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ABSTRACT 
 
 

ADAPTATION OF TURBULENCE MODELS 

TO A NAVIER-STOKES SOLVER 

 
 
 

GÜRDAMAR, Emre 

M.S., Department of Mechanical Engineering 

Supervisor      : Prof. Dr. Mehmet Haluk AKSEL 

Co-Supervisor: Dr. Ali Ruhşen ÇETE 

 
September 2005, 151 pages 

 
 
 

 
This thesis presents the implementation of several two-equation turbulence 

models into a finite difference, two- and three-dimensional Navier-Stokes 

Solver. Theories of turbulence modeling and the historical development of 

these theories are briefly investigated. Turbulence models that are defined 

by two partial differential equations, based on k-ω and k-ε models, having 

different correlations, constants and boundary conditions are selected to be 

adapted into the base solver. The basic equations regarding the base 

Navier-Stokes solver to which the turbulence models are implemented 

presented by briefly explaining the outputs obtained from the solver. 

Numerical work regarding the implementation of turbulence models into the 

base solver is given in steps of non-dimensionalization, transformation of 

equations into generalized coordinate system, numerical scheme, 

discretization, boundary and initial conditions and limitations. These sections 
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of implementation are investigated and presented in detail with providing 

every steps of work accomplished.  

 

Certain trial problems are solved and outputs are compared with 

experimental data. Solutions for fluid flow over flat plate, in free shear, over 

cylinder and airfoil are demonstrated. Airfoil validation test cases are 

analyzed in detail. For three dimensional applications, computation of flow 

over a wing is accomplished and pressure distributions from certain sections 

are compared with experimental data. 

 
 
Keywords: Turbulence, Turbulence Modeling, Two-Equation Turbulence 

Models  
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ÖZ 
 
 

TEDİRGİNLİK MODELLERİNİN İKİ BOYUTLU BİR NAVIER-STOKES 

ÇÖZÜCÜSÜNE UYARLANMASI 

 
 
 

GÜRDAMAR, Emre 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Mehmet Haluk AKSEL 

Ortak Tez Yöneticisi: Dr. Ali Ruhşen ÇETE 

 

Eylül 2005, 151 sayfa 

 
 
 

 
Bu tez çeşitli iki-denklemli tedirginlik modellerinin, sonlu farklar, iki ve üç 

boyutlu Navier-Stokes çözücüsüne eklenmesini sunmaktadır. Tedirginlik 

modellerinin teorileri ve bu teorilerin tarihsel gelişimi özetle incelenmiştir. 

Farklı bağıntılar, sabitler ve sınır şartları içeren, iki denklemli tanımlanmış k-

ω ve k-ε  bazlı tedirginlik modelleri seçilmiş ve temel çözücüye eklenmiştir. 

Modellerin eklendiği Navier-Stokes çözücünün temel denklemleri ve çıktıları 

sunulmuş kısaca açıklanmıştır. Tedirginlik modellerinin uygulanmasındaki 

kullanılan sayısal çalışma, birimsizleştirme, genel kordinat sistemine 

dönüştürme, numerik şema, ayrıklaştırma, sınır ve ilk şartlar ve 

sınırlandırmalar olarak adımlar halinde verilmiştir. Bu adımlar detaylı olarak, 

ve her adımda yapılan çalışmalar gösterilerek incelenmiş ve sunulmuştur.  

 

Çeşitli deneme problemleri yapılmış ve deneysel veri ile doğrulanmıştır. Düz 

levha üzerinde akış, serbest akış ve silindir ve kanat kesiti üzerinden akışlar 
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için çözümler gösterilmiştir. Kanat kesit doğrulama denemeleri detaylıca 

incelenmiştir. Üç boyutlu uygulamalar için örnek olarak bir kanat seçilmiş ve 

basınç dağılımları deneysel veri ile karşılaştırılmıştır. 

 
 
Anahtar Kelimeler: Tedirginlik, Tedirginlik Modellemesi, İki-Denklemli 

Tedirginlik Modelleri 
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CHAPTER 1  

INTRODUCTION 

One of the most important tasks in the discipline of engineering is the 

optimization of the designs according to certain variables. Since the 

population of our earth is growing faster than the growth of resources, one 

optimization parameter appears as the need to serve many people in the 

shortest time and the most cost effective way. Also during these services, 

companies are trying to profit from the products they sell. As a 

consequence, new designs are obliged to compensate the capital that is 

spent on the design and production stages, in a short time. Today, mankind 

is continuously developing high technologies in all aspects of engineering. 

The results of these developments allow engineers to design products that 

are huge in size and beneficial in use which provides the necessary 

compensation of money. A good example for this situation is the design of 

passenger and cargo planes which should be planned such that they would 

have as many passengers and carriages as possible, with which the safety 

constraints should not be violated. Then, any tiny modification that would 

result in a useful way is important for the manufacturer. To obtain these 

modifications, the designers are trying many different configurations of 

different sizes. The design steps are perhaps repeated many times to have 

these different configurations. The design procedures, of course, possess a 

very important step of testing the built prototype which would be very 

expensive for such a machine. As a result the need of a decrease in the 

number of test cases shows up as a great demand by the manufacturers. 

The decrease could not be a result of an arbitrary decision; on the contrary, 

it must be an educated determination. The function of CFD (Computational 
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Fluid Dynamics) could be seen more clearly in that step that which basically 

serves in different manners; as an analysis tool that is done on the early 

design stage, an elimination mechanism of different configurations on the 

test stage or an information provider for cases which are nearly impossible 

to test. 

 

Developments in computer technology have led to many drastic changes in 

computation times and memory capabilities. These changes enabled the 

engineers to refer to CFD more frequently than before. Also the types of 

problems increased; turbulent flows, heat transfer and icing problems, 

particle tracing and direct numeric simulation applications appeared to be 

solved. By the help of parallel computing the computation loads could be 

shared into several different CPU’s. Computer capabilities as such give us to 

solve two more equations for the turbulence models. 

 

Turbulence, of which theory will be briefly examined in the oncoming 

chapters, could be defined as a flow phenomenon basically caused by a 

presence of a wall or a shear layer between two flows in which diffusion of 

every property of a fluid is tremendously enhanced. Statistical methods 

could be applied to simulate turbulence however; the computation 

capabilities are not so developed to solve a direct numerical simulation 

solution of a half wing of an airplane. Then the need for modeling this 

chaotic phenomenon appears. Although it is illogical to represent a case like 

turbulence in two partial differential equations but for a finite space based 

problem description, it appears to be quite accurate for a prediction of a 

“turbulent viscosity”. 

 

Implementation of several two-equation turbulence models to a finite 

difference based Navier-Stokes solver is the main motivation for this thesis 
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work. Two-equation turbulence models based on k-ω and k-ε with different 

constants, correlations and boundary conditions are investigated. 

 

Base solver named as LANS2D that will be introduced briefly in the following 

sections, is searched through the documents of TAI library and papers 

regarding the LU-ADI algorithm written by the authors of the base solver. 

Since turbulence models to be implemented are treated isolated from the 

progress of the base solver during a computation step, research for 

numerical scheme to construct a self working turbulence model solver is 

appeared to be the challenge. Literature survey regarding the turbulence 

models are accomplished by taking the needs for limitations and corrections 

into consideration. Many different references are searched and the ones that 

are directly used in this work are included in the references. 

 

Definitions of turbulence and properties are introduced in the following 

section with giving the basic differences between turbulence models. This 

section searches for an answer to the need for turbulence modeling. Then 

the properties of the base solver are presented. Brief history of turbulence 

modeling is also included in this chapter. Numerical framework that the base 

of the coding steps appears in the sequent chapters involves non-

dimensionalization, numerical scheme, discretization, boundary and initial 

conditions with some limitations. Complete implementation steps are given 

in this section with showing the intermediate steps in the appendix sections 

in detail. The results of the test cases for flat plate, free shear, cylinder and 

airfoil applications are also given with an additional wing computation. 
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CHAPTER 2  

THEORY AND TURBULENCE MODELING 

2.1 Turbulence, Definition and Properties 

 

For ages, mankind tried to understand the natural events around and tried to 

find an explanation for them. When it is insufficient to clarify, these events 

were referred to as god given. Today many natural phenomena could be 

represented by scientific methods through cause and effect relationships. 

On the other hand most of them are still not ”defined” and ”understood” 

completely. One of the most important undefined cases is the turbulence. 

Today scientists are trying to develop equations of turbulence flow with the 

help of experimental techniques to solve this problem. Although this 

phenomenon is not completely solved and mentioning about its theory is 

certainly some kind of a dilemma, there are certain explanations of 

turbulence that are given by the pioneers of this subject. About five hundred 

years ago, Leonardo da Vinci (1452 – 1519) described turbulence and told 

his first observations as, 

Observe the motion of the surface of the water, which resembles that 

of hair, which has two motions, of which one is caused by the weight 

of the hair, the other by the direction of the curls; thus the water has 

eddying motions, one part of which is due to the principal current, the 

other to random and reverse motion. [1] 
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Another description of Da Vinci gives a remarkably modern description with 

a sketch of turbulent flow, 

…the smallest eddies are almost numberless, and large things are 

rotated only by large eddies and not by small ones, and small things 

are turned by small eddies and large. [2] 

 

 

Figure 2.1 Leonardo da Vinci Sketch of turbulence 

 

Von Karman quotes G. I. Taylor in 1937 by defining turbulence as; 

an irregular motion which in general makes its appearance in fluids, 

gaseous or liquid, when they flow past solid surfaces or even when 

neighboring streams of the same fluid flow past or over one 

another.[3] 

 

A more precise definition of turbulence has been made by Hinze that gives 

the basic characteristics in words as follows;  

Turbulent fluid motion is an irregular condition of the flow in which the 

various quantities show a random variation with time and space 
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coordinates, so that statistically distinct average values can be 

discerned. [4] 

 

Bradshaw adds the statement that turbulence has wide range of scales. 

More recent explanations of turbulence include several definitions that are 

describing turbulence in a more deterministic way such as  

Turbulence is any chaotic solution to the 3-D Navier-Stokes equations 

that is sensitive to initial data and which occurs as a result of 

successive instabilities of laminar flows as a bifurcation parameter is 

increased through a succession of values. [5] 

 

All of these definitions are quite successful in describing the turbulent flow 

but they are not sufficient to define the turbulence phenomena with all its 

characteristics. As mentioned before, defining all the characteristics of 

turbulent flow is still not possible though; some fundamental properties could 

be listed. The following particularities of turbulent flow are the blending of 

references [6] and [7]. 

 

Turbulence definitions address to an irregular motion which in general 

makes its appearance in fluids when they flow past solid surfaces or even 

when neighboring streams of the same fluid past or over one another. 

Therefore, the instabilities occurring in the flow cause laminar flow to turn 

into turbulent flow. Any solid surface projecting towards the flow streamlines 

is a source of disturbance for the turbulent flow to initiate. If a flow past over 

a flat plate is investigated, the fully turbulent region does not appear directly 

after the laminar part. There always appears a transition section which is the 

region where instabilities in laminar flow start. The flow in this region could 

be described neither as laminar, nor as turbulent. These instabilities occur 
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due to highly complex fluid-fluid and fluid-solid interactions. If one looks into 

this phenomenon from partial differential equations point of view, Navier-

Stokes equations that are representing the viscous fluid flow produce 

instabilities due to the non-linear viscous and inertial terms in these 

equations. 

