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Abstract

STOCHASTIC VOLATILITY, A NEW APPROACH FOR

VASICEK MODEL WITH STOCHASTIC VOLATILITY

Zeytun, Serkan

M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

September 2005, 49 pages

In the original Vasicek model interest rates are calculated assuming that

volatility remains constant over the period of analysis. In this study, we con-

structed a stochastic volatility model for interest rates. In our model we assumed

not only that interest rate process but also the volatility process for interest rates

follows the mean-reverting Vasicek model. We derived the density function for

the stochastic element of the interest rate process and reduced this density func-

tion to a series form. The parameters of our model were estimated by using the

method of moments. Finally, we tested the performance of our model using the

data of interest rates in Turkey.

Keywords: Stochastic volatility, ARCH processes, Vasicek model, distribution

function, parameter estimation.
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Öz

STOKASTİK VOLATİLİTE, STOKASTİK

VOLATİLİTELİ VASICEK MODELİ İÇİN YENİ BİR

YAKLAŞIM

Zeytun, Serkan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Azize Hayfavi

Eylül 2005, 49 sayfa

Vasicek modelinde volatilitenin analiz dönemi boyunca sabit kaldığı düşünülerek

faiz haddi hesaplanmaktadır. Bu çalışmada faiz haddi için bir stokastik volatilite

modeli kurduk. Modelimizde sadece faiz haddinin değilde, volatilitenin de Va-

sicek modelini takip ettiğini düşündük. Faiz haddi sürecinin stokastik kısmı için

yoğunluk fonksiyonunu çıkardık ve daha sonra bu yoğunluk fonksiyonunu seri for-

muna indirgedik. Momentler metodunu kullanarak modelimizim parametrelerini

tahmin ettik. En son olarak Türkiye’nin faiz oranları verisini kullanarak mode-

limizin performansını test ettik.

Anahtar Kelimeler: Stokastik volatilite, ARCH modelleri, Vasicek modeli, yoğunluk

fonksiyonu, parametre tahmini.
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Chapter 1

INTRODUCTION

In the stochastic volatility models volatility changes randomly according to

some stochastic differential equations or some discrete processes. These models

have been of growing interest in the last two decades and have been used by many

authors. In this work, we aimed to improve the Vasicek model using stochastic

volatility. In the original Vasicek model interest rates are calculated using con-

stant volatility. We assumed that not only interest rates but also the volatility

process follows the mean-reverting Vasicek model.

This work is organized as follows: In the following chapter, we introduced some

important studies on nonconstant volatility models especially stochastic volatility

models. In Chapter 3, we gave some information about stochastic processes and

methods of parameter estimation. Nonconstant volatility models were introduced

in Chapter 4. In this chapter, we focused on stochastic volatility models and

ARCH processes. Our works on Vasicek model constitute Chapter 5. In this

chapter, we constructed a model with stochastic volatility where also the volatility

process follows the Vasick model and then we discretisized this model. We derived

the density function for the stochastic element of the interest rate process and then

we reduced this density function to a series form. In Chapter 6, we estimated the

parameters of our model using the method of moments. We found the parameter

values of our model using the data of interest rates in Turkey for the period June,

1, 2001 to June, 1, 2004. Parameters of ARCH and GARCH models were found

using the same data and then we tested the out of sample performance of our

model against ARCH and GARCH models. The conclusions of this study are

presented in Chapter 7.
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Chapter 2

LITERATURE REVIEW

There has been a growing interest in time series models of nonconstant volatil-

ity since the paper ”the pricing of options and corporate liabilities” of Black and

Scholes (1973) was published. This paper specifies the first successful option

pricing formula and describes a general framework for pricing other derivative

instruments. Black and Scholes in their pricing formula assume the volatility

of the underlying stock price remains constant over the period of analysis. In

the subsequent years empirical analysis of stock volatility have shown that the

volatility does not seem to be constant. To get more realistic models many authors

have used nonconstant volatility in their models. Among these models stochastic

volatility models have obtained great popularity especially in the framework of

option pricing.

Geske (1979), assuming volatility was not constant, derived the price valua-

tion equation for a call as a compound option in continuous time. He considered

the variance of the rate of return on the stock as a function of the level of the stock

price. In this study, it was shown that the stock’s return variance is monotoni-

cally increasing with leverage in the compound option model. Thus, this model

corrects some important biases of the Black-Scholes model.

Engle (1982) introduced a class of stochastic processes called autoregressive

conditional heteroscedastic (ARCH) processes. These processes have nonconstant

variances conditional on the past, but constant unconditional variances. In these

processes the variance is described as a linear function of the recent past values of

the squared errors. Engle derived the likelihood function of these processes and

described the maximum likelihood estimators.
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Bollerslev (1986) extended the Engle’s ARCH processes allowing for a much

more flexible lag structure. Bollerslev’s Generalized ARCH (GARCH) processes

allow the conditional variance to be dependent upon not only previous squared

errors but also previous own lags. Bollerslev derived the conditions for station-

arity of this class of processes. He also discussed maximum likelihood estimation

of the linear regression model with GARCH errors.

Wiggins (1987) studied the call option valuation problem assuming return

volatility follows a continuous stochastic process. In this study, the stochas-

tic volatility valuation problem was described and numerically solved. Using a

method of moments approach, statistical estimators for volatility process param-

eters were then derived. The empirical study of Wiggins showed that the Black-

Scholes formula overvalues out-of-the-money calls in relation to in-the-money

calls.

Hull and White (1987) in their study concentrated on the problem of pricing

a European call option on a stock with a stochastic volatility. They assumed the

case of dependence of stochastic volatility and stock price, and the case of inde-

pendence. For the case in which the stochastic volatility is uncorrelated with the

security price the option price was determined in series form using Taylor expan-

sion. They used numerical methods to find the option price for the case in which

the volatility and stock price are correlated. They compared the results with the

results of Black-Scholes formula and they found that frequently the Black-Scholes

price overvalues options.

Johnson and Shanno (1987) in their study used stochastically changing vari-

ance and they focused on pricing a call option. To find the prices they used Monte

Carlo method. Simulation results showed that call prices are changing with the

correlation coefficient between the volatility and the stock price.

Scott(1987) studied on pricing of European call options on stocks by consid-
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ering a model that allows the variance rate to change randomly according to an

independent diffusion process. He developed techniques for estimating parame-

ters of the variance process. Scott could not develop an analytical formula that

gives option prices but he derived a model that can produce accurate estimates

of option prices via the method of Monte Carlo simulations.

Melino and Turnbull (1990) focused on obtaining a closer correspondence to

the empirical distribution of exchange rate and on the subsequent consequences

for option pricing. They used a diffusion model for exchange rates with stochastic

volatility. The parameters of the model were estimated and then the estimates

are used to price foreign currency options. With this study they concluded that

the stochastic volatility model dominates the standard model which assumes a

log-normal probability distribution for exchange rates and a constant volatility.

