

IMPLEMENTATION OF A RISC MICROCONTROLLER USING FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

RAŞİT GÜMÜŞ

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof.Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof.Dr. İsmet ERKMEN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Hasan GÜRAN
Supervisor

Examining Committee Members

Asst.Prof.Dr. Cüneyt BAZLAMACI (METU,EEE)

Prof. Dr. Hasan GÜRAN (METU,EEE)

Asst.Prof.Dr. İlkay ULUSOY (METU,EEE)

Dr. Ece SCHMIDT (METU,EEE)

Ekrem ARAS , Msc (MiKES A.Ş.)

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Raşit GÜMÜŞ

Signature :

 iv

ABSTRACT

IMPLEMENTATION OF A RISC MICROCONTROLLER USING FPGA

GÜMÜŞ, Raşit

MSc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. HASAN GÜRAN

June 2005, 88 pages

In this thesis a microcontroller core is developed in an FPGA. Its instruction set is

compatible with the microcontroller PIC16XX series by Microchip Technology.

The microcontroller employs a RISC architecture with separate busses for

instructions and data. Our goal in this research is to implement and evaluate the

design in the FPGA. Increasing performance and gate capacity of recent FPGA

devices permits complex logic systems to be implemented on a single

programmable device. Such a growing complexity demands design approaches,

which can lead to designs containing millions of logic gates, memories, high-

speed interfaces, and other high-performance components. In recent years, the

continuous development in the area of highly integrated circuits has lead to a

change in the design methods used, making it possible to economically utilize

FPGAs in many designs.

A test demo board from the Digilent Inc is used to fit our testing requirements of

the RISC microcontroller. The test demo board also had the capability of

communicating with a personal computer (PC) so that we can load the program

from PC. Based on the modern design methods the microcontroller core is

developed using the Verilog hardware description language. Xilinx ISE

 v

Foundation 6.3i software is used for its synthesis and implementation. An

embedded test program code using MPLAB is also developed, and then loaded

into the designed microcontroller residing in the FPGA. In order to perform a

functional test of the microcontroller core a special test program downloader

application is designed by using Borland C++ Builder.

First, the specification from the PIC16XX datasheet is transferred into an abstract

behavioral description. Based on that, the next step is to develop a description of

the microcontroller core with some minor modifications which can be

synthesizable into a FPGA. Finally, the resulting gate level netlist is evaluated and

tested using a demo board.

Keywords: RISC, CISC, Microcontroller, PIC, Field Programmable Gate Arrays,

Xilinx, Verilog

 vi

ÖZ

FPGA KULLANARAK RISC MIKRODENETLEYİCİ

GERÇEKLEŞTİRMESİ

GÜMÜŞ, RAŞİT
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Hasan GÜRAN

Haziran 2005, 88 sayfa

Bu tezde bir mikrodenetleyici çekirdeği geliştirilmiş ve gerçekleştirilmiştir.

Mikrodenetleyicinin komut kümesi, Microchip firmasının PIC16 serisi

mikrodenetleyicileri ile uyumludur. Bu mikrodenetleyicide RISC mimarisi

kullanılmış olup, veri yolu ve komut kütüphanesi veri yolu ayrıdır. Bu

araştırmadaki amacımız, mikrodenetleyicinin FPGA üzerinde tasarlanması ve

gerçekleştirilmesidir. Günümüzdeki FPGA’lerin hem performans hemde lojik kapı

kapasitesinin gelişmiş olması, karmaşık sistemlerin tek bir programlanabilir

enntegrelerde gerçekleştirilmelerine imkan vermiştir. Bu gittikçe artan karmaşık

sistemler, tasarımların milyonlarca lojik kapı, hafıza, yüksek hızlı arayüz ve diğer

yüksek performanslı bileşenler içeren bir tasarım yaklaşımı istemektedir. Son

yıllardaki yonga teknolojisindeki sürekli gelişmeler, tasarım metodlarının

değişmesine sebeb olmuştur, bu da FPGA’lerin ekonomik olarak birçok tasarımda

kullanılmalarına olanak sağlamıştır.

 Tasarladığımız mikrodenetleyicinin test ihtiyaçları için Digilent firmasının bir

demo kartı kullanılacaktır. Bu demo kartı bilgisayar ile haberleşebilme özelliğine

sahip olduğundan, tasarladığımız gömülü yazılımı FPGA üzerine

 vii

yükleyebilmemize olanak sağlamaktadır. Mikrodenetleyici çekirdeği günümüz

modern tasarım metodlarını baz alarak, Verilog donanım tanımlama dilini

kullanarak geliştirilmiştir. Xilinx firmasının ISE Foundation 6.3i yazılımı

sentezleme ve gerçekleştirme işlemlerinde kullanılmıştır. Ayrıca bir gömülü test

yazılımı MPLAB kullanarak yazılıp, FPGA’e yüklenmiştir. Mikrodenetleyici

çekirdeğinin , fonksiyonel testlerinin yapılabilmesi için, PC’den FPGA’e gömülü

yazılım yüklemek için , Borland C++ Builder kullanarak , bir program yükleme

yazılımı da geliştirilmiştir.

İlk once PIC16XX veri sayfalarından tasarım belirtimleri , donanım hareket

betimlerine dönüştürülmüştür. Bundan sonraki adım, FPGA üzerine çok az bir

değişiklikle sentezlenebilir bir mikrodenetleyici çekirdeğinin geliştirilmesi

olmuştur. Son olarak kapı seviyesinde oluşturulan bağlantı listesi, demo kartı

kullanılarak test edilmiştir.

Anahtar Kelimeler : RISC, CISC, Mikrodenetleyici, PIC, Saha Programlanabilir

Kapı Dizisi, Xilinx, Verilog

 viii

To My Parents

 ix

ACKNOWLEDGEMENTS

I would like to thank Prof. Dr. Hasan GÜRAN for his valuable supervision and

support throughout the development and improvement of this thesis. This thesis

would not have been completed without his guidance.

 x

TABLE OF CONTENTS

PLAGIARISM...iii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS.. x

LIST OF TABLES .. xv

LIST OF FIGURES.. xvi

LIST OF ABBREVIATIONS .. xviii

CHAPTERS

1. INTRODUCTION... 1

1.1. Central Processing Unit... 1

1.2. Microcontroller.. 2

1.3. Complex Instruction Set Computer (CISC) .. 4

1.4. Reduced Instruction Set Computer (RISC) ... 4

1.5. Microchip PIC16XX ... 5

1.6. Objectives.. 6

1.7. Work Scope ... 6

2. DESIGN PROCESS FLOW AND TOOLS .. 7

2.1. Design Process .. 7

2.2. Software Tools .. 8

2.2.1. XILINX ISE... 8

2.2.2. MODELSIM SE .. 11

2.2.3. MPLAB IDE.. 12

 xi

2.2.4. HI-TECH C Compiler ... 13

2.2.5. BORLAND C++ BUILDER.. 14

2.3. Hardware Tools .. 14

2.3.1. Digilent D2E Demo Board .. 14

2.4. Hardware Description Language .. 16

2.4.1. VHDL.. 16

2.4.2. Verilog... 16

2.4.3. Why use Verilog HDL? ... 18

2.5. Field Programmable Gate Arrays ... 19

3. BASIC FEATURES OF PIC16XX... 24

3.1. Memory Organization ... 24

3.1.1. Program Memory... 24

3.1.2. Data Memory... 24

3.1.3. Special Function Registers .. 25

3.1.4. Program Counter ... 25

3.1.5. Stack .. 26

3.2. Addressing Modes... 27

3.2.1. Direct Addressing Mode.. 27

3.2.2. Indirect Addressing Mode ... 28

3.3. Instruction Set Summary... 29

3.4. Instruction Formats.. 31

4. IMPLEMENTATION OF MICROCONTROLLER... 34

 xii

4.1. Pin Description.. 34

4.2. Architecture Overview .. 35

4.2.1. Clock Generator Unit .. 37

4.2.2. Program Load Unit .. 40

4.2.2.1. Baud Rate Generator.. 41

4.2.2.2. Rs232 Receive Unit ... 42

4.2.2.3. Rs232 Transmit Unit ... 42

4.2.2.4. Program Memory Interface Unit.. 42

4.2.3. Program Memory Unit... 42

4.2.4. Data Memory Unit... 44

4.2.5. Microcontroller Unit.. 45

4.2.5.1. Instruction Fetch and Decode .. 47

4.2.5.2. Calculation of RAM Access Address .. 47

4.2.5.3. Stack .. 50

4.2.5.4. Program Counter.. 51

4.2.5.5. Arithmetic Logic Unit.. 52

4.2.5.5.1. Rotate Left Operation .. 57

4.2.5.5.2. Rotate Right Operation .. 57

4.2.5.5.3. Swap Nibbles Operation .. 58

4.2.5.5.4. Complement Operation.. 58

4.2.5.5.5. Logical AND Operation... 58

4.2.5.5.6. Logical OR Operation.. 58

 xiii

4.2.5.5.7. Logical XOR Operation... 58

4.2.5.5.8. Addition Operation .. 59

4.2.5.5.9. 4-bit Multiplication Operation ... 59

4.2.5.5.10. Pass Through Operation... 59

4.2.5.6. FSM Machine .. 60

4.2.5.6.1. STATE S1.. 62

4.2.5.6.2. STATE S2.. 63

4.2.5.6.3. STATE INT ... 64

4.2.5.6.4. STATE SLE (SLEEP).. 64

4.2.5.7. Interrupts.. 64

4.2.5.8. Input / Output Ports ... 66

4.3. Differences Between PIC16XX and The RISC Microcontroller 66

5. SIMULATION AND TESTING OF THE MICROCONTROLLER................ 68

5.1. Test Methodology.. 68

5.2. Testing Environment ... 68

5.3. Checking the Results ... 71

6. CONCLUSIONS... 73

6.1. Conclusions ... 73

6.2. Future Work .. 75

REFERENCES.. 76

APPENDICES

A. PROGRAM LOADER USER’S MANUAL.. 78

 xiv

B. DESIGN SUMMARY AND RESULTS.. 79

C. TEST CODE FOR THE MICROCONTROLLER... 81

D. INTERCONNECTION DIAGRAM FOR THE TOP MODULE 86

E. INTERCONNECTION DIAGRAM FOR THE RISC MCU MODULE 87

F. SOURCE FILES FOR RISC MICROCONTROLLER 88

 xv

LIST OF TABLES

TABLES

3.1. Instruction Set Summary ...30

3.2. Instruction Description Conventions ...32

4.1. Sub-Modules inside the microcontroller ...47

4.2. Destination RAM Access Addresses ...49

4.3. ALU Group and Instructions ..54

4.4. Destination of the ALU output register ...56

4.5. The value of the Operand A register ...62

4.6. The value of the Operand B register ...63

 xvi

LIST OF FIGURES

FIGURES

1.1. Basic Computer System Architecture ..2

2.1. Design Process Flow ..7

2.2. Xilinx ISE View...10

2.3. Basic Simulation Flow with using Modelsim ..11

2.4. A view of the MPLAB program ..13

2.5. Picture of the Digilent D2E Board ..15

2.6. Block Diagram of the Digilent Demo Board ...15

2.7. Levels of Abstraction ..18

2.8. Basic Spartan-IIE Family FPGA Block Diagram ..21

2.9. Spartan-IIE CLB Slice (two identical slices in each CLB)22

3.1. Memory Organization of PIC16F84 Microcontroller26

3.2. Direct Addressing Mode ..27

3.3. Indirect Addressing Mode..28

4.1. Microcontroller Pin Configuration ..34

4.2. Top Level Architectural Block Diagram ...35

4.3. Top Module of the Microcontroller Design ..36

4.4. File Hierarchy of the Microcontroller Design ..37

4.5. Clock Generator Unit ..38

4.6. Global Clock Distribution Network Through the FPGA39

 xvii

4.7. Clock Divider Circuit ..40

4.8. Block Diagram of the Program Load Unit ..41

4.9. A diagram for the 16 kbit dual port Program Memory43

4.10. A diagram for the 512 byte RAM ...45

4.11. Inputs and Outputs of the Microcontroller Unit ..46

4.12. Direct Addressing Mode ...48

4.13. Indirect Addressing Mode ...48

4.14. Stack Modification ..50

4.15. Block Diagram of the ALU ...55

4.16. Rotate Left Operation ..57

4.17. Rotate Right Operation ...57

4.18. Synchronous Mealy Model State Machine ..59

4.19. Flowchart of the FSM Machine ..61

4.20. Interrupt Logic ...65

5.1. Structure of a Testbench and Design Under Test...69

5.2. Microcontroller Testbench Structure ...70

5.3. Microcontroller Test Flow ...71

5.4. Microcontroller Simulation Startup ...71

 xviii

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

BUFG Buffer Global

CAD Computer Aided Design

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

CPU Central Processing Unit

DLL Delay Locked Loop

DSP Digital Signal Processor

EDIF Electronic Design Interchange Format

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

I/O Input / Output

IBUF Input Buffer

IC Integrated Circuit

IDE Integrated Development Environment

IP Intellectual Property

ISE Integrated Software Environment

JTAG Joint Test Action Group

LUT Look Up Table

MCU Microcontroller Unit

OTP One Time Programmable

PLD Programmable Logic Devices

PAR Place and Route

RAM Random Access Memory

 xix

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTL Register Transfer Level

SFR Special Function Register

UCF User Constrains File

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

 1

CHAPTER 1

INTRODUCTION

The aim of this thesis is to design the complete processor core of Microchip

PIC16XX and slightly modify its architecture and instruction set. The designed

microcontroller will be implemented by using an FPGA.

