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ABSTRACT 
 
 

IMPLEMENTATION OF A RISC MICROCONTROLLER USING FPGA 
 
 
 

GÜMÜŞ, Raşit 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. HASAN GÜRAN 

 

June 2005, 88 pages 

 

 

 

In this thesis a microcontroller core is developed in an FPGA. Its instruction set is 

compatible with the microcontroller PIC16XX series by Microchip Technology. 

The microcontroller employs a RISC architecture with separate busses for 

instructions and data. Our goal in this research is to implement and evaluate the 

design in the FPGA. Increasing performance and gate capacity of recent FPGA 

devices permits complex logic systems to be implemented on a single 

programmable device. Such a growing complexity demands design approaches, 

which can lead to designs containing millions of logic gates, memories, high-

speed interfaces, and other high-performance components. In recent years, the 

continuous development in the area of highly integrated circuits has lead to a 

change in the design methods used, making it possible to economically utilize 

FPGAs in many designs. 

A test demo board from the Digilent Inc is used to fit our testing requirements of 

the RISC microcontroller. The test demo board also had the capability of 

communicating with a personal computer (PC) so that we can load the program 

from PC. Based on the modern design methods the microcontroller core is 

developed using the Verilog hardware description language. Xilinx ISE 



 v

Foundation 6.3i software is used for its synthesis and implementation. An 

embedded test program code using MPLAB is also developed, and then loaded 

into the designed microcontroller residing in the FPGA. In order to perform a 

functional test of the microcontroller core a special test program downloader 

application is designed by using Borland C++ Builder. 

 

First, the specification from the PIC16XX datasheet is transferred into an abstract 

behavioral description. Based on that, the next step is to develop a description of 

the microcontroller core with some minor modifications which can be 

synthesizable into a FPGA. Finally, the resulting gate level netlist is evaluated and 

tested using a demo board.  

 

 

Keywords: RISC, CISC, Microcontroller, PIC, Field Programmable Gate Arrays, 

Xilinx, Verilog 
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ÖZ 
 
 

FPGA KULLANARAK RISC MIKRODENETLEYİCİ 

GERÇEKLEŞTİRMESİ 

 
 
 

GÜMÜŞ, RAŞİT 
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Hasan GÜRAN 

 

Haziran 2005, 88 sayfa 

 

 

 

Bu tezde bir mikrodenetleyici çekirdeği geliştirilmiş ve gerçekleştirilmiştir. 

Mikrodenetleyicinin komut kümesi, Microchip firmasının PIC16 serisi 

mikrodenetleyicileri ile uyumludur. Bu mikrodenetleyicide RISC mimarisi 

kullanılmış olup, veri yolu ve komut kütüphanesi veri yolu ayrıdır. Bu 

araştırmadaki amacımız, mikrodenetleyicinin FPGA üzerinde tasarlanması ve 

gerçekleştirilmesidir. Günümüzdeki FPGA’lerin hem performans hemde lojik kapı 

kapasitesinin gelişmiş olması, karmaşık sistemlerin tek bir programlanabilir 

enntegrelerde gerçekleştirilmelerine imkan vermiştir. Bu gittikçe artan karmaşık 

sistemler, tasarımların milyonlarca lojik kapı, hafıza, yüksek hızlı arayüz ve diğer 

yüksek performanslı bileşenler içeren bir tasarım yaklaşımı istemektedir. Son 

yıllardaki yonga teknolojisindeki sürekli gelişmeler, tasarım metodlarının 

değişmesine sebeb olmuştur, bu da FPGA’lerin ekonomik olarak birçok tasarımda 

kullanılmalarına olanak sağlamıştır. 

 Tasarladığımız mikrodenetleyicinin test ihtiyaçları için Digilent firmasının bir 

demo kartı kullanılacaktır. Bu demo kartı bilgisayar ile haberleşebilme özelliğine 

sahip olduğundan, tasarladığımız gömülü yazılımı FPGA üzerine 
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yükleyebilmemize olanak sağlamaktadır. Mikrodenetleyici çekirdeği günümüz 

modern tasarım metodlarını baz alarak, Verilog donanım tanımlama dilini 

kullanarak geliştirilmiştir. Xilinx firmasının ISE Foundation 6.3i yazılımı 

sentezleme ve gerçekleştirme işlemlerinde kullanılmıştır. Ayrıca bir gömülü test 

yazılımı MPLAB kullanarak yazılıp, FPGA’e  yüklenmiştir. Mikrodenetleyici 

çekirdeğinin , fonksiyonel testlerinin yapılabilmesi için, PC’den FPGA’e gömülü 

yazılım yüklemek için , Borland C++ Builder kullanarak , bir program yükleme 

yazılımı da geliştirilmiştir. 

 

İlk once PIC16XX veri sayfalarından tasarım belirtimleri , donanım hareket 

betimlerine dönüştürülmüştür. Bundan sonraki adım, FPGA üzerine çok az bir 

değişiklikle sentezlenebilir bir mikrodenetleyici çekirdeğinin  geliştirilmesi 

olmuştur. Son olarak  kapı seviyesinde oluşturulan bağlantı listesi, demo kartı 

kullanılarak test edilmiştir.  

  

 

Anahtar Kelimeler : RISC, CISC, Mikrodenetleyici, PIC, Saha Programlanabilir 

Kapı Dizisi, Xilinx, Verilog 
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CHAPTER 1 

 

INTRODUCTION 

 

 

The aim of this thesis is to design the complete processor core of Microchip 

PIC16XX and slightly modify its architecture and instruction set. The designed 

microcontroller will be implemented by using an FPGA. 

1.1. Central Processing Unit 

The central processing unit is the brain of the computer system that manages the 

flow of information. A central processing unit normally contains three main 

components: a control unit, an arithmetic and logic unit and a register collection. It 

is the control unit which is responsible for the control and synchronization of the 

actions of the processor. Thus, the control unit is the most complicated part of the 

system, and the one which characterizes the CPU. Figure 1.1 shows the block 

diagram of a basic computer system. A basic computer system must have the 

standard elements CPU, memory and I/O. All these elements communicate via the 

system bus, which is composed by the data, address buses [1]. 

  

The CPU has the ability to understand and execute instructions based on a set of 

binary codes, each representing a simple operation. These instructions are usually 

arithmetic, logic, data movement, or branch operations, and are represented by a 

set of binary codes called the instruction set. The memory, is used to store all the 

programs formed by the instruction set and all the require data. I/O interface 

provide an interconnection with the outside world, such as the keyboard as an 

input and the monitor as an output. 
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CPU
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I/O Interface
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Address Bus

ROM

 

 

Figure 1.1.  Basic Computer System Architecture 

 

Minicomputers and mainframe computers, have CPUs consisting multiple ICs, 

ranging from several ICs (minicomputers) to several circuit boards of ICs 

(mainframes). This is necessary to achieve the high speeds and computational 

power of larger computers. On the other hand, the CPU of a microcomputer is 

contained in a single integrated circuit. They are known as a microprocessor [2]. 

 

1.2. Microcontroller 

It was pointed out above that microprocessors are single-chip CPUs used in 

microcomputer. A microcontroller contains, in a single IC, a CPU and much of the 

remaining circuitry of a basic computer system. A microcontroller has the CPU, 

memory (RAM, ROM) and the I/O interface (parallel, serial) all within the same 

IC. Of course, the amount of on-chip memory does not approach that of even a 

modest microcomputer system [3]. 

 

Microprocessors are most commonly used as the CPU in microcomputer systems. 

Microcontrollers, on the other hand, are found in small, minimum-component 
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designs performing control-oriented activities. These designs were often 

implemented in the past using dozens or even hundreds of ICs. A microcontroller 

aids in reducing the overall component count. All that is requires is 

microcontroller, a small number of support components, and a control program in 

ROM. 

 

There are two fundamental microcontroller architectures to access memory in the 

industry.  

 

John Von Neumann's Architecture: One shared memory for instructions 

(program) and data with one data bus and one address bus between processor and 

memory. Instructions and data have to be fetched in sequential order (known as 

the Von Neuman Bottleneck), limiting the operation bandwidth. Its design is 

simpler than that of the Harvard architecture. It is mostly used to interface to 

external memory.  Examples of processors using this type of architecture are the 

Motorola MC68HC11 and Intel 8051 [3]. 

 

 Harvard Architecture: The Harvard architecture uses physically separate 

memories for their instructions and data, requiring dedicated buses for each of 

them. Instructions and operands can therefore be fetched simultaneously.This type 

of architecture speeds up execution but requires more silicon. PIC 

microcontrollers from Microchip Technology Inc. use this type of architecture. 

Different program and data bus widths are possible, allowing program and data 

memory to be better optimized to the architectural requirements. E.g.: If the 

instruction format requires 14 bits then program bus and memory can be made 14-

bit wide, while the data bus and data memory remain 8-bit wide[3].  
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1.3. Complex Instruction Set Computer (CISC) 

In early days, computers had only a small number of instructions and used simple 

instruction sets, forced mainly by the need to minimize the hardware used to 

implement them. As digital hardware become cheaper, computer instructions 

tended to increase both in number and complexity. These computers also employ a 

variety of data types and a large number of addressing modes. A computer with a 

large number of instructions, are known as complex instruction set computer, 

abbreviated CISC [3]. 

 

Major characteristics of CISC architecture are: 

 

• A large number of instructions – typically from 100 to 250 instructions 

• Some instructions that perform specialized tasks and are used infrequently 

• A large variety of addressing modes – typically from 5 to 20 different 

modes 

• Variable-length instruction formats 

• Instructions that manipulate operands in memory 

 

1.4. Reduced Instruction Set Computer (RISC) 

In the early 1980s, a number of computer designers were questioning the need for 

complex instruction sets used in the computer of the time. In studies of popular 

computer systems, almost 80% of the instructions are rarely being used. So they 

recommended that computers should have fewer instructions and with simple 

constructs. This type of computer is classified as reduced instruction set computer 

or RISC. The term CISC is introduced later to differentiate computers designed 

using the ‘old’ philosophy. The first characteristic of RISC is the uniform series of 

single cycle, fetch-and-execute operations for each instruction implemented on the 

computer system. 
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A single-cycle fetch can be achieved by keeping all the instructions a standard 

size. The standard instruction size should be equal to the number of data lines in 

the system bus, connecting the memory (where the program is stored) to the CPU. 

At any fetch cycle, a complete single instruction will be transferred to the CPU. 

For instance, if the basic word size is 32 bits, and the data port of the system bus 

(the data bus) has 32 lines, the standard instruction length should be 32-bits. 

 

Achieving uniform (same time) execution of all instructions is much more 

difficult than achieving a uniform fetch. Some instructions may involve simple 

logical operations on a CPU register (such as clearing a register) and can be 

executed in a single CPU clock cycle without any problem. Other instructions may 

involve memory access (load from or store to memory, fetch data) or multicycle 

operations (multiply, divide, floating point), and may be impossible to be executed 

in a single cycle [3]. 

 

The characteristics of RISC architecture are summarized as follow: 

 

• Single-cycle instruction execution 

• Fixed-length, easily decoded instruction format 

• Relatively few instructions 

• Relatively few addressing modes 

• Memory access limited to move instructions 

• All operations done within the RAM and working register of the CPU 

 

1.5. Microchip PIC16XX 

The Microchip PIC family of microcontrollers was introduced in 1989 by Arizona 

Microchip. Microchip (as they are now known) bought General Instruments’ 

microelectronics division as a start-up company in 1988. They re-engineered a 

programmable interface device that General Instruments were using as a general-
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purpose reconfigurable input/output port for their microprocessor as a stand-alone 

microcomputer. These were called the PIC (Programmable Interface Controller) 

family. The second generation of this family was introduced in 1994, which are 

PIC16XX family. The core processor is similar within the 14-bit family members 

and software is identical. PIC16XX based on a RISC architecture which has 33 

instructions [4].  

