list {
struct list node *head ptr;
int size;

}i

void train(struct list *rule set ptr);

void process one training step(struct list *rule set ptr, char
*input message ptr);

void compact (struct list *rule set ptr);

char search for match(struct list *rule set ptr, char

*input message ptr);

char message match condition (char *message, char *condition);
char combinable (char *condition 1 ptr, char *condition 2 ptr);
struct list node *combine two rules(struct list node *rule 1 ptr,
struct list node *rule 2 ptr);

char chars match (char message char, char condition char);

void reduce (struct list *rule set ptr);

char count match any (struct list node *rule ptr);

void test(struct list *rule set ptr);

char list contained (struct list *rule set ptr, struct list node
*rule ptr);

char list rule containes (struct list node *current rule ptr,
struct list node *rule ptr);

struct list *list init ptr ();

struct list node *list alloc node memory ptr();

struct list node *list create node ptr(char *condition ptr);
struct list node *list locate ptr (struct list

*list to be located in ptr, struct list node

*node to be located ptr);

void list insert (struct list *list to be inserted to ptr, struct
list node *node to be inserted ptr);

void list insert as head(struct list *list to be inserted to ptr,
struct list node *node to be inserted ptr);

void list insert next(struct list *list to be inserted to ptr,
struct list node *node to be inserted after ptr, struct list node

127



*node_to be inserted ptr);
void list print (struct list *list to be printed ptr);

void list print node (struct list node *node to be printed ptr,

char as a single node);

void list remove head (struct list *list to be removed from ptr);
void list remove next (struct list *list to be removed from ptr,

struct list node *previous node ptr);

void list nd remove head (struct list

*list to be removed from ptr);

void list nd remove next (struct list

*list to be removed from ptr, struct list node
*previous node ptr);

void list destroy node (struct list node

*node to be destroyed ptr);

FILE *out file ptr;
int num bits;

int main () {
FILE *param file ptr;
struct list *rule set ptr;

/* Open the Parameterfile File */
param file ptr = fopen("idb.prm", "r");
if (param file ptr == NULL) {

printf ("\n\nERROR: main : NO Parameter FILE PRESENT

1 I\n\n") ;
printf ("\n\nSO QUITTING!!!\n\n");
system ("PAUSE") ;
exit (1) ;
}
/* Read the Parameter */
fscanf (param file ptr, "%d", &num bits);
/* Close the Parameter File */
fclose (param file ptr);
/* Open (create if necessary) The Output File */
out file ptr = fopen("idb.out","a+");
/* Make sure that it is opened */
if (out file ptr == NULL) {

printf ("\n\nERROR: main : OUTPUT FILE CAN NOT BE OPENED

CREATED! ! '\n\n") ;
printf ("\n\nSO QUITTING!!!\n\n");
system ("PAUSE") ;
exit (1) ;
}
rule set ptr = list init ptr();
train(rule_set ptr);

reduce (rule_ set ptr);

test (rule set ptr);

return(0) ;

128



}

void

void

train(struct list *rule set ptr) {
FILE *training file ptr;

char *input message ptr;

double training start time;
double training end time;

double training duration;

/* Open The Training File */

training file ptr = fopen("id.trn","r");

/* Make sure that it is opened */

if(training file ptr == NULL) {
printf ("\n\nERROR: main : NO TRAINING FILE PRESENT
'UI\n\n") ;

printf ("\n\nSO QUITTING!!!\n\n");

system ("PAUSE") ;

exit (1) ;
}
input message ptr = (char *)malloc((num bits + 1 )*
sizeof (char));

training start time = clock();
while (!feof (training file ptr)) {
fscanf (training file ptr, "%s", input message ptr);
process_one training step(rule set ptr,
input message ptr);
}
training end time = clock();
training duration = (training end time -
training start time)/CLOCKS PER SEC;
fprintf (out file ptr,"%7.3f,", training duration);
list print(rule set ptr);