1.1. Central Processing Unit

The central processing unit is the brain of the computer system that manages the

flow of information. A central processing unit normally contains three main

components: a control unit, an arithmetic and logic unit and a register collection. It

is the control unit which is responsible for the control and synchronization of the

actions of the processor. Thus, the control unit is the most complicated part of the

system, and the one which characterizes the CPU. Figure 1.1 shows the block

diagram of a basic computer system. A basic computer system must have the

standard elements CPU, memory and I/O. All these elements communicate via the

system bus, which is composed by the data, address buses [1].

The CPU has the ability to understand and execute instructions based on a set of

binary codes, each representing a simple operation. These instructions are usually

arithmetic, logic, data movement, or branch operations, and are represented by a

set of binary codes called the instruction set. The memory, is used to store all the

programs formed by the instruction set and all the require data. I/O interface

provide an interconnection with the outside world, such as the keyboard as an

input and the monitor as an output.

 2

CPU

RAM

Peripherals

I/O Interface

Data Bus

Address Bus

ROM

Figure 1.1. Basic Computer System Architecture

Minicomputers and mainframe computers, have CPUs consisting multiple ICs,

ranging from several ICs (minicomputers) to several circuit boards of ICs

(mainframes). This is necessary to achieve the high speeds and computational

power of larger computers. On the other hand, the CPU of a microcomputer is

contained in a single integrated circuit. They are known as a microprocessor [2].

1.2. Microcontroller

It was pointed out above that microprocessors are single-chip CPUs used in

microcomputer. A microcontroller contains, in a single IC, a CPU and much of the

remaining circuitry of a basic computer system. A microcontroller has the CPU,

memory (RAM, ROM) and the I/O interface (parallel, serial) all within the same

IC. Of course, the amount of on-chip memory does not approach that of even a

modest microcomputer system [3].

Microprocessors are most commonly used as the CPU in microcomputer systems.

Microcontrollers, on the other hand, are found in small, minimum-component

 3

designs performing control-oriented activities. These designs were often

implemented in the past using dozens or even hundreds of ICs. A microcontroller

aids in reducing the overall component count. All that is requires is

microcontroller, a small number of support components, and a control program in

ROM.

There are two fundamental microcontroller architectures to access memory in the

industry.

John Von Neumann's Architecture: One shared memory for instructions

(program) and data with one data bus and one address bus between processor and

memory. Instructions and data have to be fetched in sequential order (known as

the Von Neuman Bottleneck), limiting the operation bandwidth. Its design is

simpler than that of the Harvard architecture. It is mostly used to interface to

external memory. Examples of processors using this type of architecture are the

Motorola MC68HC11 and Intel 8051 [3].

 Harvard Architecture: The Harvard architecture uses physically separate

memories for their instructions and data, requiring dedicated buses for each of

them. Instructions and operands can therefore be fetched simultaneously.This type

of architecture speeds up execution but requires more silicon. PIC

microcontrollers from Microchip Technology Inc. use this type of architecture.

Different program and data bus widths are possible, allowing program and data

memory to be better optimized to the architectural requirements. E.g.: If the

instruction format requires 14 bits then program bus and memory can be made 14-

bit wide, while the data bus and data memory remain 8-bit wide[3].

 4

1.3. Complex Instruction Set Computer (CISC)

In early days, computers had only a small number of instructions and used simple

instruction sets, forced mainly by the need to minimize the hardware used to

implement them. As digital hardware become cheaper, computer instructions

tended to increase both in number and complexity. These computers also employ a

variety of data types and a large number of addressing modes. A computer with a

large number of instructions, are known as complex instruction set computer,

abbreviated CISC [3].

Major characteristics of CISC architecture are:

• A large number of instructions – typically from 100 to 250 instructions

• Some instructions that perform specialized tasks and are used infrequently

• A large variety of addressing modes – typically from 5 to 20 different

modes

• Variable-length instruction formats

• Instructions that manipulate operands in memory

1.4. Reduced Instruction Set Computer (RISC)

In the early 1980s, a number of computer designers were questioning the need for

complex instruction sets used in the computer of the time. In studies of popular

computer systems, almost 80% of the instructions are rarely being used. So they

recommended that computers should have fewer instructions and with simple

constructs. This type of computer is classified as reduced instruction set computer

or RISC. The term CISC is introduced later to differentiate computers designed

using the ‘old’ philosophy. The first characteristic of RISC is the uniform series of

single cycle, fetch-and-execute operations for each instruction implemented on the

computer system.

 5

A single-cycle fetch can be achieved by keeping all the instructions a standard

size. The standard instruction size should be equal to the number of data lines in

the system bus, connecting the memory (where the program is stored) to the CPU.

At any fetch cycle, a complete single instruction will be transferred to the CPU.

For instance, if the basic word size is 32 bits, and the data port of the system bus

(the data bus) has 32 lines, the standard instruction length should be 32-bits.

Achieving uniform (same time) execution of all instructions is much more

difficult than achieving a uniform fetch. Some instructions may involve simple

logical operations on a CPU register (such as clearing a register) and can be

executed in a single CPU clock cycle without any problem. Other instructions may

involve memory access (load from or store to memory, fetch data) or multicycle

operations (multiply, divide, floating point), and may be impossible to be executed

in a single cycle [3].

The characteristics of RISC architecture are summarized as follow:

• Single-cycle instruction execution

• Fixed-length, easily decoded instruction format

• Relatively few instructions

• Relatively few addressing modes

• Memory access limited to move instructions

• All operations done within the RAM and working register of the CPU

1.5. Microchip PIC16XX

The Microchip PIC family of microcontrollers was introduced in 1989 by Arizona

Microchip. Microchip (as they are now known) bought General Instruments’

microelectronics division as a start-up company in 1988. They re-engineered a

programmable interface device that General Instruments were using as a general-

 6

purpose reconfigurable input/output port for their microprocessor as a stand-alone

microcomputer. These were called the PIC (Programmable Interface Controller)

family. The second generation of this family was introduced in 1994, which are

PIC16XX family. The core processor is similar within the 14-bit family members

and software is identical. PIC16XX based on a RISC architecture which has 33

instructions [4].

1.6. Objectives

The main objective of this project is to design a RISC microcontroller using

verilog and implement it in an FPGA. The microcontroller instruction set and the

basic features are based on Microchip PIC16XX RISC microcontroller family.

The objective also includes the architecture expansion of the microcontroller

without changing the core structure.

1.7. Work Scope

The aim of the project is to design the complete processor core of Microchip

PIC16XX and slightly modify its architecture and instruction set. The

microcontroller must be able to fit into the targeted FPGA device, which is Xilinx

Spartan IIE Digilent evaluation board.

 7

CHAPTER 2

DESIGN PROCESS FLOW AND TOOLS

2.1. Design Process

Figure 2.1. Design Process Flow

Figure 2.1 shows the design process of the project and their related CAD tools.

The design process can be divided into 2 main parts – hardware design (with

verilog) and hardware implementation.

 8

Hardware design is done with the related CAD tools. The first step in the

hardware design is to prepare the specification of the design (the microcontroller).

The architecture and the instruction set must be understood completely. The

design ideas are then described with verilog in a text editor. Then, the verilog code

is synthesized with XILINX XST. If synthesized successfully, XILINX XST will

generate a bit file. This file is then loaded to the FPGA on the demo board. Results

are verified by the Digilent D2E board. The hardware design process is repeated

until the microcontroller is complete without any errors.

Hardware implementation is performed by loading the design into the targeted

FPGA device, Xilinx Spartan XC2S200-6PQ208. The hardware implementation

tests the design, in real physical environment by some control applications. A

microcontroller can perform thousands of control applications. For every

application, different programs must be written and stored into the program ROM

of the microcontroller before it can do the job. So, before the microcontroller is

downloaded into the FPGA device, the application specific firmware for the

microcontroller must be written.

The program is written and assembled using the HI-TECH C compiler. The

MPLAB IDE is used to simulate and test the program. If no bugs are found, the

binary file generated by the compiler is converted to Intel HEX format. This HEX

file is downloaded to the Digilent D2E board by using a program loader

application, written by using Borland C++ Builder. After loading the program,

microcontroller is checked, whether it meets the design specification.

2.2. Software Tools

2.2.1. XILINX ISE

Integrated Software Environment (ISE) is the Xilinx design software suite [5]. ISE

can be used by a full spectrum of designers, from the first time CPLD designer to

 9

the experienced ASIC designer transitioning to FPGA. ISE enables designers to

start the design with any of a number of different source types, including:

• HDL (VHDL, Verilog HDL, ABEL)

• Schematic design files

• EDIF

• State Machines

• IP Cores

After the design has been typed the synthesis stage converts the text based design

into a Xilinx netlist file, which is a linked object file. The netlist is a non-readable

file that describes the actual circuit to be implemented at a very low level.

The implementation phase uses the netlist, and normally a ‘constraints file’ to

recreate the design using the available resources within the FPGA. Constraints

may be physical or timing and are commonly used for setting the required

frequency of the design or declaring the required pin-out.

The first step is translate. The translate step checks the design and ensures the

netlist is consistent with the chosen architecture. Translate also checks the user

constraints file (UCF) for any inconsistencies. In effect, this stage prepares the

synthesized design for use within an FPGA.

The Map stage distributes the design to the resources in the FPGA. Obviously, if

the design is too big for the chosen device the map process will not be able to

complete its job.

The Place And Route (PAR) stage works with the allocated configurable logic

blocks (CLBs) and chooses the best location for each block. For a fast logic path it

makes sense to place relevant CLBs next to each other purely to minimize the path

 10

length. The routing resources are then allocated to each connection, again using

careful selection of the best possible routing types.

Figure 2.2. Xilinx ISE View

Finally a program called ‘bitgen’ takes the output of Place and Route and creates a

programming bitstream. The generated bit file is ready to download the target

FPGA

To implement any design on an FPGA chip, the designer should be aware of the

design development tools (i.e., the CAD tools) and the target FPGA technology.

An ASIC design that is efficient in terms of area and/or speed for some ASIC

tools and technology is not necessarily efficient for some FPGA tools and

technology. Same thing applies when considering tools and technologies from

different vendors. What is efficient for Xilinx FPGAs might not be efficient for

Altera FPGAs. Even this applies to different tools and technologies from the same

vendor. For example, a design that is implemented using Xilinx ISE 6.1i tools

 11

from Xilinx and efficient for the XC4000 FPGAs might not be efficient when

using Xilinx ISE 7.1 tools and Spartan-II FPGAs as the target technology. So, the

key is to understand how to let the tools interpret the design description efficiently

and optimize it as much as possible. Also, to understand the target FPGA chip and

make good use of its resources. Xilinx ISE Webpack edition can be downloaded

from the web site of the Xilinx.

2.2.2. MODELSIM SE

ModelSim is a simulation and debugging tool for VHDL, Verilog, SystemC, and

mixed-language designs. Modelsim SE is Mentor Graphics’s UNIX, Linux, and

Windows-based simulator. It utilizes the Single Kernel Simulator technology to

enable VHDL, Verilog and mixed-language simulation. Its other major features

include high-performance RTL and gate-level optimizations, Performance

Analyzer for accelerating simulations and Waveform Compare advanced

debugging feature [6]. The following diagram shows the basic steps for simulating

a design in ModelSim.