Stein and Stein (1991) studied on stock price processes with stochastically

varying volatility parameter. They assumed the volatility is driven by an arith-

metic Ornstein-Uhlenbeck process, which raises the possibility that σ can be nega-

tive. Assuming volatility is uncorrelated with the asset price, an exact closed-form

solution for the stock price distribution was derived. They also used analytic tech-

niques to develop an approximation to the distribution. Then, they used their

results to develop closed form option prising formulas, and to sketch some links

between stochastic volatility and the nature of fat tails in stock price distributions.

Heston (1993) used characteristic functions to derive a closed-form solution

for the price of a European call option on an asset with stochastic volatility. He

adapted the model to incorporate stochastic interest rates and showed how to

apply the model to bond options and currency options. Heston assumed the spot

asset’s price is correlated with the volatility and concluded that correlation be-

tween the spot asset’s price and the volatility is important for explaining return

skewness and strike-price biases in the Black-Scholes model.

Hobson and Rogers (1998) proposed a class of nonconstant volatility models,

4



which can be extended to include the single-factor stochastic volatility models,

but also share many characteristics with the multi-factor models. They defined

the instantaneous volatility in terms of exponentially weighted moments of his-

torical log-price. Therefore the instantaneous volatility is driven by the same

stochastic factors as the price of the process and an additional source of random-

ness is not necessary. In this study, a partial differential equation for the price

of a European call option was derived and the existence of skews and smiles via

numerical solution of this partial differential equation were demonstrated.
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Chapter 3

PRELIMINARIES

3.1 STOCHASTIC PROCESSES

A stochastic process is a collection of random variables {Xt, t ∈ T} on the

same probability space (Ω,F ,P). The points of the index or parameter set T are

thought of representing time. If T is countable, especially if T = 0, 1, 2, 3, ..... ≡ N,

i.e. the set of non-negative integers, then the process is called discrete param-

eter process. If T = R or T = [a, b] for a and b real numbers or T = [0,∞), i.e.

if T is uncountable, then we have a continuous parameter process.

In a stochastic process {Xt, t ∈ T} the relationship among the random vari-

ables of the process, say Xt1 , ...., Xtn for t1, ...., tn ∈ T , is specified by the joint

distribution function of these variables given by

Ft1,....,tn(x1, ...., xn) = P(Xt1 ≤ x1, ...., Xtn ≤ xn).

The collection of all disjoint distributions Ft1,....,tn(x1, ...., xn) of the random vari-

ables Xt1 , ...., Xtn , n ≥ 1, t1, ...., tn ∈ T , is called finite-dimensional distribu-

tions of the process.

We say that a stochastic process {Xt} is stationary if for any n ≥ 1 and

t1, ...., tn ∈ T , its finite-dimensional distributions Fs+t1,....,s+tn are independent of

s (we assume all s + tk ∈ T ). This means that the distributional (or statistical)

properties of the process remain unchanged as time elapses.

Definition 3.1. Brownian Motion or Wiener Process:

Let {Wt, t ≥ 0} be a stochastic process defined on the probability space (Ω,F ,P).
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Figure 3.1: A sample path of standard Brownian motion

The process {Wt} is called a standard Brownian motion if

• W0(x) = 0 almost surely (a.s.) (or with probability 1), i.e. we assume the

process starts at 0.

• For each x ∈ Ω, Wt(x) is continuous in t, for t ≥ 0.

• For all 0 ≤ s < t, the increment Wt−Ws is normally distributed with mean

0 and variance σ2 = (t − s), independent of time t, i.e. it has stationary

(normally distributed) increments.

• The increments of the process Wti −Wsi
over intervals (si, ti] are indepen-

dent.

3.2 DISCRETIZATION

To draw inference about a continuous time model we have to rely on N dis-

crete realizations. Thus, we divide the sample period [0, T ] into N intervals cor-

responding to the discrete-time data (generally equally spaced observations are

7



used but this can be relaxed). Then the continuous time process is replaced with

a piecewise-constant process and in the each interval [ti, ti+1), i = 1, 2, ...., N − 1,

it is assumed that the process is constant but from one interval to the next it is

changing.

In this part we will present two discretization methods for an Ito process:

Euler scheme and Milstein scheme (our main reference for these models is [25]).

3.2.1 Euler Scheme

Consider the process X = {Xt, t0 ≤ t ≤ T} satisfying the following differential

equation:

dXt = a(t,Xt)dt + b(t,Xt)dWt

on t0 ≤ t ≤ T with the initial value

Xt0 = X0.

Then, if we divide the time interval [t0, T ] into N intervals where t0 < t1 < ..... <

tn = T , the Euler scheme is

Yn+1 = Yn + a(tn, Yn)(tn+1 − tn) + b(tn, Yn)(Wtn+1 −Wtn) (3.2.1)

for n = 0, 1, 2, ...., N − 1 with initial value

Y0 = X0.

If the intervals are equally spaced then

∆ = tn − tn−1 =
T − t0

N

and, (3.2.1) can be written in the form

Yn+1 = Yn + a∆ + b∆Wn

8



where ∆Wn = Wtn+1 −Wtn .

3.2.2 Milstein Scheme

Consider the process X = {Xt, t0 ≤ t ≤ T} satisfying

dXt = a(t,Xt)dt + b(t,Xt)dWt.

Then, the Milstein scheme is

Yn+1 = Yn + a(tn, Yn)(tn+1 − tn) + b(tn, Yn)(Wtn+1 −Wtn)

+
1

2
b(tn, Yn)b′(tn, Yn){(Wtn+1 −Wtn)2 − (tn+1 − tn)}

and in the case of equally spaced intervals

Yn+1 = Yn + a∆ + b∆Wn +
1

2
bb′{(∆Wn)2 −∆}.

The Minstein scheme is equal to the Euler Scheme with additional term

1

2
bb′{(∆Wn)2 −∆}.

3.3 MOMENTS OF RANDOM VARIABLES

3.3.1 Moments

Definition 3.2. Let X be a random variable with probability density function

f(x) (or with probability distribution p(x)). The rth moment about the origin

of X, denoted by µ′r, is the expected value of Xr; symbolically

µ′r = E(Xr) =
∑

x

xrp(x)

9



for r = 0, 1, 2, ..... provided
∑

x |x|rp(x) < ∞ when X is discrete, and

µ′r = E(Xr) =

∫ ∞

−∞
xrf(x)dx

provided
∫∞
−∞ |x|rf(x)dx < ∞ when X is continuous.

Observe that the value of any moment depends only on the probability den-

sity function (or probability distribution) of the random variable.

Note that first moment of a random variable about the origin is the mean (ex-

pected value) of the random variable.

Definition 3.3. The rth moment about the mean of a random variable X,

denoted by µr, is the expected value of (X − µ)r; symbolically

µr = E[(X − µ)r] =
∑

x

(x− µ)rp(x)

for r = 0, 1, 2, ..... when X is discrete, and

µr = E[(X − µ)r] =

∫ ∞

−∞
(x− µ)rf(x)dx

when X is continuous, provided the finiteness conditions.

Note that the second moment of a random variable about the mean is the

variance of the random variable.

Note also that if the kth moment of a random variable exists, all moments of

order less than k exist.