process one_ training step(struct list *rule set ptr, char

*input message ptr) {

void

struct list node *new rule ptr;
char match exists;

new rule ptr = NULL;
match exists = 0;
new rule ptr = list create node ptr(input message ptr);

list insert(rule set ptr, new rule ptr);
compact (rule set ptr);

compact (struct list *rule set ptr) {
struct list node *current rule 1 ptr;
struct list node *current rule 2 ptr;
struct list node *rule_at back 1 ptr;
struct list node *rule at back 2 ptr;
struct list node *combined rule ptr;
char combine;

char combined;

do {

129



current rule 1 ptr = NULL;
current rule 2 ptr NULL;
rule at back 1 ptr NULL;
rule at back 2 ptr = NULL;

combine = 0;
combined = 0;
current rule 1 ptr = list head ptr(rule set ptr);
while (current rule 1 ptr != NULL) {
combine = 0;
rule at back 2 ptr = current rule 1 ptr;

current rule 2 ptr =
list next ptr(current rule 1 ptr);
while (current rule 2 ptr != NULL) {

combine = 0;
combine = combinable (current rule 1 ptr->

condition ptr, current rule 2 ptr->
condition ptr);
if (combine == 1) {
combined = 1;
combined rule ptr =
combine two rules (current rule 1 ptr,
current rule 2 ptr);
if (rule_at back 2 ptr == NULL) {
list remove head(rule set ptr);
}
else {
list remove next(rule set ptr,
rule at back 2 ptr);
}
if (rule at back 1 ptr == NULL) ({
list remove head(rule set ptr);
}
else {
list remove next (rule set ptr,
rule at back 1 ptr);
}
list insert(rule_ set ptr,
combined rule ptr);
break;
} else {
rule at back 2 ptr = current rule 2 ptr;
current rule 2 ptr =
list next ptr(current rule 2 ptr);
}
}
if (combine == 1) {
break;
}
else {
rule at back 1 ptr = current rule 1 ptr;
current rule 1 ptr
list next ptr(current rule 1 ptr);

}
}

}while (combined == 1);

130



char search for match(struct list *rule set ptr, char
*input message ptr) {

struct list node *current rule ptr;

char match exists;

current rule ptr = list head ptr(rule set ptr);
match exists = 0; /* does not exist */
while (current rule ptr != NULL) {
if (message match condition (input message ptr,
current rule ptr->condition ptr) == 1) {
match exists = 1;
break;
1
current rule ptr = list next ptr(current rule ptr);

}

return (match exists);

char message match condition (char *message, char *condition) {
char match;
int bit counter;

match = 1; /* it matches */

if ((strlen(message) == (num bits)) && (strlen(condition) ==
(num_bits))) {
for(bit counter = 0; bit counter < num bits;

bit counter++) {
if ((chars_match (* (message + bit counter), * (condition

+ bit counter))) == ) {
match = 0;
}
}
}
else {
printf ("\nLTM : state match condition : state = %s\n",
message) ;
printf ("\nLTM : state match condition : condition =

%$s\n", condition);
printf ("There is something wrong here 5486721");
system ("pause") ;

}

return (match) ;

char combinable (char *condition 1 ptr, char *condition 2 ptr) {
char diff chars;
char char index;

diff chars 0;
char index = 0;

for (char index = 0; char index < num bits; char index++) {
if((*(condition 1 ptr + char index)) !=
(* (condition 2 ptr + char index))) {

131



diff chars++;
}
if (diff chars == 2) {
break;
}
}
return(diff chars);

