

SOFT DECODING OF CONVOLUTIONAL PRODUCT CODES

ON AN FPGA PLATFORM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA SANLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2005

Approval of Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. �smet ERKMEN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. A. Özgür YILMAZ

Supervisor

Examining Committee Members:

Prof. Dr. Yalçın TANIK (METU, EE) _________________________

Asst. Prof. Dr. A. Özgür YILMAZ (METU, EE) _________________________

Assoc Prof. Dr. T. Engin TUNCER (METU, EE) _________________________

Asst. Prof. Dr. Cüneyt BAZLAMAÇCI (METU, EE) _________________________

Hacer SUNAY (TÜB�TAK, B�LTEN) _________________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Mustafa SANLI

 iv

ABSTRACT

SOFT DECODING OF CONVOLUTIONAL

PRODUCT CODES ON AN FPGA PLATFORM

Sanlı, Mustafa

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Ali Özgür YILMAZ

September 2005, 79 pages

In today’s world, high speed and accurate data transmission and storage is

necessary in many fields of technology. The noise in the transmission channels

and read-write errors occurring in the data storage devices cause data loss or

slower data transmission. To solve these problems, the error rate of the

received information must be minimized. Error correcting codes are used for

detecting and correcting the errors.

 v

Turbo coding is an efficient error correction method which is commonly used

in various communication systems. In turbo coding, some redundancy is added

to the data to be transmitted. The redundant data is used to recover original

data from the received data. MAP algorithm is one of the most commonly

used soft decision decoding algorithms.

In this thesis, hardware implementation of the MAP algorithm is studied. MAP

decoding is verified on an FPGA. Virtex2Pro is the platform of choice in this

study. The algorithm is written in the VHDL language. A MAP decoder is

designed and its operation is verified. Using many MAP decoders concurrently,

a convolutional product decoder is implemented as well. Area and speed

limitations are discussed.

Keywords: MAP Algorithm, Turbo Coding

 vi

ÖZ

EVR���MSEL ÇARPIM KODLARININ FPGA

ÜZER�NDE YUMU�AK ÇÖZÜMÜ

Sanlı, Mustafa

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Ali Özgür YILMAZ

Eylül 2005, 79 sayfa

Bugünün dünyasında, yüksek hızda hatasız veri aktarımı ve depolama,

teknolojinin birçok alanında gereklidir. Veri yollarında yer alan gürültü ve

depolama araçlarındaki okuma-yazma hataları veri kaybına ve dü�ük hızda veri

aktarımına sebep olmaktadır. Bu sorunları çözebilmek için alınan bilgideki

hata oranı en aza indirilmelidir. Hataları algılamak ve düzeltmek için hata

düzeltme kodları kullanılmaktadır.

 vii

Turbo kodlama, çe�itli komünikasyon sistemlerinde yaygın olarak kullanılan,

etkili bir hata düzeltme metodudur. Turbo kodlamada, aktarılacak olan veriye

bazı fazlalıklar eklenir. Bu eklenen fazla bilgi, orijinal verinin alınan veriden

elde edilmesinde kullanılır. MAP algoritması en yaygın kullanılan yumu�ak

çözüm algoritmalarından biridir.

Bu tezde, MAP algoritmasının donanımsal gerçeklenmesi yapılmı�tır. MAP

çözümü, FPGA üzerinde do�rulanmı�tır. Bu çalı�ma Virtex2Pro üzerinde

yapılmı�tır. Algoritma VHDL diliyle yazılmı�tır. Bir MAP çözücüsü

tasarlanmı� ve çalı�ması do�rulanmı�tır. Ayrıca, birçok MAP çözücüsü aynı

anda çalı�tırılarak bir evri�imsel çarpım çözücü de gerçeklenmi�tir. Alan ve

hız sınırları tartı�ılmı�tır.

Anahtar Kelimeler: MAP Algoritması, Turbo Kodlama

 viii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Asst. Prof. Dr. Ali Özgür YILMAZ for

his guidance and friendly attitude. Next, I would like to thank Mr. Orhan

GAZ� for his support in developing the algorithm and testing. I would also like

to thank my colleagues Mr. Hüseyin YÜRÜK and Mr. Eren BABATA� for

their help in the redaction of the thesis.

Special thank should be given to Aselsan Inc. for providing me time for my

graduate studies.

Finally, I would like to thank my family for their love and encouragement

throughout my life.

 ix

TABLE OF CONTENTS

ABSTRACT..iv

ÖZ..vi

ACKNOWLEDGEMENTS...viii

TABLE OF CONTENTS.. ix

LIST OF FIGURES ..xi

LIST OF TABLES ...xii

1. INTRODUCTION...1

2. ERROR CORRECTING CODES...4

2.1. Digital Communication System...4

2.2. Types of Codes..6

2.2.1. Block Codes..6

2.2.2. Convolutional Codes...7

2.3. Basic Definitions..7

2.4. Convolutional Codes……………………..8

2.4.1. Convolutional Encoder Representations.....................................9

2.4.1.1.Tree Diagram Representation..9

2.4.1.2.State Diagram Representation ……..………….…….…....11

2.4.1.3.Trellis Diagram Representation...12

 x

3. THE MAP ALGORITHM..14

3.1. MAP Decoding of Convolutional Codes...15

4. IMPLEMENTATION OF THE MAP ALGORITHM AND TEST

RESULTS...20

4.1. Log Domain Map Algorithm..21

4.2. Implementation of the Log Domain MAP Algorithm..........................25

4.2.1. Data Storage..25

4.2.2. Max* operations..26

4.2.3. Recursive Calculations..27

4.3. Implementation of the Convolutional Product Decoder……………..36

4.4. Test Results..38

4.5. Performance of The Implemented Decoders..39

5. COMPUTATIONAL COMPLEXITY..45

5.1. Operation Time Analysis of the MAP Decoder...................................46

5.2. Data Storage in the MAP Decoder...50

5.3. Minimization of Time and Area...53

5.4. Convolutional Product Decoder Performance......................................55

5.5. Area Limitations...56

6. SUMMARY AND CONCLUSIONS..61

APPENDICES

Appendix A: Test Results Of The Map Decoder..64

Appendix B: Test Results Of The Convolutional Product Decoder............66

Appendix C: The Properties Of The FPGA Virtex-II Pro...........................70

BIBLIOGRAPHY...75

 xi

LIST OF FIGURES

Figure 2.1: Simplified model of a digital communication system…………… 5

Figure 2.2: A convolutional encoder..8

Figure 2.3: The tree diagram representation of a convolutional code……......10

Figure 2.4: An example state diagram of a convolutional encoder………......11

Figure 2.5: The trellis diagram of a 4-state convolutional code………...........13

Figure 4.1: The structure of the max4 device...27

Figure 4.2: The (1, 5/7) convolutional encoder……………..………………..28

Figure 4.3: The one-step trellis diagram of the (1, 5/7) encoder……………..29

Figure 4.4: Convolutional product decoder…………………………………..37

Figure 4.5: The test and floating point results of single MAP decoder…...….42

Figure 4.6: The test and floating point results of the convolutional product

decoder…………………………………..…………………………………....43

 xii

LIST OF TABLES

Table 4.1: The values of K used in the BER tests……………………………41

Table 4.2: The BER test results fort the single MAP decoder……………….41

Table 4.3: The BER test results fort the convolutional product decoder…….43

Table 5.1: The operation time required for each part of the circuit for N data

words and N parity words……………………...………….…………………..50

Table 5.2: The number of registers required for storing signals…….….……52

Table 5.3: The logic components that are used in the implementation of the

decoder………………...………….…………………………...…………...…53

Table 5.4: The decoding rate of a single MAP decoder for different value of

N ………………...………….………………………………………………...58

Table 5.5: The decoding performance of the convolutional product decoder for

different values of N and different number of iterations …………………......59

 1

CHAPTER 1

INTRODUCTION

Today, there is a need for high speed and accurate data storage and

transmission. Improvements in technology enable high speed data transfer and

processing. But, there is noise on transmission channels and there is also

possibility of technical mistakes. These factors introduce errors to the received

data. Hence, the aim must be to reduce and minimize the error rate in the

received information with reasonably high data rates. Error correcting codes

are used for detecting and correcting the errors.

Although error control coding is used in a variety of systems, it is especially

useful in wireless communications systems. Such systems typically operate at

low signal-to-noise ratios (SNR). The multipath behavior of the wireless

channels also causes problems. As a result of the wireless environment, the

received signal possibly contains many errors. Due to ubiquitous

 2

communication desires of people, demand for wireless communication is

growing rapidly each day. Hence, there is now a widespread need for fast and

efficient error detecting and correcting systems.

The main idea of channel coding is to add redundancy to the data to be

transmitted where the redundant data is used to recover the original data from

the received data. Turbo codes constitute a special class of concatenated codes

which were discovered in 1993 [1]. Turbo coding is a comparably recent

advance in channel coding which proved itself in the last decade to be

commonly used in various new communication systems and standards. Turbo

codes perform quite well with reasonable complexity very close to the capacity

especially in power limited channels such as wireless channels [1]. Turbo

codes are composed of convolutional codes and their decoding is done by

information exchange between the decoders of convolutional codes. That’s

why, maximum a posteriori (MAP) decoding of convolutional codes received

large interest since the discovery of turbo codes.

MAP algorithm is one of the most commonly used soft decision decoding

algorithms [2], [15-26]. MAP is an algorithm to estimate random parameters

with prior distributions. In communications framework it is used to estimate

the most likely information bit transmitted in a codeword. The plain form of

the MAP algorithm is complex and not suitable for hardware implementation.

The BCJR algorithm [2] offers an efficient tool to implement the MAP

algorithm. The complexity of BCJR algorithm is linear with the length of the

sequence input to it and it can be easily implemented in hardware [3]. Many

hardware implementations are available [9] – [13].

In this thesis, hardware implementation of the MAP algorithm is studied. MAP

decoding is verified on an FPGA. Virtex2Pro is the platform of choice in this

study. The algorithm is written in the VHDL language. A MAP decoder is

designed and its operation is verified. Based on the implemented MAP

 3

decoder, a parallel decoder structure for a product code is constructed.

Although product codes are usually built by using block codes, we constructed

a product code structure with convolutional codes. Many MAP decoders will

be run concurrently in this parallel implementation. Area and speed limitations

will be discussed.

The outline of this script is as follows. A brief theoretical background in the

area of error correcting codes is given in Chapter 2. Block codes and

convolutional codes are explained and basic definitions are presented. Chapter

3 is devoted to the explanation of the MAP algorithm in detail. The VHDL

implementation of the MAP algorithm and the corresponding test results are

given in Chapter 4. Computational complexity calculations of the

implemented algorithm are given in Chapter 5. In this chapter, area and speed

limitations are discussed as well. Finally, we summarize and conclude the

thesis in Chapter 6.

 4

CHAPTER 2

ERROR CORRECTING CODES

This chapter gives general information on error correcting codes. Firstly,

digital communication systems and types of codes are explained. Then, basic

definitions are given. Finally, convolutional codes are explained and

convolutional encoder representations are given.

