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ABSTRACT 
 

 

COMPUTER AIDED MODELING OF WRINKLING AND ITS PREVENTION 

 

 

PİŞKİN, Mehmet Ali 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Bilgin KAFTANOĞLU 

September 2005, 111 Pages 

Deep-drawing operations are performed widely in industrial 

applications. It is very important for efficiency to achieve parts with no 

defects. Wrinkling is a kind of defect caused by stresses in the flange part of 

the blank during metal forming operations. It is required that the flange of a 

workpiece in deep drawing operation should deform in its plane without 

wrinkling otherwise it will impair the quality of the product. To avoid wrinkling 

appropriate blank-holder force or drawbead can be applied. 

In this work, finite element method is used to obtain the wrinkling 

behavior. A four nodded five degree of freedom shell element is formulated. 

Isotropic elasto-plastic material model with Von Mises yield criterion is used. 

By using this shell element, the developed code can predict the bending 

behavior of workpiece besides membrane behavior. Simulations are carried 

out with four different element sizes and two different shapes (circular and 

rectangular). The thickness strain and nodal displacement values obtained 



 v

are compared with results of a commercial finite element program and 

results of previously conducted experiments.  

Keywords:  Wrinkling, Deep Drawing, Sheet Metal Forming, Finite 

Element Method, Computer Aided Metal Forming. 
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ÖZ 
 

 

BURUŞMANIN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE ÖNLENMESİ 

 

 

PİŞKİN, Mehmet Ali 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Bilgin KAFTANOĞLU 

Eylül 2005, 111 Sayfa 

Derin çekme operasyonları endüstriyel uygulamalarda yaygın olarak 

kullanılmaktadır. Verimlilik için hatasız parçalar elde etmek çok önemlidir. 

Buruşma, metal şekillendirme operasyonunda taslağın flanj bölgesindeki 

gerilmelerden kaynaklanan bir hata tipidir. Derin çekme operasyonunda iş 

parçasının flanj bölgesinin bulunduğu düzlemde deforme olması 

gerekmektedir. Aksi takdirde, bu elde edilecek ürünün kalitesini düşürücü bir 

faktör olacaktır. Buruşmaları önlemek için uygun baskı plakası kuvveti ya da 

pot çemberi kullanılabilir. 

Sonlu elemanlar metodu kullanılarak buruşma davranımları elde 

edilmiştir. Dört nodlu, beş serbestlik derecesine sahip olan bir kabuk elemanı 

formüle edilmiştir. Von Mises akma kriteri ile izotropik ve elasto-plastik 

malzeme modeli kullanılmıştır. Geliştirilen yazılım, bu kabuk elemanını 

kullanarak parçanın membran davranımlarının yanında bükülme 

davranımlarını da elde edilebilir. Dört farklı eleman boyu ve iki farklı şekil 
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(yuvarlak ve dikdörtgen) için simülasyonlar yapıldı. Elde edilen kalınlık 

gerilinleri ve nod deplasmanı sonuçlar ticari bir sonlu eleman programının ve 

önceden gerçekleştirilmiş deneylerin sonuçlarıyla karşılaştırılmıştır.  

Anahtar Kelimeler:  Buruşma, Derin Çekme, Metal Levha Şekillendime, 

Sonlu Elemanlar Yöntemi, Bilgisayar Destekli Metal 

Şekillendirme 
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CHAPTER 1 

INTRODUCTION 

In manufacturing, there are four main methods to achieve a product 

[1]. One of them is casting, in which the molten material is poured into a die. 

So the product is directly shaped in one step. Complex shapes, however, are 

hard to produce with this method, sometimes it is impossible. Another 

method is metal cutting processes. In this method, material is removed from 

the original piece by machining. In metal cutting, a lot of material is wasted. 

Besides, there may be some difficulties to achieve a complex shape. Tools 

must be appropriately selected. Manufacturing can also be done by material 

addition, such as welding. This type of manufacturing is not applicable to all 

types of materials. The fourth method is metal forming. There are some 

advantages of metal forming on other techniques. There is little material 

wasted in metal forming. Also, very complex shapes can be achieved and 

the material strength is improved. The disadvantage of metal forming, 

however, is that several steps may be required to achieve the final product. 

There are methods in metal forming: direct and indirect extrusion, 

drawing of tubes and wires, rolling, forging, deep-drawing, etc… Most of 

these methods are widely used in industry. These methods can be used to 

manufacture a wide range of products. For example, extrusion can be used 

to manufacture complex shapes from a block of material. Using a mandrel, a 

tube can also be produced by forward extrusion. Rolling can be used to 

produce sheet metal. 

 



 

Figure 1.1 Automotive parts manufactured using sheet metal forming 

 

Deep-drawing is a metal forming method, which is used to 

manufacture products from sheet metal. It is a very common method in the 

industry for the applications requiring sheet metal. Very complex shapes can 

be achieved using deep-drawing. Deep-drawing is used to produce many 

different products, such as automotive parts, cans, sinks, housing, etc… The 

application areas are getting larger everyday. Besides, the needs of current 

applications are changing. For example, in automotive industry, general 

trend is to use thinner metals and some polymers. Therefore, it is very 

important to continue the researches in this area to make the deep-drawing 

process capable of satisfying these new needs. 

 

 

Figure 1.2 Several sheet metal forming methods 
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In the deep-drawing process, a blank is placed on a die. A punch is 

used to draw the blank. Almost in every application, a blank-holder is used. 

These are the basic tools of deep-drawing. Selection of appropriate tools is a 

very important point for the success of the process. The shape of the final 

product directly depends on the shape of punch and die. The corner radii of 

die and punch have an important effect on the process. For example, punch 

load increases with sharper die corner radius. 

 

 

Figure 1.3 Deep-drawing 

 

Deep-drawing process must be investigated in five parts for five 

different regions. The explanation of what happens in which region is as 

follows: 

 The region between the die and the blank-holder is called as the 

flange region. This region covers the part from the rim to the start of die 

curvature. In this region pure radial drawing occurs. There is a 

circumferential compressive stress and a radial tensile stress state in this 

region. This is the only region that the material gets thicker. 

 3
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 Over the die profile, sliding and bending of the material occurs. In 

this region, in the radial direction tensile stresses occurs, whereas 

compressive stress is observed in the circumferential direction. As 

mentioned above, radius of the curvature of die profile has effect on the 

punch load. For a sharper radius, more plastic bending work is done, 

therefore the punch load increases. In this region, material gets thinner due 

to bending under tensile stresses in the radial direction. 

 In the region between die and punch, generally there is no contact 

of the material with either of punch and die. This is a transition region 

between die and punch. In this region radial tensile stresses act on the 

material. Material gets thinner and tearing or necking can take place in this 

region. 

 Bending and sliding of the material takes place over the punch 

profile. As the radius of die corner is, radius of punch profile is an important 

parameter for deep-drawing. Selection of this radius can cause or prevent 

necking and tearing of material in this region. Again thinning of material takes 

place. Biaxial tensile stresses act in this region. 

 Over the punch head, sliding and stretching of the material occurs. 

In this region, thinning of the material occurs. The limiting drawing ratio 

(LDR) depends on the load carrying capacity of this region. The maximum 

load carrying capacity is determined by the plastic instability taking place in 

this region. However, plastic instability depends on the friction properties 

between the punch and material. Equ-biaxial tensile stresses act in this 

region. 



 

Figure 1.4 Several defect types in deep-drawing 

 

As described above, there are several failure types in a deep-drawing 

operation. Different failures occur in different regions. As stated above, 

necking and tearing generally occur over the punch head and punch profile 

and between punch and die. In flange region, however, a different failure 

type, wrinkling, can be observed. On a completely drawn part, earing can 

also be seen on the walls of the cup due to planar plastic anisotropy. 

Tearing and necking are caused by the tensile stresses and they are 

types of tensile instabilities. Wrinkling, however, differs from these failure 

types. Wrinkling, occurring in the flange region, takes place under pure radial 

drawing. As stated above, there is a circumferential compressive stress state 

in the flange region. When the radial drawing stress exceeds a certain value, 
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compressive stress in the circumferential direction becomes too high, so 

plastic buckling occurs. This plastic buckling gives a material a wavy shape. 

 

 

Figure 1.5 Sample products manufactured using deep drawing 

 

Wrinkling is an undesired deformation, so it must be prevented. There 

are two different approaches for prevention of wrinkling. The first one is using 

blank-holder. In this approach, a flat tool set is used to prevent the collapse 

of the material into waves. Two types of blank-holding application exist: 

clearance type blank-holders, pressure type blank-holders. In clearance 

blank-holding, the clearance between the blank-holder and the die is kept at 

a constant value. Therefore, the material is kept at a constant thickness, and 

the wave development is prevented. This can be assumed as a plane strain 
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case. In pressure type blank-holding, some mechanism is used to arrange 

the clearance between blank-holder and die, so as the material gets thicker, 

blank-holder plate can move freely to supply necessary space for thickness 

of material. The force needed to prevent wrinkling is calculated and applied 

with the blank-holder plate to the material. So wrinkling is prevented, 

whereas the material is able to get thicker. Neglecting the blank-holder force, 

this case can be assumed as a plane-stress problem. 

Second way of prevention of wrinkling is using drawbeads. In 

drawbead applications, material is forced to flow through a groove with the 

help of the male of the groove on the blank-holder. When material moves 

though the groove, compressive stresses decrease because of the tensile 

forces acting. So wrinkling is prevented by reducing the compressive 

stresses below the critical value. 

Prediction of wrinkling is a very important process for a deep-drawing 

operation. Knowing if the part wrinkles or not, completely affects the 

selection of tools used in manufacturing. Unnecessary precautions taken can 

bring undesired results. For example, using blank-holder increases the 

punch load. In total, expenses of process may increase. On the other hand, if 

wrinkling cannot be predicted, precautions cannot be taken, so product 

quality decreases, and mostly, produced parts becomes unacceptable. So 

the designer should know about the wrinkling behavior of a given blank. 
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CHAPTER 2 

SURVEY OF LITERATURE 

A survey of previous work held on sheet metal forming and especially 

wrinkling in deep drawing is presented. Besides the researches on those 

areas, studies on solution methods like finite element method is investigated. 

The researches started very early in both areas, especially in sheet metal 

forming, in history, but work on wrinkling is seen to be done mostly in recent 

years. This is because as sheet metal types used in industry become thinner, 

wrinkling appears as a primary problem, the need for research on this area 

increases. In this chapter, these researches are revised. 

Kaftanoğlu [2] developed a method for flange wrinkling in 

axisymmetrical deep drawing using the energy method. In this approach, 

wrinkling occurs if the plastic work done for deep drawing is higher than the 

plastic work done for wrinkling. For this purpose, using von Mises yield 

criteria, a plastic analysis is done for the flange part of the blank, assuming 

plane stress conditions. For the calculation of work done for wrinkling, 

wrinkles are assumed to be a sine curve in shape. So the amplitude of the 

wrinkles are calculated, then using the plastic bending moment, work done 

for wrinkling is obtained. Using these procedures, plastic work versus 

reduction strain curves are obtained for both deep drawing and wrinkling. 

When the slope of the wrinkling curve is greater than deep drawing curve, 

wrinkling does not occur, since the energy required is greater than deep 

drawing. Considering the peaks of the wrinkles as plastic hinges, the blank-

holder force needed to suppress wrinkling is found in terms of wave number. 