Comment:We can express µr in terms of µ′j, j = 1, 2, ...., r, by simply writ-

ing out the binomial expansion of (X − µ)r:

µr = E[(X − µ)r] =
r∑

j=0

(
r

j

)
E(Xj)(−µ)r−j.

10



3.3.2 Moment-Generating Functions

Finding moments of random variables directly, especially for the higher mo-

ments, can be quite problematic. Moment-generating functions provide an easier

way to calculate moments of random variables.

Definition 3.4. Let X be a random variable. The moment-generating func-

tion (mgf) for X is denoted MX(t) and given by

MX(t) = E(etx) =

{ ∑
allx etxp(x) if X is discrete∫∞

−∞ etxf(x)dx if X is continuous

at all values of t for which the expected value exists.

Note that the moment generating function is not defined for all random vari-

ables and, when it is, MX(t) is not necessarily finite for all t.

Finding Moments Using Moment-Generating Functions

Theorem 3.1. Let X be a random variable with probability density function

fX(x). [If X is continuous, fX(x) must be sufficiently smooth to allow the order

of differentiation and integration to be interchanged.] Let MX(t) be the moment-

generating function for X. Then, provided the rth moment exists,

M
(r)
X (0) = E(Xr) = µ′r

where M
(r)
X (t) denotes the rth derivative of MX at t.

3.4 PARAMETER ESTIMATION METHODS

Almost all econometric models contain unknown parameters. To use an econo-

metric model first we need to estimate these parameters. Typically, this is done

by taking a random sample of observations and using these observations to es-

timate the unknown parameters. In the estimation the idea is that the sample

11



represents the population from which it has been drawn.

For the same parameter of a population we can apply different methods of

estimation, so there can be many different estimators of the same parameter. In

this part we will present two methods of parameter estimation, the method of

maximum likelihood and the method of moments.

3.4.1 The Method of Maximum Likelihood

This estimation method assumes that the distribution of an observed phe-

nomenon is known, except for a finite number of unknown parameters. Then,

the unknown parameters will be estimated by looking at the sample values and

then choosing our estimates of the unknown parameters the values for which the

probability of getting the sample values is a maximum.

Let the probability density function (pdf) for a random variable y, conditioned

on a set of parameters, θ, be denoted by f(y|θ). Assume the observed sample

values are y1, y2, ...., yn, then the probability of getting them is f(y1, y2, ...., yn|θ)
which is the joint probability density of the entire sample. If the observations

are independent and identically distributed (i.i.d.) then the joint density is the

product of the individual densities;

f(y1, y2, ...., yn|θ) =
n∏

i=1

f(yi|θ).

The likelihood function for the sample data is then given by

L(θ|y) =
n∏

i=1

Li(θ|yi) =
n∏

i=1

f(yi|θ)

which is defined as a function of the unknown parameters, θ, where y is the

collection of sample data and Li(θ|yi) are the individual likelihood contributions

to the likelihood function L(θ|y). Then the logarithm of the likelihood function

12



is

log L(θ|y) =
n∑

i=1

log Li(θ|yi) =
n∑

i=1

log f(yi|θ).

Since logarithm is a monotonic function then whatever values of θ maximizes

the log-likelihood function must also maximizes the likelihood function. Working

with the log-likelihood function is usually simpler and it is used instead of likeli-

hood function.

Since maximum likelihood estimation consist in maximizing the likelihood

function (or log-likelihood function) with respect to θ then the necessary condition

is
∂(log L(θ|y))

∂θ
=

n∑
i=1

∂(log Li(θ|yi))

∂θ
= 0. (3.4.2)

This is called the likelihood equation and the maximum likelihood estimation is

a root of this equation. Since we are searching for a maximum, we also have to

satisfy the following condition:

∂2(log L(θ|y))

∂θ2
=

n∑
i=1

∂2(log Li(θ|yi))

∂θ2
< 0. (3.4.3)

Then the parameters satisfying (3.4.2) and (3.4.3) are the maximum likelihood

estimations.

3.4.2 The Method of Moments

Method of moments is historically one of the oldest methods. In this method

population means are replaced by sample means. When the underlying model

has multiple parameters the method of moments is often more tractable than the

method of maximum likelihood.

In the method of moments the first few moments of a population are equated

to the corresponding moments of a sample, then these equations are solved for

the unknown parameters of the population. The number of moments which are
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needed depends on the number of unknown parameters.

Suppose X is a random variable and its probability density function is a

function of k unknown parameters, θ1, θ2, ...., θk. Then the first k moments of X,

if they exist, are given by

µ′r = E(Xr) r = 1, 2, ...., k.

If we have a set of observations x1, x2, ...., xn then first k moments of X are

equated to the corresponding sample moments; symbolically,

E(X) =
1

n

n∑
i=1

xi

E(X2) =
1

n

n∑
i=1

x2
i

........ = ..........

........ = ..........

E(Xk) =
1

n

n∑
i=1

xk
i .

Solving these k equations for the unknown parameters θ1, θ2, ...., θk, we can get a

set of estimates, θ̂1, θ̂2, ...., θ̂k.
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Chapter 4

VOLATILITY

4.1 NONCONSTANT VOLATILITY MODELS

One of the most striking development in financial economics is the work on

option pricing of Black and Scholes (1973). Black and Scholes in their pricing

formula for stock options assume that the price (St)t≤T of a stock is the solution

to a stochastic differential equation (SDE)

dSt = St(µdt + σdBt)

where σ is a known and constant volatility parameter and B is a Brownian motion.

In the subsequent years, empirical analysis of stock volatility have shown that

the volatility is not constant. The volatility cannot be observed directly since

it is not traded. However from the empirical studies of the stock price we can

drive the stock price return by dS/S, and from this estimate the volatility. In

these observations, in general, the volatility is low for several days, then high

for a period and so on, that is it changes in clusters. For this reason a number

of authors have constructed models of changing volatility. Among these models

the most widespread models are stochastic volatility models which define the

volatility as an autonomous diffusion driven by a second Brownian motion.

4.1.1 STOCHASTIC VOLATILITY MODELS

Stochastic volatility models have been widely used in the mathematical option

pricing literature, where such models provide a natural relaxtion of the Black-

Scholes assumption that volatility is fixed, throughout the life of the option. The
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assumption of the constant volatility is the most disputatious assumption of the

Black-Scholes model. Excess kurtosis in financial time series, leverage effects, and

the smiles and skew patterns in implied volatilities all contradict the assumption

of constant volatility [20]. The study of Belledin and Schlag (1999) tests various

stochastic volatility models empirically, and finds these models superior in terms

of pricing performance to the Black-Scholes model. However, estimation of these

models’ parameters has some complexities. Therefore, these models have not

been popular in empirical discrete-time financial applications.

In a stochastic volatility model the volatility is changes randomly according

to some stochastic differential equations or some discrete processes. Stochastic

volatility models are divide into two broad classes: ”single-factor” and ”multi-

factor” models. In the single-factor models the original Brownian motion Bt is

the only source of randomness, and in the multi-factor models further Brownian

motions or other random elements are introduced.