Figure 2.3. Basic Simulation Flow with using Modelsim

 12

2.2.3. MPLAB IDE

MPLAB IDE is a free software program that runs on a PC to develop applications

for Microchip microcontrollers and can be downloaded on the Microchips’

website [4]. It is called an Integrated Development Environment, or IDE, because

it provides a single integrated "environment" to develop code for an embedded

microcontroller. MPLAB contains all the components needed to design and to

deploy embedded systems applications. The MPLAB IDE allows the embedded

systems design engineer to get through the development cycle without the

distraction of switching among an array of tools. In MPLAB IDE all the functions

are integrated, allowing the engineer to concentrate on the goal of completing the

application without getting slowed down dealing with separate tools and their

various, different modes of operation.

The project manager is a system that organizes the files to be edited so that they

and other associated files can be sent to the language tools for assembly or

compilation, and ultimately to a linker. The linker has the task of placing the

object code fragments from the assembler, compiler and libraries into the proper

memory areas of the embedded controller, and to make sure that the modules

function with each other (or are "linked"). This entire operation from assembly

and compilation through the link process is called a project "build".

The source files are text files that are written conforming to the rules of the

assembler or compiler. The assembler and compiler convert them into

intermediate modules machine code and placeholders for references to functions

and data storage. The linker resolves these placeholders and combines all the

modules into a file of executable machine code. The linker also produces a debug

file which allows MPLAB IDE to relate the executing machine codes back to the

source files.

 13

Figure 2.4. A view of the MPLAB program

The text editor recognizes the constructs in the text and uses color coding to

identify various elements, such as instruction mnemonics, C language constructs,

and comments. The editor supports operations commonly used in writing source

code, such as finding matching braces in C, commenting and un-commenting out

blocks of code, finding text in multiple files, and adding special bookmarks.

2.2.4. HI-TECH C Compiler

HI-TECH C compiler is one of the most popular high performance C compiler for

the Microchip PIC 10/12/14/16/17 series of microcontrollers. HI-TECH PIC C

compiler can be fully integrated with MPLAB or can be used directly from a

makefile or command line [7]. The test firmware is compiled by this compiler ,

under the MPLAB IDE. A limited free version of this compiler is available on the

website of the HI-TECH.

 14

2.2.5. BORLAND C++ BUILDER

Borland C++ Builder is a rapid programming tool used to create computer

applications for the Microsoft Windows operating systems. Borland C++ Builder

is based on the C++ computer language with a lot of improvements and

customized items [8].

PIC Loader program is created with using Borland C++ Builder. Its main purpose

is to read the INTEL-hex format program file, and then to send the program

through the RS232 serial channel of the PC to the Digilent demo board.

2.3. Hardware Tools

2.3.1. Digilent D2E Demo Board

The Digilab 2E (D2E) development board featuring the Xilinx Spartan 2E

XC2S200E FPGA provides an inexpensive and expandable platform on which to

design and implement digital circuits of all kinds [9]. Figure 2.5 shows the picture

of the Digilent D2E demo board.

A block diagram of the Digilent demo board can be found in Figure 2.6. D2E

board features include:

• A Xilinx XC2S200E FPGA;

• Dual on-board 1.5A power regulators (2.5V and 3.3V);

• A socketed 50MHz oscillator;

• An EPP-capable parallel port for JTAG based FPGA programming and user data

transfers;

• A 5-wire Rs-232 serial port;

• A status LED and pushbutton for basic I/O;

• Six 100- mil spaced, right-angle DIP socket 40-pin expansion connectors.

 15

Figure 2.5. Picture of the Digilent D2E Board

The D2E board has been designed specifically to work with the Xilinx ISE CAD

tools, including the free WebPack tools available from the Xilinx website.

Figure 2.6. Block Diagram of the Digilent Demo Board

 16

2.4. Hardware Description Language

Two major hardware description languages are available for the designers. These

are VHDL and Verilog.

2.4.1. VHDL

VHDL is the VHSIC (Very High Speed Integrated Circuit) Hardware Description

Language. It can describe the behavior and structure of electronic systems, but is

particularly suited as a language to describe the structure and behavior of digital

electronic hardware designs, such as ASICs and FPGAs as well as conventional

digital circuits [11].

The development of VHDL was initiated in 1981 by the United States Department

of Defense to address the hardware life cycle crisis. The cost of reproducing

electronic hardware as technologies became obsolete was reaching crisis point,

because the function of the parts was not adequately documented, and the various

components making up a system were individually verified using a wide range of

different and incompatible simulation languages and tools. The requirement was

for a language with a wide range of descriptive capability that would work the

same on any simulator and was independent of technology or design methodology.

The VHDL language was first standardized in 1987 by IEEE as IEEE 1076-1987,

and is commonly referred as VHDL-87. This is certainly the most important

version, since most of the VHDL tools are still based on this standard. The last

revision came to the VHDL in 2002 (IEEE 1076-2002). The definition of the

language is non-proprietary [11].

2.4.2. Verilog

The Verilog Hardware Description Language (HDL) describes a hardware design

or part of a design. Descriptions of designs in the Verilog HDL are Verilog

models. The Verilog HDL is both a behavioral and structural language. Models in

 17

the Verilog HDL can describe both the function of a design and the components

and connections to the components in a design [12].

Verilog HDL is first invented by Gateway Design Automation in 1985. Gateway

Design Automation grew rapidly with the success of Verilog and was finally

acquired by Cadence Design Systems, San Jose, CA in 1989 [12]. Cadence Design

Systems decided to open the language to the public in 1990, and thus OVI (Open

Verilog International) was born. Until that time, Verilog HDL was a proprietary

language, being the property of Cadence Design Systems. The Verilog HDL is an

IEEE standard - number 1364. The first version of the IEEE standard for Verilog

was published in 1995. A revised version was published in 2001 [13].

The basic building block of the Verilog HDL is the module. The module format

facilitates top-down and bottom-up design. A module contains a model of a design

or part of a design. Modules can incorporate other modules to establish a model

hierarchy that describes how parts of a design are incorporated in an entire design.

The constructs of the Verilog HDL, such as its declarations and statements, are

enclosed in modules.

The Figure 2.7 shows the abstraction level of the Verilog. Verilog supports

abstract behavioural modeling, so can be used to model the functionality of a

system at a high level of abstraction. This is useful at the system analysis and

partitioning stage. Verilog supports RTL (Register Transfer Level) descriptions,

which are used for the detailed design of digital circuits. Synthesis tools transform

RTL descriptions to gate level.Verilog supports gate and switch level descriptions,

used for the verification of digital designs, including gate and switch level logic

simulation, static and dynamic timing analysis, testability analysis and fault

grading.

.

 18

Figure 2.7. Levels of Abstraction

2.4.3. Why use Verilog HDL?

Digital systems are highly complex. At their most detailed level, they may consist

of millions of elements, i. e., transistors or logic gates. Therefore, for large digital

systems, gate-level design is dead. For many decades, logic schematics served as

the main way of logic design, but not any more. Today, hardware complexity has

grown to such a degree that a schematic with logic gates is almost useless as it

shows only a web of connectivity and not the functionality of design. Since the

1970s, Computer engineers and electrical engineers have moved toward hardware

description languages (HDLs). The most prominent modern HDLs in industry are

Verilog and VHDL. Verilog is one of the top HDL used by over thousands of

designers.

The Verilog language provides the digital designer with a means of describing a

digital system at a wide range of levels of abstraction, and, at the same time,

 19

provides access to computer-aided design tools to aid in the design process at

these levels [26].

2.5. Field Programmable Gate Arrays

Field-programmable gate array (FPGA) is a step above the PLD in complexity.

The difference between FPGA and PLD is very little. Both FPGA and PLD can be

volatile or non-volatile. FPGA is much larger and more complex than a PLD [14].

FPGA consists of a two-dimensional array of logic blocks. Each logic block is

programmable to implement any logic function. Thus, they are also called

configurable logic blocks (CLBs) [15]. Switchboxes or channels contain

interconnection resources that can be programmed to connect CLBs to implement

more complex logic functions. Designers can use existing CAD tools to convert

HDL code in order to program FPGAs. An FPGA contains 5,000 to 10,000,000

gates (or more) [16]. Since the FPGA can be reprogrammed, the turnaround time

is only a few minutes. The advantages of FPGAs are lower prototyping costs and

shorter production lead times, which advances the time-to-market and in turn

increases profitability [17]. It can also ensure the reliability of the design on the

board. The disadvantages include lower speed of operations and lower gate

density, which has a larger area compared to a ASIC. Thus, a typical FPGA may

be 2x-10x slower and 2x-10x more expensive than an equivalent-gate ASIC.

Configurable logic blocks of the FPGA includes some fixed logic elements, such

as look-up tables, multiplexers, and flip-flops. Even a simple logic inverter

function uses CLB. Thus this stuation reduces the speed of the logic design. But in

the ASICs, only the needed part of the functions are produced.

It has also input/output blocks to provide the interface between the chip pins and

the internal signals. The signals from all blocks are connected to each other using

wires, which in turn connected to each other by programmable routing switches.

The CLBs have the logic resources that are necessary to implement various

 20

combinational and sequential logic functions. Normally, a CLB has look-up tables

(LUTs), multiplexers, and flip-flops.

There are two methods of programming FPGAs. The first, SRAM programming,

involves static RAM bits for each programming element. Writing the bit with a

zero turns off a switch, while writing with a one turns on a switch. The other

method involves anti-fuses which consist of microscopic structures. A certain

amount of current during programming of the device causes the two sides of the

anti-fuse to connect [18].

The advantages of SRAM based FPGAs is reprogrammability, the FPGAs can be

reprogrammed any number of times, even while they are in the system, just like

writing to a normal SRAM. The disadvantages are that they are volatile, which

means a power glitch could potentially change it. Also, SRAM based devices have

large routing delays.

The advantages of Anti-fuse based FPGAs are that they are non-volatile and the

delays due to routing are very small, so they tend to be faster. The disadvantages

are that they require a complex fabrication process, they require an external

programmer to program them, and once they are programmed, they cannot be

changed.

Major FPGA manufacturers are Xilinx and Altera in the programmable logic

market whose FPGAs are based on SRAM. Xilinx holds more than 50 % of the

market share. Xilinx have two family of FPGAs which are SPARTAN and

VIRTEX series. Virtex series FPGA is mainly focused on the very fast and

complex designs, such as DSP. On contrast to Virtex series, SPARTAN FPGAs

are mainly focused to low cost applications.

 21

Spartan-IIE FPGA is made mainly of five kinds of elements: Input/Output blocks

(IOBs), Configurable logic blocks (CLBs), block random-access memories (Block

RAMs), Delay-locked loops (DLLs), and versatile multi-level interconnect

structure [15]. A block diagram of Spartan-IIE FPGA is shown in Figure 2.8.

On the left and the right sides of the chip there are block RAMs that can be

configured to realize RAMs or FIFOs as explained in [19] [24]. For each four

rows of CLBs, there are two block RAMs: one on the left side and one on the right

side. Each block RAM is 4 Kbits. The IOBs surround the CLBs and the block

RAMs to provide the interface between the package pins and the internal signals.

The versatile multi-level interconnect structure is configured to provide the

necessary interconnection and routing among the various blocks as well as among

the cells inside the blocks themselves. The DLLs provide multiple minimal-skew

clock signals. The programming (i.e., the FPGA configuration) of all elements is

done by SRAM.Which means that a Spartan-IIE needs to be reprogrammed every

time the power is off.

Figure 2.8. Basic Spartan-IIE Family FPGA Block Diagram

 22

Logic of the designs are realized by using the CLBs in the FPGA. A Spartan-II

FPGA contains an RxC array of CLBs.The height and width of the array depends

on how big the chip is. Each CLB has two slices. Figure 2.9 shows the basic slice

structure. Each slice has the following logic elements: two look-up tables (LUTs),

two storage elements, one multiplexer (F5MUX), carry and control logic. Each

LUT is a 16x1 RAM that can be used as a logic function generator, 16x1

synchronous RAM, or 16-bit shift register. The two LUTs can be combined to

make a 32x1 or 16x2 synchronous RAM, or 16x1 dual-port synchronous RAM.

The F5MUX can be used to combine the output of both LUTs. By this

combination it is possible to implement a 4-to-1 multiplexer, any 5-input logic

function, or some 9-input functions. Each CLB has also an F6MUX. This

multiplexer combines the outputs of the two slices.