 

The most frequently word group used in defining turbulence is “random 

fluctuations” that is referred to fluctuations of all variables transported within 

the flow namely, density, velocity, energy, pressure and so forth. When the 

randomness of a variable appears in a definition, statistical methods 

should be involved in. The values of variables within a turbulent flow could 

be interpreted by averaging them by several means such as in time and in 

space.  

 

Turbulence is a continuum process. When it comes to a point to measure 

turbulence elements, length scale appears as a dimensional property. The 

length scales of eddies which will be explained in the following paragraphs, 

emerges much larger than the molecular length scale. This enables one to 

treat turbulence as a continuum phenomenon. Then, one can conclude that 

Navier-Stokes equations have all the physics of turbulence. 

 

There are primarily two parts for the mechanism of turbulence. One is the 

small eddies and the other is the large eddies. If it is appropriate to say that 

the “responsibilities” of these two eddies are different such that as 

turbulence decays it transfers kinetic energy from large eddies to smaller 

ones. This could be referred to as a cascade process. The large eddies 

transport turbulence form one location to another, in other words the large 

eddies direct the turbulent flow depending upon the upstream history. This is 

the main reason why the turbulent flow is considered to be smarter than the 
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laminar flow because it remembers from where it comes and decides where 

to go. 

 

The turbulence mechanism decays without an energy input. In other 

words, a turbulent flow must be driven by the presence of a wall or any other 

disturbance present in the flow domain; otherwise, turbulent flow turns into 

laminar. The large eddies should be fed by a mechanism of mechanical 

energy input to gain kinetic energy to continue turbulence process. As large 

eddies grow, small eddies dissipate this kinetic energy to thermal energy. 

This is the dissipation mechanism of turbulent flow named as, turbulent 

viscosity. 

 

Here appears another frequently used term, viscosity, in other words 

momentum diffusion. The latter word is the one that describes the viscosity 

better. In turbulent flow, diffusion of the momentum and other properties of 

flow increase tremendously. Enhanced diffusivity is another property, 

probably the most important, of turbulent flow. Diffusion of every property is 

increased in several orders of magnitude than the one in laminar flow.  
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2.2 Turbulence Modeling 

 

It is convenient to start with asking the famous question of “why do we need 

turbulence modeling?” Two different approaches to the answer of this 

question could be of concern. One includes the physical answer, whereas 

the other looks into the problem in a more mathematical manner.  

 

A fluid flow could be described in several ways. It could be either, 

compressible or incompressible, viscous or inviscid, in the same manner, 

either laminar or turbulent. If the last two definitions of flow are investigated 

in detail, certain parameters to decide on the type of flow whether it is 

laminar or turbulent could be found. Perhaps one of the most important 

parameter is the Reynolds number. For different types of flow (namely, flow 

in a pipe, flow over a flat plate etc.) different Reynolds numbers of transition 

from laminar to turbulent flow are defined. Another important parameter is 

the roughness. Through a pipe with a rough surface, it is detected that the 

flow gets turbulent in a shorter distance where as this length is larger in a 

smoother pipe. Such observations show that the descriptions of laminar or 

turbulent cases are types of a flow, not a fluid. If they were a property of a 

fluid, it is possible to measure the quantities of them; “how turbulent or how 

laminar a fluid is?” So here comes the answer to the question about the 

reason for modeling turbulence; since the presence of a turbulent media is a 

property flow, it should be modeled.  

 

On the other hand, from a mathematical point of view, the turbulent motion 

could be included into the Navier-Stokes equations. It is mentioned that, 

statistical methods are used to average the fluctuating properties of flow in 

the turbulent case. Certain averaging techniques such as time, spatial and 

ensemble averaging are used to obtain the mean values of these properties. 

Homogenous turbulence, that is the averaged turbulent flow uniform in all 
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directions, spatial averaging is used where as, for stationary turbulence 

which, on the average, does not vary with time, time averaging is used. But 

ensemble averaging is the most suitable averaging for flows decaying in 

time [6]. For the flows that engineers mostly deal with, time averaging is 

used. Time averaging yields an average and a fluctuating part for a certain 

variable. These parts could be represented as the part of the instantaneous 

parameter, say velocity. 

Here ( )txui ,  is expressed as the instantaneous velocity with, ( )xUi ; average 

and ( )txui ,′  fluctuating part. 

 

 

Figure 2.2 Time averaging 

 

If this instantaneous velocity term given in Equation ( 2.1 ) is added into the 

Navier-Stokes equations so called Reynolds Averaged Navier-Stokes 

(RANS) equations are obtained.  

( ) ( ) ( )txuxUtxu iii ,, ′+=  
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The quantity ''
ij uu ⋅⋅− ρ  is known as the Reynolds-stress tensor. There 

arises the problem of finding the value of Reynolds stress tensor in order to 

determine the mean-flow properties of the turbulent flow. The mean flow 

variables could be solved (or computed) in the same manner as Navier-

Stokes equations but the last term of RANS must be modeled. 

 

2.3 Brief History of Turbulence Modeling and Turbulence 
Models 

 

As already have mentioned, turbulence phenomenon starts to being 

investigated since Leonardo da Vinci. But until year 1877, any significant 

progress on neither theory nor modeling had occurred. At that year 

Boussinesq proposed an idea on the theory of turbulence that, turbulent 

stresses are linearly proportional to mean strain rates. Following 

Boussinesq’s proposal, in 1894 Osborne Reynolds conducted the first 

notable experiments on turbulence and transition events. The experiments 

had resulted in that only physical parameter for a smooth and 

incompressible flow appears to be the Reynolds number. Reynolds stated 

turbulence as a highly random phenomenon that no movement of any 

particle could be determined previously. By these years, deterministic 

(referring to events that have no random or probabilistic aspects but proceed 

in a fixed predictable fashion) approaches to turbulence started to emerge.  

 

Further progress was obtained by Prandtl’s discovery of boundary layer in 

1904. In 1925, “mixing length theory” has been evolved suggesting the 

computation of eddy viscosity by means of mixing lengths which is analogue 

to mean free path of a gas. Further researches like von Karman and Taylor 

had contributed to turbulence studies. This mixing length theory which was 

first appeared as an idea of Prandtl, became the basic turbulence models 
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named as algebraic or zero-equation turbulence models. The following 

correlations are the relations for algebraic models. 

(Most popular algebraic models of turbulence are Cebeci-Smith [22] and 

Baldwin-Lomax [21] turbulence models.) 

 

After these improvements on turbulence and turbulence modeling, Prandtl, 

postulated a model for the eddy viscosity in which the eddy viscosity is 

dependent on the kinetic energy of turbulent fluctuations, k. It was the first 

introduction of one-equation turbulence model.  

 

Kinetic energy per unit mass is described and related to the Reynolds stress 

tensor as, 

Implementation of this relation into Reynolds Stress Tensor Equation (this 

work is shown in detail and explained in [6, page 36-39]) resulted in a 

transport equation for the turbulent kinetic energy, 

dy
dUlV

dy
dU

mixmixTxy ⋅⋅⋅⋅=⋅= ρµτ
2
1  

dy
dUlconsV mixmix ⋅⋅≈  

dy
dUlmixT ⋅= 2υ  

 

( 2.3 ) 
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Each term has a different meaning regarding the turbulent flow. Production 

term could be regarded as the mechanism of kinetic energy of the mean flow 

turning into turbulent kinetic energy where as Dissipation appears to be the 

term describing the turbulent kinetic energy dissipated as thermal energy. 

Last three diffusion terms could be explained as the turbulent energy 

diffusion by fluid’s natural molecular transport, diffusion by turbulent 

fluctuations and turbulent transport from pressure and velocity fluctuations in 

the order of appearance. The recent results of Direct Numerical Simulation 

(DNS) enables the diffusion terms to be treated as ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⋅⎟
⎠
⎞⎜

⎝
⎛ +⋅

∂
∂

jk

T

j x
k

x σ
νν . 

(Most popular one equation turbulence models could be listed as, Baldwin-

Barth [23] and Spalart-Almaras models [13] )     

 

The turbulence models listed up to here do not involve a length scale. Since 

the turbulent viscosity includes a velocity and a length scale (on dimensional 

grounds, the kinematic viscosity υ  appears to be in s
m2

 that is the product 

of a velocity and a length scale), the models without involving a length scale 

are regarded as incomplete. 

 

Kolmogorov introduced the first complete turbulence model by presenting a 

time scale known as the rate of dissipation of energy in unit volume and time 

and represented as “ω”. The absent length scale is provided by ω
2

1k  where 

ω⋅k  is analogue to the dissipation rate “ε ”. This success of additional 

equation showed up as the introduction of two-equation turbulence 
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models. Since the dissipation term in the “k” equation is evaluated by 

another transport for “ω”, the model is complete. Second equation appears 

as, 

Later Wilcox had modified the Kolmogorov’s ω equation and formed new 

correlations [6] 

 

Today k-ω and k-ε turbulence models gained a great success in 

engineering applications of internal and external flows. The rest of the thesis 

will be about several two equation models and applications of them. 

 

Other studies of turbulence modeling became very popular since the 

computational capabilities of computers have been continuously increasing 

in the recent years are being developed in great amounts. DNS applications 

are not only being studied extensively in universities but also provide 

important data and knowledge on turbulent flows. LES studies are also very 

popular for simulating large scales of turbulence where meteorology science 

uses.  

 

The movements in the study of turbulence are described by Chapman and 

Tobak [5] in Figure 2.3. 
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Figure 2.3 Movements of turbulence modeling [5] 
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CHAPTER 3  

BASE SOLVER 

In this study, several turbulence models are adapted to a thin layer Navier-

Stokes code which was developed by Kozo Fujii and Shigeru Obayashi. The 

results of this code were published in [24]. The original solver uses a Lower 

Upper – Alternating Directions Implicit (LU-ADI) solver and an algebraic 

turbulence model of Baldwin-Lomax. The original code has two versions for 

2D and 3D problems named as LANS2D and LANS3D. LANS is an acronym 

for LU-ADI Navier-Stokes. 

 

Many different versions of LANS is present in certain forms. The present 

version includes convergence acceleration with variable time stepping and 

contains several upwind schemes. LANS2D and LANS3D are finite 

difference based codes which are designed to solve transonic flow over an 

airfoil and a wing. The governing equations regarding LANS2D will be 

investigated.  

 

Turbulence models are added into these codes as separate modules by 

implementing initial and boundary conditions in appropriate subroutines. The 

turbulent viscosity is introduced into the code at each computational step by 

simply adding it to laminar viscosity. 
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3.1 Governing Equations 

 

Navier-Stokes equations of conservative and vectorized form appear as 

follows: 

The left hand sideof this equation represents the explicit form of the 

substantial derivative of variable Q while the right hand side stands for the 

diffusion terms. These vectors can be given as; 

Ttotal µµµ +=  
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In Cartesian coordinates, it would be quite difficult to discretize the equations 

in a finite difference scheme due to the complexity of the geometry of the 

computational domain. Therefore, generalized coordinates are used to 

transform equations into the computational domain as shown in Figure 3.1. 

