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ABSTRACT 

3D HAND TRACKING IN VIDEO SEQUENCES 

Tokatlı, Aykut 

MS, Department of electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

September 2005, 112 pages 

 

The use of hand gestures provides an attractive alternative to cumbersome interface 

devices such as keyboard, mouse, joystick, etc. Hand tracking has a great potential as 

a tool for better human-computer interaction by means of communication in a more 

natural and articulate way. This has motivated a very active research area concerned 

with computer vision-based analysis and interpretation of hand gestures and hand 

tracking. 

In this study, a real-time hand tracking system is developed. Mainly, it is image-

based hand tracking and based on 2D image information. For separation and 

identification of finger parts, coloured markers are used. In order to obtain 3D 

tracking, a stereo vision approach is used where third dimension is obtained by depth 

information. In order to see results in 3D, a 3D hand model is developed and Java 3D 

is used as the 3D environment. 

Tracking is tested on two different types of camera: a cheap USB web camera and 

Sony FCB-IX47AP camera, connected to the Matrox Meteor frame grabber with a 

standard Intel Pentium based personal computer. Coding is done by Borland C++ 

Builder 6.0 and Intel Image Processing and Open Source Computer Vision 

(OpenCV) library are used as well. For both camera types, tracking is found to be 

robust and efficient where hand tracking at ~8 fps could be achieved.  
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Although the current progress is encouraging, further theoretical as well as 

computational advances are needed for this highly complex task of hand tracking.  

 

 Keywords: Hand tracking, hand gesture recognition, hand modeling, 2D-3D hand 

model, human-computer interaction (HCI), Camshift algorithm, HSV colour. 
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ÖZ 

VİDEO GÖRÜNTÜLERİNDE 3 BOYUTLU EL İZLEME 

Tokatlı, Aykut 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Uğur Halıcı 

Eylül 2005, 112 sayfa 

 

Klavye, fare, kontrol çubuğu gibi kullanılması hayli zor olan donanımsal aletlere 

alternatif olarak el işaretlerinin kullanılması, her geçen gün daha cazip hale 

gelmektedir.Buna bağlı olarak, elin hareketlerinin izlenmesi, bilgisayar kullanımında, 

daha doğal ve daha anlaşılır olması bakımından büyük bir potansiyel taşımaktadır. 

Bilgisayar destekli görüntü analizi ve el hareketlerinin bilgisayar sistemlerinde 

izlenerek yorumlanması çok aktif bir araştırma sahasının ortaya çıkmasına neden 

olmuştur. 

Bu çalışmada, gerçek zamanlı çalışan bir el izleme sistemi gerçekleştirilmiştir. El 

hareketlerini izleyen bu sistem, görüntü tabanlı yapıda olup, iki boyutlu görüntü 

bilgisini kullanmaktadır. İzlenilen bir elde, parmakların ve parmaklardaki eklemler 

arası kısımların hangisi olduğunun bilgisini bulabilmek için birbirinden farklı  renkli  

işaretleyiciler kullanılmıştır. Takibin sonuçlarını, üç boyutlu olarak görebilmek için 

stereo görüntüleme yaklaşımı kullanılmıştır. Bu yaklaşımda, üçüncü boyut bilgisi 

derinlik bilgisinden elde edilmiştir. Elin takibinin sonuçlarını 3 boyutta görmek için 

3 boyutlu bir el modeli geliştirilmiş ve 3 boyutlu ortam olarak  Java 3D aracı 

kullanılmıştır. 

El hareketlerinin izlenmesi, Intel Pentium tabanlı bir bilgisayarda hem usb’ den 

çalışan ucuz bir kamera hem de Matrox Meteor  kartına bağlı Sony FCB-IX47AP 

markalı kamera ile gerçekleştirilmiştir.  
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Kodlama, açık kaynak kodlu Intel Görüntü İşleme ve bilgisayarlı görüntüleme 

(OpenCV) kütüphanesi ve Borland C++ Builder 6.0 geliştirme ortamı kullanılarak 

yapılmıştır. El izleme, saniyede ortalama 8 görüntü hızıyla, kararlı ve etkili bir 

şekilde yapılmıştır. 

Gerçek veriler kullanılarak yapılan denemelerde, el hareketlerinin büyük ölçüde  

takip edilebildiği görülmüştür. Bu çalışma her ne kadar cesaret verici olsa da, ileriye 

dönük teorik ve sayısal anlamda ilerlemelere ihtiyaç vardır. 