Figure 2.9. Spartan-IIE CLB Slice (two identical slices in each CLB)

 23

This combination of two slices can implement an 8-to-1 multiplexer, any 6-input

functions, or some 19-input functions. The two storage elements provide the

support for implementing sequential logic functions. They can be configured to be

D flip-flops or D latches. The dedicated carry logic inside each slice provides

arithmetic carry chain.

To be more specific, the XC2S200 FPGA that is used in this work. It has

28x42=1176 CLBs, 146 user I/O pins, and 56 K bits of block RAM. This provides

a lot of resources that should be carefully utilized. Detailed information about

Spartan-IİE FPGAs can be found in [15], [20].

 24

CHAPTER 3

BASIC FEATURES OF PIC16XX

3.1. Memory Organization

PIC16XX has two separate memory blocks, one for data and the other for

program. SFR registers in RAM memory make up the data block, while FLASH or

OTP memory makes up the program block.

3.1.1. Program Memory

Mid-Range PIC16XX devices have a 13-bit program counter capable of

addressing an 8K x 14 program memory space. The width of the program memory

bus (instruction word) is 14-bits. Since all instructions are a single word, a device

with an 8K x 14 program memory has space for 8K of instructions. This makes it

much easier to determine if a device has sufficient program memory for a desired

application. This program memory space is divided into four pages of 2K words.

To jump between the program memory pages, the high bits of the Program

Counter (PC) must be modified. This is done by writing the desired value into a

SFR called PCLATH (Program Counter Latch High).

3.1.2. Data Memory

Data memory is made up of the Special Function Registers (SFR) area, and the

General Purpose Registers (GPR) area. The SFRs control the operation of the

device, while GPRs are the general area for data storage and scratch pad

operations.

 25

The data memory is banked for both the GPR and SFR areas. The GPR area is

banked to allow greater than 96 bytes of general purpose RAM to be addressed.

SFRs are for the registers that control the peripheral and core functions. Banking

requires the use of control bits for bank selection. These control bits are located in

the STATUS Register (STATUS<7:5>). To move values from one register to

another register, the value must pass through the W register. This means that for

all register-to-register moves, two instruction cycles are required.

The entire data memory can be accessed either directly or indirectly. Direct

addressing may require the use of the RP1:RP0 bits. Indirect addressing requires

the use of the File Select Register (FSR). Indirect addressing uses the Indirect

Register Pointer (IRP) bit of the STATUS register for accesses into the Bank0 /

Bank1 or the Bank2 / Bank3 areas of data memory.

3.1.3. Special Function Registers

The SFRs are used by the CPU and Peripheral Modules for controlling the desired

operation of the device. These registers are implemented as static RAM.

The SFRs can be classified into two sets, those associated with the “core” function

and those related to the peripheral functions. Those registers related to the “core”

are described in this section, while those related to the operation of the peripheral

features are described in the section of that peripheral feature. Basic SFR registers

can be seen by the Figure 3.1.

3.1.4. Program Counter

The program counter (PC) specifies the address of the instruction to fetch for

execution. The PC is 13-bits wide. The low byte is called the PCL register. This

register is readable and writable. The high byte is called the PCH register. This

register contains the PC<12:8> bits and is not directly readable or writable. All

updates to the PCH register go through the PCLATH register.

 26

Figure 3.1 Memory Organization of PIC16F84 Microcontroller

3.1.5. Stack

The stack allows a combination of up to 8 program calls and interrupts to occur.

The stack contains the return address from this branch in program execution.

Mid-Range MCU devices have an 8-level deep x 13-bit wide hardware stack. The

stack space is not part of either program or data space and the stack pointer is not

 27

readable or writable. The PC is PUSHed onto the stack when a CALL instruction

is executed or an interrupt causes a branch. The stack is POPed in the event of a

RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified

when the stack is PUSHed or POPed. After the stack has been PUSHed eight

times, the ninth push overwrites the value that was stored from the first push. The

tenth push overwrites the second push (and so on)

3.2. Addressing Modes

RAM memory locations can be accessed directly or indirectly.

3.2.1. Direct Addressing Mode

Direct Addressing is done through a 9-bit address. This address is obtained by

connecting 7th bit of direct address of an instruction with two bits (RP1, RP0)

from STATUS register as is shown on the following picture. Any access to SFR

registers is an example of direct addressing.

Figure 3.2 Direct Addressing Mode

 28

3.2.2. Indirect Addressing Mode

ndirect unlike direct addressing does not take an address from an instruction but

derives it from IRP bit of STATUS and FSR registers. Addressed location is

accessed via INDF register which in fact holds the address indicated by a FSR. In

other words, any instruction which uses INDF as its register in reality accesses

data indicated by a FSR register. Let's say, for instance, that one general purpose

register (GPR) at address 0Fh contains a value of 20. By writing a value of 0Fh in

FSR register we will get a register indicator at address 0Fh, and by reading from

INDF register, we will get a value of 20, which means that we have read from the

first register its value without accessing it directly (but via FSR and INDF).

Figure 3.3 Indirect Addressing Mode

It appears that this type of addressing does not have any advantages over direct

addressing, but certain needs do exist during programming which can be solved

smoothly only through indirect addressing. Indirect addressing is very convenient

for manipulating data arrays located in GPR registers. In this case, it is necessary

 29

to initialize FSR register with a starting address of the array, and the rest of the

data can be accessed by incrementing the FSR register.

3.3. Instruction Set Summary

The operation of the CPU is determined by the instruction it executes, referred to

as machine instructions or computer instructions. The collection of different

instructions that the CPU can execute is referred to as the CPU’s instruction set.

The instruction set defines the datapath and everything else in a processor.

Table 3.1 shows the instruction set summary of the designed microcontroller

which is compatible with the PIC16XX series of the microcontroller [21].There

are 35 instructions grouped into 3 basic categories:

• Byte-oriented operations

• Bit-oriented operations

• Literal and control operations

For byte-oriented instructions, 'f' represents a file register designator and 'd'

represents a destination designator. The file register designator specifies which file

register is to be used by the instruction. The destination designator specifies where

the result of the operation is to be placed. If 'd' is zero, the result is placed in the W

(Working) register. If 'd' is one, the result is placed in the file register (RAM)

specified in the instruction. For bit-oriented instructions, 'b' represents a bit field

designator which selects the number of the bit affected by the operation, while 'f'

represents the number of the file in which the bit is located. For literal and control

operations, 'k' represents an eight or eleven bit constant or literal value.

All instructions are executed in one single instruction cycle, unless a conditional

test is true or the program counter is changed as a result of an instruction. In these

 30

cases, the execution takes two instruction cycles with the second cycle executed as

an NOP (NO Operation).

As mentioned earlier, instruction set of the design is based on Microchip

PIC16XX instruction set. In this way, the design can use the same assembler and

simulator provided by Microchip since the final design is compatible with the core

of PIC16XX microcontroller.

Table 3.1 Instruction Set Summary

14-Bit Instruction Word
Mnemonics
, Operands

Description

Cycles
Msb Lsb

Status
Affected

BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF f,d Add W and f 1 00 0111 dfff ffff C,DC,Z
ANDWF f,d AND W and f 1 00 0101 dfff ffff Z
CLRF f Clear f 1 00 0001 1fff ffff Z
CLRW - Clear W 1 00 0001 0xxx xxxx Z
COMF f,d Complement f 1 00 1001 dfff ffff Z
DECF f,d Decrement f 1 00 0011 dfff ffff Z
DECFSZ f,d Decrement f, Skip if Zero 1(2) 00 1011 dfff ffff
INCF f,d Increment f 1 00 1010 dfff ffff Z
INCFSZ f,d Increment f, Skip if Zero 1(2) 00 1111 dfff ffff
IORWF f,d Inclusive OR W with f 1 00 0100 dfff ffff Z
MOVF f,d Move f 1 00 1000 dfff ffff Z
MOVWF
f,d

Move W to f 1 00 0000 1fff ffff

NOP No Operation 1 00 0000 0xx0 0000

RLF f,d
Rotate Left f through
Carry

1 00 1101 dfff ffff C

RRF f,d
Rotate Right f through
Carry

1 00 1100 dfff ffff C

SUBWF f,d Subtract W from f 1 00 0010 dfff ffff C,DC,Z
SWAPF f,d Swap Nibbles in f 1 00 1110 1fff ffff
XORWF f,d Exclusive OR W with f 1 00 0110 dfff ffff Z

 31

Table 3.1 Instruction Set Summary (cont’d)

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF f,d Bit Clear f 1 01 00bb bfff ffff
BSF f,d Bit Set f 1 01 01bb bfff ffff
BTFSC f,d Bit Set f , Skip if Clear 1(2) 01 10bb bfff ffff
BTFSS f,d Bit Set f , Skip if Set 1(2) 01 11bb bfff ffff

LITERAL AND CONTROL OPERATIONS

ADDLW k Add literal and W 1 11 111x kkkk kkkk C,DC,Z
ANDLW k AND literal and W 1 11 1001 kkkk kkkk Z
CALL k Call subroutine 2 10 0kkk kkkk kkkk
CLRWDT Clear Watchdog Timer 1 00 0000 0110 0100
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z
MOVLW k Move literal to W 1 11 00xx kkkk kkkk
RETFIE Return from Interrupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 01xx kkkk kkkk
RETURN Return from Subroutine 2 00 0000 0000 1000
SLEEP Go into Standby mode 2 00 0000 0110 0011
SUBLW k Subtract W from literal 1 11 110x kkkk kkkk C,DC,Z
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Z
MULT Multiply the nibbles of W 1 11 1011 xxxx xxxx Z

There is a new instruction with respect to the original PIC instructions. MULT

instruction makes a 4-bit multiplication.

Detailed operation for each instruction requires further reference to the Instruction

Set section in PICmicro Mid-Range MCU Family Referance Manual [21].

3.4. Instruction Formats

PIC microcontrollers have three general formats of instructions. As can be seen

from the general format of the instructions, the opcode portion of the instruction

word varies from 3-bits to 6-bits of information. Thus PIC microcontrollers have

35 instructions. Instruction Description conventions are shown is Table 3.2

 32

Table 3.2 Instruction Description Conventions

Field Description

f Register file address (0x00 to 0x7F)

W Working register (accumulator)

b Bit address within an 8-bit file register (0 to 7)

k Literal field, constant data or label (may be either an 8-bit or

an 11-bit value)

x Don't care (0 or 1)

The assembler will generate code with x = 0

d Destination select;

d = 0: store result in W,

d = 1: store result in file register f.

General format of the instructions are follows;

Byte oriented file register operations:

13 8 7 6 0

OPCODE d f (FILE #)

d=0 for destination W (working register)

d=1 for destination f

f= 7-bit register address

Bit oriented file register operations:

13 10 9 7 6 0

OPCODE b(BIT #) f (FILE #)

b= 3-bit bit address

f= 7-bit register address

 33

Literal and Control operations:

General:

13 8 7 0

OPCODE k (literal)

k= 8-bit literal (immediate) value

CALL and GOTO instructions only:

13 11 10 0

OPCODE k (literal)

k= 11-bit literal (immediate) value

 34

CHAPTER 4

IMPLEMENTATION OF MICROCONTROLLER

4.1. Pin Description

Figure 4.1. Microcontroller Pin Configuration

Figure 4.1 shows the pin configuration for the designed microcontroller. The

microcontroller has 2 input pins and 4 bi-directional I/O ports. Each I/O port

consists of 8 individual I/O pins except PortA. Port A has only 5 bidirectional I/O

pins. So 4 I/O ports contribute to a total of 29 I/O pins. The clock signal will drive

the whole microcontroller directly. Reset is active low; when asserted it resets the

microcontroller to the default state even if the clock is not running. Each bit of the

ports can be configured to be input or output in the software of the

microcontroller. All port pins are tri-stated when the microcontroller is reset.

 35

4.2. Architecture Overview

Figure 4.2. Top Level Architectural Block Diagram

Figure 4.2 shows the simplified top-level block diagram of the design, every part

of this block diagram needs to be implemented in the FPGA. The microcontroller

will be designed using the top down design approach. Some blocks like the I/O

ports, instruction register and status register are easy to design, but modules like

ALU and the finite state machine require a lot of understanding. The overall

dataflow and bus structure between all the blocks must be understood before

designing the block individually.