 

 

Figure 3.1 Coordinate transformation for finite difference scheme 

 

After this transformation, Equations ( 3.2 ) and ( 3.3 ) become, 
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3.2 Input and Output Files 

 

Mach number, Reynolds number and angle of attack which represent the 

flow conditions are the basic input parameters and the solution method is 

selected in the input file. Central differencing upwind biased schemes with 

determination of turbulence models are avaliable for selection in the input 

section. The smoothing parameters and secondary inputs such as number 

of iterations, time step values, smoothing steps are also included. During the 

implementation of turbulence models, several input parameters are added to 

the original input file such as, a parameter for the selection of spatial 

discretization scheme to be used in turbulence models, limitation activation, 

initial distribution flag and a transition point if necessary. 

 

A structured C-Grid for airfoil geometry must be introduced by specifying the 

dimensions of the grid and the start and end points of body geometry.  

 

Figure 3.2 C-Grid for airfoil input for LANS2D 
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Output files regarding the converged solution are the residual graphs of flow 

variables including turbulence model quantities, field variable outputs, lC , 

dC  and mC  values with PC  versus x/c values. Flow over a NACA0012 profile 

having properties of Mach number of 0.5 with 2.0 angle of attack degrees 

and 9*106 Reynolds number is analyzed. Residuals of flow variables and 

load coefficient values are given in Figures 3.3 and 3.4. Coefficient of 

pressure distribution along the surface of the airfoil is given in Figure 3.5. 

Contours of pressure and mach number is visualized in Figures 3.6 and 3.7.  

 

 

Figure 3.3 Residual graph of conservative flow variables 

 

The execution of the modified code can be terminated when lC , dC  and 

mC convergence is achieved. User can either input a convergence criterion 

or simply follow residual drops in the residual graphs of lC , dC  and mC . 
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Figure 3.4 Residual graph of lC , dC  and mC  variables 

 

 

 

Figure 3.5 PC  versus x/c graph 

 

Distribution of flow variables could be obtained such as density, velocity, 

local Mach number, energy, pressure, turbulent kinetic energy, dissipation, 

viscosity and so forth. 
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Figure 3.6 Contours of PC  

 

 

Figure 3.7 Contours of Mach number 
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CHAPTER 4  

MODEL IMPLEMENTATION 

The base solver which is mentioned in Chapter 3, included an algebraic 

turbulence model. This turbulence model was quite effective for the 

engineering problems concerning with the flow over an airfoil. However, 

there were several complications regarding this turbulence model. The 

mixing length and outer-inner region definitions are not well defined in 

junctions of two solid walls or not efficient for the free shear problems as in 

the wake of an airfoil. For this reason a turbulence model which solves 

transport equations was emerged.  

 

Wilcox k-ω turbulence model was the first two equation turbulence model to 

be introduced to the code. After this turbulence model is implemented into 

the code, the others can be easily implemented since only model constants 

and correlations are to be changed. However, for Menter BSL method this 

situation is a little bit different 

 

Following sections include the model equations, constants and correlations 

with the numerical framework, which includes all the steps of implementation 

form non-dimensionalization to limitations of turbulence model variables. 
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4.1 Model Equations and Correlations 

 

The model equations and correlations, implemented to the base solver are 

introduced in this section. The general form of model equations will be in the 

form of, 

To be consistent with general CFD applications, the conservative form of the 

variables are used. The conservative form brings many advantages for 

shock capturing [8] and definitions of momentum in the Navier-Stokes 

equations. 

 

4.1.1 Wilcox k-ω turbulence model 

 

After Kolmogorov’s proposal of second equation for dissipation, turbulence 

model of k-ω has been modified many times by several researchers. From 

the results of DNS solutions, certain correlations and definitions are found. 

However the most robust turbulence model for eddy viscosity with two-

equations appears to be the k-ω model. After the works of F.R. Menter, 

implementation of boundary conditions became much more simple and 

suitable also for the unstructured finite volume computations. 

 

The following formulation with correlations and constants is named as 

Wilcox k-ω after D.C. Wilcox. [8] 

 

Conservative form of the model equations can be given as, 
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where turbulent viscosity is defined as, 

The production and dissipation terms are introduced in form of, 
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4.1.2 Chien k-ε turbulence model 

 

The present model appears as a low Reynolds number model, so that no 

effort is required for implementing the wall functions. Only simple boundary 

conditions for k and ε are specified. This model can be given as [10]. 

 

 

Turbulent viscosity is defined as, 

 

The production and dissipation terms are implemented by using, 

 

 

The D and E terms appearing in the destruction terms of k and ε are in 

modifications due to changes in boundary conditions of ε. Details of these 
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boundary conditions are given in Section 4.2.5. D and E for Chien k-ε 

turbulence model are as follows: 

 

 

As it is seen in Equation ( 4.9 ) the E term includes the definition of +y . This 

definition is valid only for wall bounded flows since the wall shear stress is 

used to calculate this term. The model is not applied in the wake region of a 

C-Grid for an airfoil.  

 

The model constants appear as, 

 

 

4.1.3 Abid k-ε turbulence model 

 

Another k-ε turbulence model is implemented to eliminate +y  term in the 
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turbulence model. Defining a wall distance for the wake side is much more 

applicable than correlating a +y  value. The model is implemented in the 

following form [8]. 

 

 

Defining turbulent viscosity by, 

The production and destruction terms can be given as follows: 

 

 

Due to the boundary condition for ε, D and E terms appear to be zero. 
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Constants and correlations for this model are as, 

 

 

4.1.4 Menter Baseline (BSL) turbulence model 

 

Menter’s works [16] have shown that for turbulent flow calculations 

accomplished by standard k-ω models, the turbulent viscosity values differ in 

a great amount due to the changing values of free stream values of k and ω. 

For k-ε models this dependence removes. 

 

F.R. Menter modified the standard k-ω and k-ε models and correlated them 

in a single formulation by a blending function where the k-ω model is 

activated near the solid wall surfaces while k-ε is activated for the free shear 

and free stream regions. 

 

The formulation appears with a blending function of F1 as,  
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The last term for the ω equation is the cross diffusion term which is 

frequently neglected by the modelers since its effect is not so significant. It is 

provided here in order to complete the transfer from k-ω to k-ε model. 

 

Definition of turbulent viscosity is the same as Wilcox k-ω model, 

 

and production and destruction terms appear as, 

 

Definitions of constants have to be modified since different turbulence 

models are applied for different regions in Menter BSL model. The 

manipulation of these constants are given in [11] with other zonal two 

equation turbulence models of Menter. 

 

Here the blending function of F1 plays an important role for the definition of 

model constants. For this constant, the following pattern is used, 
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2Ω⋅= TkP µ , ωρβ ⋅⋅⋅′= kDk ,  

2Ω⋅⋅= ρζωP , 2ωρβω ⋅⋅=D   
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While 1φ  and 2φ  in the above equation represents k-ω and k-ε models, 

respectively. Then for standard k-ω model, 

 

 

whereas for standard k-ε model, 

 

 

At this point, the reader should be careful about the definitions of σ ’s. At the 

blending stage by using Equation ( 4.19 ), the values of σ  given by 

Equations ( 4.20 ) and ( 4.21 ) should be used whereas, reciprocals of this 

blended values should be implemented to model equations ( 4.16 ). 

 

In order to demonstrate this, assume that the value of F1 is calculated as 

0.6. Then for that value of F1, β  is calculated as,  
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07812.00828.0)6.00.1(075.06.0)0.1( 2111 =⋅−+⋅=⋅−+⋅= βββ FF  

 

The other constants could be calculated in a similar manner.  

 

 

Calculation of blending function F1 appears to be a little challenging; 

however modification from the Wilcox k-ω model to Menter BSL model 

simply includes implementing the blending function definition to model 

constants. Once F1 is defined, enforcing this term to zero or one, transforms 

model directly to k-ε or k-ω models. 

 

 

4.2 Numerical Framework 

 

Computation based operations for physical problems are quite challenging 

since the partial differential equations of type hyperbolic, elliptic and 
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parabolic types to be discretized spatially and temporarily. It is expected to 

get more accurate results as the computational grid describing physical 

domain gets finer but numerical problems occur with the difficulty of 

precision and memory levels. For this reason an attentive numerical 

framework must be accomplished. 

 

Numerical framework includes; a non-dimensionalization study that turns the 

variables into variables with normalized values, a generalized coordinate 

transformation which makes it possible to evaluate derivatives with respect 

to the physical space coordinate axes, description of a numerical scheme to 

solve the governing partial differential equations iteratively, a discretization 

method to interpret the matrix formation for the solution bands, 

implementation of boundary and initial conditions and, at last, a limitation 

section that appears as the most tricky part of the model implementations in. 

 

4.2.1 Non-Dimensionalization 

 

In the field of computational engineering dealing with thermo fluid sciences, 

problems have to be classified properly in order to implement a solution 

technique. Classifications such as incompressible, compressible, turbulent, 

laminar etc. flow require a common property which shows its character 

properly. There are certain dimensionless numbers that represent the flow 

field and enable one to define the problem type some of which are Reynolds 

Number (Re) and Mach Number (M) that enable one to evaluate the flow 

characteristics. Due to these facts, in CFD applications the derivations of the 

equations start with a non-dimensionalization. The non-dimensionalization 

decrease the numerical errors since the variables are generally normalized 

by their corresponding free stream values. The non-dimensionalized 
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variables are given in [8]. These non-dimensionalized variables can be given 

as, 

 

k-ω turbulence models that are investigated in this study, namely, Wilcox k-

ω and Menter BSL Models, posses same kind of k equation description. The 

results of the following non-dimensionalization work are given in [8]. The 

terms given in tilde (~), are the dimensional values while the others 

represent the non-dimensional forms given in Equation ( 4.24 ). The non-

dimensionalization for the models and constants are represented in 

Appendix A. 

 

The non-dimensionalized k equation for models of Wilcox k-ω and Menter 

BSL Models, appears as, 

 

 

k-ω turbulence models mentioned in the previous section differ only in ω 

equation. The difference occurs because of the Cross Diffusion term in the 

Menter BSL Model.  
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For Wilcox k-ω turbulence model, non-dimensionalized ω equation appears 

as,  

 

For Menter BSL turbulence model with an addition of the cross diffusion 

term, this equation becomes, 

 

 

Similar work could be applied to k-ε turbulence models. The results of non-

dimensionalizations are given directly without presenting the intermediate 

steps in Appendix A. 

 

For Chien k-ε turbulence model and Abid k-ε turbulence model, the k 

equation becomes; 
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The term D given by Equations ( 4.9 ) and ( 4.13 ) for Chien k-ε turbulence 

model and Abid k-ε turbulence model, becomes 

20.2
y
kD ⋅⋅= µ , 0.0=D  

 

The non-dimensional ε equation of appears as; 

 

 

With ‘E’ terms of are given as follows 
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for Chien k-ε and Abid k-ε models, respectively. 

 

As described before, there are auxiliary parameters either used in the 

turbulence model equations or used as an output. Computation of these 

parameters is being done once in each iteration step. Non-

dimensionalization regarding the variables used is presented in the 

Appendix A. 
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4.2.2 Transformation to Generalized Coordinate System 

 

Finite difference applications require the representation of space derivatives 

by Taylor series expansion in terms of the values in the neighboring nodes. 