 

Anahtar Kelimeler: El izleme, el hareketlerinin yorumlanması, elin modellenmesi, 

iki boyutlu ve üç boyutlu el modeli, insan-makine etkileşimi, Camshift algoritması, 

HSV renk formatı.   
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CHAPTER 1 
  

INTRODUCTION  

1.1 Motivation  

Since the introduction of the computers, they are so tightly integrated with our daily 

lives. Everyday, new applications and hardware are constantly introduced. The 

integration grows up more and more. With the rapid increase of computer usage in 

this manner, the role of human-computer interaction (HCI) is becoming more 

important. As for vision-based applications, they provide more natural and intuitive 

means for interacting with computers. Hence users are allowed for richer and user-

friendlier man-machine interaction. This can lead to new interfaces that will allow 

the deployment of new commands that are not possible with the current input 

devices. So, the role of these applications is very important. In fact, vision-based 

applications are very huge and popular research areas and there are lots of things to 

do. The tools and the data are available but their usability, especially interpretation, 

must be developed much more.  

In our daily lives, we use hundreds of expressive movements as frequently as 

speaking. Sometimes, while interacting with the physical world, it is better or easier 

to use those expressive movements instead of speaking. These types of movements 

are called gestures. The definition of gesture can be extended to eye movements, 

head movements, body movements and etc but they are out of the scope of this 

thesis. Human hand gestures are a means of non-verbal interactions among people 

and range from simple actions such as using our hand to point at or move objects 

around, to the more complex ones that express our feelings and allow us to 

communicate with others. The means of communicating with computers at the 

moment are limited to keyboards, mice, light pens, trackballs, keypads, web cams 

etc. From those, the most popular ones are keyboards and mice. These devices have 

grown to be familiar but inherently limit the speed and naturalness with which we 

interact with the computer.  
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In this study, we wish to capture hand gestures to form a touch-free computer 

interface using techniques from computer vision. The main issue of hand gesture 

capturing is hand tracking which has received significant attention in the last few 

years, because of its crucial role and help to get a more natural and articulate way for 

many human computer interaction applications. So, it seems that hand tracking has 

great potential as a tool for better human-computer interaction.  

1.2 The Scope of The Thesis 

The aim of the thesis is to develop a system for real time 3D hand tracking based on 

stereo vision so that a 3D hand model could mimic the movements of the hand in the 

scene. 

For this purpose, first of all, whole hand is segmented from background in input 

images. For the fingers and the rest of the hand, flesh colour information is used so 

that the hand regions can be extracted from the input images. Secondly, finger parts 

are segmented and ordered individually by using coloured markers. Two types of 

markers are used in our system. One type consists of green markers and the other 

type includes blue markers. Green markers point the fingers and they are used to 

index the fingers from thumb to little finger. Blue markers are used to point the joints 

and to separate individual segments of the fingers. Thirdly, after finding all segments 

of the fingers, they are ordered (indexed) from palm to the outer finger segments. 

And finally, these markers are used to calculate all relevant angle information which 

describes the posture of the hand.  

The depth information is extracted using a stereo vision approach. The system uses 

two cameras where approximate 3D information of the hand can be extracted. At the 

end of segmentation and indexing processes, all related hand points and also the 

markers are available in both images of the stereo pair in 2D. Markers and regions 

obtained from each stereo image are matched between stereo pairs and corresponding 

pairs are found. By using camera calibration matrices (previously found from the 

manual stereo calibration of the cameras) and those matched pairs, the 3D 

information of the markers and finger regions is recovered.  
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In order to describe the posture of the hand, this 3D information is used. This is done 

by finding angles between 3D marker and finger region locations. Bu using the 3D 

information and the relationships between the finger segments with the markers, a 

3D hand model’s pose is updated for visualization of the hand tracking results. All 

relationships are in terms of the angles and these angle values are found from 

calculations in 3D.   

Since the problem of 3D hand tracking is very complex, we restricted the movements 

of the hand and the fingers. Also, we restricted the environmental and viewing 

conditions such that there is not any occlusion, the lightning is stable and all hand 

regions are viewed from both of the cameras. Also, some assumptions are done to 

escape that complexity. Furthermore, a simple 3D hand model in JAVA is used to 

eliminate the necessity of a detailed human hand model.  

1.3 Organization of The Thesis 

The organization of the thesis is as follows; 

• Chapter 2 gives the necessary information related with 3D hand model. Also 

the anatomy of a generic hand is explained. 

• Chapter 3 presents a literature review on the hand tracking. 

• In Chapter 4, colour spaces and their transformations are presented. 

• Chapter 5 gives the necessary information related with the ‘Camshift’ 

tracking algorithm used in this thesis. 

• In Chapter 6, cameras, coordinate systems and their transformations and 

finally stereo vision are explained. 

• Chapter 7 gives the details of implementation with all explanations and 

pictures.  

