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ABSTRACT

NUMERICAL SIMULATION OF RADIATING
FLOWS

Karaismail, Ertan

M.Sc., Department of Chemical Engineering

Supervisor: Prof. Dr. Nevin Selçuk

Co-Supervisor: Prof. Dr. Faruk Arınç

August 2005, 81 pages

Predictive accuracy of the previously developed coupled code for the solution of the

time-dependent Navier-Stokes equations in conjunction with the radiative transfer

equation was first assessed by applying it to the prediction of thermally radiating,

hydrodynamically developed laminar pipe flow for which the numerical solution had

been reported in the literature. The effect of radiation on flow and temperature

fields was demonstrated for different values of conduction to radiation ratio. It was

found that the steady-state temperature predictions of the code agree well with the

benchmark solution.

In an attempt to test the predictive accuracy of the coupled code for turbulent radiating

flows, it was applied to fully developed turbulent flow of a hot gas through a relatively

cold pipe and the results were compared with the numerical solution available in the

literature. The code was found to mimic the reported steady-state temperature profiles

well.
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Having validated the predictive accuracy of the coupled code for steady,

laminar/turbulent, radiating pipe flows, the performance of the code for transient

radiating flows was tested by applying it to a test problem involving laminar/turbulent

flow of carbon dioxide through a circular pipe for the simulation of simultaneous

hydrodynamic and thermal development. The transient solutions for temperature,

velocity and radiative energy source term fields were found to demonstrate the

physically expected trends.

In order to improve the performance of the code, a parallel algorithm of the code was

developed and tested against sequential code for speed up and efficiency. It was found

that the same results are obtained with a reasonably high speed-up and efficiency.

Keywords: Computational Fluid Dynamics, Radiating Flows, Method of Lines,

Parallel Computing
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ÖZ

IŞIMALI AKIŞLARIN SAYISAL BENZETİŞİMİ

Karaismail, Ertan

Yüksek Lisans, Kimya Mühendislig̃i Bölümü

Tez Yöneticisi: Prof. Dr. Nevin Selçuk

Ortak Tez Yöneticisi: Prof. Dr. Faruk Arınç

Ag̃ustos 2005, 81 sayfa

Daha önce zamana bağlı Navier-Stokes denklemlerinin, ışınım transfer denklemi ile

birlikte çözümü için geliştirilmiş olan birleşik kod, ilk önce ısıl ışımalı, hidrodinamik

açıdan gelişmiş kargaşasız boru akışına uygulanmış ve kodun öngörüleri literatürdeki

mevcut sayısal çözümle karşılaştırılmıştır. Farklı iletim-ışınım oranları için ısıl

ışınımın akış ve sıcaklık alanlarına olan etkisi incelenmiştir. Kodun yatışkın

durum için ürettiği sıcak öngörülerinin, literatürdeki çözümle uyum içinde olduğu

bulunmuştur.

Kodun ısıl ışımalı ve kargaşalı akışlar için ürettiği sonuçların doğruluğunu test etmek

amacıyla, kod sıcak bir gazın göreceli olarak daha soğuk bir boru içindeki tam

gelişmiş kargaşalı akışına uygulanmış ve sonuçlar literatürdeki mevcut sonuçlarla

karşılaştırılmıştır. Kodun kargaşalı ve ışımalı akışlar için de rapor edilen yatışkın

sıcaklık profillerini üretebildiği gözlemlenmiştir.

Birleşik kodun kargaşasız/kargaşalı ve ısıl ışımalı yatışkın boru akışlarında doğru

sonuçlar ürettiği görüldükten sonra, kodun zamana bağlı ısıl ışınımlı akışlardaki
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performansını test etmek amacıyla, kod karbon dioksitin boru içindeki zamana

bağlı kargaşasız/kargaşalı akışına uygulanmış, simultane hidrodinamik ve ısıl gelişim

incelenmiştir. Elde edilen zamana bağlı sıcaklık, hız ve ışınım enerji kaynak terim

alanlarının fiziksel olarak beklenen davranışları gösterdiği bulunmuştur.

Kodun performansını iyileştirmek için paralel algoritması geliştirilmiş, hızlanma ve

verim için seri koda karşı sınanmıştır. Aynı sonuçların yüksek hızlanma ve verimle

elde edildiği bulunmuştur.

Anahtar Kelimeler: Hesaplamalı Akışkanlar Dinamiği, Işınımlı Akışlar, Çizgiler

Yöntemi, Paralel Hesaplama
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CHAPTER 1

INTRODUCTION

Transient, turbulent, radiating flows are of great interest from the design stand-

point of advanced power reactors, gas turbines, heat exchange equipment etc. Both

experimental and numerical techniques aid in investigation of flows taking place in

the aforementioned fields.

Experimental investigations, providing useful information regarding a particular flow

field are most of the time limited due to their costly setup and relative inconvenience

to parametric study.

Computational fluid dynamics (CFD), on the other hand, provides detailed

information on important flow and thermal characteristics of a fluid flow with as

many parameters as desired. It also takes the advantage of applicability on different

geometries with ease once it has been validated with experimental data.

Numerical simulation techniques employed in CFD for turbulent flow can broadly

be classified into three categories; Reynolds-Averaged Navier-Stokes simulation

(RANS), large eddy simulation (LES) and direct numerical simulation (DNS). RANS

simulations which are the simplest and most practical approach in use are carried out

by solving time-averaged Navier-Stokes equations closed with turbulence models.

The main drawback of RANS technique is that it relies on the turbulence closures

which are not universal. The second level of sophistication, LES, includes the

simulation of time-dependent, large-scale eddy motion. In this approach, the effects

of smaller scales are included by turbulence models.

The third category, DNS, consists of solving exactly all the spatial and time scales

embedded in the representative flow equations, without use of any turbulence models.
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Hence it is the most accurate and straightforward technique. DNS has been a very

useful tool, over the past decade, for the study of transitional and turbulent flow

fields, but it also has some serious limitations. First, the use of highly accurate, high-

order schemes is desirable to limit dispersion and dissipation errors. Secondly, to

resolve all scales of motion, one requires a number of grid points N ∼ L/η, where

L is the dimension of the computational domain (the largest scale in the system)

and η is the smallest scale of motion, the Kolmogorov length scale. Since the

ratio is proportional to Re3/4 for a particular direction, the number of grid points

required by a three-dimensional DNS code goes like N3 ∼ Re9/4 . With this drawback

in hand, it appears unlikely to apply DNS to most technological flows when one

considers the fact that most of them have Reynolds numbers in tens of thousands

or more which would require more grid points than computers of present day could

handle. However, both use of high performance computers and efficient methods can

decrease the computational time considerably. The former requirement is met by use

of either supercomputers or parallel computers. The second is achieved by increasing

the order of spatial discretization method, resulting in high accuracy with less grid

points, and by using a highly accurate but also a stable numerical algorithm for

time integration. The method of lines (MOL) that meets the latter requirement is an

alternative approach for time-dependent problems. In the MOL approach, the system

of partial differential equations (PDEs) is converted into an ordinary differential

equation (ODE) initial value problem by discretizing the spatial derivatives together

with the boundary conditions using a high-order scheme and integrating the resulting

ODEs using a sophisticated ODE solver which takes the burden of time discretization

and chooses the time steps in such a way that maintains the accuracy and stability of

the evolving solution. The most significant advantage of MOL approach is that it has

not only the simplicity of the explicit methods but also the superiority of the implicit

ones unless a poor numerical method for the solution of the ODEs is employed.
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1.1 Overview of the Studies

Numerous industrial applications such as combustion chambers, engines, etc. involve

flow of radiatively participating gases at high temperatures. Due to design and

efficiency considerations, coupled convective and radiative heat transfer in such

systems has received considerable research attention. Over the past four decades

much effort has been devoted to understanding of coupled convective and radiative

heat transfer which can not be treated separately. The subject was studied by

a number of investigators on both experimental and theoretical basis. In the

earlier studies, consideration is mostly given to the mathematical formulation of the

complicated nonlinear integro-differential energy equation which is very difficult to

solve. Therefore, various simplifying assumptions for both flow and radiation have

been frequently invoked by the researchers.

The pioneering work on coupled heat transfer was carried out by Viskanta. He [1]

investigated the interaction between conduction, convection and radiation in a fully

developed laminar flow of an absorbing, emitting, gray gas between two diffuse,

nonblack, isothermal, parallel surfaces. The two-dimensional nonlinear integro-

differential equation, namely the energy equation, was solved by an approximate

solution based on the Taylor series expansion of T 4. Moreover, for two limiting cases;

transparent and opaque mediums, the simplified forms of energy equation were solved

and the results were compared with those of approximate solution. Calculations

were carried out by assuming constant physical properties, and neglecting axial

component of conduction and radiation. For a wide range of physical parameters

such as optical thickness, conduction-to-radiation ratio, wall emissivities etc. the heat

transfer characteristics were investigated, and it was found that the transparent and

opaque approximations are very limited in their validity.

Later in several studies [2–5], the fully developed temperature profile assumption,

which simplifies the integro-differential energy equation to an ordinary integro-

differential equation, was used. The resultant equation which is identical in

appearance to that for the combined radiation-conduction problem for the same
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geometry, except for the presence of source term can be solved by the same

techniques as used for combined radiation-conduction problems. This fully developed

temperature profile assumption to simplify the problem has been carried over from

channel flows with heat transfer by convection mode only. However, in the posterior

studies Lii and Özışık [6], Liu and Thorsen [7], and Pearce and Emery [8] have found

that the temperature distribution in the fluid is affected by the absorbed radiation

especially for the systems where intense radiation interaction occurs. Therefore,

they concluded that thermally developed temperature distribution assumption is a

doubtful one. Balakrishnan and Edwards [9] compared their results for radiation

and total Nusselt numbers at large distances from the entry to the results of Wassel

and Edwards [5] for thermally and hydrodynamically established turbulent flow in a

pipe. These authors found that maximum errors in these Nusselt numbers were 2.2

percent and 7 percent, respectively, which are quite low, corresponding to radiation-

to-conduction ratio of 10.0. In order to provide a clarification for this unclear

situation, and to provide an appraisal for the validity of this assumption, Chawla and

Chan [10] performed a study for thermally developing Poiseuille flow with scattering.

Besides findings on the effect of scattering to heat transfer, the authors observed that

along the channel the Nusselt number first decreases and reaches a minimum and then

increases significantly particularly at low values of conduction-to-radiation parameter

and at moderate to high values of optical thicknesses. This behavior, verified also by

Lii and Özışık [6] and Kurosaki [11] has not been observed in pure convection where

the Nusselt number approaches an asymptotic value. Therefore, the similarity in the

temperature profile appears to exist only at moderate to high values of conduction to

radiation parameter.

Several studies on one-dimensional and two-dimensional radiative propagations in a

fluid flowing inside the ducts exist in the literature. Among them, some [8,10,12–15]

considered only the radial propagation whereas the others [16–28] took into account

both radial and axial propagations.

Einstein [20] investigated the two-dimensional combined convective and radiative

heat transfer to a uniformly absorbing gas flowing through a black circular pipe.
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For the sake of simplicity axial component of conduction was neglected. The effect

of various parameters of physical interest such as conduction-to-radiation ratio and

gas opacity on heat transfer characteristics was reported. The results indicated that

the heat transfer from the wall to the gas goes through a maximum as the opacity

of the gas is increased. Thereafter, for further increases in opacity, the amount of

heat transferred to the gas steadily decreases due to corresponding increase in self-

shielding effect of the gas to the radiation being emitted from the pipe walls.

Nichols [29] considered the thermal entrance length problem for turbulent flow of

a non-gray gas (water vapor) in an annulus. The interaction of radiation with

conduction and convection was studied by assuming absorption effects based on

average temperature, and gas to gas radiation was ignored in certain regions. The

analysis is restricted to cases for which the radiation absorption is small compared

to the convection since the solution was obtained by perturbing the solution to

an equivalent problem for a non-absorbing gas. To simplify the calculations, the

momentum equation was not considered, instead the axial velocity profile was

determined experimentally. An analytical solution procedure was followed for the

solution of energy equation. In order to estimate the radiative properties of the

medium a statistical model was chosen. Analytical and experimental results were

compared for the case of water vapor flowing at Reynolds numbers near 20,000 at a

pressure of 3.22 atm with an inner wall temperature of 2,000 ◦R . A good agreement

between the experimental measurements and calculated values for temperature profile

and the heat transferred was found.

Later, DeSoto [30] developed an analytical procedure to investigate the coupling of

radiation with the conduction and convection mechanisms in a non-isothermal, non-

gray, fully developed laminar, steady gas flow in the entrance region of a tube with

isothermal, black walls. Both axial and radial radiative components were included.

An exponential band model was used to represent the temperature and wavelength

dependence of the spectral absorption coefficients. Axial component of the heat

conduction was considered negligible and constant thermophysical properties were

assumed. For flux distribution trapezoidal multiple integration was employed, then a
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finite difference method was used to compute temperature distribution. The calculated

heat fluxes were presented for coupled problem (convection and radiation) and Graetz

problem (convection only). The results showed that although the axial radiative flux

component is large at the entrance, it decreases rather abruptly as the flow proceeds

only a short distance into the tube and its effect thereafter on temperature distribution

becomes negligible.

