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ABSTRACT 

 

 

SOFT DECODING OF CONVOLUTIONAL 

PRODUCT CODES ON AN FPGA PLATFORM 
 

 

Sanlı, Mustafa 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Ali Özgür YILMAZ 

 

September 2005, 79 pages 

 

 

In today’s world, high speed and accurate data transmission and storage is 

necessary in many fields of technology.  The noise in the transmission channels 

and read-write errors occurring in the data storage devices cause data loss or 

slower data transmission.  To solve these problems, the error rate of the 

received information must be minimized.  Error correcting codes are used for 

detecting and correcting the errors.   

 



 v 

Turbo coding is an efficient error correction method which is commonly used 

in various communication systems.  In turbo coding, some redundancy is added 

to the data to be transmitted.  The redundant data is used to recover original 

data from the received data.  MAP algorithm is one of the most commonly 

used soft decision decoding algorithms. 

 

In this thesis, hardware implementation of the MAP algorithm is studied.  MAP 

decoding is verified on an FPGA.  Virtex2Pro is the platform of choice in this 

study.  The algorithm is written in the VHDL language.  A MAP decoder is 

designed and its operation is verified.  Using many MAP decoders concurrently, 

a convolutional product decoder is implemented as well.  Area and speed 

limitations are discussed. 

 

Keywords: MAP Algorithm, Turbo Coding  
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ÖZ 

 

 

EVR���MSEL ÇARPIM KODLARININ FPGA 

ÜZER�NDE YUMU�AK ÇÖZÜMÜ 
 

 

Sanlı, Mustafa 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Ali Özgür YILMAZ 

 

Eylül 2005, 79 sayfa 
 

 

Bugünün dünyasında, yüksek hızda hatasız veri aktarımı ve depolama, 

teknolojinin birçok alanında gereklidir.  Veri yollarında yer alan gürültü ve 

depolama araçlarındaki okuma-yazma hataları veri kaybına ve dü�ük hızda veri 

aktarımına sebep olmaktadır.  Bu sorunları çözebilmek için alınan bilgideki 

hata oranı en aza indirilmelidir.  Hataları algılamak ve düzeltmek için hata 

düzeltme kodları kullanılmaktadır. 

 



 vii 

Turbo kodlama, çe�itli komünikasyon sistemlerinde yaygın olarak kullanılan, 

etkili bir hata düzeltme metodudur.  Turbo kodlamada, aktarılacak olan veriye 

bazı fazlalıklar eklenir.  Bu eklenen fazla bilgi, orijinal verinin alınan veriden 

elde edilmesinde kullanılır.  MAP algoritması en yaygın kullanılan yumu�ak 

çözüm algoritmalarından biridir. 

 

Bu tezde, MAP algoritmasının donanımsal gerçeklenmesi yapılmı�tır.  MAP 

çözümü,  FPGA üzerinde do�rulanmı�tır.  Bu çalı�ma Virtex2Pro üzerinde 

yapılmı�tır.  Algoritma VHDL diliyle yazılmı�tır.  Bir MAP çözücüsü 

tasarlanmı� ve çalı�ması do�rulanmı�tır.  Ayrıca, birçok MAP çözücüsü aynı 

anda çalı�tırılarak bir evri�imsel çarpım çözücü de gerçeklenmi�tir.  Alan ve 

hız sınırları tartı�ılmı�tır. 

 

Anahtar Kelimeler: MAP Algoritması, Turbo Kodlama 
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CHAPTER 1 

 

 

 

INTRODUCTION 
 

 

 

 

Today, there is a need for high speed and accurate data storage and 

transmission.  Improvements in technology enable high speed data transfer and 

processing. But, there is noise on transmission channels and there is also 

possibility of technical mistakes.  These factors introduce errors to the received 

data.  Hence, the aim must be to reduce and minimize the error rate in the 

received information with reasonably high data rates.  Error correcting codes 

are used for detecting and correcting the errors. 

 

Although error control coding is used in a variety of systems, it is especially 

useful in wireless communications systems.  Such systems typically operate at 

low signal-to-noise ratios (SNR).  The multipath behavior of the wireless 

channels also causes problems.  As a result of the wireless environment, the 

received signal possibly contains many errors.  Due to ubiquitous 
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communication desires of people, demand for wireless communication is 

growing rapidly each day.  Hence, there is now a widespread need for fast and 

efficient error detecting and correcting systems. 

 

The main idea of channel coding is to add redundancy to the data to be 

transmitted where the redundant data is used to recover the original data from 

the received data.  Turbo codes constitute a special class of concatenated codes 

which were discovered in 1993 [1].  Turbo coding is a comparably recent 

advance in channel coding which proved itself in the last decade to be 

commonly used in various new communication systems and standards.  Turbo 

codes perform quite well with reasonable complexity very close to the capacity 

especially in power limited channels such as wireless channels [1].  Turbo 

codes are composed of convolutional codes and their decoding is done by 

information exchange between the decoders of convolutional codes.  That’s 

why, maximum a posteriori (MAP) decoding of convolutional codes received 

large interest since the discovery of turbo codes.  

 

MAP algorithm is one of the most commonly used soft decision decoding 

algorithms [2], [15-26].  MAP is an algorithm to estimate random parameters 

with prior distributions.  In communications framework it is used to estimate 

the most likely information bit transmitted in a codeword.  The plain form of 

the MAP algorithm is complex and not suitable for hardware implementation.  

The BCJR algorithm [2] offers an efficient tool to implement the MAP 

algorithm.  The complexity of BCJR algorithm is linear with the length of the 

sequence input to it and it can be easily implemented in hardware [3].  Many 

hardware implementations are available [9] – [13]. 

 

In this thesis, hardware implementation of the MAP algorithm is studied.  MAP 

decoding is verified on an FPGA.  Virtex2Pro is the platform of choice in this 

study.  The algorithm is written in the VHDL language.  A MAP decoder is 

designed and its operation is verified.  Based on the implemented MAP 
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decoder, a parallel decoder structure for a product code is constructed.  

Although product codes are usually built by using block codes, we constructed 

a product code structure with convolutional codes.  Many MAP decoders will 

be run concurrently in this parallel implementation.  Area and speed limitations 

will be discussed. 

 

The outline of this script is as follows.  A brief theoretical background in the 

area of error correcting codes is given in Chapter 2.  Block codes and 

convolutional codes are explained and basic definitions are presented.  Chapter 

3 is devoted to the explanation of the MAP algorithm in detail.  The VHDL 

implementation of the MAP algorithm and the corresponding test results are 

given in Chapter 4.  Computational complexity calculations of the 

implemented algorithm are given in Chapter 5.  In this chapter, area and speed 

limitations are discussed as well.  Finally, we summarize and conclude the 

thesis in Chapter 6. 
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CHAPTER 2 

 

 

 

ERROR CORRECTING CODES 
 

 

 

 

This chapter gives general information on error correcting codes.  Firstly, 

digital communication systems and types of codes are explained.  Then, basic 

definitions are given.  Finally, convolutional codes are explained and 

convolutional encoder representations are given. 

 

2.1 Digital Communication Systems 

 

Typical communication systems use several error correcting codes that are 

used to correct different types of errors.  The physical medium which is used to 

transmit messages is called a channel.  It can be a telephone line, a satellite link, 

a wireless channel etc.  There are different sources of noise in channels.  This 

introduces errors in the received message. 
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The basic idea of error correcting codes is to add some redundancy to a 

message before its transmission through a noisy channel.  At the receiver, the 

original message can be recovered from the corrupted one if the number of 

errors is within the error correction capability of the code.  Figure 2.1 shows a 

simplified model for a digital communication system.  In the figure, u denotes 

the information sequence, v denotes the codeword and y denotes the received 

message. 

 

 

 
Figure 2.1: Simplified model of a digital communication system 

 

 

In order to introduce error correcting capability to a digital communication 

system, redundancy must be added in a controlled manner.  However, extra 

redundancy means a lower information transfer rate.  Also, as the coding 

strategies become more complicated for correcting larger number of errors, fast 

and efficient encoding and decoding are difficult to achieve. 
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The mathematical description of a channel can be given as follows.  A 

communication channel consists of an input alphabet A, an output alphabet B, 

and a real number P(b | a) for each pair a∈A, b∈B.  P(b | a) is the probability 

that b is received, given that a is transmitted. 

 
2.2 Types of Codes [31] 

 

Mainly, there are two types of codes in channel coding:  Block codes and 

convolutional codes.  The properties of these types of codes are given in the 

following paragraphs. 

 

2.2.1 Block Codes 

 

In a block code, the encoder divides the incoming information sequence into 

message blocks of k symbols with symbol alphabet size q.  This length-k 

information block is called a message.  There are qk possible different 

messages.  The encoder transforms this message into an n-symbol codeword.  

Hence, there are qk different codewords.  The set of qk codewords of length n is 

called an (n, k) block code.  The ratio k/n is called the code rate.  Each message 

is encoded independently based on a generator matrix.  The encoder has no 

memory.  It can be implemented with a combinational circuit.  Block codes are 

codes that are constructed based on algebraic structures.  There are many 

efficient optimal and suboptimal decoding algorithms for block codes; however 

few of them work directly on the channel observation.  In general, every block 

code has a trellis (which will be defined under convolutional codes discussion) 

through which optimal decoding can be done.  Though, trellises of block codes 

are time-varying and their state complexity can grow quite large especially 

when the code rate is neither very small nor very large [27]. 
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2.2.2 Convolutional codes  

 

Each encoded block depends not only on the length-k message but also on the 

m previous message blocks.  Hence, the encoder has a memory of order m as 

opposed to the no-memory property in block encoders.  It can be implemented 

with a sequential circuit.  More explanation will be provided in Section 2.4.  

 

2.3 Basic Definitions 
 

• A word is a sequence of symbols.   

 

• A code is a set of vectors called codewords. 

 

• A block code is a set of fixed length codewords.  The fixed length of 

these codewords is called the block length and it is denoted by n.  

 

• A block code of size M defined over an alphabet with q symbols is a set 

of M q-ary sequences, each of length n.  When q = 2, the symbols are 

called bits and the code is a binary code.  Generally,  

 

M = qk (2.1) 

 

for some integer k, and such a code is called an (n, k) code. 