2.1 Digital Communication Systems

Typical communication systems use several error correcting codes that are

used to correct different types of errors. The physical medium which is used to

transmit messages is called a channel. It can be a telephone line, a satellite link,

a wireless channel etc. There are different sources of noise in channels. This

introduces errors in the received message.

 5

The basic idea of error correcting codes is to add some redundancy to a

message before its transmission through a noisy channel. At the receiver, the

original message can be recovered from the corrupted one if the number of

errors is within the error correction capability of the code. Figure 2.1 shows a

simplified model for a digital communication system. In the figure, u denotes

the information sequence, v denotes the codeword and y denotes the received

message.

Figure 2.1: Simplified model of a digital communication system

In order to introduce error correcting capability to a digital communication

system, redundancy must be added in a controlled manner. However, extra

redundancy means a lower information transfer rate. Also, as the coding

strategies become more complicated for correcting larger number of errors, fast

and efficient encoding and decoding are difficult to achieve.

Digital
Source

Encoder

Coding
Channel

Decoder

Digital Sink

u

y

v

 6

The mathematical description of a channel can be given as follows. A

communication channel consists of an input alphabet A, an output alphabet B,

and a real number P(b | a) for each pair a∈A, b∈B. P(b | a) is the probability

that b is received, given that a is transmitted.

2.2 Types of Codes [31]

Mainly, there are two types of codes in channel coding: Block codes and

convolutional codes. The properties of these types of codes are given in the

following paragraphs.

2.2.1 Block Codes

In a block code, the encoder divides the incoming information sequence into

message blocks of k symbols with symbol alphabet size q. This length-k

information block is called a message. There are qk possible different

messages. The encoder transforms this message into an n-symbol codeword.

Hence, there are qk different codewords. The set of qk codewords of length n is

called an (n, k) block code. The ratio k/n is called the code rate. Each message

is encoded independently based on a generator matrix. The encoder has no

memory. It can be implemented with a combinational circuit. Block codes are

codes that are constructed based on algebraic structures. There are many

efficient optimal and suboptimal decoding algorithms for block codes; however

few of them work directly on the channel observation. In general, every block

code has a trellis (which will be defined under convolutional codes discussion)

through which optimal decoding can be done. Though, trellises of block codes

are time-varying and their state complexity can grow quite large especially

when the code rate is neither very small nor very large [27].

 7

2.2.2 Convolutional codes

Each encoded block depends not only on the length-k message but also on the

m previous message blocks. Hence, the encoder has a memory of order m as

opposed to the no-memory property in block encoders. It can be implemented

with a sequential circuit. More explanation will be provided in Section 2.4.

2.3 Basic Definitions

• A word is a sequence of symbols.

• A code is a set of vectors called codewords.

• A block code is a set of fixed length codewords. The fixed length of

these codewords is called the block length and it is denoted by n.

• A block code of size M defined over an alphabet with q symbols is a set

of M q-ary sequences, each of length n. When q = 2, the symbols are

called bits and the code is a binary code. Generally,

M = qk (2.1)

for some integer k, and such a code is called an (n, k) code.

• The code rate of an (n, k) code is the ratio (k/n). Smaller code rate

means greater redundancy. A code with greater redundancy is able to

detect and correct more erroneous symbols, but this reduces the rate of

information transmission.

 8

2.4 Convolutional Codes

In convolutional codes, each block of k symbols is mapped into a block of n

symbols. These n symbols are not only determined by the present information

symbols but also by the previous information bits. This can be represented by

a finite state machine.

Convolutional codes are usually generated by shift registers. Figure 2.2 shows

an example of a convolutional encoder where the shift registers are shown with

the empty rectangulars which act as delay elements. The adders perform

modulo-2 addition. We will only consider binary codes in the remainder of

this thesis.

Figure 2.2: A convolutional encoder

The code rate for a convolutional code is defined as

n
k

ratecode = , (2.2)

where k is the number of parallel input information bits and n is the number of

parallel output encoded bits at one time interval. The constraint length K for a

convolutional code is defined as

 9

K = m+1, (2.3)

where m is the maximum number of stages (memory size) in any shift register.

2.4.1 Convolutional Encoder Representations

Convolutional encoders can be implemented by finite state machines. With

this idea, convolutional encoders are generally shown in three ways:

• Tree diagram representation

• State diagram representation

• Trellis diagram representation

2.4.1.1 Tree Diagram Representation

The tree diagram representation shows all possible sequences. Figure 2.3

shows an example of the tree diagram representation. In the tree diagram, lines

represent inputs. A solid line represents 0 and a dashed line represents 1.

Outputs are shown on the branches of the tree. An input information sequence

defines a specific path through the tree diagram. For example, if the input

sequence is given as “0101”, then looking at the figure, it is possible to find the

outputs as “00 11 10 00”.

 10

Figure 2.3: The tree diagram representation of a convolutional code

The tree diagram shows the passage of time as we move on the tree branches.

When compared to a state diagram representation, instead of jumping between

the states, we traverse the branches of the tree depending on whether a 1 or 0 is

received.

0

1

00

00

00
00

11

11

10

01

11
10

01
11

00
01

10
00

11
10

01
11

00
01

10

11

00

01

10

10

01

11

 11

2.4.1.2 State Diagram Representation

The state diagram shows the state information of the encoder on a diagram.

Figure 2.4 shows the state diagram of a convolutional encoder. Each node

represents a particular state of a convolutional encoder. The state of a

convolutional encoder is defined by the current content in the shift registers.

At any time, the encoder is in any one of the states shown in the figure. The

lines going to and from the nodes show possible state transitions. At any time,

the input may be 0 or 1 for the convolutional encoder considered here. Each of

these inputs causes the encoder to jump into a different state. The output of the

encoder is also given in the state diagram. In the notation i/jk of the figure, i

denotes the input causing the transition and jk denotes the corresponding output.

The state diagram contains the same information as the state table but this is a

graphical representation. The state diagram does not have the time dimension.

Figure 2.4: An example state diagram of a convolutional encoder

10

0/00
1/11

0/11
0/01

1/00

0/10

1/01
1/10

01

11 00

 12

2.4.1.3 Trellis Diagram Representation

Trellis diagram shows all possible state transitions at each time step. It is

generated by adding a time index to a state diagram. Figure 2.5 shows the

trellis diagram of a 4-state convolutional code.

Trellis diagrams are preferred over both the tree and the state diagrams because

they represent linear time sequencing of the events. One of the axes is discrete

time and the other contains all possible states. As time passes, we move

horizontally on the trellis diagram. In each transition, new bits arrive.

To draw the trellis diagram, all the possible states are marked in the x-axis.

Then, each state is connected to the next state by the corresponding input and

output for that transition. For example, in each state a 0 or a 1 may arrive. In

the figure, the arrows going upward represent a 0 and the ones going

downward represents a 1. The diagram always begins at state 00, and

continues.

 13

Figure 2.5: The trellis diagram of a 4-state convolutional code

00

01

10

11
4320 1

States

Time

1/11

1/01

1/11 1/11 1/11

1/01 1/01

0/10
0/10

0/11
0/11

0/01

1/00 1/00

0/10

0/01

 14

CHAPTER 3

THE MAP ALGORITHM [32]

In the past, wireless systems were used mainly for voice communication. But

today, they transmit data, audio, video, and voice on the same line. In order to

build reliable wireless systems, designers must use advanced error correction

mechanisms. Turbo coding is an efficient error correction approach which is

proposed to be used in many modern wireless systems. BCJR algorithm is one

of the most commonly used algorithms in turbo decoding [2], [15-26]. It is an

efficient algorithm through which one can obtain a posteriori probabilities of

individual bits.

In this chapter, BCJR-based MAP algorithm which is the algorithm used in this

thesis is explained in detail.

 15

3.1 MAP Decoding of Convolutional Codes

Figure 2.1 shows a simplified model of a digital communication system. A

data symbol uk is the collection of all the s data bits (u1
k, u2

k,…, us
k) that makes

a symbol out of bits. By the finite state representation explained in Chapter 2,

the output and the next state of a convolutional code can be determined by the

current state and the data. Hence, it can be written as

1(|y) (', |y)
(',) :

k k kP u i P S m S m
m m u ik

−= = = =
=

� , (3.1)

where Sk is the encoder’s state at discrete time index k, y is all the channel

observation, i is a symbol from the alphabet of data symbols.

We define a function ()',kM m m such that

() ()1', ', |yk k kM m m P S m S m−= = = . (3.2)

Then, (3.1) can be written as

()(|y) ',
(',) :

k kP u i M m m
m m u ik

= =
=

� . (3.3)

For the paths having the transition 1 'k kS m S m− = → = , ()',kM m m can be

written as

()
()

', (|)
',

kM m m P u y
u D m mk

=
∈
� , (3.4)

 16

where u is the specific input sequence to the encoder, ()',D m mk is the set of

all input sequences which traverse the code's trellis graph through state 'm at

time k-1 and state m at time k.

Using Bayes' theorem, the following expression can be written as

(|) ()
(|)

()
f y u P u

P u y
f y

= . (3.5)

Recall that ()f y is constant for all k and thus can be disregarded. (3.4) can be

rewritten as

()
()

', (|) ()
',

kM m m f y u P u
u D m mk

=
∈
� .

(3.6)

As the symbols in the data sequence are assumed to be independent,

() ()
1

l

N
p u P u

t
=

=
∏ .

(3.7)

We know that for each u, there is a corresponding cu. Then,

(|) (|)uf y u f y c= , (3.8)

where uc is the encoded sequence corresponding to u.

We define a state variable for the past data and the output sequence uc :

[]1 1() ,..., ;u l uc y y cσ = , (3.9)

 17

where 1()ucσ is the state for the lth symbol in the codeword uc and ky denotes

the channel signal for the kth symbol interval.

Applying the chain rule, the following is obtained

1(|) (| ())
1

u l l u

N
f y c f y c

l
σ −=

=
∏ .

(3.10)

When we substitute (3.7), (3.8) and (3.10) into (3.6), we get the following

expression:

1
(',)

(',) () (| ())
1k

k l l l u
u D m m

N
M m m P u f y c

l
σ −

∈

=
=

� ∏ .

(3.11)

When memoryless channels are considered and the convolutional code’s

encoder is a FSM,

1 1,..., 1(| ()) (| ;)l l u l l uf y c f y y y cσ − −= , (3.12)

 (|)l uf y c= , (3.13)

 1(| (), ())l l lf y S u S u−= , (3.14)

where ()lS u is the state of the encoder at time l when the input to the encoder

is u.