Pearce and Emery [8] have utilized the conclusion of DeSoto by considering the

propagation of radiation as one-dimensional in their investigation of the heat transfer

by coupled thermal radiation and laminar forced convection to an absorbing fluid

in the entrance region of a black-walled, isothermal, circular pipe. The fluid enters

the pipe with fully developed or uniform velocity profiles. The medium was treated

as both gray and non-gray. The two-dimensional continuity, momentum and energy

equations were approximated by finite difference approach for a rectangular non-

uniform mesh. As non-gray radiation model, the box model was chosen and applied to

carbon monoxide and carbon dioxide and calculations additionally include the effects

of variable transport properties and variable density, which is not considered for the

calculations of gray case. The non-gray results obtained by box model were compared

with those of wide-band model. It was found that when strong interaction between

radiation and convection exists, the coupled solution becomes a must and that the

effects of radiation is more important when the fluid is heated than when it is cooled.

Later, Echigo et al. [18] made a further investigation which brought together the

previously scattered knowledge on the use of one-dimensional and two-dimensional

treatment of radiation propagation. Although there were studies [20, 30] in which

the radiative heat transfer was taken into account as being two-dimensional, they

lack of the generality and precision due to the constraints in numerical procedure

and the analytical methods used and further the propagation of the thermal radiation

into the region upstream is not considered at all. For this purpose, as a physical

system the authors have chosen a circular pipe -with an abrupt change in wall

temperature- through which laminar flow of an absorbing and emitting medium takes

place. The authors solved the problem assuming the flow is fully developed and
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taking the radiation propagation as two-dimensional. The results have shown that one-

dimensional treatment of radiation underestimates both its contribution and the heat

transfer characteristics near the entrance of heating section in the region downstream.

In a recent study Baek et al. [31] examined the thermally developing but

hydrodynamically developed Poiseuille flow of an absorbing, emitting and scattering

medium through a pipe with black wall. The two-dimensional radiation was solved

by using discrete ordinates method (DOM). The S4 order of approximation has been

adopted. The energy equation was discretized by finite difference approximations on

a 21×21 uniform grid system. Authors validated their predictions against numerical

solution of Echigo et al. [18]. With this advantage, they reported the effect of

optical thickness of the medium and the conduction-to-radiation ratio on heat transfer

characteristics.

All of the studies except [29] mentioned so far have been applied to laminar flows.

However, there are a number of studies [13, 28, 32–36] in which consideration is

given to turbulent flows. One of them is the study of Landram et al. [33] in which the

heat transfer in fully developed turbulent flow of a radiating optically thin absorbing

emitting gas in a circular tube was determined. The radiation problem was formulated

in terms of the Planck mean and the modified Planck mean coefficients. Only radiative

properties were allowed to vary with temperature. The temperature profiles and the

Nusselt number distribution were reported. Later, Habib and Greif [37] performed

both an experimental and a theoretical study on the same subject except optically

thin conditions. In the theoretical part of the study, the gas was considered as non-

gray and an approximate formulation was employed for the determination of radiative

transport. In experimental part, air and carbon dioxide were studied respectively. The

results were presented in terms of temperature profiles and comparisons were made.

A good agreement between results of theoretical and experimental studies was found.

As an extension to this study Chiba and Greif [34] made a research for water vapor

using the same experimental set-up.

Balakrishnan and Edwards [9] studied the thermal development in a non-gray medium
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(water vapor and carbon dioxide). The momentum equation was solved by numerical

integration and implicit finite difference technique was used for the solution of

integro-differential energy equation. For both laminar and turbulent flows, findings

on total and radiative Nusselt numbers and dimensionless bulk temperature were

reported. Also a correlation for average Nusselt number for turbulent duct flow of

radiating medium was suggested.

Wassel et al. [38] later, solved the non-gray radiation and thermal diffusion in a

thermally and hydrodynamically established laminar or turbulent pipe flow with

uniform internal heat generation. Solutions were presented for radiative and

convective Nusselt number as a function of radiation parameters such as radiation-

to-conduction ratio, optical thickness and turbulent Reynolds number. The radiative

Nusselt number was found to increase about linearly with radiation-to-conduction

ratio and linearly with optical thickness at small optical thicknesses but approximately

logarithmically at large optical thicknesses.

Tsou and Kang [32] focused on the situation where turbulent convection and thermal

radiation act simultaneously in the gas flow. The physical system used is very similar

to the one used in the study of Echigo et al. [18]. The thermophysical properties

were assumed to be constant. The black plug approximation at the ends of the duct

was not used. For the radiative transfer the Eddington’s approximation was used

and the problem was solved using Green’s function. The results were presented for

temperature profile and Nusselt number. It was found that for strong radiation not only

the axial component of radiation but also the axial heat diffusion must be accounted

for.

An analysis of heat transfer for laminar or turbulent fully developed flow with

developing temperature profiles of a radiatively participating gas through a black-

walled circular tube was made by Smith et al. [21] for prescribed wall temperature

and heat flux distributions. The medium was taken as theoretical (gray) or real (non-

gray) gas. The analysis showed that the magnitude of the wall heat flux for specified

wall temperatures for a real gas decreases with axial distance but increases near the
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outlet due to radiant exchange with the outlet surface. Wall heat flux with radiation

was found to be larger than that without radiation for the same values of the system

parameters. The gas temperature profile is more uniform for turbulent flow than for

laminar flow under either specified wall temperature or heat flux distributions. The

Nusselt numbers with gaseous radiation are higher by about a factor of ten than those

without radiation for the same values of the system parameters.

One of the most detailed study especially in terms of flow was carried out by Schuler

and Campo [23]. In the study the interactive heat transfer problem involving turbulent

forced convection and radiation in the thermal development region of a gray gas

pipe flow was analyzed. The authors assumed that the fluid enters the pipe with

a fully developed turbulent velocity profile. The turbulence model adopted for the

velocity profile involves the solution of one differential equation for the kinetic energy

of turbulence ((K, L) model of turbulence). Using the gray gas assumption, the

radiation contribution is modeled by a differential method, the so-called method

of moments. Although the importance of the two-dimensional solution of thermal

radiation was emphasized by Echigo et al. [18], in this study Schuler and Campo

accounted for only the radial propagation of radiation and supported their approach

with the expectancy of much smaller upstream radiation in turbulent flow regimes.

With the new formulation of the governing equations a coupled system consisting

of a partial differential equation for temperature, namely energy equation and an

ordinary differential equation for the irradiation formed. The former was solved

by a hybrid methodology (MOLCV) utilizing the method of lines (MOL) solution

in conjunction with a control volume (CV) discretization in the radial direction only.

Similarly, the latter was discretized by control volumes too. The resulting initial value

problem was solved by integrating numerically with Runge-Kutta-Fehlberg scheme.

The predictions of the proposed solution method (MOLCV) was found to agree well

with the other numerical results available in the literature.

Nakra and Smith [39] studied the interaction of radiative transfer with convective

transfer for slug flow of an absorbing emitting gas in a circular tube with isothermal

walls. The zone method was utilized for radiation exchange calculations. Gas

9



properties were evaluated from the weighted sum of gray gases model and for the

solution of energy balance an iterative procedure was employed. Axial temperature

distribution as well as local and overall wall heat transfer rates were presented

for different values of several governing parameters such as Boltzman and Stanton

numbers, inlet and wall temperatures, length to diameter ratio.

Besides the above mentioned studies, there has been a number of studies [10, 13,

15, 19, 35, 40] dealing with the interaction between convection and radiation in gas-

particulate systems.

Among them, Chawla and Chan [10] examined the thermally developing Poiseuille

flow between two infinite parallel plates. The fluid was absorbing, emitting

and isotropically scattering. Gray gas, and constant thermophysical properties

assumptions were invoked. To solve the problem spline collocation method was

used. The analysis revealed that scattering tends to decrease the radiation component

as well as convective component of heat transfer significantly at moderate to low

values of optical thickness, whereas at high values of optical thickness, the effect of

scattering on the radiation component appears to be less pronounced, and the effect

on the convective component remains undiminished. The net effect of scattering was

found to decrease the total Nusselt number. As an important feature of the interaction

between radiation and convection it was observed that total Nusselt number appears

to increase significantly downstream of the location of its minimum, particularly in

the presence of intense radiation.

Azad and Modest [13] extended the previous two works done by De Soto [30] and

Chawla and Chan [10] by including the diffuse reflection and the effects of linear-

anisotropic scattering effects. One-dimensional radiation propagation was considered

and axial conduction was excluded. The governing differential equations were solved

numerically by an implicit finite difference method with an iterative procedure. The

results have shown that no fully developed temperature profile could be expected to

form which has already been stated by Chawla and Chan [10]. Tabanfar and Modest

[15] extended the interaction of thermal radiation with conduction and convection for
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turbulent fluid flow to include non-gray effects, but with black walls and constant

surface heat flux using an exact treatment of radiative flux. Exponential wide band

model was used to predict radiative properties.

Yener and Özışık [40] investigated simultaneous radiation and forced convection for

an absorbing, emitting and isotropically scattering thermally developing turbulent

flow of a gray fluid through a parallel-plate channel with reflecting isothermal walls.

The radiative transfer was solved employing Galerkin’s method which includes

diffuse reflection effects also. Assuming constant thermophysical properties for the

fluid and excluding axial conduction as well as axial radiation, the energy equation

was solved by an iterative procedure. Results were presented for a Reynolds number

of 100,000 and a Prandtl number of 1.0. From the results it was observed that as

the reflectivity approaches unity, the Nusselt number approaches that of nonradiating

flows.

Huang and Lin [19] studied the interaction of thermal radiation with laminar forced

convection in thermally developing, circular pipe flow. Two-dimensional radiation

model was included for absorbing, emitting and isotropically scattering gray fluid

bounded by a heated wall having a sudden change in temperature. The contribution

of thermal radiation was obtained by solving the exact integral equations for the

source function and boundary intensity with an iteration method. The governing

energy equation was solved numerically by the fully implicit finite difference method

with an iterative procedure. The results indicated that the axial radiation effect

becomes significant at small conduction-to-radiation parameter and/or higher wall-

to-inlet temperature ratio.

Krishnaprakas et al. [35] investigated steady-state, combined forced convection, and

radiation heat transfer in an absorbing, emitting and anisotropically scattering gray

fluid flowing through a circular tube. The flow was assumed to be hydrodynamically

fully developed and turbulent. For turbulence modeling eddy diffusivity concept was

used. Diffusive and radiative heat transfer in axial direction was neglected, and the

energy equation was solved by Crank-Nicolson method. Discrete ordinates method
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(DOM) with S6 order of approximation was used for radiative transfer calculations.

The calculated Nusselt numbers were presented and it was found that the minimum

value of local Nusselt number shifts towards inlet as the radiative contribution

increases. This was attributed to the continuous reduction in convective heat flux

and augmentation of radiative flux as it moves away from the inlet. Also the presence

of anisotropy was found to affect the heat transfer significantly for low values of

conduction-to-radiation ratio and high values of scattering albedo.

An analysis is made by Franca and Goldstein Jr. [28] on the heat transfer in the

fully developed turbulent flow of carbon dioxide, water vapor and nitrogen mixture

through a circular tube whose outer surface is covered by nonideal insulation. For

the situation they considered, it was found that three basic parameters; (1) the gas

inlet temperature, (2) the tube inner diameter, and (3) the Reynolds number affect the

coupled heat transfer in the gas flow. The radiation processes was affected mainly

by the first two parameters in such a way that the larger the gas inlet temperature

and the tube inner diameter, the more significant the effect of the radiation process.

The convection process depends basically on the Reynolds number, becoming more

important as this parameter increases.

One of the most detailed and realistic analysis on combined convection and radiation

in a parallel plate channel has been carried out by Soufiani and Taine [41]. In

this study, flow and thermal development in a channel was taken into account, and

temperature-dependent thermophysical properties were used. Radiative properties

were calculated by random-statistical narrow band model with 25 cm−1 resolution and

radiative transfer equation was solved using the Curtis-Godson approximation. The

continuity, momentum and energy equations are solved simultaneously. Calculations

were reported for water vapor-air mixtures between two parallel walls of constant gray

emissivity. The Reynolds number was set to 2500. Both heating and cooling of the

fluid were considered. The results showed that the temperature field is significantly

modified due to presence of radiation. A uniform temperature distribution in the

central region of the channel was observed and this was attributed to sufficiently

large gas opacity and gas-to-gas radiation exchange. Near the thermal entry, the wall
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temperature gradient was found to be greater than that obtained for pure convection,

but the opposite behavior was observed towards the outlet. A radiative boundary layer

was observed in the viscinity the wall, and inside this layer, the strong temperature

gradient causes the sign of the radiative flux divergence to become the opposite of that

obtained near the center of the channel. Coupled convective and radiative heat transfer

in the case of carbon dioxide and water vapor laminar flows has been studied both

experimentally and theoretically [42]. A very good agreement between measured and

predicted temperature profiles has been obtained, particularly in the case of carbon

dioxide flows.