 

• The code rate of an (n, k) code is the ratio (k/n).  Smaller code rate 

means greater redundancy.  A code with greater redundancy is able to 

detect and correct more erroneous symbols, but this reduces the rate of 

information transmission. 
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2.4 Convolutional Codes 

 

In convolutional codes, each block of k symbols is mapped into a block of n 

symbols.  These n symbols are not only determined by the present information 

symbols but also by the previous information bits.  This can be represented by 

a finite state machine. 

Convolutional codes are usually generated by shift registers.  Figure 2.2 shows 

an example of a convolutional encoder where the shift registers are shown with 

the empty rectangulars which act as delay elements.  The adders perform 

modulo-2 addition.  We will only consider binary codes in the remainder of 

this thesis. 

 

 
Figure 2.2: A convolutional encoder 

 

 

The code rate for a convolutional code is defined as 

 

n
k

ratecode = , (2.2) 

 

where k is the number of parallel input information bits and n is the number of 

parallel output encoded bits at one time interval.  The constraint length K for a 

convolutional code is defined as 
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K = m+1, (2.3) 

 

where m is the maximum number of stages (memory size) in any shift register. 

 

2.4.1 Convolutional Encoder Representations 

 

Convolutional encoders can be implemented by finite state machines.  With 

this idea, convolutional encoders are generally shown in three ways: 

• Tree diagram representation 

• State diagram representation 

• Trellis diagram representation 

 

2.4.1.1 Tree Diagram Representation 

 

The tree diagram representation shows all possible sequences.  Figure 2.3 

shows an example of the tree diagram representation.  In the tree diagram, lines 

represent inputs.  A solid line represents 0 and a dashed line represents 1.  

Outputs are shown on the branches of the tree.  An input information sequence 

defines a specific path through the tree diagram.  For example, if the input 

sequence is given as “0101”, then looking at the figure, it is possible to find the 

outputs as “00 11 10 00”. 
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Figure 2.3: The tree diagram representation of a convolutional code 

 

 

The tree diagram shows the passage of time as we move on the tree branches. 

When compared to a state diagram representation, instead of jumping between 

the states, we traverse the branches of the tree depending on whether a 1 or 0 is 

received. 
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2.4.1.2 State Diagram Representation 

 

The state diagram shows the state information of the encoder on a diagram. 

Figure 2.4 shows the state diagram of a convolutional encoder.  Each node 

represents a particular state of a convolutional encoder.  The state of a 

convolutional encoder is defined by the current content in the shift registers.  

At any time, the encoder is in any one of the states shown in the figure.  The 

lines going to and from the nodes show possible state transitions.  At any time, 

the input may be 0 or 1 for the convolutional encoder considered here.  Each of 

these inputs causes the encoder to jump into a different state.  The output of the 

encoder is also given in the state diagram.  In the notation i/jk of the figure, i 

denotes the input causing the transition and jk denotes the corresponding output.  

The state diagram contains the same information as the state table but this is a 

graphical representation.  The state diagram does not have the time dimension. 

 

 

 
 

Figure 2.4: An example state diagram of a convolutional encoder 
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2.4.1.3 Trellis Diagram Representation 

 

Trellis diagram shows all possible state transitions at each time step.  It is 

generated by adding a time index to a state diagram.  Figure 2.5 shows the 

trellis diagram of a 4-state convolutional code. 

 

Trellis diagrams are preferred over both the tree and the state diagrams because 

they represent linear time sequencing of the events.  One of the axes is discrete 

time and the other contains all possible states.  As time passes, we move 

horizontally on the trellis diagram.  In each transition, new bits arrive.  

 

To draw the trellis diagram, all the possible states are marked in the x-axis.  

Then, each state is connected to the next state by the corresponding input and 

output for that transition.  For example, in each state a 0 or a 1 may arrive.  In 

the figure, the arrows going upward represent a 0 and the ones going 

downward represents a 1.  The diagram always begins at state 00, and 

continues. 
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Figure 2.5: The trellis diagram of a 4-state convolutional code 
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CHAPTER 3 

 

 

 

THE MAP ALGORITHM [32] 
 

 

 

 

In the past, wireless systems were used mainly for voice communication.  But 

today, they transmit data, audio, video, and voice on the same line.  In order to 

build reliable wireless systems, designers must use advanced error correction 

mechanisms.  Turbo coding is an efficient error correction approach which is 

proposed to be used in many modern wireless systems.  BCJR algorithm is one 

of the most commonly used algorithms in turbo decoding [2], [15-26].  It is an 

efficient algorithm through which one can obtain a posteriori probabilities of 

individual bits.  

In this chapter, BCJR-based MAP algorithm which is the algorithm used in this 

thesis is explained in detail. 
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3.1 MAP Decoding of Convolutional Codes 

 

Figure 2.1 shows a simplified model of a digital communication system.  A 

data symbol uk is the collection of all the s data bits (u1
k, u2

k,…, us
k) that makes 

a symbol out of bits.  By the finite state representation explained in Chapter 2, 

the output and the next state of a convolutional code can be determined by the 

current state and the data.  Hence, it can be written as  

 

1( |y) ( ', |y)
( ', ) :

k k kP u i P S m S m
m m u ik

−= = = =
=

� , (3.1) 

 

where Sk is the encoder’s state at discrete time index k, y is all the channel 

observation, i is a symbol from the alphabet of data symbols. 

 

We define a function ( )',kM m m  such that 

 

( ) ( )1', ', |yk k kM m m P S m S m−= = = . (3.2) 

 

Then, (3.1) can be written as 

 

( )( |y) ',
( ', ) :

k kP u i M m m
m m u ik

= =
=

� . (3.3) 

 

For the paths having the transition 1 'k kS m S m− = → = , ( )',kM m m  can be 

written as 

 

( )
( )

', ( | )
',

kM m m P u y
u D m mk

=
∈
� , (3.4) 
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where u is the specific input sequence to the encoder, ( )',D m mk is the set of 

all input sequences which traverse the code's trellis graph through state 'm  at 

time k-1 and state m at time k. 

 

Using Bayes' theorem, the following expression can be written as 

 

( | ) ( )
( | )

( )
f y u P u

P u y
f y

= . (3.5) 

 

Recall that ( )f y is constant for all k and thus can be disregarded.  (3.4) can be 

rewritten as 

 

( )
( )

', ( | ) ( )
',

kM m m f y u P u
u D m mk

=
∈
� . 

(3.6) 

 

As the symbols in the data sequence are assumed to be independent, 

 

( ) ( )
1

l

N
p u P u

t
=

=
∏ . 

 

(3.7) 

 

We know that for each u, there is a corresponding cu.  Then, 

 

( | ) ( | )uf y u f y c= , (3.8) 

 

where uc  is the encoded sequence corresponding to u. 

 

We define a state variable for the past data and the output sequence uc :  

 

[ ]1 1( ) ,..., ;u l uc y y cσ = , (3.9) 
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where 1( )ucσ is the state for the lth symbol in the codeword uc and ky  denotes 

the channel signal for the kth symbol interval. 

 

Applying the chain rule, the following is obtained 

 

1( | ) ( | ( ))
1

u l l u

N
f y c f y c

l
σ −=

=
∏ . 

 

(3.10) 

 

When we substitute (3.7), (3.8) and (3.10) into (3.6), we get the following 

expression: 

 

1
( ', )

( ', ) ( ) ( | ( ))
1k

k l l l u
u D m m

N
M m m P u f y c

l
σ −

∈

=
=

� ∏ . 
 

(3.11) 

 

When memoryless channels are considered and the convolutional code’s 

encoder is a FSM, 

 

1 1,..., 1( | ( )) ( | ; )l l u l l uf y c f y y y cσ − −= , (3.12) 

            ( | )l uf y c= , (3.13) 

                 1( | ( ), ( ))l l lf y S u S u−= , (3.14) 

 

where ( )lS u  is the state of the encoder at time l when the input to the encoder 

is u. 

 

Then, (3.10) can be simplified to 
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1 1( ', ) ( ( ), ( ))
( ', ) 1

k l l

N
M m m S u S u

u D m m lk

γ −=
∈ =
� ∏ , 

 

(3.15) 

 

  

where 

 

( ', ) ( ) ( | ', )l l lm m P u f y m mγ = . (3.16) 

 

(3.15) can be computed using the BCJR algorithm.  This algorithm is used to 

sum up the metrics of all paths passing through a fixed transition in a given 

trellis. The algorithm calculates (3.15) recursively.  Two functions ( )k mα  and 

( )k mβ  are used.  First one is used for the calculations that are in the forward 

direction and the other is used for calculations in the backward direction.  The 

sum of all path metrics ending up state m at time k is calculated by ( )k mα .  The 

sum of all path metrics starting at state m at time k is calculated by ( )k mβ . 

 

The following recursive calculations are used to find ( )k mα  and ( )k mβ : 

 

1
'

( ) ( ') ( ', )k k k
m

m m m mα α γ−=� , 
 

(3.17) 

 

1 1
'

( ) ( ') ( , ')k k k
m

m m m mβ β γ+ +=� . 
 

(3.18) 

 

The initial values required for the recursive calculations are supplied to the 

encoder.  The encoder starts calculation at zero state.  If no termination strategy 

is used, the final state can be any of the states with equal likelihood. 

( ', )kM m m  can be written as 
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1( ', ) ( ') ( ', ) ( )k k k kM m m m m m mα γ β−= . (3.19) 

 

In this case, (3.4) can be written as: 

 

1( | ) ( ') ( ', ) ( )
( ', ) :

k k k kP u i y m m m m
m m u ik

α γ β−= =
=

� . 
 

(3.20) 
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CHAPTER 4 

 

 

 

IMPLEMENTATION OF THE MAP 

ALGORITHM AND TEST RESULTS 
 

 

 

 

In this chapter, implementation of the MAP algorithm is explained and test 

results are given.  First, log domain MAP algorithm is explained.  Then, main 

parts of the code such as data storage, max* operations, and recursive 

calculations are explored.  In the recursive calculations part, branch metric 

calculations, alpha and beta calculations, LL calculations and decoded data 

calculations are given.  Then, implementation of the convolutional product 

decoder is explained where many decoders work in paralel.  Finally, test results 

are presented.  
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4.1 Log Domain MAP Algorithm 

 

In Chapter 3, the MAP algorithm is explained in detail.  We use this algorithm 

to find out which probability is bigger: P(uk=0|y) or P(uk=1|y).  This 

information is used to guess the original codeword by looking at the received 

one. 