• In Chapter 8, summary and conclusion and also possible future enhancements 

are presented.   
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CHAPTER 2 
  

3D HAND MODEL  

2.1 Introduction  

Automatic input and analysis of hand motion have attracted attention from computer 

animation and virtual reality researchers. Computer animation applications directed 

at the human hand must handle about 30 interacting parameters to specify a 

particular motion. Consequently, researchers have investigated several methods to 

derive these parameters from real hand motions. Virtual reality research has 

addressed the removal of the distinctions between the computer system and user 

environment; that is, the computer system presents a virtual space to the user’s sense 

organs such as eyes, ears, and skin, and the user reacts using gestures and speech. For 

gesture analysis, the hands obviously play a major role. 

Although mechanical gloves can capture hand motion in real time, they are 

expensive, and the associated measuring equipment inhibits free movement. More 

advantageous, a camera-based approach requires no mechanical gloves or motion-

constraining monitoring equipment. The virtual reality and computer vision 

communities have targeted capturing hand motion via cameras. Researchers have 

successfully recognized specific fingers of the hand by silhouette images and 

distinguished a small set of hand signs by contour features of images. However, the 

silhouette or contour features recovered from the images do not provide sufficient 

information to generate 3D hand posture with the fingers positioned properly (Figure 

2.1).  
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Also, analysis of hand posture from actual images involves complex problems even 

when employing conventional, simple models. In addition to the three common 

difficulties arising in practical computer vision – occlusion, noise, spurious data – the 

analysis process for the human hand is further complicated by the fact that;  

• The human hand is an articulated structure with about 30 degrees of freedom 

and changes shape in various ways by its joint movements. Contributing to 

this, hand images change by both finger movements and hand movement as a 

whole. 

• Because four fingers are adjacent to each other, occlusion of the fingers 

frequently occurs. Many tiny wrinkles existing on the skin also make it 

difficult to detect meaningful edges of the image. Thus, the conventional 

strategy of segmenting an image into parts by edge extraction and 

sequentially tracing the parts along the central axes does not apply. 

• The fingers are comparatively short, and the surfaces around the joints are 

significantly deformed by joint movements, making it very difficult to 

accurately estimate joint positions in images. 

 

 

 

   (a)      (b)  

Figure 2.1: (a) Contour (b) Binary silhouette  
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2.2 Hand Anatomy and Description 

With the previous studies of the biomechanics of the hand, a 3D skeletal hand model 

with 27 degree of freedoms ( DOF's ) is made (Rehg, 1995) (see Figure 2.2 and 

Figure 2.3) . This model presents a reasonable approximation to the real hand for the 

purpose of nearly all vision applications. A human hand consists of 14 + 1 joints 

(including the wrist) and 27 bone segments in between palm and fingers. These 

bones can be divided into 3 groups:  

• carpals (wrist bones = 8), 

• metacarpals (palm bones = 5) 

• phalanges (finger bones = 14). 

 

 

 
 
 
 
 

Figure 2.2: The anatomical structure of hand  
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Joints are named according to their location on the hand as  

• metacarpophalangeal (MCP) : (joining fingers to the palm) 

• interphalangeal (IP) : (joining finger segments) 

In the literature, the 9 IP joints are described as having only 1 DOF, flexion-

extension. All 5 MCP points are described as saddle joints with 2 DOF's: abduction-

adduction (e.g., spreading fingers apart) in the plane defined by the palm, and 

flexion-extension. The thumb is more difficult to model. Most of its flexibility lies in 

the trapeziometacarpal (TM). This is another saddle point with 2 DOF's (same as 

above). As the last, the wrist’s twist movement can be modeled by six DOF's (i.e., 3 

DOF's for wrist translation and 3 DOF's for wrist rotation). (see Figure 2.3) 

  

 

   

 

 

Figure 2.3: 3D Skeletal Model with DOF’s 
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2.3 3D Hand Model 

The 3D hand models have often been a choice for hand gesture modeling. They can 

be classified in two large groups: 

• volumetric models  

• skeletal models.   

2.3.1 Skeletal Hand Model 

Instead of dealing with all the parameters of a volumetric hand and arm model, 

models with a reduced set of equivalent joint angle parameters together with segment 

lengths are often used. Such models are known as skeletal models and they are 

extensively studied in the human hand morphology and biomechanics (Thompson, 

1981), (Tubiana, 1981). (see Figure 2.3) 

2.3.2 Volumetric Hand Model 

Volumetric models are meant to describe the 3D visual appearance of the human 

hand and arms. They are commonly found in the field of computer animation 

(Magnenat-Thalman, 1990), but have recently also been used in computer vision 

applications. In the field of computer vision, volumetric models of the human body 

are used for analysis-by-synthesis tracking and recognition of the body’s posture 

(Koch, 1993), (Wren et al., 1996). 