Experiments are conducted to verify the numerical results with several 
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materials and for several initial blank diameters. Experimental results are in 

very good agreement with numerical results. 

Ramaekers et al. [3], made a research on the deep drawability of a 

round cylindrical cup. The limiting drawing ratio is tried to be related with 

some process parameters like anisotropy factor, strain hardening exponent, 

etc… Upper and lower bound methods are used to obtain theoretical models. 

Using the theoretical model proposed for deep drawing, estimation for the 

limiting drawing ratio is tried to be achieved. Some experiments are 

conducted to verify the model developed. Comparing the results, it is seen 

that an agreement between the model for deep drawing and experiments. 

However, a precise prediction of the limiting drawing ratio could not be 

achieved. The friction coefficient is seen to be an important factor for the 

drawability of large size products. The study showed that decreasing friction 

coefficient, increases limiting drawing ratio.  

Kang and Im [4], in 1997, proposed an iterative scheme for finite 

element analysis of wrinkling for anisotropic and isotropic flexible 

membranes or fabric structures. They formulate a wrinkling criterion using 

the one developed by Roddeman et al. based on the principal stresses and 

strains. Wrinkling initiation is predicted by comparing the second Piola–

Kirchoff stress and Green Lagrangian strain. They developed a finite element 

code by just applying minor differences to the existing total Lagrangian codes 

for membranes. Numerical examples for torsion of a membrane and quasi–

static inflation of an automobile airbag are performed. 

Cao and Boyce [5] examined wrinkling and tearing type of failures in 

sheet metal forming. For prediction of wrinkling, they used a method 

proposed by Cao and Boyce. The criterion is based on the energy 

conservation and minimum work to suppress the wrinkling. Total strain 

energy values for a perfect plate and for buckling plate are recorded. Then 
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the force/pressure needed to suppress the wrinkling is calculated using the 

energy difference and wrinkling amplitude. In prediction of tearing, existing 

forming limit diagrams are used in correspondence with the local strain 

histories near possible tearing regions. They also developed a technique 

named variable binder force in which blank–holding load varies in controlled 

manner, not a constant blank–holding load was used. A control algorithm is 

proposed for variable binder force technology. Two examples are used: 

conical cup drawing and square cup drawing. Finite element models of both 

cases are analyzed by commercial program ABACUS. Comparison with the 

experimental results shows that the method is capable of predicting wrinkling 

and tearing. The control algorithm for variable binder force is tried in both 

cases, and 16% extra cup forming height is provided for conical cup drawing. 

Yang et al. [6] searched a way to predict the initial blank shape for an 

operation without fracture and wrinkling. A two stage method is proposed for 

optimum blank design. In the fist stage, they used ideal forming theory, 

developed by Chung and Richmond, to make an initial estimate for the blank 

shape. The internal plastic work is calculated using the effective stress and 

effective strain that is defined using Hill’s theory. Then this work is optimized 

in the initial blank stage, so the optimum blank shape is obtained. However, 

friction forces, blank–holding force, lubrication, etc. are not considered, so 

the blank shape is not finalized in this stage. In second stage, using the 

obtained blank shape, a deformed shape is calculated with finite element 

analysis. As the initial shape is not completely true, there are some shape 

errors in the deformed shape. Using a deformation path iteration method, 

shape errors are tried to be minimized to achieve the optimum blank shape. 

The finite element code used is developed by Yang et al. A square cup 

drawing is used to obtain some numerical results. It is shown that after two 

modifications to the blank shape obtained by ideal forming theory, the 

deformed shape almost completely matches with the target shape. 
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Cao [7], in 1999, developed a method for the prediction of wrinkling 

using the energy method. In this method, wrinkling criterion proposed by Cao 

and Boyle [5] is used. This criterion assumes that the initiation of wrinkling is 

a local phenomenon and depends on the material properties, stress state 

and sheet thickness. Therefore, the flange wrinkling problem in deep drawing 

is reduced to the wrinkling problem in a rectangular plate. Then, as stated 

above, using the energy difference, the binder pressure is determined. Cao, 

proposed an analytical model for flange wrinkling to calculate the energy 

values, instead of calculating them by experimental means (using strain 

histories) or finite element analyses. The material is modeled as planar 

isotropic. Calculating the energy values with the help of this analytical model, 

binder pressure is given by previously developed wrinkling criterion. Then 

analytical model for side wall wrinkling is also developed. Results obtained 

using analytical model for flange wrinkling are compared with the numerical 

results of the previous work, which were validated by experiments. There is a 

good agreement between analytical and numerical results, especially in the 

prediction of critical buckling stress. Experiments held for side wall wrinkling 

show that cup forming height prediction of the analytical solution is excellent. 

Rosochowski et al [8] simulated the wrinkling behavior in deep 

drawing of conical cups. In this research, a comparison is made between the 

static–explicit and dynamic–explicit finite element analyses. For the 

simulations, commercial finite element programs are used. For static–explicit 

analysis ITAS3D is chosen, whereas for dynamic–explicit analysis 

ABAQUS/Explicit is preferred. As this is a comparative study, the simulation 

parameters are tried to be chosen similar, e.g. using the same finite element 

mesh. However, because of the differences between approaches and 

between the programs, there are some parameters that do not match 

exactly, e.g. properties of elements. The simulations are held for different 

parameters. It is seen that there are quiet important differences between the 

results of two approaches. The number and location of the wrinkles are 

different for two programs. Actually the results with different parameters for 
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the same program don’t match. Changing the mesh, e.g. number of 

elements, changes the results drastically. With ITAS3D, with one of the 

meshes used, wrinkling doesn’t occur. Experiments are also made to verify 

the results of both programs. The number, distribution and shape of the 

wrinkles, don’t match with the experimental results for both programs. 

In 2001, Yang et al. [9, 22] analyzed the wrinkling behavior of the 

deep drawing of an elliptical and circular cup using finite element analysis. 

Bifurcation theory is introduced for the finite element analysis. Finite element 

formulation is based on the incremental deformation theory and elastic–

plastic material modeling. The stiffness matrix vanishes at the initiation of 

wrinkling. Wrinkling behavior is analyzed by the introduction of the 

continuation method, proposed by Riks, into the elastic–plastic finite element 

method. A two–face–contact scheme and blank–holder control algorithm are 

employed. Five analyses are performed for different parameters, for elliptical 

cup drawing. The changing parameter is the minor axis length of the ellipse. 

So the aspect ratio is able to be investigated. In two of these analyses 

wrinkling took place. It is seen that wrinkling is severe near the major axis. 

Analyses show that with the increasing aspect ratio, fracture takes place 

before the wrinkling initiates. For cylindrical cup drawing process, several 

experiments are conducted for different blank–holder forces. It is shown that, 

mesh is effective on the analysis. Effects of material properties and friction 

are also observed. Authors stated that, results are in good agreement with 

experimental data considering the difficulties and sensitivity of the wrinkling 

analysis. 

El–Morsy et al. [10] analyzed the warm deep drawing of magnesium 

alloys. Two models are used to search the effect of heat transfer on 

drawability. In the first model, punch is assumed to be at room temperature, 

whereas blank–holder and die are heated to 573 K. The blank is at room 

temperature initially. So heat transfer occurs among die, blank, blank–holder 

and punch. In the second model, however, besides die and blank–holder, 
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punch and blank is also at 573 K, therefore no heat transfer takes place. Two 

different punch speeds are used to investigate the effect of punch speed on 

the temperature distribution. In finite element modeling, a circular blank is 

generated using 4 node 2 dimensions quadrilateral axisymmetric elements in 

two layers, and blank is generated using shell elements. Die and punch are 

modeled as rigid surfaces. It is seen that in the first model, localized thinning 

occurs in the early stages of the process. In the second model, however, 

blank is drawn successfully. The cup resultant height is greater in the second 

model. So the effect of heat transfer on deep drawability of magnesium 

alloys seems to be in positive way. Comparing two punch speeds, with the 

lower punch speed a cup with a greater height is obtained. This is concluded 

that more heat transfer can occur with a lower punch speed. No experiments 

are conducted to verify the numerical results. 

Deshpande and Nalawade [11] developed a program for the analysis 

of deep drawing of cylindrical cups. The analysis is based on the slab 

method. The model takes into account the effect of bending and unbending, 

thickness change, and friction. Strain hardening is considered for the 

modeling of material, but anisotropy is neglected. Experiments are 

conducted with pure aluminum blanks to compare the outputs of the program 

with empirical data. The program can calculate the stress–strain distribution 

in several regions, and can plot the punch load and punch travel diagram. 

Radial stress distributions are compared with results of Woo (1964), and 

seem to match almost completely. The maximum punch load against punch 

travel output deviates less than 10% form the results of experiment, and with 

increasing blank diameter deviation decreases drastically. These outputs are 

also compared with the finite element analysis of Huang and Chen (1996), 

and the results match. 

Alves et al. [12] studied the effect of mesh refinement on the 

prediction of wrinkling and earing. In the simulations, circular blanks of 1 mm 

thickness and 90 mm radius for aluminum alloy and 105 mm radius for mild 
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steel are drawn. In this study 8 node elements are used. Four different in–

plane mesh refinements are applied. These refinements are based on the die 

profile radius, element size to die radius ratios of 1.00, 0.75, 0.50, 0.25 are 

chosen. Also, all refinement schemes are carried out with 1, 2 and 3 layers of 

finite elements. For the earing profile, number of layers has negligible effects. 

However, the earing profile highly depends on the refinement. The radius of 

the outer profile decreases about 10% when finite element ratio decreases 

from 1.00 to 0.25. In wrinkling prediction, authors concluded that mesh 

refinement must be better than the earing profile simulation. 

Cho and Yang [13] proposed a mesh refinement algorithm for sheet 

metal forming analysis. In opposite to traditional mesh refinement algorithms, 

no transition elements are produced, so higher accuracy is able to be 

achieved. In the simulations triangular shell elements are used. Comparing 

with traditional algorithms, no sudden increase in mesh number occurs in this 

scheme. This reduces the computational time. 

Selman et al. [14] studied the adaptive mesh refinement in prediction 

of wrinkling. In this work, the analysis of Hutchinson (1985) and its extension 

by Neale (1989) is used. However, as Hutchinson’s approach is limited to 

contact free wrinkling, a new method is proposed by the authors for wrinkling 

with contact (geometric wrinkling indicator). For the error estimation, the 

study presented by Bonet (1994) is applied. Simulations of production of a 

hemispherical cup are performed for both contact free wrinkling using 

Hutchinson’s approach and wrinkling with contact using geometric wrinkling 

indicator. It is concluded that usage of an adaptive mesh refinement is 

necessary for decreasing the computational time, however, for proper 

approximation of the curvatures and thickness, an error estimation routine 

must be applied. 
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Lejeune et al. [15] studied on the prediction of wrinkling in metal 

forming. A theory is developed based on the formulation of Nordlund and 

Häggblad. In this approach wrinkling is characterized by strong local out of 

plane rotations. Then the developed theory is implemented in the finite 

element code. To calculate the incremental deformations, updated 

Lagrangian formulation is used. In this work LMARC is used as a finite 

element program. To show the validity of the theory, Yoshida Buckling Test 

is simulated by the finite element code. Besides, simulations of stamping 

process are performed for wrinkling prediction in metal forming operations. 

Numerical results obtained for all simulations are not satisfactory. Some 

predictions are done by the authors for the reasons of such results, and it is 

told that a new criterion is being studied by the authors considering the 

problems of this theory. 