Then, (3.10) can be simplified to

 18

1 1(',) ((), ())
(',) 1

k l l

N
M m m S u S u

u D m m lk

γ −=
∈ =
� ∏ ,

(3.15)

where

(',) () (| ',)l l lm m P u f y m mγ = . (3.16)

(3.15) can be computed using the BCJR algorithm. This algorithm is used to

sum up the metrics of all paths passing through a fixed transition in a given

trellis. The algorithm calculates (3.15) recursively. Two functions ()k mα and

()k mβ are used. First one is used for the calculations that are in the forward

direction and the other is used for calculations in the backward direction. The

sum of all path metrics ending up state m at time k is calculated by ()k mα . The

sum of all path metrics starting at state m at time k is calculated by ()k mβ .

The following recursive calculations are used to find ()k mα and ()k mβ :

1
'

() (') (',)k k k
m

m m m mα α γ−=� ,

(3.17)

1 1
'

() (') (, ')k k k
m

m m m mβ β γ+ +=� .

(3.18)

The initial values required for the recursive calculations are supplied to the

encoder. The encoder starts calculation at zero state. If no termination strategy

is used, the final state can be any of the states with equal likelihood.

(',)kM m m can be written as

 19

1(',) (') (',) ()k k k kM m m m m m mα γ β−= . (3.19)

In this case, (3.4) can be written as:

1(|) (') (',) ()
(',) :

k k k kP u i y m m m m
m m u ik

α γ β−= =
=

� .

(3.20)

 20

CHAPTER 4

IMPLEMENTATION OF THE MAP

ALGORITHM AND TEST RESULTS

In this chapter, implementation of the MAP algorithm is explained and test

results are given. First, log domain MAP algorithm is explained. Then, main

parts of the code such as data storage, max* operations, and recursive

calculations are explored. In the recursive calculations part, branch metric

calculations, alpha and beta calculations, LL calculations and decoded data

calculations are given. Then, implementation of the convolutional product

decoder is explained where many decoders work in paralel. Finally, test results

are presented.

 21

4.1 Log Domain MAP Algorithm

In Chapter 3, the MAP algorithm is explained in detail. We use this algorithm

to find out which probability is bigger: P(uk=0|y) or P(uk=1|y). This

information is used to guess the original codeword by looking at the received

one.

To achieve this, we define ()kLL u . ()kLL u is defined as

(1|)
() ln

(0 |)
k

k
k

P u y
LL u

P u y
==
=

. (4.1)

If ()kLL u >0, this means P(uk=1|y) > P(uk=0|y). Hence, we may conclude that

uk=1. uk=0 otherwise. Equation (3.20) tells that, the only variables necessary

for the calculation of ()kLL u are 1(')k mα − , (',)k m mγ , and ()k mβ .

From Chapter 3, we know that

1
'

() (') (',)k k k
m

m m m mα α γ−=� , (4.2)

1 1
'

() (') (, ')k k k
m

m m m mβ β γ+ +=� . (4.3)

Hence, once we know the values of (',)k m mγ , both (')k mα and ()k mβ can be

calculated recursively. At this point, all that remains is the computation of

(',)k m mγ . The probability domain version of the MAP algorithm is

numerically unstable for long and even moderate codeword lengths. It

involves many multiplications and logarithmic operations that require large

 22

look-up tables. Hence, it is not suitable for VHDL coding. As a result of this,

we will use the log domain version of it.

In the log domain MAP algorithm, ()k mα is replaced by the forward metric

() ln(())k km mα α=� . (4.4)

Using equation (4.2), we can write

()k mα� 1
'

ln (') (',)k k
m

m m mα γ−
� �= � �
� �
� , (4.5)

()1
'

log exp (') (',)k k
m

m m mα γ−
� �= +� �
� �
� � � , (4.6)

where the branch metric (',)k m mγ� is given by

(, ') ln((, '))k km m m mγ γ=� � . (4.7)

The probability (')k mβ is replaced by the backward metric.

(') ln(('))k km mβ β=� . (4.8)

Using equation (4.3), we can write

(')k mβ� 1 1ln () (',)k k
m

m m mβ γ+ +
� �= � �
� �
� , (4.9)

()1 1ln exp () (',)k k
m

m m mβ γ+ +
� �= +� �
� �
� � � . (4.10)

 23

Now, using equations (4.1) and (3.20), ()kLL u can be written as

1

1

(') (',) ()
(',) : 1

() ln
(') (',) ()

(',) : 0

k k k

k

k k k

m m m m
m m ukLL u

m m m m
m m uk

α γ β

α γ β

−

−

=
=

=

�

�
,

(4.11)

()

()

1

1

ln exp (') (',) ()
(',) : 1

ln exp (') (',) ()
(',) : 0

k k k

k k k

m m m m
m m uk

m m m m
m m uk

α γ β

α γ β

−

−

� 	

 �

= + +
 �

 �=
�

� 	

 �

− + +
 �

 �=
�

�

�

�� �

�� �

.

(4.12)

At this point, to make the above calculations simpler and more suitable for

VHDL coding, a new function max* is defined as [27]

max*(,) ln()x yx y e e= + . (4.13)

We know that the maximum of two numbers, max(x,y), can be calculated as

max(,) ln()
1

x y

x y

e e
x y

e− −

+=
+

. (4.14)

Then, max*(x,y) can be written as

max*(,) max(,) ln(1)x yx y x y e− −= + + . (4.15)

 24

It is clear and can easily be proven that

[]max*(, ,) max* max*(,),x y z x y z= . (4.16)

Now, we can rewrite equations (4.6), (4.10) and (4.13) using the max* function.

()1
'

() (') (',)max*k k k
m

m m m mα α γ−= +� � � , (4.17)

()1 1(') () (',)max*k k k
m

m m m mβ β γ+ += +� � � , (4.18)

()

()

1
(',): 1

1
(',): 0

() (') (',) ()

(') (',) ()

max*

max*

k

k

k k k k
m m u

k k k
m m u

LL u m m m m

m m m m

α γ β

α γ β

−
=

−
=

� 	
= + +
 �
�

� 	
− + +
 �
�

�� �

�� �

.

(4.19)

Equations (4.17), (4.18) and (4.19) show that the log domain computation of

()kLL u is very suitable for logic design. The max* function involves only a

two-input max function and a lookup table for the term ln(1)x ye− −+ .

We know that

0 < ln(1 + exp(-|a-b|)) ≤ ln (2) ≅ 0.693. (4.20)

A small sized look-up table can be used for the ln(1 + exp(-|a-b|)) values. A

table of size 8 is usually sufficient [30]. For a precision of 0.1, the values of (a-

b) can be calculated for 8 different values of the log operation with step sizes

of 0.1 and this look-up table can be used in the calculations.

 25

4.2 Implementation of the Log Domain MAP Algorithm

The VHDL code mainly consists of three parts: Data storage, max* operations,

and recursive calculations. Using the code, a sequential logic circuit is

generated. All the operations take place in the rising edge of the clock. For

generating the clock, the local oscillator of the FPGA Virtex2Pro is used. The

clock frequency of the FPGA device is 150 MHz. In the VHDL code an

asynchronous reset is provided. For data storage, registers and a RAM is used.

Timing of the signals is very important in reading data from RAM and in

making recursive calculations. To achieve this, a clock counter is used. The

sequence of the events is defined according to this counter.

4.2.1 Data Storage

Received data is kept on the block RAM of the FPGA Virtex2Pro. Each data is

accepted to have m decimal digits to the left of the decimal point and n digits to

the right. There is no complex component in received data since binary shift

keying is assumed. In the case of other modulation schemes, the code should

be rewritten correspondingly. To overcome the difficulties of dealing with the

decimal part, each data is multiplied by 10n before storing into the RAM.

Hence, in the RAM, there are (m+n) digit integers. To reduce the complexity

and save area, these data are entered into RAM as binary vectors.

For example, if data words have 3 decimal digits to the left of the decimal point

and 1 digit to the right, each data is multiplied by 10 before they are stored into

the RAM. In this case, to represent 4 decimal digits, 14-bit binary vectors are

used. Hence, each word of the RAM is a 14-bit binary vector.

The channel information is stored in the vector Y. This vector can be written as

 26

Y = [y1 y1p y2 y2p y3 y3p ... yN yNp], (4.21)

where yk and ykp are the kth data and parity words. Hence, if the vector Y has N

data words and N parity words, to store this data, a RAM size of 2N words is

needed to store this data. In each clock cycle, only one word can be read from

the RAM (unless special techniques are utilized). At the start of the program,

all the received data is read from the RAM and written to registers. Hence, for

a vector Y of N data words, a reading time of 2N clock cycles are required.

In the VHDL code, it is tried to use registers instead of RAMs whenever

possible. This is due the fact that the contents of a group of registers can be

read at a single clock cycle but only one word can be read from the RAM in

each clock cycle. Hence, registers are used to store matrices and vectors.

4.2.2 Max* Operations

In the implementation, we use two max* functions: max2 and max4. Max2

and max4 operations are written as separate entities. They are mapped to the

main code where necessary. The max2 entity has data, reset, and clock inputs.

Its clock is synchronous with the master clock. It makes the calculation which

is given in the equation (4.13).

A small sized look-up table is used for the ln(1 + exp(-|a-b|)) values. Max4

entity makes the calculation

max4(a,b,c,d) = max2(max2(max2(a,b),c),d). (4.22)

where a, b, c, d are binary vectors. This calculation needs to run the max2

block 3 times. Hence, it needs 3 clock cycles. It is possible to make the same

calculation in 2 clock cycles. Equation (4.22) can be written as

 27

max4 (a,b,c,d) = max2(max2(a,b), max2(c,d)). (4.23)

Since max2 function was designed as an entity, it is used as a block in the

max4 design. The max4 device is shown in Figure 4.1.

Figure 4.1: The structure of the max4 device

4.2.3 Recursive Calculations

The encoder can be thought of as a finite state machine. In the VHDL code,

the state information is kept in the vector S. This vector has the form

S = [S0, S1, S2, …], (4.24)

Sj = [Sj0 Sj1], (4.25)

where Sj is the jth state and Sj0, Sj1 denotes the outputs (data and parity bits)

when the encoder is in the jth state and a 0 or 1 is received respectively.

MAX2

MAX2

MAX2

b

c

d

a

 28

In this thesis, a (1, 5/7) systematic recursive convolutional code is implemented

[31]. The algorithm will be explained assuming that this code is used. The

encoder is shown in Figure 4.2. The corresponding trellis diagram is drawn in

Figure 4.3.

Figure 4.2: The (1, 5/7) convolutional encoder

d

p

d

 29

Figure 4.3: The one-step trellis diagram of the (1, 5/7) encoder.

Looking at Figure 4.3, the vector S is formed as follows. It must be noted that

(2u-1) BPSK coding is used. Hence, binary 1 is represented by 1 and binary 0

is represented by -1.

S = [S00 S01 S10 S11 S20 S21 S30 S31], (4.26)

S = [-1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1]. (4.27)

State information is used to calculate BMk, branch metric vector for the

received data pair. This branch metric is some constant times the logarithm of

the conditional channel observation probability multiplied by the a priori

probability [27]. This vector is formed as

00

01

10

11

11

10

01

00

0/00

1/11

1/11

0/00

1/10
0/01

0/01

1/10

 30

BMk =[BM00
k BM01

k BM10
k BM11

k BM20
k BM21

k BM30
k BM31

k], (4.28)

where BMk is the transition metric of each branch on the state diagram. It can

be written as

BMij
k=K [yk ykp] Sij

T + [pk0 pk1] (4.29)

where K=1/σ2. σ is the noise standard deviation of the additive white Gaussian

noise that is present in the channel. The values of k are between 1 and N.