1.6. Objectives 

The main objective of this project is to design a RISC microcontroller using 

verilog and implement it in an FPGA. The microcontroller instruction set and the 

basic features are based on Microchip PIC16XX RISC microcontroller family. 

The objective also includes the architecture expansion of the microcontroller 

without changing the core structure. 

1.7. Work Scope 

The aim of the project is to design the complete processor core of Microchip 

PIC16XX and slightly modify its architecture and instruction set. The 

microcontroller must be able to fit into the targeted FPGA device, which is Xilinx 

Spartan IIE Digilent evaluation board.  
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CHAPTER 2 

 

 

DESIGN PROCESS FLOW AND TOOLS 

 

 

2.1. Design Process 

 

 

 

Figure 2.1. Design Process Flow 

 

 

Figure 2.1 shows the design process of the project and their related CAD tools. 

The design process can be divided into 2 main parts – hardware design (with 

verilog) and hardware implementation. 
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Hardware design is done with the related CAD tools. The first step in the 

hardware design is to prepare the specification of the design (the microcontroller). 

The architecture and the instruction set must be understood completely. The 

design ideas are then described with verilog in a text editor. Then, the verilog code 

is synthesized with XILINX XST. If synthesized successfully, XILINX XST will 

generate a bit file. This file is then loaded to the FPGA on the demo board. Results 

are verified by the Digilent D2E board. The hardware design process is repeated 

until the microcontroller is complete without any errors. 

 

Hardware implementation is performed by loading the design into the targeted 

FPGA device, Xilinx Spartan XC2S200-6PQ208. The hardware implementation 

tests the design, in real physical environment by some control applications. A 

microcontroller can perform thousands of control applications. For every 

application, different programs must be written and stored into the program ROM 

of the microcontroller before it can do the job. So, before the microcontroller is 

downloaded into the FPGA device, the application specific firmware for the 

microcontroller must be written. 

 

The program is written and assembled using the HI-TECH C compiler. The 

MPLAB IDE is used to simulate and test the program. If no bugs are found, the 

binary file generated by the compiler is converted to Intel HEX format. This HEX 

file is downloaded to the Digilent D2E board by using a program loader 

application, written by using Borland C++ Builder. After loading the program, 

microcontroller is checked, whether it meets the design specification. 

2.2. Software Tools 

2.2.1. XILINX ISE 

Integrated Software Environment (ISE) is the Xilinx design software suite [5]. ISE 

can be used by a full spectrum of designers, from the first time CPLD designer to 
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the experienced ASIC designer transitioning to FPGA. ISE enables designers to 

start the design with any of a number of different source types, including:  

 

• HDL (VHDL, Verilog HDL, ABEL)  

• Schematic design files  

• EDIF  

• State Machines  

• IP Cores  

 

After the design has been typed the synthesis stage converts the text based design 

into a Xilinx netlist file, which is a linked object file. The netlist is a non-readable 

file that describes the actual circuit to be implemented at a very low level.  

 

The implementation phase uses the netlist, and normally a ‘constraints file’ to 

recreate the design using the available resources within the FPGA. Constraints 

may be physical or timing and are commonly used for setting the required 

frequency of the design or declaring the required pin-out. 

 

The first step is translate. The translate step checks the design and ensures the 

netlist is consistent with the chosen architecture. Translate also checks the user 

constraints file (UCF) for any inconsistencies. In effect, this stage prepares the 

synthesized design for use within an FPGA. 

 

The Map stage distributes the design to the resources in the FPGA. Obviously, if 

the design is too big for the chosen device the map process will not be able to 

complete its job. 

 

The Place And Route (PAR) stage works with the allocated configurable logic 

blocks (CLBs) and chooses the best location for each block. For a fast logic path it 

makes sense to place relevant CLBs next to each other purely to minimize the path 
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length. The routing resources are then allocated to each connection, again using 

careful selection of the best possible routing types. 

 

 

Figure 2.2. Xilinx ISE View 

 

Finally a program called ‘bitgen’ takes the output of Place and Route and creates a 

programming bitstream. The generated bit file is ready to download the target 

FPGA 

To implement any design on an FPGA chip, the designer should be aware of the 

design development tools (i.e., the CAD tools) and the target FPGA technology. 

An ASIC design that is efficient in terms of area and/or speed for some ASIC 

tools and technology is not necessarily efficient for some FPGA tools and 

technology. Same thing applies when considering tools and technologies from 

different vendors. What is efficient for Xilinx FPGAs might not be efficient for 

Altera FPGAs. Even this applies to different tools and technologies from the same 

vendor. For example, a design that is implemented using Xilinx ISE 6.1i tools 
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from Xilinx and efficient for the XC4000 FPGAs might not be efficient when 

using Xilinx ISE 7.1 tools and Spartan-II FPGAs as the target technology. So, the 

key is to understand how to let the tools interpret the design description efficiently 

and optimize it as much as possible. Also, to understand the target FPGA chip and 

make good use of its resources. Xilinx ISE Webpack edition can be downloaded 

from the web site of the Xilinx. 

2.2.2. MODELSIM SE 

ModelSim is a simulation and debugging tool for VHDL, Verilog, SystemC, and 

mixed-language designs. Modelsim SE is Mentor Graphics’s UNIX, Linux, and 

Windows-based simulator. It utilizes the Single Kernel Simulator technology to 

enable VHDL, Verilog and mixed-language simulation. Its other major features 

include high-performance RTL and gate-level optimizations, Performance 

Analyzer for accelerating simulations and Waveform Compare advanced 

debugging feature [6]. The following diagram shows the basic steps for simulating 

a design in ModelSim. 

 

 

Figure 2.3. Basic Simulation Flow with using Modelsim 
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2.2.3. MPLAB IDE 

MPLAB IDE is a free software program that runs on a PC to develop applications 

for Microchip microcontrollers and can be downloaded on the Microchips’ 

website [4]. It is called an Integrated Development Environment, or IDE, because 

it provides a single integrated "environment" to develop code for an embedded 

microcontroller. MPLAB contains all the components needed to design and to 

deploy embedded systems applications. The MPLAB IDE allows the embedded 

systems design engineer to get through the development cycle without the 

distraction of switching among an array of tools. In MPLAB IDE all the functions 

are integrated, allowing the engineer to concentrate on the goal of completing the 

application without getting slowed down dealing with separate tools and their 

various, different modes of operation. 

 

The project manager is a system that organizes the files to be edited so that they 

and other associated files can be sent to the language tools for assembly or 

compilation, and ultimately to a linker. The linker has the task of placing the 

object code fragments from the assembler, compiler and libraries into the proper 

memory areas of the embedded controller, and to make sure that the modules 

function with each other (or are "linked"). This entire operation from assembly 

and compilation through the link process is called a project "build".  

 

The source files are text files that are written conforming to the rules of the 

assembler or compiler. The assembler and compiler convert them into 

intermediate modules machine code and placeholders for references to functions 

and data storage. The linker resolves these placeholders and combines all the 

modules into a file of executable machine code. The linker also produces a debug 

file which allows MPLAB IDE to relate the executing machine codes back to the 

source files.  
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Figure 2.4. A view of the MPLAB program 

 

The text editor recognizes the constructs in the text and uses color coding to 

identify various elements, such as instruction mnemonics, C language constructs, 

and comments. The editor supports operations commonly used in writing source 

code, such as finding matching braces in C, commenting and un-commenting out 

blocks of code, finding text in multiple files, and adding special bookmarks.  

2.2.4. HI-TECH C Compiler 

HI-TECH C compiler is one of the most popular high performance C compiler for 

the Microchip PIC 10/12/14/16/17 series of microcontrollers. HI-TECH PIC C 

compiler can be fully integrated with MPLAB or can be used directly from a 

makefile or command line [7]. The test firmware is compiled by this compiler , 

under the MPLAB IDE. A limited free version of this compiler is available on the 

website of the HI-TECH. 
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2.2.5. BORLAND C++ BUILDER 

Borland C++ Builder is a rapid programming tool used to create computer 

applications for the Microsoft Windows operating systems. Borland C++ Builder 

is based on the C++ computer language with a lot of improvements and 

customized items [8]. 

 

PIC Loader program is created with using Borland C++ Builder. Its main purpose 

is to read the INTEL-hex format program file, and then to send the program 

through the RS232 serial channel of the PC to the Digilent demo board. 

  

2.3.  Hardware Tools 

2.3.1. Digilent D2E Demo Board 

The Digilab 2E (D2E) development board featuring the Xilinx Spartan 2E 

XC2S200E FPGA provides an inexpensive and expandable platform on which to 

design and implement digital circuits of all kinds [9]. Figure 2.5 shows the picture 

of the Digilent D2E demo board. 

 

A block diagram of the Digilent demo board can be found in Figure 2.6. D2E 

board features include: 

• A Xilinx XC2S200E FPGA; 

• Dual on-board 1.5A power regulators (2.5V and 3.3V); 

• A socketed 50MHz oscillator; 

• An EPP-capable parallel port for JTAG based FPGA programming and user data 

transfers; 

• A 5-wire Rs-232 serial port; 

• A status LED and pushbutton for basic I/O; 

• Six 100- mil spaced, right-angle DIP socket 40-pin expansion connectors. 
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Figure 2.5. Picture of the Digilent D2E Board 

 

The D2E board has been designed specifically to work with the Xilinx ISE CAD 

tools, including the free WebPack tools available from the Xilinx website.  

 

 

 

Figure 2.6. Block Diagram of the Digilent Demo Board 
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2.4.  Hardware Description Language 

Two major hardware description languages are available for the designers. These 

are VHDL and Verilog. 

2.4.1. VHDL 

VHDL is the VHSIC (Very High Speed Integrated Circuit) Hardware Description 

Language. It can describe the behavior and structure of electronic systems, but is 

particularly suited as a language to describe the structure and behavior of digital 

electronic hardware designs, such as ASICs and FPGAs as well as conventional 

digital circuits [11]. 

 

The development of VHDL was initiated in 1981 by the United States Department 

of Defense to address the hardware life cycle crisis. The cost of reproducing 

electronic hardware as technologies became obsolete was reaching crisis point, 

because the function of the parts was not adequately documented, and the various 

components making up a system were individually verified using a wide range of 

different and incompatible simulation languages and tools. The requirement was 

for a language with a wide range of descriptive capability that would work the 

same on any simulator and was independent of technology or design methodology. 

The VHDL language was first standardized in 1987 by IEEE as IEEE 1076-1987, 

and is commonly referred as VHDL-87. This is certainly the most important 

version, since most of the VHDL tools are still based on this standard. The last 

revision came to the VHDL in 2002 (IEEE 1076-2002). The definition of the 

language is non-proprietary [11]. 

2.4.2. Verilog  

The Verilog Hardware Description Language (HDL) describes a hardware design 

or part of a design. Descriptions of designs in the Verilog HDL are Verilog 

models. The Verilog HDL is both a behavioral and structural language. Models in 
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the Verilog HDL can describe both the function of a design and the components 

and connections to the components in a design [12].  