}

struct list node *combine two rules(struct list node *rule 1 ptr,
struct list node *rule 2 ptr) {

struct list node *new rule ptr;

int index;

new rule ptr = list alloc node memory ptr();

index = 0;
while ((* ((rule 1 ptr->condition ptr)+index)) ==
(* ((rule 2 ptr->condition ptr)+index))) {
(* ((new_rule ptr->condition ptr)+index)) =
(*((rule 1 ptr->condition ptr)+index));
index++;
}
(* ((new_rule ptr->condition ptr)+index)) = 'x';
index++;
while ((* ((rule 1 ptr->condition ptr)+index)) != NULL) {
(* ((new_rule ptr->condition ptr)+index)) =
(*((rule 1 ptr->condition ptr)+index));
index++;
}
(* ((new_rule ptr->condition ptr)+index)) = NULL;
return (new_rule ptr);

char chars match (char message char, char condition char) {
char match;

match = 0;

if ((message char == condition char) || (condition char ==
MATCH ANY CHAR)) {

match=1;
}

return (match) ;

void reduce (struct list *rule set ptr) {
char num match any;
char match any count;
char contained;
struct list node *current rule ptr;
struct list node *previous_rule ptr;
struct list node *next rule ptr;

num match any = 0;
match any count =
contained = 0;

current rule ptr = NULL;

0;

132



previous rule ptr = NULL;
next rule ptr = NULL;

for (num match any = 0; num match any < num bits;
num match any++) {
previous rule ptr = NULL;

current rule ptr = list head ptr(rule set ptr);
next rule ptr = list next ptr(current rule ptr);
while (next rule ptr != NULL) {
match any count = count match any(current rule ptr);
if (match_any count == num match any) {
if (previous rule ptr == NULL) {

list nd remove head(rule_ set ptr);
}
else {
list nd remove next(rule_ set ptr,
previous rule ptr);
}
contained = list contained (rule set ptr,
current rule ptr);
if (contained == 1) {
list destroy node(current rule ptr);
}
else {
list insert(rule set ptr,
current rule ptr);
previous rule ptr = current rule ptr;
}
current rule ptr = next rule ptr;
next rule ptr = list next ptr(next rule ptr);

else {
previous rule ptr = current rule ptr;
current rule ptr = next rule ptr;
next rule ptr = list next ptr(next rule ptr);

char count match any (struct list node *rule ptr) {
char match any count;
char index;

match any count = 0;
for (index = 0; index < num bits; index++) {
if ((*((rule_ptr->condition ptr)+index)) ==

MATCH ANY CHAR) {
match any count++;

}

return (match any count);

}

void test(struct list *rule set ptr) {

133



FILE
char
char
char

int
int
int
int

doub
doub
doub

numb
numb
numb
numb

*test file ptr;
*input message ptr;
*correct action ptr;
normal action;

number of true positive;
number of true negative;
number of false positive;
number of false negative;

le test start time;
le test end time;
le test duration;

er of true positive = 0;
er of true negative = 0
er of false positive =
er of false negative

O O ~e
~e

~e

test file ptr = fopen("id.tst","r");

input message ptr = (char *)malloc((num bits + 1) *
sizeof (char));

correct action ptr = (char *)malloc(2*sizeof (char));
test start time = clock();

while (!feof (test file ptr)) {

}

fscanf (test file ptr, "%s %s", input message ptr,
correct action ptr);
normal action = search for match(rule set ptr,

input message ptr);

if ((normal action == 1) && (*correct action ptr ==
number of true positive++;

}

else if ((normal action == 1 ) && (*correct action

1)) A4
number of false positive++;

}

else if ((normal action == 0 ) && (*correct action

1)) {
number of true negative++;

}

else if ((normal action == 0 ) && (*correct action
'0")) o
number of false negative++;
}
else {
printf ("there is something worng here !M);

system ("PAUSE") ;
}

test end time = clock();

test duration = (test end time -

test start time)/CLOCKS PER SEC;

fprintf (out file ptr,"%7.3f,", test duration);