Hence, the values BMk are kept in the matrix BM. To keep these data, 8N

registers are required.

pkj is a priori probability of the bit k being equal to j. pkj is kept in the vector P.

P is the a priori information vector for the data bits.

P= [p10 p11 p20 p21 … pN0 pN1], (4.30)

pk0 = - max*(0, LL(k)), (4.31)

pk1 = max*(0, LL(k)). (4.32)

The values of ()k mα� required for the calculation of equation (4.19) are kept in

the matrix alpha. This matrix consists of 4 vectors because our encoder has 4

states. Components of this matrix are in the form ()k mα� where the values of k

are between 0 and N-1 and the values of m are between 0 and 3. ()k mα� is the

logarithm of the probability of being at state m after the arrival of kth data in the

forward direction.

The values of ()k mα� are calculated recursively. We assume that the encoder is

initially in the state 0. Hence, the probability of being in the state 0 is 1 and the

 31

probability of being in all other states is 0. As we implement the algorithm in

the log domain, the probability of being in the state 0 is log(1) which is equal

to 0 and the probability of being in all other states is log(0). Due to the

computational limitations, log(0) is taken to be the smallest number to be

represented by the available number of bits. This smallest number is -800 when

14 bits are used for quantization.

Hence, the starting values are

0 (0)α� = 0, (4.33)

0 (1)α� = -800, (4.34)

0 (2)α� = -800, (4.35)

0 (3)α� = -800. (4.36)

For all the values of k between 1 and N-1, the values of ()k mα� are calculated

recursively using equation (4.17). It is clear that the probability of being in a

state can be calculated by summing the probabilities of traversals through

branches leading to that state. The probability of each traversal is equal to the

multiplication of the probability of being in a state that the traversal begins

with and the branch metric leaving the state. The ()k mα� values for the code

used in this study are obtained by the following equations

(0)kα� =max*(1(0)kα −� +BM00
k, 1(1)kα −� +BM11

k), (4.37)

(1)kα� =max*(1(3)kα −� +BM30
k, 1(2)kα −� +BM21

k), (4.38)

(2)kα� =max*(1(1)kα −� +BM10
k, 1(0)kα −� +BM01

k), (4.39)

(3)kα� =max*(1(2)kα −� +BM20
k, 1(3)kα −� +BM31

k). (4.40)

After the calculation of the matrix alpha, normalization of the newly alpha

values is necessary. Otherwise, overflow or underflow problems might occur.

 32

We will utilize an intermediate variable called the nonterm to perform

normalization. Since ()k mα� constitute a probability measure, their sum over

the states should add up to 1.

nonterm (k) = max* ((0)kα� , (1)kα� , (2)kα� , (3)kα�). (4.41)

Then, nonterms are subtracted from the ()k mα� .

(0)kα� = (0)kα� - nonterm(k), (4.42)

(1)kα� = (1)kα� - nonterm(k), (4.43)

(2)kα� = (2)kα� - nonterm(k), (4.44)

(3)kα� = (3)kα� - nonterm(k). (4.45)

To store the matrix alpha, 4N registers are used.

The values of ()k mβ� are kept in the matrix beta. Components of this matrix are

in the form ()k mβ� where the values of k are between 1 and N and the values of

m are between 0 and 3. ()k mβ� is the logarithm of the probability of being at

state m after the arrival of kth data in the backward direction. This logarithm is

calculated after all the data is received in the backward direction.

The values of ()k mβ� are calculated recursively. As trellis termination is used,

the final state of the encoder is 0. Hence, the probability of being in the state 0

is 1 and the probability of being in all other states is 0. When these values are

transferred to the log domain, the probability of being in the state 0 becomes

log(1) which is equal to 0 and the probability of being in all other states

becomes log(0) which is again taken to be -800 (for quantization with 14 bits).

Hence, the starting values are

 33

(0)Nβ� = 0, (4.46)

(1)Nβ� = - 800, (4.47)

(2)Nβ� = - 800, (4.48)

(3)Nβ� = - 800. (4.49)

If the trellis termination were not used, we wouldn’t know the final state of the

encoder. The final state could be any of the four states with equal probability.

Then, the starting values would be all zero.

For all the values of k between N-1 and 1, the following calculations are made

using equation (4.18):

()1 1
1 00 1 01(0) max* (0) , (2)k k

k k kBM BMβ β β+ +
+ += + +� � � , (4.50)

()1 1
1 10 1 11(1) max* (2) , (0)k k

k k kBM BMβ β β+ +
+ += + +� � � , (4.51)

()1 1
1 20 1 21(2) max* (3) , (1)k k

k k kBM BMβ β β+ +
+ += + +� � � , (4.52)

()1 1
1 30 1 31(3) max* (1) , (3)k k

k k kBM BMβ β β+ +
+ += + +� � � . (4.53)

After the calculation of the matrix beta, nonterms are calculated just as in the

case of calculation of alphas.

nonterm (k) = max* ((0), (1), (2), (3)k k k kβ β β β� � � �). (4.54)

Then, nonterms are subtracted from the ()k mβ� .

(0)kβ� = (0)kβ� - nonterm(k), (4.55)

(1)kβ� = (1)kβ� - nonterm(k), (4.56)

(2)kβ� = (2)kβ� - nonterm(k), (4.57)

 34

(3)kβ� = (3)kβ� - nonterm(k). (4.58)

To store the matrix beta, 4N registers are used.

To simplify the LL calculations, we define two functions; sum0(k) and sum1(k).

In the calculations, sum0(k) represents log(P(uk=0|y)) and sum1(k) represents

log(P(uk=1|y)). Now, using the new variables, equation (4.19) can be written

as

LL(k) = sum1(k) - sum0(k). (4.59)

For all the values of k between 1 and N, the values of sum0(k) and sum1(k) are

calculated using equation (4.19).

1 00

1 10

1 20

1 30

(0) (0),

(1) (2),
0() max*

(2) (3),

(3) (1)

k
k k

k
k k

k
k k

k
k k

BM

BM
sum k

BM

BM

α β
α β
α β
α β

−

−

−

−

� �+ +
� �

+ +� �= � �+ +� �
� �+ +� �

��

��

��

��

,

(4.59)

1 01

1 11

1 21

1 31

(0) (2),

(1) (0),
1() max*

(2) (1),

(3) (3)

k
k k

k
k k

k
k k

k
k k

BM

BM
sum k

BM

BM

α β
α β
α β
α β

−

−

−

−

� �+ +
� �

+ +� �= � �+ +� �
� �+ +� �

��

��

��

��

.

(4.60)

The values LL(k) are kept in the vector LL. To store the vector LL, N registers

are used.

The vector LL is also calculated for parity bits. The values LL for parity bits

are kept in the vector LLp. This vector can be written as LLp(k) where the

values of k are between 1 and N.

 35

For all the values of k between 1 and N, the values of LLp for parity bits can be

calculated as

1 00

1 10

1 21

1 31

(0) (0),

(1) (2),
0() max*

(2) (1),

(3) (3)

k
k k

k
k k

k
k k

k
k k

BM

BM
sum k

BM

BM

α β
α β
α β
α β

−

−

−

−

� �+ +
� �

+ +� �= � �+ +� �
� �+ +� �

��

��

��

��

,

(4.61)

1 01

1 11

1 20

1 30

(0) (2),

(1) (0),
1() max*

(2) (1),

(3) (2)

k
k k

k
k k

k
k k

k
k k

BM

BM
sum k

BM

BM

α β
α β
α β
α β

−

−

−

−

� �+ +
� �

+ +� �= � �+ +� �
� �+ +� �

��

��

��

��

,

(4.62)

LLp(k) = sum1(k) - sum0(k). (4.45)

We use the BCJR algorithm to find out the probabilities: P(uk=0|y) or

P(uk=1|y). This information is used to guess the original codeword looking at

the received one. Once we calculate the values of LL(k) for all k, we can guess

the original codeword using equation (4.1). The decoder accepts these guesses

as the decoded data.

Decoded data is kept in the vector DecDat. The elements of this vector can be

written as DecDat(k) where the values of k are between 1 and N.

Decoded parity forms the vector DecDatP. Similarly, the elements of this

vector can be written as DecDatP(k) where the values of k are between 1 and

N.

The decoded data are calculated using equation (4.1). A positive LL(k) means

that P(uk=1|y) is greater than P(uk=0|y). In this case, the decoded data is

 36

guessed as 1. This information is kept in the vector DecDat as DecDat(k)=1.

Similarly, a negative value of LL(k) means that DecDat(k) is 0. The vector

DecDatP is also calculated in the same manner. These vectors are kept in 2N

registers.

4.3 Implementation of the Convolutional Product Decoder

We explained the VHDL implementation of the BCJR decoder for a

convolutional code up to this point. We will now use this as a component in a

convolutional product decoder. Although product codes are usually

constructed with block codes [27], they can be constructed with convolutional

codes as well. We will study such a construction in this section.

In the encoder side of a product code, encoding is performed with the help of a

matrix. This matrix determines how each encoder works. Convolutional codes

are used to encode rows and columns in our construction.

First, the data to be sent is stored into a matrix. Then each row is encoded.

Although different convolutional codes can be used to encode each row, the

same systematic recursive convolutional code is used here. The data matrix

dimension is k×k, and encoded data matrix dimension is n×n. Hence, our code

is an (n×n, k×k) code. Then, this matrix is coded columnwise. The rate 1/2

systematic convolutional code is used to encode each row and column. Hence

the overall data rate is ¼ when no trellis termination is employed.

The convolutional product coded data matrix is binary phase shift key (BPSK)

modulated. Then, this signal is passed through an additive white Gaussian

noise (AWGN) channel with double-sided power spectral density N0/2 (noise

variance σ2).

 37

The log-MAP soft decoding algorithm is used to iteratively decode the

convolutional product code. First, column decoder decodes each column one

by one, then the information obtained from the column decoder is given to the

row decoder. Then, row decoding is performed and the information is given to

the column decoder. This procedure is repeated many times.

In the convolutional product decoder design, a single RAM keeps the received

data information. The decoders that are used in parallel processing are

modified such that they have no RAMs. Data is directly read into registers.

Hence, all the data is accessible in a single clock cycle. This saves operation

time.

Figure 4.4 shows the convolutional product decoder. In the figure, yc is the

matrix that contains the channel information. To decode 2N codewords of

length 2N, a matrix yc of size 2N × 2N is required.

Figure 4.4: Convolutional product decoder

A priori information is kept in the matrix p. The matrix p has a size of N×2N.