Nakamura et al. [16] studied the optimum design of drawbead in sheet 

metal forming using finite element method and descritized optimization 

methods. Response surface method is used to increase optimizing 

efficiency. Parameters for this design procedure are chosen as bead length 

and bead position. A dynamic explicit finite element code using an updated 

Lagrangian formulation is used. Blank is modeled using shell elements. For 

material modeling, elasto–plastic behavior is chosen, where strain hardening 

is taken into account according to Swift’s law. Experiments are conducted for 

the verification of the results of numerical analysis. A rectangular and 

stepped cup production is simulated and experimentally carried out. It is 

concluded that as the bead length increases, the material becomes more 

resistive, and wrinkling tendency decreases. With the increasing bead length, 

however, the strains become larger and thickness decreases. Comparing 

with experimental results, it is seen that the developed system can determine 

the suitable bead design. 

Weili et al. [17] proposed a simplified method for the simulation of 

wrinkling. Based on a study about contact algorithm by the authors, later 
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steps of the contact algorithm such as modification of node position and 

implementation of the boundary conditions are presented. In stead of 

applying a blank–holder force, blank–holder gap is used. To verify the results 

of simulation, for processes are simulated and corresponding experiments 

are conducted: square cup drawing, drawing of hemispherical part, drawing 

of a cylindrical cup and production of a real auto panel, rear–side frame. For 

these examples, medium carbon steel is chosen as blank material. No initial 

imperfection is applied. Comparing the results of experiments with the 

numerical results, they seem to be in agreement. Authors concluded that, the 

presented method could reflect the wrinkling behavior successfully. 

Cao and Wang [18] presented an analytical model for plate wrinkling 

under tri–axial loading. The model is based on the wrinkling criterion 

developed by Cao and Boyce formerly. However, Cao and Boyce used their 

criterion combined with the finite element method, whereas Cao and Wang 

used the criterion in an analytical approach. The critical buckling stress and 

wavelength are treated as functions of normal pressure. The stress and 

wavelength are calculated combining the energy conservation and plastic 

bending theory. The obtained results match with the results of Cao and 

Boyce’s numerical approach. Results are also in agreement with 

experimental data of conical cup drawing and square cup drawing. When 

compared according to computational time, the analytical method has a very 

important advantage over the numerical method. Numerical computation 

requires more than two hours, where less than one second is enough for the 

analytical method to find the same results using the same parameters and 

same computer. Therefore computational cost becomes very low compared 

to finite element analysis. 

Chu and Xu [19] studied on the elastoplastic analysis of flange 

wrinkling in deep drawing. Flange wrinkling is considered as a bifurcation 

problem. Analysis of a circular cup drawing process is performed. The 

anisotropy effect is taken into account modeling the material. Flange is 
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modeled as an annular plate. A radial stress is applied from the inner edge of 

the plate. For the critical drawing stress, a closed form solution is developed 

based on the plastic deformation theory and nonlinear plastic stress field. 

The results are compared with those of Senior’s one dimensional theory 

(1956). No experiments are conducted, however experimental results 

obtained by Senior are considered. Considering the critical stress, presented 

theory predicts higher values than Senior’s. However, these values are 

closer to the experimental values of Senior. Same behavior is obtained when 

number of wrinkles is compared. The theory developed by authors gives a 

higher number of wrinkles, which fits better with the experimental data. It is 

stated that critical drawing stress value depends on the shear stress applied 

on the flange. Neglecting the shear stress, results with the underestimation 

of the critical drawing stress. 

Zeng and Mahdavian [20] investigated the wrinkling behavior in deep 

drawing at elevated temperatures and compared with cold forming operation. 

Wrinkling criteria was developed using the equality of moments: When 

buckling moment becomes equal to total of the restraint moments (restraint 

moments due to blank–holder force and at die radius, and moment due to 

resistance of the metal to bending, induced in the metal itself) wrinkling 

occurs. The analysis was made for two cases – with and without using blank-

–holder. Experiments were conducted at both ambient temperature and 

elevated temperature for the verification of the theoretical results. 

Considering the case without blank–holder, number of wrinkles depends only 

on the drawing geometry, with increasing temperature number of wrinkles 

remain same. The results of experiments are in agreement with theoretical 

results. When blank–holder used, however, number of wrinkles are no more 

independent from temperature. Increasing temperature, increases number of 

wrinkles formed. The agreement between theoretical and experimental 

results is satisfactory, again. 
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Morimoto and Nakamachi [22], developed a technique for the 

elastic/crystalline viscoplastic finite element analysis of deep drawing 

process. In this work, the approach to determine the yield function indirectly 

is not used. Instead, crystalline plasticity theory is applied. Constitutive 

equations are presented for the construction of an elastic/crystalline 

viscoplastic model. 8–node 3 dimensional elements are used. The results 

are in agreement with the conducted tensile tests, to compare the 

mechanical behavior of the material with obtained results of analysis. 

Nordlund and Häggblad [23] presented an algorithm for the prediction 

of wrinkle tendencies in the early stages of the computations of explicit sheet 

metal forming simulations. To find the initiation of wrinkling, local value of the 

second order increment of internal work is used. The procedure is applied 

only for explicit scheme, but it is told that it can also be used with an implicit 

technique. Authors stated that the wrinkling indicator presented can work for 

both unperturbed structures and structures with perturbation, so it is not 

limited to bifurcation type of wrinkles. Material model, loading conditions and 

contact conditions are not effective on the work of the algorithm. To 

simulations are performed to demonstrate the performance of the procedure: 

Yoshida buckling test and fluid forming of a cup. No experiments are 

conducted for the verification of the results of numerical analysis, so it is not 

obvious if results are satisfactory compared to a real application.  

Yang et al. [24] investigated the effect of anisotropy on wrinkling in 

sheet metal forming. Using the bifurcation theory, finite element analysis was 

applied for this study. Continuum based resultant shell elements considering 

the anisotropy were used for modeling. Post–bifurcation behavior was 

analyzed, after finding the instability limit by incremental analysis. Material 

was modeled with elastic–plastic behavior. For the investigation of effect of 

anisotropy on wrinkling, a square plate subjected to biaxial stress 

(compression in one direction and tension in other direction) was simulated 

for various different anisotropy parameters. According to the results of this 
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simulation, it was seen that tendency for plastic buckling of the sheet metal 

decreases with the increase in the normal anisotropy value. No experiments 

are carried out. 

Wang and Cao [25] proposed a method to predict the side wall 

wrinkling in sheet metal forming processes. Analytical approach was 

combined with finite element method. A modified energy approach was used 

to present a wrinkling criterion. Critical buckling stress was calculated as a 

function of material properties, geometry parameters and current in–plane 

stress ratio, using the analytical model. The wrinkling initiation can then be 

assessed by comparing the calculated critical stress values with the 

compressive stress values obtained from finite element analysis. For the 

verification of the results of proposed method, experimental data from 

Yoshida buckling test, aluminum square cup forming and aluminum cup 

forming were collected. The predicted values showed excellent agreement 

with the experimental values. The method does not take into account the 

friction. 

Cao and Boyce [26] investigated the elastic and elastic–plastic sheet 

subjected to edge compression and lateral constraints. Using energy 

conservation in correlation with finite element method, a wrinkling criterion 

was established. Initial imperfections are used for finite element analysis. By 

the presented approach, the need for refined meshes can be overcome as 

the critical buckling stress can be calculated as a function of applied normal 

pressure, simply maintaining the required binder pressure depending on the 

compressive state. A sensitivity study for the imperfection is conducted also. 

Simulations showed that they are sensitive to imperfections. Sensitivity to 

geometric imperfection was more than the material imperfection. The 

simulations were found to be able to predict the correct buckling mode and 

stress. 
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Correia and Ferron [27] developed a bifurcation analysis to predict the 

wrinkling behavior in deep drawing processes of anisotropic sheet metals. 

Based on a local analysis, wrinkling limit curves were obtained which depend 

on the material anisotropy and local geometry. For the verification of the 

analysis, finite element simulation of a conical cup drawing process was 

performed. Number of wrinkles, critical stress levels and wavelengths of 

wrinkles were predicted by bifurcation analysis, and these predictions match 

well with the results of finite element analysis for transverse isotropic 

materials. With the increasing anisotropy, critical stress level slightly 

decreases. The effect of anisotropy on stress state and sheet curvature 

developed on the walls was more important. Authors concluded that for 

increasing anisotropy, initiation of wrinkling was expected to seen for larger 

punch strokes. 

Wang at al. [28] performed a wrinkling analysis in shrink flanging. The 

analysis is simplified as buckling of a curved sheet. A stress based wrinkling 

criterion is developed using the energy approach. The critical buckling stress 

was calculated as a function of material properties and geometric properties. 

Some experiments were performed for the verification of the theory. The 

predictions of the presented approach seemed to be in good agreement with 

experimental results. It is found that number of waves decreases with the 

increase in flange length.  

Hemitian and Wild [29] investigated the effect of tooling imperfection 

on the initiation of wrinkling in deep drawing of thick sheets. Two types of 

tooling imperfections were considered: punch displacement, which is the 

linear misalignment of the punch and die, and blank tilting, which is the 

angular misalignment of the blank. Finite element simulation was carried out 

for this analysis. In this research, commercial finite element analysis program 

MARC was used. 4–node thick shell elements were used in the model. The 

entire 360º of the blank were developed for the model not to prevent the 

nonsymmetrical wrinkles. Considering the results of simulations, it was 
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concluded that the displacement of the punch has a negligible effect on the 

wrinkling initiation, without using a blank–holder. Blank tilting, however, was 

found to be an important parameter for the wrinkling behavior of thick sheet 

blank. 

Xiong and Xiu [30] studied the compressive instability in sheet metal 

forming. An energy method was proposed for the analysis. The work done by 

the internal force in plastic bending was presented. Some simplifications 

were made considering the geometry of the wave in the analysis of flange 

buckling. Before the wrinkling occurs, half wave is assumed to be a 

rectangular plate, whereas after wrinkling, wrinkle is simplified to a sine 

wave. Results of the presented theory were compared with the experimental 

results of Wang (1990). A satisfactory agreement was found between them.  

The buckling of a shell in cup deep drawing process through a conical die 

was also analyzed. A comparison was made between the theoretical results 

and experimental data of Sowerby et al. (1982). Again the results match with 

the experiments. 

Lee and Cao [31] proposed a shell element formulation for multi–step 

inverse analysis. The developed algorithm was applied to the analysis of 

deep drawing process of both thin sheets and relatively thick sheets. Two 

numerical examples were carried out, one with a thin sheet, the other with a 

thick sheet. No experiments were conducted, instead, incremental finite 

element simulations were performed using the commercial program 

ABAQUS using shell and solid elements. These simulations were considered 

as experiments, and were used to verify the results of the presented 

numerical method. Also, comparison with the older inverse analysis results in 

literature was carried out. It is seen that more accurate results were achieved 

with this method. Old methods generally use membrane elements, so the 

new algorithm has the advantage of considering the bending and unbending 

effects. Accurate initial blank size and strain distribution were provided. 
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Evangelista et al. [32] introduced a modification of the Marciniak–

Kuczynski method for deep drawing process. Finite element method was 

used for this study. The developed method was simulated by finite element 

analysis of a round cup and a square cup. Predictions of forming limit 

diagrams considering the necking criterion were also done. Little deviations 

were seen between the predicted diagrams and the diagrams in the 

literature. No experiments were conducted or no comparisons made with 

previous work for the validation of the method for round and square cup 

drawing. 