  

To achieve this, we define ( )kLL u .  ( )kLL u  is defined as 

 

( 1| )
( ) ln

( 0 | )
k

k
k

P u y
LL u

P u y
==
=

. (4.1) 

 

If ( )kLL u >0, this means P(uk=1|y) > P(uk=0|y).  Hence, we may conclude that 

uk=1.  uk=0 otherwise.  Equation (3.20) tells that, the only variables necessary 

for the calculation of ( )kLL u  are 1( ')k mα − , ( ', )k m mγ , and ( )k mβ . 

 

From Chapter 3, we know that 

 

1
'

( ) ( ') ( ', )k k k
m

m m m mα α γ−=� , (4.2) 

 

1 1
'

( ) ( ') ( , ')k k k
m

m m m mβ β γ+ +=� . (4.3) 

 

Hence, once we know the values of ( ', )k m mγ , both ( ')k mα  and ( )k mβ  can be 

calculated recursively.  At this point, all that remains is the computation of 

( ', )k m mγ .  The probability domain version of the MAP algorithm is 

numerically unstable for long and even moderate codeword lengths.  It 

involves many multiplications and logarithmic operations that require large 
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look-up tables.  Hence, it is not suitable for VHDL coding.  As a result of this, 

we will use the log domain version of it. 

In the log domain MAP algorithm, ( )k mα  is replaced by the forward metric 

 

( ) ln( ( ))k km mα α=� . (4.4) 

 

Using equation (4.2), we can write 

 

( )k mα� 1
'

ln ( ') ( ', )k k
m

m m mα γ−
� �= � �
� �
� , (4.5) 

 

( )1
'

log exp ( ') ( ', )k k
m

m m mα γ−
� �= +� �
� �
� � � , (4.6) 

 

where the branch metric ( ', )k m mγ�  is given by 

 

( , ') ln( ( , '))k km m m mγ γ=� � . (4.7) 

 

The probability ( ')k mβ  is replaced by the backward metric. 

 

( ') ln( ( '))k km mβ β=� . (4.8) 

 

Using equation (4.3), we can write 

 

( ')k mβ� 1 1ln ( ) ( ', )k k
m

m m mβ γ+ +
� �= � �
� �
� , (4.9) 

 

( )1 1ln exp ( ) ( ', )k k
m

m m mβ γ+ +
� �= +� �
� �
� � � . (4.10) 
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Now, using equations (4.1) and (3.20), ( )kLL u  can be written as 

 

1

1

( ') ( ', ) ( )
( ', ) : 1

( ) ln
( ') ( ', ) ( )

( ', ) : 0

k k k

k

k k k

m m m m
m m ukLL u

m m m m
m m uk

α γ β

α γ β

−

−

=
=

=

�

�
, 

 

 

(4.11) 

 

( )

( )

1

1

ln exp ( ') ( ', ) ( )
( ', ) : 1

ln exp ( ') ( ', ) ( )
( ', ) : 0

k k k

k k k

m m m m
m m uk

m m m m
m m uk

α γ β

α γ β

−

−

� 	

 �

= + +
 �

 �=
� 


� 	

 �

− + +
 �

 �=
� 


�

�

�� �

�� �

. 

 

 

 

(4.12) 

 

At this point, to make the above calculations simpler and more suitable for 

VHDL coding, a new function max* is defined as [27] 

 

max*( , ) ln( )x yx y e e= + . (4.13) 

 

We know that the maximum of two numbers, max(x,y), can be calculated as 

 

max( , ) ln( )
1

x y

x y

e e
x y

e− −

+=
+

. (4.14) 

 

Then, max*(x,y) can be written as 

 

max*( , ) max( , ) ln(1 )x yx y x y e− −= + + . (4.15) 
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It is clear and can easily be proven that  

 

[ ]max*( , , ) max* max*( , ),x y z x y z= . (4.16) 

 

Now, we can rewrite equations (4.6), (4.10) and (4.13) using the max* function. 

 

( )1
'

( ) ( ') ( ', )max*k k k
m

m m m mα α γ−= +� � � , (4.17) 

 

( )1 1( ') ( ) ( ', )max*k k k
m

m m m mβ β γ+ += +� � � , (4.18) 

 

( )

( )

1
( ', ): 1

1
( ', ): 0

( ) ( ') ( ', ) ( )

( ') ( ', ) ( )

max*

max*

k

k

k k k k
m m u

k k k
m m u

LL u m m m m

m m m m

α γ β

α γ β

−
=

−
=

� 	
= + +
 �
� 


� 	
− + +
 �
� 


�� �

�� �

. 

 

 

(4.19) 

 

Equations (4.17), (4.18) and (4.19) show that the log domain computation of 

( )kLL u is very suitable for logic design.  The max* function involves only a 

two-input max function and a lookup table for the term ln(1 )x ye− −+ .  

 

We know that 

 

0 < ln(1 + exp( -|a-b| )) ≤ ln (2) ≅ 0.693. (4.20) 

 

A small sized look-up table can be used for the ln(1 + exp( -|a-b| ))  values.  A 

table of size 8 is usually sufficient [30].  For a precision of 0.1, the values of (a-

b) can be calculated for 8 different values of the log operation with step sizes 

of 0.1 and this look-up table can be used in the calculations. 
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4.2 Implementation of the Log Domain MAP Algorithm 

 

The VHDL code mainly consists of three parts:  Data storage, max* operations, 

and recursive calculations.  Using the code, a sequential logic circuit is 

generated.  All the operations take place in the rising edge of the clock.  For 

generating the clock, the local oscillator of the FPGA Virtex2Pro is used.  The 

clock frequency of the FPGA device is 150 MHz.  In the VHDL code an 

asynchronous reset is provided.  For data storage, registers and a RAM is used.  

Timing of the signals is very important in reading data from RAM and in 

making recursive calculations.  To achieve this, a clock counter is used.  The 

sequence of the events is defined according to this counter. 

 

4.2.1 Data Storage 

 

Received data is kept on the block RAM of the FPGA Virtex2Pro.  Each data is 

accepted to have m decimal digits to the left of the decimal point and n digits to 

the right.  There is no complex component in received data since binary shift 

keying is assumed.  In the case of other modulation schemes, the code should 

be rewritten correspondingly.  To overcome the difficulties of dealing with the 

decimal part, each data is multiplied by 10n before storing into the RAM.  

Hence, in the RAM, there are (m+n) digit integers.  To reduce the complexity 

and save area, these data are entered into RAM as binary vectors.   

 

For example, if data words have 3 decimal digits to the left of the decimal point 

and 1 digit to the right, each data is multiplied by 10 before they are stored into 

the RAM.  In this case, to represent 4 decimal digits, 14-bit binary vectors are 

used.  Hence, each word of the RAM is a 14-bit binary vector. 

 

The channel information is stored in the vector Y.  This vector can be written as  
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Y = [ y1 y1p  y2 y2p  y3 y3p ... yN yNp ], (4.21) 

 

where yk and ykp are the kth data and parity words.  Hence, if the vector Y has N 

data words and N parity words, to store this data, a RAM size of 2N words is 

needed to store this data.  In each clock cycle, only one word can be read from 

the RAM (unless special techniques are utilized).  At the start of the program, 

all the received data is read from the RAM and written to registers.  Hence, for 

a vector Y of N data words, a reading time of 2N clock cycles are required.   

 

In the VHDL code, it is tried to use registers instead of RAMs whenever 

possible.  This is due the fact that the contents of a group of registers can be 

read at a single clock cycle but only one word can be read from the RAM in 

each clock cycle.  Hence, registers are used to store matrices and vectors.    

 

4.2.2 Max* Operations 

 

In the implementation, we use two max* functions:  max2 and max4.  Max2 

and max4 operations are written as separate entities.  They are mapped to the 

main code where necessary.  The max2 entity has data, reset, and clock inputs.  

Its clock is synchronous with the master clock.  It makes the calculation which 

is given in the equation (4.13). 

 

A small sized look-up table is used for the ln(1 + exp( -|a-b| )) values.  Max4 

entity makes the calculation 

 

max4(a,b,c,d) = max2(max2(max2(a,b),c),d). (4.22) 

 

where a, b, c, d are binary vectors.  This calculation needs to run the max2 

block 3 times.  Hence, it needs 3 clock cycles.  It is possible to make the same 

calculation in 2 clock cycles.  Equation (4.22) can be written as 
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max4 (a,b,c,d) = max2(max2(a,b), max2(c,d)). (4.23) 

 

Since max2 function was designed as an entity, it is used as a block in the 

max4 design.  The max4 device is shown in Figure 4.1. 

 

 
 

Figure 4.1: The structure of the max4 device 

 

 

4.2.3 Recursive Calculations 

 

The encoder can be thought of as a finite state machine.  In the VHDL code, 

the state information is kept in the vector S.  This vector has the form  

 

S = [S0, S1, S2, …], (4.24) 

 

Sj = [Sj0 Sj1], (4.25) 

 

where Sj is the jth state and Sj0, Sj1 denotes  the outputs (data and parity bits) 

when the encoder is in the jth state and a 0 or 1 is received respectively. 
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In this thesis, a (1, 5/7) systematic recursive convolutional code is implemented 

[31].  The algorithm will be explained assuming that this code is used.  The 

encoder is shown in Figure 4.2.  The corresponding trellis diagram is drawn in 

Figure 4.3. 

 

 

 
Figure 4.2: The (1, 5/7) convolutional encoder 

 

 

d 

p 

d 
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Figure 4.3: The one-step trellis diagram of the (1, 5/7) encoder. 

 

 

Looking at Figure 4.3, the vector S is formed as follows.  It must be noted that 

(2u-1) BPSK coding is used.  Hence, binary 1 is represented by 1 and binary 0 

is represented by -1. 

 

S = [  S00       S01         S10        S11        S20      S21       S30        S31], (4.26) 

S = [-1  -1     1  1    -1 -1    1 1    -1 1     1 -1    -1 1     1 -1]. (4.27) 

 

State information is used to calculate BMk, branch metric vector for the 

received data pair.  This branch metric is some constant times the logarithm of 

the conditional channel observation probability multiplied by the a priori 

probability [27]. This vector is formed as 
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BMk =[BM00
k  BM01

k  BM10
k  BM11

k   BM20
k   BM21

k   BM30
k  BM31

k ], (4.28) 

 

where BMk is the transition metric of each branch on the state diagram.  It can 

be written as 

 

BMij
k=K [ yk ykp] Sij

T +  [ pk0 pk1] (4.29) 

 

where K=1/σ2.  σ is the noise standard deviation of the additive white Gaussian 

noise that is present in the channel.  The values of k are between 1 and N.  