Column decoder takes each column of the yc and p, then, writes the decoded

Column
Decoder

Row

Decoder
p

+
-

+

-

yc

yr or

 38

data to a column of the matrix yr. To implement the column decoder, 2N

decoders work in paralel. After that, the matrix p is subtracted from the yr.

Row decoder takes all rows of the matrix yr and writes the decoded results to a

N×N matrix or. This time, all elements in the matrix p are equal to 0. To

implement the row decoder, N decoders are used. the matrix p is obtained by

subtracting yr from the matrix or.

These operations are performed continuously. And, the matrix p is refreshed

simultaneously.

4.4 Test Results

To verify the operation of the MAP decoder for N =5 and r=14, a data

sequence “10101” is used. First, this data is encoded using the (1, 5/7)

convolutional code. This gives the encoded sequence “1101100111”. After

BPSK (2u-1) mapping, (σ2=0.2) noise is added to this sequence. Hence, the

following input sequence is obtained:

0.673421 1.43184 -1.47894 1.64453 0.495061 -0.481105 -1.70511 1.05269

1.38844 1.16594

Finally, this sequence is given to the decoder. The decoder output and the

critical variables are compared to the theoretical results. This comparison is

given in Appendix A. It is observed that the decoded data is same as the

original data. Also, the variables are very close to the theoretical results. The

maximum difference between the implementation results and the hardware

results is less than 10%.

Then, the convolutional product decoder is tested. We used the MAP decoders

in parallel, to iteratively decode the convolutional product code. The decoding

algorithm is explained in Section 4.3 in detail.

 39

First, a 5×5 data matrix is selected and encoded according to the procedure

given in Section 4.3. Then, a BPSK (2u-1) modulation is employed. After that,

(σ2=0.2) noise is added to this sequence. The 10×10 received data matrix

which is obtained after these steps is given in Appendix B.

In this test, 10 decoders are used in paralel as column decoders and 5 decoders

are used as row decoders. The test results are given in Appendix B. The test

shows that, after the first iteration, 24 of the 25 data are decoded correctly and

1 of the data is erronous. After the second iteration, all the data are decoded

correctly. The reliability of the decoder can be increased by increasing the

number of iterations. In our test, 2 iterations were enough to correctly decode

the received data.

4.5 Performance of The Implemented Decoders

To observe the performance of the decoders under different noise conditions,

Bit Error Rate (BER) tests are performed. Bit error rate (BER) is defined as

the number of erroneous bits divided by the total number of bits transmitted,

received, or processed. The logarithm of this ratio is the BER of the system

given in the figures. Eb/N0 is defined as the ratio of energy per data bit (Eb) to

the power spectral density of the noise (N0). Eb/N0 is a measure of signal to

noise ratio (SNR) for a digital communication system. It is used as the basic

measure of how strong the signal is when compared to noise.

The single MAP decoder and the convolutional product decoder are tested with

6 different noise levels and with 4 different quantization cases. These

quantization cases use different number of bits in the recursive calculations. In

the tests, quantization is made with 14, 11, 9 and 4 bits. The noise level of

AWGN channel is adjusted by using different values of Eb/ N0.

 40

Quantization is made after the BM matrix calculation. Up to this point, 14 bits

are used. After BM matrix calculation, quantization is made for 4 different

cases. In the quantization with 14 bits, all the elements of BM matrix are

multiplied by 10, the values larger than 8000 are taken as 8000 and the values

smaller than -8000 are taken as -8000. In the recursive calculations, the values

between -8000 and 8000 are used. In the quantization with 11 bits, the

elements of BM matrix are multiplied by 10 and and the values between -800

and 800 are used. The larger values are taken as 800 and the smaller values are

taken as -800. In the quantization with 9 bits, the elements of the BM matrix

are multiplied by 3 and and the values between -240 and 240 are used. In the

quantization with 4 bits, quantization step is selected as 2. The values between

-13 and 15 are used. In each quantization case, a look-up table of size 8 is used

for max operations. The table is refreshed according to the bits available in

each quantization case.

The code rate of the single MAP decoder is 0.5 and the code rate of the

convolutional product decoder is 64/400. The convolutional product decoder is

tested with 12 iterations. The values of K used in the BER tests are given in

Table 4.1.

 41

Table 4.1: The values of K used in the BER tests.

K
 Single MAP

Decoder

Convolutional

Product Decoder

1 1.2590 0.4029

2 1.5848 0.5072

3 1.9952 0.6385

4 2.5119 0.8038

5 3.1626 1.0121

Eb/ N0

(dB)

6 3.9809 1.2755

The tests are made using 10000 random data sets and the test results are

compared with the floating point simulation results. Table 4.2 gives the test

results for the single MAP decoder and Figure 4.5 shows the test and floating

point results of the single MAP decoder.

Table 4.2: The BER test results fort the single MAP decoder.

B E R

r=14 r=11 r=9 r=4

1 -1.328 -1.309 -1.291 -1.217

2 -1.863 -1.838 -1.805 -1.678

3 -2.197 -2.105 -2.013 -1.841

4 -3.225 -3.078 -2.885 -2.591

5 -3.435 -3.271 -3.126 -2.837

 Eb/ N0

 (dB)

6 -4.417 -4.204 -3.903 -3.515

 42

Figure 4.5: The test and floating point results of single MAP decoder. (a:

floating point simulation, b: r=14 quantization, c: r=11 quantization, d: r=9

quantization, e: r=4 quantization, BER in logarithm)

Table 4.3 gives the test results fort the convolutional product decoder and

Figure 4.6 shows the test and floating point results of the convolutional product

decoder.

 43

Table 4.3: The BER test results fort the convolutional product decoder.

B E R

r=14 r=11 r=9 r=4

1 -1.445 -1.431 -1.412 -1.363

2 -2.123 -2.087 -2.004 -1.912

3 -2.845 -2.761 -2.673 -2.541

4 -3.714 -3.583 -3.456 -3.251

5 -4.661 -4.498 -4.345 -4.084

 Eb/ N0

 (dB)

6 -5.653 -5.452 -5.234 -4.873

Figure 4.6: The test and floating point results of the convolutional product

decoder. (a: floating point simulation, b: r=14 quantization, c: r=11

quantization, d: r=9 quantization, e: r=4 quantization, BER in logarithm)

 44

The tests show that the quantization with 14 bits give results very close to the

floating point simulations. It is also seen that the quantizations with 11 and 9

bits are very also very close to the floating point simulations. But the

quantization with 4 bits causes a loss of 0.5 dB when compared to the

quantization with 9 bits when the value of Eb/N0 is 6.

 45

CHAPTER 5

COMPUTATIONAL COMPLEXITY

In this chapter, computational complexity of the VHDL code is explained.

First, operation time analysis of a single MAP decoder is given. In this section,

operation time required for each part of the circuit is explained. Then, data

storage requirements in the MAP decoder are investigated. The required RAM

size is calculated. Also, the number of registers required in each section of the

code is given. Later, the operation time and data storage requirements are

investigated for the convolutional product decoder. Finally, area limitations of

the FPGA are investigated. Looking at the area occupied by the designed

circuits, maximum decoding capacity of the FPGA is estimated.

 46

5.1 Operation Time Analysis of the MAP Decoder

Hardware implementation of the MAP algorithm is achieved using an FPGA.

Virtex2Pro is the platform of choice in this study. The logic circuit is built

using the VHDL language. A master clock of 150 MHz is used. All clock

signals used in the circuit are synchronous with the master clock. The master

clock signal is produced using the local oscillator of the FPGA. Rising edge of

the clock is used.

Generally, in the area of turbo decoding, the most time consuming process is

the data read and write cycles [27]. This fact also holds for our case. Channel

information can be stored in a RAM. In this study, Xilinx IP core “Single-Port

Block Memory v5.0” is the selected RAM structure.

As it was explained in Section 4.2.1, the received signal consists of words

corresponding to data and parity bits. The vector Y is used to denote the

received signal. For N data words, N parity words are used. Hence, the vector

Y has a size of 2N. The vector Y has the form

Y = [y1 y1p y2 y2p y3 y3p………..yN yNp]. (5.1)

At the start of the program, the whole Y must be read from the RAM and

written to a register. In each clock cycle, only a single word can be read from

the RAM. If each data and parity word is stored as a separate word in the

RAM, a reading time of 2N clock cycles is required for N data words. In the

cases when an input RAM is not necessary, data can be read directly into

registers. This saves 2N clock cycles. In the calculation of the overall

operation time, it is assumed that the data is read directly into registers.

Another possibility to minimize the time used for reading from RAM is to store

more than one data in a memory word of the block RAM. For example, if we

 47

have data words of 4 bits, then it is possible to store three data words in a RAM

word as a 12 bit logic vector. Once the data is read, 3 data words can be

transferred to corresponding registers. This enables us to read 3 data in a

single clock cycle. Hence, the data reading process takes 1/3 of the previous

time. It must be noted that, in the Single-Port Block Memory v5.0 which is

used in this study, the memory word cannot be longer than 256 bits.

There are other data that must be read and written during the operation of the

circuit. These data are required for the calculation of necessary variables.

These data are stored not into RAM but into registers. Consequently, different

data sources are accessible at the same time. Hence, many processes can run

simultaneously. This is very effective in decreasing the operation time.

But, when registers are used, these memory elements occupy some FPGA area.

This consumes some area which can be used in implementing logical circuits.

When block RAMs are used, they are placed in an area of the FPGA which is

reserved for block RAMs. Hence, no useful FPGA area is consumed. When

the values N and r are not very large, the area loss caused by storing the data

into registers is not significant when compared to the speed improvement.

Hence, in this study, registers are the preferred memory elements.

As it was explained in Section 4.2.3, the branch metric matrix is an N×8 matrix.

The calculation of each element of this matrix requires 2 multipliers and 2

adders. This makes a total of 16N multipliers and 16N adders. As a result of

the parallel operation, 3 clock cycles are dedicated to BM matrix calculation. 2

of the 3 clock cycles are required for multiplications and the remaining 1 clock

cycle is used for addition. This time guarantees proper operation for a long

range of K values.

If the calculations were not made in parallel, we would need only 2 multipliers

and 2 adders. But, this time, the calculation would take 24N clock cycles. This

 48

long operation time is not tolerable. As a result, the elements of the matrix are

calculated in parallel.

For the vectors in alpha, N-1 recursive calculations are needed. Each

calculation in equations (4.37) – (4.40) requires 1 clock cycle. After that, each

nonterm calculation requires 2 clock cycles. So, 3 clock cycles are required for

an ()k mα� calculation. Hence, totally, 3(N-1) clock cycles are required. The

vectors (0)kα� , (1)kα� , (2)kα� , (3)kα� are calculated at the same time. In each

clock cycle, 8 adders and 4 max2 blocks operate in parallel.