 

Verilog HDL is first invented by Gateway Design Automation in 1985. Gateway 

Design Automation grew rapidly with the success of Verilog and was finally 

acquired by Cadence Design Systems, San Jose, CA in 1989 [12]. Cadence Design 

Systems decided to open the language to the public in 1990, and thus OVI  (Open 

Verilog International) was born. Until that time, Verilog HDL was a proprietary 

language, being the property of Cadence Design Systems. The Verilog HDL is an 

IEEE standard - number 1364. The first version of the IEEE standard for Verilog 

was published in 1995. A revised version was published in 2001 [13]. 

The basic building block of the Verilog HDL is the module. The module format 

facilitates top-down and bottom-up design. A module contains a model of a design 

or part of a design. Modules can incorporate other modules to establish a model 

hierarchy that describes how parts of a design are incorporated in an entire design. 

The constructs of the Verilog HDL, such as its declarations and statements, are 

enclosed in modules. 

 

The Figure 2.7 shows the abstraction level of the Verilog. Verilog supports 

abstract behavioural modeling, so can be used to model the functionality of a 

system at a high level of abstraction. This is useful at the system analysis and 

partitioning stage. Verilog supports RTL (Register Transfer Level) descriptions, 

which are used for the detailed design of digital circuits. Synthesis tools transform 

RTL descriptions to gate level.Verilog supports gate and switch level descriptions, 

used for the verification of digital designs, including gate and switch level logic 

simulation, static and dynamic timing analysis, testability analysis and fault 

grading. 

 

. 
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Figure 2.7. Levels of Abstraction 

 

2.4.3. Why use Verilog HDL? 

Digital systems are highly complex. At their most detailed level, they may consist 

of millions of elements, i. e., transistors or logic gates. Therefore, for large digital 

systems, gate-level design is dead. For many decades, logic schematics served as 

the main way of logic design, but not any more. Today, hardware complexity has 

grown to such a degree that a schematic with logic gates is almost useless as it 

shows only a web of connectivity and not the functionality of design. Since the 

1970s, Computer engineers and electrical engineers have moved toward hardware 

description languages (HDLs). The most prominent modern HDLs in industry are 

Verilog and VHDL. Verilog is one of the top HDL used by over thousands of 

designers. 

 

The Verilog language provides the digital designer with a means of describing a 

digital system at a wide range of levels of abstraction, and, at the same time, 
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provides access to computer-aided design tools to aid in the design process at 

these levels [26]. 

 

2.5.  Field Programmable Gate Arrays 

Field-programmable gate array (FPGA) is a step above the PLD in complexity. 

The difference between FPGA and PLD is very little. Both FPGA and PLD can be 

volatile or non-volatile. FPGA is much larger and more complex than a PLD [14]. 

FPGA consists of a two-dimensional array of logic blocks. Each logic block is 

programmable to implement any logic function. Thus, they are also called 

configurable logic blocks (CLBs) [15]. Switchboxes or channels contain 

interconnection resources that can be programmed to connect CLBs to implement 

more complex logic functions. Designers can use existing CAD tools to convert 

HDL code in order to program FPGAs. An FPGA contains 5,000 to 10,000,000 

gates (or more) [16]. Since the FPGA can be reprogrammed, the turnaround time 

is only a few minutes. The advantages of FPGAs are lower prototyping costs and 

shorter production lead times, which advances the time-to-market and in turn 

increases profitability [17]. It can also ensure the reliability of the design on the 

board. The disadvantages include lower speed of operations and lower gate 

density, which has a larger area compared to a ASIC. Thus, a typical FPGA may 

be 2x-10x slower and 2x-10x more expensive than an equivalent-gate ASIC. 

Configurable logic blocks of the FPGA  includes some fixed logic elements, such 

as look-up tables, multiplexers, and flip-flops. Even a simple logic inverter 

function uses CLB. Thus this stuation reduces the speed of the logic design. But in 

the ASICs, only the needed part of the functions are produced. 

 

It has also input/output blocks to provide the interface between the chip pins and 

the internal signals. The signals from all blocks are connected to each other using 

wires, which in turn connected to each other by programmable routing switches. 

The CLBs have the logic resources that are necessary to implement various 
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combinational and sequential logic functions. Normally, a CLB has look-up tables 

(LUTs), multiplexers, and flip-flops. 

 

There are two methods of programming FPGAs. The first, SRAM programming, 

involves static RAM bits for each programming element. Writing the bit with a 

zero turns off a switch, while writing with a one turns on a switch. The other 

method involves anti-fuses which consist of microscopic structures. A certain 

amount of current during programming of the device causes the two sides of the 

anti-fuse to connect [18]. 

 

The advantages of SRAM based FPGAs is reprogrammability, the FPGAs can be 

reprogrammed any number of times, even while they are in the system, just like 

writing to a normal SRAM. The disadvantages are that they are volatile, which 

means a power glitch could potentially change it. Also, SRAM based devices have 

large routing delays. 

 

The advantages of Anti-fuse based FPGAs are that they are non-volatile and the 

delays due to routing are very small, so they tend to be faster. The disadvantages 

are that they require a complex fabrication process, they require an external 

programmer to program them, and once they are programmed, they cannot be 

changed. 

 

Major FPGA manufacturers are Xilinx and Altera in the programmable logic 

market whose FPGAs are based on SRAM. Xilinx holds more than 50 % of the 

market share. Xilinx have two family of FPGAs which are SPARTAN and 

VIRTEX series. Virtex series FPGA is mainly focused on the very fast and 

complex designs, such as DSP. On contrast to Virtex series, SPARTAN FPGAs 

are mainly focused to low cost applications. 
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Spartan-IIE FPGA is made mainly of five kinds of elements: Input/Output blocks 

(IOBs), Configurable logic blocks (CLBs), block random-access memories (Block 

RAMs), Delay-locked loops (DLLs), and versatile multi-level interconnect 

structure [15]. A block diagram of Spartan-IIE FPGA is shown in Figure 2.8. 

On the left and the right sides of the chip there are block RAMs that can be 

configured to realize RAMs or FIFOs as explained in [19] [24]. For each four 

rows of CLBs, there are two block RAMs: one on the left side and one on the right 

side. Each block RAM is 4 Kbits. The IOBs surround the CLBs and the block 

RAMs to provide the interface between the package pins and the internal signals. 

The versatile multi-level interconnect structure is configured to provide the 

necessary interconnection and routing among the various blocks as well as among 

the cells inside the blocks themselves. The DLLs provide multiple minimal-skew 

clock signals. The programming (i.e., the FPGA configuration) of all elements is 

done by SRAM.Which means that a Spartan-IIE needs to be reprogrammed every 

time the power is off. 

 

 

Figure 2.8. Basic Spartan-IIE Family FPGA Block Diagram 
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Logic of the designs are realized by using the CLBs in the FPGA. A Spartan-II 

FPGA contains an RxC array of CLBs.The height and width of the array depends 

on how big the chip is. Each CLB has two slices. Figure 2.9 shows the basic slice 

structure. Each slice has the following logic elements: two look-up tables (LUTs), 

two storage elements, one multiplexer (F5MUX), carry and control logic. Each 

LUT is a 16x1 RAM that can be used as a logic function generator, 16x1 

synchronous RAM, or 16-bit shift register. The two LUTs can be combined to 

make a 32x1 or 16x2 synchronous RAM, or 16x1 dual-port synchronous RAM. 

The F5MUX can be used to combine the output of both LUTs. By this 

combination it is possible to implement a 4-to-1 multiplexer, any 5-input logic 

function, or some 9-input functions. Each CLB has also an F6MUX. This 

multiplexer combines the outputs of the two slices.  

 

 

 

Figure 2.9. Spartan-IIE CLB Slice (two identical slices in each CLB) 
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This combination of two slices can implement an 8-to-1 multiplexer, any 6-input 

functions, or some 19-input functions. The two storage elements provide the 

support for implementing sequential logic functions. They can be configured to be 

D flip-flops or D latches. The dedicated carry logic inside each slice provides 

arithmetic carry chain. 

 

To be more specific, the XC2S200 FPGA that is used in this work. It has 

28x42=1176 CLBs, 146 user I/O pins, and 56 K bits of block RAM. This provides 

a lot of resources that should be carefully utilized. Detailed information about 

Spartan-IİE FPGAs can be found in [15], [20]. 
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CHAPTER 3 

 

 

BASIC FEATURES OF PIC16XX 

 

 

3.1. Memory Organization 

PIC16XX has two separate memory blocks, one for data and the other for 

program. SFR registers in RAM memory make up the data block, while FLASH or 

OTP memory makes up the program block.  

3.1.1. Program Memory 

Mid-Range PIC16XX devices have a 13-bit program counter capable of 

addressing an 8K x 14 program memory space. The width of the program memory 

bus (instruction word) is 14-bits. Since all instructions are a single word, a device 

with an 8K x 14 program memory has space for 8K of instructions. This makes it 

much easier to determine if a device has sufficient program memory for a desired 

application. This program memory space is divided into four pages of 2K words. 

To jump between the program memory pages, the high bits of the Program 

Counter (PC) must be modified. This is done by writing the desired value into a 

SFR called PCLATH (Program Counter Latch High). 

3.1.2. Data Memory 

Data memory is made up of the Special Function Registers (SFR) area, and the 

General Purpose Registers (GPR) area. The SFRs control the operation of the 

device, while GPRs are the general area for data storage and scratch pad 

operations. 
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The data memory is banked for both the GPR and SFR areas. The GPR area is 

banked to allow greater than 96 bytes of general purpose RAM to be addressed. 

SFRs are for the registers that control the peripheral and core functions. Banking 

requires the use of control bits for bank selection. These control bits are located in 

the STATUS Register (STATUS<7:5>). To move values from one register to 

another register, the value must pass through the W register. This means that for 

all register-to-register moves, two instruction cycles are required. 

 

The entire data memory can be accessed either directly or indirectly. Direct 

addressing may require the use of the RP1:RP0 bits. Indirect addressing requires 

the use of the File Select Register (FSR). Indirect addressing uses the Indirect 

Register Pointer (IRP) bit of the STATUS register for accesses into the Bank0 / 

Bank1 or the Bank2 / Bank3 areas of data memory. 

3.1.3. Special Function Registers 

The SFRs are used by the CPU and Peripheral Modules for controlling the desired 

operation of the device. These registers are implemented as static RAM. 

 

The SFRs can be classified into two sets, those associated with the “core” function 

and those related to the peripheral functions. Those registers related to the “core” 

are described in this section, while those related to the operation of the peripheral 

features are described in the section of that peripheral feature. Basic SFR registers 

can be seen by the Figure 3.1.  

3.1.4. Program Counter  

The program counter (PC) specifies the address of the instruction to fetch for 

execution. The PC is 13-bits wide. The low byte is called the PCL register. This 

register is readable and writable. The high byte is called the PCH register. This 

register contains the PC<12:8> bits and is not directly readable or writable. All 

updates to the PCH register go through the PCLATH register. 
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Figure 3.1 Memory Organization of PIC16F84 Microcontroller 

3.1.5. Stack  

The stack allows a combination of up to 8 program calls and interrupts to occur. 

The stack contains the return address from this branch in program execution. 

 

Mid-Range MCU devices have an 8-level deep x 13-bit wide hardware stack. The 

stack space is not part of either program or data space and the stack pointer is not 
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readable or writable. The PC is PUSHed onto the stack when a CALL instruction 

is executed or an interrupt causes a branch. The stack is POPed in the event of a 

RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified 

when the stack is PUSHed or POPed. After the stack has been PUSHed eight 

times, the ninth push overwrites the value that was stored from the first push. The 

tenth push overwrites the second push (and so on) 

3.2. Addressing Modes 

RAM memory locations can be accessed directly or indirectly. 