4.1.1.A SINGLE-FACTOR MODELS

In the single-factor models the volatility is a deterministic function of present

or past values of the underlying price. In these models, the volatility and asset

price are perfectly correlated, therefore we still have only one source of random-

ness, and this is an apparent advantage of single on multi-factor models. The

dependence of the volatility to the past or present value of the underlying price

makes the arithmetic more challenging and commonly precludes the existence

of a closed-form solution. However, the arbitrage argument based on portfolio

replication and a complete market still goes through unchanged [7].

The simplest single-factor model is the so-called level-dependent volatility.

In the level-dependent volatility the underlying price St satisfies

dSt = µStdt + σ(St, t)StdBt

where B is a Brownian motion and σ(St, t) is a deterministic function of the
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current value St and time. For example, in their Constant Elasticity of Variance

(CEV) model, Cox and Ross (1976) take σ(St) = (St)
(α−1), α ∈ (0, 1).

Empirical analysis have shown that level dependent volatility still fails to price

derivative securities better than does the usual Black-Scholes model. This is the

conclusion of the study by Dumas, Fleming and Whaley (1998) who suggest a

volatility related to past changes of the underlying prices, as the last candidate

model before resorting the fully stochastic volatility [31].

4.1.1.B MULTI-FACTOR MODELS

Multi-factor models define the volatility as an autonomous diffusion driven by

a second Brownian motion (the asset price process is driven by the first Brownian

motions). In the multi-factor models the stock price S and volatility σ satisfy

the following stochastic differential equations:

dSt = µStdt + σtStdW1t

dσt = a(St, σt)dt + b(St, σt)dW2t

where a, b define the volatility model and a govern the drift of the volatility

process. W1t, W2t are standard Brownian motions. The Brownian motions have

constant correlation EdW1tdW2t = ρdt, so movements of volatility are possibly

correlated with movements of underlying asset price. The Brownian motions have

the relation

W2t = ρW1t + ρ′W ′
1t

where W ′
1t is a Brownian motion independent of W1t (that is W1t and W ′

1t have

no correlation) and ρ′ =
√

1− ρ2.

In this part we will introduce some of the multi-factor models.
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Hull-White Model:

In their model, Hull and White considered a derivative asset f with a price

that depends upon some security price, S, and its instantaneous variance, Vt = σ2
t ,

which are assumed to obey the following stochastic processes:

dSt = φStdt + σtStdWt

dVt = µVtdt + ξVtdZt.

In this model, the variable φ is a parameter that may depend on S, σ and t.

It is assumed that the variables µ and ξ may depend on σ and t but they do

not depend on S. The Wienner processes (Brownian motions) Zt and Wt have

correlation ρ. Hull and White in their studies analyzed the model for the cases

ρ = 0 and ρ 6= 0. The actual process that a stochastic variance follows is probably

fairly complex. It cannot take on negative values, so the instantaneous standard

deviation must approach zero as σ2 tends to zero. In this model, since S and σ2

are the only state variables affecting the price of the derivative security, f , the

risk-free rate must be constant or at least deterministic [23].

Using this model Hull and White have priced a European call on an asset

that has a stochastic volatility. The option price is determined in series form for

the case in which the stochastic volatility is independent of the stock price, i.e.

for the case ρ = 0. Also, numerical solutions are produced for the case in which

the volatility is correlated with the stock price, i.e. for ρ 6= 0. In their empiri-

cal analysis, Hull and White found that Black-Scholes price frequently overprices

options and that time to maturity affects the degree of overpricing with the same

direction.

Cox-Ingersoll-Ross (CIR) Model:

Cox-Ingersoll-Ross model is a mean-reverting model. The term ”mean-reverting”

refers to the characteristic (typical) time it takes for a process to get back to the
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mean level of its invariant distribution (the long-run distribution of the process).

CIR model considers a stock, whose price St, as a function of time t, and its

volatility σt satisfying the following stochastic differential equations:

dSt = αStdt + σtStdW1t

dVt = (a + bVt)dt + c
√

VtdW2t

where Vt = σ2 is the variance. Here σt is the time dependent volatility and c is

a parameter that we call the variance noise. In the above stochastic differential

equations α is the drift parameter and a, b and c are constants. W1t and W2t are

standard Wiener processes. The process W1t and W2t are correlated according to

dW2t = ρdW1t +
√

1− ρ2dW ′
1t

where W ′
1t is a Wiener process independent of W1t, and ρ ∈ [−1, 1] is the corre-

lation coefficient (a negative correlation is known as the leverage effect).

The Vt process is mean-reverting if a > 0 and b < 0. In the mean-reverting

case Vt tends to revert around a level −a/b with a reversion rate −b. In the

CIR model Vt has a non-central chi-squared distribution and the expectation and

variance are given by

E(V (t)|V (0) = y) = −a

b
+ (y +

a

b
)e−|b|t

V ar(V (t)|V (0) = y) =
ac2

2b2
− c2

b
(y +

a

b
)e−|b|t +

c2

b
(y +

a

2b
)e−|b|t

and, from the above equations one can find that the limiting distribution of Vt is

a gamma distribution with expectation −a/b and variance ac2/2b2 [2].

Log Ornstein-Uhlenbeck Model:

In the log Ournstein-Uhlenbeck model the stock price process and the volatil-
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ity are modelled as

dSt = αStdt + σtStdW1t

dYt = (a + bYt)dt + cdW2t

where a, b, c and α are constants. The volatility is given by σt = eYt which

implies Yt = log σt. The Wiener processes W1 and W2 are correlated according

to dW2t = ρdW1t +
√

1− ρ2dW3t where W3t is a Wiener process independent of

W1t.

In this model Yt has normal distribution with expectation

E[Yt|Y0 = y] = −a

b
+ (y +

a

b
)e−|b|t

and variance

V ar[Yt|Y0 = y] =
c2

2|b| + (1− e−2|b|t).

Therefore, the limiting distribution for Yt is a normal distribution with mean

−a/b and variance c2/2|b| [2].

Johnson and Shanno’s Model:

In this model, stock price, S, and variance, σ2, satisfy the following stochastic

processes:

dSt = µStdt + σtS
α
t dW1t

dσt = ξσtdt + φσβ
t dW2t

where µ, ξ, φ are constants, α ≥ 0 and β ≥ 0. W1t and W2t are Wiener processes

with correlation coefficient ρ, i.e., they satisfy

dW2t = ρdW1t +
√

1− ρ2dW ′
1t
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where W ′
1t is a Wiener process independent of W1t, and ρ ∈ [−1, 1].

Using this model, Johnson and Shanno generated call prices by using the

Monte Carlo method.

Heston Model:

In the Heston model, the stock price return process and the the variance

process are modelled as

dSt = µStdt +
√

VtStdW1t

dVt = κ(θ − Vt)dt + ε
√

VtdW2t

where µ, κ, φ, ε are constants and W1t, W2t are Wiener processes with correla-

tion ρ. Here σt =
√

Vt is the volatility of the stock price return process. The

variance process is a mean-reverting process with long-run mean of θ and with

mean-reversion speed determined by κ.

Using this model, Heston used a new technique, based on characteristic func-

tions, to derive a closed-form solution for the price of a European call option on

an asset.