In a recent study, Soufiani and Taine [42] studied coupled radiative and convective

heat transfer experimentally and theoretically in the case of carbon dioxide and water

vapor laminar flows through a channel with uniform wall temperature and rectangular

cross-section. The spectral radiative properties of the flowing gas were calculated

by using a statistical narrow-band model. The two-dimensional governing flow and

energy equations were solved simultaneously in order to account for the temperature

dependencies of density and viscosity. An implicit finite difference scheme was

used for the solution. A very good agreement between the measured and calculated

temperature profiles was obtained.

Later, a similar analysis was performed by Sediki et al. [43] for the flow carbon

dioxide and water vapor through a cylindrical duct. The duct under consideration

had a jump in wall temperature. The propagation of radiation was considered as both

one-dimensional and two-dimensional. Preheating or precooling of the gas before

the temperature jump was allowed through the axial component of radiative flux.

Narrow-band correlated-k model and absorption distribution function (ADF) model

were used to predict the radiative properties of flowing medium. A discrete direction

method was employed to predict radiative transfer, and an implicit finite difference

technique was used to solve flow equations. The analysis revealed that the effects of

the radiative axial component should be accounted for when the difference between

the wall and bulk temperature is significant.
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1.2 Principle Objective of the Present Study

Most of the previous studies on thermally radiating internal flows have been reviewed

in the preceding section. The review reveals that most of these studies focused on the

solution methods of the energy and radiative transfer equations for laminar flows, and

that the fundamental difficulties associated with the accurate solution of flow field

were by-passed by assuming hydrodynamically developed conditions. Furthermore,

variation of thermophysical properties such as density and viscosity with temperature

was not taken into consideration in the majority of these studies. However, an

accurate analysis necessitates the solution of time dependent Navier-Stokes equation

in conjunction with the radiative transfer equation (RTE) as well as utilization of

temperature-dependent thermophysical properties.

In an attempt to achieve this objective a novel DNS based CFD code developed by

Selçuk and her co-workers for two-dimensional internal flows in regular and complex

geometries was coupled with a radiation code developed by the same authors using the

methodology outlined in [44]. The CFD code uses the MOL approach in conjunction

with a higher-order adaptive scheme and a parabolic pressure algorithm for the

simulation of time-dependent incompressible separated internal flows in complex

geometries using general curvilinear coordinate system. The requirement of high

performance computing was met by developing an efficient parallel algorithm for

the code. Predictive accuracies and performances of both sequential and parallel

codes were assessed on various laminar and turbulent isothermal/non-isothermal flow

problems by validating its predictions against either measurements or numerical

results available in the literature [44–51]. Favorable comparisons were obtained

on these non-reacting flow problems. Comparisons also showed that the flow field

predicted by parallel code agreed well with those of serial code at considerably less

execution times.

Radiation code, on the other hand, is based on MOL solution of discrete ordinates

method (DOM). Predictive accuracy of the code was previously validated against

exact solution, Monte Carlo and zone method solutions as well as the measurements
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on a wide range of one-dimensional and multi-dimensional problems in Cartesian

coordinates including absorbing, emitting strongly anisotropically scattering, gray

media bounded by gray, diffuse walls [52–54]. Recently, the method was applied

to axisymmetric cylindrical enclosures containing absorbing, emitting, gray medium

and its predictions were validated against exact solutions and measurements [55]. The

method was also found to be successfully applicable to solution of transient radiative

transfer problems [56].

The performance of the above-mentioned coupled code was tested on a laminar,

axisymmetric, hydrodynamically developed flow of a gray, absorbing, emitting fluid

in a heated pipe. Temperature profiles predicted by the coupled code were validated

against steady-state solutions available in the literature. Favorable comparisons

showed the predicted accuracy and reliability of the coupling strategy employed.

Depending on the relative importance of radiation to conduction, the heat transfer

characteristics in high-temperature practical applications may vary to a great extent.

This may point to further investigation of effect of different conduction to radiation

ratios on temperature fields. Furthermore, although the studies on laminar radiating

flows aid in understanding some aspects of more complicated flow scenarios,

simulation of turbulent radiating flows is of greater importance in the sense that they

are involved in almost all practical high-temperature systems. Hence the objective of

this study has been to:

• investigate the effect of radiation on temperature fields by using the coupled

code,

• apply the coupled code to the prediction of the turbulent, radiating

axisymmetric flows, and validate its predictions against available numerical

predictions,

• parallelize the coupled code and evaluate its performance with respect to

accuracy and central processing unit (CPU) time.
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CHAPTER 2

THE GOVERNING EQUATIONS

2.1 General

In this chapter, the governing equations of fluid dynamics (i.e. fluid mechanics and

heat transfer) and radiative transfer are described.

The fundamental equations describing the non-isothermal flow of fluids in the absence

of chemical reaction or mass diffusion are based on three physical conservation laws:

• Conservation of mass,

• Conservation of momentum,

• Conservation of energy.

Application of conservation of mass to a fluid element within a flowing fluid

yields equation of continuity. The law of conservation of momentum, which stems

from Newton’s second law results in equation of motion or momentum equation.

The application of conservation law of energy which is actually the first law of

thermodynamics results in equation of energy. The detailed derivation of the

conservation equations can be found elsewhere [57].

In flow applications where radiation and convection are co-principal heat transfer

mechanisms, coupling between these different modes of energy transfer is

unavoidable and consequently the governing equations are interlinked. This link is

established through radiative source term appearing in the energy equation.
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2.2 The Governing Equations of Fluid Dynamics

In the case of transient incompressible non-isothermal radiating flows , the governing

equations of fluid dynamics can be written in vectorial form as follows;

continuity;

~∇ ·~V = 0, (2.1)

momentum;

ρ

(

∂~V
∂t

+~V ·~∇~V

)

= −~∇p−~∇ · ¯̄τ+ρ~g, (2.2)

energy;

ρcp

(

∂T
∂t

+~V ·~∇T
)

= ~∇ ·
(

k~∇T
)

−~∇ · ~qR, (2.3)

where ~V is the velocity vector, p is the static pressure, ¯̄τ is the stress tensor, ~g is

the gravitational acceleration, T is the temperature, ~qR is the radiative source term

and finally cp and k are the specific heat capacity and the thermal conductivity of the

fluid, respectively.

2.2.1 Governing Equations in Cylindrical Coordinates

The 2D incompressible Navier-Stokes equations written in cylindrical coordinates

together with the energy equation in the absence of viscous dissipation and heat

generation terms are

continuity;
∂u
∂z

+
∂v
∂r

+
v
r

= 0, (2.4)

z-momentum;

ρ
(

∂u
∂t

+u
∂u
∂z

+ v
∂u
∂r

)

= −
∂p
∂z

−

(

1
r

∂
∂r

(rτrz)+
∂τzz

∂z

)

+ρgz, (2.5)

r-momentum;

ρ
(

∂v
∂t

+u
∂v
∂z

+ v
∂v
∂r

)

= −
∂p
∂r

−

(

1
r

∂
∂r

(rτrr)+
∂τrz

∂z
−

1
r

τθθ

)

+ρgr, (2.6)
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where for Newtonian fluids

τrr = −µ
(

2
∂v
∂r

)

, (2.7)

τzz = −µ
(

2
∂u
∂z

)

, (2.8)

τθθ = −µ
(

2
v
r

)

, (2.9)

τrz = τzr = −µ
(

∂u
∂r

+
∂v
∂z

)

, (2.10)

energy;

ρcp

(

∂T
∂t

+u
∂T
∂z

+ v
∂T
∂r

)

= −

(

1
r

∂
∂r

(rqr)+
∂qz

∂z

)

−~∇ ·~qR, (2.11)

where

qr = −k
∂T
∂r

, (2.12)

qz = −k
∂T
∂z

. (2.13)

Substitution of Equations 2.7 to 2.10 into Equations 2.5 and 2.6, and of Equations 2.12

and 2.13 into Equation 2.11 yield

z-momentum;

∂u
∂t

+u
∂u
∂z

+ v
∂u
∂r

= −
1
ρ

∂p
∂z

+
µ
ρ

(

∂2u

∂r2 +
1
r

∂u
∂r

+
∂2u

∂z2

)

+
1
ρ

(

∂u
∂r

+
∂v
∂z

)

∂µ
∂r

+
2
ρ

(

∂u
∂z

)

∂µ
∂z

+gz, (2.14)

r-momentum;

∂v
∂t

+u
∂v
∂z

+ v
∂v
∂r

= −
1
ρ

∂p
∂r

+
µ
ρ

(

∂2v

∂r2 +
1
r

∂v
∂r

−
v
r2 +

∂2v

∂z2

)

+
2
ρ

(

∂v
∂r

)

∂µ
∂r

+
1
ρ

(

∂u
∂r

+
∂v
∂z

)

∂µ
∂z

+gr, (2.15)

energy;

∂T
∂t

+u
∂T
∂z

+ v
∂T
∂r

=
k

ρcp

(

∂2T

∂r2 +
1
r

∂T
∂r

+
∂2T

∂z2

)

+
1

ρcp

(

∂T
∂r

)

∂k
∂r

+
1

ρcp

(

∂T
∂z

)

∂k
∂z

−
~∇ ·~qR

ρcp
. (2.16)
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2.2.2 Initial and Boundary Conditions

Initial and boundary conditions define the problem under consideration and therefore

constitute an essential part of the computation.

For flows that are statistically steady, the initial conditions are relatively unimportant.

Usually, they may consist of large amplitude perturbations superposed on a realistic

mean flow, or of a fully developed flow in a similar configuration.Typically, the flow

is allowed to develop in time until a steady state is reached. For transient problems,

more care should be given to the assignment of initial conditions, and physically

correct and reasonably accurate initial conditions must be provided.

There are generally five different types of boundaries which will occur in internal

flows. These are solid surfaces, symmetry, periodic, inflow and outflow boundaries.

It is common practice to impose no-slip (u = 0) and no-throughflow (v = 0)

conditions while treating stationary solid surfaces. For the energy equation generally,

either a wall temperature, or adiabatic wall condition, or Newton’s law of cooling is

specified at the surface.In the present study, the wall temperature was kept constant.

For systems where the configuration and domain of solution is symmetrical, the axis

of symmetry can be treated as a boundary. In such cases, no flow is permitted to

cross the boundary (v = 0) and all gradients normal to the boundary are set equal to

zero
(

∂u
∂n = ∂T

∂n = 0
)

where n denotes the direction normal to the centerline.In dealing

with the cylindrical coordinate system, the symmetry boundary condition constitutes

a singularity at the symmetry axis (r = 0), since the terms 1
r

∂u
∂r and 1

r
∂T
∂r appearing in

Equations 2.14, and 2.16 are indeterminate at the center (r = 0). It should be noted

that the denominators of these terms are zero (from 1
r ), but the numerators are also

zero (from the boundary conditions). This bottleneck can be alleviated by applying

L’ Hôpital’s rule; differentiating the numerator and denominator with respect to r, i.e.,

lim
r→0

1
r

∂u
∂r

=
∂2u

∂r2 , lim
r→0

1
r

∂T
∂r

=
∂2T

∂r2 . (2.17)

Thus, the terms 1
r

∂u
∂r and 1

r
∂T
∂r in the governing equations take the form ∂2u

∂r2 and ∂2T
∂r2 ,

respectively at the center (r = 0). It should be pointed out that since time-independent
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Dirichlet type boundary condition (v = 0) is used for the radial component of the

velocity vector, there is no need to solve Equation 2.15 along the centerline.

The formulation of inflow and outflow boundary conditions continues to be one of the

most difficult tasks in the numerical simulation of internal flows. Ideally it would be

desirable to apply boundary conditions at upstream infinity and downstream infinity

where all of the flow properties are known. However, memory capacities of even the

most modern high speed computers restrict placement of computational boundaries

to immediately upstream and downstream of the region of interest. For flow systems

with rather short length, the implementation of the fully developed condition is not

appropriate, since that kind of boundary condition is generally used for internal flow

systems with considerably long length. Therefore, in the case of dealing with flow

systems with short length, generally the so-called soft boundary condition [58, 59],

which requires the second order streamwise derivatives to vanish, is used.