However these spatial derivatives are with respect to the independent 

variables of space coordinates x and y. The solution line directions are not 

always perpendicular or parallel to these coordinates. As a result, a 

coordinate transformation is required. 

 

The following relations are used to transform the derivatives of time and 

space. 

 

The relation between metrics of the transformation appears to be [9] 

 

The transformation of equations into generalized coordinates is given in 

Appendix B. The results of transformation are presented here: 
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Main Solution Equation 

 

k- ω Turbulence Models 
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for Menter BSL formulation 
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k- ε Turbulence Models 

 

4.2.3 Numerical Scheme 

 

The numerical computations of compressible Navier-Stokes equations are 

improved with the introduction of many finite difference schemes among 
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for Abid k-ε formulation 
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which the most successful ones appeared to be ADI and Approximate 

Factorization. The equations of turbulence models are similar to the Navier-

Stokes equations in terms of the nature of variables such as convection, 

diffusion, production and destruction with their representation of derivatives. 

Since these equations have similar representations, the numerical scheme 

and solution procedures that are used for Navier-Stokes calculations could 

also be used for turbulence model equations as suggested by Beam and  

Warming [12]. 

 

In the two-dimensional turbulence models, the main solution equations could 

be represented as follows, including second derivatives of diffusion terms K 

and H; 

 

 

The time differencing formula appears as; 
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The constants Ф in the time differencing formula ( 4.36 ), appears as control 

parameters of the numerical scheme. The degree of error and the implicit / 

explicit behavior of the scheme is controlled by these constants. 

 

Table 4.1 Partial List of Schemes [3] 

θ Ф Scheme Degree of Error 
0 0 Euler, explicit O(∆t2) 
0 -0.5 Leapfrog, implicit O(∆t3) 
0.5 0 Trapezoidal, implicit O(∆t3) 
1 0 Euler, implicit O(∆t2) 
1 0.5 3 point backward, implicit O(∆t3) 

 

Before expanding the main solution equation ( 4.35 ) the following 

representations for non-dimensional variables can be introduced to simplify 

the notation. 
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Term 1 in the above equation can be expanded as 

while term 2 can be given as 

If Equations ( 4.38 ) and ( 4.39 ) are added to Equation ( 4.36 ), the following 

form can be obtained. 

 

 

Variables described in the nth time level are known and the values at the 

time level n+1 are desired. As described in Equation ( 4.40 ) nQ∆  is to be 

found in order to find (n+1)th value of Q, which is given by Equation ( 4.37 ).  

 

The variables that are represented with a change (∆ -delta) operator in front 

of them are dependent on the changes in Q. These change variables are 

formed as; 
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The term representing the derivative of F with respect to Q is known as the 

Jacobian term. All of these change terms could be found by using this 

representation as: 
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After derivations of these Jacobian terms, Equation ( 4.40 ) becomes; 

 

 

( )

( )

( ) ( ) 1

2

2

2

2

11

1

−∗∗∗ ∆⋅
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

∂
∂

++−
∂
∂

⋅
+
∆

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆⋅+∆⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−+−
∂
∂

+

∆⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−+−
∂
∂

⋅
+
∆⋅

=∆

nnnnnn

nnnnn

nnn

n

QMKGHF

QCQSSVB

QRRUA
Q

φ
φ

ηξφ
τ

ηη

ξξ

φ
τθ

η

ξ

 

 

( 4.41 ) 

 



 44

If Jacobian terms are separated and collected in left hand side of the 

equation the following equation is obtained. The “•” operator in this 

expression has a function of distribution nQ∆  term into the spatial 

derivatives. 
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The above equation could be approximately factored by neglecting the cross 

derivatives as 

 

By this factorization, the equation could be solved in two steps. The main 

difference between approximate factorization and ADI could be explained 

such that the former one solves an equation in two steps where the latter 

solves an equation twice in alternating directions. 
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Jacobian calculations for k-ω models of Wilcox and Menter and k-ε models 

are given in Appendix C. The resultant form of iterative schemes with 

corresponding matrices is given in the next three pages as a compact set of 

equations. 
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4.2.4 Spatial Discretization 

 

The effort presented up to this point is the steps of numerical framework to 

have the solution equations ready for the spatial discretization. As described 

before it is necessary to discretize the derivatives of governing equations 

need to be discretized with respect to solution points. The discretization of 

equations with respect to the solution nodes of the computational domain is 

presented in this section. At first, it would be better to give the domain 

representation. 

 

 

Figure 4.1 Domain representation for a solution node 

 

Primary solution point is the node having index of (j,k). Neighboring nodes 

could be listed as, (j+1,k), (j-1,k), (j,k+1) and (j,k-1) which are used to 

evaluate derivative terms. The other nodes given in Figure 4.2 but not listed 

here are the secondary neighboring nodes that are used in computation of 

second derivatives which are generally appearing in the boundary conditions 

or cross derivative terms of approximate factorization. 
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There are certain aspects of discretization that must be carefully 

investigated such as the discretization of convection terms. The convection 

terms in the model equations should be evaluated using the “upwind” 

schemes. Another important concept is the discretization of the diffusion 

terms. These terms occupy second derivatives of variables and inclusion of 

secondary neighboring grid points is necessary for an ordinary 

discretization. Certain solution methods could be applied to avoid these 

problems. 

 

Discretization of the convection terms is carried out by adding a second 

order dissipation into central differencing. This is equivalent to a first order 

upwind scheme is shown in [14]. 

 

Plus-minus flux splitting method of Steger-Warming is used for the 

representation of the dissipative property of upwind schemes.  

 

 

The vectors of convective terms could be represented as: 

 

 

Defining the backward and forward difference operators as such, 
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Steger-Warming plus-minus flux splitting vector represented as, 

Q
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2222  

 

By rewriting the flux derivatives using the first order differencing operators of 

backward and forward differencing the following derivation for convective 

term discretization is achieved. 
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It can be seen that the upwind scheme could be written in the form of central 

difference term, ( F⋅ξδ ), with an added dissipation term ( ( ) F⋅∇∆⋅
∆⋅

− ξξξ2
1 ) 

into it. The detailed work for this approach is given in [14]. It is advised that 

this kind of upwind discretization should be applied for subsonic regimes. 

For supersonic regimes, standard upwind schemes of Steger-Warming, Roe 

or van Leer could be applied. 
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When it comes for the diffusion discretization, a standard application would 

result in, 
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Figure 4.2 Standard diffusion discretization nodes 

 

where ξδ  represents the first derivative with respect to ξ , that is ξ∂
∂ . It can 

easily be seen that for a standard application of the second derivative, the 

solution points included in the derivative term, extends up to two node 

neighborhood of the primary solution node. 

 

If imaginary solution nodes between the primary nodes say, i+1/2 and i-1/2, 

are employed, the diffusion discretization can be represented so, 
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Figure 4.3 Diffusion discretization with imaginary solution nodes 

 

The solution nodes then lay within the given primary solution node and its 

primary neighbors as shown in Figure 4.2. 

 

The details of the discretization are presented in Appendix D in full detail. 

The discretized equations can be given as, 
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The vectors given in the previous set of equations are fully identified in 

Appendix D. For a certain solution band, the discretized equations form a 

block tri-diagonal matrix. The solution of such a system could be obtained by 

a tri-diagonal matrix solver. [15] 

 

4.2.5 Boundary and Initial Conditions 

 

During the computation of the discretized equations, certain conditions for 

the boundaries that are not included in the tri-diagonal matrix should be 

given explicitly at each iteration step. These boundary nodes are included in 

the solution as the boundary conditions. For the problems investigated by 

using turbulence models, there are certain correlations for different types of 

boundary types. The representations of physical domains with the 

boundaries are presented in Figures 4.4 to 4.7. 

 

Boundary conditions are be tabulated as in Table 4.2 
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Table 4.2 List of Boundary Condition types 

 Boundary Condition Types 
S1 Wall type BC 
S2 Wake type BC (upper surface) 
S3 Wake type BC (lower surface) 
S4 Outlet type BC (lower side) 
S5 Outlet type BC (upper side) 
S6 Symmetry type BC 
I1 Initial Condition 

 

 

Figure 4.4 Boundary condition types for flat plate 

 

 

Figure 4.5 Boundary condition types for free shear 

 



 56

 

Figure 4.6 Boundary condition types for cylinder 

 

 

Figure 4.7 Boundary condition types for airfoil 

 

 

The boundary condition types could be summarized as above. The labels 

starting with the character S denotes the boundary conditions whereas the 

ones starting with I is refers to initial conditions. Boundary conditions are 

updated at each step of the computation while the initial conditions of are 

introduced at the first iteration. 
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4.2.5.1 Wall boundary condition, S1 

 

Wall boundary conditions for a Navier-Stokes solver would be easier to 

manipulate since no slip boundary conditions are applied. Since turbulent 

kinetic energy is defined as Equation ( 2.4 ), if no velocity appears on the 

wall surface, the fluctuations of its components will also be null. Then the 

wall boundary condition for k is simply zero. However it is not so easy to 

implement the boundary condition for ω on wall. There are many studies on 

different types of boundary conditions and the one, which is appeared to be 

more extensively used, is applied given in [8]. With these two boundary 

conditions for the turbulent variables, the resulting boundary condition for 

turbulent viscosity becomes, 

 

 

Menter’s studies have shown that a boundary condition related to the 

magnitude of vorticity at the wall with multiplication of a constant gives 

results similar to the boundary condition given by the above equation. 
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This application makes the model more robust since it is not necessary to 

calculate the wall distance for the first grid point. 

 

For k-ω models the wall boundary conditions are generally given in a form 

similar to the above equations. However, the implementation of Boundary 

Condition for ε is different for different k-ε turbulence models. Two k-ε 

models are investigated and the difference of these models appear at the 

very early stage of the model representations, in Equations ( 4.9 ) and       

( 4.14 ). On the other hand the boundary condition for k, as expected, 

remains same as the boundary conditions in k-ω models since the definition 

of k is related to the velocity fluctuations. 

 

 

The boundary condition for Abid k-ε model is taken from reference [8] 

 

4.2.5.2 Wake boundary conditions, S2, S3 

 

Actually, a wake phenomenon is a free shear problem. However, due to the 
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condition which serves as a continuity region from upper side of the wake to 

lower side. The application of this boundary condition for a variable, say 

turbulent kinetic energy, appears as, 

 

 

Figure 4.8 Representation of wake boundary 

 

The implementation of wake boundary condition for ω and ε appeared to be 

insufficient to transport the strength of these parameters from the wall 

boundary to free shear regions as in the case of cylinder and airfoil 

problems. Some remedies for this problem is presented in Section 4.2.6. 