Cao et al. [33] studied on the buckling of sheet metals subjected to 

controlled boundary conditions. A wedge strip test was designed to observe 

the wrinkling behavior of sheet under various boundary constraints. With 

easy change of boundary conditions, different buckling modes were able to 

achieve. Three different boundary constraints were applied. The results were 

compared with the numerical results of Cao and Wang [24], which was 

obtained by using energy approach and finite element method in 

combination. Results were in good agreement with each other. 

Yang et al. [34] presented a method for shell elements to consider the 

thickness stress caused by contact to improve the solution accuracy. The 

yield criterion generally used with shell elements based on the plane stress 

condition was modified to include the effect of transverse stress. The 

algorithm was applied to bilinear 4–node quadrilateral shell elements. 

Uniaxial compression, biaxial tension, bending and stretching of a sheet and 

cylindrical cup drawing were simulated. A dynamic explicit code was used in 

the simulations, which was generated only for sheet metal forming by Chung 

et al. (1999). Instead of carrying out experiments, obtained results were 

compared with the numerical solutions of commercial program ABAQUS, 

which has static implicit code, using continuum elements. Almost same 

efficiency was obtained with the commercial program. It was also shown that 
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in prediction of wrinkling and forming limit diagrams, considering the 

thickness stress is an important factor. 
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CHAPTER 3 

OBJECT OF THE PRESENT STUDY 

The deep drawing process is applied with the intention of 

manufacturing a product with a desired shape and no failures. The final 

product shape after deep drawing is defined by the tools, the blank and the 

process parameters. An incorrect design of the tools and blank shape or an 

incorrect choice of material and process parameters can yield a product with 

a deviating shape or with failures. A deviating shape is caused by elastic 

springback after forming and retracting the tools. The most frequent types of 

failure are wrinkling, necking (and subsequently tearing), scratching and 

orange peel. 

Without extensive knowledge of the influences of all these variables 

on the deep drawing process, it is hardly possible to design the tools 

adequately and make a proper choice of blank material and lubricant to 

manufacture a product with the desired shape and performance. As a result, 

after the first design of the tools and choice of blank material and lubricant, 

an extensive and time consuming trial and error process is started to 

determine the proper tool design and all other variables, leading to the 

desired product. This trial and error process can yield an unnecessary 

number of deep drawing strokes, or may even require redesigning the 

expensive tools. To reduce this waste of time and cost, process modeling for 

computer simulation can be used to replace the experimental trial and error 

process by a virtual trial and error process. 
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The prime objective of an analysis is to assist in the design of a 

product. To design or select the tools and the equipment, such design 

essentially consists of 

 predicting the material flow, 

 determining whether it is possible to form the part without 

surface or internal defects, 

 predicting the forces and stresses necessary to execute the 

forming operation. 

Wrinkling is a common mode of failure in sheet-metal forming. It may 

occur in any stage of a forming process depending on many factors such as 

blank geometry and holding conditions, punch and die face geometry, tool 

sheet interface friction and lubrication, material properties and thickness. In 

press forming of large sized parts such as automobile panels, wrinkles are 

likely to develop before failures appear. This surface defect is unacceptable 

in finished components for functional or visual reasons. 

Most of the previous work on wrinkling was performed for 

axisymmetrical parts and analytical solution methods for maximum of two 

dimensions were applied. There is a small number of works for 

antisymmetric workpieces, which applied finite element method for the 

solution. The effects of blank holder force and drawbeads were not taken into 

account. Also by the application of bifurcation analysis only the initial mode 

of wrinkle but not its permanent shape after wrinkling was obtained by the 

previous finite element solutions of nonaxisymmetrical problems. 

In this work, wrinkling problem occurring in the flange region in sheet-

metal forming operations is going to be considered. Finite element method 
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based on energy formulation will be used for the derivation. Unlike previous 

studies a general approach that includes nonaxisymmetric parts will be 

considered. Nonlinear work hardening material model is going to be used to 

represent the deformation characteristics of the part. Frictional effects 

occurring between the die and the blank are also going to be considered. 

In the flange region there are two possible modes of deformation; 

drawing and wrinkling. Bending effect is considered as the cause of 

wrinkling. In finite element formulation a shell element which is capable of 

considering drawing and wrinkling modes of deformation is going to be 

formulated. As the result of the analysis, the deformed, wrinkled shape of the 

workpiece is going to be obtained. The agreement between theory and the 

experimental results is also going to be tested. 

The present study focuses on the following aspects: 

 The consideration of a general theory 

 Application of finite element method to obtain a general solution 

method that is applicable to any kind of geometries (axysymmetric or 

nonaxysymmetric) 

 Consideration of shell assumptions to obtain the effect of 

bending behavior 

 Solution with and without blank holder force application 

 Obtaining theoretical blank–holder force needed for the 

workpiece to prevent wrinkling 
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As a conclusion, this study is based on explicit formulation of time 

step integration. An explicit finite element code is generated Axisymmetric 

and non-axysymmetric blanks are defined by using quadrilateral shell 

elements with 4 nodes and 5 d.o.f s at each node. Dynamic equilibrium 

equations with the given boundary conditions are constructed. Gaussian 

quadrature is applied to calculate the integrals numerically. Isotropic elasto-

plastic material model with Von Mises yield criterion is used. Updated 

Lagrangian formulation is adopted to calculate displacements. Stresses are 

related with strains by constitutive laws. Contact algorithm is developed 

using penalty function method. The analysis is made for deep drawing of 

square, rectangular, and circular cups with the blank-holder. Results are 

compared with the available experiments 

In Chapter 2, survey of previous work on deep-drawing operations 

considering wrinkling are already presented. The numerical procedures and 

finite element analysis tools used in this subject are also searched, and 

presented in the same chapter. 

In Chapter 4, finite element method procedure is described, which is 

used to analyze the wrinkling problem and the numerical methods to solve 

the stiffness equations of finite element method are presented. 

In Chapter 5, comparison of the experimental results and numerically 

obtained results is made. The discussion of the results is presented in 

Chapter 6. 

In Chapter 7, conclusions of the whole work are presented. In Chapter 

8, suggestions are offered for future researches in this area. 



 

CHAPTER 4 

THEORY OF FINITE ELEMENT METHOD 

4.1 General Approach for Determination of Wrinkling 

There are so many different theories developed for both deep drawing 

analysis and wrinkling phenomenon. There are very different approaches to 

analyze the behavior of material during deformation process. These different 

approaches are presented in the previous chapters. 

In this study, for the analysis of wrinkling, the work of Kaftanoğlu [1] 

was chosen as the basis, which uses the energy approach. Determination of 

whether wrinkling occurs or not is carried out by calculating the energy of the 

deep drawing and wrinkling, then comparing the calculated energy values. If 

the energy of the deep drawing is larger than the energy required for 

wrinkling, work piece tends to wrinkle. The approach explained above is 

implemented in a finite element solution. 

4.2 Displacement Based Finite Element Method 

There are several different techniques applied in finite element 

method. Most of these techniques use an energy balance. This is the 

requirement of the law of conservation of energy. According to this law, it can 

be said that the work done by the external forces must be equal to the work 

done by the internal forces, which can be shown as 

int extW W=  (4.1) 
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In the above equation, internal work is a result of internal stresses and 

strains, whereas external work is composed of body forces, surface forces 

and concentrated forces, such that  
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In equation (4.2) τ and ε  are the internal stress and strain 

respectively. In equation (4.3), Bf , , are body forces, surface 

forces, concentrated forces respectively, where U  and U are the 

displacement and displacement at the application point of . 
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The internal stresses in a body are related to the strains in the same 

body with some constitutive relationship. Writing in vector form, this 

relationship can be presented as 

Cτ ε  (4.4) 

Using equation (4.4), internal work in equation (4.2) can be rewritten in 

vector form 

int
V

W dε ε= ∫ CT V  (4.5) 

In displacement based finite element analysis, displacement field in an 

element is tried to be expressed as a function of displacements of nodes of 

the element, which are called nodal point displacements. The functions 

relating the displacement of a point in the element and the nodal point 

displacements are known as shape functions. On the other hand, strains of 

an element can be calculated using the displacement information, i.e. 



derivatives of displacements give the strain values. Therefore a relation is 

also known between the strain and displacement parameters. Using this 

relation and the assumed shape functions, strain and nodal point 

displacements can be directly related. This relation is shown as 

ε = Bu  (4.6) 

In equation (4.6), u is the nodal point displacement vector of the 

element, and matrix B is known as the strain–displacement matrix. 

After defining the nodal point displacements and the relation of them 

with strains, nodal point displacement matrices can be implemented in to the 

work equations. Using equation (4.3) and inserting nodal point displacements 

in that equation, the vector notation for external work can be expressed as,  

B S
ext

V S
W dV dS= + +∫ ∫f f

T T Tu u Fu

V

 (4.7) 

In the same way, internal work in equation (4.5) can also be rewritten 

as follows: 

int
V

W d= ∫ B CBT Tu u  (4.8) 

Expressing equation (4.1) in terms of equation (4.7) and equation 

(4.8) gives the following equality: 

B S

V V S
dV dV dS= + +∫ ∫ ∫B CB f f F

T TT T Tu u u u u  
(4.9)

The elemental nodal point displacement vector can also be related 

with the global nodal point displacement vector: 

= ( )H(m) mu U (4.10)

 30



In this equation, the superscript (  shows the number of the 

element, and U  is the global nodal displacement vector. Using equation 

(4.10) and considering the fact that global nodal displacement vector is 

independent of the integration variables, equation (4.9) can be rewritten to 

include the assemblage of the elements of the whole structure 
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(4.11) 

In the above equation, the integral in the summation term on the left 

hand side, is called the elemental stiffness matrix of an element. Therefore, 

the summation on the left hand side gives the global stiffness matrix of the 

whole structure. For the whole structure, this equation can be briefly written 

as: 

=KU F  (4.12)

where  is the global stiffness matrix, F  is the total global force vector of 

the system. 

K

In equation (4.11), it should be noted that integrations are evaluated 

for each element separately, therefore while evaluating these integrations, 

local coordinate systems can be used. In the assemblage procedure, 

however, necessary coordinate transformations must be carried out. Using 

local coordinate systems helps a lot in the evaluation procedure, as the 

integrals would become very complicated after transformation to the global 

coordinates. Therefore, first elemental stiffness matrices are calculated, and 

 31



then they are transformed to the global coordinate system before 

assemblage. 