4.1.2 ARCH PROCESSES

Autoregressive Conditional Heteroscedasticity (ARCH) Models

ARCH models were first introduced by Engle (1982) and this models are used

to model the conditional variance. The essence of the method picks up on the

often observed characteristic that large shocks to the unpredictable component

of returns tends to occur in cluster (not necessarily of the same sign), and the

histogram of shocks has fatter tails than would be expected if they had been gen-

erated from a normal distribution. The key feature is that there seems to be an

autoregressive nature to the shocks so Engle’s ARCH model allow the conditional
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variance to vary over time driven by past shocks.

Consider the process

yt = φ0 + φ1yt−1 + εt, |φ1| < 1

with the error term

εt = utσt

where ut has a standard normal distribution. Then the conditional variance of εt

given εt−1 is

V ar(εt|εt−1) = V ar(utσt) = σ2
t V ar(ut) = σ2

t .

Under the ARCH model the ”autocorrelation in volatility” is modelled by allowing

the conditional variance of the error term, σ2
t , to depend on the immediately

previous value of the squared error

σ2
t = α0 + α1ε

2
t−1.

The above model is known as an ARCH(1), since the conditional variance de-

pends on only one lagged squared error.

The generalization of this model can be gotten by including more lags of εt.

Thus, an ARCH(q) model is:

σ2
t = α0 + α1ε

2
t−1 + ......... + αqε

2
t−q

= α0 +

q∑
i=1

αiε
2
t−i.

The unconditional variance (which is also the long-run variance here) is denoted
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σ2 and defined as

E(σ2
t ) = E(α0) + α1E(ε2

t−1) + ......... + αqE(ε2
t−q)

using E(ε2
t−i) = σ2

t−i

= α0 + α1σ
2
t−1 + ......... + αqσ

2
t−q

=⇒
σ2 = α0 + α1σ

2 + ....... + αqσ
2

σ2 =
α0

1−∑q
i=1 αi

.

In the above calculations it is assumed that in the long run the conditional vari-

ances are constant and equal to the long-run variance σ2.

Stationarity of the ARCH(q) model imposes conditions on the αi coefficients.

For σ2
t to be nonnegative (because the negative variance is not sensible), what-

ever the values of ε2
t−i and σ2 to be finite and nonnegative, we must have α0 ≥ 0,

αi ≥ 0 ,for i = 1, 2, ...., q , and 0 ≤ ∑q
i=1 αi < 1.

In the ARCH models the unconditional distribution of returns has fat tails

giving a relatively large probability of outliers relative to the normal distribution.

This property was showed by Engle (1982) using kurtosis coefficient, κ. ARCH(1)

model has stationary moments of order 2 and 4, if 3a2 < 1 and these moments

are

E(ε2
t ) =

α0

1− α1

E(ε4
t ) =

3α2
0

(1− α1)2

1− α2
1

1− 3α2
1

.

Then

κ =
E(ε4

t )

(E(ε2
t ))

2
=

3(1− α2
1)

1− 3α2
1

> 3

that is κ is the ratio of the fourth moment to the squared second moment, and κ =

3 for the normal distribution. In the ARCH(1) case κ > 3 indicating leptokurtosis
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and, hence, fat tails.

Generalized ARCH (GARCH) Models

In the ARCH models the conditional variance σ2
t is taken positive. To provide

this, all αis must be non-negative. But when q large unconstrained estimation will

often lead to the violation of the non-negativity constraints on the αis. Because

of this fact, in early applications of the ARCH models, many authors prefered

small lag structures. To obtain more flexibility, GARCH models were developed

independently by Bollerslev (1986) and Taylor (1986) as an extension of ARCH

models.

The GARCH models allow the conditional variance to be dependent upon

previous own lags, so that the conditional variance equation in the simplest case

is

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1.

This model is known as GARCH(1,1) and can be extended to a GARCH(p,q)

formulation, where the current conditional variance is parametrised to depend

upon q lags of the squared error and p lags of the conditional variance

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + ...... + αqε

2
t−q + β1σ

2
t−1 + β2σ

2
t−2 + ...... + βpσ

2
t−p

= α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j.

GARCH models better therefore a far more widely used models than ARCH

models. Because GARCH models are less likely to breach non-negativity con-

straints.

The unconditional variance for the GARCH models can be motivated in the

same way as for the ARCH models (for the formal proof see Bollerslev (1986,
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theorem 1)). For the GARCH(p,q) model the unconditional variance is

σ2 =
α0

1−∑q
i=1 αi −

∑p
j=1 βj

. (4.1.1)

Stationarity of GARCH(p,q) model imposes conditions on the αi and βj co-

efficients. If α0 ≥ 0, αi ≥ 0 for i = 1, 2, ...., q , βj ≥ 0 for j = 1, 2, ...., p and

0 ≤ ∑q
i=1 αi +

∑p
j=1 βj < 1 then σ2 is nonnegative and finite and given by (4.1.1)

(due to Bollerslev (1986)).

Parameter Estimation of ARCH-GARCH Models Using Maximum

Likelihood Method

As we mentioned in the previous chapter, in the maximum likelihood method

the parameters are estimated by taking those values for them that give the ob-

served values the highest probability. For this, first, we need to cunstruct the

likelihood function, then we need to find the parameters that maximize this like-

lihood function.

As an example, we will work on the process

yt = φ0 + φ1yt−1 + εt, εt ∼ N(0, σ2
t )

with stochastic volatility satisfying GARCH(1,1) model:

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1.

For simplicity we are taking GARCH(1,1) model, but the parameters of all

ARCH-GARCH models can be estimated using the same way.

Since εt ∼ N(0, σ2
t ), then yt ∼ N(φ0 + φ1yt−1, σ

2
t ). So, the probability density
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function for the process yt is

f(yt|φ0 + φ1yt−1, σ
2
t ) =

1

σt

√
2π

exp(−1

2

(yt − φ0 − φ1yt−1)
2

σ2
t

)

=
1

σt

√
2π

exp(−1

2

ε2
t

σ2
t

).

Suppose we have observations y1, ....., yT . Then, the joint probability density

function for all ys is the product of the individual density functions, i.e.,

f(y1, ...., yT |φ0 + φ1yt−1, σ
2
t ) =

T∏
t=1

f(yt|φ0 + φ1yt−1, σ
2
t )

=
T∏

t=1

1

σt

√
2π

exp(−1

2

ε2
t

σ2
t

).

This is the likelihood function. If we take the logarithm of this function then it

will be turned to an additive function of the sample data, and working on the

new function will be easier. The logarithm of the likelihood function, i.e. the

log-likelihood function, is

LLF = −T

2
log(2π)− 1

2

T∑
t=1

log(σ2
t )−

1

2

T∑
t=1

ε2
t

σ2
t

.

Maximizing the log-likelihood function for a model with time-varying variance

is not easy. Derivatives of log-likelihood function with respect to the parameters

are complicated, so a numerical procedure is often used instead to maximize the

log-likelihood function.