3.2.1. Direct Addressing Mode 

Direct Addressing is done through a 9-bit address. This address is obtained by 

connecting 7th bit of direct address of an instruction with two bits (RP1, RP0) 

from STATUS register as is shown on the following picture. Any access to SFR 

registers is an example of direct addressing. 

 

 

Figure 3.2 Direct Addressing Mode 
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3.2.2. Indirect Addressing Mode 

ndirect unlike direct addressing does not take an address from an instruction but 

derives it from IRP bit of STATUS and FSR registers. Addressed location is 

accessed via INDF register which in fact holds the address indicated by a FSR. In 

other words, any instruction which uses INDF as its register in reality accesses 

data indicated by a FSR register. Let's say, for instance, that one general purpose 

register (GPR) at address 0Fh contains a value of 20. By writing a value of 0Fh in 

FSR register we will get a register indicator at address 0Fh, and by reading from 

INDF register, we will get a value of 20, which means that we have read from the 

first register its value without accessing it directly (but via FSR and INDF).  

 

 

Figure 3.3 Indirect Addressing Mode 

 

It appears that this type of addressing does not have any advantages over direct 

addressing, but certain needs do exist during programming which can be solved 

smoothly only through indirect addressing. Indirect addressing is very convenient 

for manipulating data arrays located in GPR registers. In this case, it is necessary 
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to initialize FSR register with a starting address of the array, and the rest of the 

data can be accessed by incrementing the FSR register. 

 

3.3. Instruction Set Summary 

The operation of the CPU is determined by the instruction it executes, referred to 

as machine instructions or computer instructions. The collection of different 

instructions that the CPU can execute is referred to as the CPU’s instruction set. 

The instruction set defines the datapath and everything else in a processor. 

 

Table 3.1 shows the instruction set summary of the designed microcontroller 

which is compatible with the PIC16XX series of the microcontroller [21].There 

are 35 instructions grouped into 3 basic categories:  

 

• Byte-oriented operations 

• Bit-oriented operations 

• Literal and control operations 

 

For byte-oriented instructions, 'f' represents a file register designator and 'd' 

represents a destination designator. The file register designator specifies which file 

register is to be used by the instruction. The destination designator specifies where 

the result of the operation is to be placed. If 'd' is zero, the result is placed in the W 

(Working) register. If 'd' is one, the result is placed in the file register (RAM) 

specified in the instruction. For bit-oriented instructions, 'b' represents a bit field 

designator which selects the number of the bit affected by the operation, while 'f' 

represents the number of the file in which the bit is located. For literal and control 

operations, 'k' represents an eight or eleven bit constant or literal value. 

 

All instructions are executed in one single instruction cycle, unless a conditional 

test is true or the program counter is changed as a result of an instruction. In these 



 30 

cases, the execution takes two instruction cycles with the second cycle executed as 

an NOP (NO Operation).  

 

As mentioned earlier, instruction set of the design is based on Microchip 

PIC16XX instruction set. In this way, the design can use the same assembler and 

simulator provided by Microchip since the final design is compatible with the core 

of  PIC16XX  microcontroller. 

 

Table 3.1 Instruction Set Summary 

14-Bit Instruction Word 
Mnemonics 
, Operands 

Description 

 

Cycles 
Msb                         Lsb 

Status 
Affected 

BYTE-ORIENTED FILE REGISTER OPERATIONS 

ADDWF f,d Add W and f 1 00  0111  dfff  ffff C,DC,Z 
ANDWF f,d AND W and f 1 00  0101  dfff  ffff Z 
CLRF f Clear f 1 00  0001  1fff  ffff Z 
CLRW - Clear W 1 00  0001  0xxx  xxxx Z 
COMF f,d Complement f 1 00  1001  dfff  ffff Z 
DECF f,d Decrement f 1 00  0011  dfff  ffff Z 
DECFSZ f,d Decrement f, Skip if Zero 1(2) 00  1011  dfff  ffff  
INCF f,d Increment f 1 00  1010  dfff  ffff Z 
INCFSZ f,d Increment f, Skip if Zero 1(2) 00  1111  dfff  ffff  
IORWF f,d Inclusive OR W with f 1 00  0100  dfff  ffff Z 
MOVF f,d Move f 1 00  1000  dfff  ffff Z 
MOVWF 
f,d 

Move W to f 1 00  0000  1fff  ffff  

NOP No Operation 1 00  0000  0xx0  0000  

RLF f,d 
Rotate Left f through 
Carry 

1 00  1101  dfff  ffff C 

RRF f,d 
Rotate Right f through 
Carry 

1 00  1100  dfff  ffff C 

SUBWF f,d Subtract W from f 1 00  0010  dfff  ffff C,DC,Z 
SWAPF f,d Swap Nibbles in f 1 00  1110  1fff  ffff  
XORWF f,d Exclusive OR W with f 1 00  0110  dfff  ffff Z 
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Table 3.1 Instruction Set Summary (cont’d) 

BIT-ORIENTED FILE REGISTER OPERATIONS 

BCF f,d Bit Clear f 1 01  00bb  bfff  ffff  
BSF f,d Bit Set f 1 01  01bb  bfff  ffff  
BTFSC f,d Bit Set f , Skip if Clear 1(2) 01  10bb  bfff  ffff  
BTFSS f,d Bit Set f , Skip if Set 1(2) 01  11bb  bfff  ffff  

LITERAL AND CONTROL OPERATIONS 

ADDLW k Add literal and W 1 11  111x  kkkk  kkkk C,DC,Z 
ANDLW k AND literal and W 1 11  1001  kkkk  kkkk Z 
CALL k Call subroutine  2 10  0kkk  kkkk  kkkk  
CLRWDT Clear Watchdog Timer  1 00  0000  0110  0100  
GOTO k Go to address  2 10  1kkk  kkkk  kkkk  
IORLW k Inclusive OR literal with W 1 11  1000  kkkk  kkkk Z 
MOVLW k Move literal to W 1 11  00xx  kkkk  kkkk  
RETFIE Return from Interrupt 2 00  0000  0000  1001  
RETLW k Return with literal in W 2 11  01xx  kkkk  kkkk  
RETURN Return from Subroutine 2 00  0000  0000  1000  
SLEEP Go into Standby mode 2 00  0000  0110  0011  
SUBLW k Subtract W from literal 1 11  110x  kkkk  kkkk C,DC,Z 
XORLW k Exclusive OR literal with W 1 11  1010  kkkk  kkkk Z 
MULT Multiply the nibbles of W 1 11  1011  xxxx  xxxx Z 

 

There is a new instruction with respect to the  original PIC instructions. MULT 

instruction makes a 4-bit multiplication. 

 

Detailed operation for each instruction requires further reference to the Instruction 

Set section in PICmicro Mid-Range MCU Family Referance Manual [21]. 

 

3.4. Instruction Formats 

PIC microcontrollers have three general formats of instructions. As can be seen 

from the general format of the instructions, the opcode portion of the instruction 

word varies from 3-bits to 6-bits of information. Thus PIC microcontrollers have 

35 instructions. Instruction Description conventions are shown is Table 3.2 
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Table 3.2 Instruction Description Conventions 

Field Description 

f Register file address (0x00 to 0x7F) 

W Working register (accumulator) 

b Bit address within an 8-bit file register (0 to 7) 

k Literal field, constant data or label (may be either an 8-bit or 

an 11-bit value) 

x Don't care (0 or 1) 

The assembler will generate code with x = 0 

d Destination select; 

d = 0: store result in W, 

d = 1: store result in file register f. 

 

 

General format of the instructions are follows; 

Byte oriented file register operations: 

13                           8    7    6                                0 

OPCODE d f (FILE #) 

d=0 for destination W (working register) 

d=1 for destination f  

f= 7-bit register address 

 

Bit oriented file register operations: 

13                  10  9                7    6                       0 

OPCODE b(BIT #) f (FILE #) 

b= 3-bit bit address 

f= 7-bit register address 
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Literal and Control operations: 

General: 

13                               8  7                                   0 

OPCODE k (literal) 

k= 8-bit literal (immediate) value 

 

CALL and GOTO instructions only: 

13             11  10                                                  0 

OPCODE k (literal) 

k= 11-bit literal (immediate) value 
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CHAPTER 4 

 

 

IMPLEMENTATION OF MICROCONTROLLER  

 

 

4.1. Pin Description 

 

 

Figure 4.1. Microcontroller Pin Configuration 

 

Figure 4.1 shows the pin configuration for the designed microcontroller. The 

microcontroller has 2 input pins and 4 bi-directional I/O ports. Each I/O port 

consists of 8 individual I/O pins except PortA. Port A has only 5 bidirectional I/O 

pins. So 4 I/O ports contribute to a total of 29 I/O pins. The clock signal will drive 

the whole microcontroller directly. Reset is active low; when asserted it resets the 

microcontroller to the default state even if the clock is not running. Each bit of the 

ports can be configured to be input or output in the software of the 

microcontroller. All port pins are tri-stated when the microcontroller is reset.  
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4.2. Architecture Overview 

 

 

 

Figure 4.2. Top Level Architectural Block Diagram 

 

Figure 4.2 shows the simplified top-level block diagram of the design, every part 

of this block diagram needs to be implemented in the FPGA. The microcontroller 

will be designed using the top down design approach. Some blocks like the I/O 

ports, instruction register and status register are easy to design, but modules like 

ALU and the finite state machine require a lot of understanding. The overall 

dataflow and bus structure between all the blocks must be understood before 

designing the block individually. 
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Figure 4.3. Top Module of the Microcontroller Design 

 

The module of the microcontroller designed in the FPGA can be divided into 5 

sub modules which can be seen in Figure 4.3. These sub modules are; 

 

• Clock Generator Unit 

• Program Load Unit 

• Microcontroller Unit 

• Program Memory 

• Data Memory 
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File hierarchy of the top module of the microcontroller design and the files that are 

used in the design can be seen with the following Figure 4.4.  The interconnection 

between the files is shown in Appendix D and Appendix E. The files that are 

shown in Figure 4.4 are in the CD-ROM in Appendix F. 

 

 

Figure 4.4. File Hierarchy of the Microcontroller Design 

 

4.2.1. Clock Generator Unit 

The clock generator modules’ main function is to produce the necessary clock rate 

and distribute the clock to the other modules in the FPGA. Incoming clock rate is 

48 MHz, which is passed through input global clock buffer (IBUFG). IBUFG is 

connected to the dedicated input buffers for connecting to the clock buffer BUFG. 

The IBUFG input can only be driven by the global clock pins. The IBUFG output 

can drive CLKIN of a Delay Locked Loop (DLL), BUFG, or user logic.  
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Figure 4.5. Clock Generator Unit 

 

Associated with each global clock input buffer is a fully digital Delay-Locked 

Loop (DLL) that can eliminate skew between the clock input pad and internal 

clock-input pins throughout the device. Each DLL can drive two global clock 

networks. The DLL monitors the input clock and the distributed clock, and 

automatically adjusts a clock delay element. Additional delay is introduced such 

that clock edges reach internal flip-flops exactly one clock period after they arrive 

at the input. This closed-loop system effectively eliminates clock-distribution 

delay by ensuring that clock edges arrive at internal flip-flops in synchronism with 

clock edges arriving at the input [22], [25]. 

 

DLL synchronizes the clock signal at the feedback clock input (CLKFB) to the 

clock signal at the input clock (CLKIN). The frequency of the clock signal at the 

CLKIN input must be at least 24 MHz. The CLKIN pin must be driven by an 

IBUFG or a BUFG. If phase alignment is not required, CLKIN can also be driven 

by IBUF. On-chip synchronization is achieved by connecting the CLKFB input to 

a point on the global clock network driven by a BUFG, a global clock buffer. The 

BUFG connected to the CLKFB input of the DLL must be sourced from the CLK0 
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output of the same DLL. The CLKIN input should be connected to the output of 

an IBUFG, with the IBUFG input connected to a pad driven by the system clock. 