In the above discussion, nonlinear components of the equation are 

neglected. In large displacement – large strain problems, however, there is a 

nonlinearity in the governing equations; therefore an incremental or iterative 

solution scheme is required. To include the effect of nonlinearity in the 

stiffness matrix, the overall stiffness matrix can be divided in to two parts, 

such that 
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LL NK = K +K  (4.13)

where  is equivalent to the K  matrix in equation (4.12). The nonlinear 

component of the stiffness matrix can be written as, 

LK

V
dVτ= ∑ ∫ B BT

NL NL NLK  (4.14)

In equation (4.14), B  is the nonlinear strain–displacement matrix, 

and is the stress configuration of the body. In incremental analysis, 

incremental displacements are used in the solution procedure, so 

incremental strain–displacement matrix is used. This gives the incremental 

stiffness matrix, which is also known as tangential stiffness matrix, and a left 

superscript  is used to denote it, e.g. t . Using the updated Lagrangian 

formulation and writing in incremental form, the general equation is 

NL

τ

t K

( ) ∆ ∆
∆+ ∆

( -1)t t ( ) t+ t t+ t
t t t+ tL NLK K U = R - F ii  

(4.15)

In equation (4.15), the left superscript refers to the configuration of the 

quantity, the left subscript indicates the quantity is measured with respect to 

which configuration. The right superscript shows that the quantity 

corresponds to which iteration. ∆U is the incremental displacement vector, 



R is the externally applied nodal force vector, and F  is the nodal point 

forces corresponding to the element stresses in that configuration which can 

be written as 

ˆ
V

dVτ= ∫ Bt t T t t
t t

t
LF  (4.16)

for an element, where  is the stress vector. τ̂

Using equations (4.11), (4.13), (4.14) and (4.16), equation (4.15) can 

be rewritten as follows: 
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(4.17

) 
( )

(m)

i

i

Up to this point, static equilibrium conditions are considered. The 

above equation is the equilibrium statement at any specific time. If the loads 

are applied rapidly, inertia effects must also be considered. This means that 

system becomes a dynamic one. Using d’Alembert’s principle, inertia forces 

can be treated as a part of body forces. To apply this principle, element 

accelerations must be known. The accelerations can be calculated by using 

the same relation used between elemental nodal point displacement vector 

and global nodal point displacement vector: 

= ( )H
(m).. ..

mu U 

(4.10a)

This equation can be used to rewrite the internal body force equation: 
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(m)B B

V

dV
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∫R H f Hρ

(m)(m) (m)T (m)

(m)

..
U   

Using the second term in brackets, mass matrix of the whole structure 

can be assembled: 

V

M dVρ= ∑ ∫ H H
(m) (m)T (m) (m

(m)

)  (4.18)

Using the new body force, equation (4.11) can be written as 

( )

V

B

V

S

S

dV

dV

dS

τ

ρ

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞

− +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∫

∑ ∫

∑ ∑∫

B

H f H

H f H F

(m)T (m) (m)

(m)

(m)(m) (m)T (m)

(m)

(m)(m) (m)T (m) T (m)

(m)

..
U (m)  (4.19) 

Then, this equality can be simply represented as: 

= −
..

ext intMU R R  
(4.20)

This is the general equation for the displacement based non–linear 

finite element analysis for a large displacement – large strain problem, using 

the updated Lagrangian formulation. 



As a dynamic effect, damping forces can also be included in the 

above formulation. The damping forces are proportional to the velocities of 

the elements. Similar relations can be used to calculate the velocities as in 

displacements or accelerations, but it is difficult to calculate the damping 

matrices for the finite element calculations, because damping properties are 

frequency dependent. General approach is to calculate damping matrix of 

the general assembly using constructed mass matrix and the stiffness matrix. 

Rayleigh damping scheme uses a linear combination of mass and stiffness 

matrices: 

= +C K Mα β  

In this equation, α and β are called stiffness and mass proportional 

constants, respectively. Empirical values of these constants are between 

0.001 and 0.01 according to experiments. Therefore, the damping matrix can 

be neglected in finite element calculations safely. By not modeling the 

damping effect, efficiency of calculations in analysis increases. Considering 

these arguments, analysis of damping is not included in this study. 

4.3 Classical Shell Theory 

In this study, classical shell theory is chosen as basis. There are 

several assumptions in this theory. The stress through the thickness of the 

shell is zero. Material particals that are originally on a straight line 

perpendicular to the mid-surface of the shell remain on a straight line during 

deformation. In the Kirchoff theory, shear deformations are neglected, 

whereas in the Mindlin theory shear deformations are included, therefore line 

originally normal to the mid-surface does not does not remain perpendicular 

to the mid-surface during deformations. There are some difficulties in these 

approaches that the element must satisfy the convergence requirements.  
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Using the assumption of Mindlin theory, displacement components of 

a point are as follows: 

( , ) ( , ) ( , )x yu z x y v z x y w w x yβ β= = − =  

where xβ and yβ are the rotations of the normal to the undeformed middlie 

surface in the x-z and y-z planes, respectively. 

The analysis of thin walled structures requires a reduction from three to two 

dimensions. This may be carried out before or together with discretization 

using either a plate or shell theory. Despite the fact that in both cases the 

continuum is degenerated to a surface structure, the term degeneration is 

used for the latter approach. The simplicity in accommodating arbitrarily large 

deformation and rotation problems is a favorite advantage to degenerated 

curved shell elements. 

Considering a plate undergoing large deflections, it is recognized that as 

soon as the plate has deflected significantly, the action of the structure is 

really that of a shell; i.e. the structure is now curved and both membrane and 

bending stresses are significant. 

4.4 Strain–Displacement Matrix 

In this study, a shell element is decided to be used. A 4–node 

element, which has a five degree of freedom at each node, is going to be 

developed in this section. There will be three translational and two rotational 

degrees of freedom, and the third degree of freedom, which is warping, will 

be neglected. By this element, both membrane and bending behaviors can 

be simulated. 
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Assume a local coordinate system that is attached to the element 

consists of r, s and t–axes. First of all, a general function should be obtained 

to give the position values of a point in the element. If the function is able to 

be derived such that the variables are the nodal point positions, it is possible 

to obtain the position of any point in the element by just knowing the position 

of the four nodes of the element. Such a function is 

2
1,2,3 1,2,3,4tt t j t j

i j i j j nix h x a h V i and j= + = =  
(4.21)

In equation (4.21), the superscript for  denotes the node number 

and subscript for the direction. t  is the –axes component of the unit 

vector normal to the mid–plane of the shell element in t–direction at time . 

 is the thickness of the shell at node 

x
j

t
niV ix

ja j .  is named the shape function 

and relates the nodal positions to the coordinates of any point in the element. 

In this study, the shape functions proposed by Bathe [37] are used. These 

are, in terms of local coordinates (according to the numbering of nodes in the 

figure): 

h

1
4

1
4

1
4

1
4

1

2

3

4

(1 )(1 )

(1 )(1 )

(1 )(1 )

(1 )(1 )

h r

h r

h r

h r

s

s

s

s

= + +

= − +

= − −

= + −

 
(4.22)

Displacement at time t  is represented by Bathe [37] as follows: 

0

0
2

( )

t t
i i i

tt j t j j
j i j j ni ni

u x x

h u a h V V

= −

= + −
 (4.23)

Incremental displacement and unit normal vector V can be defined in 

the following way: 
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i

V

t t t
i i

t t t
ni ni ni

u x x

V V

+∆

+∆

= −

= −
 (4.24)

Therefore u  can be rewritten as: 

2
tk j

i j i j ju h u a h V= + ni

t

 
(4.25)

The vector t  is in the direction of t–axis. However, there is no 

rotational deformation measured about that axis. So, it is needed two vectors 

which are orthonormal to the , such that the rotations about these axes 

can be used to calculate the nodal direction cosines of the shell element. 

First orthogonal vector can be defined as: 

nV

nV

1

t j
y nt j

t j
y n

e V
V

e V

×
=

×
 (4.26)

Then the second vector can be easily obtained by the cross product of 

two vectors. 

2 1
t j t j t j

nV V V= ×  (4.27)

Using equations (4.26) and (4.27) incremental unit normal vector is 

1 2
j t j t j

ni j ji iV V V= β − α  (4.28)

where  and  are the incremental rotations of the normal vector about 

vectors  and t  , respectively. Inserting equation (4.28) into equation 

(4.25) following relation for incremental displacement is obtained. 

jα jβ

1Vt j jV2



1 22
( )tj t j t j

i j i j j ji iu h u a h V V= + β − α j  (4.29)

Equation (4.29) can be differentiated with respect to local coordinates. 

In the differentiation, it must be noted that the only dependent variables are 

the shape functions  and  t  coordinate. So derivative with respect to r can 

be written as: 

jh

( ), , 2 12 2

, 2 12 2
[1 ] [ ]

t tj t j t j
i r j r i j j j ji i

t tt j t j j
j r j j i ji i

u h u a V a V

h a V a V u

−= + α + β

= − α β j
T

(4.30) 

Similarly, other derivatives can be obtained; therefore the following 

matrix can be formulated: 

( )
( )
( )

, 2 12 2,

, , 2 12 2

1 1,
2 12 2

1

1

0

t tt j t j
jj r j ji i

i r i
t tt j t j

i s j s j j ji i

t j t ji t j
j j ji i

h a V a Vu u
u h a V a V

u h a V a V

⎛ ⎞− ⎛ ⎞⎛ ⎞ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= − α⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟β⎝ ⎠ ⎝ ⎠⎜ ⎟−⎝ ⎠

 (4.31)

The derivatives of the other displacement components can be 

obtained in the same way. However, these derivatives are with respect to 

local coordinates. To achieve these derivatives chain rule can be used, so 

derivative with respect to local coordinate system can be represented as a 

function of derivatives with respect to the global coordinate system. The 

representation is as follows: 

31 2

1 2 3

i i i iu u u ux x
r x r x r x

∂ ∂ ∂ ∂ ∂x
r

∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (4.32)
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For all three displacement components, following matrix 

representation can be used for the relation of derivatives: 

31 2

1

31 2
2

31 2
3

,,

, ,

, ,

xx x
i xi r r r r

xx x
i s i xs s s

xx xi t i xt t t

uu

u u

u u

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 
(4.33)

where (3 x 3) matrix on the left–hand side of the equation is known as 

Jacobean matrix, and represented by . Therefore derivatives of 

displacements with respect to global coordinates can be calculated by: 

J

( )
( )
( )

1

2

3

, 2 12 2,
1

, , 2 12 2

1 1,
2 12 2

1

1

0

t tt j t j
jj r j ji i

i x i
t tt j t j

i x j s j j ji i

t j t j ji x
j j ji i

h a V a Vu u
u J h a V a V

u h a V a V

−

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ β⎝ ⎠⎝ ⎠ ⎜ ⎟−⎝ ⎠

⎟
α

i

 
(4.34)

Let  be a matrix such that G , ,i G=xu u

,j s

. Then components of G  

are: 

1 1
1 1 , 2

j
k k j r kG J h J h− −= +  

(4.35a)

( )( )1 1
1 , 2 , 322,

1
2

j t j 1
j k j r k j s k jik iG a V t J h t J h J− − −= − − − h  

(4.35b)

( )( )1 1
1 , 2 , 313,

1
2

j t j 1
j k j r k j s k jik iG a V t J h t J h J− − −= + h+  

(4.35c)

where the subscript  denote the global coordinate with respect to which the 

derivatives are taken and denotes the row and column of the component. 

i
kn

Linear strains are calculated as follows: 
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1
2

ji
ij

j i

uue
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 
(4.36)

Strain vector and corresponding displacement vector can be written 

down in the following form: 

2 2t 11 t 22 t 33 t 12 23 t 13te e e e e 2 e⎡ ⎤⎣ ⎦e = T
 

1 1 1 4 4 4
1 2 3 1 1 1 2 3 4 4u u u u u u u⎡ ⎤= ⎣ ⎦…

T
α β α β  

(4.37)

Now, using from equation (4.34) to (4.37), linear strain displacement 

matrix can be obtained as follows: 

L =B  

....

....

....

....

....

....