All methods work by searching over the parameter-space until the values of

the parameters that maximize the log-likelihood function are found. These op-

timization methods exist in some of the packaged softwares such as EViews and

RATS. These methods are based on the determination of the first and second

derivatives of the log-likelihood function with respect to the parameter values at

each iteration (i.e. the gradient and Hessian matrices, respectively). A famous al-
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gorithm for optimization is BHHH (Berndt, Hall, Hall and Hausman (1974)), and

this algorithm employs only first derivatives and approximations for the second

derivatives are calculated [6].

4.2 VASICEK MODEL

Vasicek model is one of the earliest stochastic models of the short term interest

rate. Vasicek assumes that the instantaneous interest rate rt follows the so-called

Ornstein-Uhlenbeck process,

drt = β(α− rt)dt + σdWt (4.2.2)

where α, β, σ are non-negative constants. Here, the parameter α is the long-run

normal interest rate. The Vasicek model exhibits mean-reversion. The instan-

taneous drift β(α− rt) represents a force that keeps pulling the process towards

its long-run mean α with magnitude proportional to the deviation of the process

from the mean. The coefficient β is the speed of adjustment of the interest rate

towards its long-run level. The stochastic element σdW , which has a constant

instantaneous variance σ2 (that is, a variance per unit of time dt), causes the

process to fluctuate around the level α in an erratic, but continuous, fashion.

This model has many advantages, but it has also shortcomings. The main

advantage of this model is that it has an explicit solution. Since the distribution

of rt is normal then negative interest rates are possible and this is a major short-

coming of this model.

The solution of the stochastic differential equation (4.2.2) can be found as

(see [38])

rt = e−β(t−u)ru + α(1− e−β(t−u)) + σ

∫ t

u

e−β(t−s)dWs

where u ≤ t.

27



The conditional mean and variance of rt are:

E[rt|ru] = e−β(t−u)ru + α(1− e−β(t−u)) (4.2.3)

= α + (ru − α)e−β(t−u) (4.2.4)

V ar[rt|ru] = E{(σ
∫ t

u

e−β(t−u)dWu)
2|ru}

=
σ2

2β
(1− e−2β(t−u)).

for all u ≤ t. From the equation (4.2.3) we can say that according to Vasicek

model, the conditional expectation of the short rate is a weighted average of the

long-run mean and the last period short rate. It is apparent from equation (4.2.4),

when the current short rate is above the long-run interest rate then for the future

a decrease in short rate is expected, and when it is bellow the long-run interest

rate then an increase in the short rate expected. This situation is illustrated in

Figure 1. At the Point 1, it is expected that the future short rate will decrease.

When the current short rate is equal to long-run mean then it is expected that

future short rates remains at this level and such a case is illustrated at the Point

2 [16].

Figure 4.1: Ornstein-Uhlenbeck process for very short rate.
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4.2.1 STOCHASTIC VOLATILITY VASICEK MODELS

In the stochastic volatility Vasicek models, short term interest rate process

follows Vasicek model with stochastic volatility. For the volatility process, differ-

ent stochastic differential equations can be taken. For example;

Cotton, Fouque, Papanicolau and Sircar [8] in their study used the following

model:

drt = a(µ− rt)dt + f(Y (t))dWt

dYt = α(m− Yt) + dBt

where the stochastic volatility σt given by a non-negative function f(Yt). In this

model, the Brownian motions satisfy

dBt = ρdWt + ρ′dZt

where Wt and Zt are independent standard Brownian motions, i.e., the interest

rate and volatility are correlated, and ρ′ =
√

1− ρ2. Using this model, Cotton,

Fouque, Papanicolau and Sircar priced bond options.
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Chapter 5

STOCHASTIC VOLATILITY

VASICEK MODEL:

A NEW APPROACH

5.1 DERIVATION OF THE MODEL

In this section we constructed a stochastic volatility model using Vasicek

model.

Suppose that the short rate interest rate satisfies the mean-reverting Vasicek

model with stochastic volatility where volatility also satisfies the mean-reverting

Vasicek model, that is

drt = φ(b− rt)dt + σtdW1t (5.1.1)

dσt = γ(k − σt)dt + εdW2t (5.1.2)

where W1 and W2 are two independent Wiener processes and φ, b, γ and k are

constants. Here ε is the volatility of the volatility process.

Our aim is to estimate the parameters of the above model. In the application

part since we will use discrete data, then we need to use a discrete model. So, first

we need to discretisize this model. For discretization we will use Euler method.
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Applying the Euler method to (5.1.1) and (5.1.2) we get

rt+1 − rt = φ(b− rt)∆t + σt(∆t)1/2Z1t

σt+1 − σt = γ(k − σt)∆t + ε(∆t)1/2Z2t

where Z1t and Z2t are independent and identically distributed (i.i.d.) standard

normal distributions, i.e. Z1, Z2 ∼ N(0, 1), and ε is constant. If we take the

observations daily, i.e. ∆t = 1, and rearrange the equations we get

rt+1 = φb + (1− φ)rt + σtZ1t

σt = γk + (1− γ)σt−1 + εZ2t.

For simplicity, take α = φb, β = (1−φ), a = (1−γ), x = γk and ξt = εZ2t where

ξt is the innovation term. Then

rt+1 = α + βrt + σtZ1t (5.1.3)

σt = x + aσt−1 + ξt (5.1.4)

and we will work on these equations.

The volatility process (5.1.4) can be written in the form

σt = at

t∑

k=0

a−k(ξk + x). (5.1.5)
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We can show the equality of (5.1.4) and (5.1.5) as follows:

σt = at

t∑

k=0

a−k(ξk + x)

= at

t−1∑

k=0

a−k(ξk + x) + ξk + x

= a at−1

t−1∑

k=0

a−k(ξk + x)

︸ ︷︷ ︸
σt−1

+ξk + x

= x + aσt−1 + ξt.

Since Z2t has the standard normal distribution then ξt = εZ2t has a normal

distribution with zero mean and variance equal to ε2. Then the expectation of σt

is

E(σt) = E(at

t∑

k=0

a−k(ξk + x))

= at

t∑

k=0

a−kE(ξk + x)

= at

t∑

k=0

a−k(E(ξk) + E(x))

since ξk has zero mean and x is constant then

E(σt) = at

t∑

k=0

a−kx

= at(1 + a−1 + a−2 + ...... + a−t)x

= (1 + a1 + a2 + ...... + at)x

=
1− at+1

1− a
x
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and, the variance of σt is

V ar(σt) = E[(σt − E(σt))
2]

= E[(at

t∑

k=0

a−k(ξk + x)− at

t∑

k=0

a−kx)2]

= E[(atξ0 + at−1ξ1 + at−2ξ2 + ....... + a0ξt)
2]

since Zts are i.i.d. then ξts are i.i.d., so Cov(ξiξj) = 0 for i 6= j. Therefore

V ar(σt) = E[(atξ0)
2] + E[(at−1ξ1)

2] + E[(at−2ξ2)
2] + ....... + E[(a0ξt)

2]

= V ar(atξ0) + V ar(at−1ξ1) + V ar(at−2ξ2) + ....... + V ar(a0ξt)

= a2tV ar(ξ0) + a2(t−1)V ar(ξ1) + a2(t−2)V ar(ξ2) + ....... + a0V ar(ξt)

= a2tε2 + a2(t−1)ε2 + a2(t−2)ε2 + ....... + a0ε2

= [(a2)0 + (a2)1 + (a2)2 + ....... + (a2)t]ε2

=
1− (a2)t+1

1− a2
ε2.