The values ()k mβ� are calculated simultaneously with ()k mα� , no extra time is

required. This saves us 3(N-1) clock cycles. Generally, ()k mα� and ()k mβ�

calculations are very similar. So, it is possible to use the same circuit

components both in ()k mα� and ()k mβ� calculations. This reduces the number

of total circuit components required for ()k mα� and ()k mβ� calculations and

saves area. But, as we prefer calculating the values ()k mα� and ()k mβ� at the

same time, the circuit components cannot be shared. To achieve simultaneous

operation, new adders, subtractors and max2 components must be used for

()k mβ� calculations. We can conclude that, with simultaneous operation, we

decrease the operation time of the decoder but we waste some FPGA area.

Hence, it can be stated that there is a trade off between computation time and

circuit area. The trade off between computation time and circuit area is

discussed in Section 5.3. In this case, we save 3(N-1) clock cycles by using

only 8 more adders and 4 more max2 blocks.

In producing the vector LL, calculation of each sum0 and sum1 takes 2 clock

cycles and subtraction of sum0 from sum1 requires 1 clock cycle. In equations

(4.59) and (4.60), it can be seen that for each ()kLL u calculation, 16 parallel

adders, 1 subtractor and 2 max4 blocks are required. The LL vector needs N

 49

()kLL u calculations. As these calculations are performed in parallel, total

calculation time is equal to a single calculation time of 3 clock cycles. This

parallel operation requires a total of 16N parallel adders, N subtractors and 2N

max4 blocks. LLp calculations are made using the same adders and subtractors

as the LL uses. Again, LLp calculation is made in 3 clock cycles.

The vector LL can also be calculated serially. This time, it would be possible

to use the same adders, subtractors and max4 blocks in all calculations. But,

the operation time would increase. As we found above, 3 clock cycles are

needed to make a single ()kLL u calculation. For N serial ()kLL u calculations,

3N clock cycles would be required. But this time, 16 parallel adders, 1

subtractor and 2 max4 blocks would be enough to make all the calculations.

The vector decoded data is produced by comparing the values ()kLL u with 0.

As it was explained in Section 4.2.6, if ()kLL u is larger than zero, DecDat(k)

is 1, otherwise 0. This comparison and the formation of the vector DecDat is

completed in a single clock cycle. To achieve this, N comparators are used.

Similarly, DecDatP is calculated in a single clock cycle using the same

comparators. We can conclude that, the decoding time of N data words and N

parity words takes a total of 3N+8 clock cycles. Table 5.1 shows the operation

time required for each part of the circuit.

There are some ways for further decreasing the operation time. One of them is

pipelining. When the values alpha and beta are being calculated recursively,

after a certain time (when half the alpha and beta values are calculated), there is

no need to wait until the finalization of alpha and beta calculations. The LL

calculations can start immediately. This saves a clock time of 3N/2. This one

and similar advanced techniques that will decrease the calculation time are left

as future work..

 50

Table 5.1: The operation time required for each part of the circuit for N data

words and N parity words

Operation
Required Time

(clock cycles)

BM matrix calculation 3

Alpha-Beta and Nonterm calculations 3N-3

LL and LLp calculations 6

Decoded data and decoded parity

calculations
2

Total 3N+8

5.2 Data Storage in the MAP Decoder

In each decoder, received data may be kept in a RAM or the data can be read

directly into registers. Received data is in the form of vectors of length 2N.

Hence, to store the received data, a block RAM of 2N words or 2N registers are

needed. In the below calculations, it is assumed that the received data is kept

in registers. The length of the memory words and the size of the registers

depend on the length of the received data. If the received data has r bits, then

all the memory elements should store r bits. If the data is to be stored on a

block RAM of the FPGA, it must be noted that the Xilinx IP core “Single-Port

Block Memory v5.0” cannot store memory words longer than 256 bits.

For recursive calculations, many registers are used. From equation (4.28), it is

seen that the matrix BM is composed of 8N words of r bits. Hence, the matrix

BM is stored in 8N registers of length r bits.

 51

A priori information for the data words is stored in the vector p. From equation

(4.30), this vector has 2N words of r bits. Since each pk0 = - pk1, N registers are

required to store the a priori information data.

If the a priori information is not used in the decoder which is the case in the

column decoders, then some simplifications can be made to decrease the

number of registers. For this decoder, each line of the matrix BM has 4 entries

because the remaining 4 entries are equal to former 4 entries. Hence, instead of

8N registers, 4N registers are enough. Also in this decoder, there is no need to

use N registers to keep a priori information. As a result, if the a priori

information is not used, then the number of registers will be decreased by 5N.

Section 4.2.3 tells that the elements of alpha are kept in the matrix alpha. This

matrix consists of 4 vectors. Each vector has N words. To store the matrix

alpha, 4N registers are required. Similarly, the values of beta are stored in the

matrix beta of size 4N. To store the matrix beta, 4N registers of size r bits are

required.

In LL calculation, the calculations are made according to the equations (4.40)

and (4.41). For sum0 and sum1 calculations, a total of 2N registers are used.

The values LL are stored into N registers. A total of 3N registers are required.

So, for LL and LLp, a total of 6N registers of r bits are used. It is also possible

to write the difference of sum0 and sum1 directly into a register. In this case,

no registers are required to store sum0 and sum1. This means, instead of 6N

registers, 2N registers are enough. But, because of the implementation

difficulties, 6N registers are used in this study.

As we explained in Section 4.2.3, the decoded data is kept in the vector

DecDat. This vector has N words. That is, N registers of size 1 bit are required.

Similarly, N registers are needed for the vector DecDatP. This means, for

decoded data, a total of 2N registers of size 1 bit are required.

 52

Totally, a single map decoder uses 25N registers of size r bits and 2N registers

of 1 bit. Table 5.2 shows the number of registers required for storing signals.

Other logic components that are used in the implementation of the decoder are

summarized in Table 5.3.

Table 5.2: The number of registers required for storing signals

Stored signals

Number of 14-bit registers

Received data 2N

Branch-metric matrix 8N

A priori information N

Alpha matrix 4N

Beta matrix 4N

LL vector 3N

LLp vector 3N

Total 25N

 53

Table 5.3: The logic components that are used in the implementation of the

decoder

Stored signals

Number of logic components

Branch-metric matrix
16N adders

16N multipliers

Alpha matrix
8 adders

4 max2 blocks

Beta matrix
8 adders

4 max2 blocks

LL vector

16N adders

4N max2 blocks

N subtractors

DecDat vector N comparators

5.3 Minimization of Time and Area

The MAP decoder works on matrices and vectors. It makes many recursive

calculations. Hence, many operations are repeated several times for a large

number of signals. It is possible to use the same circuit components for

different signals in different clock cycles. For example, in the calculation of

the vector LL, the same operations are repeated for all the vector elements. As

the operations are the same, the arithmetic and logic blocks may be shared

between the operations. This minimizes the area. But, in this case,

simultaneous operation of the components is not possible. All the elements of

the vector cannot be calculated at the same time. As the arithmetic and logic

blocks are shared, circuit must wait until the required component is idle. This

 54

means that the speed is degraded. On the other hand, when separate

components are used for the signals that can be calculated at the same time, the

time required for the operation is minimized. But, for parallel processing, each

signal needs separate arithmetic and logic blocks. This approach increases the

number of circuit components but decreases the operating time of a single

MAP decoder.

For example, when the vector LL is calculated in parellel, 16N adders, 4N

max2 blocks and N subtractors are required. The calculation time takes 3 clock

cycles. On the other hand, when the calculation is made serially, 16 adders, 4

max2 blocks and 1 subtractor is used. This time, the operation takes 3N clock

cycles. The rise in decoding time affects the decoding performance

significantly. The serial calculation results in a decoding rate of 32.6 Mbps.

With the parallel calculation, the decoding performance is calculated as 19.7

Mbps.

When many decoders are placed on a FPGA for parallel processing, the

relation between the area and the speed becomes more complex. As we want

to reach high speeds, we want to minimize the operation time of a single MAP

decoder. But, the operation time of a decoder can only be minimized by

consuming large areas. This prevents us from employing maximum number of

decoders in parallel. So, the overall speed is degraded.

If we minimize the area of a single decoder, then it is possible to maximize the

number of decoders working in parallel. But, this time, operation time of a

single decoder becomes very long. This also degrades the overall speed.

Hence, when designing the decoder, both speed and area limitations must be

considered.

In this study we tried to achieve maximum speed in a reasonable area. Hence,

for the calculations that occupy large area and have short operation times, we

 55

tried to use the same components for many operations. For example, LL and

LLp calculations need large area, so they are calculated using the same logic

components. On the other hand, for the calculations that occupy small area, we

tried to use separate logic components for each calculation. For example,

DecDat vector is calculated by using N comparators in parallel. This way,

parallel or serial operation is selected looking at the time and area needs of the

calculation.

5.4 Convolutional Product Decoder Performance

In convolutional product decoder, a single block RAM keeps the received data

information. The decoders that are used in the convolutional product decoder

have no RAMs. Data is read directly from the block RAM into registers.

This RAM has 2N lines of length 2N. Each word is accepted to have r bits.

Hence, to store the received data, a block RAM of size r×4N2 is needed. A

priori information is stored in the matrix p. As it was explained in Section 4.2,

this matrix has a size of N×2N. Each word in the matrix has r bits. Hence, 2N2

registers of r bits are required.

Section 4.2 tells that each of the matrices yr and or has 2N2 words. Similarly,

for each one, 2N2 registers of r bits are required. At the beginning, data is read

from the RAM into registers in 4N2 clock cycles.

The column decoder is composed of 2N MAP decoders. The operation time of

the column decoder is equal to that of a single MAP decoder. This is equal to

3N+8 clock cycles. After that, 2N2 subtractors are used in parallel to make the

following subtraction:

yr = yr – p. (5.2)

 56

The row decoder consists of N MAP decoders. The operation time of the

column decoder is equal to that of a single MAP decoder. This is followed by

the following subtraction:

p = or – yr. (5.3)

2N2 subtractors are used in parallel to make the calculation given in equation

(5.3). This parallel subtraction takes a single clock cycle.

Hence, a decoding cycle takes a total of 4N2+6N+18 clock cycles. When

multiple iterations are desired, there is no need to read the data from the RAM

again, because the data is already transferred to registers. For every iteration,

the parallel decoders perform their operations over and over. Hence, for m

iterations, the operation time can be given as 4N2+m(6N+18).

5.5 Area Limitations

In this thesis, the VHDL code is first written for N=5 and r=14. The circuit is

implemented and its operation is verified with tests. It is seen that the

generated logic circuit occupies 2% of the FPGA area. It consumes 278 slices

out of 13696.

We can assume that all the register sizes change linearly with r. It can be

assumed that the size of adders and multipliers also change nearly-linearly with

r. Hence the area consumption can be assumed to be directly proportional to r.

To verify this fact, the same decoder is designed for r=4. This circuit occupies

0.6% of the FPGA area. It consumes 89 slices out of 13696. The size of this

decoder verifies the linear relationship prediction. Looking at these facts, we

 57

can conclude that it is possible to decrease the decoder size in a nearly linear

manner by selecting small values of r.