2.3 The Governing Equations of Radiative Transfer

The propagation of radiation in a participating medium is governed by the radiative

transfer equation (RTE) which is derived by drawing up a balance on the flux of

radiant energy in specified direction through a small volume element. The details of

derivation can be found elsewhere [60–62]. The RTE for absorbing, emitting gray

medium can be written in the form

dI
ds

= (~Ω ·~∇)I(~r,~Ω) = −κ(~r)I(~r,~Ω)+κ(~r)Ib(~r) (2.18)

where I(~r,~Ω) is the radiation intensity at position~r in the direction ~Ω defined as the

quantity of radiant energy passing in the specified direction Ω along a path s, per unit

solid angle Ω about the direction ~Ω, per unit area normal to the direction of travel and

per unit time. κ(~r) is the absorpion coefficient of medium and Ib(~r) (≡ σ T 4(~r)/π) is

the black body radiation intensity at the temperature of the medium. The expression

on the left hand-side is the gradient of the intensity in the specified direction ~Ω. The

two terms on the right hand-side represent the changes in intensity due to absorption

and emission, respectively.
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2.3.1 Radiative Transfer Equation in Cylindrical Coordinates

In axisymmetric cylindrical geometry (r,z), the directional derivative of radiation

intensity can be expressed as [61]

dI
ds

=
∂I
∂r

dr
ds

+
∂I
∂φ

dφ
ds

+
∂I
∂z

dz
ds

(2.19)

where

dr
ds

= ~Ω.~er = µ (2.20)

dφ
ds

= ~Ω.~eθc = −
η
r

(2.21)

dz
ds

= ~Ω.~ez = ξ (2.22)

In Equations 2.20, 2.21, 2.22, ~er, ~eθc,~ez are unit vectors and µ = sinθcosφ, η =

sinθsinφ, ξ = cosθ are direction cosines in r,θc and z directions, respectively. (See

Figure 2.1)

Hence, RTE in axisymmetric cylindrical coordinates can be written as

dI
ds

= µ
∂I
∂r

−
η
r

∂I
∂φ

+ξ
∂I
∂z

= −κI +κIb (2.23)

the directional derivative (d/ds) is written in the so-called conservation form to assure

that approximation to the RTE retain the conservation properties. Mathematically

it means that upon multiplying the differential equation by a volume element,

the resulting coefficient of any differential term does not contain the variable of

differentiation. Equation 2.23 is not yet in conservative form, since the coefficient

of ∂I
∂φ is η/r and η = sinθsinφ. This difficulty is easily remedied by adding and

subtracting a term, µ
r I.

Hence in conservative form RTE in axisymmetric cylindrical coordinates takes the

following form
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Figure 2.1: Cylindrical space-angle coordinate system in three dimensions

dI
ds

=
µ
r

∂(rI)
∂r

−
1
r

∂(ηI)
∂φ

+ξ
∂I
∂z

= −κI +κIb (2.24)

2.3.2 Boundary Conditions

If the surface bounding the medium is gray with specified temperature distribution,

and emits and reflects diffusely then the radiative boundary condition for

Equation 2.18 is given by

I(~rw,~Ω) = εwIb(~rw)+
(1− εw)

π

Z

~nw·~Ω
′
|~nw ·~Ω|I(~rw,~Ω

′
)dΩ

′
(2.25)

where I(~rw,~Ω) and I(~rw,~Ω′
) are the intensities of radiation leaving and incident on the

surface at a boundary location, εw is the surface emissivity, and ~n is the unit normal

vector at a boundary location. The terms on the right-hand side of Equation 2.25

represent contributions to the outgoing intensity due to emission from the surface and

reflection of incoming radiation.
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The Equations 2.18 and 2.25 represent governing equation and its boundary condition,

respectively, for radiative heat transfer. Once the intensity distribution is determined,

quantities of interest such as radiative heat flux and energy source term distributions

can be readily evaluated.

For the sake of clarity, the governing equations and associated initial and boundary

conditions are summarized in Table 2.1
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Table 2.1: Governing equations and associated initial & boundary conditions

Governing Equations

Continuity ∂u
∂z + ∂v

∂r + v
r = 0

z-momentum ∂u
∂t +u∂u

∂z + v∂u
∂r = − 1

ρ
∂p
∂z + µ

ρ

(

∂2u
∂r2 + 1

r
∂u
∂r + ∂2u

∂z2

)

+ 1
ρ

(

∂u
∂r + ∂v

∂z

)

∂µ
∂r + 2

ρ

(

∂u
∂z

)

∂µ
∂z +gz

r-momentum ∂v
∂t +u∂v

∂z + v∂v
∂r = − 1

ρ
∂p
∂r + µ

ρ

(

∂2v
∂r2 + 1

r
∂v
∂r −

v
r2 + ∂2v

∂z2

)

+ 2
ρ

(

∂v
∂r

)

∂µ
∂r + 1

ρ

(

∂u
∂r + ∂v

∂z

)

∂µ
∂z +gr

Energy ∂T
∂t +u∂T

∂z + v∂T
∂r = k

ρĈp

(

∂2T
∂r2 + 1

r
∂T
∂r + ∂2T

∂z2

)

+ 1
ρĈp

(

∂T
∂r

)

∂k
∂r + 1

ρĈp

(

∂T
∂z

)

∂k
∂z −

~∇·~qR
ρĈp

RTE µ ∂I
∂r −

η
r

∂I
∂φ +ξ∂I

∂z = −κI +κIb

Initial & Boundary Conditions

Initial condition @ t = 0 ∀r∧∀z : u = 0, v = 0, T = Tre f , ~∇ ·~qR = 0

Boundary condition 1 @ the center ∀z∧∀t : ∂u
∂r = 0, v = 0, ∂T

∂r = 0

Boundary condition 2 @ the wall ∀z∧∀t : u = 0, v = 0, T = Tw

Boundary condition 3 @ the inlet ∀r∧∀t : u = uin, v = 0, T = Tin

Boundary condition 4 @ the outlet ∀r∧∀t : ∂2u
∂z2 = 0, ∂2v

∂z2 = 0, ∂2T
∂z2 = 0
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CHAPTER 3

NUMERICAL SOLUTION TECHNIQUE

3.1 General

Numerical analysis of large-scale scientific and engineering problems has gained

significant interest in the last two decades due to advancements in the processing

and storage capabilities of modern computers. A number of numerical techniques

and computational schemes have been proposed for the solution of PDEs governing

the transport processes in these systems. Among these techniques method of

lines (MOL) [63], which is a semi-discrete method, has proven to be a very

accurate and efficient approach for a diverse range of applications including unsteady

isothermal/non-isothermal, laminar/turbulent flows [45, 46, 48–51] and radiative heat

transfer [52, 55, 56, 64]. MOL enables explicit/implicit solutions with higher-order

approximations in temporal discretization and provides the flexibility in utilization of

well established difference schemes for spatial discretization without additional effort

in formulation. Hence, in the present study, the governing equations are solved using

the MOL technique.

3.2 The Method of Lines

The method of lines consists of converting the system of partial differential equations

(PDEs) into an ODE initial value problem by discretizing the spatial derivatives

together with the boundary conditions via Taylor series, or weighted residual

techniques and integrating the resulting ODEs using a sophisticated ODE solver

which takes the burden of time discretization and chooses the time steps in such a way

that maintains the accuracy and stability of the evolving solution. The most important

advantage of the MOL approach is that it has not only the simplicity of the explicit

methods but also the superiority (stability advantage) of the implicit ones unless
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a poor numerical method for the solution of ODEs is employed. The advantages

of the MOL approach are two-fold. First, it is possible to achieve higher-order

approximations in the discretization of spatial derivatives without significant increases

in computational complexity, and without additional difficulties with boundary

conditions. Second, the use of highly efficient and reliable initial value ODE solvers

means that comparable orders of accuracy can also be achieved in the time integration

without using extremely small time steps.

In fact, many existing numerical algorithms for transient PDEs can be considered

as MOL algorithms. The most important difference of the MOL approach from

the conventional methods is that, in the MOL approach higher-order, implicit and

hence stable numerical algorithms for time integration are used. For the numerical

solution of the same PDE system, the MOL approach and the conventional methods,

in which a lower-order either explicit or implicit time-integration methods are used,

have the same system of ODEs as a result of spatial discretization. Therefore,

stability of the ODE problem should be satisfied not only for the MOL approach

but also for the conventional methods. However, it should be noted that satisfaction

of the stability of the ODE system as a result of spatial discretization does not

necessarily mean that the final solution as a result of time-integration will also be

stable. So, in order to have absolutely stable and accurate solutions, the first condition

is to satisfy the ODE problem stability, and the second one is to use sophisticated

(higher-order and implicit) time-integration methods. In the present study, the first is

provided by utilizing a second-order TVD scheme based on Lagrange interpolation

polynomial [65] for the convective terms and a fourth-order centered scheme based on

Lagrange interpolation polynomial for the diffusive terms in the CFD code and a two-

point upwind differencing scheme in the radiation code. Second, time integration is

achieved by using higher-order and stable schemes embedded in quality ODE solvers;

LSODES and RKF45 in CFD and radiation codes, respectively.
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3.3 Spatial Discretization of the PDEs Governing the Fluid
Dynamics

The discretization of spatial terms appearing in the governing equations requires

particular consideration. Inappropriate discretization of these terms leads to an

unstable ODE problem for both conventional and MOL algorithms.

The nature of convection process necessitates the use of upwind methods in which

the information for each variable is obtained by looking in the direction from

which this information should be coming. In order to met this requirement, in the

present study an adaptive spatial discretization scheme which decides whether to

use upwind or downwind discretization in a zone-of-dependence manner is utilized

for the approximation of convective terms [46]. The adaptive stencil scheme is

accommodated into the code as follows. The code checks the signs of the coefficients

of the convective derivatives ( ∂u
∂z , ∂u

∂r , ∂T
∂z , ∂T

∂r ) and decides whether an upwind

or downwind discretization scheme is to be used. If the coefficient is positive,

discretization of convective derivatives are carried out by an upwind scheme as the

information is gathered from the upstream direction. If the coefficient is negative,

a downwind scheme is used as the zone-of-dependence is downstream of the point

under consideration. Implementation of this procedure into the computer code is

performed by writing convective derivatives as follows

∂ς
∂x̄

∣

∣

∣

∣

i
=

C
2

[

(1− εC)
∂ς
∂x̄

∣

∣

∣

∣

d
+(1+ εC)

∂ς
∂x̄

∣

∣

∣

∣

u

]

(3.1)

where ς is the pseudo one-dimensional dependent variable at any point along the

x̄ direction at any time. C denotes the coefficients of the convective derivatives.

Subscripts d and u denote downwind and upwind stencils, respectively, and

εC = sign(C) =
C
|C|

. (3.2)

In the present study, the convective terms near and at the boundaries were evaluated

by the first-order approximation.

Diffusive terms appearing in the governing equations include second-order derivatives

of the dependent variables. Since they correspond to diffusive effects, they are
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always centrally discretized [66]. One approach in approximating a second-order

derivative is the stagewise differentiation of the first-order derivatives [63]. In the

present study this approach is followed for evaluation of diffusion terms by stagewise

differentiation of first-order centered derivatives obtained from fourth-order centered

scheme based on Lagrange interpolation polynomial. Hence, more accurate solutions

can be obtained by high-order discretization of diffusive terms.

3.4 Treatment of Pressure

The computation of pressure is the most difficult and time-consuming part of the

overall solution of the Navier-Stokes equations and involves the iterative procedure

between the velocity and pressure fields through the solution of a Poisson-type

equation for pressure to satisfy divergence-free condition for confined incompressible

flows. Therefore, in this study, a noniterative procedure for the calculation of pressure

suggested by [67], and [68] and applied by [47] is used. This procedure is based on

the fact that in the numerical solution of the Navier-Stokes equations for internal

flows, the streamwise pressure gradient must be known in such a way that the mass

conservation at each cross-section is satisfied. In order to accomplish this, the static

pressure p(r,z, t) in the momentum equations is split into two parts

p(r,z, t) = p̂(z, t)+ p̃(r,z, t) (3.3)

as suggested in [67] and [68].