Hence, the values BMk are kept in the matrix BM.  To keep these data, 8N 

registers are required.   

 

pkj is a priori probability of the bit k being equal to j.  pkj is kept in the vector P.  

P is the a priori information vector for the data bits. 

 

P= [ p10 p11 p20 p21 … pN0 pN1], (4.30) 

 

pk0 = - max*(0, LL(k)), (4.31) 

 

pk1 = max*(0, LL(k)). (4.32) 

 

The values of ( )k mα�  required for the calculation of equation (4.19) are kept in 

the matrix alpha.  This matrix consists of 4 vectors because our encoder has 4 

states.  Components of this matrix are in the form ( )k mα�  where the values of k 

are between 0 and N-1 and the values of m are between 0 and 3.  ( )k mα�  is the 

logarithm of the probability of being at state m after the arrival of kth data in the 

forward direction. 

 

The values of ( )k mα�  are calculated recursively.  We assume that the encoder is 

initially in the state 0.  Hence, the probability of being in the state 0 is 1 and the 
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probability of being in all other states is 0.  As we implement the algorithm in 

the log domain, the probability of being in the state 0 is log(1) which is equal 

to 0 and the probability of being in all other states is log(0).  Due to the 

computational limitations, log(0) is taken to be the smallest number to be 

represented by the available number of bits. This smallest number is -800 when 

14 bits are used for quantization. 

 

Hence, the starting values are 

 

0 (0)α�  = 0, (4.33) 

0 (1)α� = -800, (4.34) 

0 (2)α� = -800, (4.35) 

0 (3)α� = -800. (4.36) 

 

For all the values of k between 1 and N-1, the values of ( )k mα� are calculated 

recursively using equation (4.17).  It is clear that the probability of being in a 

state can be calculated by summing the probabilities of traversals through 

branches leading to that state.  The probability of each traversal is equal to the 

multiplication of the probability of being in a state that the traversal begins 

with and the branch metric leaving the state. The ( )k mα�  values for the code 

used in this study are obtained by the following equations 

 

(0)kα� =max*( 1(0)kα −� +BM00
k, 1(1)kα −� +BM11

k), (4.37) 

(1)kα� =max*( 1(3)kα −� +BM30
k, 1(2)kα −� +BM21

k), (4.38) 

(2)kα� =max*( 1(1)kα −� +BM10
k, 1(0)kα −� +BM01

k), (4.39) 

(3)kα� =max*( 1(2)kα −� +BM20
k, 1(3)kα −� +BM31

k). (4.40) 

 

After the calculation of the matrix alpha, normalization of the newly alpha 

values is necessary.  Otherwise, overflow or underflow problems might occur. 
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We will utilize an intermediate variable called the nonterm to perform 

normalization.  Since ( )k mα�  constitute a probability measure, their sum over 

the states should add up to 1.   

 

nonterm (k) = max* ( (0)kα� , (1)kα� , (2)kα� , (3)kα� ). (4.41) 

 

Then, nonterms are subtracted from the ( )k mα� . 

 

(0)kα� = (0)kα� - nonterm(k), (4.42) 

(1)kα� = (1)kα� - nonterm(k), (4.43) 

(2)kα� = (2)kα� - nonterm(k), (4.44) 

(3)kα� = (3)kα� - nonterm(k). (4.45) 

 

To store the matrix alpha, 4N registers are used. 

 

The values of ( )k mβ� are kept in the matrix beta.  Components of this matrix are 

in the form ( )k mβ� where the values of k are between 1 and N and the values of 

m are between 0 and 3.  ( )k mβ� is the logarithm of the probability of being at 

state m after the arrival of kth data in the backward direction.  This logarithm is 

calculated after all the data is received in the backward direction. 

 

The values of ( )k mβ�  are calculated recursively.  As trellis termination is used, 

the final state of the encoder is 0.  Hence, the probability of being in the state 0 

is 1 and the probability of being in all other states is 0.  When these values are 

transferred to the log domain, the probability of being in the state 0 becomes 

log(1) which is equal to 0 and the probability of being in all other states 

becomes log(0) which is again taken to be -800 (for quantization with 14 bits). 

 

Hence, the starting values are 
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(0)Nβ� = 0, (4.46) 

(1)Nβ� = - 800, (4.47) 

(2)Nβ� = - 800, (4.48) 

(3)Nβ� = - 800. (4.49) 

 

If the trellis termination were not used, we wouldn’t know the final state of the 

encoder.  The final state could be any of the four states with equal probability.  

Then, the starting values would be all zero. 

 

For all the values of k between N-1 and 1, the following calculations are made 

using equation (4.18): 

 

( )1 1
1 00 1 01(0) max* (0) , (2)k k

k k kBM BMβ β β+ +
+ += + +� � � , (4.50) 

( )1 1
1 10 1 11(1) max* (2) , (0)k k

k k kBM BMβ β β+ +
+ += + +� � � , (4.51) 

( )1 1
1 20 1 21(2) max* (3) , (1)k k

k k kBM BMβ β β+ +
+ += + +� � � , (4.52) 

( )1 1
1 30 1 31(3) max* (1) , (3)k k

k k kBM BMβ β β+ +
+ += + +� � � . (4.53) 

 

After the calculation of the matrix beta, nonterms are calculated just as in the 

case of calculation of alphas.  

 

nonterm (k) = max* ( (0), (1), (2), (3)k k k kβ β β β� � � � ). (4.54) 

 

Then, nonterms are subtracted from the ( )k mβ� . 

 

(0)kβ� = (0)kβ� - nonterm(k), (4.55) 

(1)kβ� = (1)kβ�  - nonterm(k), (4.56) 

(2)kβ�  = (2)kβ� - nonterm(k), (4.57) 
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(3)kβ� = (3)kβ� - nonterm(k). (4.58) 

 

To store the matrix beta, 4N registers are used.   

 

To simplify the LL calculations, we define two functions; sum0(k) and sum1(k).  

In the calculations, sum0(k) represents log(P(uk=0|y)) and sum1(k) represents 

log(P(uk=1|y)).  Now, using the new variables, equation (4.19) can be written  

as 

 

LL(k) = sum1(k) - sum0(k). (4.59) 

 

For all the values of k between 1 and N, the values of sum0(k) and sum1(k) are 

calculated using equation (4.19). 

 

1 00

1 10

1 20

1 30

(0) (0),

(1) (2),
0( ) max*

(2) (3),

(3) (1)

k
k k

k
k k

k
k k

k
k k
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sum k
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−
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−
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(4.59) 

 

1 01

1 11

1 21

1 31

(0) (2),

(1) (0),
1( ) max*

(2) (1),

(3) (3)

k
k k

k
k k

k
k k

k
k k

BM

BM
sum k

BM
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α β
α β
α β
α β

−

−

−

−

� �+ +
� �

+ +� �= � �+ +� �
� �+ +� �

��

��

��

��
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(4.60) 

 

The values LL(k)  are kept in the vector LL.  To store the vector LL, N registers 

are used.   

 

The vector LL is also calculated for parity bits.  The values LL for parity bits 

are kept in the vector LLp.  This vector can be written as LLp(k) where the 

values of k are between 1 and N. 
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For all the values of k between 1 and N, the values of LLp for parity bits can be 

calculated as 

 

1 00

1 10

1 21

1 31

(0) (0),

(1) (2),
0( ) max*

(2) (1),

(3) (3)

k
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k
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sum k
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(4.61) 
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1( ) max*
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(4.62) 

 

LLp(k) = sum1(k) - sum0(k). (4.45) 

 

We use the BCJR algorithm to find out the probabilities:  P(uk=0|y) or 

P(uk=1|y).  This information is used to guess the original codeword looking at 

the received one.  Once we calculate the values of LL(k) for all k, we can guess 

the original codeword using equation (4.1).  The decoder accepts these guesses 

as the decoded data. 

 

Decoded data is kept in the vector DecDat.  The elements of this vector can be 

written as DecDat(k)  where the values of k are between 1 and N. 

 

Decoded parity forms the vector DecDatP.  Similarly, the elements of this 

vector can be written as DecDatP(k)  where the values of k are between 1 and 

N. 

 

The decoded data are calculated using equation (4.1).  A positive LL(k) means 

that P(uk=1|y) is greater than P(uk=0|y). In this case, the decoded data is 
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guessed as 1.  This information is kept in the vector DecDat as DecDat(k)=1.  

Similarly, a negative value of LL(k) means that DecDat(k)  is 0.  The vector 

DecDatP is also calculated in the same manner.  These vectors are kept in 2N 

registers. 

 

4.3 Implementation of the Convolutional Product Decoder 

 

We explained the VHDL implementation of the BCJR decoder for a 

convolutional code up to this point.  We will now use this as a component in a 

convolutional product decoder.  Although product codes are usually 

constructed with block codes [27], they can be constructed with convolutional 

codes as well. We will study such a construction in this section. 

 

In the encoder side of a product code, encoding is performed with the help of a 

matrix.  This matrix determines how each encoder works.  Convolutional codes 

are used to encode rows and columns in our construction.  

 

First, the data to be sent is stored into a matrix.  Then each row is encoded.  

Although different convolutional codes can be used to encode each row, the 

same systematic recursive convolutional code is used here.  The data matrix 

dimension is k×k, and encoded data matrix dimension is n×n.  Hence, our code 

is an (n×n, k×k) code.  Then, this matrix is coded columnwise.  The rate 1/2  

systematic convolutional code is used to encode each row and column.  Hence 

the overall data rate is ¼ when no trellis termination is employed.   

 

The convolutional product coded data matrix is binary phase shift key (BPSK) 

modulated.  Then, this signal is passed through an additive white Gaussian 

noise (AWGN) channel with double-sided power spectral density N0/2 (noise 

variance σ2). 
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The log-MAP soft decoding algorithm is used to iteratively decode the 

convolutional product code.  First, column decoder decodes each column one 

by one, then the information obtained from the column decoder is given to the 

row decoder.   Then, row decoding is performed and the information is given to 

the column decoder.  This procedure is repeated many times. 

 

In the convolutional product decoder design, a single RAM keeps the received 

data information.  The decoders that are used in parallel processing are 

modified such that they have no RAMs.  Data is directly read into registers.  

Hence, all the data is accessible in a single clock cycle.  This saves operation 

time. 