G11
j

0

0

G21
j

0

G31
j

0

G21
j

0

G11
j

G31
j

0

0

0

G31
j

0

G21
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j
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j
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j G12.2

j
+
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j G22.3

j
+

G32.1
j G12.3

j
+

G13.1
j

G23.2
j

G33.3
j

G23.1
j G13.2

j
+

G33.2
j G23.3

j
+

G33.1
j G13.3

j
+

....

....

....
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....

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠  

(4.38)

For the following stress matrix, non–linear strain displacement matrix 

can also be obtained in a similar way: 

11 3

12 3 22 3

13 3 23 3 33 3

.t

t t t

t t t

symτ

τ τ τ

τ τ τ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

I

I I

I I I

 
(4.39)

Then non-linear strain displacement matrix can be written as: 
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NL =B  
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(4.40)

4.5 Matrix Representing Constitutive Relations 

To formulate the stiffness matrix of an element, constitutive relations 

within the element must also be considered. So a matrix should be 

constructed for these relations. The material nonlinearity is included in the 

formulation by this matrix. 

 

 
Figure 4.1 Typical elasto-plastic and rigid plastic curves 
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An elasto–plastic material behavior is assumed in this study. 

Therefore a yield criterion for the transition between the elastic and plastic 

regions is needed. Also to define the plastic behavior of the material, a flow 

rule is required. For the yield condition, Von Mises yield criterion is chosen. It 

can be written as follows: 

( ) ( )221 1
3 2

t
t t

y i
i

j
j

τ τ′= ∑∑  
(4.41)

where  is the yield stress and t
yτ t

ijτ′  are the deviatoric stresses at timet . 

It should be noted that, the material is assumed to be strain hardening, 

therefore  is dependent on the current strain values. Besides, initiation of 

plastic flow is assumed to be independent of the selected coordinate system, 

thus the yield criterion is actually a function of invariants of the stress tensor. 

Moreover, it is assumed that the hydrostatic stress has no effect on yielding, 

so deviatoric stresses are used to express the yield condition. Actually, the 

right hand side of equation (4.41) is the second invariant of the deviatoric 

stress tensor. Therefore, equation (4.41) can be rewritten as follows: 

t
yτ

( ) ( ) ( )2 21 1
2 3

( ), tt t t t
y ij y

i j
f II ′ ′ 0= −∑∑τ τ τ τ =  (4.42)

Swift’s Law is used as the material plastic flow rule. Swift Law can be 

shown as: 

( )neff effA Bσ ε= +  
(4.43)

In the above equation, A , B  and  are material constants. The subscript 

is the abbreviation of “effective”, and effective strain is an appropriate 

combination of all strain components. In this study, for the effective strain 

calculation, the following relation is used: 

n
eff
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( ) ( ) ( ) (

( ) ( ) ( )

2 2 221
11 22 22 33 33 112

2 22
12 23 136

effε ε ε ε ε ε ε

ε ε ε

⎡ ⎤= − + − + −⎣ ⎦
⎡ ⎤+ + +⎣ ⎦

)

el

 
(4.44)

In the elastic deformation range, Hooke’s law applies to the material: 

Et t tτ ε= C  (4.45)

However, it should be noted that Hooke’s law is also applicable for 

elastic strain increments in the elastic–plastic deformation zone, therefore: 

( )E Et t t el t t tdt d d dτ ε ε
∇

= = −C C plε  
(4.46a)

where                t t t t t t
ij ij ip pj jp piτ τ τ τ

∇

= − Ω − Ω
(4.46b)

In equation (4.46), t τ
∇

 is Jauman stress rate, which is an objective 

stress rate tensor. t  is the spin tensor and it physically represents the 

angular velocity: 

Ω

1
2

t t
jt i

ij t t
i j

u u
x x

⎛ ⎞∂ ∂
Ω = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (4.47)

To obtain the stress increments in terms of total strain increments, we 

need a new constitutive matrix. 

EPt tdt d tτ ε
∇

= C  
(4.48)
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The aim is to construct the matrix. For the first step, the 

normality rule, a conclusion of Drucker’s Postulate, should be recalled to 

obtain the plastic portion of the strain: 

EPt C

t
t pl t

t
fd ε λ
τ

∂
=

∂
 

(4.49)

It can be easily seen that the derivative at the right hand side is equal 

to the deviatoric stress, as von Mises yield criterion is used. 

t
t

t
f

τ
τ

∂ ′=
∂

 
(4.50)

In plastic deformation zone, 0df =  then 

0
t t

t t
t t
f fd dτ ε
τ ε

∂ ∂
+ =

∂ ∂
 

(4.51)

Using equation (4.46), (4.49), (4.50) and (4.51), the scalar t  can be 

calculated. 

λ

( )

( )

E

E

t t t
t

t t
t t t

t t

d

f f

τ ε
λ

τ τ
ε ε

′
=

⎛ ⎞∂ ∂′ ′+⎜ ⎟
∂ ∂⎝ ⎠

C

C

T

T
T

 (4.52)

The partial derivative of function f  with respect to strains is 

t
t t

t
f H τ
ε

∂
=

∂
 

(4.53)
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where can be calculated as follows (  being the strain hardening 

modulus): 

H TE

2
3

T

T

E EH
E E

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 
(4.54)

Now, combining equations (4.46), (4.48), (4.52) and (4.53) elasto–

plastic material matrix can be constructed: 

( )
( ) ( )

t E t t t E
t EP t E

t t t t E tH H

τ τ

τ τ τ

′ ′
= −

′ ′+

C C
C C

C

T

T T
τ

 
(4.55)

For the calculation of the elastic material matrix, following relation is 

used: 

( )( ) ( ) ( )1 1 2 1
E
ijkl ij kl ik lj il jkC = +

+ − +
Ε ν Ε

+δ δ δ δ
ν ν 2 ν

δ δ  
(4.56)

Then elasto–plastic material matrix is 

EP =C  
E

1 ν+

1 ν−

1 2ν−
β τ11

2
⋅−

ν

1 2ν−
β τ11⋅ τ22⋅−

ν
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(4.57)

Where 
3 1 1

22 2 11
3

t E ETy
E E ET

νβ
+

+
−

=
τ
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4.6 Contact Algorithm 

Contact of surfaces is the most challenging part of modeling of a 

metal forming simulation. Commercial programs use several different contact 

types to meet different conditions in different applications. User should 

choose the appropriate one among the alternatives. 

In this study, the most suitable contact algorithm seems to be the 

penalty function method. This method is used to search the contact between 

nodes and surfaces. The surfaces of tools are assumed to be rigid, and 

nodes of blank are checked if they are in contact with the surfaces of die or 

punch. When a contact is determined, the penetration into the tool surface is 

used to calculate the normal component (according to tool surface) of 

contact force acting on the blank. The tangential component is evaluated 

appropriate friction laws. 

In this method, point data description of the tool surface is adopted. 

Shape of the tool is expressed by Cartesian coordinate point data (x,y,z), as 

shown in Fig.4.2. Contact is searched between the finite element node, and 

the projections of the tool surface patches on xy-, yz-, and xz-planes. On the 

xy-plane for example, the x-coordinate lines and y-coordinate lines form a 

series of cells. The contact conditions are checked between the finite 

element node and these cells. The cell, which holds the projection of the 

finite element node, is found. The Cartesian coordinates of the finite element 

node are (Xd, Yd, Zd) as shown in Fig.4.2. The cell is then labeled as (i, j, k, l). 

The surface z coordinates of the four points are denoted as (zi, zj, zk, zl) 

Using these points, two vectors that are orthogonal tp each other can 

be defined. From these vectors, the surface normal n=Ai+Bj+Ck can be 

calculated. After that the distance of the finite element node zd can be found. 



2 2 2
d d d

d
AX BY CZ d

z
A B C

+ + +
=

+ +
 

(4.58)

where Ax+By+Cz+d = 0 is the equation of he plane “ijkl”. 

 

 
Figure 4.2 Point data description of tool surface with global search of contact 

 

After zd is found, according to the initial relative position of the tool and 

sheet, it can be determined whether the sheet contacts with the tool surface. 

To take the sheet thickness into account, the contact is checked with the z 

coordinates of the upper and lower node Zd
upper, Zd

lower and zd. 

Then, if the tool surface is above the sheet, the sheet will be in contact 

with the tool on the upper sheet surface in case of Zd
upper > zd. The 

penetration is calculated as follows: 
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upper
d ddP Z z= −  (4.59)

If the tool surface is above the sheet, the sheet will be in contact with 

the tool on the upper sheet surface in case of Zd
lower < zd. The penetration is 

calculated then: 

lower
d d dP z Z= −  (4.59)

If the upper or lower node is found in contact with the tool, the contact 

force acting on the upper or lower node is decomposed into tool’s surface 

normal and tangential directions. So are the internal force, velocity and 

acceleration of the node. 

n tT T T= +  

int int int( ) ( )n tR R R= +  

n tu u u
⋅ ⋅ ⋅

= +  

n tu u u
⋅⋅ ⋅⋅ ⋅⋅

= +  

(4.60)

The magnitude of normal component of contact force is directly 

proportional to the penetration of node: 

n dT Pψ=  (4.61)

In the above equation,  is the normal component of contact force, nT

dP  is the penetration of blank node into tool surface, and ψ  is the penalty 
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factor. The penalty factor represents the stiffness of the contacting element, 

such that, 

sA K
l

ψ =  
(4.62)

Where sA  is the element area, l  is the maximum element length, and  is 

the Young’s volume modulus of material. 

K

Tangential component of the contact force is calculated according to 

Coulomb’s law of friction. Normal component of the contact force is used in 

these calculations: 

The contact search is performed different in several areas. For 

example, in the flange region, only die surface is considered in contact 

analysis. In the same way, under the punch head, blank can only penetrate 

into the punch, so only contact with the punch surface is searched. The 

reason for this approach is to increase the computational efficiency of the 

program. Contact search is very time consuming, therefore, minimizing the 

contact areas by defining non-contacting surfaces beforehand, used CPU 

time significantly decreases. 

After both components of the contact force are known, these are 

combined and rearranged according to the global coordinate system. Then 

the results are added to the global external force vector. 

4.7 Solution Scheme 

The dynamic-explicit methods are based on the solution of a dynamic 

problem, even if it a quasi-static as in most application of metal forming. A 
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simple one dimensional mass-spring-damper system is considered to 

express to bases of these methods. 

 

 
Figure 4.3 A mass–spring–damper system 

 

The equation of motion for the free body diagram of mass is given as 

( )
.. .

mu cu ku f t+ + =  
(4.63)

where  is the mass of the body, c  is the damping coefficient of the 

damper,  is the stiffness of the spring, u , u , and  are the instantaneous 

displacement, speed and acceleration of mass at time t, respectively, and 

m

k
. ..

u

( )f t  is the external force as a function of time. 
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The equation of motion can be solved using central difference 

method: 

(
..

2
1 2t t t t tu u u
t

+∆ −∆= − +
∆

)t u  
(4.64a)

( )
. 1

2
t t t tu u

t
+∆ −∆= − tu

∆
 

(4.64b)

Substituting equations (4.64) into equation (4.63) and rearranging 

yields 

( )

2

2 2

2
2

2

t t

t t t

m c u
tt

m m c tf t k u u
tt t

+∆

u−∆

⎛ ⎞+ =⎜ ⎟∆∆⎝ ⎠
⎛ ⎞− + − −⎜ ⎟∆∆ ∆⎝ ⎠

 
(4.65)

The solution of displacement at time t t+ ∆  only depends on the 

displacement of the known states at times t  and . This time 

discretization scheme is named as dynamic explicit integration of the 

equation of motion. In case of the implicit integration methods, the solution 

depends also on the displacements of the unknown state at time 

t t− ∆

t t+ ∆ , 

which is usually expressed as dependency of the stiffness term on the 

unknown displacements [38]. 