 36

TOP MODULE

CLOCK

GENERATOR

MICROCONTROLLER

PROGRAM

MEMORY

PROGRAM

LOADER

DATA

MEMORY

CLOCK

RESET

SERIAL RX

SERIAL TX

PORT A PORT B PORT C PORT D

8

16 8

8 8 85

Figure 4.3. Top Module of the Microcontroller Design

The module of the microcontroller designed in the FPGA can be divided into 5

sub modules which can be seen in Figure 4.3. These sub modules are;

• Clock Generator Unit

• Program Load Unit

• Microcontroller Unit

• Program Memory

• Data Memory

 37

File hierarchy of the top module of the microcontroller design and the files that are

used in the design can be seen with the following Figure 4.4. The interconnection

between the files is shown in Appendix D and Appendix E. The files that are

shown in Figure 4.4 are in the CD-ROM in Appendix F.

Figure 4.4. File Hierarchy of the Microcontroller Design

4.2.1. Clock Generator Unit

The clock generator modules’ main function is to produce the necessary clock rate

and distribute the clock to the other modules in the FPGA. Incoming clock rate is

48 MHz, which is passed through input global clock buffer (IBUFG). IBUFG is

connected to the dedicated input buffers for connecting to the clock buffer BUFG.

The IBUFG input can only be driven by the global clock pins. The IBUFG output

can drive CLKIN of a Delay Locked Loop (DLL), BUFG, or user logic.

 38

Figure 4.5. Clock Generator Unit

Associated with each global clock input buffer is a fully digital Delay-Locked

Loop (DLL) that can eliminate skew between the clock input pad and internal

clock-input pins throughout the device. Each DLL can drive two global clock

networks. The DLL monitors the input clock and the distributed clock, and

automatically adjusts a clock delay element. Additional delay is introduced such

that clock edges reach internal flip-flops exactly one clock period after they arrive

at the input. This closed-loop system effectively eliminates clock-distribution

delay by ensuring that clock edges arrive at internal flip-flops in synchronism with

clock edges arriving at the input [22], [25].

DLL synchronizes the clock signal at the feedback clock input (CLKFB) to the

clock signal at the input clock (CLKIN). The frequency of the clock signal at the

CLKIN input must be at least 24 MHz. The CLKIN pin must be driven by an

IBUFG or a BUFG. If phase alignment is not required, CLKIN can also be driven

by IBUF. On-chip synchronization is achieved by connecting the CLKFB input to

a point on the global clock network driven by a BUFG, a global clock buffer. The

BUFG connected to the CLKFB input of the DLL must be sourced from the CLK0

 39

output of the same DLL. The CLKIN input should be connected to the output of

an IBUFG, with the IBUFG input connected to a pad driven by the system clock.

[22].

Figure 4.6. Global Clock Distribution Network Through the FPGA

In addition to eliminating clock-distribution delay, the DLL provides advanced

control of multiple clock domains. DLL can divide the clock by 2. In this design

CLK DIV output is used as the main clock output. At the output of the CLK DIV,

the clock rate reduces at a rate of 24 MHz. This clock is used in the following

modules;

• Program Load Unit

• Program Memory

• Data Memory

 40

After obtaining the 24 MHz, 12 MHz clock is also required for the microcontroller

unit.

The following simple circuit is used to generate a 12 MHz clock.

Figure 4.7. Clock Divider Circuit

Microcontroller unit requires less clock rate because of the long data path design

and the worst case delays in the microcontroller unit. This block is implemented in

the “clock_gen.v” file as shown in Figure 4.4..

4.2.2. Program Load Unit

Program Load unit receives the compiled program from a PC via RS232 serial

port. The compiled programs are sent using a program loader designed with using

Borland C++ Builder. This program takes the Intel hex format file, and sends the

binary data to the microcontroller. First the communication link is established

with the FPGA microcontroller. After communication link is done, program is

loaded and sent through the RS232 serial port at a speed of 57600 baud.

Program load unit has 4 inputs, which are 24 MHz clock, reset input, serial rx,

serial tx. Clock is received from the clock generator module. Reset input, serial

receive and serial transmit I/Os are connected to the directly to the input/output

pins of the FPGA.

 41

Figure 4.8. Block Diagram of the Program Load Unit

The top module for the program loader module is “rs232_loader.v”in Figure 4.4.

Program load unit is mainly divided into 4 sub blocks as can be seen in Figure 4.8.

These are;

• Baud Rate generator

• RS232 Receive unit

• RS232 Transmit Unit

• Program Memory Unit

4.2.2.1. Baud Rate Generator

The baud rate generator provides both the receiver and the transmitter with the

baud rate clock, a bit-period clock. The input clock for this module is 24 MHz.

The output clock for receive and transmit unit is 16 x Baud Rate. If the baud rate

is 57600 then generated clock is 921 KHz. This module is implemented in the

“baud_gen.v” file as shown in Figure 4.4.

 42

4.2.2.2. Rs232 Receive Unit

This block takes care of receiving an RS232 input word, from the "rxd" line in a

serial way. The appropriate clock is provided by the baud rate generator unit,

which is 16 times the baud rate. The receive input line is sampled 16 times per bit

after sensing a start bit (logic high). Mid-count value is taken as an input and

passed through a shift register. Data is valid only after receiving a valid stop bit.

This module is implemented in the “serial.v” file as shown in Figure 4.4.

4.2.2.3. Rs232 Transmit Unit

This module transmits the 8-bit byte using baud rate clock through the serial line

“txd”. First this block generates a start bit, then serially shifts the input data and

finally generates a stop bit. Since RS232 serial communication is asynchronous,

bit timing requires careful attention. This module is implemented in the “serial.v”

file in Figure 4.4.

4.2.2.4. Program Memory Interface Unit

This unit directly writes the received data to the appropriate location of the

internal program memory. It has an 8 bit wide data bus. The detailed operation

about the program memory will be discussed in section 4.2.3. This module is

implemented in the top module of the program loader unit.

4.2.3. Program Memory Unit

An example view of the program memory can be seen by the Figure 4.9. It is

implemented with the block RAMs, which is internally available in the FPGA.

Block RAM memories are organized in FPGA as columns. Spartan IIE FPGA

contains two block RAM columns, one along each vertical edge [15] [22]. Totally

there are 56 kbit block RAM in the Spartan IIE FPGAs, that 16 kbit of them is

used as a program memory for the designed microcontroller. Each block RAM is

fully synchronous and dual-ported with independent control signals for each port.

 43

Figure 4.9. A diagram for the 16 kbit dual port Program Memory

Data bus width of each port is configurable, in our case one side of the memory’s’

data bus width is 8 bit wide and the address bus width is 11 bit wide which is

connected to the program load unit. Since we read the data to be written to the

program memory is 8bit from PC, so we need an 8 bit wide data bus for one port

of the RAM. Second port of the block RAM is connected to the microcontroller,

which is 16 bit data bus width. But the microcontroller uses only 14 bit of the

block RAM, because the instructions are 14 bit wide.

Each port is fully synchronous with independent clock pins. All port A input pins

have setup time referenced to the CLKA pin and its data output bus DOA has a

clock to out time referenced to the CLKA. All port B input pins have setup time

referenced to the CLKB pin and its data output bus DOB has a clock-to-out time

referenced to the CLKB.

 44

The enable ENA pin controls read, write, and reset for port A. When ENA is Low,

no data is written and the outputs DOA and outputs preserve the last state. If write

enable (WEA) is High, the memory contents reflect the data at DIA. When ENA is

High and WEA is Low, the data stored in the RAM address (ADDRA) is read

during the Low-to-High clock transition. When ENA and WEA are High, the data

on the data input (DIA) is loaded into the location selected by the write address

(ADDRA) during the Low-to-High clock transition and the data output (DOA)

reflect the selected (addressed) location [22].

The same working operation is also applicable to port B of the dual port RAM.

The above descriptions assume active High control pins (ENA, WEA, CLKA,

ENB, WEB, and CLKB).

In the design of the microcontroller, both ports are not used at the same time to

prevent any contention. Program load unit only writes to the memory on port A.

The microcontroller only reads the instructions from the port B of the memory.

This program load unit is implemented by the coregen utility of the Xilinx ISE

program[22].

4.2.4. Data Memory Unit

Implementation of the data memory unit is the same as program memory unit

which is described in section 4.9. It is also a dual ported RAM which is in the

FPGA. It uses 512 byte of the block RAMs of the SPARTAN FPGAs. The

PORTA of the RAM is used with the implemented microcontroller unit. The

PORTB is used only for debug purpose. The PORTA and PORTB have a 8 bit

wide data bus. This RAM unit is implemented by the coregen utility of the Xilinx

ISE program. Detailed information for the ram blocks can be found in [22].

 45

RAM Unit

WEA

ENA

CLKA

ADDRA [8:0]

DIA [7:0]

DOA [7:0]

WEB

ENB

CLKB

ADDRB [8:0]

DIB [7:0]

DOB [7:0]

RSTA

512x8 bit

RSTA

Figure 4.10. A diagram for the 512 byte RAM

4.2.5. Microcontroller Unit

This logic module implements a small RISC microcontroller, with functions and

instruction set very similar to those of the mid-range family of the Microchip

16FXX chips. This module is the most complicated module among the other

modules.

The input and outputs of the microcontroller, implemented in SPARTAN IIE

FPGA can be seen by the following Figure 4.11.

 46

Figure 4.11. Inputs and Outputs of the Microcontroller Unit

The CLOCK input is generated by the clock generator unit which is at 12 MHz.

RESET input is directly connected to the one of the pads of the FPGA and used as

an asynchronous reset in the FPGA. RESET input is fed through one of the

buttons located on the Digilent SPARTAN IIE Development Board. INT pin is an

external interrupt input. PORTA through PORTD are connected to the various

locations of the development board. Program memory and the RAM connections

are made to the internal block rams of the FPGA.

The top module for the microcontroller unit is in “riscmcu.v” file as shown in

Figure 4.4. Some sub modules are implemented in a separate verilog design file.

The microcontroller unit has the following sub-modules and the implementation

files which are listed in Table 4.1. The design of the each sub-module will be

discussed one by one in this chapter.

 47

Table 4.1. Sub-Modules inside the microcontroller

1 Instruction Fetch & Decode instruction_decode.v

2
Calculation of RAM Access
Address

calc_ram_address.v

3 Stack fsm.v

4 Program Counter fsm.v

5 ALU alu.v

6 FSM Machine fsm.v

7 Interrupts fsm.v

8 I/O Ports riscmcu.v

4.2.5.1. Instruction Fetch and Decode

Instructions are fetched at the end of the execution and write cycle from the

program memory at state S2 of the Finite State Machine. At a reset condition, “0”

is loaded to the instruction register, thus the first instruction seems to be NOP

operation, it is because to formerly start-up the microcontroller.

After loading the instruction from the program memory, a combinatorial decoding

operation takes place according to the instructions listed in Table 3.1. For every

instruction, there is a comparator, which indicates the related instruction has

arrived. For example if the received instruction is a “CALL” instruction, then a

dedicated register is set to indicate the current executing instructions is a “CALL”

instruction. The other blocks of the microcontroller checks the related register. So,

the microcontroller has a dedicated register for every instruction that indicates the

decoded instruction. This module is implemented in verilog file “inst_decode.v”

as shown in Figure 4.4.

4.2.5.2. Calculation of RAM Access Address

One of the other sub units of the microcontroller is the calculation of the RAM

access address. After loading the instruction from the program memory first the

 48

instruction decoding process is completed. After then, we need to calculate the

RAM access address.

First we check whether direct or indirect addressing will be used with the related

instruction. There is an INDF register which is not a physical register in the

microcontroller. Addressing INDF actually addresses the register whose address is

contained in the FSR register. If the addressing mode is direct addressing (i.e.

INDF register is used as destination), then the first 7 bit of the opcode and 5th and

6th bit of the status register is concatenated.

Figure 4.12. Direct Addressing Mode

If the instruction registers’ first 7 bit is zero then it is behaved as indirect

addressing scheme. In the indirect addressing mode, the value of the FSR register

and the 7th bit of the status register is concatenated and used as target address of

the RAM.

Figure 4.13. Indirect Addressing Mode

After determining the destination address of the RAM, we should classify the

destination address, whether it is in the ram area or register area. Internally

classification is done according the following Table 4.2.