 

4.2.5.3 Outlet boundary conditions, S4, S5 

 

There are certain boundary condition types for outlet conditions. The most 

extensive used one for the turbulence models is the extrapolation boundary 

condition. This boundary condition stands for the situation where the outer 

boundaries of the domain are sufficiently far away that every variable for the 

boundary node is just the same as the variable at the node adjacent to the 

boundary. 
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Figure 4.9 Representation of outlet boundary 

 

4.2.5.4 Symmetry boundary condition, S6 

 

Since the flow approaches the flat plate with a zero angle of attack, the flow 

appears to be symmetric with respect to the first horizontal grid line. The 

symmetry condition can be implemented by setting the derivatives with 

respect to normal direction to zero. Hence, 

 

 

Figure 4.10 Symmetry boundary representation 

 

 

4.2.5.5 Initial Condition, I1 

 

The initial conditions for the turbulence model variables are used as, 
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The flow initialization could be applied in a different way to speed up the 

development of the boundary layer. However, this application of initial 

conditions was found to be unnecessary since initialization with free stream 

conditions is enough to develop a boundary layer. The artificial boundary 

layer correlations can be given as, 

 

 

For k-ω turbulence models the above correlations are applied where as for 

k-ε models, 

 

 

The correlations above are referenced from [8]. 
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4.2.6 Limitations and Improvements 

 

Limitations during the computation of turbulence models are employed to 

keep turbulence variables as poisitive and to contribute the progress of the 

computation steps. These limitations should not affect the general structure 

of the solution and should be applied in an accurate amount. Otherwise, 

limitations would yield incorrect solutions. 

 

The limitations applied in this study could be summarized as follows, 

1)  Production Limitation: For the k-ω models, the production term of k 

variable, Pk, should not be greater than twenty times the destruction of the 

same variable, Dk. [11] 

 

 

2)  Destruction Positivity: The destruction terms are included into the left 

side (Jacobian term) only if its contribution is positive. [8] 
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3)  Turbulence Parameters Positivity:  k, ω, ε and Tµ  values are not 

allowed to have negative values. Several applications for this limitation are 

tested. These applications could be listed as follows, 

 

a)  If any computed value appears to be negative, the computed values 

are assigned to their corresponding values at the last time step.  

 

When this approach is used, the replaced variables tend to get negative 

values continuously  

 

b)  The negative values can be replaced by the corresponding linearly 

interpolated value from the neighboring grid points 

 

 

The results of this application appeared to be significant and this strategy is 

used for limitation. 
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c)  Assigning free stream values to the nodes having negative values 

appears to be a third approach for having positive turbulent variables.  

 

Among the three approaches the latter one found to be the worst for 

negative values problem.. This limitation appeared to be insufficient and for 

some cases, it directs the computation to incorrect solutions.  

 

4)  Turbulent Viscosity Limitation: The non-dimensional turbulent 

viscosity is not allowed to take values larger than 100.000 [8].  

 

5)  µf  Limitation: For k-ε models, the greatest value for µf  is one [10], 

that is 

 

6)  Cross Diffusion Improvement:  k-ω turbulence model equations are 

derived from k-ε turbulence model by primarily using a transformation of 

ωε µ ⋅⋅= kC . This transformation brings a cross diffusion term into the ω 

equation. This term is not so significant for the near wall regions whereas it 

is appears significant for the wake, free shear and mixing flows. The effect of 

this term appears as an increase in the production term in the ω equation. 
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Model equation of ω sometimes referred as deficient without this cross 

diffusion term, however some scientists refer the cross term as insignificant 

term. In this study this term is included into the model just enable k-ω model 

to be more efficient. 
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There are certain methods to implement the cross diffusion term. These are 

as follows 

 

a)  This term could be included into the equations directly. Current 

application includes the insertion of the cross diffusion term into the 

destruction term of ω as, 
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After non-dimensionalization, 

 

 

b)  Cross diffusion term is applied to increase the production of ω term. 

Increasing the production term of ω means that the turbulent viscosity will 

decrease. Decreasing the k production is identical to increasing the 

destruction of k. This method accomplishes the implementation of cross 

diffusion effect by decreasing the k production term. [6].  

 

 

7)  ω and ε, Wake Transportation: The above limitations are sufficient for 

the computations including a wall boundary. However, it is observed that for 

free shear applications such as the wake region of the airfoil problem, ω 

does not rise sufficiently so result in an increase in the turbulent viscosity. 
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This problem appears as errors due to negative pressure. Reason to this 

problem defined as the increase in ω parameter at the wall and deficiency in 

convecting this value towards the free shear regions. The aspect ratio of the 

cells at the very beginning of the wake section is not suitable for the solution 

of a free shear problem appearing in that region. This problem occurs due to 

the structure of the C-Grid. 

 

In viscous flow solutions, boundary layer has a great importance in the 

solution. For turbulent flows +y  at the first grid point from the wall boundary 

should not have a value greater than 1. That value is obtained by giving a 

first grid point distance of nearly 6105 −⋅  units. This wall distance continues in 

the chord wise direction. At the trailing edge, the aspect ratio appears to be 

in the order of 100 (Figure 4.11) whereas near to the outlet boundary, the 

cell aspect ratios reach up to a million (Figure 4.12). This kind of grid 

distribution is not suitable for a solution of free shear flow. 

 

 

 

Figure 4.11 Trailing edge of the airfoil 
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Figure 4.12 Outlet boundary in the C-Grid 

Certain ideas to increase the production of ω appeared during this study. 

One of them is the derivation of a function which evaluates the cell aspect 

ratio and increases the production of ω. 
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The AR term represents the aspect ratio of the cell. a and b shown in Figure 

4.13. 
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Figure 4.13 Cell dimensions 

 

Similar problems are encountered with for the k-ε models. 

 

During the computations of test cases, an easier method to overcome this 

problem is obtained. In this method, ω and ε values at the wake boundaries 

are simply being multiplied by a constant that can be adjusted by the user. 

This constant could vary between 5 to 100. This improvement is an artificial 

one with no logical contribution to the solution, whereas it provides a quick 

and easy solution for the wake transformation problem. However after this 

implementation, the C-Grid is converted to O-Grid which eliminates the 

aspect ratio problem so that no artificial increase in ω and ε is required. The 

grid properties is presented in Figures 4.14, 4.15 and 4.16. 

 

 

Figure 4.14 O-Grid for airfoil 
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Figure 4.15 Enlarged view of O-Grid 

 

Figure 4.16 O-Grid wake of an airfoil 
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CHAPTER 5  

RESULTS AND DISCUSSIONS 

The implemented turbulence models are verified by using the flow over a flat 

plate and results are compared with the available experimental data. Later 

on, the computational capability of the code is tested by using the free shear 

flow, flow over a cylinder problems without comparing with the experimental 

data and numerical results. 

 

The greatest motivation for the development of this code is to handle the 

airfoil test cases. Extensive validation of turbulence models with 

experimental data is presented in this section. A three-dimensional 

application for the flow over a ONERA M6 wing is also considered. 

 

5.1 Flat Plate 

 

Turbulence models of Baldwin-Lomax, Wilcox k-ω, Menter BSL and Chien k-

ε are tested for this case. The experimental data obtained from [10] although 

original work for data collection was carried out by Coles [17]. The test case 

a Mach number of 0.2and a free stream Reynolds Number of 2.28x107. As 

discussed in the Section 4.2.5 angle of attack is taken as zero degrees. The 

static pressure and temperature are taken as 1 atm. and 21.3 oC 

respectively. 
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A structured 150x80 grid with wall boundaries starting from 30th node is used 

in computations. First grid point distance of 10-6 and same distance from the 

beginning of the wall boundary is used. The structured grid for this test case 

is given in Figure 5.1. 

 

 

Figure 5.1 Structured, 150x80 grid for the flat plate 

 

Residuals of variables are calculated by using; 

nnode

QQ
RES

nnoden

n

nn∑
=

=

+ −
= 1

1

 

where nnode stands for the number of nodes appear in the domain. Wilcox 

k-ω and Menter BSL turbulence models appeared to have the fastest 

convergence properties among the others which can be seen from Figures 

5.2, 5.3 and 5.4. It is assumed that the convergence is achieved when the 

residual drops by 3 orders. Convergence is obtained for Wilcox k-ω and 

Menter BSL turbulence models after 6000 iterations while 6500 iterations 
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are required for Baldwin-Lomax turbulence model. The longest convergence 

period is obtained from Chien k-ε that has a value of 9500 iterations. 

 

 

Figure 5.2 Residual Drops versus iteration steps. 

 

 

Figure 5.3 Residual Drops of k versus Iteration steps 

 

 

Figure 5.4 Residual Drops of ε & ω versus Iteration steps 
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Experimental data obtained from [10] represents the turbulent boundary 

layer characteristics by figuring out +k , +u  versus +y  graphics. Derivations 

of +k , +u  and +y  parameters are given in Appendix A, Auxiliary Definitions 

section.  

 

For the +u  versus +y  graph, typical velocity profile for a turbulent boundary 

layer is compared with the computed values by plotting in Figure 5.5. The 

turbulent boundary layer profiles posses a viscous sub layer of profile that 

obeys to the correlation given in Equation 5.1. This viscous sub-layer is 

considered to be valid up to +y  values of 10. 

 

Log layer for which a correlation derived by von Karman is as follows: 

 

 

++ = yu  ( 5.1 ) 

( ) Cyu += ++ ln1
κ

 

5≅C  for smooth surfaces 

41.0=κ  Karman’s constant 

( 5.2 ) 
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Figure 5.5 Turbulent velocity profile results 
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Figure 5.6 Dimensionless turbulent kinetic energy versus +y  

 

For the velocity profiles in turbulent boundary layer, the results of Wilcox k-ω 

and Menter BSL models appeared to be nearly the same. Since the flat plate 

problem is simply a wall bounded problem, it is expected to get the k-ω 

characteristics of Menter BSL model to be dominant. The results of these 

two models appeared to be the best among the other models that are plotted 

in Figure 5.5. In Figure 5.6, Chien k-ε achieved the closest prediction for 

determining the peak point of the dimensionless turbulent kinetic energy. 

However, the free stream value of +k  predicted by the Wilcox k-ω and 

Menter BSL models appear to be the closest ones to the theoretical values. 

Among all of the turbulence models, the experimental bounds for +k  values 

are almost never exceeded. 
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The transition location from laminar to turbulent region is the primary criteria 

for the coefficient of friction. In the application of the turbulence models, 

transition location is not introduced explicitly. In fact transition location is 

predicted by the solver. The calculation of coefficient of friction, Cf  is given 

in Appendix A.  

 

 

Figure 5.7 Coefficient of Friction versus local Reynolds Number 

 

The experimental data is avaliable in reference [18] and it is collected from 

the works of Wieselsberger, Gebers, Froude, Kempf, Schoenherr. 

In Figure 5.7, friction coefficient is compared with theoretical and analytical 

solutions related to laminar and turbulent flows. The transition location is 

best captured by Chien k-ε, where as the transition style is not similar to the 

experimental transition regime. On the other hand, k-ω models determine 
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transition in a similar manner with experimental data but the location of 

transition could not be determined accurately. Experience on computation of 

turbulent models showed that the transition location could be tuned by 

adjusting the production term of turbulent kinetic energy. However this non-

physical method is not applied in this study. 

 

Two different locations of the domain are chosen for the comparison of the 

velocity profiles. One of the locations is close to the leading edge where 

turbulent viscosity assumes its freestream values and other one is the fully 

turbulent region. 

 

    

          (a)             (b) 

Figure 5.8  (a) Laminar and (b) Turbulent velocity profiles 

 

5.2 Free Shear 

 

The investigation of this test case is performed in order to see whether the 

wake resolution could be obtained by grid refinement in the solution domain. 