As can be seen from Equation (3.3), p̂ is independent of r-direction. Hence, the

derivative of Equation (3.3) with respect to z- and r-directions yields

∂p
∂z

=
∂p̂
∂z

+
∂p̃
∂z

, (3.4)

and

∂p
∂r

=
∂p̃
∂r

. (3.5)

The physical assumption in this decoupling procedure is that ∂ p̃
∂z is very small

compared with ∂ p̂
∂z . Therefore, when the pressure field is split into two in this manner,

the momentum equations can be written as follows.
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r-momentum;

∂v
∂t

+u
∂v
∂z

+ v
∂v
∂r

= −
1
ρ

∂p̃
∂r

+
µ
ρ

(

∂2v

∂r2 +
1
r

∂v
∂r

−
v
r2 +

∂2v

∂z2

)

+
2
ρ

(

∂v
∂r

)

∂µ
∂r

+
1
ρ

(

∂u
∂r

+
∂v
∂z

)

∂µ
∂z

+gr, (3.6)

z-momentum;

∂u
∂t

+u
∂u
∂z

+ v
∂u
∂r

= −
1
ρ

∂p̂
∂z

+
µ
ρ

(

∂2u

∂r2 +
1
r

∂u
∂r

+
∂2u

∂z2

)

+
1
ρ

(

∂u
∂r

+
∂v
∂z

)

∂µ
∂r

+
2
ρ

(

∂u
∂z

)

∂µ
∂z

+gz. (3.7)

The pressure gradient in Equation (3.7), ∂ p̂
∂z , can be determined with the aid of

global mass flow constraint combined with the discretized form of the z-momentum

equation. For this purpose the temporal derivative in Equation (3.7) is discretized,

and the following equation is obtained.

un+1
i, j −un

i, j

∆t
= −

1
ρ

(

∂p̂
∂z

)n

j
−

[

un
i, j

(

∂u
∂z

)n

i, j
+ vn

i, j

(

∂u
∂r

)n

i, j

]

+
µ
ρ

[

(

∂2u

∂r2

)n

i, j
+

1
r

(

∂u
∂r

)n

i, j
+

(

∂2u

∂z2

)n

i, j

]

+
1
ρ

[

(

∂u
∂r

)n

i, j
+

(

∂v
∂z

)n

i, j

]

(

∂µ
∂r

)n

i, j

+
2
ρ

(

∂u
∂z

)n

i, j

(

∂µ
∂z

)n

i, j
+gz. (3.8)

Rearranging Equation (3.8) yields

un+1
i, j = Φn

i, j +

(

∂p̂
∂z

)n

j
Ψn, (3.9)

where

Φn
i, j = un

i, j − ∆t

{

un
i, j

(

∂u
∂z

)n

i, j
+ vn

i, j

(

∂u
∂r

)n

i, j

−
µ
ρ

[

(

∂2u

∂r2

)n

i, j
+

1
r

(

∂u
∂r

)n

i, j
+

(

∂2u

∂z2

)n

i, j

]

−
1
ρ

[

(

∂u
∂r

)n

i, j
+

(

∂v
∂z

)n

i, j

]

(

∂µ
∂r

)n

i, j

−
2
ρ

(

∂u
∂z

)n

i, j

(

∂µ
∂z

)n

i, j
−gz

}

, (3.10)
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and

Ψn = −
∆t
ρn . (3.11)

where n and n + 1 represent the present and advanced time levels. Equation (3.9)

is then multiplied by the density ρn+1 and the resulting equation is subsequently

integrated numerically over the cross-sectional area perpendicular to the streamwise

direction. This yields

Z

A
ρn+1un+1

i, j dA = ṁ =
Z

A
ρn+1Φn

i, jdA+

(

∂p̂
∂z

)n

j

Z

A
ρn+1Ψn

i, jdA, (3.12)

where

dA = rdrdθ, (3.13)

in cylindrical coordinates.

Since the mass flow is prespecified by the problem inlet boundary condition, the

pressure gradient ∂ p̂
∂z can be computed from the following expression obtained by

rearranging Equation (3.12)

(

∂p̂
∂z

)n

j
=

2πρ
R R

0 Φn
i, jrdr− ṁ

πR2∆t
. (3.14)

Here, ṁ is mass flow rate prescribed as inlet condition and R is the radius of the

burner.

3.5 Computation of Radial Velocity Component

In the present study, in order not to bring an extra burden to the ODE solver, the r-

component velocity v(r,z, t) is determined with the direct utilization of the continuity

equation. For this purpose the continuity equation is discretized as

1
ri

(ri+1vn
i+1, j − rivn

i, j

∆r+
i

)

= −

(

∂u
∂z

)n

i, j
, (3.15)

and Equation 3.15 is rearranged to yield

vn
i+1, j =

ri

ri+1

[

vn
i, j −∆r+

i

(

∂u
∂z

)n

i, j

]

, (3.16)
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where

i = 1, . . . ,NR−2, j = 2, . . . ,NZ, ∆r+
i = ri+1 − ri. (3.17)

Hence, by this formulation, not only the r-component velocity is computed without

bringing an extra burden to the ODE solver used for time integration, but also the

divergence-free condition for incompressible flows is satisfied automatically.

3.6 Time Integration

As mentioned earlier, MOL consists of two stages; (1) spatial discretization of PDEs,

(2) integration of the resultant system of ODEs. In this section, the second stage of

the MOL solution which is the time integration of the governing equations, will be

described.

Substitution of the approximations of spatial derivatives into the governing equations

yields the following set of ODEs in time;

dφ̄
dt

= f
(

φ̄
)

, φ̄ = (φ1,φ2, . . . ,φNEQN) , (3.18)

where NEQN denotes the number of equations to be solved and φ̄ is a one-

dimensional dummy vector containing the dependent variables φ. The resulting

system with suitable initial and boundary conditions is integrated by any of the ODE

integration methods, e.g, explicit Euler’s method, Runge-Kutta method, Backward

Differentiation Formula (BDF), etc.

As mentioned before, the most important feature of the MOL approach is that it

has not only the simplicity of the explicit methods but also the superiority of the

implicit ones as the higher-order implicit time integration methods are employed in

the solution of the resulting stiff system of ODEs. The stiff ODE concept is well

established and various efficient and reliable stiff ODE solvers, having the advantage

of the use of variable time steps and order of the method, are available in the

open literature [63, 69–71]. However, it is very important to select a suitable one

considering type and dimension of the physical system, desired level of accuracy and

execution time. In the present study, a higher-order and stable schemes embedded in

quality ODE solver; LSODES was used.
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3.7 Computation of Radiative Energy Source Term

As mentioned earlier, in flow applications where combined convective and radiative

heat transfer take place, the radiative energy source term (divergence of the radiative

heat flux) have to be implemented in the classical energy conservation equation of the

CFD calculations. In order to calculate the radiative energy source term, first RTE

should be solved. MOL solution of Discrete Ordinates Method (DOM) is a promising

method for the solution of the RTE due to its accuracy and compatible formulation

with that for governing flow equations. In the following sections DOM and its MOL

solution will be explained.

3.7.1 Discrete Ordinates Method

DOM is based on representation of continuous angular domain by a discrete set

of ordinates with appropriate angular weights, spanning the total solid angle of 4π

steradians. The discrete ordinates representation of the RTE for an absorbing-emitting

gray medium in axisymmetric cylindrical coordinate system takes the following form

µm

r
∂(rIm)

∂r
−

1
r

∂(ηmIm)

∂φ
+ξm

∂Im

∂z
= −κIm +κIb (3.19)

where Im[≡ I(r,z;θ,φ)] is the total radiation intensity at position (r,z) in the discrete

direction Ωm. The terms on the left hand-side represents the gradient of intensity in

curvilinear coordinates, and the two terms on the right hand-side stand for the changes

in intensity due to absorption and emission, respectively.

The angular derivative term, which makes the solution of DOM complicated, is

discretized by introducing an angular redistribution term γm,`±1/2, proposed by

Carlson and Lathrop [72]. After discretization, the angular derivative term takes the

following form

[

∂(ηmIm)

∂φ

]

Ωm=Ωm,`

=

(

γm,`+1/2Im,`+1/2 − γm,`−1/2Im,`−1/2

wm,`

)

(3.20)

where Im,`+1/2 and Im,`−1/2 are radiation intensities in directions m, ` + 1/2 and

m, `− 1/2 which define the edges of angular range of wm,`. Mathematically, these
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terms and the angular redistribution term can be expressed as

Im,`+1/2 =
Im,` + Im,`+1

2
, (3.21)

Im,`−1/2 =
Im,`−1 + Im,`

2
, (3.22)

and

γm,`+1/2 = γm,`−1/2 +µm,`wm,` ` = 1,2...L (3.23)

where, L is the maximum value of ` for a particular m. Further details of angular

redistribution terms and estimation of the angular derivative can be found from [55,

73]. Equations 3.19 and 3.20, and the recurrence relations (Equations 3.21, 3.22,

and 3.23) yield discrete ordinates equations for axisymmetric cylindrical geometry.

The final form of discrete ordinates equation for axisymmetric cylindrical geometry

takes the following form

µm,`

r
∂(rIm,`)

∂r
−

1
r
(γm,`+1/2Im,`+1/2 − γm,`−1/2Im,`−1/2)

wm,`
+ξm,`

∂Im,`

∂z
= −κIm,` +κIb

(3.24)

The quadrature ordinates and weights for axisymmetric cylindrical geometry of SN

approximations are listed in Appendix A. Boundary conditions required for the

solution of the Equation 3.24 on the surface of the enclosure take the following forms

for diffusely emitting-remitting surfaces at z=0;

Im,` = εwIb(~rw)+
(1− εw)

π ∑
m′

,`
′

wm′
,`
′

∣

∣

∣
ξm′

,`
′

∣

∣

∣
Im

′
,`
′

ξm,` > 0 (3.25)

at z=L;

Im,` = εwIb(~rw)+
(1− εw)

π ∑
m′

,`
′

wm′
,`
′ξm′

,`
′ Im

′
,`
′

ξm,` < 0 (3.26)

at r=R;

Im,` = εwIb(~rw)+
(1− εw)

π ∑
m′

,`
′

wm′
,`
′µm′

,`
′ Im

′
,`
′

µm,` < 0 (3.27)
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at r=0;

Im,` = Im
′
,`
′

µm,` > 0 (3.28)

In Equations 3.25- 3.28, the values m, ` and m
′
, `

′
denote outgoing and incoming

directions respectively. In the present study, the wall surface, and inlet and outlet

imaginary surfaces were assumed to be radiatively black.

3.7.2 Method of Lines Solution of Discrete Ordinates Methods

The solution of discrete ordinates equations with MOL is carried out by adoption of

the false-transients approach which involves incorporation of a pseudo-time derivative

of intensity into the discrete ordinates equations [74]. Adoption of the false-transient

approach to Equation 3.24 yields

kt∗
∂Im,`

∂t
= −

µm,`

r
∂(rIm,`)

∂r
+

1
r
(γm,`+1/2Im,`+1/2 − γm,`−1/2Im,`−1/2)

wm,`
−ξm,`

∂Im,`

∂z

− κIm,` +κIb (3.29)

where t∗ is the pseudo-time variable and kt∗ is a time constant with dimension

[(m/s)−1] which is introduced to maintain dimensional consistence in the equation

and it is taken as unity.

The system of PDEs with initial and boundary-value independent variables is then

transformed into an ODE initial value problem by using MOL approach [55]. The

transformation is carried out by representing the spatial derivatives with the algebraic

finite-difference approximations. Thus, the first stage of MOL solution; discretization

of all the spatial terms appearing in the RTE is accomplished. The details of angular

and spatial discretization can be found from [55].

The second stage of MOL solution which is time integration of the resultant system

of ODEs is carried out in a similar fashion as in the CFD code. Starting from an

initial condition for radiation intensities in all directions, the system of ODEs is

integrated until steady state by using a powerful ODE solver. Any initial condition

can be chosen to start the integration, as its effect on the steady state solution decays
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to insignificance. To stop the integration at steady state, a convergence criterion is

checked for all intensities.

Once the intensity distribution is determined by solving Equation 3.29 together with

its boundary conditions, the radiative energy source term can be obtained from the

following equation

~∇ ·~qR = κ

(

4πIb −∑
m

∑̀wm,`Im,`

)

(3.30)

In the present study, the spatial terms of RTE are discretized by using two-point

upwind differencing scheme. The S4 order of approximation was found to be optimum

by succesive refinement studies [75]. RKF45 (Runge-Kutta-Fehlberg integration)

subroutine [49], which is an adaptive, fourth order accurate ODE solver, was utilized

for time integration.

3.8 Computation of Thermophysical and Radiative Properties

In strongly non–isothermal systems, evaluation of temperature dependent

thermophysical properties plays an important role in the numerical solution of fluid-

flow equations. In the present study, transport properties, namely, viscosity and

thermal conductivity, were calculated using the TRANSPORT package by Kee et al.

[76]. Thermodynamic properties, namely, the density and specific heat, are evaluated

using CHEMKIN-III [77] and its database. The temperature and concentration-

dependent absorption coefficients for the gray gas were calculated using Leckner’s

correlation [78].

3.9 Description of the Coupling Procedure and Mode of
Operation of the Sequential Code

In this study, a numerical methodology developed by Selçuk et al. [44] is utilized for

the solution of time-dependent Navier-Stokes equations in conjunction with the RTE

in two-dimensional axisymmetric, cylindrical geometry. The proposed methodology

has the following novel features: (1) CFD code is based on DNS approach which is

the most reliable way to analyze turbulent flows, (2) the solution methods for the CFD
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code and the radiation code are compatible as they are based on the same approach,

namely MOL.

Coupling strategy between the CFD and radiation codes is mainly based on periodic

transfer of temperature field solved by the flow code to the radiation code which

in turn provides the source term field to be inserted in the energy equation. The

schematic representation of the coupling procedure is illustrated in Figure 3.1. A

variable mesh size in both r and z directions was used which are clustered to the wall

in r and to the inlet in z directions, respectively. Since using identical grid resolutions

for both fluid flow and radiation transport would be very expensive, two different grid

resolutions are established; a fine mesh which would meet the DNS requirement for

fluid flow and a coarse one enabling economic computation of radiative energy source

term (See Figure 3.2).

START

compute flow field
and advance in time

by t
int

t = t
p

Output

calculate absorption

coefficients

compute source

terms on coarse grid

interpolate source

terms to fine grid

t
int
 < t

p

No

Yes T,x

T

?