 49

Table 4.2. Destination RAM Access Addresses

Address Destination Description

0E-7F,
8E-FF

SRAM
SRAM

02,82 PCL
Program Counter Low Byte
Register

03,83 STATUS Status Register

04,84 FSR File Select Register

05 PORTA 5-bit I/O Port

06 PORTB 8-bit I/O Port

0C PORTC 8-bit I/O Port

0D PORTD 8-bit I/O Port

85 TRISA Direction register for PORTA

86 TRISB Direction register for PORTB

8C TRISC Direction register for PORTC

8D TRISD Direction register for PORTD

0A,8A PCLATH PC Latch High Byte

0B,8B INTCON Interrupt Control Register

81 OPTION Option register

Some of the registers have two addresses, like PCL. Both of them point the same

location. It is because to put critical registers on both pages of the RAM. This

behavior comes from the original configuration PIC microcontroller.

After determining the source address of the register or RAM, the data is loaded to

a temporary register called as “ram_destination”. For example if the RAM access

address is status register, ram_destination register is loaded with the value of the

status register. In the other part of the design ram_destination register will be used

for ALU operations.

Also bit-mask for logical operations (AND, OR, BTFSC,) and bit tests are

constructed in this module. This module is implemented in verilog file

“calc_ram_address.v” as shown in Figure 4.4.

 50

4.2.5.3. Stack

The stack allows a combination of up to 16 program calls and interrupts to occur

in the designed microcontroller. The stack contains the return address from this

branch in program execution.

PIC microcontrollers have an 8 level deep x 13-bit wide hardware stack. The stack

space is not part of either program or data space and the stack pointer is not

readable or writable. The PC is PUSHed onto the stack when a CALL instruction

is executed or an interrupt causes a branch. The stack is POPed in the event of a

RETURN, RETLW or a RETFIE instruction execution. PCLATH register is not

modified when the stack is PUSHed or POPed.

Figure 4.14. Stack Modification

In the original configuration after the stack has been PUSHed eight times, the

ninth push overwrites the value that was stored from the first push as in Figure

4.14. The tenth push overwrites the second push (and so on). But the designed

microcontroller with the Spartan FPGA has reconfigurable stack space in the

verilog code. In the design we have chosen the stack space as 16 words. The stack

is implemented in verilog file “fsm.v” as shown in Figure 4.4.

 51

4.2.5.4. Program Counter

The program counter (PC) specifies the address of the instruction to fetch for

execution. The PC is 13 bits wide. The low byte is called the PCL register. This

register is readable and writable. The high byte is called the PCH register. This

register contains the PC<12:8> bits and is not directly readable or writable. If the

program counter (PC) is modified or a conditional test is true, the instruction

requires two cycles. The second cycle is executed as a NOP. All updates to the

PCH register go through the PCLATH register. The program counter is

implemented in verilog file “fsm.v” as shown in Figure 4.4.

In this module, first the instruction is checked to be that it is modifying

instruction. The following conditions may modify the program counter.

• CALL and GOTO instructions.

• RET, RETLW, RETFIE instructions.

• If the instruction is BTFSC, DECFSZ, INCFSZ and Arithmetic logic unit

output is zero.

• If the instruction is BTFSS and Arithmetic logic unit output is one.

• If the execution destination is PCL register.

If one of the above conditions occurs, the next instruction is executed as a NOP

instruction. Also if an interrupt condition occurs, the next instruction will also be

executed as NOP instruction.

Serving an interrupt request will cause the PC to be loaded with the interrupt

vector address (0x0004). So when serving an interrupt request, the PC is first

loaded with the vector address, then the CPU execute the instruction loaded from

the corresponding vector address - a jump to ISR. The PC is then loaded with the

address of the ISR. And finally the CPU starts executing the ISR.

 52

At the beginning or reset condition, both PC register and the old PC are set to

zero. If an interrupt condition occurs, the current program counter is saved to the

old PC register, which is to be PUSHed to the stack and later POPed by an

RETFIE instruction. And the PC is set to interrupt vector address (0x004) of the

microcontroller. At the normal operating condition “next PC register” is loaded to

the PC register.

“Next PC register” is loaded to the PC register if there is not any reset and

interrupt condition occurs. “Next PC register” is defined with the following

criteria;

• If the instruction is a return (RET, RETLW, RETFIE) instruction, top of

stack is loaded to the next PC register.

• If the instruction is a CALL or GOTO instruction, 3rd and 4th bit of the

PCLATH register and first 11 bit of the instruction register are

concatenated and loaded to the next PC register.

• If the PCL register is the data destination by the executing instruction then

PCLATH register and the ALU output are concatenated and loaded to the

next PC register.

• Otherwise next PC register is incremented by one.

If the sleep instruction is executing, then the PC is not allowed to be updated,

since the processor will "freeze" and the instruction being fetched during the sleep

instruction must be executed upon wakeup interrupt.

4.2.5.5. Arithmetic Logic Unit

The ALU executes many instructions, some directly and some indirectly. We first

examine the 35 instructions that are executed directly by the ALU. These

instructions are listed in Table 4.3. They are divided into 9 groups which are;

 53

Table 4.3. ALU Group and Instructions

Group Instruction Flags Affected

Rotate Left RLF C

Rotate Right RRF C

Swap Nibbles SWAP

Complement COMP Z

ANDLW Z

ANDWF Z

BCF

BTFSC

Logical AND

BTFSS

IORLW Z

IORWF Z Logical OR

BSF

XORLW Z
Logical XOR

XORWF Z

ADDLW C,DC,Z

ADDWF C,DC,Z

SUBLW C,DC,Z

SUBWF C,DC,Z

DECF Z

DECFSZ Z

INCF Z

Addition

INCFSZ Z

4-bit
Multiplication

MULT Z

Pass Through Other Instructions

• Rotate Left

• Rotate Right

• Swap Nibbles

• Complement

 54

• Logical AND

• Logical OR

• Logical XOR

• Addition

• 4-bit Multiplication

• Pass Through

The ALU is implemented in verilog file “alu.v” as shown in Figure 4.4.

ALU is implemented purely by the combinatorial logic which means that ALU

output is asserted immediately, according to the operand A, operand B registers

and the instruction which is being executed.

Block diagram of the Arithmetic Logic Unit is as in Figure 4.15.

ALU have two operand inputs which are operand A register and Operand B

register. Current executing instruction is also feed to the ALU to choose the right

operand. Also the destination of the ALU output is determined by the instruction

whether to write the result to the working register or to the RAM. ALU also gives

output to the status register.

Depending on the instruction executed, the ALU may affect the values of the

Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and

DC bits operate as a borrow bit and a digit borrow out bit, respectively, in

subtraction.

 55

 Figure 4.15. Block Diagram of the ALU

The Operand registers of the ALU are prepared within the FSM of the

microcontroller. They depend on the instruction which is being executed. The

detailed information of the preparation of the operand registers will be discussed

later in FSM section 4.2.5.6.

 56

The following table summarizes the destination of the ALU output register.

Table 4.4. Destination of the ALU output register

Instruction Destination

MOVWF
BCF
BSF

CLRF

RAM

MOVLW
ADDLW
SUBLW
ANDLW
IORLW
XORLW
RETLW
CLRW
MULT

Working Register

MOVF
SWAPF
ADDWF
SUBWF
ANDWF
IORWF
XORWF

DECF
INCF
RLF
RRF

DECFSZ
INCFSZ
COMF

Determined from the “d” field of
the instruction. It is 7th bit of the
instruction register. If it is one

destination is RAM else
destination is working register

OTHER
INSTRUCTIONS

None.

There are nine categories of the operation of the ALU to fulfill the requirements of

the instruction. These ALU operations are explained in the following sections.

 57

4.2.5.5.1. Rotate Left Operation

If the instruction is a rotate left instruction, the content of the operand A register is

rotated to the left through the carry bit of the status register.

Figure 4.16. Rotate Left Operation

The result of the operation will be determined by the destination determination

logic, whether to be written to the working register or RAM.

4.2.5.5.2. Rotate Right Operation

Rotate right operation is similar to the rotate left operation except the rotation

direction, which is opposite .The content of the operand A register is rotated to the

right through the carry bit of the status register.

Figure 4.17. Rotate Right Operation

The result of the operation will be determined by the destination determination

logic, whether to be written to the working register or RAM.

 58

4.2.5.5.3. Swap Nibbles Operation

The upper and lower nibbles of the operand A register is swapped. For example if

the content of the operand A register is “0x73”, after the swap nibbles operation

the content of the ALU output register will be “0x37”.

4.2.5.5.4. Complement Operation

The ALU output register is loaded with the 1’s complement of the operand A

register. The result of the operation will be assigned by the destination

determination logic. As an example, if the content of the operand A register is

“0x55”, after the complement operation, ALU output will be “0xAA”.

4.2.5.5.5. Logical AND Operation

With this logical AND operation 5 instructions are executed, which are ANDLW,

ANDWF, BCF, BTFSC, BTFSS. The necessary inputs for the ALU, operand A

and operand B registers are prepared by the finite state machine of the

microcontroller. The necessary status bits are also updated according the result of

the operation. ALU output destination is also resolved by the destination

determination logic.

4.2.5.5.6. Logical OR Operation

IORLW, IORWF, BSF instructions are considered in this group. The operand A

and operand B are ORed and result is written to the ALU output register. Zero flag

of the status register is affected after the “or” operation. The ALU inputs are

prepared by the finite state machine of the microcontroller.

4.2.5.5.7. Logical XOR Operation

The contents of the operand A register are XOR’ed with the contents of the

operand B register. And the result is written to the destination, whether it is

working register or RAM. Zero flag of the status register is also affected by this

operation.

 59

4.2.5.5.8. Addition Operation

One of the most frequently used operator is addition operator. The operator is used

by the 8 instruction which are, ADDLW, ADDWF, SUBLW, SUBWF, DECF,

DECFSZ, INCF, and INCFSZ. The operand A and operand B are added with each

other and written to the ALU output register. INCF and INCFSZ instructions are

added by one with the value of destination of the RAM. DECF and DECFSZ

instructions are added by the “0xFF” value with the value of destination of the

RAM. Adding a number with 0xFF means decrement by one. Subtraction

operation is also carried out by this operator. The number which is going to be

subtracted from a number can be implemented by addition operator. The addition

of the first number and the 2’s complement of the second number gives the

subtraction of first number from second number.

The result of the operation affects the status flags which are carry flag, digit carry

flag, and zero flag.

4.2.5.5.9. 4-bit Multiplication Operation

A 4bit multiplication operation is executed, and the result is written to the ALU

output register. For example if the operand A has a value of “0x5” and operand B

has a value of “0xD”, the value of the ALU output register is “0x41”. The ALU

output register will be written to the working register or RAM, which is decided

by the destination determination logic. This instruction is not available in the

original PIC configuration. Multiplication operation is designed in a separate file,

called “mult.v” in Figure 4.4.

4.2.5.5.10. Pass Through Operation

Some instructions do not need any operation like NOP, CALL, GOTO

instructions. At this operation the operand A is reflected to the ALU output

register and, none of the status flags are affected. The ALU output register is

written to neither RAM nor working register, since no operation is carried out.

 60

4.2.5.6. FSM Machine

The flow diagram of the finite state machine (FSM) can be seen in the following

Figure 4.19. At the reset condition, the microcontroller starts from the S1 state.

This FSM basically have 4 states which are STATE_S1, STATE_S2,

STATE_SINT, and STATE_SLE. This FSM is a mealy type state machine as

shown in Figure 4.18. The outputs of the FSM are decided with the current state

and FSM inputs.

Figure 4.18. Synchronous Mealy Model State Machine

Different with the normal Mealy FSM, the synchronous Mealy FSM has their

output connected to flip-flops. That is why it is called synchronous. There are two

combinational logics in the state machine, one to generate the next state based on

the input and current state, while the other is used to generate the outputs based

also on the input and current state.

 61

STATE_S1

Reset

Interrupt

Condition?
STATE_SINTyes

STATE_S2

Instruction?=

SLEEP
STATE_SSLEEPyes

no

no

Interrupt

Condition?

noyes

Figure 4.19 Flowchart of the Finite State Machine

The detailed description of each state will be given in the following sections one

by one. The finite state machine is implemented in verilog file “fsm.v” as shown

in Figure 4.4.

 62

4.2.5.6.1. STATE S1

This state’s basic purpose is to read the data from RAM or registers and then

decide the value of the operand A and operand B register for the arithmetic logic

unit operations. Both operand A and operand B registers are set at the same clock.

The following table summarizes the how the value of the operand A register is

loaded at this state.