The above solution scheme can also be applied to the general 

equation for the displacement based non–linear finite element analysis. 

Recall equation (4.20) 

= −
..

ext intMU R R  
(4.20)
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Adopting the same procedures to this equation, the following equality 

is reached: 

2

2 2

1

2 1

t t

t t

t

t t

+∆

−∆

=
∆

− + − t

∆ ∆ext int

M U

R R M U M U
 

(4.66)

This equation can be solved for t t+∆ U , using known t  and 

. The initial conditions for nodal displacements, velocities, internal and 

external forces at the time 

U
t t−∆

0t

U
=  are given; however the nodal displacements 

at  are also required at the very first step and it can be obtained from t t= −∆

2
0 0

2
t tt−∆ ∆

= − ∆ +
. .

U U U 0
.

U  
(4.67)

where the initial accelerations are given by 

0 0 0= −
..

ext intM U R R  
(4.68)

To increase the computational efficiency the consistent mass matrices 

given in equation (4.18) are approximated by diagonal (lump) matrices: 

Equation (4.66) is uncoupled on the left hand side and no factorization is 

necessary. Furthermore, this approximation has proven itself quite useful 

since on one hand the central difference method is known to shorten the 

vibration period whereas the use of lumped matrices increase this period, 

thus a balanced total effect is obtained at the end [38].  
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Lumped mass matrix is obtained by placing mass particles at the 

nodes of the element, such that the total mass of the element is equal to the 

summation of mass values at the nodes. To obtain the lump mass matrix, 

total mass of the element must be computed. Then diagonal of the consistent 

mass matrix should be calculated. The final step is scaling of the diagonal 

elements by an appropriate coefficient to satisfy the conservation of mass. At 

the end a diagonal mass matrix is constructed. 

For the four node shell element used in this study, the lumped mass 

matrix is calculated for each nodal point as follows: 

4
m

=M  

1

0

0

0

0

....

0

1

0

0

0

....

0

0

1

0
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 (4.69)

In representation above, ls and lr are the current element length values 

along r- and s-directions, and t is the current element thickness. The last two 

terms of the matrix are mass moments of inertia taken at the nodal positions 

of the element. 

The explicit algorithm integrates through time by using small time 

increments. The central difference operator is conditionally stable and the 

stability limit for the operator with including the damping can be simply stated 

as  

( )2 2

max

2 1t ζ ζ
ω

∆ < + −  
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where  is the maximum eigen-frequency of the system, and maxω ζ  is 

the fraction of critical damping. The above equation is valid for linear systems 

but it can be used as an estimate for nonlinear systems such as elasto-

plastic metal forming problems. It is estimated that the critical time step for 

non-linear problems is about 50 - 80 % lower than the one computed for the 

linear systems [38]. 

In a finite element simulation, the critical time step can be also 

approximated for each element at each step by 

Lt
c

∆ <  (4.70)

where  is the elastic wave speed of material (speed of sound in that 

material) and 

c

L  is the characteristic element dimension. The elastic wave 

speed is obtained from 

( )
( )

2 1
1 2

G
c

ν
ρ ν

−
=

−
 (4.71)

Calculation of each increment in dynamic-explicit methods is very 

robust and less time consuming than implicit methods; however, too small 

time steps result in unacceptable high number of increments, which make 

the dynamic-explicit methods infeasible. Two numerical tricks are applied to 

avoid this. 

The total process time is reduced by exaggerating speed of moving 

tool or increasing the gradient of loading curves. In order to compensate the 

undesired effects of artificial inertia forces numerical damping is applied. This 

treatment is not suggested and an additional precaution should be taken for 

the analysis involving strain rate sensitive materials. In addition, increase in 
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the density of the material leads a reduction in the total number of 

increments since it reduces the sound of speed in the material and hence 

increases the minimum allowable time step. The additional artificial inertia 

forces cannot be reduced by introducing numerical artificial damping but 

these forces may be taken over by the rigid dies since in deep drawing most 

of the workpiece is supported by the dies [38]. Therefore, dynamic-explicit 

methods can be applied to the sheet metal forming processes successfully 

from this point of view. 

4.8 Comparison of Implicit and Explicit Methods 

Implicit methods satisfy the static equilibrium in the unknown final 

configuration of a time increment and enable a full static solution with 

convergence control. The increment size can be very large depending on the 

contact condition and the CPU time increases drastically as the element 

number increases because of the matrix inversion operation and accurate 

time integration scheme. This leads to the problem such as the divergence of 

the solution and the singularity of the stiffness matrix.  

On the other hand, the most important advantage of the dynamic-

explicit method is its robustness and independency of the stiffness term on 

the unknown displacement. The computational speed is faster and memory 

requirement is less than the static implicit methods. In addition, the region of 

the wrinkles is accurately determined in dynamic-explicit methods. However, 

the integration scheme is only valid if the mass matrix is lumped. 

Furthermore, the speed advantages can hold only if element computations 

are as few as possible. This is satisfied only by using single quadrature 

elements having rather poor stress and strain accuracy. It is claimed that the 

error introduced by a lumped mass matrix is compensated by a reduced 

integration scheme of the elements; however, this causes some 

disadvantages that the local stresses and spring-back is not accurately 

calculated and there is possibility to have hourglass (zero energy) modes.



 

CHAPTER 5 

THEORETICAL RESULTS OF SIMULATIONS 

In this study, the developed finite element program is used to simulate 

two different cup drawing operations: circular cup drawing and square cup 

drawing. The simulations are carried out using two symmetry axes because 

both cases are symmetric according to any two perpendicular axes. 

Therefore only ¼ of tools and blank are modeled. 

The modeling operation is carried out in two steps. First, using a solid 

modeling program, 3-D models of tools and blank are constructed. Then, the 

constructed models are input to the commercial finite element program PAM-

STAMP for meshing purposes. Using PAM-STAMP die and punch are 

meshed automatically. Maximum element size is set to be 5 mm for die and 

punch set. 

 

  

Figure 5.1 Die–punch sets for circular and square cup drawing 
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Simulations for circular and rectangular cup drawing are carried out 

using five different mesh size. For this purpose, meshing process of circular 

and rectangular blank is carried out five times for each with element sizes 

from 5 mm to 1mm. The number of nodes and elements produced is given 

as tabulated below. 

 

Table 5.1 Number of nodes and element used in analysis 

Circular Blank Rectangular Blank Element 
Size (mm) Node Element Node Element 

5 113 104 81 64 
3 276 262 196 169 
2 625 604 441 400 
1 2433 2392 1681 1600 

 

Material properties are also needed for blank modeling of blank. As 

stated before, elasto-plastic material model is used. For plastic flow 

simulation, Swift’s rule is adopted in the formulations. Constants in Swift’s 

rule, yield strength, modulus of elasticity and Poison’s ratio are presented 

below. These are the properties of material used in experiments by Şenalp 

[40]. 

 

Table 5.2 Material constants used in simulations 

A (kN/mm2) 0.667 
B (mm/mm) 0.054 

n 0.361 
Y (kN/mm2) 0.268 
E (kN/mm2) 200 

ν 0.3 
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In all simulations friction constant is taken as 0.04 according to the 

experiments carried out by Şenalp [40]. 

The punch is assumed to travel 10 mm/min. Both cups are drawn to a 

depth of 15 mm for each mesh. The program uses no blank-holding force in 

order to simulate the wrinkling case. For circular and square cup drawing, a 

total of 10 runs are performed with five different meshes for each case. 

In order to verify the results, commercial program PAM-STAMP is 

used. The meshes are already prepared with PAM-STAMP, therefore same 

meshes are used. The material properties are also entered into the program 

manually, to achieve the same simulation conditions as with the developed 

code. Again, five runs are performed for circular and square cup drawing 

each. 

For comparison, pictures of deformed meshes are taken at for 

different stages of drawing: 1mm, 5 mm, 10 mm, 15 mm. Besides, nodal 

point displacement histories of three nodes are traced. Displacements of 

nodes along x, y and z axis are compared between developed code and 

PAM-STAMP results. 

In addition, the results obtained using developed code are also 

compared with experimental results. The experiments are carried out by 

Şenalp [40]. Experimental results are available for only square cup drawing; 

therefore comparison is limited with square cup drawing case.  

Comparison with experimental results is carried out using thickness 

strain values. Measurements are taken at drawing depths 4 mm and 10.5 

mm. The strains are read on the line connecting the center of blank and 

midpoint of side, and on diagonal line. The strain values at these depths are 

compared according to their initial positions with respect to center of blank. 
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Besides wrinkling analysis, code is used to solve deep drawing cases. 

Deep drawing runs are carried out for square cup drawing with element sizes 

3mm, 2mm and 1mm. All the parameters are the same as previous cases. 

Blank–holder is modeled in the same way as other tools. Blank–holding force 

used is 750 kg. 

The results obtained for deep drawing cases are compared with the 

values of experiments carried out by Şenalp [40]. Experimental readings are 

taken at 5mm and 10 mm drawing depth, again on a line connecting the 

center of blank and midpoint of side and on diagonal line. 
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5.1 Results for square cup drawing with blank–holder (element 
size 3 mm) 

In this simulation, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 3 mm. A constant 250 kgf 

blank holder load is applied. The drawing is completed as punch travels 15 

mm. Deformed shapes of blank at four different drawing depth are presented 

below. 



 

 Developed Code 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 5.2 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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5.2 Results for square cup drawing with blank–holder (element 
size 2 mm) 

In this simulation, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 2 mm. A constant 250 kgf 

blank holder load is applied. The drawing is completed as punch travels 15 

mm. Deformed shapes of blank at four different drawing depth are presented 

below. 

 



 

 Developed Code 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 5.3 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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5.3 Results for square cup drawing with blank–holder (element 
size 1 mm) 

In this simulation, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 1 mm. A constant 250 kgf 

blank holder load is applied. The drawing is completed as punch travels 15 

mm. Deformed shapes of blank at four different drawing depth are presented 

below. 