134

'07))A{

ptr ==

ptr ==

ptr ==



fprintf (out file ptr,"%7d,%7d,%7d,%7d\n",
number of true positive, number of false negative,
number of true negative, number of false positive);

char list contained (struct list *rule set ptr, struct list node
*rule ptr) {

struct list node *current rule ptr;

char contained;

current rule ptr = NULL;
contained = 0;

current rule ptr = list head ptr(rule set ptr);
while (current rule ptr != NULL) ({
contained = 0;
if (list _rule containes (current rule ptr, rule ptr) == 1)
{
contained = 1;
break;
}
current rule ptr = list next ptr(current rule ptr);
}
return (contained);

}

char list rule containes (struct list node *current rule ptr,
struct list node *rule ptr) {

char containes;

char index;

index = 0;
containes = 1;

for (index = 0; index < num bits; index++) {
if (((*((current rule ptr->condition ptr) + index)) !=
MATCH ANY CHAR) && ((*((current rule ptr->condition ptr)
+ index)) != (*((rule ptr->condition ptr) + index)))) {
containes = 0;
}
}

return (containes) ;

struct list *list init ptr () {

struct list *list to be init ptr;

list to be init ptr = malloc(sizeof (struct list));

if (list_to be init ptr==NULL) {
printf ("\n\nlist init ptr: ERROR : NOT ENOUGH MEMORY
list to be init ptr\n");
fprintf (stderr, "\n\nlist init ptr: ERROR : NOT ENOUGH
MEMORY : list to be init ptr\n");
system ("PAUSE") ;
exit (1) ;

135



}

list to be init ptr->head ptr = NULL;
list to be init ptr->size = 0;

return(list to be init ptr);
}

struct list node *list alloc node memory ptr() {
struct list node *new node ptr;

new node ptr = NULL;

new node ptr malloc (sizeof (struct list node));
if (new node ptr == NULL) ({

printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH

MEMORY : new node ptr\n");

fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT

ENOUGH MEMORY : new node ptr\n");
system ("PAUSE") ;

exit(1);
}
new node ptr->condition ptr = (char
*)malloc ((num bits+1l) *sizeof (char));
if (new node ptr == NULL) ({

printf ("\n\ncreate one rule ptr: ERROR : NOT ENOUGH

MEMORY : new node ptr->condition ptr\n");

fprintf (stderr, "\n\ncreate one rule ptr: ERROR : NOT

ENOUGH MEMORY : new node ptr->condition ptr\n");
system ("PAUSE") ;
exit (1) ;

}

new node ptr->next ptr = NULL;

return (new node ptr);

}

struct list node *list create node ptr(char *condition ptr)
struct list node *new node ptr;

new node ptr = list alloc _node memory ptr();
strcpy (new node ptr->condition ptr, condition ptr);
new node ptr->next ptr = NULL;

return (new_node ptr);
}
struct list node *list locate ptr (struct list
*list to be located in ptr, struct list node
*node to be located ptr) {
struct list node *current node ptr;
struct list node *node at back ptr;

current node ptr = NULL;
node at back ptr NULL;

if (! ((list_to be located in ptr->head ptr)==NULL)) {

136

{



void

current node ptr = list to be located in ptr->head ptr;

while (strcmp (node to be located ptr->condition ptr,

current node ptr->condition ptr) > 0) {
node at back ptr=current node ptr;

current node ptr=list next ptr(current node ptr);

if (current node ptr==NULL) {
break;

return (node_at back ptr);

list insert(struct list *list to be inserted to ptr,

list node *node to be inserted ptr) ({

}

struct list node *node to be inserted after ptr;

node to be inserted after ptr =
list locate ptr(list to be inserted to ptr,
node to be inserted ptr);
if (node to be inserted after ptr == NULL) {
list insert as head(list to be inserted to ptr,
node to be inserted ptr);
}
else {
list insert next(list to be inserted to ptr,

struct

node to be inserted after ptr, node to be inserted ptr);

void list insert as head(struct list *list to be inserted to ptr,
struct list node *node to be inserted ptr) {
node to be inserted ptr->next ptr=list to be inserted to ptr

}

->head ptr;

list to be inserted to ptr->head ptr=node to be inserted ptr;