If σt satisfies the equation (5.1.4) then |a| must be less than 1. Because if

|a| > 1 then the volatility will increase in time and it will tend to infinity. So,

the process of σt is stationary iff |a| < 1. Since |a| < 1 then the expectation and

variance of σt will converge to the asymptotic mean and asymptotic variance,

that is
1− at+1

1− a
x −→ x

1− a
as t −→∞

and
1− (a2)t+1

1− a2
ε2 −→ ε2

1− a2
as t −→∞.

To deal with the solution of this model we will use the asymptotic mean and the

asymptotic variance as the mean and the variance of the volatility process.

Let

σZ = Y.

Then for a given σ = s the distribution of Y is normal with mean 0 and variance
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s2, i.e. Y ∼ N(0, s2). So

f(Y |σ = s) =
1√
2πs

exp(− y2

2s2
)

where f(Y |σ = s) is the conditional density of Y given σ = s. Since the con-

ditional distribution of Y and the distribution of σ are Gaussian, and using the

conditional density formula

f(Y, σ) = f(Y |σ)f(σ)

and since

f(Y ) =

∫ ∞

−∞
f(Y |σ)f(σ)dσ

then the density of Y is

∫ ∞

−∞

1√
2πs

exp(− y2

2s2
)

1√
2πΣ

exp(−(s−M)2

2Σ2
)ds (5.1.6)

or ∫ ∞

−∞

1√
2πs

exp(− y2

2s2
)

1
√

2π
√

ε2

1−a2

exp(−(s− x
1−a

)2

2ε2

1−a2

)ds. (5.1.7)

5.2 REPRESENTATION OF THE DENSITY

IN A SERIES FORM

Let the integral (5.1.7) be denoted by I. Setting

1

2
y2 = m2,

2ε2

1− a2
= c2,

x

1− a
= b (m ≥ 0, c > 0)

we have

I =

√
2

2πc

∫ ∞

−∞

1

s
exp(−m2

s2
) exp[−(

s− b

c
)2]ds.
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If we introduce the variable t = s
c

and put m
c

= λ, b
c

= µ we get

I =

√
2

2πc

∫ ∞

−∞

1

t
exp(−λ2

t2
) exp[−(t− µ)2]dt.

As ∫ ∞

−∞
f(t)dt =

∫ ∞

0

[f(t) + f(−t)]dt

the integral takes the form

I =

√
2

πc
exp(−µ2)

∫ ∞

0

1

t
exp(−t2 − λ2

t2
) sinh(2µt)dt.

Let

A(λ, µ) =

∫ ∞

0

1

t
exp(−t2 − λ2

t2
) sinh(2µt)dt.

In view of the expansion

1

t
sinh(2µt) =

∞∑
n=0

(2µ)2n+1

(2n + 1)!
t2n

we have

A(λ, µ) =

∫ ∞

0

exp(−t2 − λ2

t2
){

∞∑
n=0

(2µ)2n+1

(2n + 1)!
t2n}dt.

Consider the series with general term

Un = exp(−t2 − λ2

t2
)
(2µ)2n+1

(2n + 1)!
t2n.

As Un ≥ 0, the series can be integrated term by term, giving

A(λ, µ) =
∞∑

n=0

(2µ)2n+1

(2n + 1)!
An(λ)

with

An(λ) =

∫ ∞

0

exp(−t2 − λ2

t2
)t2ndt (n = 0, 1, 2, .....).
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The integral I then becomes

I =

√
2

πc
exp(−µ2)

∞∑
n=0

(2µ)2n+1

(2n + 1)!
An(λ). (5.2.8)

It can be shown, by differentiation under the integral sign, that

A′
n(λ) = −2λAn−1(λ) (n = 1, 2, 3, .....)

with

A0(λ) = c exp(−2λ) (λ ≥ 0).

We thus obtain

An(λ) =

∫ λ

0

−2tAn−1(t)dt + Cn

with

Cn = An(0) =
1

2
Γ(n +

1

2
) =

(2n− 1)!!

2n

√
π

2
(−1!! = 1).

Knowing A0(λ) and letting succesively n = 1, 2, 3, ..... in the above recurence

formula all the An(λ)s can be determined. Then using these An(λ)s we can

calculate the expression (5.2.8), so we can get the density of Y = σZ.
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Chapter 6

PARAMETER ESTIMATION

AND APPLICATIONS

In this chapter, the estimates of our model will be derived using method of

moments. These estimates will then be used to establish term structure of interest

rates in Turkey.

6.1 PARAMETER ESTIMATION USING

METHOD OF MOMENTS

Consider the model we derived in the previous chapter:

rt = α + βrt−1 + σt−1Z1t

σt−1 = x + aσt−2 + ξt−1.

From the first equation we get

σt−1Z1t = rt − α− βrt−1. (6.1.1)

Taking the expectation of both sides we have

E(σt−1Z1t) = E(rt − α− βrt−1).
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Since any expectation can be written in the form of expectation of conditional

expectation and since σt−1 is Ft−1 measurable then

E(σt−1Z1t) = E[E(σt−1Z1t|Ft−1)]

= E[σt−1E(Z1t|Ft−1)]

= 0.

Thus,

E(rt − α− βrt−1) = 0. (6.1.2)

If we take the square of both sides in equation (6.1.1) and then take the expec-

tation of both sides we get

E(σ2
t−1Z

2
1t) = E[(rt − α− βrt−1)

2].

Since

E(σ2
t−1Z

2
1t) = E[E(σ2

t−1Z
2
1t|Ft−1)]

= E[σ2
t−1E(Z2

1t|Ft−1)]

= E(σ2
t−1)

then

E[(rt − α− βrt−1)
2] = E(σ2

t−1). (6.1.3)

Remark 6.1.1. Let Z be a random variable with standard normal distribution,

i.e. Z ∼ N(0, 1), Then

E(Zt) =

{
(t− 1).(t− 3).....5.3.1 for t even

0 for t odd

Taking the third and fourth powers and then the expectations of both sides
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in (6.1.1) and using the above remark we get

E[(rt − α− βrt−1)
3] = 0 (6.1.4)

E[(rt − α− βrt−1)
4] = 3E(σ4

t−1) (6.1.5)

E(σ2) and E(σ4) are the second and fourth moments of σ, respectively. Thus, we

can calculate these moments using moment-generating function for σ. From the

previous chapter we know that σ has the normal distribution with mean M = x
1−a

and variance Σ2 = ε2

1−a2 . Therefore, the moment-generating function for σ is

v(t) = exp{Mt +
Σ2t2

2
}.

Using this function we can find that

E(σ2) = v(2)(0) = M2 + Σ2

and

E(σ4) = v(4)(0) = M4 + 3Σ4 + 6Σ2M2.

Thus, we have the following system of equations:

(∗)





E[(rt − α− βrt−1)] = 0

E[(rt − α− βrt−1)
2] = M2 + Σ2

E[(rt − α− βrt−1)
3] = 0

E[(rt − α− βrt−1)
4] = 3(M4 + 3Σ4 + 6Σ2M2)

The solutions of this system of equations are the estimates of our model’s param-

eters.