As a result of the recursive structure of the MAP algorithm, the number of

arithmetic operations performed in the circuit is linearly proportional to the

number of the received data words N. In addition to that, Section 5.2 tells that

the number of registers in the circuit is also linearly proportional on N. In the

light of these, we can conclude that the occupied area is linearly proportional to

the number of received data words N and the number of bits in each word r.

In convolutional product decoder test, the circuit is implemented for a 10×10

received data vector which corresponds to N=5 and data words of 14 bits.

After the implementation, it is seen that the circuit occupies 22% of the FPGA

area. It uses 3018 out of 13696 slices.

Section 5.4 tells that in parallel processing, the number of registers that are

used to keep p, or and yr matrices are linearly proportional to N2. But, the

number of MAP decoders is linearly proportional with N. The area occupied

by the registers that keep p, or, and yr matrices are negligible compared to the

area occupied by the decoders. Hence, it can be accepted that the occupied

area is proportional to N2. With the same algorithm, it is possible to reach

higher speeds by decreasing N and r.

When N=5 and r=14 are used in the design, a single MAP decoder reaches a

decoding rate of 32.6 Mbps on a Virtex2Pro xc2vp30. The Rocket I/O

technology of the FPGA enables the high speed serial interfaces. Hence, these

decoding rates can be reached without I/O limitations. In the light of the

operation time calculation given in Section 5.1, the performance of the decoder

can be calculated for different values of N. It must be noted that r does not

affect the decoding speed of the decoder directly. But it increases the area

 58

required to implement the decoder. Table 5.4 gives the decoding rate of a

single MAP decoder for different values of N.

Table 5.4: The decoding rate of a single MAP decoder for different value of N

N Decoding rate (Mbps)

5 32.6

10 39.5

25 45.2

50 47.5

100 48.7

The convolutional product decoder is designed using the above decoders in

parallel. With N=5 and r=14, the data rate is found to be 19.1 Mbps for 2

iterations. Following the explanations in Section 5.4, the decoding

performance of the convolutional product decoder can be calculated for

different values of N. Table 5.5 shows the decoding performance of the

convolutional product decoder for different values of N and different number

of iterations.

 59

Table 5.5: The decoding performance of the parallel decoder for different

values of N and different number of iterations

N

Decoding Rate for 2 Iterations

(Mbps)

Decoding Rate for 3 Iterations

(Mbps)

5 19.1 15.4

10 27.0 23.7

25 33.1 31.2

50 35.3 34.2

It can be seen on Table 5.5 that the decoding rate increases with the increasing

values of N. This follows from the fact that, when N increases, the number of

decoders working in parallel also increases. It must be noted that, again r has

not a direct effect on the decoding rate. But it affects the area that the decoder

occupies. When r is selected as 14, the maximum value that N can take is 250

for a single MAP decoder. The decoders for larger values of N cannot fit on

the surface of the FPGA Virtex2Pro. But, when r is selected as 4, N can have

values up to 900. Hence, when r is selected as 4, the maximum speed

achievable on the FPGA is 37.4 Mbps for 2 iterations. Also, it must be noted

that as larger values of N are selected, the 4N2 clock cycles that is spent for

reading the data from the RAM becomes dominant over the total operation

time and the number of iterations does not affect the operation time drastically.

In conclusion, it can be said that high decoding rates are achievable by

selecting high values of N and small values of r.

By using a two level buffer strategy, it is possible to further increase the

decoding rate. This time, we don’t need a RAM to store the channel

information. This information is stored directly into buffers. When one level

 60

of buffers is full, then the other level accepts the channel information. In this

case, some area is consumed for the implementation of the input registers, but

decoding rate is improved significantly. With this strategy, for N=25 and for 5

iterations, it is possible to reach a decoding speed of 111 Mbps.

 61

CHAPTER 6

SUMMARY AND CONCLUSIONS

Today, in many fields of technology, high speed and accurate data storage and

transmission is required. Usually, the main difficulty that we face at high data

rates is the errors in the received signal. Error correcting codes are used for

detecting and correcting the errors. Turbo coding is an efficient error

correction method and it is commonly used in wireless systems. Maximum a

posteriori (MAP) decoding of convolutional codes received large interest since

the discovery of turbo codes.

In this thesis, MAP algorithm is implemented on an FPGA. The decoders are

designed using the VHDL language. First, a MAP decoder is implemented and

tested. Then, a convolutional product decoder is designed using the MAP

decoders in parallel. The outputs of decoders were compared with the

theoretically calculated output. We further ran simulations to compare the

 62

performance of the designed decoders to the performance of decoders

implemented in software with floating point numbers. All these studies

revealed the proper operation of our design.

With the basic design values N=5 and r=14, a single MAP decoder reaches a

decoding rate of 32.6 Mbps. In the light of the operation time calculation given

in Section 5.1, the performance of the decoder can be calculated for different

values of N. It must be noted that r does not affect the decoding speed of the

decoder directly, but it increases the area required to implement the decoder.

The convolutional product decoder is designed using the above decoders in

parallel. With N=5 and r=14, the data rate is found to be 19.1 Mbps for 2

iterations. The decoding rate increases with the increasing values of N. This

follows from the fact that, when N increases, the number of decoders working

in parallel also increases.

When r is selected as 14, the maximum value that N can take is 250. The

decoders for larger values of N cannot fit on the surface of the FPGA

Virtex2Pro. But, when r is selected as 4, N can have values up to 900. Hence,

when r is selected as 4, the maximum speed achievable on the FPGA is 37.4

Mbps for 2 iterations. Also, it must be noted that as larger values of N are

selected, the 4N2 clock cycles that is spent for reading the data from the RAM

becomes dominant over the total operation time and the number of iterations

does not affect the decoding rate drastically. In conclusion, it can be said that

high decoding rates are achievable by selecting high values of N and small

values of r.

To observe the performance of the decoders under different noise conditions,

Bit Error Rate (BER) tests are performed. The single MAP decoder and the

convolutional product decoder are tested with 6 different noise levels and with

4 different quantization cases. These quantization cases use different number

 63

of bits in the recursive calculations. In the tests, quantization is made with 14,

11, 9 and 4 bits. The noise level of AWGN channel is adjusted by using

different values of Eb/ N0. The tests show that the quantization with 14 bits

give results very close to the floating point simulations. It is also seen that the

other quantization cases also give results very close to the floating point

simulations.

As a conclusion, in this thesis, MAP algorithm is successfully transferred to a

logic circuit. A decoder circuit is produced and using these decoders,

convolutional product decoder is implemented and tested. The limitations in

the hardware world are investigated. The trade offs between the resources are

explained.

Further research can be carried on the minimization of the operation time.

Some calculations may be forced to be simultaneous with the introduction of

new registers and arithmetic units. Some new techniques like pipelining may

be used. For the convolutional product decoder, more efficient data reading

techniques may be investigated, e.g., more than one data may be stored in a

RAM word.

 64

APPENDIX A

TEST RESULTS OF THE MAP DECODER

To verify the operation of the MAP decoder, a data sequence “10101” is used.

First, this data is encoded using BPSK (2u-1) mapping. This gives the encoded

sequence “1101100111”. Then, (σ2=0.2) noise is added to this sequence.

Hence, the following input sequence is obtained:

0.673421 1.43184 -1.47894 1.64453 0.495061 -0.481105 -1.70511 1.05269

1.38844 1.16594

Finally, this sequence is given to the decoder. The obtained results are

compared with theoretical results. The table A.1 summarizes the comparison

of the decoder results with the theoretical ones. The results show that hardware

implementation of the MAP decoded the received data sequence successfully.

 65

Table A.1: The comparison of the decoder results with the theoretical ones

Decoder Test Results

Theoretical Results

Alfa0

0 -21.5 -37.5 -36.5 -29.5 0 -21.05 -37.50 -36.04 -26.81

Alfa1

-800 800 -31.5 -10.5 -1.5 -800 -800 -31.23 -9.76 0

Alfa2

-800 -0.5 -36.5 -36.5 -21.5 -800 0 -35.84 -36.18 -20.29

Alfa3

-800 -800 -0.5 -0.5 -29.5 -800 -800 0 0 -27.58

Beta0

-26 -33.5 -36.5 -26.5 0 -24.55 -32.39 -36.07 -25.54 0

Beta1

-27 -33.5 -44.5 -0.5 -800 -26.21 -32.53 -42.59 -1.38 -800

Beta2

-1 -10.5 -28.5 -800 -800 0 -9.76 -27.58 -811.53 -800

Beta3

-32 -0.5 -0.5 -800 -800 -30.92 0 -1.88 -811.53 -800

LL

46 -46 45.5 -54 54 45.60 -45.60 45.60 -52.36 52.36

Decoded
Data

10101

10101

 66

APPENDIX B

TEST RESULTS OF THE CONVOLUTIONAL

PRODUCT DECODER

In the convolutional product decoder test, first a 5×5 data matrix is selected.

The data matrix selected for the test is given in Table A:2.

Table A.2: The data matrix selected for the convolutional product decoder test

1 1 1 1 1
0 0 0 1 0
1 0 0 1 1
1 0 0 0 0
0 0 0 1 1

 67

This matrix is encoded according to the procedure given in Section 4.3. Then

BPSK (2u-1) modulation is employed. After that, (σ2=0.2) noise is added to

this sequence. The 10×10 received data matrix which is obtained after these

steps is given in Table A.3.

Table A.3: The encoded data matrix that is used in the convolutional product

decoder test

0.982 0.943 0.242 -1.881 1.160 -0.507 1.110 0.704 -0.149 -2.786

0.702 0.535 -0.327 -1.689 1.428 1.297 1.792 -0.220 0.087 -0.305

0.421 -1.628 -0.250 0.302 -1.946 -0.234 1.383 0.817 1.237 0.674

0.082 -0.136 2.001 -1.083 0.888 0.757 -0.063 -1.902 0.925 1.499

-0.157 2.232 -0.102 2.074 0.662 1.281 0.406 -0.518 0.096 0.888

-2.002 -1.228 1.060 1.786 2.080 -1.831 1.983 0.478 -2.023 -0.043

0.446 1.315 -2.000 1.800 -1.200 0.184 -1.667 -0.980 -1.828 1.838

-1.681 0.439 -1.281 -2.137 -1.219 -0.687 -0.955 1.806 1.072 1.027

0.369 -0.395 -0.797 -2.337 -0.828 -1.351 1.320 -0.011 -1.397 -1.343

-0.511 0.308 1.919 -0.552 0.750 0.90 0.124 -0.131 0.824 -0.131

After the first iteration, that is, after the first decoding cycle, the obtained

matrix or is shown in Table A.4. In the table, the dark cells contain the values

of LL for data bits and the white cells contain the values of LL for parity bits.

The decoded data is given in Table A.5. In this table, it is possible to see that

after the first iteration, 24 of the 25 data are decoded correctly and one of the

data is erronous.