[22]. 

 

 

Figure 4.6. Global Clock Distribution Network Through the FPGA 

 

In addition to eliminating clock-distribution delay, the DLL provides advanced 

control of multiple clock domains. DLL can divide the clock by 2. In this design 

CLK DIV output is used as the main clock output. At the output of the CLK DIV, 

the clock rate reduces at a rate of 24 MHz. This clock is used in the following 

modules; 

• Program Load Unit 

• Program Memory 

• Data Memory 
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After obtaining the 24 MHz, 12 MHz clock is also required for the microcontroller 

unit. 

The following simple circuit is used to generate a 12 MHz clock. 

 

 

Figure 4.7. Clock Divider Circuit 

 

Microcontroller unit requires less clock rate because of the long data path design 

and the worst case delays in the microcontroller unit. This block is implemented in 

the “clock_gen.v” file as shown in Figure 4.4.. 

4.2.2. Program Load Unit 

Program Load unit receives the compiled program from a PC via RS232 serial 

port. The compiled programs are sent using a program loader designed with using 

Borland C++ Builder. This program takes the Intel hex format file, and sends the 

binary data to the microcontroller. First the communication link is established 

with the FPGA microcontroller. After communication link is done, program is 

loaded and sent through the RS232 serial port at a speed of 57600 baud. 

 

Program load unit has 4 inputs, which are 24 MHz clock, reset input, serial rx, 

serial tx.  Clock is received from the clock generator module. Reset input, serial 

receive and serial transmit I/Os are connected to the directly to the input/output 

pins of the FPGA. 
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Figure 4.8. Block Diagram of the Program Load Unit 

 

The top module for the program loader module is “rs232_loader.v”in Figure 4.4. 

Program load unit is mainly divided into 4 sub blocks as can be seen in Figure 4.8. 

These are; 

• Baud Rate generator 

• RS232 Receive unit 

• RS232 Transmit Unit 

• Program Memory Unit 

4.2.2.1. Baud Rate Generator 

The baud rate generator provides both the receiver and the transmitter with the 

baud rate clock, a bit-period clock.  The input clock for this module is 24 MHz. 

The output clock for receive and transmit unit is 16 x Baud Rate. If the baud rate 

is 57600 then generated clock is 921 KHz. This module is implemented in the 

“baud_gen.v” file as shown in Figure 4.4. 
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4.2.2.2. Rs232 Receive Unit 

This block takes care of receiving an RS232 input word, from the "rxd" line in a 

serial way. The appropriate clock is provided by the baud rate generator unit, 

which is 16 times the baud rate. The receive input line is sampled 16 times per bit 

after sensing a start bit (logic high). Mid-count value is taken as an input and 

passed through a shift register. Data is valid only after receiving a valid stop bit. 

This module is implemented in the “serial.v” file as shown in Figure 4.4. 

4.2.2.3. Rs232 Transmit Unit 

This module transmits the 8-bit byte using baud rate clock through the serial line 

“txd”. First this block generates a start bit, then serially shifts the input data and 

finally generates a stop bit. Since RS232 serial communication is asynchronous, 

bit timing requires careful attention. This module is implemented in the “serial.v” 

file in Figure 4.4. 

4.2.2.4. Program Memory Interface Unit 

This unit directly writes the received data to the appropriate location of the 

internal program memory. It has an 8 bit wide data bus. The detailed operation 

about the program memory will be discussed in section 4.2.3. This module is 

implemented in the top module of the program loader unit.  

4.2.3. Program Memory Unit 

An example view of the program memory can be seen by the Figure 4.9. It is 

implemented with the block RAMs, which is internally available in the FPGA.  

Block RAM memories are organized in FPGA as columns. Spartan IIE FPGA 

contains two block RAM columns, one along each vertical edge [15] [22].  Totally 

there are 56 kbit block RAM in the Spartan IIE FPGAs, that 16 kbit of them is 

used as a program memory for the designed microcontroller. Each block RAM is 

fully synchronous and dual-ported with independent control signals for each port.  
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Figure 4.9.  A diagram for the 16 kbit dual port Program Memory 

 

Data bus width of each port is configurable, in our case one side of the memory’s’ 

data bus width is 8 bit wide and the address bus width is 11 bit wide which is 

connected to the program load unit. Since we read the data to be written to the 

program memory is 8bit from PC, so we need an 8 bit wide data bus for one port 

of the RAM. Second port of the block RAM is connected to the microcontroller, 

which is 16 bit data bus width. But the microcontroller uses only 14 bit of the 

block RAM, because the instructions are 14 bit wide. 

 

Each port is fully synchronous with independent clock pins. All port A input pins 

have setup time referenced to the CLKA pin and its data output bus DOA has a 

clock to out time referenced to the CLKA. All port B input pins have setup time 

referenced to the CLKB pin and its data output bus DOB has a clock-to-out time 

referenced to the CLKB. 
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The enable ENA pin controls read, write, and reset for port A. When ENA is Low, 

no data is written and the outputs DOA and outputs preserve the last state. If write 

enable (WEA) is High, the memory contents reflect the data at DIA. When ENA is 

High and WEA is Low, the data stored in the RAM address (ADDRA) is read 

during the Low-to-High clock transition.  When ENA and WEA are High, the data 

on the data input (DIA) is loaded into the location selected by the write address 

(ADDRA) during the Low-to-High clock transition and the data output (DOA) 

reflect the selected (addressed) location [22]. 

 

The same working operation is also applicable to port B of the dual port RAM. 

The above descriptions assume active High control pins (ENA, WEA, CLKA, 

ENB, WEB, and CLKB). 

In the design of the microcontroller, both ports are not used at the same time to 

prevent any contention. Program load unit only writes to the memory on port A. 

The microcontroller only reads the instructions from the port B of the memory. 

This program load unit is implemented by the coregen utility of the Xilinx ISE 

program[22]. 

4.2.4. Data Memory Unit 

Implementation of the data memory unit is the same as program memory unit 

which is described in section 4.9. It is also a dual ported RAM which is in the 

FPGA. It uses 512 byte of the block RAMs of the SPARTAN FPGAs. The 

PORTA of the RAM is used with the implemented microcontroller unit. The 

PORTB is used only for debug purpose. The PORTA and PORTB have a 8 bit 

wide data bus. This RAM unit is implemented by the coregen utility of the Xilinx 

ISE program. Detailed information for the ram blocks can be found in [22]. 
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Figure 4.10. A diagram for the 512 byte RAM 

 

4.2.5. Microcontroller Unit 

This logic module implements a small RISC microcontroller, with functions and 

instruction set very similar to those of the mid-range family of the Microchip 

16FXX chips. This module is the most complicated module among the other 

modules. 

The input and outputs of the microcontroller, implemented in SPARTAN IIE 

FPGA can be seen by the following Figure 4.11. 



 46 

 

Figure 4.11. Inputs and Outputs of the Microcontroller Unit 

 

The CLOCK input is generated by the clock generator unit which is at 12 MHz. 

RESET input is directly connected to the one of the pads of the FPGA and used as 

an asynchronous reset in the FPGA. RESET input is fed through one of the 

buttons located on the Digilent SPARTAN IIE Development Board. INT pin is an 

external interrupt input.  PORTA through PORTD are connected to the various 

locations of the development board. Program memory and the RAM connections 

are made to the internal block rams of the FPGA.  

 

The top module for the microcontroller unit is in “riscmcu.v” file as shown in 

Figure 4.4. Some sub modules are implemented in a separate verilog design file. 

The microcontroller unit has the following sub-modules and the implementation 

files which are listed in Table 4.1. The design of the each sub-module will be 

discussed one by one in this chapter. 
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Table 4.1. Sub-Modules inside the microcontroller 

1 Instruction Fetch & Decode instruction_decode.v 

2 
Calculation of RAM Access 
Address 

calc_ram_address.v 

3 Stack fsm.v 

4 Program Counter fsm.v 

5 ALU alu.v 

6 FSM Machine fsm.v 

7 Interrupts fsm.v 

8 I/O Ports riscmcu.v 

 

4.2.5.1. Instruction Fetch and Decode 

Instructions are fetched at the end of the execution and write cycle from the 

program memory at state S2 of the Finite State Machine. At a reset condition, “0” 

is loaded to the instruction register, thus the first instruction seems to be NOP 

operation, it is because to formerly start-up the microcontroller. 

 

After loading the instruction from the program memory, a combinatorial decoding 

operation takes place according to the instructions listed in Table 3.1. For every 

instruction, there is a comparator, which indicates the related instruction has 

arrived. For example if the received instruction is a “CALL” instruction, then a 

dedicated register is set to indicate the current executing instructions is a “CALL” 

instruction. The other blocks of the microcontroller checks the related register. So, 

the microcontroller has a dedicated register for every instruction that indicates the 

decoded instruction. This module is implemented in verilog file “inst_decode.v” 

as shown in Figure 4.4. 

 

4.2.5.2. Calculation of RAM Access Address 

One of the other sub units of the microcontroller is the calculation of the RAM 

access address. After loading the instruction from the program memory first the 
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instruction decoding process is completed. After then, we need to calculate the 

RAM access address. 

 

First we check whether direct or indirect addressing will be used with the related 

instruction. There is an INDF register which is not a physical register in the 

microcontroller. Addressing INDF actually addresses the register whose address is 

contained in the FSR register. If the addressing mode is direct addressing (i.e. 

INDF register is used as destination), then the first 7 bit of the opcode and 5th and 

6th bit of the status register is concatenated. 

 

 

Figure 4.12. Direct Addressing Mode 

 

If the instruction registers’ first 7 bit is zero then it is behaved as indirect 

addressing scheme. In the indirect addressing mode, the value of the FSR register 

and the 7th bit of the status register is concatenated and used as target address of 

the RAM.  

 

 

Figure 4.13. Indirect Addressing Mode 

After determining the destination address of the RAM, we should classify the 

destination address, whether it is in the ram area or register area. Internally 

classification is done according the following Table 4.2. 
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Table 4.2. Destination RAM Access Addresses 

Address Destination Description 

0E-7F, 
8E-FF 

SRAM 
SRAM 

02,82 PCL 
Program Counter Low Byte 
Register 

03,83 STATUS Status Register 

04,84 FSR File Select Register 

05 PORTA 5-bit I/O Port 

06 PORTB 8-bit I/O Port 

0C PORTC 8-bit I/O Port 

0D PORTD 8-bit I/O Port 

85 TRISA Direction register for PORTA 

86 TRISB Direction register for PORTB 

8C TRISC Direction register for PORTC 

8D TRISD Direction register for PORTD 

0A,8A PCLATH PC Latch High Byte 

0B,8B INTCON Interrupt Control Register 

81 OPTION Option register 

 

Some of the registers have two addresses, like PCL. Both of them point the same 

location. It is because to put critical registers on both pages of the RAM. This 

behavior comes from the original configuration PIC microcontroller. 

After determining the source address of the register or RAM, the data is loaded to 

a temporary register called as “ram_destination”. For example if the RAM access 

address is status register, ram_destination register is loaded with the value of the 

status register. In the other part of the design ram_destination register will be used 

for ALU operations. 

Also bit-mask for logical operations (AND, OR, BTFSC,) and bit tests are 

constructed in this module.  This module is implemented in verilog file 

“calc_ram_address.v” as shown in Figure 4.4. 
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4.2.5.3. Stack 

The stack allows a combination of up to 16 program calls and interrupts to occur 

in the designed microcontroller. The stack contains the return address from this 

branch in program execution. 