6.2 APPLICATIONS

Data:The short rate interest rate (1-day) in Turkey for the period June, 1,

2001 to June, 1, 2004. Nominal interest rates were used. Interest rates were
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derived from the rates of treasury bills using Nelson-Siegel method.

First of all we checked whether the data have autocorrelation or not. For this

we applied Ljung-Box Q-statistic and the results for this test are as follows:

H pValue Qstat CriticalValue
lbqtest 1 0 1.4400e+004 31.4104

Table 6.1: Ljung-Box Q-Statistic

In this test the null hypothesis is ”H0=there is no autocorrelation”. Since the

results give H=1 then we reject the null hypothesis.

Also, we applied the Arch Test to the data and we gave the results of this test in

the following table:

H pValue ARCHstat CriticalValue
archtest 1 0 775.1894 3.8415

Table 6.2: Arch Test

Since the results give H = 1 then we reject the null hypothesis (H0 =There

is no ARCH effect) of the Arch Test.

From the above tests we conclude that the data have autocorrelation, so it is

convenient to work on.

We estimated our model’s parameters using the equation system (∗). We made

constrained optimization using Matlab function ”fmincon”. We constructed our

objective function by getting 4 equations which equal to 0 from the (∗) and then

summing up the absolute values of these expressions. Our constraints are |b| < 1,

M > 0 and Σ > 0. We take M > 0 because using the series form of the density

function of σZ, i.e., from the equation (5.2.8), we can conclude that x > 0 which

indicates M > 0. Results of the constrained optimization are given in the follow-

ing table:
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α β M Σ
8.1299 0.7901 2.7124 1.3879

Table 6.3: Parameter Values

The linear regression model which takes volatility constant gives α = 0.0401 and

β = 0.9976. Our stochastic volatility model showed that the parameter β is not

very close to 1 in contrast to the linear regression model with constant volatility.

After filtering the volatility it is obtained that the β parameter is about 0.79 for

our data.

Since M = x
1−a

and Σ = ε√
1−a2 then

0.7901 =
x

1− a
=⇒ x = 0.79(1− a)

and

1.3879 =
ε√

1− a2
=⇒ ε = 1.3879(1− a2)1/2.

So, the volatility process of our model is

σt = 0.79(1− a) + aσt−1 + 1.3879(1− a2)1/2Zt.

By searching for the value of a which minimizes

T∑
t=1

(σobserved − σmodel)
2

with constraint |a| < 1 we can find a = 0.9965. Thus

x = 0.79(1− a) = 0.0095

ε = 1.3879(1− a2)1/2 = 0.1160
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Therefore, our model for the data of interest rates in Turkey is

rt+1 = 8.1299 + 0.7901rt + σtZ1t

σt = 0.0095 + 0.9965σt−1 + 0.1160Z2t.

6.2.1 RESULTS FOR ARCH AND GARCH

MODELS

We applied ARCH and GARCH models to our data and we gave the results

in this section. In the following table we give the Akaike Information Criteria

(AIC) and Bayesian Information Criteria (BIC) values for some ARCH processes.

ARCH(1) ARCH(2) ARCH(3) ARCH(4)
AIC 5187.8 5188.6 5190.5 5192.5
BIC 5201.7 5207.2 5213.8 5223.2

Table 6.4: AIC and BIC for ARCH models

AIC and BIC are used for model order selection. When using either AIC or BIC,

models that minimize the criteria are preferred. AIC and BIC support ARCH(1)

among ARCH models for our data.

The values of AIC and BIC for some GARCH models are given in the following

table.

G(1,1) G(2,1) G(1,2) G(2,2) G(1,3) G(2,3) G(3,3)
AIC 5188.5 5190.5 5190.5 5192.2 5192.5 5194.4 5196.5
BIC 5207.2 5213.9 5213.9 5220.5 5220.5 5227.2 5233.8

Table 6.5: AIC and BIC for GARCH models

AIC and BIC support GARCH(1,1) among GARCH models for our data.

Comparing AIC and BIC values for ARCH and GARCH models we can conclude

that ARCH(1) is the most appropriate model for our data.
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Using ARCH(1) and GARCH(1,1) models we can find the following parameter

values for our data.

α0 α1 β1

ARCH(1) 0.2657 1
GARCH(1,1) 0.2107 0.8948 0.1052

Table 6.6: Parameter values for ARCH(1) and GARCH(1,1)

So, the ARCH(1) model is

σ2
t = 0.2657 + ε2

t−1

and the GARCH(1,1) model is

σ2
t = 0.2107 + 0.8948ε2

t−1 + 0.1052σ2
t−1.

6.2.2 TESTING THE PERFORMANCE OF OUR MODEL

In this section we tested the out of sample performance of our stochastic

volatility model against ARCH and GARCH models. We used 10-days volatility

forecasts of the models. The forecasts of the models and the observed volatility

(we took innovations as the volatility) are given in the following table:

t=0 t=1 t=2 t=3 t=4 t=5
SV 18.9445 18.8877 18.8311 18.7747 18.7185 18.6625

ARCH(1) 18.9445 18.9515 18.9585 18.9655 18.9725 18.9795
GARCH(1,1) 18.9445 18.9753 18.9808 18.9863 18.9918 18.9973
OBSERVED 18.9445 18.7956 18.1177 18.2731 18.4042 18.5750

t=6 t=7 t=8 t=9 t=10
SV 18.6066 18.5510 18.4956 18.4403 18.3853

ARCH(1) 18.9865 18.9935 19.0005 19.0075 19.0145
GARCH(1,1) 19.0028 19.0083 19.0138 19.0193 19.0248
OBSERVED 18.7002 18.8284 18.8387 18.8492 18.6372

Table 6.7: Volatility forecasts
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Figure 6.1: Volatility forecasts and observed data

The sum of squares of the deviations from the observed volatility for each model’s

forecasts are as follows:

SV ARCH(1) GARCH(1,1)∑10
t=1(σobserved − σmodel)

2 1.3095 2.0001 2.1433

Table 6.8: Sum of squared deviations

So, our stochastic volatility model gives closer predictions to the observed volatil-

ity than ARCH and GARCH models for our data in the studied time interval.
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Chapter 7

CONCLUSIONS

In this study we focused on nonconstant volatility models, especially on stochas-

tic volatility models. We introduced stochastic volatility and ARCH processes and

gave some parameter estimation methods. Using Vasicek model we constructed

a stochastic volatility model and then we worked on this model. We derived the

density function for the stochastic element of the interest rate process. To make

the calculations easier we reduced the density function from the integral form to

a series form. For the estimation of parameters we used the method of moments.

In the application part we used the interest rate data of Turkey. We calculated

the parameters of our stochastic volatility model and the parameters of ARCH

and GARCH models. Then, we tested the out of sample performance of our

model against the ARCH and GARCH models. The results showed that in the

studied time interval our stochastic volatility model gives closer predictions to

the observed volatility than ARCH and GARCH models for our data.
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