Briefly, the idea behind the analysis-by-synthesis approach is to analyze the body’s 

posture by synthesizing the 3D model of the human body in question and then 

varying its parameters until the model and the real human body appear as the same 

visual images (Figure 2.4).  

Most of the volumetric models used in computer animation are complex 3D surfaces 

(NURBS or non-uniform rational B-splines) which enclose the parts of the human 

body they model (Magnenat and Thalman, 1990). Even though such models have 

become quite realistic, they are too complex to be rendered in real-time. 
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A more appealing approach, suitable to real-time computer vision, lies in the use of 

simple 3D geometric structures to model the human body (Rourke and Badler, 1980). 

Structures like generalized cylinders and  super-quadrics which encompass cylinders, 

spheres, ellipsoids and hyper-rectangles are often used to approximate the shape of 

simple body parts, like finger links, forearm, or upper arm (Azarbayejani et al, 1996), 

(Clergue et al, 1995), (Downton and Drouet, 1991), (Etoh et al, 1991), (Gavrila and 

Davis, 1995). The parameters of such geometric structures are quite simple. For 

example, a cylindrical model is completely described with only three parameters: 

height, radius, and colour. The 3D models of more complex body parts, like hands, 

arms, or legs, are then obtained by connecting together the models of the simpler 

parts (Kakadiaris et al, 1994). In addition to the parameters of the simple models, 

these structures contain the information on connections between the basic parts. The 

information may also include constraints which describe the interaction between the 

basic parts in the structure.  

Figure 2.4: (a) 3D wireframe volumetric model (b) 3D Textured volumetric model  

   (a)      (b)  
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CHAPTER 3 
  

LITERATURE REVIEW 

3.1 Introduction  

In recent years, a growing number of computer vision researchers have been working 

on hand modeling, tracking, gesture recognition and its applications to user 

interfaces. Capturing hand articulation is a challenging problem, because hand 

motion exhibits many degrees of freedom. Representing the hand pose by the angles 

at each joint, the configuration space is approximately 27 dimensional. Additionally, 

self-occlusions of fingers introduce uncertainty for the occluded parts. 

So, two main approaches for hand tracking can be identified: 

• image-based ( appearance-based ) hand tracking 

• model-based hand tracking 

The first approach estimates hand states from images directly after learning the 

mapping from the image feature space to the hand configuration space (Feris et al., 

2000), (Goncalves et al., 1995), (Faux and Pratt, 1979), (Efros and Leung, 1999). 

The mapping is highly nonlinear due to the variation of the hand appearances under 

different views. Other problems are the collection of large training data sets and the 

accuracy of the pose estimation. However, appearance based methods are usually 

fast, require a single camera only and have been successfully employed for hand 

tracking and gesture recognition tasks.  

The other approach uses a 2D or 3D hand model (Duda and Hart, 1973). In case of a 

3D model the hand pose is estimated by matching the projection of the model and the 

observed image features. The task is then formulated as a search problem in a high 

dimensional configuration space. Areas of research for this method include the 

efficient construction of realistic hand models, dimensionality reduction of the search 

space and the development of fast and reliable filtering algorithms to estimate the 

hand configuration.  
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These approaches are reviewed in Sections 3.2 and 3.3 respectively. In the following, 

body tracking, face tracking, eye tracking and etc. terms are used in explanations. In 

fact these concepts are out of this scope. But tracking is widely used in these areas as 

much as hand tracking. (or may be more than hand tracking). So with the ‘tracking’ 

term, the ‘hand tracking’ is meant. The others will be stated explicitly when used in 

text. Again, the term ‘training’ is used. This term is related with the neural networks. 

But it is also out of scope in this thesis.  

3.2 Image-Based Hand Tracking  

Image-based approaches are appropriate for applications that can be achieved 

without the need for a method that recovers high detailed quantitative description of 

the hand pose and movements relative to other objects in the 3D world. This is 

usually done by an image-based hand detector used in image based hand trackers. 

These methods are less suited for accurate estimation of the hand configuration, but 

are sufficient for classifying different hand postures. A set of training images is 

collected and features are extracted. All or some of the training images are labeled to 

be members of particular posture classes. Classifiers are then learned from the 

training set using a neural network, the Expectation-Maximization (EM) algorithm or 

other learning algorithms.   

Model-free methods entail attaching meaning to clusters of low level image features. 

In (Quek, 1995), a small “vocabulary" in which there are 15 gestures is recognized 

by using information provided by clusters of edges in movement (image flow). 

Pfinder (Wren et al., 1997) is a well known model-free tracking system which 

represents the human body as a collection of simple colour blobs. To generate 

dynamic predictions of the movement of the blobs, a Kalman filter (Bar-Shalom et 

al., 2001) is used.  