 

Figure 4.4 shows the convolutional product decoder.  In the figure, yc is the 

matrix that contains the channel information.  To decode 2N codewords of 

length 2N, a matrix yc of size 2N × 2N is required.   

 

 

 
Figure 4.4: Convolutional product decoder 

 

 

A priori information is kept in the matrix p.  The matrix p has a size of N×2N.  

Column decoder takes each column of the yc and p, then, writes the decoded 
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data to a column of the matrix yr.  To implement the column decoder, 2N 

decoders work in paralel.  After that, the matrix p is subtracted from the yr.   

 

Row decoder takes all rows of the matrix yr and writes the decoded results to a 

N×N matrix or.  This time, all elements in the matrix p are equal to 0.  To 

implement the row decoder, N decoders are used.  the matrix p is obtained by 

subtracting yr from the matrix or. 

 

These operations are performed continuously.  And, the matrix p is refreshed 

simultaneously. 

 

4.4 Test Results 

 

To verify the operation of the MAP decoder for N =5 and r=14, a data 

sequence “10101” is used.  First, this data is encoded using the (1, 5/7) 

convolutional code.  This gives the encoded sequence “1101100111”.  After 

BPSK (2u-1) mapping, (σ2=0.2) noise is added to this sequence.  Hence, the 

following input sequence is obtained:   

0.673421 1.43184 -1.47894 1.64453 0.495061 -0.481105 -1.70511 1.05269 

1.38844 1.16594 

 

Finally, this sequence is given to the decoder.  The decoder output and the 

critical variables are compared to the theoretical results.  This comparison is 

given in Appendix A.  It is observed that the decoded data is same as the 

original data.  Also, the variables are very close to the theoretical results.  The 

maximum difference between the implementation results and the hardware 

results is less than 10%. 

 

Then, the convolutional product decoder is tested.  We used the MAP decoders 

in parallel, to iteratively decode the convolutional product code.  The decoding 

algorithm is explained in Section 4.3 in detail.   
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First, a 5×5 data matrix is selected and encoded according to the procedure 

given in Section 4.3.  Then, a BPSK (2u-1) modulation is employed.  After that, 

(σ2=0.2) noise is added to this sequence.  The 10×10 received data matrix 

which is obtained after these steps is given in Appendix B. 

 

In this test, 10 decoders are used in paralel as column decoders and 5 decoders 

are used as row decoders.  The test results are given in Appendix B.  The test 

shows that, after the first iteration, 24 of the 25 data are decoded correctly and 

1 of the data is erronous.  After the second iteration, all the data are decoded 

correctly.  The reliability of the decoder can be increased by increasing the 

number of iterations.  In our test, 2 iterations were enough to correctly decode 

the received data.   

 

4.5 Performance of The Implemented Decoders 

 

To observe the performance of the decoders under different noise conditions, 

Bit Error Rate (BER) tests are performed.  Bit error rate (BER) is defined as 

the number of erroneous bits divided by the total number of bits transmitted, 

received, or processed.  The logarithm of this ratio is the BER of the system 

given in the figures.  Eb/N0 is defined as the ratio of energy per data bit (Eb) to 

the power spectral density of the noise (N0).  Eb/N0 is a measure of signal to 

noise ratio (SNR) for a digital communication system.  It is used as the basic 

measure of how strong the signal is when compared to noise. 

  

The single MAP decoder and the convolutional product decoder are tested with 

6 different noise levels and with 4 different quantization cases.  These 

quantization cases use different number of bits in the recursive calculations.  In 

the tests, quantization is made with 14, 11, 9 and 4 bits.  The noise level of 

AWGN channel is adjusted by using different values of Eb/ N0.   
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Quantization is made after the BM matrix calculation.  Up to this point, 14 bits 

are used.  After BM matrix calculation, quantization is made for 4 different 

cases.  In the quantization with 14 bits, all the elements of BM matrix are 

multiplied by 10, the values larger than 8000 are taken as 8000 and the values 

smaller than -8000 are taken as -8000.  In the recursive calculations, the values 

between -8000 and 8000 are used.  In the quantization with 11 bits, the 

elements of BM matrix are multiplied by 10 and and the values between -800 

and 800 are used.  The larger values are taken as 800 and the smaller values are 

taken as -800.  In the quantization with 9 bits, the elements of the BM matrix 

are multiplied by 3 and and the values between -240 and 240 are used.  In the 

quantization with 4 bits, quantization step is selected as 2.  The values between 

-13 and 15 are used.  In each quantization case, a look-up table of size 8 is used 

for max operations.  The table is refreshed according to the bits available in 

each quantization case. 

 

The code rate of the single MAP decoder is 0.5 and the code rate of the 

convolutional product decoder is 64/400.  The convolutional product decoder is 

tested with 12 iterations.  The values of K used in the BER tests are given in 

Table 4.1.  
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Table 4.1: The values of K used in the BER tests. 

 

K 
 Single MAP 

Decoder 

Convolutional 

Product Decoder 

1 1.2590 0.4029 

2 1.5848 0.5072 

3 1.9952 0.6385 

4 2.5119 0.8038 

5 3.1626 1.0121 

Eb/ N0 

(dB) 

 

6 3.9809 1.2755 

 

 

The tests are made using 10000 random data sets and the test results are 

compared with the floating point simulation results.  Table 4.2 gives the test 

results for the single MAP decoder and Figure 4.5 shows the test and floating 

point results of the single MAP decoder. 

 

 

Table 4.2: The BER test results fort the single MAP decoder. 

 

B E R  

r=14 r=11 r=9 r=4 

1 -1.328 -1.309 -1.291 -1.217 

2 -1.863 -1.838 -1.805 -1.678 

3 -2.197 -2.105 -2.013 -1.841 

4 -3.225 -3.078 -2.885 -2.591 

5 -3.435 -3.271 -3.126 -2.837 

 
  Eb/ N0 

       (dB) 

 
6 -4.417 -4.204 -3.903 -3.515 
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Figure 4.5: The test and floating point results of single MAP decoder. (a: 

floating point simulation, b: r=14 quantization, c: r=11 quantization, d: r=9 

quantization, e: r=4 quantization, BER in logarithm) 

 

 

Table 4.3 gives the test results fort the convolutional product decoder and 

Figure 4.6 shows the test and floating point results of the convolutional product 

decoder. 
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Table 4.3: The BER test results fort the convolutional product decoder. 

 

B E R  

r=14 r=11 r=9 r=4 

1 -1.445 -1.431 -1.412 -1.363 

2 -2.123 -2.087 -2.004 -1.912 

3          -2.845 -2.761 -2.673 -2.541 

4 -3.714 -3.583 -3.456 -3.251 

5 -4.661 -4.498 -4.345 -4.084 

 
  Eb/ N0 

       (dB) 

 
6 -5.653 -5.452 -5.234 -4.873 

 

 

 
 

Figure 4.6: The test and floating point results of the convolutional product 

decoder. (a: floating point simulation, b: r=14 quantization, c: r=11 

quantization, d: r=9 quantization, e: r=4 quantization, BER in logarithm) 
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The tests show that the quantization with 14 bits give results very close to the 

floating point simulations.  It is also seen that the quantizations with 11 and 9 

bits are very also very close to the floating point simulations.  But the 

quantization with 4 bits causes a loss of 0.5 dB when compared to the 

quantization with 9 bits when the value of Eb/N0 is 6. 
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CHAPTER 5 

 

 

 

COMPUTATIONAL COMPLEXITY 
 

 

 

 

In this chapter, computational complexity of the VHDL code is explained.  

First, operation time analysis of a single MAP decoder is given.  In this section,  

operation time required for each part of the circuit is explained.  Then, data 

storage requirements in the MAP decoder are investigated.  The required RAM 

size is calculated.  Also, the number of registers required in each section of the 

code is given.  Later, the operation time and data storage requirements are 

investigated for the convolutional product decoder.   Finally, area limitations of 

the FPGA are investigated.  Looking at the area occupied by the designed 

circuits, maximum decoding capacity of the FPGA is estimated. 
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5.1 Operation Time Analysis of the MAP Decoder 

 

Hardware implementation of the MAP algorithm is achieved using an FPGA. 

Virtex2Pro is the platform of choice in this study.  The logic circuit is built 

using the VHDL language.  A master clock of 150 MHz is used.  All clock 

signals used in the circuit are synchronous with the master clock.  The master 

clock signal is produced using the local oscillator of the FPGA.  Rising edge of 

the clock is used.  

 

Generally, in the area of turbo decoding, the most time consuming process is 

the data read and write cycles [27].  This fact also holds for our case.  Channel 

information can be stored in a RAM.  In this study, Xilinx IP core “Single-Port 

Block Memory v5.0” is the selected RAM structure. 

 

As it was explained in Section 4.2.1, the received signal consists of words 

corresponding to data and parity bits.  The vector Y is used to denote the 

received signal.  For N data words, N parity words are used.  Hence, the vector 

Y has a size of 2N.  The vector Y has the form 

 

Y = [ y1 y1p  y2 y2p  y3 y3p………..yN yNp ]. (5.1) 

 

At the start of the program, the whole Y must be read from the RAM and 

written to a register.  In each clock cycle, only a single word can be read from 

the RAM.  If each data and parity word is stored as a separate word in the 

RAM, a reading time of 2N clock cycles is required for N data words.  In the 

cases when an input RAM is not necessary, data can be read directly into 

registers.  This saves 2N clock cycles.  In the calculation of the overall 

operation time, it is assumed that the data is read directly into registers. 

 

Another possibility to minimize the time used for reading from RAM is to store 

more than one data in a memory word of the block RAM.  For example, if we 



 47

have data words of 4 bits, then it is possible to store three data words in a RAM 

word as a 12 bit logic vector.  Once the data is read, 3 data words can be 

transferred to corresponding registers.  This enables us to read 3 data in a 

single clock cycle.  Hence, the data reading process takes 1/3 of the previous 

time.  It must be noted that, in the Single-Port Block Memory v5.0 which is 

used in this study, the memory word cannot be longer than 256 bits. 

 

There are other data that must be read and written during the operation of the 

circuit.  These data are required for the calculation of necessary variables.  

These data are stored not into RAM but into registers.  Consequently, different 

data sources are accessible at the same time.  Hence, many processes can run 

simultaneously.  This is very effective in decreasing the operation time.  

 

But, when registers are used, these memory elements occupy some FPGA area.  

This consumes some area which can be used in implementing logical circuits.  