 

PIC microcontrollers have an 8 level deep x 13-bit wide hardware stack. The stack 

space is not part of either program or data space and the stack pointer is not 

readable or writable. The PC is PUSHed onto the stack when a CALL instruction 

is executed or an interrupt causes a branch. The stack is POPed in the event of a 

RETURN, RETLW or a RETFIE instruction execution. PCLATH register is not 

modified when the stack is PUSHed or POPed. 

 

 

Figure 4.14. Stack Modification 

 

In the original configuration after the stack has been PUSHed eight times, the 

ninth push overwrites the value that was stored from the first push as in Figure 

4.14. The tenth push overwrites the second push (and so on). But the designed 

microcontroller with the Spartan FPGA has reconfigurable stack space in the 

verilog code. In the design we have chosen the stack space as 16 words. The stack 

is implemented in verilog file “fsm.v” as shown in Figure 4.4. 
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4.2.5.4. Program Counter 

The program counter (PC) specifies the address of the instruction to fetch for 

execution. The PC is 13 bits wide. The low byte is called the PCL register. This 

register is readable and writable. The high byte is called the PCH register. This 

register contains the PC<12:8> bits and is not directly readable or writable. If the 

program counter (PC) is modified or a conditional test is true, the instruction 

requires two cycles. The second cycle is executed as a NOP. All updates to the 

PCH register go through the PCLATH register. The program counter is 

implemented in verilog file “fsm.v” as shown in Figure 4.4. 

 

In this module, first the instruction is checked to be that it is modifying 

instruction. The following conditions may modify the program counter. 

• CALL and GOTO instructions. 

• RET, RETLW, RETFIE instructions. 

• If the instruction is BTFSC, DECFSZ, INCFSZ and Arithmetic logic unit 

output is zero. 

• If the instruction is BTFSS and Arithmetic logic unit output is one. 

• If the execution destination is PCL register. 

 

If one of the above conditions occurs, the next instruction is executed as a NOP 

instruction. Also if an interrupt condition occurs, the next instruction will also be 

executed as NOP instruction.  

 

Serving an interrupt request will cause the PC to be loaded with the interrupt 

vector address (0x0004). So when serving an interrupt request, the PC is first 

loaded with the vector address, then the CPU execute the instruction loaded from 

the corresponding vector address - a jump to ISR. The PC is then loaded with the 

address of the ISR. And finally the CPU starts executing the ISR. 
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At the beginning or reset condition, both PC register and the old PC are set to 

zero. If an interrupt condition occurs, the current program counter is saved to the 

old PC register, which is to be PUSHed to the stack and later POPed by an 

RETFIE instruction. And the PC is set to interrupt vector address (0x004) of the 

microcontroller. At the normal operating condition “next PC register” is loaded to 

the PC register. 

 

“Next PC register” is loaded to the PC register if there is not any reset and 

interrupt condition occurs. “Next PC register” is defined with the following 

criteria; 

• If the instruction is a return (RET, RETLW, RETFIE) instruction, top of 

stack is loaded to the next PC register. 

• If the instruction is a CALL or GOTO instruction, 3rd and 4th bit of the 

PCLATH register and first 11 bit of the instruction register are 

concatenated and loaded to the next PC register. 

• If the PCL register is the data destination by the executing instruction then 

PCLATH register and the ALU output are concatenated and loaded to the 

next PC register. 

• Otherwise next PC register is incremented by one. 

 

If the sleep instruction is executing, then the PC is not allowed to be updated, 

since the processor will "freeze" and the instruction being fetched during the sleep 

instruction must be executed upon wakeup interrupt. 

4.2.5.5. Arithmetic Logic Unit 

The ALU executes many instructions, some directly and some indirectly. We first 

examine the 35 instructions that are executed directly by the ALU. These 

instructions are listed in Table 4.3. They are divided into 9 groups which are; 
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Table 4.3. ALU Group and Instructions 

Group Instruction Flags Affected 

Rotate Left RLF C 

Rotate Right RRF C 

Swap Nibbles SWAP  

Complement COMP Z 

ANDLW Z 

ANDWF Z 

BCF  

BTFSC  

Logical AND 

BTFSS  

IORLW Z 

IORWF Z Logical OR 

BSF  

XORLW Z 
Logical XOR 

XORWF Z 

ADDLW C,DC,Z 

ADDWF C,DC,Z 

SUBLW C,DC,Z 

SUBWF C,DC,Z 

DECF Z 

DECFSZ Z 

INCF Z 

Addition 

INCFSZ Z 

4-bit 
Multiplication 

MULT Z 

Pass Through Other Instructions  

 

• Rotate Left 

• Rotate Right 

• Swap Nibbles 

• Complement 
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• Logical AND 

• Logical OR 

• Logical XOR 

• Addition 

• 4-bit Multiplication 

• Pass Through 

 

The ALU is implemented in verilog file “alu.v” as shown in Figure 4.4. 

 

ALU is implemented purely by the combinatorial logic which means that ALU 

output is asserted immediately, according to the operand A, operand B registers 

and the instruction which is being executed. 

 

Block diagram of the Arithmetic Logic Unit is as in Figure 4.15. 

 

ALU have two operand inputs which are operand A register and Operand B 

register. Current executing instruction is also feed to the ALU to choose the right 

operand. Also the destination of the ALU output is determined by the instruction 

whether to write the result to the working register or to the RAM. ALU also gives 

output to the status register. 

 

Depending on the instruction executed, the ALU may affect the values of the 

Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and 

DC bits operate as a borrow bit and a digit borrow out bit, respectively, in 

subtraction.  
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 Figure 4.15. Block Diagram of the ALU 

 

The Operand registers of the ALU are prepared within the FSM of the 

microcontroller. They depend on the instruction which is being executed. The 

detailed information of the preparation of the operand registers will be discussed 

later in FSM section 4.2.5.6. 
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The following table summarizes the destination of the ALU output register. 

Table 4.4. Destination of the ALU output register 

Instruction Destination 

MOVWF 
BCF 
BSF 

CLRF 

RAM 

MOVLW 
ADDLW 
SUBLW 
ANDLW 
IORLW 
XORLW 
RETLW 
CLRW 
MULT 

Working Register 

MOVF 
SWAPF 
ADDWF 
SUBWF 
ANDWF 
IORWF 
XORWF 

DECF 
INCF 
RLF 
RRF 

DECFSZ 
INCFSZ 
COMF 

Determined from the “d” field of 
the instruction. It is 7th bit of the 
instruction register. If it is one 

destination is RAM else 
destination is working register 

OTHER 
INSTRUCTIONS 

None. 

 

There are nine categories of the operation of the ALU to fulfill the requirements of 

the instruction. These ALU operations are explained in the following sections. 
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4.2.5.5.1. Rotate Left Operation 

If the instruction is a rotate left instruction, the content of the operand A register is 

rotated to the left through the carry bit of the status register. 

 

 

Figure 4.16. Rotate Left Operation 

 

The result of the operation will be determined by the destination determination 

logic, whether to be written to the working register or RAM. 

 

4.2.5.5.2. Rotate Right Operation 

Rotate right operation is similar to the rotate left operation except the rotation 

direction, which is opposite .The content of the operand A register is rotated to the 

right through the carry bit of the status register. 

 

 

Figure 4.17. Rotate Right Operation 

 

The result of the operation will be determined by the destination determination 

logic, whether to be written to the working register or RAM. 
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4.2.5.5.3. Swap Nibbles Operation 

The upper and lower nibbles of the operand A register is swapped. For example if 

the content of the operand A register is “0x73”, after the swap nibbles operation 

the content of the ALU output register will be “0x37”. 

4.2.5.5.4. Complement Operation 

The ALU output register is loaded with the 1’s complement of the operand A 

register. The result of the operation will be assigned by the destination 

determination logic. As an example, if the content of the operand A register is 

“0x55”, after the complement operation, ALU output will be “0xAA”. 

4.2.5.5.5. Logical AND Operation 

With this logical AND operation 5 instructions are executed, which are ANDLW, 

ANDWF, BCF, BTFSC, BTFSS. The necessary inputs for the ALU, operand A 

and operand B registers are prepared by the finite state machine of the 

microcontroller. The necessary status bits are also updated according the result of 

the operation. ALU output destination is also resolved by the destination 

determination logic. 

4.2.5.5.6. Logical OR Operation 

IORLW, IORWF, BSF instructions are considered in this group. The operand A 

and operand B are ORed and result is written to the ALU output register. Zero flag 

of the status register is affected after the “or” operation. The ALU inputs are 

prepared by the finite state machine of the microcontroller. 

4.2.5.5.7. Logical XOR Operation 

The contents of the operand A register are XOR’ed with the contents of the 

operand B register. And the result is written to the destination, whether it is 

working register or RAM. Zero flag of the status register is also affected by this 

operation.  
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4.2.5.5.8. Addition Operation 

One of the most frequently used operator is addition operator. The operator is used 

by the 8 instruction which are, ADDLW, ADDWF, SUBLW, SUBWF, DECF, 

DECFSZ, INCF, and INCFSZ. The operand A and operand B are added with each 

other and written to the ALU output register. INCF and INCFSZ instructions are 

added by one with the value of destination of the RAM. DECF and DECFSZ 

instructions are added by the “0xFF” value with the value of destination of the 

RAM. Adding a number with 0xFF means decrement by one. Subtraction 

operation is also carried out by this operator.  The number which is going to be 

subtracted from a number can be implemented by addition operator. The addition 

of the first number and the 2’s complement of the second number gives the 

subtraction of first number from second number. 

The result of the operation affects the status flags which are carry flag, digit carry 

flag, and zero flag.  

 

4.2.5.5.9. 4-bit Multiplication Operation 

A 4bit multiplication operation is executed, and the result is written to the ALU 

output register. For example if the operand A has a value of “0x5” and operand B 

has a value of “0xD”, the value of the ALU output register is “0x41”. The ALU 

output register will be written to the working register or RAM, which is decided 

by the destination determination logic. This instruction is not available in the 

original PIC configuration. Multiplication operation is designed in a separate file, 

called “mult.v” in Figure 4.4.  

4.2.5.5.10. Pass Through Operation 

Some instructions do not need any operation like NOP, CALL, GOTO 

instructions. At this operation the operand A is reflected to the ALU output 

register and, none of the status flags are affected. The ALU output register is 

written to neither RAM nor working register, since no operation is carried out. 
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4.2.5.6. FSM Machine 

The flow diagram of the finite state machine (FSM) can be seen in the following 

Figure 4.19. At the reset condition, the microcontroller starts from the S1 state. 

This FSM basically have 4 states which are STATE_S1, STATE_S2, 

STATE_SINT, and STATE_SLE.  This FSM is a mealy type state machine as 

shown in Figure 4.18. The outputs of the FSM are decided with the current state 

and FSM inputs. 

 

 

 

Figure 4.18. Synchronous Mealy Model State Machine 

 

Different with the normal Mealy FSM, the synchronous Mealy FSM has their 

output connected to flip-flops. That is why it is called synchronous. There are two 

combinational logics in the state machine, one to generate the next state based on 

the input and current state, while the other is used to generate the outputs based 

also on the input and current state. 
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Reset

Interrupt 

Condition?
STATE_SINTyes
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SLEEP
STATE_SSLEEPyes
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Interrupt 

Condition?
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Figure 4.19 Flowchart of the Finite State Machine 

 

The detailed description of each state will be given in the following sections one 

by one. The finite state machine is implemented in verilog file “fsm.v” as shown 

in Figure 4.4. 
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4.2.5.6.1. STATE S1 

This state’s basic purpose is to read the data from RAM or registers and then 

decide the value of the operand A and operand B register for the arithmetic logic 

unit operations. Both operand A and operand B registers are set at the same clock. 