Another example of model-free method is that of Berry et al. (Berry et al., 1998) 

which combines colour and motion cues. This multi-modal intelligent system also 

uses speech recognition for human-computer interface.  
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The simplicity of model-free methods is their main advantage, and this allows for 

low computational cost implementations. On the other hand, the main drawback of 

these methods is their lack of robustness. If low level local features are not associated 

with object level information, mismatches can occur if other objects having similar 

colour or corner features perform motions that are similar to those used to train the 

hand tracker.  

Better segmentation results can be obtained by methods that combine colour and 

texture information. An example is the work of Flores et al. (Flores et al., 2000), 

which uses the Beucher-Meyer watershed paradigm with markers detected by a 

morphological operator based on computational learning. This method can segment 

and track hands even in the presence of skin coloured background and occlusions. 

However, its computational cost makes it possible for off-line processing only.  

Moving to a slightly higher cognitive level, there are hand detectors/trackers based 

on shape descriptors (Costa and Cesar-Jr, 2001). Lyons (2002) designed a method for 

automatic sign language recognition based on search trees. In this method, there is a 

set of shape descriptors and motion information which is used in a higher level of the 

search trees. The feature vectors are used to combine the information taken with the 

set. This method is aided by the use of colour gloves and a uniform background. This 

leads to virtually error-free segmentation of the hands using the colour classifier and 

some image processing methods (smoothing and morphological operations). The 

quality of the segmentation results is a key factor to the success of this method.  

The use of an efficient method for hand segmentation is also shown in the work of 

Von Hardenberg and Berard (2001). Segmentation is done through a method based 

on background subtraction, and then an algorithm based on fitting circles to the 

segmented image is used to find the finger tips. Once the fingertips are located, 

higher level algorithms can estimate the hand posture.  

A common feature of methods based on shape descriptors is that their performance 

depends on the quality of the segmentation. This is a disadvantage of such 

techniques, as it is intended to avoid the use of intrusive features such as gloves and 

markers. Background subtraction is also not going to be considered, as there will be 
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multiple objects in the scene that can move. However, it is possible to segment skin 

with the only condition that the objects in the background are not skin coloured. 

Active contour-based methods (Blake and Isard, 1998) as well as deformable 

templates (Baumberg and Hogg, 1995), (Hill et al., 1995), (Bowden and Sarhadi, 

2002), (Bowden, 1999) have the advantage of providing more detailed information 

about the shape of the objects. Furthermore, they are robust to small variations on 

pose and on shape of the hand. These methods derive or learn a model from what is 

explicit in the image. Once deformed, contours or templates can be frozen into 2D 

shape models. This is a simple and successful method if the original viewpoint is 

maintained, or if characteristic views are available. 

Athitsos and Sclaroff (2002) presented an appearance-based framework for 3D hand 

shape classification and simultaneous camera viewpoint estimation. Given an input 

image of segmented hand, the most similar matches from a large database of 

synthetic images are retrieved. A hierarchical retrieval algorithm is used. It combines 

computationally cheap similarity measures with more accurate and expensive 

measures. This method seems to be suitable for initialisation of a 3D hand tracker.  

Multiple views of hands are used by Hamada et al. (Hamada et al., 2002) to recover 

the hand shape based on a feature vector extracted from the silhouette contour. This 

feature vector is projected into an eigenspace for classification. Multiple view data is 

also employed by Ju et al. (Ju et al., 1996). Three different views are used to design 

two-dimensional templates (cardboards) that represent projections of the object in 

each view. These templates are used to track human body while walking from 

frontal, oblique and side on. They are designed as projections of an articulated 

human body based on cylinders. However, it is assumed that the relative position and 

orientation of the person’s body does not change in a single video sequence. A 

similar idea for parsing pictures of people is implemented in the work of Ronfard et 

al. (Ronfard et al., 2002).  

Another image-based method to track an articulated model is the one proposed by 

MacCormick and Isard (2000). Four degrees of freedom of hands are tracked: planar 

translation, orientation of the thumb and of the index finger. A combination of an 
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articulated model with active contours to segment the index finger is employed. The 

tracking is done through a CONDENSATION (Stochastic Conditional Density 

Propagation) approach (Isard and Blake, 1998). The obtained results combine speed, 

robustness, accuracy and simple hardware requirements. Unlike model-free 

approaches, that system recovers continuous parameters rather than recognising 

gestures from a discrete “vocabulary".  

In general, 2D systems have proved successful for many specific applications, and 

they can often recover the gross movements of a hand. However, such methods have 

difficulty on reconstructing more fine-grained gestures and on recovering 

quantitative description of hand pose. Another major difficulty of 2D tracking 

methods is that the robustness is affected by the changes in perspective view.  