The grid dimensions are not so logically decided since this test case is a 

numerical experiment. A 1001x501 grid is used with the domain dimensions 
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of 5 units by 2.5 units. The grid sizes are equal in both directions of x and y 

with values of 1e-3.  

 

 

Figure 5.9 Turbulent viscosity contours 

 

The free stream Mach numbers on the upper and lower sides are 0.24 and 

0.2, respectively. These values correspond to pressure and suction sides of 

an airfoil at the trailing edge. The turbulent viscosity contours is shown from 

Figure 5.9. 

 

5.3 Cylinder 

 

C-Grid version of the original code is adapted to an O-Grid by changing 

some of the boundary conditions. The details of boundary conditions are 

given in Section 4.2.5.  

 

Grid has 300 nodes around the cylinder and 40 nodes in normal direction. 

First grid distance of 5x10-6 units is used. 
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The first trial of this application is evaluated in flow having a Mach number 

0.5 and a Reynolds number of 5x105 over a cylinder. The wake resolution for 

the O-Grid is accomplished which was not possible for the C-Grid. 

 

Wake cut for the domain is remained at the right side of the cylinder that no 

important turbulent flow development occurs. The results showed that for a 

wake grid formation of acceptable aspect ratios for the grid cells, the 

computations do not need any limitations regarding the increase in ω values 

in the wake that is explained in Section 4.2.6. 

 

The results are not compared with the available experimental data since the 

aim of this test case is to adapt the code to handle O-Grids and to 

investigate wake properties of the O-Grid.  

 

Turbulent viscosity values increase in the regions of vortical flows as shown 

in Figure 5.10. 

 

Figure 5.10 Turbulent viscosity contours 
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5.4 Airfoil 

 

Extensive literature survey to obtain experimental data for this application 

was done and significant turbulent flow data to compare the accuracy of 

turbulence models were obtained. 

 

Three distinct airfoil profiles of NACA0012, RAE2822 and NACA63-2-415 

are tested with different flow conditions. A grid dependence test regarding 

the changes in the pressure coefficient distribution with refinement of grids in 

the boundary layer direction is presented. Visualization of laminar and 

turbulent velocity profiles with momentum thickness of the boundary layer is 

compared with the available data. Contours of turbulent kinetic energy, 

turbulent viscosity, production and destruction terms for k term are 

presented in Appendix E. Lift, drag and moment coefficients are compared 

with the experimental results for the NACA63-2-415 test case. 

 

The results for NACA0012 and RAE2822 have taken from Maksymiuk and 

Pulliam’s work [19]. The data for lift, drag, moment coefficients of NACA63-

2-415 obtained from Abbott and Doenhoff [20]. 
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5.4.1 NACA0012 

 

First test case for the flow over airfoil posses the properties of 0.7 Mach 

number with 1.86 degrees of Angle of attach and a Reynolds number of 

9.0x106 

 

 

Figure 5.11 PC  distribution for different turbulence models 

 

Computations with all of the turbulence models gave approximately the 

same results as shown in Figure 5.11. The jump in the leading edge suction 

side is investigated in detail. Grids used in computation have dimensions of 

219x65 and initial grid node distance from the wall is 5x10-6 units. 
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Figure 5.12 NACA0012, C-Grid overview 

 

 

Figure 5.13 NACA0012, C-Grid closer view 
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The raise in coefficient of pressure could be a result of the decrease in the 

velocity in that region. The decrease in the velocity is because of excess 

total viscosity. Viscosity damps the velocity field so that the resultant velocity 

decreases. This kind of damping could be removed only if correct transition 

locations from laminar to turbulent can be given. 

 

Adjustment of initial grid spacing from the wall has an important effect on the 

turbulent viscosity contours. The finer grid spacing results in a larger 

turbulent boundary layer and early transition. Several grids with different 

initial grid spacing are tried and the results are shown in Figure 5.14. As the 

grid is refined near the solid boundary, turbulent viscosity production is 

increased. This production of viscosity enables the accurate determination of 

the pressure distribution in turbulent regions at the trailing edge. However, 

the prediction of pressure distribution at the suction surface of the leading 

edge, where laminar boundary layer is expected, appears to be poor. The 

computation of coarsened grid near the solid boundary will result in a better 

pressure coefficient prediction of leading edge and a worse one in trailing 

edge. The +y  values are given in Figure 5.15, which shows that primary rule 

for turbulence model calculations that the first grid point should have a +y  

value of nearly 1, is violated in the coarsened grid.  
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Figure 5.14 Grid dependence results of PC  distribution 

 

 

Figure 5.15 +y  values for the first grid point from the wall 
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The results for lC  and dC  compared to the experimental values are 

tabulated against the experimental values in Table 5.1. 

 

Table 5.1 lC , dC  results for different turbulence models 

 
lC  dC  

Experimental 0.254 0.0083 
Baldwin-Lomax 0.303  0.0081 
Chien k-eps 0.309 0.0052 
Wilcox k-omega 0.305 0.0077 
Wilcox k-omega 
(deln=1e-5) 

0.309 0.0073 

Menter BSL 0.300 0.0074 

 

The best prediction of lift coefficient is obtained by Menter BSL. However the 

other results for lift coefficient are also in a good agreement with the 

experimental data. Drag coefficient prediction is obtained most accurately by 

Baldwin-Lomax model.  

 

Second test case for the flow over the NACA0012 airfoil has 0.55 Mach 

number with 9.86 degrees of Angle of attach and a Reynolds number of 

9.0x106 

 

Figure 5.16 represents the comparison of pressure coefficient computations 

in which the best solution is obtained from k-ω based models of Menter and 

Wilcox where Chien k-ε is failed to predict the pressure coefficients 

accurately.  

 

For the load computations, in Table 5.2, Menter BSL model takes the lead to 

detect the coefficients of lift and drag most accurately. 
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Table 5.2 lC , dC  results for different turbulence models 

 
lC  dC  

Experimental 0.988 0.0362 
Baldwin-Lomax 1.0427 0.0613 
Chien k-eps 1.047 0.0561 
Wilcox k-omega 1.0459 0.0616 
Menter BSL 0.961 0.0580 

 

 

Figure 5.16 PC  distribution for different turbulence models 

 

5.4.2 RAE2822 

 

Transonic airfoil case of RAE2822 is carried out to compare the pressure 

coefficients. Velocity distributions in laminar and turbulent regions are 

another comparison data for turbulence models.  
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RAE2822 test case is carried out with the properties of 0.725 Mach number 

with 2.92 degrees of Angle of attach and a Reynolds number of 9.0x106 

 

Table 5.3 lC , dC  results for different turbulence models 

 
lC  dC  

Experimental 0.747 0.0123 
Baldwin-Lomax 0.822 0.0163 
Chien k-eps 0.849 0.0153 
Wilcox k-omega 0.841 0.0168 
Menter BSL 0.814 0.0155 
Abid k-eps 0.790 0.0151 

 

 

 

Figure 5.17 PC  distribution for different turbulence models 
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From Figure 5.17, the shock location is accurately determined by Wilcox k-ω 

since the peak point is captured and a steep decrease in pressure is 

detected in a good agreement with the experimental data. The over 

estimation of pressure coefficient in the leading edge regions of suction side 

is due to the excess increase in the turbulent viscosity. This problem could 

be solved by inputting the transition location explicitly or having a 

mechanism of obtaining transition location accurately. 

 

The laminar and turbulent velocity profiles are compared with experimental 

data in Figures 5.18 and 5.19. For turbulent velocity profile Abid k-ε is the 

turbulence model that has good results whereas for laminar one, Baldwin-

Lomax appeared to be successful. 

 

 

Figure 5.18 Laminar velocity profile at x/c=0.319 
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Figure 5.19 Turbulent velocity profile at x/c=0.95 

 

The best friction coefficient detection is achieved by Chien k-ε turbulence 

model before the shock region while the worst prediction is obtained by the 

Baldwin-Lomax model. The sudden drop of friction coefficient due to shock 

presence is seen in Figure 5.20 near the x/c location of 0.5 on the suction 

side. 
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Figure 5.20 Friction Coefficient 

 

Outputs of turbulent viscosity and dimensionless turbulent kinetic energy are 

observed in Figures 5.21 and 5.22. Wilcox k-ω appeared to produce highest 

turbulent viscosity. The other models except Baldwin-Lomax behave in a 

similar manner near to the peak points of turbulent viscosity values which 

are obtained at +y  having a value of 2x103.  

 

An interesting discussion could be the difference between the turbulent 

viscosity values of Menter BSL and Wilcox k-ω models. Actually, they both 

involve the same equations with the same constants and correlations near 

the boundary. But due to the transition from k-ω to standard k-ε model, the 

peak values of the turbulent viscosities differ from non-dimensional value of 

1300 to 1850. Figure 5.25 represents the transition of the two models in 

Menter BSL. It is important to note that transition occurs close to a +y  value 

where highest turbulent viscosity is achieved. 
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Baldwin-Lomax algebraic turbulence model produces negative turbulent 

viscosity values that have no physical meaning. 

 

 

Figure 5.21 Turbulent Viscosity distribution on x/c=0.9 

 

For the non-dimensional turbulent kinetic energy values, the peak points are 

resolved near regions of highest turbulent viscosity where +y  values are 

close to 1x103. Chien k-ε, Abid k-ε, Wilcox k-ω and Menter BSL models 

could be given in increasing order of highest +k values. 
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Figure 5.22 +k  distribution on x/c=0.9 

 

 

Figure 5.23 Turbulent Velocity Profiles on x/c=0.9 
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Turbulent velocity profiles given in Figure 5.23, presents the defect of the 

log-law layer due to the adverse pressure gradient effects occurring in the 

suction side of trailing edge. Abid k-ε shows a good agreement with the 

theoretical descriptions of viscous sub-layer and log-law region. 

 

 

Figure 5.24 µf  values for Chien and Abid k-ε on x/c=0.9 

 

Due to the different boundary conditions, µf  term appears to be in different 

characteristics near the wall region in Figure 5.24. Since ε boundary 

condition of Chien is zero, it would cause a high increase in turbulent 

viscosity, then logarithmic behavior could be achieved by manipulating 

turbulent viscosity with µf  parameter. 

µ
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Figure 5.25 1F  value transition for Menter BSL on x/c=0.9 

 

Figure 5.25 shows the parameter 1F , which manipulates the transition from 

k-ω to k-ε. The transition occurs at a location where +y  is 2000. At the outer 

regions, parameter 1F  is equal to zero which stands for the standard k-ε 

model where as k-ω model is activated in regions close to the wall. 

Contours of pressure, turbulent viscosity and pressure, destruction terms of 

turbulent kinetic energy for all turbulence models are visualized in the figures 

in Appendix E. 

 

 

 

 

 

1F
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5.4.3 NACA63-2-415 

 

The purpose of this test case is mainly the detection of the location of the 

stall point, prediction of the maximum lC  values and obtaining the lift, drag 

and moment curves. Computations are done for -16 to 20 degrees with 

angle of attack increments of 2 degrees. Flow conditions of Mach number of 

0.3 and Reynolds number 9x106 is used in computations. 