R,F
q

R,C
q

CFD Radiation

Figure 3.1: Coupling Procedure.

Figure 3.3 shows the organization of the sequential coupled code in which all the

subroutines are executed sequentially. The whole procedure can be summarized as

follows.

All dependent variables are known a priori at the beginning of each cycle, either as a

result of the previous cycle or from the prescribed initial conditions. First, in the CFD
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Figure 3.2: Representative grid structure.

code, transport and thermodynamic properties of the medium are calculated using the

known temperature field. Then the spatial derivatives appearing in the governing flow

equations are evaluated using values of the present cycle, and the radial component

of velocity is determined by the direct utilization of the continuity equation, so that

divergence-free condition is ensured automatically. Then the corresponding pressure

gradients along the axial direction are calculated to ensure that the mass flow is

conserved. Once these calculations have been made, the time derivative vector is

calculated over the spatial domain, than it is sent to the ODE solver to compute

the dependent variables at the advanced time level. This completes the progression

of the solution to the end of the new cycle having the new values of the velocity

and temperature fields. This procedure is repeated until ODE solver reaches the

user defined time step tp and when the tp is reached the new temperatures at the

overlapping grid points of the coarse and fine meshes are transferred to the radiation

code which in turn provides radiative energy source term at the same grid points for

the CFD code. Source terms on the coarse mesh are redistributed to the fine mesh

of CFD code via 2-D interpolation. With these source terms, CFD code continues

marching in time. Upon the next call, the radiation code commences with the final

intensities from the previous call to obtain faster convergence. This cyclic procedure

is repeated until steady-state is reached. It is worth noting here that ∆tp is not

necessarily equal to the time step ∆tint chosen by the ODE solver. The ODE solver

chooses much smaller internal time steps ∆tint than ∆tp. Another role attributed to
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∆tp, other than being the time interval at which the code produces output, is that the

same source term field for the solution of fluid-flow equations is used throughout the

interval ∆tp. This is an approach called loosely coupled method which significantly

reduces the CPU time of the code without any comprise from accuracy.
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CHAPTER 4

PARALLEL IMPLEMENTATION OF THE
COUPLED CODE

4.1 General

In this chapter, parallel implementation of the sequential coupled code will be

explained by basic principles of parallelization.

4.2 Parallelization

Parallelization is a strategy for performing large and complex tasks with extensive

execution time and memory requirements. Such tasks can either be performed

sequentially, one step following another, or can be decomposed into smaller tasks

to be performed simultaneously, i.e. in parallel. Parallelization is carried out by

• Decomposing the task into smaller tasks

• Assigning the smaller tasks to multiple processors to work on simultaneously

• Communication among processors

In spite of the advances in the processor technology, the need to dissipate large amount

of energy in a small volume and the finite speed of light limit the maximum speed of

a single processor. Present day computers are reaching this limit, which is about

10 billions of instructions per second. This prevents the serial computers to be able

to perform the computation requirement in many of the scientific and engineering

problems [79–81]

The aforementioned limitation makes parallel computing an alternative over serial

one in many different areas which require handling of large amounts of data such as
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image processing, database applications, climate modelling, combustion systems and

turbulence etc.

4.3 Parallelization Strategy

One of the first steps in conceiving a parallel algorithm is decomposing a large

problem into smaller discrete ”chunks” of work that can be distributed to multiple

tasks, i.e., units of computation. This can be achieved in two ways; functional

decomposition and domain decomposition. In functional decomposition, the problem

is partitioned according to the work that must be done. Each task then performes

a portion of the overall work on different processors simultaneously. These tasks

may be considered as subroutines of the main program which do not require other’s

outputs as the inputs, hence, can be executed at the same time. In Figure 4.1 the

implementation of functional decomposition method is illustrated. Each block defined

by a letter represents a task. At the top of the figure the logical sequence of the tasks is

given, and at the bottom the way in which they are executed in the serial and parallel

cases are represented.

In domain decomposition, the main domain is divided into smaller domains, which are

called sub-domains. Each sub-domain can be considered as a domain. Calculations

are carried out independently in each sub-domain and their solutions are combined

to obtain solution for the main domain. In this technique, the neighbor sub-domains

require information exchange as they share the same boundary conditions in between

them. The schematic representation of the technique is shown in Figure 4.2.

In a recent study, carried out by Erşahin et al. [50] a MOL based DNS code has

been parallelized using domain decomposition technique by means of overlapping

boundary at the intergrid regions to provide the information exchange between the

sub-domains. Five point discretization scheme which necessitates at least three

points exchange among the neighbor sub-domains was utilized. In this thesis study

parallel implementation of the sequential coupled code is performed by utilizing the

methodology proposed by Erşahin et al. [50]. In this methodology each sub-domain is

assigned with a type which is determined according to the position of that sub-domain
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Figure 4.1: Functional decomposition.

relative to the other sub-domains. In other words, the first sub-domain near to inlet is

assigned as type-1, which includes an inlet boundary condition and an imaginary

boundary condition; the last sub-domain near exit is assigned as type-3, which

includes an imaginary boundary condition and an outlet boundary condition; and

the intermediate sub-domains are assigned as type-2, which include two imaginary

Domain

Sub-domainSub-domain

Figure 4.2: Domain decomposition.
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boundary conditions.

The information exchange between the sub-domains occurs at the adjacent imaginary

boundaries. For example, as depicted in Figure 4.3, the information exchange

between the sub-domains of type-1 and type-2 is provided through the transfer of

final three grid lines, i.e., nz-5, nz-4, nz-3 from sub-domain of type-1 to sub-domain

of type-2 which, in turn, sends the first three grid lines, i.e., 4, 5, 6. This protocol is

valid for all the information exchange between the sub-domains, regardless of their

types.

4.4 Parallel Implementation of the Coupled Code

As mentioned earlier, parallel implementation of the coupled code will be carried out

by using domain decomposition technique with overlapping grids at the imaginary

boundaries. At this point it is believed that the concept of information exchange

between the sub-domains should be explained in more detail since it constitutes the

core of domain decomposition technique. The variables to be exchanged are axial

velocity (u), temperature (T ) for the CFD code and intensity (I) for the radiation code.

5-point discretization scheme based on biased-upwind or biased-downwind stencils

used in the CFD code and 2-point upwind discretization scheme used in the radiation

code, necessitates, at least three points for the CFD code (See Figure 4.3) and one

point for the radiation code (See Figure 4.4) to be exchanged between the neighboring

sub-domains at user defined time steps. When Figure 4.4 is closely examined, it will

be seen that instead of transferring the intensities at all directions, only the direction

which will affect neighboring domain is transferred. For instance, in order for the

intensity field in the domain of type-1 (left domain) to feel the effect of the intensity

field in the domain of type-2 (right domain), the intensities at the boundaries with

negative z direction should be transferred from right to left and vice-versa.

4.5 Message Passing

Message passing provides the information exchange between the processors. There

are some software tools that provide this exchange; Parallel Virtual Machine (PVM)
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Figure 4.3: Three point exchange with six points overlap paradigm for the CFD code.
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Figure 4.4: One point intensity exchange with two points overlap paradigm for the radiation code.
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and Message Passing Interface (MPI) are two of them. Both MPI and PVM have

FORTRAN and C libraries, which provide subroutines for adding hosts, starting-

up and killing processes, receiving and sending information between the hosts.

These subroutines are called inside the program for communication among the

processors. In this study PVM is used as the message passing software because of

its compatibility in different computer architectures, our experience in PVM and its

freeware distribution.

In a message-passing algorithm there are two processes: master process and slave

processes. Master process starts necessary number of slave programs, coordinates

their jobs and communications between slaves and itself (Figure 4.5). The slave

processes are the parts where main task is performed. As many slave processes as

required may be started by spawning them in the master process. A task is assigned to

each slave by the master process and the slaves execute their own task with their own

data by making required communications during the runs. At some certain time steps

they send their intermediate solutions to master program and the master can obtain

the full solution by combining the intermediate solutions coming from all slaves.

4.6 Performance Criteria

The purpose of parallelization is to decrease execution time for the solution of a

problem. The performance of a parallel algorithm is evaluated with the following
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parameters:

• Speed-up

• Efficiency

• Cost

Speed-up is the measure of relative performance as a function of number of processors

employed. Speed-up is shown by S and is defined as,

S =
tsp

tmp

where, tsp and tmp represent the execution times, using a single processor and p

processors, respectively.

One other parameter for evaluating performance is the efficiency. It is abbreviated by

E and defined as,

E =
S
p

where S is the speed-up and p is the number of processors employed. Efficiency is

a measure of the fraction of the time that processors are being used for computation.

Hence higher the efficiency, larger the ratio of computation to communication time is.

Another parameter for performance evaluation is cost. Cost is simply total execution

time.

Cost = (ExecutionTime)× (Number o f Processors)

For high performance, the speed-up and efficiency should be as high as possible

whereas for an economical solution cost should be low.

4.7 Structure and Operation of the Parallel Code

Figure 4.6 summarizes the organization of parallel coupled code. The algorithm is

based on the master-slave paradigm, where the master process generates the grid

structure, sets the initial and physical boundary conditions, decomposes the domain
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into sub-domains having the same number of grid points, sets the (type) of each sub-

domain and sends the related information to the slave processes. The slave processes

with the instructions supplied perform the calculations for the sub-domains assigned

to them according to the types set by the master process, advance in time and exchange

necessary information between each other at user defined time steps tp and send

transient results to the master process for the development of the transient solution

until steady state is reached.
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Figure 4.6: Organization of parallel coupled code.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 General

The coupled code was applied to the prediction of heat transfer and flow charateristics

in thermally radiating laminar/turbulent flow of gray gases through axisymmetric

cylindrical geometries, and validated by comparing its predictions with the numerical

solutions available in the literature. The code was then applied to the prediction of

transient turbulent radiating flow of carbon dioxide through a cylindrical pipe with

an abrupt change in wall temperature. The effects of Reynolds number and upstream

propagation of radiation on the temperature and velocity fields were examined in

detail. In what follows, the respective test cases will be described and the results

obtained will be discussed.

5.2 Test Case I: Validation of the Coupled Code for Thermally
Radiating Laminar Pipe Flow

In order to assess the predictive accuracy of the coupled code, it was first applied to the

prediction of thermally radiating laminar gas flow through a circular pipe for which

numerical solution had been reported previously in the literature (Baek et al. [31]).

The temperature predictions of the code were benchmarked against the numerical

solution of Baek et al. [31].

The system under consideration consists of an absorbing emitting gray gas flowing

steadily through a cylindrical black-walled pipe of length L and diameter D as

depicted in Figure 5.1. The aspect ratio (D/L) is 0.1. The fluid enters the pipe with

a uniform temperature Tin and a fully developed laminar velocity profile. The flow

inside the pipe is hydrodynamically developed. The wall of the pipe is at constant
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Figure 5.1: Schematic representation of the system.

temperature, Tw, and the inlet to wall temperature ratio (Tin/Tw) is =0.6. The inlet

and outlet of the pipe are assumed to be radiatively black imaginary surfaces at fluid

temperature. The Péclet number (= Re.Pr) is equal to 200, and the optical thickness

of the medium, τD(= κD), is 0.5. The medium is incompressible with constant

thermophysical properties at atmospheric pressure. The imposed initial and boundary

conditions are listed in Table 5.1.

Table 5.1: Initial & boundary conditions.

I.C. @ t = 0 ∀r∧∀z : u = 0, v = 0, T = Tre f ~∇ ·~qR = 0

B.C. 1 @ the center ∀z∧∀t : ∂u
∂r = 0, v = 0, ∂T

∂r = 0

B.C. 2 @ the wall ∀z∧∀t : u = 0, v = 0, T = Tw

B.C. 3 @ the inlet ∀r∧∀t : u = uin, v = 0, T = Tin

B.C. 4 @ the outlet ∀r∧∀t : ∂2u
∂z2 = 0, ∂2v

∂z2 = 0, ∂2T
∂z2 = 0

Grid resolutions of 101 × 201 for the CFD code and 21 × 21 for radiation code

were employed in the computations in r and z directions, respectively. The

numerical calculations were performed for different values of wall temperature based

conduction-to-radiation parameter, Nw (= kκ
σT 3

w
= 1.0, 0.1, 0.05, 0.02, 0.008, 0.005) as

well as for no radiation case.

For varying values of conduction-to-radiation parameter, Nw, comparisons between

the predictions of Baek et al. [31] and those of the present code for the radial
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temperature profiles at z/L = 0.5 and the mixed mean temperature profiles along the

pipe were illustrated in Figures 5.2 and 5.3, respectively. As can be seen from the

figures, the predicted temperature profiles are in good agreement with the benchmark

solution.

Also in the figures the effect of radiation on the temperature field was illustrated. As

the conduction to radiation ratio decreases, the medium attain higher temperatures.

From Figure 5.2 it can be seen that only for the cases of no radiation and Nw =

1.0, the centerline temperatures are approximately equal to the inlet temperatures.