3.3 Model-Based Hand Tracking 

For hand tracking, the 3D methods are those that try to recover geometrical 

parameters of the hand pose described as a 3D model. Such model is usually, but not 

always, designed using constraints afforded by bone linkage to reduce the time 

complexity of the system. Approaches for 3D hand tracking have varied in the 

following features:  

• the number of views used:  

( monocular, stereo, trifocal and multiple ) 

• the type of model used: 

(deformable models, kinematic chain of cylinders, cones, or superquadrics ) 

• the minimisation and estimation method  

The first work studied here is that of Ahmad (1995), which can be seen as a bridge 

between image based methods and 3D model based methods. It is a monocular vision 

system that can provide an approximation of 19 DOFs of a hand using neither a 3D 

representation of the hand nor a calibrated system. The method is based on 

segmentation of skin colour through a histogram-based classifier that uses the CIE 

chromatic colour space.  
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The processing is speeded up by using sub-sampling of the images (using patches 

rather than pixels). The size of the patches is defined according to the desired frame 

rate. The mass centre and principal axis of the segmented image are used to 

determine the position and orientation of the hand in the plane (3 DOFs). A simple 

idea to estimate the distance between the camera and the hand (Z) was implemented 

using the fact that the camera acquires top view images of the hand, and that the hand 

is parallel to the camera plane. Z (1 DOF) is estimated according to the proportion 

between the hand area (number of skin coloured patches in the image) in the current 

frame and in the first frame of the sequence. The search in the next frame is 

constrained by a rectangle which has position and area defined according to the skin 

colour blob in the current frame.  

Fingers are defined as articulated objects with 3 planar joints and they are not 

allowed to be moved slightly from side to side, hence, the hand configuration has 15 

DOFs. The assumption that the user is wearing a full sleeved shirt aids this method 

on recovering the hand shape. This is done by representing the palm as a circle and 

the fingers as lines emanating form the centre of the wrist. Fingers are allowed to 

rotate around the wrist centre for the initialisation of the model. In order to find the 

palm, the system computes the largest circle around the mass centre of the patches 

such that the area of all patches within the circle is close to the actual area of the 

circle.  

Every patch that is outside the circle could be part of a finger. The fingers are 

determined by the 5 highest scores of the Hough transform (Gonzalez and Woods, 

2000) from the centre of the wrist. This determines the actual angle of each finger 

and the fingertip locations are determined by the maximal patch in each direction.  

The simplicity of this system made it possible to obtain tracking results at 10 frames 

per second. A number of applications can be designed using this approach, but this 

work has several drawbacks. The first is the fact that it does not track rotations in 

depth and does not handle self-occlusion problems. Another problem is that, since no 

calibration data is used, this system can not be applied for problems in which it is 

necessary to obtain accurate data about the 3D position of the hand.  
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Furthermore, the area of the segmented hand is not an accurate measure to estimate 

the depth Z, as this area changes when fingers are flexed. The requirement that the 

user wears a long sleeved shirt is also a disadvantage of this system. Another critical 

remark is that an image of segmented patches obtained from a top view of a hand can 

not provide enough information to recover all the DOFs of each finger. This 

approach could be more efficient and, perhaps, more reliable, if these angles were 

modelled as linearly dependent variables (Chua et al., 2002).  

Rehg (1995) developed the first well-known work that uses a calibrated system to 

track unadorned, unmarked hand as 3D high DOF kinematic chain in real-time. A 

highly articulated (27 DOFs) 3D kinematic hand model was introduced. In that 

model, finger phalanges are modelled as simple cylinders, fingertips as halves of 

spheres, and the palm as a couple of planes linking two cylinders. Tracking is 

performed by non-linear minimisation of the model parameters (state of the model's 

DOFs). Two feature extractors to measure the sum of squared differences (SSD) 

were presented:  

• deformable templates registration and  

• point and line features 

In template registration, a cost function based on intensity errors is used to measure 

the geometric mis-alignment between an input image and the image predicted by the 

projected kinematic model. A set of templates describes the image appearance of 

each link. The position of each template in the image is given by the kinematic and 

camera models as a function of the state. A gradient descent minimisation with a 

SSD cost function was used in these tracking experiments. Templates provide a 

useful level of generality, and make it possible to exploit arbitrary texture cues. 

However, Rehg pointed out that for a specific object like the hand, the constraints 

provided by the template matching can be approximated by purely geometric error 

functions involving point and line features.  

Point and line features tracking are performed by projecting the middle axes of the 

truncated cylinders onto the image and by searching for edges in directions 

perpendicular to the projected segments.  
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Search for edge in the finger tip is also performed. The residual error between the 

estimated position of the features and the actual located features is minimised using 

the Gauss-Newton method to estimate the state update through its Jacobian. The 

significantly lower computational cost of computing point and line features makes 

on-line tracking possible.  