 

M=0.3, Re=9e+6, AoA=-16..20,+2 

 

The lC  values corresponding to different angle of attacks are plotted in 

Figure 5.26. Several computations are done by varying grid spacings in a 

direction normal to solid boundary. 

 

 

Figure 5.26 lC  versus AoA  graph 
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The linear behavior of lC  versus angle of attack is obtained in every 

turbulence model. However, stall points are worth investigating in detail 

since the grid refinement in direction normal to the boundary layer changes 

the prediction success in a significant sense, as shown in Figure 5.27. In 

Figure 5.28, the stall point is detected by Wilcox k-ω model (with initial grid 

distance of approximately 2x10-6 which corresponds to +y  values not more 

than 1) more accurately than the other models. In Figure 5.28, for the drag 

prediction refined grid of Wilcox k-ω gives good predictions of lC - dC  data. 

Predictions of mC  appeared to be poor as can be seen from Figure 5.29. 

 

 

Figure 5.27 lC  versus AoA , Stall point detailed 
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Figure 5.28 dC  versus lC  graph 

 

 

Figure 5.29 mC  versus AoA  graph 
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5.5 Wing 

 

5.5.1 ONERA M6 Wing 

 

The flow over ONERA M6 Wing with a Mach number of 0.8395 and angle of 

attack of 3.06 degrees is tested. Reynolds number of 1.172 * 107 is used. C-

O Grid type mesh is used with dimensions of 161 nodes in chordwise, 36 

nodes in spanwise and 50 nodes to the outer boundary is used. First grid 

point is taken as 10-5 by considering the grid refinement test in NACA0012 

case represented in Figure 5.14. A λ  (lambda) shock formation is observed 

along the wing. The contours of pressure and turbulent viscosity are 

visualized in the Figures 5.30, 5.31 and 5.32. 

 

 

Figure 5.30 pC  contours 
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Figure 5.31 pC  contours Left – Lower side, Right – Upper side 

 

 

Figure 5.32 ONERA M6 WING, Turbulent Viscosity Contours 
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Johnson-King and Baldwin-Lomax results are provided from Kaynak, Çete 

and Şener’s work [25]. Figures from Figure 5.33 to Figure 5.37 represent the 

coefficient of pressure distributions around the airfoil on several spanwise 

locations. 

 

 

Figure 5.33 ONERA M6 WING, pC  distribution, y/b=0.44 
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Figure 5.34 ONERA M6 WING, pC  distribution, y/b=0.65 

 

 

 

Figure 5.35 ONERA M6 WING, pC  distribution, y/b=0.80 
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Figure 5.36 ONERA M6 WING, pC  distribution, y/b=0.90 

 

 

Figure 5.37 ONERA M6 WING, pC  distribution, y/b=0.95 
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CHAPTER 6  

CONCLUSION 

In this study, several turbulence models based on k-ω and k-ε are 

implemented into a Navier-Stokes solver. During implementation stages, to 

adopt the significant step is to understand the base solver in detail and 

adapting the turbulence models into it. It was very difficult to implement a 

module that works independent of the solver. On the other hand, the module 

should take some values of flow and grid and deliver turbulent viscosity 

values for solution nodes.  

 

For external flows over airfoils and wings, implementation of k-ω based 

models are appeared to be easier than implementation of k-ε based models. 

As described in Chapter 4, k-ε models have more correlations that are 

included in computations of turbulent viscosity than k-ω models. These 

correlations require the computations of +y , Rek and Ret values, which 

require the information of wall shear stress and distance to wall properties of 

solution nodes. Computations of these properties in absence of any wall 

surface, appears to be meaningless. No such correlations appear in the 

formulation of k-ω models which makes the implementation of these models 

much simpler. However boundary condition implementation for ω is a 

challenging subject on which many studies had been done and due to the 

simplicity in implementing the boundary condition for ε, k-ε models could be 

preferred. 
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Analysis stages involve the interpretation of load values for different flow 

conditions on different airfoils. One should select a proper airfoil profile to 

construct a wing, which would be used for specific purposes. The load 

outputs obtained from computations will be a first indication of design 

decisions that are the predictions of pC  distributions, lC , dC  and mC  values. 

The experience gained from the computations of flow over an airfoil shows 

that for resolving accurate distributions of pressure of coefficient, one should 

avoid a finer grid in the direction normal to the wall boundary, since excess 

turbulent viscosity formation is obtained. Other solution could be 

implementing of transition detection or introducing transition locations as an 

input, explicitly to the solver. Since the present work does not involve the 

transition detection, it is important to recommend a first grid point distance 

from the wall in the orders of 10-5. On the other hand, for calculations of the 

load parameters of lift, drag and moment coefficients, this wall distance 

should be smaller since Figure 5.27 shows better results of predictions in 

smaller +y  values for the first grid point. This value is generally obtained with 

an initial grid distance of 10-6. The +y  value of the first grid point is around 1 

in this case which gives better predictions of load parameters especially in 

the stall conditions. For these computations, a model of blended k-ω and k-ε 

model, Menter BSL model could be recommended.  

 

For 3D applications, only Wilcox k-ω model is investigated. In the presence 

of the results for the outputs mentioned above, the next model to be 

implemented appears as the Menter BSL model. In the recent years, 

Spalart-Almaras one-equation turbulence model of one-equation kind has 

gained success in external aerodynamic applications. The implementation of 

this model could also be another topic for future work.  

 

On the other hand, solving one or two additional partial differential equations 

addition to the Navier-Stokes equations, for a high number of nodes 
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comparing with 2D airfoil grids could sometimes be more costly than solving 

algebraic equations. However, due to capability of solving a domain without 

considering any algebraic correlations involving wall distance or inner and 

outer layers, interpreting partial differential equations appear as a better 

solution in parallel and multi-block computing.  

 

On a Pentium P4, 3.06 GHz. machine, the computation time for the use of k-

ω models in a case of flow passing over NACA0012 airfoil with Mach 

number of 0.7 and angle of attack 1.79 calculated as nearly 600 seconds for 

a C type grid of 139x65 nodes, however this computation time rose up to 

twice itself for k-ε models since lower time step values should be used in 

order to get convergence. It would be appropriate to say that k-ω models 

appear to be more robust than k-ε models.  

 

The results of the current completed project are being used in TAI for 

analysis and validation purposes. Further studies on Wilcox k-ω model will 

be handled in the following developments. Tunings and certain corrections 

will be implemented to have a better turbulence model that accurate 

transition detection and compressibility correction would be applied.  

 

Further studies in wing computations and implementation of turbulence 

models into multi-block and chimera versions of the base solver are the 

main targets for future.  

 



 107

REFERENCES 

 

[1] University of Illinois at Urbana-Champaign, Lecture Slides of 

Computational Astrophysics and Cosmology, 

www.astro.uiuc.edu/classes/archive/astr496/s03_cac/graphics_0207.

pdf, last access on; 08.07.2005  

[2] University of Kentucky, Advanced CFD Group, Lecture Notes, 

www.engr.uky.edu/~acfd/lctr-notes634.pdf, last access on; 

08.07.2005  

[3] Karman, T. von. Some remarks on the statistical theory of turbulence, 

Proc. 5th Int. Congr. Appl. Mech., Cambridge, MA, 347, 1938. 

[4] Hinze, J. O., Turbulence, McGraw-Hill, New York, 1959. 

[5] Chapman, G. T., Tobak, M., Observations, Theoretical Ideas, and 

Modeling of Turbulent Flows-Past, Present and Future, in Theoretical 

Approaches to Turbulence, Dwoyer et al. (eds), Springer-Verlag, New 

York, page  19-49, 1985. 

[6] Wilcox, D.C., Turbulence Modeling for CFD, Second edition, DCW 

Industries, Inc., 1998 

[7] von Karman Institute for Fluid Dynamics, Lecture Series; Introduction 

to the Modeling of Turbulence, March 17-21 1997 

[8] Krist, S.L., Biedron, R.T., Rumsey, C.L. 1998, CFL3D User’s Manual 

(Version 5.0), Turbulence Model Equations, NASA Technical 

Memorandum NASA/TM-1998-208444, 271-306. 



 108

[9] Pulliam, T.H., 1984, Euler and Thin Layer Navier-Stokes Codes: 

ARC2D, ARC3D, Notes for Computational Fluid Dynamics User’s 

Workshop NASA Ames Research Center 1-8. 

[10] Patel, V.C., Rodi, W., Scheuerer G., 1984, Turbulence Models for 

Near-Wall and Low Reynolds Number Flows: A Review, AIAA Journal 

vol. 23, No: 9, pp 1308-1319. 

[11] Menter, F.R., (1993). AIAA-93-2906, Zonal Two Equation k-ω 

Turbulence Models for Aerodynamic Flows, AIAA 24th Fluid Dynamics 

Conference, July 6-9, 1993 / Orlando, Florida. 

[12] Beam, R.M., Warming, R.F, 1978, An Implicit Factored Scheme for 

the Compressible Navier-Stokes Equations, AIAA Journal, Vol. 16, 

No. 4, 1978, page 393-402. 

[13] Spalart, P.R., Allmaras S.R. 1992, A One-Equation Turbulence Model 

for Aerodynamic Flows, AIAA Journal AIAA-92-0439. 

[14] Pulliam, T.H., 1985, Artificial Dissipation Models for the Euler 

Equations, NASA Ames Research Center AIAA-85-0438. 

[15] Hoffman, K.A, Chaing, S.T., Computational Fluid Dynamics, Volume 

1, Engineering Education System, August 2000. 

[16] Menter, F.R., 1993, On the Influence of Freestream Values on 

Predictions with the k-ω Turbulence Model, Eloret Institute. 

[17] Coles, D., 1978., A model for Flow in the Viscous Sublayer, 

Proceedings of the Workshop on Coherent Structure of Turbulent 

Boundary Layers, Leigh University, Bethlehem, Pa. 

[18] Schlichting, H., Kestin, J., 1979, Boundary Layer Theory, Seventh 

Edition, McGraw-Hill Book Company. 



 109

[19] Maksymiuk, C.M., Pulliam, T.H., (1987). AIAA-87-0415, Viscous 

Transonic Workshop Results Using ARC2D, AIAA 25th Aerospace 

Sciences Meeting, January 12-15, 1987 / Reno, Nevada. 

[20] Abbott, I.H., Doenhoff, A.E. von, Theory of Wing Sections, Dover 

Books on Physics. 

[21] Baldwin, B. S., Lomax, H., Thin Layer Approximation And Algebraic 

Model For Separated Turbulent Flows, AIAA paper 78-257 AIAA 16th 

Aerospace Sciences Meeting, Huntsville, Alabama, 1978. 

[22] Cebeci, T., Smith, A. M. O., Analysis of Turbulent Boundary Layers, 

Academic Press, New York, 1974. 

[23] Baldwin, B. S., Barth, T. J., A One Equation Turbulence Transport 

Model for High Reynolds Number Wall-Bounded Flows, NASA-TM-

102847, August 1990. 

[24] Obayashi, S., Fujii, K., Practical Applications of New LU-ADI Scheme 

for Three-Dimensional Navier-Stokes Computation of Transonic 

Viscous Flows, AIAA-86-0513, Reno, Nevada. 