When block RAMs are used, they are placed in an area of the FPGA which is 

reserved for block RAMs.  Hence, no useful FPGA area is consumed.  When 

the values N and r are not very large, the area loss caused by storing the data 

into registers is not significant when compared to the speed improvement.  

Hence, in this study, registers are the preferred memory elements.  

 

As it was explained in Section 4.2.3, the branch metric matrix is an N×8 matrix. 

The calculation of each element of this matrix requires 2 multipliers and 2 

adders.  This makes a total of 16N multipliers and 16N adders.  As a result of 

the parallel operation, 3 clock cycles are dedicated to BM matrix calculation.  2 

of the 3 clock cycles are required for multiplications and the remaining 1 clock 

cycle is used for addition.  This time guarantees proper operation for a long 

range of K values. 

 

If the calculations were not made in parallel, we would need only 2 multipliers 

and 2 adders.  But, this time, the calculation would take 24N clock cycles.  This 
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long operation time is not tolerable.  As a result, the elements of the matrix are 

calculated in parallel.    

 

For the vectors in alpha, N-1 recursive calculations are needed.  Each 

calculation in equations (4.37) – (4.40) requires 1 clock cycle.  After that, each 

nonterm calculation requires 2 clock cycles.  So, 3 clock cycles are required for 

an ( )k mα�  calculation.  Hence, totally, 3(N-1) clock cycles are required. The 

vectors (0)kα� , (1)kα� , (2)kα� , (3)kα�  are calculated at the same time.  In each 

clock cycle, 8 adders and 4 max2 blocks operate in parallel. 

 

The values ( )k mβ�  are calculated simultaneously with ( )k mα� , no extra time is 

required.  This saves us 3(N-1) clock cycles.  Generally, ( )k mα�  and ( )k mβ�  

calculations are very similar.  So, it is possible to use the same circuit 

components both in ( )k mα�  and ( )k mβ�  calculations.  This reduces the number 

of total circuit components required for ( )k mα�  and ( )k mβ�  calculations and 

saves area.  But, as we prefer calculating the values ( )k mα�  and ( )k mβ�  at the 

same time, the circuit components cannot be shared.  To achieve simultaneous 

operation, new adders, subtractors and max2 components must be used for 

( )k mβ� calculations.  We can conclude that, with simultaneous operation, we 

decrease the operation time of the decoder but we waste some FPGA area.  

Hence, it can be stated that there is a trade off between computation time and 

circuit area.  The trade off between computation time and circuit area is 

discussed in Section 5.3.  In this case, we save 3(N-1) clock cycles by using 

only 8 more adders and 4 more max2 blocks. 

 

In producing the vector LL, calculation of each sum0 and sum1 takes 2 clock 

cycles and subtraction of sum0 from sum1 requires 1 clock cycle.  In equations 

(4.59) and (4.60), it can be seen that for each ( )kLL u  calculation, 16 parallel 

adders, 1 subtractor and 2 max4 blocks are required.  The LL vector needs N 
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( )kLL u calculations.  As these calculations are performed in parallel, total 

calculation time is equal to a single calculation time of 3 clock cycles.  This 

parallel operation requires a total of 16N parallel adders, N subtractors and 2N 

max4 blocks.  LLp calculations are made using the same adders and subtractors 

as the LL uses.  Again, LLp calculation is made in 3 clock cycles. 

 

The vector LL can also be calculated serially.  This time, it would be possible 

to use the same adders, subtractors and max4 blocks in all calculations.  But, 

the operation time would increase.  As we found above, 3 clock cycles are 

needed to make a single ( )kLL u  calculation.  For N serial ( )kLL u  calculations, 

3N clock cycles would be required.  But this time, 16 parallel adders, 1 

subtractor and 2 max4 blocks would be enough to make all the calculations.   

 

The vector decoded data is produced by comparing the values ( )kLL u  with 0.  

As it was explained in Section 4.2.6, if ( )kLL u  is larger than zero, DecDat(k) 

is 1, otherwise 0.  This comparison and the formation of the vector DecDat is 

completed in a single clock cycle.  To achieve this, N comparators are used.  

Similarly, DecDatP is calculated in a single clock cycle using the same 

comparators.  We can conclude that, the decoding time of N data words and N 

parity words takes a total of 3N+8 clock cycles.  Table 5.1 shows the operation 

time required for each part of the circuit.   

 

There are some ways for further decreasing the operation time.  One of them is 

pipelining.  When the values alpha and beta are being calculated recursively, 

after a certain time (when half the alpha and beta values are calculated), there is 

no need to wait until the finalization of alpha and beta calculations.  The LL 

calculations can start immediately.  This saves a clock time of 3N/2.  This one 

and similar advanced techniques that will decrease the calculation time are left 

as future work.. 
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Table 5.1: The operation time required for each part of the circuit for N data 

words and N parity words 

 

Operation 
Required Time 

(clock cycles) 

BM matrix calculation 3 

Alpha-Beta and Nonterm calculations 3N-3 

LL and LLp calculations 6 

Decoded data and decoded parity 

calculations 
2 

Total 3N+8 

 

 

 

5.2 Data Storage in the MAP Decoder 

 

In each decoder, received data may be kept in a RAM or the data can be read 

directly into registers.  Received data is in the form of vectors of length 2N.     

 

Hence, to store the received data, a block RAM of 2N words or 2N registers are 

needed.  In the below calculations, it is assumed that the received data is kept 

in registers.  The length of the memory words and the size of the registers 

depend on the length of the received data.  If the received data has r bits, then 

all the memory elements should store r bits.  If the data is to be stored on a 

block RAM of the FPGA, it must be noted that the Xilinx IP core “Single-Port 

Block Memory v5.0” cannot store memory words longer than 256 bits. 

 

For recursive calculations, many registers are used.  From equation (4.28), it is 

seen that the matrix BM is composed of 8N words of r bits.  Hence, the matrix 

BM is stored in 8N registers of length r bits. 
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A priori information for the data words is stored in the vector p.  From equation 

(4.30), this vector has 2N words of r bits.  Since each pk0 = - pk1, N registers are 

required to store the a priori information data. 

 

If the a priori information is not used in the decoder which is the case in the 

column decoders, then some simplifications can be made to decrease the 

number of registers.  For this decoder, each line of the matrix BM has 4 entries 

because the remaining 4 entries are equal to former 4 entries.  Hence, instead of 

8N registers, 4N registers are enough.  Also in this decoder, there is no need to 

use N registers to keep a priori information.  As a result, if the a priori 

information is not used, then the number of registers will be decreased by 5N. 

 

Section 4.2.3 tells that the elements of alpha are kept in the matrix alpha.  This 

matrix consists of 4 vectors.  Each vector has N words.  To store the matrix 

alpha, 4N registers are required.  Similarly, the values of beta are stored in the 

matrix beta of size 4N.  To store the matrix beta, 4N registers of size r bits are 

required. 

 

In LL calculation, the calculations are made according to the equations (4.40) 

and (4.41).  For sum0 and sum1 calculations, a total of 2N registers are used.  

The values LL are stored into N registers.  A total of 3N registers are required.  

So, for LL and LLp, a total of 6N registers of r bits are used.  It is also possible 

to write the difference of sum0 and sum1 directly into a register.  In this case, 

no registers are required to store sum0 and sum1.  This means, instead of 6N 

registers, 2N registers are enough.  But, because of the implementation 

difficulties, 6N registers are used in this study. 

 

As we explained in Section 4.2.3, the decoded data is kept in the vector 

DecDat.  This vector has N words.  That is, N registers of size 1 bit are required.  

Similarly, N registers are needed for the vector DecDatP.  This means, for 

decoded data, a total of 2N registers of size 1 bit are required. 
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Totally, a single map decoder uses 25N registers of size r bits and 2N registers 

of 1 bit.  Table 5.2 shows the number of registers required for storing signals.  

Other logic components that are used in the implementation of the decoder are 

summarized in Table 5.3. 

 

 

Table 5.2: The number of registers required for storing signals 

 

 

Stored signals 

 

 

Number of 14-bit registers 

Received data 2N 

Branch-metric matrix 8N 

A priori information N 

Alpha matrix 4N 

Beta matrix 4N 

LL vector 3N 

LLp vector 3N 

Total 25N 
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Table 5.3: The logic components that are used in the implementation of the 

decoder 

 

 

Stored signals 

 

 

Number of logic components 

Branch-metric matrix 
16N adders 

16N multipliers 

Alpha matrix 
8 adders 

4 max2 blocks 

Beta matrix 
8 adders 

4 max2 blocks 

LL vector 

16N adders 

4N max2 blocks 

N subtractors 

DecDat vector N comparators 
 

 

 
5.3 Minimization of Time and Area 

 

The MAP decoder works on matrices and vectors.  It makes many recursive 

calculations.  Hence, many operations are repeated several times for a large 

number of signals.  It is possible to use the same circuit components for 

different signals in different clock cycles.  For example, in the calculation of 

the vector LL, the same operations are repeated for all the vector elements.  As 

the operations are the same, the arithmetic and logic blocks may be shared 

between the operations.  This minimizes the area.  But, in this case, 

simultaneous operation of the components is not possible.  All the elements of 

the vector cannot be calculated at the same time.  As the arithmetic and logic 

blocks are shared, circuit must wait until the required component is idle.  This 



 54

means that the speed is degraded.  On the other hand, when separate 

components are used for the signals that can be calculated at the same time, the 

time required for the operation is minimized.  But, for parallel processing, each 

signal needs separate arithmetic and logic blocks.  This approach increases the 

number of circuit components but decreases the operating time of a single 

MAP decoder. 

 

For example, when the vector LL is calculated in parellel, 16N adders, 4N 

max2 blocks and N subtractors are required.  The calculation time takes 3 clock 

cycles.  On the other hand, when the calculation is made serially, 16 adders, 4 

max2 blocks and 1 subtractor is used.  This time, the operation takes 3N clock 

cycles.  The rise in decoding time affects the decoding performance 

significantly.  The serial calculation results in a decoding rate of 32.6 Mbps. 

With the parallel calculation, the decoding performance is calculated as 19.7 

Mbps. 

 

When many decoders are placed on a FPGA for parallel processing, the 

relation between the area and the speed becomes more complex.  As we want 

to reach high speeds, we want to minimize the operation time of a single MAP 

decoder.  But, the operation time of a decoder can only be minimized by 

consuming large areas.  This prevents us from employing maximum number of 

decoders in parallel.  So, the overall speed is degraded. 