However as the value of conduction-to-radiation parameter, Nw, decreases, centerline

temperatures reach much higher values due to the far-reaching effect of radiation

emanating from hot walls. Furthermore, for the pipe length under consideration

mixed mean temperature of the medium can reach a constant value when Nw = 0.02,

Nw = 0.008 and Nw = 0.005 as depicted by Figure 5.3. This indicates that fully

developed conditions can only be observed for the abovementioned cases.

r / R

(T
/T

w
)

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Baek et al. [31]
Present study

1

2

3

4

5

6

7

1 : No Radiation
2 : Nw = 1.0
3 : Nw = 0.1
4 : Nw = 0.05
5 : Nw = 0.02
6 : Nw = 0.008
7 : Nw = 0.005

Figure 5.2: Effect of the conduction-to-radiation parameter, Nw, on the radial
temperature profile at z/L = 0.5.
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Figure 5.3: Effect of the conduction-to-radiation parameter, Nw, on the mixed mean
temperature.

5.3 Test Case II: Validation of the Coupled Code for Thermally
Radiating Turbulent Pipe Flow

The predictive accuracy of the coupled code for turbulent radiating flow was assessed

on the test problem of Smith et al. [21]. The system under consideration consists of

turbulent flow of a hot, radiatively absorbing, emitting gas through a black-walled

circular pipe. The schematic representation of the system is illustrated in Figure 5.4.

The aspect ratio of the system (D/L) is 0.2. The fluid enters the pipe with a fully

Tw

D

r

z

L

Fluid at Tin

Figure 5.4: Schematic representation of the system.
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developed turbulent velocity profile and uniform inlet temperature profile, Tin. The

flow inside the pipe is hydrodynamically developed and turbulent. Moreover, the

fluid exhibits constant thermophysical properties. The wall of the pipe is at constant

temperature, Tw and the inlet to wall temperature ratio, (Tin/Tw) is 2.5. At the inlet and

outlet of the pipe, radiatively black imaginary surfaces are assumed to exist. The inlet

imaginary surface is assigned the inlet gas temperature and outlet imaginary surface is

assumed at the outlet fluid bulk temperature. The Péclet number, Pe is equal to 10,000

and the Prandtl number, Pr is 0.71. The axial conduction is negligible within the gas.

The conduction-to-radiation parameter, Nre f (=
k

σT 3
re f

) based on reference temperature

is 0.01.

In the reference study [21], Smith et al. treated the medium as being both gray

and non-gray. For gray treatment the calculations were performed for optically

thin (τD = 0.1), intermediately thick (τD = 1.0), and thick (τD = 10.0) mediums,

whereas for non-gray treatment a real gas at a total pressure of 1.0 atm consisting

of an equimolal mixture of carbon dioxide and water vapor both existing at a partial

pressure of 0.1 atm was considered. For the prediction of the radiative properties

of the medium the weighted sum of gray gases model was utilized. The results

obtained by the authors point out that in terms of radiative properties the system

can be reasonably described by a gray gas with τD = 0.1. Having this in mind, the

coupled code was executed for optically thin medium (τD = 0.1) with the prescribed

conditions. Grid independent solutions were obtained for the grid resolutions of

101×501 and 11×51 for CFD and radiation codes, respectively. The imposed initial

and boundary conditions are tabulated in Table 5.2.

Figures 5.5-5.9 show the comparisons between the predictions of the present study

and those of Smith et al. [21] for radial temperature profiles at different axial

locations. As can be seen from the figures, the predicted temperature profiles are

in good agreement with the numerical solution of Smith et al. [21] and the sharp

temperature gradients occuring in the viscinity of the wall were well captured by the

code.
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Table 5.2: Initial & boundary conditions.

I.C. @ t = 0 ∀r∧∀z : u = 0, v = 0, T = Tre f ~∇ ·~qR = 0

B.C. 1 @ the center ∀z∧∀t : ∂u
∂r = 0, v = 0, ∂T

∂r = 0

B.C. 2 @ the wall ∀z∧∀t : u = 0, v = 0, T = Tw

B.C. 3 @ the inlet ∀r∧∀t : u = uin, v = 0, T = Tin

B.C. 4 @ the outlet ∀r∧∀t : ∂2u
∂z2 = 0, ∂2v

∂z2 = 0, ∂2T
∂z2 = 0
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Figure 5.5: Radial temperature profile at z=80 cm.
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Figure 5.6: Radial temperature profile at z=180 cm.
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Figure 5.7: Radial temperature profile at z=280 cm.
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Figure 5.8: Radial temperature profile at z=380 cm.
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Figure 5.9: Radial temperature profile at z=500 cm.
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5.4 Test Case III: Transient Simulation of Laminar/Turbulent,
Radiating Flow of Carbon dioxide

Having validated the predictive accuracy of the coupled code for steady,

laminar/turbulent, radiating pipe flows, the predictive performance of the code for

the transient radiating flows is tested on the test problem described below.

The physical system under consideration consists of laminar/turbulent flow of carbon

dioxide at atmospheric pressure through a black-walled circular pipe subject to an

abrupt change of the wall temperature at the abscissa z = l0. The diameter of the

pipe D is 20 cm, and the solution domain in axial direction covers a region of 200

cm starting from 20 cm upstream from the temperature change point (L = 200 cm

and l0 = 20 cm). The schematic representation of the system is demonstrated in

Figure 5.10. The wall temperature is Tw1 (500 K) in the region upstream of the

heating section z ≤ l0, and Tw2 (1500 K) in the region downstream from the heating

section z > l0. The temperature dependence of the fluid thermophysical and radiative

properties have been accounted for.

Tw,2

D

r

z

L

Fluid at Tin

l0

Tw,1

Figure 5.10: Schematic diagram of the system.

The numerical calculations were performed for two different Reynolds number of

2,000 and 10,000 based on the average velocity. The grid resolutions used in the

simulations are 101 × 401 for the CFD code and 11 × 41 for the radiation code

in r- and z-directions, respectively. The code was executed until steady-state on a

single processor (Pentium III 1000MHz with 1000MB RAM).For Reynolds numbers

of 2,000 and 10,000 the code used about 16.2 h (tst = 3.6 s) and 6.5 h (tst = 1.6 s) of

CPU time, respectively.
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The imposed initial and boundary conditions are tabulated in Table 5.3.

Table 5.3: Initial & boundary conditions.

I.C. @ t = 0 ∀r∧∀z : u = 0, v = 0, T = Tre f ~∇ ·~qR = 0

B.C. 1 @ the center ∀z∧∀t : ∂u
∂r = 0, v = 0, ∂T

∂r = 0

B.C. 2 @ the wall ∀z∧∀t : u = 0, v = 0, T = Tw

B.C. 3 @ the inlet ∀r∧∀t : u = uin, v = 0, T = Tin

B.C. 4 @ the outlet ∀r∧∀t : ∂2u
∂z2 = 0, ∂2v

∂z2 = 0, ∂2T
∂z2 = 0

Figures 5.11 and 5.12 illustrate from left to right, the time development of

temperature (a), velocity (c) and radiative source term (c) fields for Re = 2,000 and

Re = 10,000, respectively.

Examination of the temperature fields in Figure 5.11.(a) reveals that the temperature

of the medium increases rapidly with time due to pronounced effect of radiation

emanating from the hot wall. At t = 2.4 s and z > 130 the medium temperature

reaches the wall temperature. Also, as can be seen from the figure, the temperature in

the upstream region of heating section (z < l0) increases due to axial propagation of

radiation.

Inspection of the corresponding velocity fields in Figure 5.11.(b) shows an

acceleration in the flow with time due to increasing medium temperature. As

can be seen from the figure the velocity and temperature wave fronts propagate

simultaneously.

The time development of radiative energy source term field is illustrated in

Figure 5.11(c). The radiative energy source term corresponds to the difference

between the emitted and absorbed energies. Therefore it is directly influenced by

the temperature field. Since the temperature of the medium decreases from the wall

to the centerline, the emitted energy also decreases and this leads to a decrease in

radiative energy source terms.
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Figure 5.12 illustrates the time development of above mentioned variables for Re =

10,000 case. As can be seen from Figure 5.12.(a), the heat released from the wall can

penetrate only a small portion towards the center for this case. A comparison between

the Re = 2,000 and Re = 10,000 cases reveals that upstream propagation of radiation

observed for the Re = 10,000 case is not as pronounced as that for the Re = 2,000

case due to high velocity flow.

Figure 5.12.(b) illustrates the time development of velocity field for Re = 10,000

case. When the figure is inspected, it is seen that with the effect of radiation the

near wall region heats up rapidly resulting in a decrease in the density. Although it is

expected to obtain relatively lower velocities in this region, the decrease in the density

counterbalances viscous forces and results in higher velocities than that observed in a

typical convection dominated turbulent flow.
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t = 0.1s

t = 0.6s

t = 1.2s

t = 2.4s

t = 3.6s
(a) (b) (c)

Figure 5.11: Time development of temperature (a), velocity (b) and radiative energy source term (c) fields at Re = 2,000.
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t = 0.2s

t = 0.4s

t = 0.6s

t = 0.8s

t = 1.6s
(a) (b) (c)

Figure 5.12: Time development of temperature (a), velocity (b) and radiative energy source term (c) fields at Re = 10,000.
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5.5 Performance of the Parallel Code

The simulations carried out by sequential and parallel codes show that parallel code

reproduces the same results with the sequential code. The performance of the

sequential and parallel codes was investigated by examining two performance criteria,

speed-up and efficiency. For comparative purposes, computations were carried out for

the Re=10,000 case of Test Case III using the same grids and time steps and final time.

The execution was performed on a parallel cluster which consists of

• 1 dual processor PC with 1000MB RAM (Pentium III 1000MHz)

• 1 dual processor PC with 512MB RAM (Pentium III 700MHz)

running on Red Hat Linux 7.3 with Open Mosix kernel (2.4.22) connected via

10/100Mbps switch.

For the same conditions stated above the parallel code was found to use about 2.1 h

of CPU time whereas the sequential code had used 6.5 h. Based on this values the

speed-up and efficiency values were calculated as 3.1, and 77%, respectively.

63



CHAPTER 6

CONCLUSIONS

Predictive accuracy of the previously developed coupled code was tested by applying

it to the prediction of heat transfer and flow characteristics in thermally radiating

laminar/turbulent flow of gray gases through axisymmetric cylindrical geometries,

and validated by comparing its steady-state predictions with the numerical solutions

available in the literature. Having validated the predictive accuracy of the coupled

code for steady laminar/turbulent radiating pipe flows, the performance of the code

for transient radiating flows was tested on a more realistic test problem involving

laminar/turbulent flow of carbon dioxide through a circular pipe. Based on the

numerical experimentations, the following conclusions are reached.

• The coupled code is able to produce accurate results for laminar pipe flow of

gray gases in the presence of weak, moderate or strong thermal radiation.

• For laminar conditions the effect of radiation on the temperature field is more

pronounced than that in turbulent conditions.

• The coupled code can produce accurate results for turbulent conditions.

• Parallelization is a useful tool for reducing the CPU time.

6.1 Suggestions for Future Work

Based on the experience gained in the numerical experimentation, the following

recommendations for future extension of the work are suggested.

• As turbulence is a three-dimensional phenomena, for more accurate DNS

applications three-dimensional formulation of the code is required.
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• Accurate calculation of the radiative energy source terms must include the

effects of turbulent fluctuations, hence the coupling of nonlinear turbulence

effects is particularly important.

• Since the radiative properties of a medium depends on wavelength, a non-gray

radiation model can be developed and incorporated into the coupled code.
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[53] N. Selçuk, A. Batu, and I. Ayranci, “Performance of method of lines solution
of discrete ordinates method in the freeboard of a bubbling fluidized bed
combustor”, Journal of Quantitative Spectroscopy and Radiative Transfer,
vol. 37, pp. 379–392, 2002.

70
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APPENDIX A

ORDINATES AND WEIGHTS FOR SN

APPROXIMATIONS

Table A.1: Discrete ordinates for the SN approximation for axisymmetric cylindrical
geometry.