(list to be inserted to ptr->size)++;

void list insert next(struct list *1list to be inserted to ptr,

struct list node *node to be inserted after ptr,

*node to be inserted ptr) {

void

node to be inserted ptr->

struct list node

next ptr=list next ptr(node to be inserted after ptr);

node to be inserted after ptr->
next ptr=node to be inserted ptr;
(list to be inserted to ptr->size)++;

list remove head (struct list *list to be removed from ptr)

struct list node *node to be removed ptr;

node to be removed ptr =
list head ptr(list to be removed from ptr);
if (node _to be removed ptr == NULL) {

printf ("there is something worng here! 65281741\n");

137



}

list to be removed from ptr->head ptr =
list next ptr(node to be removed ptr);
list destroy node(node to be removed ptr);
(list to be removed from ptr->size)--;

void list print (struct list *list to be printed ptr) {
struct list node *current node ptr;

#ifdef DEBUG2
printf ("\n\n list print
Printing\n");

#endif /* DEBUG2 */

printf ("\n Size = %d\n", list to be printed ptr->size);
system ("pause") ;
current node ptr = list head ptr(list to be printed ptr);

while (! (current node ptr==NULL)) {
list print node (current node ptr , 0);
current node ptr=list next ptr(current node ptr);

void list print node (struct list node *node to be printed ptr,
char as_a single node) {

if (as_a single node == 1) {

printf (" fomm +\n") ;

}

if (node_to be printed ptr == NULL) {
printf (" | NULL | \n");
printf (" Fmmm +\n") ;

}

else {
printf (" | s | \n", node to be printed ptr->
condition ptr);
printf (" o ——— +\n") ;

void list remove next (struct list *list to be removed from ptr,
struct list node *previous node ptr) {
struct list node *node_ to be removed ptr;
node to be removed ptr = list next ptr(previous node ptr);
if (node to be removed ptr == NULL) {
printf ("there is something worng here! 65421741\n");
system ("pause") ;
}
previous node ptr->next ptr =
list next ptr(node to be removed ptr);

list destroy node(node to be removed ptr);
(list to be removed from ptr->size)--;

138



void list nd remove head (struct list
*list to be removed from ptr) {
struct list node *node to be removed ptr;

node to be removed ptr =
list head ptr(list to be removed from ptr);
if (node to be removed ptr == NULL) {
printf ("there is something worng here! 65381741\n");
}
list to be removed from ptr->head ptr =
list next ptr(node to be removed ptr);
node to be removed ptr->next ptr = NULL;
(list to be removed from ptr->size)--;

}

void list nd remove next (struct list
*list to be removed from ptr, struct list node *previous node ptr)
{
struct list node *node to be removed ptr;
node to be removed ptr = list next ptr(previous node ptr);
if (node to be removed ptr == NULL) {
printf ("there is something worng here! 65521741\n");
system("pause") ;
}
previous node ptr->next ptr =
list next ptr(node_ to be removed ptr);
node to be removed ptr->next ptr = NULL;

(list to be removed from ptr->size)--;
}
void list destroy node (struct list node
*node to be destroyed ptr) {

free (node to be destroyed ptr->condition ptr);

free (node to be destroyed ptr);

139



	INTRUSION DETECTION SYSTEMS
	Overview
	Intrusion Detection Mechanisms
	Data Mining Techniques Used in IDS
	Efficiency Measures for IDS

	GENETIC ALGORITHMS
	GENETIC-BASED MACHINE LEARNING (GBML) AND CLASSIFIER SYSTEMS
	GBML IN ID
	INTRUSION DETECTOR A
	INTRUSION DETECTOR B
	EFFICIENCY MEASURES
	CONDUCT OF EXPERIMENTS
	RESULTS
	APPENDIX A AA
	APPENDIX B BB
	APPENDIX C BB
	APPENDIX D DD
	APPENDIX E E E
	APPENDIX F F F