 

If we minimize the area of a single decoder, then it is possible to maximize the 

number of decoders working in parallel.  But, this time, operation time of a 

single decoder becomes very long.  This also degrades the overall speed.  

Hence, when designing the decoder, both speed and area limitations must be 

considered. 

 

In this study we tried to achieve maximum speed in a reasonable area.  Hence, 

for the calculations that occupy large area and have short operation times, we 
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tried to use the same components for many operations.  For example, LL and 

LLp calculations need large area, so they are calculated using the same logic 

components.  On the other hand, for the calculations that occupy small area, we 

tried to use separate logic components for each calculation.  For example, 

DecDat vector is calculated by using N comparators in parallel.  This way, 

parallel or serial operation is selected looking at the time and area needs of the 

calculation.  

 

5.4 Convolutional Product Decoder Performance 

 

In convolutional product decoder, a single block RAM keeps the received data 

information.  The decoders that are used in the convolutional product decoder 

have no RAMs.  Data is read directly from the block RAM into registers.   

 

This RAM has 2N lines of length 2N.  Each word is accepted to have r bits. 

Hence, to store the received data, a block RAM of size r×4N2 is needed.  A 

priori information is stored in the matrix p.  As it was explained in Section 4.2, 

this matrix has a size of N×2N.  Each word in the matrix has r bits. Hence, 2N2 

registers of r bits are required. 

 

Section 4.2 tells that each of the matrices yr and or has 2N2 words.  Similarly, 

for each one, 2N2 registers of r bits are required.  At the beginning, data is read 

from the RAM into registers in 4N2 clock cycles. 

 

The column decoder is composed of 2N MAP decoders.  The operation time of 

the column decoder is equal to that of a single MAP decoder.  This is equal to 

3N+8 clock cycles.  After that, 2N2 subtractors are used in parallel to make the 

following subtraction: 

 

yr = yr – p. (5.2) 
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The row decoder consists of N MAP decoders.  The operation time of the 

column decoder is equal to that of a single MAP decoder.  This is followed by 

the following subtraction: 

 

p = or – yr. (5.3) 

 

2N2 subtractors are used in parallel to make the calculation given in equation 

(5.3).  This parallel subtraction takes a single clock cycle. 

 

Hence, a decoding cycle takes a total of 4N2+6N+18 clock cycles.  When 

multiple iterations are desired, there is no need to read the data from the RAM 

again, because the data is already transferred to registers.  For every iteration, 

the parallel decoders perform their operations over and over.  Hence, for m 

iterations, the operation time can be given as 4N2+m(6N+18). 

 

5.5 Area Limitations 

 

In this thesis, the VHDL code is first written for N=5 and r=14.  The circuit is 

implemented and its operation is verified with tests.  It is seen that the 

generated logic circuit occupies 2% of the FPGA area.  It consumes 278 slices 

out of 13696.   

 

We can assume that all the register sizes change linearly with r.  It can be 

assumed that the size of adders and multipliers also change nearly-linearly with 

r.  Hence the area consumption can be assumed to be directly proportional to r.  

To verify this fact, the same decoder is designed for r=4.  This circuit occupies 

0.6% of the FPGA area.  It consumes 89 slices out of 13696.  The size of this 

decoder verifies the linear relationship prediction.  Looking at these facts, we 
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can conclude that it is possible to decrease the decoder size in a nearly linear 

manner by selecting small values of r. 

 

As a result of the recursive structure of the MAP algorithm, the number of 

arithmetic operations performed in the circuit is linearly proportional to the 

number of the received data words N.  In addition to that, Section 5.2 tells that 

the number of registers in the circuit is also linearly proportional on N.  In the 

light of these, we can conclude that the occupied area is linearly proportional to 

the number of received data words N and the number of bits in each word r.   

 

In convolutional product decoder test, the circuit is implemented for a 10×10 

received data vector which corresponds to N=5 and data words of 14 bits.  

After the implementation, it is seen that the circuit occupies 22% of the FPGA 

area.   It uses 3018 out of 13696 slices. 

  

Section 5.4 tells that in parallel processing, the number of registers that are 

used to keep p, or and yr matrices are linearly proportional to N2.  But, the 

number of MAP decoders is linearly proportional with N.  The area occupied 

by the registers that keep p, or, and yr matrices are negligible compared to the 

area occupied by the decoders.  Hence, it can be accepted that the occupied 

area is proportional to N2.  With the same algorithm, it is possible to reach 

higher speeds by decreasing N and r.    

 

When N=5 and r=14 are used in the design, a single MAP decoder reaches a 

decoding rate of 32.6 Mbps on a Virtex2Pro xc2vp30.  The Rocket I/O 

technology of the FPGA enables the high speed serial interfaces.  Hence, these 

decoding rates can be reached without I/O limitations.  In the light of the 

operation time calculation given in Section 5.1, the performance of the decoder 

can be calculated for different values of N.  It must be noted that r does not 

affect the decoding speed of the decoder directly.  But it increases the area 
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required to implement the decoder.  Table 5.4 gives the decoding rate of a 

single MAP decoder for different values of N. 

 

 

Table 5.4: The decoding rate of a single MAP decoder for different value of N 

 

N Decoding rate (Mbps) 

5 32.6 

10 39.5 

25 45.2 

50 47.5 

100 48.7 

 

 

The convolutional product decoder is designed using the above decoders in 

parallel.  With N=5 and r=14, the data rate is found to be 19.1 Mbps for 2 

iterations.  Following the explanations in Section 5.4, the decoding 

performance of the convolutional product decoder can be calculated for 

different values of N.  Table 5.5 shows the decoding performance of the 

convolutional product decoder for different values of N and different number 

of iterations. 
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Table 5.5: The decoding performance of the parallel decoder for different 

values of N and different number of iterations 

 

 

N 

 

Decoding Rate for 2 Iterations 

(Mbps) 

 

Decoding Rate for 3 Iterations 

(Mbps) 

5 19.1 15.4 

10 27.0 23.7 

25 33.1 31.2 

50 35.3 34.2 

 

 

It can be seen on Table 5.5 that the decoding rate increases with the increasing 

values of N.  This follows from the fact that, when N increases, the number of 

decoders working in parallel also increases.  It must be noted that, again r has 

not a direct effect on the decoding rate.  But it affects the area that the decoder 

occupies.  When r is selected as 14, the maximum value that N can take is 250 

for a single MAP decoder.  The decoders for larger values of N cannot fit on 

the surface of the FPGA Virtex2Pro.  But, when r is selected as 4, N can have 

values up to 900.  Hence, when r is selected as 4, the maximum speed 

achievable on the FPGA is 37.4 Mbps for 2 iterations.  Also, it must be noted 

that as larger values of N are selected, the 4N2 clock cycles that is spent for 

reading the data from the RAM becomes dominant over the total operation 

time and the number of iterations does not affect the operation time drastically.  

In conclusion, it can be said that high decoding rates are achievable by 

selecting high values of N and small values of r. 

 

By using a two level buffer strategy, it is possible to further increase the 

decoding rate.  This time, we don’t need a RAM to store the channel 

information.  This information is stored directly into buffers.  When one level 
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of buffers is full, then the other level accepts the channel information.  In this 

case, some area is consumed for the implementation of the input registers, but 

decoding rate is improved significantly.  With this strategy, for N=25 and for 5 

iterations, it is possible to reach a decoding speed of 111 Mbps.   
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CHAPTER 6 

 

 

 

SUMMARY AND CONCLUSIONS 
 

 

 

 

Today, in many fields of technology, high speed and accurate data storage and 

transmission is required.  Usually, the main difficulty that we face at high data 

rates is the errors in the received signal.  Error correcting codes are used for 

detecting and correcting the errors.  Turbo coding is an efficient error 

correction method and it is commonly used in wireless systems.  Maximum a 

posteriori (MAP) decoding of convolutional codes received large interest since 

the discovery of turbo codes.  

 

In this thesis, MAP algorithm is implemented on an FPGA.  The decoders are 

designed using the VHDL language.  First, a MAP decoder is implemented and 

tested.  Then, a convolutional product decoder is designed using the MAP 

decoders in parallel.  The outputs of decoders were compared with the 

theoretically calculated output.  We further ran simulations to compare the 
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performance of the designed decoders to the performance of decoders 

implemented in software with floating point numbers.  All these studies 

revealed the proper operation of our design. 

 

 

With the basic design values N=5 and r=14, a single MAP decoder reaches a 

decoding rate of 32.6 Mbps.  In the light of the operation time calculation given 

in Section 5.1, the performance of the decoder can be calculated for different 

values of N.  It must be noted that r does not affect the decoding speed of the 

decoder directly,  but it increases the area required to implement the decoder.  

The convolutional product decoder is designed using the above decoders in 

parallel.  With N=5 and r=14, the data rate is found to be 19.1 Mbps for 2 

iterations.  The decoding rate increases with the increasing values of N.  This 

follows from the fact that, when N increases, the number of decoders working 

in parallel also increases.  

 

When r is selected as 14, the maximum value that N can take is 250.  The 

decoders for larger values of N cannot fit on the surface of the FPGA 

Virtex2Pro.  But, when r is selected as 4, N can have values up to 900.  Hence, 

when r is selected as 4, the maximum speed achievable on the FPGA is 37.4 

Mbps for 2 iterations.  Also, it must be noted that as larger values of N are 

selected, the 4N2 clock cycles that is spent for reading the data from the RAM 

becomes dominant over the total operation time and the number of iterations 

does not affect the decoding rate drastically.  In conclusion, it can be said that 

high decoding rates are achievable by selecting high values of N and small 

values of r. 

 

To observe the performance of the decoders under different noise conditions, 

Bit Error Rate (BER) tests are performed.  The single MAP decoder and the 

convolutional product decoder are tested with 6 different noise levels and with 

4 different quantization cases.  These quantization cases use different number 
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of bits in the recursive calculations.  In the tests, quantization is made with 14, 

11, 9 and 4 bits.  The noise level of AWGN channel is adjusted by using 

different values of Eb/ N0. The tests show that the quantization with 14 bits 

give results very close to the floating point simulations.  It is also seen that the 

other quantization cases  also give results very close to the floating point 

simulations. 

 

As a conclusion, in this thesis, MAP algorithm is successfully transferred to a 

logic circuit.  A decoder circuit is produced and using these decoders, 

convolutional product decoder is implemented and tested.  The limitations in 

the hardware world are investigated.  The trade offs between the resources are 

explained.   