 

The following table summarizes the how the value of the operand A register is 

loaded at this state. 

 

Table 4.5. The value of the Operand A register 

Instruction Value of the Operand A Register 

MOVWF, SWAPF, 
ADDWF, SUBWF, 
ANDWF, IORWF, 
DECF, INCF, RLF, 

RRF, BCF, BSF, 
BTFSC, BTFSS, 

DECFSZ, INCFSZ, 
COMF , XORWF 

The value of the calculated internal RAM. If the 
direct addressing mode is used, it is loaded with 

the value of the destination RAM.  
If indirect addressing mode is used then it is 

loaded with the value of RAM which is pointed 
with the FSR register. 

MOVLW, ADDLW, 
SUBLW, ANDLW, 
IORLW, RETLW, 

XORLW 

These instructions are immediate value 
instructions. Operand A register is loaded with 

the first 8 bit of instruction register 

CLRF, CLRW Zero is loaded to the Operand A register 

MULT 
First 4 bit of the working register is loaded to 

the Operand A register.  

Other Instructions 
Operand A is loaded with the value of working 

register 

 

 

 

At this state operand B register is also prepared. The value of the operand B 

register is determined by the following Table 4.6. 
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Table 4.6. The value of the Operand B register 

Instruction Value of the Operand B Register 

DECF, DECFSZ 
A -1 is loaded to the operand B register. 

I.E, 0xFF is loaded to the operand B register. 

INCF, INCFSZ 0x01 is loaded to the operand B register 

SUBLW, SUBWF 
2’s complement of the value of the working register 

is loaded to the operand B register. 

BCF 
Complement of the mask node register is loaded to 

the operand B register. Mask node register is 
derived from the instruction register. 

BTFSC, BTFSS, BSF 
The value of the mask node register is loaded to the 

operand B register. 

MULT 
Second nibble of the working register is loaded to 

the Operand B register.  

Other Instructions 
Operand B is loaded with the value of working 

register 

 

At this state if the instruction is a return instruction then pop stack operation is 

also performed. 

4.2.5.6.2. STATE S2 

This state is an execution and writing results state. The results of the ALU output 

register is written to the appropriate locations. And also necessary status flags are 

updated. 

If the current executing instruction is a CALL instruction then, the current 

program counter is PUSHed to the stack. Stack pointer is also incremented by one. 

If the instruction is a RETFIE instruction, then global interrupt enable bit is also 

set. Carry, digit carry and zero flags of the status register are also updated 

according to the result of the ALU. 
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If the ALU output destination is working register, the result is written to the 

working register else the results are written to the destination of the RAM. 

If the executing instruction is a SLEEP instruction then, state of the FSM goes the 

STATE_SLE else the next state will be STATE_S1. 

4.2.5.6.3. STATE INT 

When the FSM enters to this state, FSM disables the global interrupt enable bit at 

the INTCON register. This action is taken place to prevent a second interrupt 

generation. Interrupt flag of the INTCON register is also set to inform the 

microcontroller that an interrupt condition occurred.  

 

Program counter is also pushed to the stack, so that pre-empted instruction can be 

restarted later, after the RETFIE instruction is executed. After pushing the 

program counter to the stack, stack pointer is also incremented by one. The next 

state of the FSM will be STATE_S1. 

 

4.2.5.6.4. STATE SLE (SLEEP) 

At this state microcontroller do nothing until an interrupt condition occurs. If an 

interrupt condition occurs then next state will be STATE_S1 else the 

microcontroller waits at this state infinitely. The main purpose of this state is to 

reduce power consumption. If no switching occurs within the FPGA then static 

power consumption reduces. In the original configuration of the microcontroller, 

this instruction also stops the oscillator of the microcontroller. 

4.2.5.7. Interrupts 

The original PIC microcontroller have many interrupt sources, but in this 

microcontroller only the PORTB interrupt is designed for the simplicity. The other 

interrupts can be designed in the same manner. INTCON register is used in the 

control and the status of the interrupts. The interrupt control register, INTCON, 
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records individual flag bits for core interrupt requests. It also has various 

individual enable bits and the global interrupt enable bit (GIE). 

 

PORTB0IE

PORTB0IF

GIE

INTCON 

REGISTER

Interrupt to

Microcontroller

Wake-up

(If In Sleep State)

 

Figure 4.20. Interrupt Logic 

 

The Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) the un-

masked interrupt, or disables (if cleared) the interrupt on PORTB0. PORTB0 

interrupt can be disabled through its corresponding enable bit (PORTB0IE) in the 

INTCON register. The GIE bit is cleared on reset. The “return from interrupt” 

instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which 

allows any pending interrupt to execute. 

 

When an interrupt is responded to, the GIE bit is cleared to disable any further 

interrupt, the return address is pushed into the stack and the PC is loaded with 

0004h. Once in the interrupt service routine the source of the interrupt can be 

determined by polling the interrupt flag bits. The interrupt flag bit must be cleared 

in software before re-enabling the global interrupt to avoid recursive interrupts. 

 

The external interrupt on the PORTB<0> pin is positive edge triggered. When a 

valid positive edge appears on the PORTB<0> pin, the PORTB0IF flag bit 

(INTCON<1>) is set. This interrupt can be enabled/disabled by setting/clearing 

the PORTB0IE enable bit (INTCON<4>). The PORTB0IF bit must be cleared in 

software in the interrupt service routine before re-enabling this interrupt. The 
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PORTB<0> interrupt can wake-up the processor from SLEEP, if the PORTB0IE 

bit was set prior to going into SLEEP.   

 

During an interrupt, only the return PC value is saved on the stack. Typically, if 

the user wants to save key registers during an interrupt e.g. W register and 

STATUS register, this has to be implemented in software as in the original PIC 

microcontroller. The interrupt is implemented in verilog file “fsm.v” as shown in 

Figure 4.4. 

4.2.5.8. Input / Output Ports 

General purpose I/O ports can be considered the simplest of the peripherals. They 

allow us to monitor and control devices outside the microcontroller. For all ports, 

the PORTs pin’s direction (input or output) is controlled by the data direction 

register, called the TRIS register. TRIS<x> controls the direction of PORT<x>. A 

‘1’ in the TRIS bit corresponds to that pin being an input, while a ‘0’ corresponds 

to that pin being an output.  

 

The designed microcontroller has 4 I/O ports which are PORTA, PORTB, 

PORTC, and PORTD. Only the PORTA is 5 bit, the other ports are all 8 bit wide. 

The first bit of the PORTB has interrupt functionality, although this interrupt input 

can be configurable in the top module of the verilog code. At the reset state of the 

FSM, all PORTs direction registers are loaded with 0xFF, so the default direction 

of the ports is input. This part is implemented in verilog file “top.v” as shown in 

Figure 4.4. 

4.3. Differences Between PIC16XX and The RISC Microcontroller 

There are some architectural differences between the original architecture of the 

PIC microcontroller and the RISC microcontroller that we designed in this thesis. 

Normally there is not any hardware multiplication instruction in the original 

configuration. The multiplication instruction makes a 4-bit multiplication with the 

nibbles of the working register. If we extend the instruction register we may also 



 67 

add some custom instructions to the microcontroller. This work showed us that it 

is possible to add some application specific instructions to the design.  

 

In this design we may also extend the I/O ports of the microcontroller. The 

limiting factor for the number of the I/O port is the number of the I/O pads of the 

FPGA. 

 

Stack size is also configurable in this configuration. In the original 

microcontroller, there is only 8 word size stack only, but in our case we have 

implemented the stack size as 16 word sizes. 

 

In the original PIC microcontroller one instruction execution requires 4 clock 

periods, but the designed microcontroller requires only 2 clock periods for one 

instruction execution. 
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CHAPTER 5 

 

 

SIMULATION AND TESTING OF THE 

MICROCONTROLLER 

 

 

5.1. Test Methodology 

Language based models of a circuit must be verified to assure that their 

functionality conforms to the specification for the design. Two methods of 

verification are used: logic simulation and formal verification. Logic simulation 

applies stimulus patterns to a circuit and monitors its simulated behavior to 

determine whether it is correct. Formal verification uses mathematical proofs to 

verify a circuit’s functionality without having to apply stimulus patterns. Although 

the use of formal methods is increasing, due to the difficulty of fully simulating 

large circuits, logic simulation is still widely used. Only logic simulation will be 

considered in this thesis.  

 

Today, in the era of ASICs, FPGAs and System on a Chip designs, verification 

consumes about 70% of the design effort. Design teams include engineers 

dedicated to verification. The number of the verification engineers is usually twice 

the number of designers [27]. 

 

5.2. Testing Environment 

As a testing environment, industry standard ModelSim SE simulator is used. 

ModelSim SE is the high-end simulator available from Mentor Graphics. More 

information can be found in the ModelSim SE User’s Manual[28].By creating 
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verilog based testbenches any type of stimulus can be provided to the designed 

logic system. 

 

The term “testbench”, in verilog, usually refers to the code used to create a 

predetermined input sequence to a design, and then observe the design. Some 

external data files may also be included to the testbenches, such as program data 

file. 

 

Figure 5.1 Structure of a Testbench and Design Under Test 

 

Figure 5.1 shows how a testbench interacts with a Design Under Test (DUT). The 

testbench provides inputs to the design and monitors any outputs. The testbench is 

a completely closed system, no inputs or outputs go in or out. The testbench is 

effectively a model of the universe as far as the design is concerned. The 

verification is to determine what input patterns to supply to the design and what is 

the expected output of a properly working design. 

 

In this thesis, a testbench is created to test the designed microcontroller named 

“riscmcu_sim.v” as shown in Figure 4.4. The testbench structure for the designed 

microcontroller is shown in Figure 5.2.  

 

A virtual data memory is created first and directly interfaced to the 

microcontroller. It behaves as a real RAM. The contents of the memory are 

initially loaded as unknown. During the run-time of the simulation the contents of 
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the data memory can be visualized by the memory tool of the ModelSim 

simulator.  

 

Testbench

MICROCONTROLLER

PORTS

DATA 

MEMORY

PROGRAM 

MEMORY

STIMULUS

 

Figure 5.2 Microcontroller Testbench Structure  

 

An asynchronous ROM file is also created in the test bench which simulates the 

program memory of the microcontroller as the same way with the Data Memory. 

The necessary clock and reset inputs are also supplied through the testbench. In 

the testbench input output ports are used to simulate microcontroller. Figure 5.3 

shows the test flow of the microcontroller. Initial contents of the program memory 

are loaded with a “riscmcu.rom” file. A sample test program is written which is 

shown in Appendix C. This test program simply tests all instructions of the 

microcontroller. This file is compiled with HI-TECH C compiler and then the 

memory contents are exported as “riscmcu.rom”. Only the multiplication 

instructions machine code must be changed manually, because the multiplication 

instruction is a custom instruction. The testbench and all the design files are given 
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as an input to the ModelSim simulator. ModelSim simply checks the syntax and 

compiles all the verilog files. Also wave window in the ModelSim should be 

opened and necessary signals must be included to the wave window to see the 

status of the signals in the microcontroller. 