 68

Table A.4: The matrix or after the first iteration

11.7 11.7 11.6 -15.3 10.9 10.8 10.1 10.2 7.5 -8.3
-5.4 -5.4 -5.3 -8.5 -7.1 -7.3 3.9 3.5 -2.1 2.7
6.4 6.4 -6.4 10.9 -7.9 7.8 3.1 3.2 2.5 4.2
13.4 13.5 -13.6 15.8 -11.2 11.3 -10.2 -10.2 -9.1 -9.2
-3.1 -3.1 -3.1 -8.5 -5.4 -5.4 1.4 0.8 -1.3 -0.8

Table A.5: The decoded data after the first iteration

1 1 1 1 1
0 0 0 1 0
1 0 0 1 1
1 0 0 0 0
0 0 0 1 0

After the second iteration, the matrix or is given in Table A.6. The

corresponding decoded data is given in Table A.7. After the second iteration,

all the data are decoded correctly. The reliability of the decoder can be further

increased by increasing the number of iterations. In our test, 2 iterations were

enough to correctly decode the received data.

Table A.6: The matrix or after the second iteration

22.8 22.8 22.7 -28.3 23.4 23.5 12.1 12.1 8.3 -8.2
-22.3 -22.3 -22.5 -27.4 -19.5 -19.5 8.3 8.3 -7.4 7.8
15.8 15.8 -15.4 20.1 -14.2 14.2 3.1 3.1 4.2 3.5
16.1 16.1 -16.1 18.3 -12.8 -12.8 -8.2 -8.3 -8.9 16.9
-4.7 -4.7 -4.7 -7.5 -6.8 -6.8 2.1 1.8 0.5 -1.5

 69

Table A.7: The decoded data after the second iteration

1 1 1 1 1
0 0 0 1 0
1 0 0 1 1
1 0 0 0 0
0 0 0 1 1

 70

APPENDIX C

THE PROPERTIES OF THE FPGA

VIRTEX-II PRO

The FPGA Virtex-II Pro can be used in many applications such as

• optical networking,

• wireless infrastructure,

• storage area Networks(SANs),

• industrial control and image processing.

The FPGA family Virtex-II Pro depends on the Virtex-II architecture and has

two new structures that enhance the application capabilities of this family.

These new structures are:

 71

• Rocket I/O™ Multi-Gigabit Transceivers (MGT) with transfer rates

from 622Mb/s to 3.125 Gb/s.

• IBM PowerPC™ Embedded Processor Cores with performance of 300+

MHz core frequency.

With its Rocket I/O MGT technology, it is suitable for applications that require

fast serial data transfer from chip-to-chip, across a backplane, and to an optical

transponder.

With its Embedded PowerPC core, it transfers complex embedded system

designs to FPGA logic or PowerPC core.

In addition to these new structures, the family Virtex-II Pro uses the new

structures that are introduced in the family Virtex-II. These structures are

given as follows:

• Digitally Controlled Impedance (DCI) technology for signal integrity

management,

• Digital Clock Managers (DCM) for creating advanced clocking

domains,

• Dedicated XtremeDSP Multipliers for high-performance DSP

applications,

• System I/O technology for support of multiple different single-ended

and differential I/O standards.

The Family Virtex-II Pro is composed of 10 members. Each member has logic

cells (between 3000 and 125000), high capacity block RAM’s, Digital Clock

Managers (between 4 and 12), Rocket I/O MGT blocks (between 0 and 24),

 72

and PowerPC processor cores (between 0 and 4). Table A.9 summarizes the

properties of the members of this family.

Table A.8: The properties of the members of the family Virtex-II Pro.

The Rocket I/O technology enables the high speed serial interfaces. The serial

I/O standards supported by Virtex-II Pro Rocket I/O technology are

summarized in Table A.10.

 73

Table A.9: The serial I/O standards supported by Virtex-II Pro Rocket I/O

technology.

Serial Standard Data Rate Per Channel Baud Rate Per Channel

InfiniBand 2.0 Gbps 2.5 Gbps

1 Gb Ethernet

1000 Base-CX/SX/LX
1.0 Gbps 1.25 Gbps

10 Gb Ethernet (XAUI) 2.5 Gbps 3.125 Gbps

Fibre Channel 0.85/1.7 Gbps 1.06/2.12 Gbps

Serial ATA 1.2 Gbps 1.5 Gbps

Serial RapidIO 2.5 Gbps 3.125 Gbps

PCI Express (3 GIO) 2.0 Gbps 2.5 Gbps

The properties of PowerPC 405 can be summarized as follows:

• Embedded 300+ MHz Harvard Architecture Block

• Low Power Consumption: 0.9 mW/MHz

• Five-Stage Data Path Pipeline

• Hardware Multiply/Divide Unit

• Thirty-Two 32-bit General Purpose Registers

• 16 KB Two-Way Set-Associative Instruction Cache

• 16 KB Two-Way Set-Associative Data Cache

• Memory Management Unit (MMU)

• Dedicated On-Chip Memory (OCM) Interface

• Supports IBM CoreConnect™ Bus Architecture

• Debug and Trace Support

 74

The functional blocks of PowerPC 405 are

• Cache units,

• Memory Management unit,

• Fetch Decode unit,

• Execution unit,

• Timers,

• Debug logic unit.

 75

BIBLIOGRAPHY

[1] C. Rrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo codes,” Proc. IEEE Int. Conf.

Communications, pp. 1064-1070, 1993.

[2] L. R. Bahl, J. Cocke, E. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimising symbol error rate,” IEEE Trans. ZnJ Theory, pp. 284-287,

1974.

[3] P. Robertson, "Illuminating the structure of parallel concatenated recursive

systematic (turbo) codes," Proc., IEEE GLOBECOM, 1994, pp.1298-1303.

[4] J. Fei, "On a turbo decoder design for low power dissipation," PhD Thesis,

Virginia Polytechnic Inst. And State Univ., 2000.

 76

[5] J. Hagenauer, "The turbo principle: Tutorial introduction and state of the

art," Proc., Int. Symp. on Turbo Codes and Related Topics, (Brest, France),

pp.1-l1, Sept.1997.

[6] S. Benedetto and G. Montorsi, "Unveiling turbo codes: some results on

parallel concatenated codes," IEEE Trans. Inform. Theory, vol. 42, pp.409-429,

Mar. 1996.

[7] S. Benedetto and G. Montorsi, "Generalized concatenated codes with

interleavers," Proc., Int. Symp. on Turbo Codes and Related Topics, (Brest,

France), pp. 32-39, Sept.1997.

[8] H. Koorapaty, Y. P. E. Wang, and K. Balachandran, "Performance of turbo

codes with short frame sizes," Proc., IEEE Veh. Tech. Conf., pp.329-333, 1997.

[9] S. Halter, M. Oberg, P. M. Chau, P. H. Siegel, "Reconfigurable signal

processor for channel coding & decoding in low SNR wireless

communications," IEEE Workshop on Signal Processing Systems, pp.260-274,

1998.

[10] S. Hong, J. Yi, W. E. Stark, "VLSI design and implementation of low-

complexity adaptive turbo-code encoder and decoder for wireless mobile

communication applications," IEEE Workshop on Signal Processing Systems,

pp.233-242, 1998.

[11] S. S. Pietrobon, "Implementation and performance of a turbo/MAP

decoder," Int. J. Satell. Commun., vol.16, pp.23-46, 1998.

[12] G. Masera, G. Piccinini, M. R. Roch, M. Zamboni, "VLSI architectures

for turbo codes," IEEE Trans. On VLSI systems, vol. 7, No.3, Sept. 1999.

 77

[13] Z. Blazek, V. Z. Bhargava, "A DSP-based implementation of a turbo-

decoder," Global Telecommunications Conference, vol. 5, pp.2751-2755, 1998.

[14] P. Robertson, P. Hoeher, and E. Villebrun, "Optimal and sub-optimal

maximum a posteriori algorithms suitable for turbo decoding," European Trans.

on Telecommun., vol.8, pp.119-125, Mar./Apr. 1997.

[15] P. Robertson, "Improving decoder and code structure of parallel

concatenated recursive systematic (turbo) codes," Proc., IEEE Int. Conf. on

Universal Personal Communications, pp. 183-187, 1994.

[16] William J. Ebel, "Turbo-codes: Algorithms and implementation," contract

report submitted to Texas Instruments.

[17] A. J. Viterbi, "An intuitive justification and a simplified implementation

of the MAP decoder for convolutional codes," IEEE J. Select. Areas Commun.,

vol. 16, pp.260-264, 1998.

[18] W. J. Gross, P. G. Gulak, "Simplified MAP algorithm suitable for

implementation of turbo decoders," Electronics Letters, vol. 34, No. 16,

pp.1577-1578, 1998.

[19] B. Sklar, "Turbo code concepts made easy, or how I learned to

concatenate and reiterate," Proc. MILCOM 97, vol.1, pp.20-26, 1997.

[20] K. H. Tzou, J. G. Dunham, "Sliding block decoding of convolutional

codes," IEEE Trans. Commun., COM-29, pp.1401-1403,1981.

[21] S. Benedetto, G. Montorsi, D. Divsalar, F. Pollara, "Soft-output decoding

algorithms in iterative decoding of turbo codes," JPL TDA Prog. Rep. 42,

pp.63-87, 1996.

 78

[22] J. Hagenauer, "Source-controlled channel decoding," IEEE Tran. On

Communications, vol.43, No. 9, 1995.

[23] O. M. Collins, "The subtleties and intricacies of building a constraint

length 15 convolutional decoder," IEEE Trans. Commun., COM-40, pp.1810-

1819, 1992.

[24] S. S. Pietrobon, J. J. Kasparian, P. K. Gray, "A multi-D trellis decoder for

a 155 Mbit/s concatenated codec," Int. J. Satell. Commun., vol.12, pp.539-

553,1994.

[25] S. S. Pietrobon and S. A. Barbulescu, "A simplification of the modified

Bahl decoding algorithm for systematic convolutional codes," Int. Symp. On

Information Theory and Its Applications, Sydney, pp.1073-1077, 1994..

[26] X. Wang, S. B. Wicker, "A soft-output decoding algorithm for

concatenated codes," IEEE Trans. Info. Theory. Pp.543-553, 1996.

[27] S. Lin, D. J. Costello, Error Control Coding, Pearson Prentice Hall, 2004

[28] J. Hagenauer, E. Offer and L. Papke, "Iterative decoding of binary block

and convolutional codes," IEEE Trans. Info. Theory, vol. 42, No. 2, 1996

[29] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, "Serially

concatenation of interleaved codes: Design and performance analysis," IEEE

Trans. Info. Theory, vol. 44, pp. 909-926, 1998.

[30] P. Robertson, E. Villebrun, and P. Hoeher, "A comparison of optimal and

sub-optimal MAP algorithms operating in the log domain," Proc. 1995 Int.

Conf. on Commun. pp. 1009-1013.

 79

[31] J. G.Prokis, Digital Communications, McGraw-Hill, 1995.

[32] A. O. Yilmaz, “Performance of Turbo Codes: The Finite Length Case,”

PhD Thesis, Univ. Of Michigan, 2004.