 

Further research can be carried on the minimization of the operation time.  

Some calculations may be forced to be simultaneous with the introduction of 

new registers and arithmetic units.  Some new techniques like pipelining may 

be used.  For the convolutional product decoder, more efficient data reading 

techniques may be investigated, e.g.,  more than one data may be stored in a 

RAM word.   
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APPENDIX A 

 

 

 

TEST RESULTS OF THE MAP DECODER 
 

 

 

 

To verify the operation of the MAP decoder, a data sequence “10101” is used.  

First, this data is encoded using BPSK (2u-1) mapping.  This gives the encoded 

sequence “1101100111”.  Then, (σ2=0.2) noise is added to this sequence.  

Hence, the following input sequence is obtained:   

 

0.673421 1.43184 -1.47894 1.64453 0.495061 -0.481105 -1.70511 1.05269 

1.38844 1.16594 

 

Finally, this sequence is given to the decoder.  The obtained results are 

compared with theoretical results.  The table A.1 summarizes the comparison 

of the decoder results with the theoretical ones.  The results show that hardware 

implementation of the MAP decoded the received data sequence successfully.  
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Table A.1:  The comparison of the decoder results with the theoretical ones 

 
 

 
 

Decoder Test Results 
 

Theoretical Results 

 
Alfa0 

 
0   -21.5   -37.5   -36.5  -29.5 0   -21.05   -37.50   -36.04   -26.81 

 
Alfa1 

 
-800   800   -31.5    -10.5   -1.5 -800    -800    -31.23     -9.76      0 

 
Alfa2 

 
-800  -0.5   -36.5   -36.5  -21.5 -800    0    -35.84   -36.18    -20.29 

 
Alfa3 

 
-800  -800    -0.5    -0.5   -29.5 -800      -800       0      0      -27.58 

 
Beta0 

 
-26    -33.5   -36.5    -26.5     0 -24.55  -32.39   -36.07   -25.54    0 

 
Beta1 

 
-27    -33.5  -44.5    -0.5   -800 -26.21  -32.53  -42.59  -1.38   -800 

 
Beta2 

 
-1    -10.5   -28.5   -800    -800 0    -9.76    -27.58   -811.53    -800 

 
Beta3 

 
-32    -0.5    -0.5    -800    -800 -30.92    0    -1.88   -811.53    -800 

 
LL 

 
46     -46     45.5     -54       54 45.60  -45.60  45.60  -52.36  52.36 

Decoded 
Data 

 
10101 

 
10101 
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APPENDIX B 

 

 

 

TEST RESULTS OF THE CONVOLUTIONAL 

PRODUCT DECODER 
 

 

 

 

In the convolutional product decoder test, first a 5×5 data matrix is selected.  

The data matrix selected for the test is given in Table A:2. 

 

Table A.2: The data matrix selected for the convolutional product decoder test 

 
1 1 1 1 1 
0 0 0 1 0 
1 0 0 1 1 
1 0 0 0 0 
0 0 0 1 1 
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This matrix is encoded according to the procedure given in Section 4.3.  Then  

BPSK (2u-1) modulation is employed.  After that, (σ2=0.2) noise is added to 

this sequence.  The 10×10 received data matrix which is obtained after these 

steps is given in Table A.3. 

 

 

Table A.3: The encoded data matrix that is used in the convolutional product 

decoder test 

 

0.982 0.943 0.242 -1.881 1.160 -0.507 1.110 0.704 -0.149 -2.786 

0.702 0.535 -0.327 -1.689 1.428 1.297 1.792 -0.220 0.087 -0.305 

0.421 -1.628 -0.250 0.302 -1.946 -0.234 1.383 0.817 1.237 0.674 

0.082 -0.136 2.001 -1.083 0.888 0.757 -0.063 -1.902 0.925 1.499 

-0.157 2.232 -0.102 2.074 0.662 1.281 0.406 -0.518 0.096 0.888 

-2.002 -1.228 1.060 1.786 2.080 -1.831 1.983 0.478 -2.023 -0.043 

0.446 1.315 -2.000 1.800 -1.200 0.184 -1.667 -0.980 -1.828 1.838 

-1.681 0.439 -1.281 -2.137 -1.219 -0.687 -0.955 1.806 1.072 1.027 

0.369 -0.395 -0.797 -2.337 -0.828 -1.351 1.320 -0.011 -1.397 -1.343 

-0.511 0.308 1.919 -0.552 0.750 0.90 0.124 -0.131 0.824 -0.131 

 

 

After the first iteration, that is, after the first decoding cycle, the obtained 

matrix or is shown in Table A.4.  In the table, the dark cells contain the values 

of LL for data bits and the white cells contain the values of LL for parity bits.  

The decoded data is given in Table A.5.  In this table, it is possible to see that 

after the first iteration, 24 of the 25 data are decoded correctly and one of the 

data is erronous. 
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Table A.4: The matrix or after the first iteration 

 

11.7 11.7 11.6 -15.3 10.9 10.8 10.1 10.2 7.5 -8.3 
-5.4 -5.4 -5.3 -8.5 -7.1 -7.3 3.9 3.5 -2.1 2.7 
6.4 6.4 -6.4 10.9 -7.9 7.8 3.1 3.2 2.5 4.2 
13.4 13.5 -13.6 15.8 -11.2 11.3 -10.2 -10.2 -9.1 -9.2 
-3.1 -3.1 -3.1 -8.5 -5.4 -5.4 1.4 0.8 -1.3 -0.8 
 
 

 

Table A.5: The decoded data after the first iteration 

 

1 1 1 1 1 
0 0 0 1 0 
1 0 0 1 1 
1 0 0 0 0 
0 0 0 1 0 

 

 

After the second iteration, the matrix or is given in Table A.6.  The 

corresponding decoded data is given in Table A.7.  After the second iteration, 

all the data are decoded correctly.  The reliability of the decoder can be further 

increased by increasing the number of iterations.  In our test, 2 iterations were 

enough to correctly decode the received data. 

 

 

Table A.6: The matrix or after the second iteration 

 
22.8 22.8 22.7 -28.3 23.4 23.5 12.1 12.1 8.3 -8.2 
-22.3 -22.3 -22.5 -27.4 -19.5 -19.5 8.3 8.3 -7.4 7.8 
15.8 15.8 -15.4 20.1 -14.2 14.2 3.1 3.1 4.2 3.5 
16.1 16.1 -16.1 18.3 -12.8 -12.8 -8.2 -8.3 -8.9 16.9 
-4.7 -4.7 -4.7 -7.5 -6.8 -6.8 2.1 1.8 0.5 -1.5 
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Table A.7: The decoded data after the second iteration 

 
1 1 1 1 1 
0 0 0 1 0 
1 0 0 1 1 
1 0 0 0 0 
0 0 0 1 1 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 70

 

 

 

 

APPENDIX C 

 

 

 

THE PROPERTIES OF THE FPGA  

VIRTEX-II PRO 
 

 

 

 

The FPGA Virtex-II Pro can be used in many applications such as 

 

• optical networking,  

• wireless infrastructure,  

• storage area Networks(SANs),  

• industrial control and image processing.  

 

The FPGA family Virtex-II Pro depends on the Virtex-II architecture and has 

two new structures that enhance the application capabilities of this family.  

These new structures are: 
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• Rocket I/O™ Multi-Gigabit Transceivers (MGT) with transfer rates 

from 622Mb/s to 3.125 Gb/s. 

• IBM PowerPC™ Embedded Processor Cores with performance of 300+ 

MHz core frequency. 

 

With its Rocket I/O MGT technology, it is suitable for applications that require 

fast serial data transfer from chip-to-chip, across a backplane, and to an optical 

transponder. 

 

With its Embedded PowerPC core, it transfers complex embedded system 

designs to FPGA logic or PowerPC core. 

 

In addition to these new structures, the family Virtex-II Pro uses the new 

structures that are introduced in the family Virtex-II.  These structures are 

given as follows: 

 

•  Digitally Controlled Impedance (DCI) technology for signal integrity 

management, 

•  Digital Clock Managers (DCM) for creating advanced clocking 

domains, 

•  Dedicated XtremeDSP Multipliers for high-performance DSP 

applications, 

•  System I/O technology for support of multiple different single-ended 

and differential I/O standards. 

 

The Family Virtex-II Pro is composed of 10 members.  Each member has logic 

cells (between 3000 and 125000), high capacity block RAM’s, Digital Clock 

Managers (between 4 and 12), Rocket I/O MGT blocks (between 0 and 24), 



 72

and PowerPC processor cores (between 0 and 4). Table A.9 summarizes the 

properties of the members of this family.  

 

 

Table A.8: The properties of the members of the family Virtex-II Pro. 

 

 
 

 

The Rocket I/O technology enables the high speed serial interfaces.  The serial 

I/O standards supported by Virtex-II Pro Rocket I/O technology are 

summarized in Table A.10. 
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Table A.9: The serial I/O standards supported by Virtex-II Pro Rocket I/O 

technology. 

 

Serial Standard Data Rate Per Channel Baud Rate Per Channel 

InfiniBand 2.0 Gbps 2.5 Gbps 

1 Gb Ethernet 

1000 Base-CX/SX/LX 
1.0 Gbps 1.25 Gbps 

10 Gb Ethernet (XAUI) 2.5 Gbps 3.125 Gbps 

Fibre Channel 0.85/1.7 Gbps 1.06/2.12 Gbps 

Serial ATA 1.2 Gbps 1.5 Gbps 

Serial RapidIO 2.5 Gbps 3.125 Gbps 

PCI Express (3 GIO) 2.0 Gbps 2.5 Gbps 

 

 

The properties of PowerPC 405 can be summarized as follows: 

 

• Embedded 300+ MHz Harvard Architecture Block 

• Low Power Consumption: 0.9 mW/MHz 

• Five-Stage Data Path Pipeline 

• Hardware Multiply/Divide Unit 

• Thirty-Two 32-bit General Purpose Registers 

• 16 KB Two-Way Set-Associative Instruction Cache 

• 16 KB Two-Way Set-Associative Data Cache 

• Memory Management Unit (MMU) 

• Dedicated On-Chip Memory (OCM) Interface 

• Supports IBM CoreConnect™ Bus Architecture 

• Debug and Trace Support 
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The functional blocks of  PowerPC 405 are 

• Cache units, 

• Memory Management unit, 

• Fetch Decode unit, 

• Execution unit, 

• Timers, 

• Debug logic unit. 
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