 

 

Figure 5.3 Microcontroller Test Flow 

5.3. Checking the Results 

In a functional verification environment, using a waveform viewer to determine 

the correctness of a design involves interpreting the dozens of signals on some 

expectations. It can be an acceptable verification method if used a few signals. But 

as the number of signal increases, and the number of transitions increases, and the 

duration of the simulation that must be checked increases, and the number of 

times simulation results must be checked increases, the probability of a functional 

error is increases.  

ModelSim can compare two sets of waveforms. One is assumed to be a golden 

reference, while the other is verified for any difference. Golden reference must be 

checked manually and carefully.  

An example waveforms is shown in the following figure; 

 

 

Figure 5.4 Microcontroller Simulation Startup 
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As shown in Figure 5.4, microcontroller successfully starts to operate, and load 

the instructions from the memory.  

Finally, after verifying the design by the simulator, the same test program is also 

loaded onto the Digilent demo board, and the results are checked on the real 

hardware. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

6.1. Conclusions 

In this thesis, we introduced a custom designed RISC microcontroller, whose 

instructions were based on industry standard Microchip PIC microcontrollers. In 

today’s engineering applications, 8-bit microcontrollers play an important role to 

realize the designs. From a simple toy to complicated satellite systems 8-bit 

microcontrollers are widely used. This custom microcontroller is designed and 

implemented by using an FPGA. 

 

The industry trend for microprocessor design is for Reduced Instruction Set 

Computers (RISC) designs. By implementing fewer instructions, the chip is able 

to dedicate some of the precious silicon real-estate for performance enhancing 

features. The benefits of RISC design are a smaller chip, smaller pin count, and 

very low power consumption. Also RISC architecture is more convenient to the C 

compilers. 

 

The FPGA is an integrated circuit that contains many (64 to over 10,000) identical 

logic cells that can be viewed as standard components.  Each logic cell can 

independently take on any one of a limited set of personalities.  The individual 

cells are interconnected by a matrix of wires and programmable switches.  A user's 

design is implemented by specifying the simple logic function for each cell and 

selectively closing the switches in the interconnect matrix.  The array of logic cells 
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and interconnects form a fabric of basic building blocks for logic circuits.  Xilinx 

Spartan™ FPGA is used in this thesis which is ideal for low-cost, high volume 

applications. 

 

The design specifications are derived from the PIC microcontroller user manual. 

Verilog hardware description language is used to achieve the design 

considerations of the RISC microcontroller. Then a Verilog code is written with 

some modifications to the instruction set and extra ports. The designed Verilog 

code is synthesized with the Xilinx ISE program. A test platform is established by 

using a Digilent demo board. A program downloader application is written with 

using Borland C++ Builder on the PC to load the firmware to the microcontroller 

in the SPARTAN IIE FPGA, and then the results are checked whether it meets the 

design specification.  

 

The microcontroller in the FPGA occupied roughly 30 % resources of the FPGA. 

Detailed design summary can be found in Appendix B. It means that we have free 

space to implement some other functions in the FPGA.  

 

The designed microcontroller has some extra functionality with respect to the 

original configuration. There is not any hardware multiplication instruction in the 

original configuration. In this configuration a multiplication instruction is added to 

the instruction list. And the I/O ports are expandable, according to the used 

requirements.The PIC16XX microcontrollers divide the incoming clock by 4, So 

the pipeline of the original microcontroller is formed-up by the 4 clock cycles. But 

the designed microcontroller in this thesis has been implemented by 2 clock 

pipeline. This is an extra performance increasing factor with respect to the original 

configuration. 

 

One important result of this thesis is, in the future we can implement an ASIC 

with the Verilog code which has already been developed in this thesis.  
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6.2. Future Work 

In the future, I intend to improve the instruction set of the designed 

microcontroller core . The current microcontroller have instructions , which are 

14-bits wide . If we extend the instructions to the 16-bit, we shall have new 

opportunity to add custom instructions the microcontroller core. By this way , we 

can implement very specific functions such as DSP operations in the FPGA very 

easily. We may improve the multiplication instruction to the 8 bit multiplication 

even 16-bit multiplication.  

 

Also we can add specific peripherals to the microcontroller, such as PWM timers, 

and I2C bus. The utilization of the FPGA is currently 30 % , so we have much 

area remaining in the FPGA to implement such peripherals and instructions. But 

all these works must keep the compatibility to the previous microcontroller core. 
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APPENDIX A 

 

 

PROGRAM LOADER USER’S MANUAL 

 

 

Program Downloader Software has been developed for PC’s running Windows 

operating system. Program Downloader uses all the graphic and component 

support built in Windows which makes it user friendly software. There are no 

menus in the program. Because it is a simple program, all functions are done with 

the buttons and the tabs. The basic program structure and the basic functions of 

each button are as follows: 

• Settings Tab; in this tab serial communication settings are established. 

• From the name pull-down drop list, Serial communication channel can be 

selected. 

• From the baud rate drop list, baud rate can be selected. 

• From the Communication speed drop list, communication speed can be 

selected between two commands. 

• Open button, opens a serial communication with the desired baud rate at 

the selected channel 

• Commands Tab; In this tab , the compiled Intel hex file is loaded to the 

memory of the PC 

• File Load button loads the Intel hex file. 

• File Unload button clear the memory of PC. 

• Write Button sends the sequentially the binary data to the microcontroller 

to the FPGA 

• Read button reads some memory content from the FPGA 
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APPENDIX B 

 

 

DESIGN SUMMARY AND RESULTS 

 

 

The result of the mapping stage is as follows; 

 

Design Information 

------------------ 

Target Device   : x2s200e 

Target Package  : pq208 

Target Speed    : -6 

Mapper Version  : spartan2e -- $Revision: 1.16.8.2 $ 

Mapped Date     : Fri April 15 21:07:14 2005 

 

 

Design Summary 

-------------- 

Logic Utilization: 

  Number of Slice Flip Flops :  498 out of  4,704   10% 

  Number of 4 input LUTs :  1,196 out of  4,704   25% 

Logic Distribution: 

    Number of occupied Slices:    711 out of  2,352   30% 

    Number of Slices containing only related logic:  711 out of    711  100% 

    Number of Slices containing unrelated logic: 0 out of    711    0% 

Total Number 4 input LUTs  : 1,255 out of  4,704   26% 
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      Number used as logic  : 1,196 

      Number used as a route-thru : 51 

      Number used as 16x1 RAMs : 8 

   Number of bonded IOBs  : 36 out of    142   34% 

      IOB Flip Flops   : 30 

   Number of Tbufs   : 144 out of  2,464    5% 

   Number of Block RAMs  : 5 out of     14   35% 

   Number of GCLKs   : 3 out of      4   75% 

   Number of GCLKIOBs  : 1 out of      4   25% 

   Number of DLLs   : 1 out of      4   25% 

 

Total equivalent gate count for design:  102,646 
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APPENDIX C 

 

 

TEST CODE FOR THE MICROCONTROLLER 

 

 

// Filename        : riscmcu_test.c 

// Description     : RISC MICROCONTROLLER TEST SOFTWARE 

// Author          : Rasit GUMUS 

// Created On      : MPLAB 7.01 -HITECH PICC C Compiler 8.02 

// Last Modified By: . 

// Last Modified On: . 

// Update Count    : 0 

// Status          :  This test program simulates all of the features of the mcu 

#include <pic.h> 

void delay(unsigned char data); 

void long_delay(void); 

unsigned char soft_mult(unsigned char x, unsigned y); 

void interrupt interrupt_service(void); 

 

void main(void) { 

unsigned char ch1,ch2; 

TRISA=0x00; // PORTA is output 

TRISB=0xFF; // PORTB is input 

TRISC=0x00; // PORTC is output 

TRISD=0xFF; // PORTD is input 

INTCON=0xFE; // enable interrupt 
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ch1=1;ch2=2; 

// The following instructions are tested with the following  software multiplication 

// routines. ADDWF, CLRF, INCF, INCFSZ, MOVWF, NOP, RLF, RRF, 

SUBWF, XORWF, BCF, BSF 

// CALL, GOTO, BTFSC, BSF, BCF, RETURN 

for (ch1=0 ; ch1<16 ; ch1++) 

 for (ch2=0 ; ch2<16 ; ch2++) 

{  

PORTC=soft_mult(ch1,ch2); 

delay(250);delay(250); 

} 

PORTC=0xAF; 

while ( (PORTD&0x0F) == 0) ; 

long_delay(); 

// TEST FOR ANDWF 

PORTC=PORTC & 0x0F ; 

while ( (PORTD&0x0F) == 0) ; 

long_delay(); 

// TEST FOR COMF 

while ( (PORTD&0x0F) == 0)  

 PORTC = ~PORTB; 

long_delay(); 

// TEST FOR ADDLW 

while ( (PORTD&0x0F) == 0)  

 PORTC = PORTB+0x07; 

long_delay(); 

// TEST FOR SUBLW 

while ( (PORTD&0x0F) == 0)  

{ 

asm("MOVF portb,W"); 
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asm("SUBLW 0x10"); 

asm("MOVWF portc"); 

} 

long_delay(); 

// TEST FOR ANDLW 

while ( (PORTD&0x0F) == 0)  

{ 

asm("MOVF portb,W"); 

asm("ANDLW 0xAA"); 

asm("MOVWF portc"); 

} 

long_delay(); 

// TEST FOR XORLW 

while ( (PORTD&0x0F) == 0)  

{ 

asm("MOVF portb,W"); 

asm("XORLW 0xFF"); 

asm("MOVWF portc"); 

} 

long_delay(); 

// test for multiplication instruction 

while ( (PORTD&0x0F) == 0)  

{ 

asm("NOP"); 

asm("NOP"); 

asm("NOP"); 

asm("BCF 0x3, 0x5"); 

asm("MOVF portb,W");  

asm("xorlw 0xAB"); // the value at this address should be changed 

asm("MOVWF portc");// from 0x3A to 0x3B to make multiplication 
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   // in the produced rom file 

} 

long_delay(); 

// TEST FOR ROTATE LEFT   

while ( (PORTD&0x0F) == 0)  

{ 

ch1=0x01; 

for (ch2=0;ch2 < 8 ; ch2++) 

 { 

//shift operations  

PORTC=ch1; 

ch1=ch1<<1; 

long_delay(); 

} 

} 

long_delay(); 

// TEST FOR ROTATE RIGHT   

while ( (PORTD&0x0F) == 0)  

{ 

ch1=0x80; 

for (ch2=0;ch2 < 8 ; ch2++) 

 { 

//shift operations  

PORTC=ch1; 

ch1=ch1>>1; 

long_delay(); 

} 

} 

long_delay(); 

asm("SLEEP"); 
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asm("NOP"); 

 

PORTC=0xF0; 

while(1); // wait here forever 

} 

void delay(unsigned char data) 

{ 

unsigned char i,k; 

for (i=0; i<data ; i++) 

  for (k=0; k<255 ; k++) 

 asm("nop");  

} 

void long_delay(void) 

{ 

delay(250);delay(250); 

delay(250);delay(250); 

delay(250);delay(250); 

delay(250);delay(250); 

} 

unsigned char soft_mult(unsigned char x, unsigned y) 

{ 

return x*y; 

} 

void interrupt interrupt_service(void) 

{ 

PORTC=0xFF; 

PORTA=~PORTA;  

} 
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APPENDIX D 

 

 

INTERCONNECTION DIAGRAM FOR THE TOP MODULE 
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APPENDIX E 

 

 

INTERCONNECTION DIAGRAM FOR THE RISC 

MICROCONTROLLER MODULE 
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APPENDIX F 

 

 

SOURCE FILES FOR THE RISC MICROCONTROLLER 

 

The source files for the RISC microcontroller are located on the CD-ROM 

attached to the back cover of the thesis. 