Rehg deals with self-occlusion through a top-down approach using the knowledge of 

the model to verify the registration of templates. A state space partitioned into 

regions of fixed visibility order of fingers is used. It is assumed that a finger can not 

occlude another and be occluded by it at the same time. This is a reasonable 

assumption, as fingers are modelled as planar kinematic chains and limits on 

adduction/abduction do not allow such occlusion configuration. A window function 

attached to each finger segment masks the contribution of segments that are 

occluded.  

Rehg’s system is aided by a dedicated hardware, which included a separate frame 

grabber per camera (two cameras were used) and a separate computer to 

asynchronously render and display the model using the estimated state. 10Hz 

tracking frame-rate is achieved on tracking 19 DOFs (the middle fingers are not 

tracked) and 6.8Hz in the experiments that tracked all the 27 DOFs. This system does 

not include occlusion handling, which was tested offline.  

Rehg and Kanade (1993) introduced the use of a highly articulated 3D hand model 

for the tracking of a human hand. Their hand tracking system DigitEyes is able to 

recover the configuration of a 27 DOF hand model at speeds of up to 10 Hz. For 

tracking, the axes of the truncated cylinders that are used to model phalanges are 

projected onto the image, and local edges are found. Finger tip positions are 

measured through a similar procedure.  

The error between the measured joint and tip locations and the locations predicted by 

the model is minimised by a nonlinear least squares algorithm (Levenberg-

Marquard). The hand motion must avoid self-occlusion, i.e. the finger tips have to be 

visible in each frame because they present important features. Handling self-

occlusion leads to a significant drop in system performance.  
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Some research effort has been put to design 3D models with more realistic 

appearance where cylinders have been replaced by more complex structures. Gavrila 

and Davis' model (1996) is based on superquadrics. Their system uses four 

orthogonal views to track 22 DOFs of people's body. A decomposition approach and 

best-first technique is used to search through the high dimensional pose parameter 

space. This system successfully tracked a sequence with two-person close interaction 

in the Argentine Tango.  

Stenger et al. (Stenger et al., 2001) also use a superquadrics-based hand model. Like 

Rehg's, this has 27 DOFs but it is built from 39 truncated quadrics. The quadrics are 

projected as set of conics and an efficient algorithm is used to handle self-occlusion. 

Once the model is projected, an Unscented Kalman Filter is used to update its pose. 

Experiments on tracking only 3 DOFs (translations and rotation in the plane) are 

shown in (Stenger et al., 2001). A frame rate of 3Hz was achieved off-line in a 

433MHz PC. Initialisation is done manually and there is no clutter in the 

background. A simple edge detector is used to provide low level data for tracking. It 

was shown in (Stenger et al, 2001) that this system is easily scalable from single to 

multiple views, and from rigid to articulated models. However, it was observed that 

the computational complexity grows linearly with the number of cameras used.  

Even more detailed models have been developed with the purpose of tracking based 

on kinematic chains. Plaenkers and Fua (2002) use a human body model built from 

metaballs attached to an articulated skeleton. Metaballs are generalised algebraic 

surfaces that are defined by a summation over n 3D Gaussian density distributions. 

The metaballs simulate the gross behaviour of bone, muscles and fat tissue. A 

polygonal skin surface is constructed by ray casting for display purposes. The model 

is projected into the images and its silhouette is extracted. Tracking is performed in 

four steps:  

• the silhouette of previous frame serves as initialisation for current frame; 

• optimise silhouette using active contours on disparity-filtered gradient image; 

• fit body model to stereo data constrained by current silhouette estimate; 
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• optimise silhouette of fitted model using again active contours. 

The optimisation steps use a non-linear least squares estimator to minimise the 

distance between the observations and the model. A variant of the standard 

Levenberg-Marquardt least-squares solver was implemented. It can handle large 

number of unknowns using sparse matrices.  

The use of 3D deformable models for tracking is a recent approach that has not been 

widely explored for hand and body tracking. Such approaches require a batch 

processing with a set of sample images in order to acquire geometric and 

deformation parameters of the model. Once the model is acquired, tracking can be 

performed estimating pose and deformation changes.  

Heap and Hogg (1996) proposed a 3D deformable Point Distribution Model that is 

constructed via Principal Component Analysis (PCA) from samples of hand images 

in various postures. This yields a mean shape and modes of variation, implicitly 

capturing possible hand motions. However, because the variations are found using 

linear interpolation between hand shapes, it is not guaranteed to remain within the 

space of valid hand motions. The model is a deformable surface mesh, from which 

the positions of expected contours are derived. For tracking, the model is first 

deformed using a linear combination of eigenvectors, then rotated, scaled and 

translated so that its contours match edges in the image. The required training 

information is extracted semi-automatically from 3D Magnetic Resonance Images. 6 

DOFs plus deformation could be tracked at 10 frames per second using a single 

camera. A weighted least squares approach is used to minimise the error. Ambiguous 

motions and self-occlusions were not very successfully overcome. If the hand moves 

to a pose that is not in the training set, the tracker can fail.  