Order of approximation Ordinates Weights

µm ηm ξm wm

S2 0.5000000 0.7071068 0.5000000 3.1415927

S4 0.2958759 0.2958759 0.9082483 1.0471976

0.2958759 0.9082483 0.2958759 1.0471976

0.9082483 0.2958759 0.2958759 1.0471976

S6 0.1838670 0.1838670 0.9656013 0.3219034

0.1838670 0.6950514 0.6950514 0.7252938

0.6950514 0.1838670 0.6950514 0.7252938

0.1838670 0.9656013 0.1838670 0.3219034

0.6950514 0.6950514 0.1838670 0.7252938

0.9656013 0.1838670 0.1838670 0.3219034

S8 0.1422555 0.1422555 0.9795543 0.3424718

0.1422555 0.5773503 0.8040087 0.1984568

0.5773503 0.1422555 0.8040087 0.1984568

0.1422555 0.8040087 0.5773503 0.1984568

0.5773503 0.5773503 0.5773503 0.9234358

0.8040087 0.1422555 0.5773503 0.1984568

0.1422555 0.9795543 0.1422555 0.3424718

0.5773503 0.8040087 0.1422555 0.1984568

0.8040087 0.5773503 0.1422555 0.1984568

0.9795543 0.1422555 0.1422555 0.3424718
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APPENDIX B

SOURCE CODE OF THE SEQUENTIAL PROGRAM

B.1 Program SEQUENTIAL

!########################################################################
program sequential
use common_header
implicit none

!########################################################################
!...
!... set the version of the program

version = 1 !UNIX
! version = 2 !DOS
!... beginning of the program

call cpu_time(timestart)
!...
!... set working path

call execution_directory
!...
!... sequential code parameters

nos = 0
nostype = 0

!...
!... perform everything before time integration

call initial
!...
!... perform time integration
100 call time_integration

!...
!... check for the end of the run

tout = time + delt
if(time <= (tf-0.5d0*delt)) goto 100

!...
!... end of the program

call cpu_time(timeend)
!...
!... write the cpu time

cpu = (timeend - timestart)
write(*,920) cpu

!...
!... formats

920 format (1x,’cpu of program :’,1f12.2)
!...
!########################################################################

end program sequential
!########################################################################
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APPENDIX C

SOURCE CODE OF THE PARALLEL PROGRAM

C.1 Program MASTER

!########################################################################
program master
use master_and_slave_header
use common_header
implicit none

!########################################################################
!... set the type of the program

version = 1 !UNIX
!...
!... beginning of the program master

call cpu_time(timestart)
!...
!... set working path

call execution_directory
!...
!... read input data from file ’data.in’

call read_parameters
!...
!... allocate the arrays used in master program

call allocate_pvm
!...
!... start pvm
! call pvmfstartpvmd (start,2,info)

write(*,912)
write(*,901)

!...
!...

call pvmfmytid(mytid)
call pvmfspawn(pathmaster, pvmdefault,’*’, ndomain, itids, info)

!...
!... error check

if (info .lt. ndomain) then
write (*,902)
write (*,903) info
else
write (*,904) info
endif
write (*,905) mytid
nerror=0

!...
!... spawn slaves

do nos = 1, ndomain
nostype = 2
if (nos == 1 ) nostype = 1
if (nos == ndomain) nostype = 3
write (*,906) nos, itids(nos)
call pvmfinitsend (1, info)
call pvmfpack (integer4, ndomain, 1, 1, info)
call pvmfpack (integer4, itids(1), ndomain, 1, info)
call pvmfpack (integer4, lp, 1, 1, info)
call pvmfpack ( string, path, lp, 1, info)
call pvmfpack (integer4, nos, 1, 1, info)
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call pvmfpack (integer4, nostype, 1, 1, info)
call pvmfsend ( itids(nos), 1, info)
enddo

!...
!...

write (*,912)
write (*,910)
write (*,912)
write (*,919) t0,tf,delt,nframe

!...
!... receive the number of grid points from slaves

do nos=1,ndomain
call pvmfrecv (itids(nos),1, info)
call pvmfunpack (integer4, nostype, 1, 1, info)
call pvmfunpack (integer4, nz_1, 1, 1, info)
call pvmfunpack (integer4, nz_2, 1, 1, info)
call pvmfunpack (integer4, nz_3, 1, 1, info)
call pvmfunpack (integer4, nz_4, 1, 1, info)
call pvmfunpack (integer4, nz_5, 1, 1, info)
call pvmfunpack (integer4, nr, 1, 1, info)
call pvmfunpack (integer4, nz, 1, 1, info)
call pvmfunpack (integer4, nr_rad, 1, 1, info)
call pvmfunpack (integer4, nz_rad, 1, 1, info)
call pvmfunpack (real8, dstart, 1, 1, info)
call pvmfunpack (real8, dend, 1, 1, info)
call pvmfunpack (real8, dstart_rad, 1, 1, info)
call pvmfunpack (real8, dend_rad, 1, 1, info)
write (*,912)
write (*,913) nos, nostype
write (*,912)
write (*,914) nz_1
write (*,915) nz_2
write (*,916) nz_3
write (*,928) nz_4
write (*,929) nz_5
write (*,917) nr
write (*,918) nz
if (icode == 1) then
write (*,922) nr_rad
write (*,923) nz_rad
endif
write (*,924) dstart
write (*,925) dend
if (icode == 1) then
write (*,926) dstart_rad
write (*,927) dend_rad
endif

if (nz_1 /= 0) n1 = nos
if (nz_2 /= 0) n2 = nos
if (nz_3 /= 0) n3 = nos
if (nz_4 /= 0) n4 = nos
if (nz_5 /= 0) n5 = nos
if (nz /= 0) nnz = nos
enddo
write (*,912)

! write(*,*)’before unpack’
!...
!... unpack the informations sent by slaves
1 do nos = 1, ndomain

call pvmfrecv (itids(nos), 1, info)
call pvmfunpack (real8, time_nos(nos), 1, 1, info)
if (mech_no >= 0) then
call pvmfunpack (real8, x_ch4_1_nos(nos), 1, 1, info)
call pvmfunpack (real8, x_ch4_2_nos(nos), 1, 1, info)
call pvmfunpack (real8, x_ch4_3_nos(nos), 1, 1, info)
endif
call pvmfunpack (real8, u_1_nos(nos), 1, 1, info)
call pvmfunpack (real8, u_2_nos(nos), 1, 1, info)
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call pvmfunpack (real8, u_3_nos(nos), 1, 1, info)
call pvmfunpack (real8, u_nz_nos(nos), 1, 1, info)
call pvmfunpack (real8, t_1_nos(nos), 1, 1, info)
call pvmfunpack (real8, t_2_nos(nos), 1, 1, info)
call pvmfunpack (real8, t_3_nos(nos), 1, 1, info)
call pvmfunpack (real8, t_nz_nos(nos), 1, 1, info)

! write (99,*) ’time =’,time_nos(nos),nos
enddo

! write(*,*)’after unpack’
!...
!...

if (mech_no == -1) then
write(*,400) &

time_nos(1) &
, u_1_nos(n1) , u_2_nos(n3) ,u_3_nos(n5), u_nz_nos(nnz) &
, t_1_nos(n1) , t_2_nos(n3) ,t_3_nos(n5), t_nz_nos(nnz)

endif
!...

if (mech_no >= 0) then
write(*,400) &

time_nos(1) &
, x_ch4_1_nos(n1), x_ch4_2_nos(n2),x_ch4_3_nos(n3) &
, u_1_nos(n1) , u_2_nos(n3) ,u_3_nos(n5), u_nz_nos(nnz) &
, t_1_nos(n1) , t_2_nos(n3) ,t_3_nos(n5), t_nz_nos(nnz)

endif
!...
!... receive slave’s cpu time at each time step

do nos = 1, ndomain
call pvmfrecv (itids(nos), 1, info)
call pvmfunpack (real8, cpu_nos(nos), 1, 1, info)
enddo
cpu = cpu + maxval(cpu_nos)

!...
!... check for the end of the run

if(time_nos(1) <= (tf-0.5d0*delt)) goto 1
!...
!... end of the program

call cpu_time(timeend)
!...
!... write the cpu time

write (*,920) cpu
cpu = (timeend - timestart)
write (*,921) cpu

!...
!... finish the program

call pvmfexit (info)
write (*,*) ’Program Ends!’

!...
!... formats

100 format (10h zone i=,i3,2h, ,6h j=,i3,2h, ,10h f=point )
200 format (8e16.5)
300 format (35e16.5)
400 format (1f8.6,13f11.5)
901 format (1x,’PVM started’)
902 format (’Error in spawning the tasks!’)
903 format (’Only ’,I1,’ task(s) is(are) spawned!’)
904 format (1x,I2,’ tasks are spawned...’)
905 format (1x,’Task ID of master :’, I7)
906 format (1x,’Task ID of slave’,I2,’ :’, I7)
910 format (1x,’time integration parameters:’)
911 format (1x,’domain’,I2,’ :’,’ delt= ’,1f6.5,’ tf= ’,1f6.4)
912 format (1x,’========================================’)
913 format (1x,’* domain’,I2,’ (nostype:’,I1,’)’,’ *’)
914 format (1x,’nz 1 :’,I8)
915 format (1x,’nz 2 :’,I8)
916 format (1x,’nz 3 :’,I8)
928 format (1x,’nz 4 :’,I8)
929 format (1x,’nz 5 :’,I8)
917 format (1x,’pts. in r dir. in flow :’,I8)
918 format (1x,’pts. in z dir. in flow :’,I8)
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922 format (1x,’pts. in r dir. in rad. :’,I8)
923 format (1x,’pts. in z dir. in rad. :’,I8)
924 format (1x,’flow domain starts at :’,1f11.6)
925 format (1x,’flow domain ends at :’,1f11.6)
926 format (1x,’rad. domain starts at :’,1f11.6)
927 format (1x,’rad. domain ends at :’,1f11.6)
919 format (1x,’initial time :’,1f8.6/ &

1x,’final time :’,1f8.6/ &
1x,’time step :’,1f8.6/ &
1x,’# of frame :’,I8)

920 format (1x,’cpu of slaves :’,1f12.2)
921 format (1x,’cpu of master :’,1f12.2)

!########################################################################
end program master

!########################################################################
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C.2 Program SLAVE

!########################################################################
program slave
use master_and_slave_header
use common_header
implicit none

!########################################################################
!... set the type of the program

version = 1 !UNIX
!...
!... start slave

call pvmfparent (mtid)
call pvmfmytid (mytid)

!...
!... recieve task ID and nos info from master

call pvmfrecv (mtid, 1, info)
call pvmfunpack (integer4, ndomain, 1, 1, info)

!...
!... allocate the arrays used in master program

call allocate_pvm
call pvmfunpack (integer4, itids(1), ndomain, 1, info)
call pvmfunpack (integer4, lp, 1, 1, info)
call pvmfunpack ( string, path, lp, 1, info)
call pvmfunpack (integer4, nos, 1, 1, info)
call pvmfunpack (integer4, nostype, 1, 1, info)

!...
!... check for error

if (nos .lt. 0) then
nerror=-nos
call pvmfexit (info)
stop

endif
!...
!... perform everything before time integration

call initial
!...
!... send the number of grid points to master

call pvmfinitsend (1, info)
call pvmfpack (integer4, nostype, 1, 1, info)
call pvmfpack (integer4, nz_1, 1, 1, info)
call pvmfpack (integer4, nz_2, 1, 1, info)
call pvmfpack (integer4, nz_3, 1, 1, info)
call pvmfpack (integer4, nz_4, 1, 1, info)
call pvmfpack (integer4, nz_5, 1, 1, info)
call pvmfpack (integer4, nr, 1, 1, info)
call pvmfpack (integer4, nz, 1, 1, info)
call pvmfpack (integer4, nr_rad, 1, 1, info)
call pvmfpack (integer4, nz_rad, 1, 1, info)

!...
!... send the domain info to master

call pvmfpack (real8, domstr(nos), 1, 1, info)
call pvmfpack (real8, domend(nos), 1, 1, info)
call pvmfpack (real8, domstr_rad(nos), 1, 1, info)
call pvmfpack (real8, domend_rad(nos), 1, 1, info)
call pvmfsend (mtid, 1, info)

!...
!... beginning of the time integration
100 continue

call cpu_time(timestart)
!...
!... perform time integration

call time_integration
!...
!... boundary exchange between the domains

call boundary_transfer
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!... send information to master
call pvmfinitsend (1, info)
call pvmfpack (real8, time, 1, 1, info)
if (mech_no >= 1) then
call pvmfpack (real8,x(ich4,1,nz_1), 1, 1, info)
call pvmfpack (real8,x(ich4,1,nz_3), 1, 1, info)
call pvmfpack (real8,x(ich4,1,nz_5), 1, 1, info)
endif
call pvmfpack (real8, u(1,nz_1), 1, 1, info)
call pvmfpack (real8, u(1,nz_3), 1, 1, info)
call pvmfpack (real8, u(1,nz_5), 1, 1, info)
call pvmfpack (real8, u(1,nz ), 1, 1, info)
call pvmfpack (real8, t(1,nz_1), 1, 1, info)
call pvmfpack (real8, t(1,nz_3), 1, 1, info)
call pvmfpack (real8, t(1,nz_5), 1, 1, info)
call pvmfpack (real8, t(1,nz ), 1, 1, info)
call pvmfsend (mtid, 1, info)

!...
!... send cpu of slave

call cpu_time(timeend)
cpu = (timeend-timestart)
call pvmfinitsend (1, info)
call pvmfpack (real8, cpu, 1, 1, info)
call pvmfsend (mtid, 1, info)

!...
!... check for the end of the run

tout = time + delt
if(time <= (tf-0.5d0*delt)) goto 100

!...
!... end of the slave

call pvmfexit (info)
!...
!########################################################################

end program slave
!########################################################################
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