 

 Developed Code 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 5.4 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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5.4 Comparison of square cup drawing with blank holder case 
with experimental results 
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Figure 5.5 Thickness strain distribution along line connecting center of blank 

and midpoint of side at 5 mm drawing depth 
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Figure 5.6 Thickness strain distribution along diagonal line at 5 mm drawing 

depth 
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Figure 5.7 Thickness strain distribution along line connecting center of blank 

and midpoint of side at 10 mm drawing depth 
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Figure 5.8 Thickness strain distribution along diagonal line at 10 mm 

drawing depth 
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5.5 Results for circular cup drawing (element size 5 mm) 

In this simulation, a circular blank is drawn into a cylindrical cup. For 

modeling blank, element size is chosen to be 5 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.9 Orientation of circular blank with element size 5 mm 

 



 

 Developed Code PAM-STAMP 

a) 
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d) 

  

Figure 5.10 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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Figure 5.11 Displacement of node 1 in x-direction for 5 mm element size 
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Figure 5.12 Displacement of node 2 in y-direction for 5 mm element size 
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Figure 5.13 Displacement of node 3 in z-direction for 5 mm element size 
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5.6 Results for circular cup drawing (element size 3 mm) 

In this simulation, a circular blank is drawn into a cylindrical cup. For 

modeling blank, element size is chosen to be 3 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.14 Orientation of circular blank with element size 3 mm 
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Figure 5.15 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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Figure 5.16 Displacement of node 1 in x-direction for 3 mm element size 
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Figure 5.17 Displacement of node 2 in y-direction for 3 mm element size 
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Figure 5.18 Displacement of node 3 in z-direction for 3 mm element size 
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5.7 Results for circular cup drawing (element size 2 mm) 

In this simulation, a circular blank is drawn into a cylindrical cup. For 

modeling blank, element size is chosen to be 5 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.19 Orientation of circular blank with element size 2 mm 

 

 77



 

 Developed Code PAM-STAMP 

a) 

  

b) 

  

c) 

  

d) 

  

Figure 5.20 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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Figure 5.21 Displacement of node 1 in x-direction for 2 mm element size 
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Figure 5.22 Displacement of node 2 in y-direction for 2 mm element size 
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Figure 5.23 Displacement of node 3 in z-direction for 2 mm element size 
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5.8 Results for circular cup drawing (element size 1 mm) 

In this simulation, a circular blank is drawn into a cylindrical cup. For 

modeling blank, element size is chosen to be 1 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.24 Orientation of circular blank with element size 1 mm 
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Figure 5.25 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 

depths 
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Figure 5.26 Displacement of node 1 in x-direction for 1 mm element size 
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Figure 5.27 Displacement of node 2 in y-direction for 1 mm element size 
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Figure 5.28 Displacement of node 3 in z-direction for 1 mm element size 
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5.9 Results for square cup drawing (element size 3mm) 

In this simulation, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 3 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.29 Orientation of square blank with element size 3 mm 
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Figure 5.30 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 
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Figure 5.31 Displacement of node 1 in x-direction for 3 mm element size 
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Figure 5.32 Displacement of node 2 in y-direction for 3 mm element size 
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Figure 5.33 Displacement of node 2 in z-direction for 3 mm element size 
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5.10 Results for square cup drawing (element size 2mm) 

In this simulation, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 2 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.34 Orientation of square blank with element size 2 mm 
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Figure 5.36 Displacement of node 1 in x-direction for 2 mm element size 
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Figure 5.37 Displacement of node 2 in y-direction for 2 mm element size 
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Figure 5.38 Displacement of node 2 in z-direction for 2 mm element size 
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5.11 Results for square cup drawing (element size 1mm) 

In this simulation, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 1 mm. No blank holder force is 

applied in order to analyze wrinkling. The drawing is completed as punch 

travels 15 mm. Analysis with the same conditions are conducted using PAM-

STAMP. Nodal point displacement results of developed code at the nodes 

shown below are compared with the results of PAM-STAMP. 
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Figure 5.39 Orientation of square blank with element size 1 mm 
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Figure 5.40 Deformed shapes at a) 1mm b) 5mm c) 10mm d) 15mm drawing 
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Figure 5.41 Displacement of node 1 in x-direction for 1 mm element size 
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Figure 5.42 Displacement of node 2 in y-direction for 1 mm element size 
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Figure 5.43 Displacement of node 3 in z-direction for 1 mm element size 
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5.12 Comparison of square cup drawing case with experimental 
results 
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 Figure 5.44 Thickness strain distribution along line connecting center of 

blank and midpoint of side at 4 mm drawing depth 
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Figure 5.45 Thickness strain distribution along diagonal line at 4 mm 

drawing depth 
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 Figure 5.46 Thickness strain distribution along line connecting center of 

blank and midpoint of side at 10.5 mm drawing depth 
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 Figure 5.47 Thickness strain distribution along diagonal line at 10.5 mm 

drawing depth 
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5.13 Simulations with changing blank holder load 

In these simulations, a square blank is drawn into a square cup. For 

modeling blank, element size is chosen to be 1 mm. Changing blank holder 

force is applied in order to analyze how wrinkle number change with 

increasing force and at what force level wrinkling occurrence stops. The 

drawing is completed as punch travels 15 mm for all simulations. Applied 

blank holder forces are 25 kgf, 50 kgf, 100 kgf, 150 kgf, 200 kgf and 215 kgf. 

 



 

           
a) 

          
b) 

           
c) 

 
  

d) 

 
e) 

        
f) 

Figure 5.48 Deformed shapes at 15 mm drawing depth for a) 25kgf b) 50 kgf 

c) 100 kgf d) 150 kgf e) 200 kgf f) 215 kgf 
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CHAPTER 6 

DISCUSSION 

In this study, a finite element program is developed to analyze the 

wrinkling behavior in deep-drawing operations. Tool and blank geometry are 

needed to be input to the program. The program calculates the 

displacements of nodes of blank. Using these displacements, incremental, 

total and effective strains are calculated. According to constitutive laws, 

incremental, total, deviatoric, mean and equivalent stresses are found in post 

calculation phase. Results of nodal displacements are rearranged to be 

displayed in ANSYS. 

The program is tested for square and circular cup drawing with 

different finite element meshes. The results are compared with both 

experimental findings and the results of the commercial program PAM-

STAMP. Comparison with PAM-STAMP is based on nodal displacement 

values, whereas the experimental results are compared according to the 

strains in thickness direction. 

All simulations are carried out using ¼ symmetry. Appropriate 

boundary conditions are applied at symmetry planes. The material properties 

for simulations are chosen to represent the material properties of stainless 

steel used in the experiments. These values are presented by Şenalp [40] 

according to conducted tests during his Ph.D. study. 
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A total of 11 runs are conducted, 4 for circular cup drawing, 4 for 

square cup drawing and 3 for square cup drawing with blank–holder. 4 

different element size is used for meshing: 1 mm, 2 mm, 3 mm and 5 mm. 

Considering the results for circular cup drawing, it is observed that as 

element size decreases, solutions of both developed code and PAM-STAMP 

converges. As represented in Chapter 5, results obtained are in good 

agreement with the commercial program. In all mesh types, this agreement 

can be observed, however, with decreasing mesh size the results become 

closer to converging values. 

In square cup drawing, however, the run performed with 5 mm 

element size did not give reasonable results. The main reason for this is 

thought to be the coarse mesh. 5 mm element size is very big to simulate the 

behavior of material. Actually, this can be understood observing the figures 

of 3 mm element sized mesh results. Even with this mesh size, sharp 

corners take place in blank. Therefore it can be deduced that for simulation 

of square cup drawing using such tool geometry, 5 mm element size is much 

larger than suitable. The same conclusion can be reached for square cup 

drawing with blank–holder using same element size. 

The results for square cup drawing with other element size, however 

are seem be in good agreement with result obtained from PAM-STAMP 

simulations. As in the circular cup drawing case, the results converge to 

same values as mesh size decreases. 

Moreover, the results of developed code for square cup drawing are 

also compared with the experimental results. This comparison is based on 

thickness strains. The experimental values are available for two cup heights, 

6 mm and 7.5 mm. The thickness strains are measured along the line 
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connecting the center of blank and midpoint of side, and along the diagonal 

of blank for both cup heights. 

In this comparison, the effect of mesh size on the results can be 

observed easier. As the mesh size decreases, the results of developed code 

become much closer to the experimental values. The results are in good 

agreement especially for element sizes 2 mm and 1 mm. 

The results obtained for square cup drawing with blank–holder are 

also compared with the experimental findings. The comparison is made at 

two cup drawing heights, 5 mm and 10 mm; and based on the thickness 

strain values. The values are measured on the diagonal line and the line 

connecting center of blank and midpoint of side on the experimental part. 

The appropriate values are considered from the developed code. 

To find the necessary blank holder load to prevent wrinkling, several 

simulations are carried out with changing blank holder load. At the end of 6 

simulations, it is find that a blank holder force of 215 kgf is enough to prevent 

wrinkling. The blank holder forces used in these simulations are 25 kgf, 50 

kgf, 100 kgf, 150 kgf, 200 kgf and 215 kgf. For loads of 25 kgf and 50 kgf, it 

is observed that 4 wrinkles occur, where the amplitude is less for the latter 

load. For loads 100 kgf and 150 kgf, wrinkle number increases to 8, and 

again for the higher load amplitude is smaller. For load of 200 kgf, wrinkle 

number becomes 16. For load of 215 kgf, no wrinkle occurs. The number of 

wrinkles and magnitude of amplitude with increasing force is as expected. 

The results are in good agreement with the experimental values. As 

the mesh size decreases results converge to the same values, and become 

closer with the experimental findings. Especially, the results of 1 mm nodded 

mesh seem to be very accurate. However, the results for all meshes catch 

the general trend line seen in the experiments. 
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Although the numerical solutions obtained from the developed code 

seem to be in good agreement with both the experimental results and PAM-

STAMP solutions, there are small discrepancies between them. There may 

be several causes for this. One of them is the friction model used. The 

Coulomb friction model is used, and it is taken constant everywhere. 

However, in the experiments it may not be possible to lubricate the all 

surfaces properly. Another reason may be the material model. The 

mechanical properties of materials is not possible to be modeled perfectly. 

Experimentation procedure can be another factor for the differences 

between the numerical solutions and the experimental results. If there is a 

little misalignment of the punch, this results in nonsymmetrical parts. 

There may also be some reading errors during the measurements on 

the drawn parts. This is one of the main reasons for discrepancies. 

In spite of these effects, the solutions obtained by developed code 

seem to simulate the real conditions well enough. All cases are in good 

agreement with both experimental results and simulations of commercial 

program PAM-STAMP. 
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CHAPTER 7 

CONCLUSION 

As a conclusion, the study based on explicit formulation of time step 

integration for the analysis of deep drawing operation is successfully 

finished. The explicit finite element code is generated using C++ 

programming language. Axisymmetric blanks are defined using quadrilateral 

shell elements with 4 nodes and 5 d.o.f s at each node. Dynamic equilibrium 

equations with the given boundary conditions are constructed. Gaussian 

quadrature technique is used for numerical integrations. Isotropic elasto-

plastic material model with Von Mises yield criterion is used. Updated 

Lagrangian formulation is adopted to calculate displacements. Stresses are 

related to strains by constitutive laws. Contact algorithm is developed using 

penalty function method. The analysis is made for deep drawing of square 

and circular cups without the blank-holder. Results are compared with the 

available experiments and results of commercial program PAM-STAMP. 

The behavior of sheet-metals for large strain and large displacement 

can efficiently be modeled with the developed code. Wrinkling experiments 

conducted by Şenalp [40] yield very similar results with the numerical results 

obtained from the developed code. The thickness strain variations obtained 

from the experiments and from developed code are in good agreement. The 

program can also simulate the metal forming operation with blank holder 

force application. The results obtained for drawing case with blank–holder 

applications are also in good agreement with experimental findings. 
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CHAPTER 8 

SUGGESTIONS FOR FUTURE WORK 

Throughout the study it is observed that some of the areas can further 

be investigated and developed: 

 Wrinkling as a function of blank holder load can be attempted. 

 Effect of drawbead on wrinkling can be investigated. 

 Investigations on nonsymmetric workpieces can be conducted. 

 Different element models can be developed. 

 Residual stress prediction can be attempted. 

 Anisotropy can be included in material modeling. 

 Strain rate effect can be taken into account. 

 Redrawing of the parts can be considered. 

 Remeshing can be applied. 

 Variable blank holder load can be applied. 
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