Table 4.5. The value of the Operand A register

Instruction Value of the Operand A Register

MOVWF, SWAPF,
ADDWF, SUBWF,
ANDWF, IORWF,
DECF, INCF, RLF,

RRF, BCF, BSF,
BTFSC, BTFSS,

DECFSZ, INCFSZ,
COMF , XORWF

The value of the calculated internal RAM. If the
direct addressing mode is used, it is loaded with

the value of the destination RAM.
If indirect addressing mode is used then it is

loaded with the value of RAM which is pointed
with the FSR register.

MOVLW, ADDLW,
SUBLW, ANDLW,
IORLW, RETLW,

XORLW

These instructions are immediate value
instructions. Operand A register is loaded with

the first 8 bit of instruction register

CLRF, CLRW Zero is loaded to the Operand A register

MULT
First 4 bit of the working register is loaded to

the Operand A register.

Other Instructions
Operand A is loaded with the value of working

register

At this state operand B register is also prepared. The value of the operand B

register is determined by the following Table 4.6.

 63

Table 4.6. The value of the Operand B register

Instruction Value of the Operand B Register

DECF, DECFSZ
A -1 is loaded to the operand B register.

I.E, 0xFF is loaded to the operand B register.

INCF, INCFSZ 0x01 is loaded to the operand B register

SUBLW, SUBWF
2’s complement of the value of the working register

is loaded to the operand B register.

BCF
Complement of the mask node register is loaded to

the operand B register. Mask node register is
derived from the instruction register.

BTFSC, BTFSS, BSF
The value of the mask node register is loaded to the

operand B register.

MULT
Second nibble of the working register is loaded to

the Operand B register.

Other Instructions
Operand B is loaded with the value of working

register

At this state if the instruction is a return instruction then pop stack operation is

also performed.

4.2.5.6.2. STATE S2

This state is an execution and writing results state. The results of the ALU output

register is written to the appropriate locations. And also necessary status flags are

updated.

If the current executing instruction is a CALL instruction then, the current

program counter is PUSHed to the stack. Stack pointer is also incremented by one.

If the instruction is a RETFIE instruction, then global interrupt enable bit is also

set. Carry, digit carry and zero flags of the status register are also updated

according to the result of the ALU.

 64

If the ALU output destination is working register, the result is written to the

working register else the results are written to the destination of the RAM.

If the executing instruction is a SLEEP instruction then, state of the FSM goes the

STATE_SLE else the next state will be STATE_S1.

4.2.5.6.3. STATE INT

When the FSM enters to this state, FSM disables the global interrupt enable bit at

the INTCON register. This action is taken place to prevent a second interrupt

generation. Interrupt flag of the INTCON register is also set to inform the

microcontroller that an interrupt condition occurred.

Program counter is also pushed to the stack, so that pre-empted instruction can be

restarted later, after the RETFIE instruction is executed. After pushing the

program counter to the stack, stack pointer is also incremented by one. The next

state of the FSM will be STATE_S1.

4.2.5.6.4. STATE SLE (SLEEP)

At this state microcontroller do nothing until an interrupt condition occurs. If an

interrupt condition occurs then next state will be STATE_S1 else the

microcontroller waits at this state infinitely. The main purpose of this state is to

reduce power consumption. If no switching occurs within the FPGA then static

power consumption reduces. In the original configuration of the microcontroller,

this instruction also stops the oscillator of the microcontroller.

4.2.5.7. Interrupts

The original PIC microcontroller have many interrupt sources, but in this

microcontroller only the PORTB interrupt is designed for the simplicity. The other

interrupts can be designed in the same manner. INTCON register is used in the

control and the status of the interrupts. The interrupt control register, INTCON,

 65

records individual flag bits for core interrupt requests. It also has various

individual enable bits and the global interrupt enable bit (GIE).

PORTB0IE

PORTB0IF

GIE

INTCON

REGISTER

Interrupt to

Microcontroller

Wake-up

(If In Sleep State)

Figure 4.20. Interrupt Logic

The Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) the un-

masked interrupt, or disables (if cleared) the interrupt on PORTB0. PORTB0

interrupt can be disabled through its corresponding enable bit (PORTB0IE) in the

INTCON register. The GIE bit is cleared on reset. The “return from interrupt”

instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which

allows any pending interrupt to execute.

When an interrupt is responded to, the GIE bit is cleared to disable any further

interrupt, the return address is pushed into the stack and the PC is loaded with

0004h. Once in the interrupt service routine the source of the interrupt can be

determined by polling the interrupt flag bits. The interrupt flag bit must be cleared

in software before re-enabling the global interrupt to avoid recursive interrupts.

The external interrupt on the PORTB<0> pin is positive edge triggered. When a

valid positive edge appears on the PORTB<0> pin, the PORTB0IF flag bit

(INTCON<1>) is set. This interrupt can be enabled/disabled by setting/clearing

the PORTB0IE enable bit (INTCON<4>). The PORTB0IF bit must be cleared in

software in the interrupt service routine before re-enabling this interrupt. The

 66

PORTB<0> interrupt can wake-up the processor from SLEEP, if the PORTB0IE

bit was set prior to going into SLEEP.

During an interrupt, only the return PC value is saved on the stack. Typically, if

the user wants to save key registers during an interrupt e.g. W register and

STATUS register, this has to be implemented in software as in the original PIC

microcontroller. The interrupt is implemented in verilog file “fsm.v” as shown in

Figure 4.4.

4.2.5.8. Input / Output Ports

General purpose I/O ports can be considered the simplest of the peripherals. They

allow us to monitor and control devices outside the microcontroller. For all ports,

the PORTs pin’s direction (input or output) is controlled by the data direction

register, called the TRIS register. TRIS<x> controls the direction of PORT<x>. A

‘1’ in the TRIS bit corresponds to that pin being an input, while a ‘0’ corresponds

to that pin being an output.

The designed microcontroller has 4 I/O ports which are PORTA, PORTB,

PORTC, and PORTD. Only the PORTA is 5 bit, the other ports are all 8 bit wide.

The first bit of the PORTB has interrupt functionality, although this interrupt input

can be configurable in the top module of the verilog code. At the reset state of the

FSM, all PORTs direction registers are loaded with 0xFF, so the default direction

of the ports is input. This part is implemented in verilog file “top.v” as shown in

Figure 4.4.

4.3. Differences Between PIC16XX and The RISC Microcontroller

There are some architectural differences between the original architecture of the

PIC microcontroller and the RISC microcontroller that we designed in this thesis.

Normally there is not any hardware multiplication instruction in the original

configuration. The multiplication instruction makes a 4-bit multiplication with the

nibbles of the working register. If we extend the instruction register we may also

 67

add some custom instructions to the microcontroller. This work showed us that it

is possible to add some application specific instructions to the design.

In this design we may also extend the I/O ports of the microcontroller. The

limiting factor for the number of the I/O port is the number of the I/O pads of the

FPGA.

Stack size is also configurable in this configuration. In the original

microcontroller, there is only 8 word size stack only, but in our case we have

implemented the stack size as 16 word sizes.

In the original PIC microcontroller one instruction execution requires 4 clock

periods, but the designed microcontroller requires only 2 clock periods for one

instruction execution.

 68

CHAPTER 5

SIMULATION AND TESTING OF THE

MICROCONTROLLER

5.1. Test Methodology

Language based models of a circuit must be verified to assure that their

functionality conforms to the specification for the design. Two methods of

verification are used: logic simulation and formal verification. Logic simulation

applies stimulus patterns to a circuit and monitors its simulated behavior to

determine whether it is correct. Formal verification uses mathematical proofs to

verify a circuit’s functionality without having to apply stimulus patterns. Although

the use of formal methods is increasing, due to the difficulty of fully simulating

large circuits, logic simulation is still widely used. Only logic simulation will be

considered in this thesis.

Today, in the era of ASICs, FPGAs and System on a Chip designs, verification

consumes about 70% of the design effort. Design teams include engineers

dedicated to verification. The number of the verification engineers is usually twice

the number of designers [27].

5.2. Testing Environment

As a testing environment, industry standard ModelSim SE simulator is used.

ModelSim SE is the high-end simulator available from Mentor Graphics. More

information can be found in the ModelSim SE User’s Manual[28].By creating

 69

verilog based testbenches any type of stimulus can be provided to the designed

logic system.

The term “testbench”, in verilog, usually refers to the code used to create a

predetermined input sequence to a design, and then observe the design. Some

external data files may also be included to the testbenches, such as program data

file.

Figure 5.1 Structure of a Testbench and Design Under Test

Figure 5.1 shows how a testbench interacts with a Design Under Test (DUT). The

testbench provides inputs to the design and monitors any outputs. The testbench is

a completely closed system, no inputs or outputs go in or out. The testbench is

effectively a model of the universe as far as the design is concerned. The

verification is to determine what input patterns to supply to the design and what is

the expected output of a properly working design.

In this thesis, a testbench is created to test the designed microcontroller named

“riscmcu_sim.v” as shown in Figure 4.4. The testbench structure for the designed

microcontroller is shown in Figure 5.2.

A virtual data memory is created first and directly interfaced to the

microcontroller. It behaves as a real RAM. The contents of the memory are

initially loaded as unknown. During the run-time of the simulation the contents of

 70

the data memory can be visualized by the memory tool of the ModelSim

simulator.

Testbench

MICROCONTROLLER

PORTS

DATA

MEMORY

PROGRAM

MEMORY

STIMULUS

Figure 5.2 Microcontroller Testbench Structure

An asynchronous ROM file is also created in the test bench which simulates the

program memory of the microcontroller as the same way with the Data Memory.

The necessary clock and reset inputs are also supplied through the testbench. In

the testbench input output ports are used to simulate microcontroller. Figure 5.3

shows the test flow of the microcontroller. Initial contents of the program memory

are loaded with a “riscmcu.rom” file. A sample test program is written which is

shown in Appendix C. This test program simply tests all instructions of the

microcontroller. This file is compiled with HI-TECH C compiler and then the

memory contents are exported as “riscmcu.rom”. Only the multiplication

instructions machine code must be changed manually, because the multiplication

instruction is a custom instruction. The testbench and all the design files are given

 71

as an input to the ModelSim simulator. ModelSim simply checks the syntax and

compiles all the verilog files. Also wave window in the ModelSim should be

opened and necessary signals must be included to the wave window to see the

status of the signals in the microcontroller.

Figure 5.3 Microcontroller Test Flow

5.3. Checking the Results

In a functional verification environment, using a waveform viewer to determine

the correctness of a design involves interpreting the dozens of signals on some

expectations. It can be an acceptable verification method if used a few signals. But

as the number of signal increases, and the number of transitions increases, and the

duration of the simulation that must be checked increases, and the number of

times simulation results must be checked increases, the probability of a functional

error is increases.

ModelSim can compare two sets of waveforms. One is assumed to be a golden

reference, while the other is verified for any difference. Golden reference must be

checked manually and carefully.

An example waveforms is shown in the following figure;

Figure 5.4 Microcontroller Simulation Startup

 72

As shown in Figure 5.4, microcontroller successfully starts to operate, and load

the instructions from the memory.

Finally, after verifying the design by the simulator, the same test program is also

loaded onto the Digilent demo board, and the results are checked on the real

hardware.

 73

CHAPTER 6

CONCLUSIONS

6.1. Conclusions

In this thesis, we introduced a custom designed RISC microcontroller, whose

instructions were based on industry standard Microchip PIC microcontrollers. In

today’s engineering applications, 8-bit microcontrollers play an important role to

realize the designs. From a simple toy to complicated satellite systems 8-bit

microcontrollers are widely used. This custom microcontroller is designed and

implemented by using an FPGA.

The industry trend for microprocessor design is for Reduced Instruction Set

Computers (RISC) designs. By implementing fewer instructions, the chip is able

to dedicate some of the precious silicon real-estate for performance enhancing

features. The benefits of RISC design are a smaller chip, smaller pin count, and

very low power consumption. Also RISC architecture is more convenient to the C

compilers.

The FPGA is an integrated circuit that contains many (64 to over 10,000) identical

logic cells that can be viewed as standard components. Each logic cell can

independently take on any one of a limited set of personalities. The individual

cells are interconnected by a matrix of wires and programmable switches. A user's

design is implemented by specifying the simple logic function for each cell and

selectively closing the switches in the interconnect matrix. The array of logic cells

 74

and interconnects form a fabric of basic building blocks for logic circuits. Xilinx

Spartan™ FPGA is used in this thesis which is ideal for low-cost, high volume

applications.