[25] Kaynak, Ü., Çete, A.R., Yılmaz, Ş, Accuracy Improvements for 

Transonic Wing Flows Using a Non-equilibrium Algebraic Turbulence 

Model, 1998 World Aviation Conference, September 28-30, 1998, 

Anaheim, CA, Paper no:985573 

 

 

 



 110

APPENDIX A 

 

Non-Dimensionalization steps for turbulence model equations 

 

k equation for Wilcox k-ω and Menter BSL turbulence models 
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Diffusion Term 
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Replacing non-dimensionalized variables into the original equation, 
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ω equation for Wilcox k-ω and Menter BSL turbulence models 

 

Production Term 
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Diffusion Term 

Total Derivative Term 

Cross Diffusion Term (Only in Menter BSL Model) 

Then the following form is used as the non-dimensional ω equation 
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APPENDIX B 

 

Transformation of turbulence model equations to generalized 
coordinates 

 

As an example to the model equations, k equation of k-ω turbulence model 

will be transformed into generalized coordinates. This equation will be 

investigated in several parts. 
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I. Total Derivative Term 
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After applying the well known Chain Rule and dividing the total derivative 

equation to Jacobian term the following form is obtained, 
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grouping whole equation such that; 
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The second group of terms in the right hand side of the equation is 

analytically zero. Grouping same derivatives, 
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Defining contravariant velocities, 

Then, 
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II. Diffusion Term 
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Performing a similar derivation as in total derivative term and dividing into 

Jacobian below expression is obtained, 
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If cross derivatives ( ηξ ∂⋅∂ ) are neglected 
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Then the diffusion term appears as such, 
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III. Production and Destruction Terms 

There are no derivative terms to be processed in the computation scheme, 

so no explicit transformation in necessary for these terms. But it is important 

not to forget that the total derivative and diffusion terms are divided into 

Jacobian term. In order to satisfy the equality production and destruction 

terms must be divided into Jacobian term. 

Collecting equations, the transformed k equation could be obtained as, 

One can obtain similar transformed equations of ε and ω variables. These 

equations pairs for k-ω and k-ε models could be written in vectorial form to 

have a suitable form for numerical scheme. The resulting forms for 

turbulence model equations are;  

 

Main Solution Equation 
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k- ω Turbulence Models 
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Applicable for Wilcox k- ω formulation. 
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Applicable for Menter BSL formulation. 

 

k- ε Turbulence Models 
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Applicable for Chien k-ε formulation 
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Applicable for Abid k-ε formulation 
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APPENDIX C 

 

Calculation of Jacobian terms for Turbulence Models  

 

Recalling the equation that is factored form of the solution for turbulence 

model Equations, ( 4.43 ) 

 

Jacobian Calculation for k-ω Models 
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Jacobians of convection terms could easily be calculated while derivation of 

diffusion Jacobians are challenging since it involves second spatial 

derivates. 

In order to save space in derivations of Jacobians of diffusion terms, such 

definitions are made; 
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This Jacobian term will be examined in four parts; 
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Since the expressions inside the “∂ ” operators has independent vector 

representations namely, (Q1 and Q2), term 2 and 3 has zero values. Similar 

derivation for term 4 appears as; 
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Then the Jacobian term appears as 

The Jacobian named, R that is derived from the second derivative part of the 

diffusion term appears as 
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This term will also be studied in 4 parts. 
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As described in previous derivation of Jacobian, the expressions inside the 

“∂ ” operators has independent vector representations namely, (Q1 and Q2), 

term 2 and 3 has zero values. Similar to previous expression, 4th term could 

be derived as; 
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Then, 

The other Jacobians of diffusion will be written directly by taking the 

derivations of Equations ( C.4 ) and ( C.5 ) as a base. 

After making some necessary definitions, 
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The source matrix M and its Jacobian matrix C, differ in representations for 

Wilcox k-ω and Menter BSL models. 

 

The derivation of Jacobians of source matrix which includes the destruction 

and production terms of variables includes the determination of the stability 

of the models. In the source Jacobian term matrix C, the treatment explicit 

and implicit representations of production and destruction terms will be 

investigated. Also by equating the inverse diagonal elements of 4x4 matrix C 

to zero, one can get a solution of uncoupled formulation of turbulence 

models. 

 

If the M matrix for Wilcox k-ω is written in terms of vectors Q1 and Q2 then, 
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Then Jacobian term could be derived as, 
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If the production terms are represented in explicit form, the expressions 

derived from the production terms drop from the source Jacobian matrix. 
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The following expression represents implicit production terms but an 

uncoupled formulation. 
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A third representation of source Jacobian forms by taking production terms 

explicit and an uncoupled formulation. 
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These differences in Jacobians are investigated in the work of Spalart and 

Allmaras [13]. The investigations of them have shown that, regarding the 

positivity of source terms is achieved when the production terms are taken 

explicit while destruction terms treated as implicit which is called as the third 

strategy. The last appearance of source Jacobian term is used in the 

implementation. 

 

For Menter BSL model the source term source Jacobian C appears as, 
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Above representation of source Jacobian term is advised in [11, page  6]. 
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Jacobian Calculation for k-ε Models 

 

The core structure of two equation models could be regarded in a similar 

fashion whereas the source terms and Jacobians of these source terms 

appear in complete difference. The boundary conditions also differ in great 

amount. At this point only the source Jacobian calculations will be 

presented. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅

⋅

⋅⋅−
⋅

⋅⋅⋅Ω⋅⋅

⋅

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
−Ω⋅

⋅

⋅

⋅⋅

⋅=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅−⋅

⋅⋅
⋅Ω⋅⋅

⋅⋅−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
−Ω⋅

⋅⋅

⋅=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅−⋅⋅Ω⋅⋅

⋅⋅−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
−Ω⋅

⋅=

+

∞

∞

∞

+

∞

∞∞

+

∞

∞∞

0.2
exp0.2Re

0.2Re

Re

0.2
exp0.2Re

0.2Re

Re

0.2
exp0.2Re

0.2Re

Re

2

2
2

22

22
2

11

2

2
2

2

22

2

22

22

2

2
11

2

2
2

2

2

22

22
2

11

2

2
2

y
y
J

M
J
k

JfC
J
kfCfC

y
J

k

MJ
J

J
k

fC

M

y
y
J

MkJ
fC

kJ

kfC
fC

y
J

k

MJJ

kfC

M

y
y
J

MkJ
fC

kJ
fC

y
J

k

MJJMM
T

T

ρ

ερ
µρ

ερ
ρ

ρ

ρ
µερ

ερ

ρ

ε
µερεερ

µερερ

ε
µερεµ

µερµ

εµµε

µµ

ε
µµ

ε

µµ

εε

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅−⋅⋅⋅Ω⋅⋅

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−Ω⋅⋅⋅

⋅=
+

∞

∞∞

0.2
exp0.2Re

0.2Re

Re
2

2

2

1

2
2

221
2

11

2
1

2

2
2

2

2
1

y
y

Q
MQ

QfCQfCfC

y
Q

M
Q

Q
QfC

M

ρ
µ

ρ
µ

εµµε

µµ

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ∗∗

∗∗

∗

2

2

1

2

2

1

1

1

Q
M

Q
M

Q
M

Q
M

Q
MC

n
n  



 130

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅−⋅⋅⋅Ω⋅⋅∂

∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅−⋅⋅⋅Ω⋅⋅∂

∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−Ω⋅⋅⋅∂

∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅
⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−Ω⋅⋅⋅∂

⋅=
+

∞

+

∞

∞∞

∞

2

2
2

2

1

2
2

221
2

11

1

2
2

2

1

2
2

221
2

11

2

2
1

2

2
2

2

2
1

1

2
1

2

2
2

2

2
1

0.2
exp0.2Re

0.2
exp0.2Re

0.2Re0.2Re

Re

Q

y
y

Q
MQ

QfCQfCfC

Q

y
y

Q
MQ

QfCQfCfC

Q

y
Q

M
Q

Q
QfC

Q

y
Q

M
Q

Q
QfC

M

ρ
µ

ρ
µ

ρ
µ

ρ
µ

εµµεεµµε

µµµµ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅+⋅⋅Ω⋅⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ω⋅⋅⋅−

⋅
⋅−Ω⋅⋅⋅⋅

⋅=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅+⋅⋅Ω⋅⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ω⋅⋅⋅−

⋅
⋅−Ω⋅⋅⋅⋅

⋅=

+

∞∞

∞∞

+

∞∞

∞∞

0.2
exp0.2Re0.2Re

Re0.20.2

Re

0.2
exp0.2Re0.2Re

Re0.20.2

Re

2

2

22

2

2

2

22
2

11

2
2

2

2

2
2

2

2

1

2
22

2

2
1

2
2

22
2

11

2
2

2
2

2
1

2
2

2

1

y
yMk

fC
Mk

fCfCfC

M
kfC

y
kfC

M

y
yMQ

QfC
MQ

QfCfCfC

MQ
Q

fC
yQ

Q
fC

M

ρ
µεε

ερ
µ

ε

ρ
µ

ρ
µ

εεµµε

µµµµ

εεµµε

µµµµ

 

As described in Turbulence models section, the D and E terms for Abid k-ε 

model is zero. Dropping these terms form the source Jacobian matrix 

developed for Chien k-ε model gives the matrix for Abid k-ε. 
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APPENDIX D 

 

Discretization of Turbulence Model equations 

 

ξ  sweep 

The following notations are presented due to simplicity in derivations, 
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Similar approach regarding the indices is done for this matrix formation, 
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5) ( ) ( )1,1,,,1,1,
2 2 −−++

∗∗ ⋅+⋅⋅−⋅⋅−=⋅⋅⋅− kjkjkjkjkjkj qSqSqStqSt ηδ  

6) ( )kjkj qCt ,, ⋅⋅− ∗  

 

Right hand side discretization 
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The following notations are presented due to simplicity in derivations, 
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Dividing the matrix into three parts, 
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APPENDIX E 

 

Contour results for RAE2822 M=0.725, AoA=2.92 case  

 

 

Figure 0.1 PC  contours, Abid k-ε 
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Figure 0.2 PC  contours, Chien k-ε 

 

Figure 0.3 PC  contours, Baldwin-Lomax 
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Figure 0.4 PC  contours, Wilcox k-ω 

 

Figure 0.5 PC  contours, Menter BSL 
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Figure 0.6 Tµ  contours, Abid k-ε 

 

Figure 0.7 Tµ  contours, Chien k-ε 
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Figure 0.8 Tµ  contours, Baldwin-Lomax 

 

Figure 0.9 Tµ  contours, Wilcox k-ω 
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Figure 0.10 Tµ  contours, Menter BSL 

 

Figure 0.11 k contours, Abid k-ε 
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Figure 0.12 k contours, Chien k-ε 

 

Figure 0.13 k contours, Wilcox k-ω 
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Figure 0.14 k contours, Menter BSL 

 

Figure 0.15 k production contours, Abid k-ε 
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Figure 0.16 k production contours, Chien k-ε 

 

Figure 0.17 k production contours, Wilcox k-ω 
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Figure 0.18 k production contours, Menter BSL 

 

Figure 0.19 k destruction contours, Abid k-ε 
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Figure 0.20 k destruction contours, Chien k-ε 

 

Figure 0.21 k destruction contours, Wilcox k-ω 
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Figure 0.22 k destruction contours, Menter BSL 