The design specifications are derived from the PIC microcontroller user manual.

Verilog hardware description language is used to achieve the design

considerations of the RISC microcontroller. Then a Verilog code is written with

some modifications to the instruction set and extra ports. The designed Verilog

code is synthesized with the Xilinx ISE program. A test platform is established by

using a Digilent demo board. A program downloader application is written with

using Borland C++ Builder on the PC to load the firmware to the microcontroller

in the SPARTAN IIE FPGA, and then the results are checked whether it meets the

design specification.

The microcontroller in the FPGA occupied roughly 30 % resources of the FPGA.

Detailed design summary can be found in Appendix B. It means that we have free

space to implement some other functions in the FPGA.

The designed microcontroller has some extra functionality with respect to the

original configuration. There is not any hardware multiplication instruction in the

original configuration. In this configuration a multiplication instruction is added to

the instruction list. And the I/O ports are expandable, according to the used

requirements.The PIC16XX microcontrollers divide the incoming clock by 4, So

the pipeline of the original microcontroller is formed-up by the 4 clock cycles. But

the designed microcontroller in this thesis has been implemented by 2 clock

pipeline. This is an extra performance increasing factor with respect to the original

configuration.

One important result of this thesis is, in the future we can implement an ASIC

with the Verilog code which has already been developed in this thesis.

 75

6.2. Future Work

In the future, I intend to improve the instruction set of the designed

microcontroller core . The current microcontroller have instructions , which are

14-bits wide . If we extend the instructions to the 16-bit, we shall have new

opportunity to add custom instructions the microcontroller core. By this way , we

can implement very specific functions such as DSP operations in the FPGA very

easily. We may improve the multiplication instruction to the 8 bit multiplication

even 16-bit multiplication.

Also we can add specific peripherals to the microcontroller, such as PWM timers,

and I2C bus. The utilization of the FPGA is currently 30 % , so we have much

area remaining in the FPGA to implement such peripherals and instructions. But

all these works must keep the compatibility to the previous microcontroller core.

 76

REFERENCES

 [1] Enoch O. Hwang, “Microprocessor Design Principles and Practices with
VHDL”, 2004

[2] John L. Hennessy, David A. Patterson, “Computer Architecture: A
Quantitative Approach”, May 2002

[3] Mark Balch, “Complete Digital Design : A Comprehensive Guide to Digital
Electronics and Computer System Architecture”, 2003

[4] Microchip Tech. Inc., http://www.microchip.com, Last accessed ; June 2005

[5] Xilinx Inc. , http://www.xilinx.com/products/design_resources/design_tool/,
Last accessed ; June 2005

[6] Mentor Graphics Inc. , http://www.model.com/products/60/default.asp, Last
accessed ; June 2005

[7] HI-TECH Software Inc., http://www.htsoft.com/products/picccompiler.php,
Last accessed ; June 2005

[8] Borland Software, http://www.borland.com/us/products/cbuilder/index.html,
Last accessed ; June 2005

[9] Digilent Inc., “Digilab 2E System Board Reference Manual,”
(http://www.digilentinc.com) , Last accessed ; Feb 2005

[10] Doulos Inc., http://www.doulos.com/knowhow/vhdl_designers_guide/, Last
accessed ; June 2005

[11] IEEE Computer Society , “IEEE Standard VHDL Language Reference
Manual”, May 2002

[12] Doulos Inc., http://www.doulos.com/knowhow/verilog_designers_guide/,
Last accessed ; April 2005

[13] IEEE Computer Society , “IEEE Standard Verilog Hardware Description
Language ”, September 2001.

 77

[14] Karen Parnell, Nick Metha , “Programmable Logic Design Quick Start
Handbook, Second Edition”, January 2002

[15] Xilinx Inc. , “Spartan-IIE 1.8V FPGA Family: Complete Data Sheet”, July
2004

[16] Don Bouldin, “Designing Application-Specific Integrated Circuits”
http://vlsi1.engr.utk.edu/ece/bouldin_courses/551/overview_bw.pdf, Last accessed
; June 2005

[17] Bob Zeidman, “An Introduction to FPGA Design," Embedded System
Conference, November 1999.

[18] Bob Zeidmen, Introduction to CPLD and FPGA Design, The Chalkboard
Network, http://www.chalknet.com , Last accessed ; June 2005

[19] Xilinx Inc, “High speed FIFOs in Spartan-II FPGAs," Xilinx Application
Note XAPP175, 1999.

[20] R. Pragasam, “Spartan FPGAs - The gate array solution," Xilinx Application
Note XAPP120, August 2001.

[21] Microchip Technology Inc.,” PICmicro Mid-Range MCU Family Reference
Manual”, December 1997.

[22] Xilinx Inc. , “”Xilinx Libraries Guide for ISE 6.3i”,
http://toolbox.xilinx.com/docsan/xilinx7/books/docs/lib/lib.pdf , Last accessed ;
December 2004.

[23] Verilog-2001 Frequently Asked Questions, http://www.sutherland-
hdl.com/Verilog-2001/verilog-2001_faq.html, Last accessed; June 2005

[24] Xilinx Inc, “Using Block SelectRAM+ Memory in Spartan-II FPGAs,"
Xilinx Application Note XAPP173, December 2000.

[25] Xilinx Inc, “High Using Delay-Locked Loops in Spartan-II FPGAs," Xilinx
Application Note XAPP174, January 2000.

[26] Donald E. Thomas , Philip R. Moorby “The Verilog® Hardware Description
Language, Fifth Edition”,2002

[27] Janick Bergeron, “Writing Testbenches: Functional Verification of HDL
Models, Second Edition”, Feb 2003

[28] ModelSim Inc., “ModelSim SE User’s Manual, Version 6.0”, Jul 2004

 78

APPENDIX A

PROGRAM LOADER USER’S MANUAL

Program Downloader Software has been developed for PC’s running Windows

operating system. Program Downloader uses all the graphic and component

support built in Windows which makes it user friendly software. There are no

menus in the program. Because it is a simple program, all functions are done with

the buttons and the tabs. The basic program structure and the basic functions of

each button are as follows:

• Settings Tab; in this tab serial communication settings are established.

• From the name pull-down drop list, Serial communication channel can be

selected.

• From the baud rate drop list, baud rate can be selected.

• From the Communication speed drop list, communication speed can be

selected between two commands.

• Open button, opens a serial communication with the desired baud rate at

the selected channel

• Commands Tab; In this tab , the compiled Intel hex file is loaded to the

memory of the PC

• File Load button loads the Intel hex file.

• File Unload button clear the memory of PC.

• Write Button sends the sequentially the binary data to the microcontroller

to the FPGA

• Read button reads some memory content from the FPGA

 79

APPENDIX B

DESIGN SUMMARY AND RESULTS

The result of the mapping stage is as follows;

Design Information

Target Device : x2s200e

Target Package : pq208

Target Speed : -6

Mapper Version : spartan2e -- $Revision: 1.16.8.2 $

Mapped Date : Fri April 15 21:07:14 2005

Design Summary

Logic Utilization:

 Number of Slice Flip Flops : 498 out of 4,704 10%

 Number of 4 input LUTs : 1,196 out of 4,704 25%

Logic Distribution:

 Number of occupied Slices: 711 out of 2,352 30%

 Number of Slices containing only related logic: 711 out of 711 100%

 Number of Slices containing unrelated logic: 0 out of 711 0%

Total Number 4 input LUTs : 1,255 out of 4,704 26%

 80

 Number used as logic : 1,196

 Number used as a route-thru : 51

 Number used as 16x1 RAMs : 8

 Number of bonded IOBs : 36 out of 142 34%

 IOB Flip Flops : 30

 Number of Tbufs : 144 out of 2,464 5%

 Number of Block RAMs : 5 out of 14 35%

 Number of GCLKs : 3 out of 4 75%

 Number of GCLKIOBs : 1 out of 4 25%

 Number of DLLs : 1 out of 4 25%

Total equivalent gate count for design: 102,646

 81

APPENDIX C

TEST CODE FOR THE MICROCONTROLLER

// Filename : riscmcu_test.c

// Description : RISC MICROCONTROLLER TEST SOFTWARE

// Author : Rasit GUMUS

// Created On : MPLAB 7.01 -HITECH PICC C Compiler 8.02

// Last Modified By: .

// Last Modified On: .

// Update Count : 0

// Status : This test program simulates all of the features of the mcu

#include <pic.h>

void delay(unsigned char data);

void long_delay(void);

unsigned char soft_mult(unsigned char x, unsigned y);

void interrupt interrupt_service(void);

void main(void) {

unsigned char ch1,ch2;

TRISA=0x00; // PORTA is output

TRISB=0xFF; // PORTB is input

TRISC=0x00; // PORTC is output

TRISD=0xFF; // PORTD is input

INTCON=0xFE; // enable interrupt

 82

ch1=1;ch2=2;

// The following instructions are tested with the following software multiplication

// routines. ADDWF, CLRF, INCF, INCFSZ, MOVWF, NOP, RLF, RRF,

SUBWF, XORWF, BCF, BSF

// CALL, GOTO, BTFSC, BSF, BCF, RETURN

for (ch1=0 ; ch1<16 ; ch1++)

 for (ch2=0 ; ch2<16 ; ch2++)

{

PORTC=soft_mult(ch1,ch2);

delay(250);delay(250);

}

PORTC=0xAF;

while ((PORTD&0x0F) == 0) ;

long_delay();

// TEST FOR ANDWF

PORTC=PORTC & 0x0F ;

while ((PORTD&0x0F) == 0) ;

long_delay();

// TEST FOR COMF

while ((PORTD&0x0F) == 0)

 PORTC = ~PORTB;

long_delay();

// TEST FOR ADDLW

while ((PORTD&0x0F) == 0)

 PORTC = PORTB+0x07;

long_delay();

// TEST FOR SUBLW

while ((PORTD&0x0F) == 0)

{

asm("MOVF portb,W");

 83

asm("SUBLW 0x10");

asm("MOVWF portc");

}

long_delay();

// TEST FOR ANDLW

while ((PORTD&0x0F) == 0)

{

asm("MOVF portb,W");

asm("ANDLW 0xAA");

asm("MOVWF portc");

}

long_delay();

// TEST FOR XORLW

while ((PORTD&0x0F) == 0)

{

asm("MOVF portb,W");

asm("XORLW 0xFF");

asm("MOVWF portc");

}

long_delay();

// test for multiplication instruction

while ((PORTD&0x0F) == 0)

{

asm("NOP");

asm("NOP");

asm("NOP");

asm("BCF 0x3, 0x5");

asm("MOVF portb,W");

asm("xorlw 0xAB"); // the value at this address should be changed

asm("MOVWF portc");// from 0x3A to 0x3B to make multiplication

 84

 // in the produced rom file

}

long_delay();

// TEST FOR ROTATE LEFT

while ((PORTD&0x0F) == 0)

{

ch1=0x01;

for (ch2=0;ch2 < 8 ; ch2++)

 {

//shift operations

PORTC=ch1;

ch1=ch1<<1;

long_delay();

}

}

long_delay();

// TEST FOR ROTATE RIGHT

while ((PORTD&0x0F) == 0)

{

ch1=0x80;

for (ch2=0;ch2 < 8 ; ch2++)

 {

//shift operations

PORTC=ch1;

ch1=ch1>>1;

long_delay();

}

}

long_delay();

asm("SLEEP");

 85

asm("NOP");

PORTC=0xF0;

while(1); // wait here forever

}

void delay(unsigned char data)

{

unsigned char i,k;

for (i=0; i<data ; i++)

 for (k=0; k<255 ; k++)

 asm("nop");

}

void long_delay(void)

{

delay(250);delay(250);

delay(250);delay(250);

delay(250);delay(250);

delay(250);delay(250);

}

unsigned char soft_mult(unsigned char x, unsigned y)

{

return x*y;

}

void interrupt interrupt_service(void)

{

PORTC=0xFF;

PORTA=~PORTA;

}

 86

APPENDIX D

INTERCONNECTION DIAGRAM FOR THE TOP MODULE

 87

APPENDIX E

INTERCONNECTION DIAGRAM FOR THE RISC

MICROCONTROLLER MODULE

 88

APPENDIX F

SOURCE FILES FOR THE RISC MICROCONTROLLER

The source files for the RISC microcontroller are located on the CD-ROM

attached to the back cover of the thesis.