Another example of method for tracking with 3D deformable models was proposed 

by Torresani et al. (Torresani et al., 2001). This is a solution for flow-based tracking 

and 3D reconstruction of deforming objects in monocular image sequences. They 

showed that it is possible to approximate 3D motion and deformation using a linear 

combination of 3D basis shapes. A bound is put on the rank of the tracking matrix 

and this constraint is used to achieve robust and precise low-level optical flow 
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estimation without prior knowledge of the 3D shape of the object. The flow matrix 

can be factored to get the 3D pose, configuration coefficients, and 3D basis shapes. 

This matrix is factored in an iterative manner, looping between solving for pose, 

configuration, and basis shapes. Experiments with synthetic data demonstrated the 

accuracy of this method. They also performed experiments with real data.  

Cipolla and Hollinghurst (1996) present a hand tracking system using a 2D 

deformable model. The system uses uncalibrated stereo vision to track the position 

and pointing of a hand. Using a ground plane constraint, it is possible to find the 

indicated position with high speed and accuracy. 

Delamarre and Faugeras (1998) pursue a stereo-based approach to hand tracking. A 

stereo-correlation algorithm is employed to obtain a dense 3D scene reconstruction, 

by solving the common problem of cluttered background, and a 3D articulated model 

is fitted to this reconstruction. However, the disparity maps are not very accurate and 

the costs to obtain a 3D depth map are very high.  

A two-step algorithm to estimate the hand pose is proposed by Wu and Huang 

(1999), first estimating the global pose and subsequently finding the configuration of 

the joints. The problem of determining the hand pose is formulated as a least median 

of squares problem, and finding local finger motion is solved as an inverse 

kinematics problem. A genetic algorithm is used to search the state space. However, 

the algorithm relies on the assumption that all fingertips are visible.  

In (Wu et al., 2001), Wu et al. present a model-based method for capturing 

articulated hand motion. The constraints on the joint configurations are learned from 

natural hand motions, using a data glove as input device. It is found that natural hand 

articulation is highly constrained and that the dimensionality of the hand state space 

can be reduced using PCA without losing too much information. It is suggested that 

the lower dimensional state space can be characterised by a union of linear manifolds 

in 7 dimensional space. Using 28 basis configurations, found by cluster analysis, 

natural hand articulation are approximated by linear interpolation between two basis 

configurations. A sequential Monte Carlo tracking algorithm, based on importance 
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sampling, produces good results, but is view-dependent, and does not handle global 

hand motion. 

A vision based drawing system was proposed by Isard and MacCormick (2000). The 

2D shape of a hand is modelled with B-splines and partitioned sampling is used to 

track the contours of a 7 DOF model in real-time. Partitioned sampling is a method 

to apply a particle filter to tracking where the configuration space is high 

dimensional. The idea is to partition the state space, effectively decoupling the 

motions of different fingers.  

The works cited in this section seek to obtain better results by using detailed models 

of the tracked object. The reader may have noticed that no clear quantitative 

comparison among the methods was presented. In fact, no ground truth comparison 

or comparisons between different methods using the same image sequence were 

found in the publications. Researchers claim that a qualitative visual agreement 

between the back projected models and the image is the most basic requirement of 

tracking performance. This is usually the basis for experimental validation of their 

work. Recently, some authors have been leaving videos available in the Internet to 

demonstrate tracking results showing the original images and the projection of the 

model superimposed. However, this does not provide quantitative evaluation of the 

results. It was found that each work on hand tracking was experienced on image 

sequences acquired specifically for them, i.e., there is no well known benchmark 

video for comparison between hand tracking methods.  

Another fact that puts in question the non-automatic design of highly detailed hand 

models is that hands have been used as a source of information for biometric 

identification (Pankanti et al., 2000). This means that the differences between hands 

of different people are high enough to be used for person identification. Therefore, a 

manually-constructed highly detailed hand model may be appropriated for a single 

user but may not be more effective than a simple model if applied for a different 

user. The use of a hand model that demands high computational power to be built or 

a long time to be manually designed for a specific person may not always be 

appropriate. 
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CHAPTER 4 
  

A  SKIN COLOUR DETECTION MODEL  

4.1 Introduction  

Any markerless visual method designed to detect and track an object without the 

intervention of a human operator must confront the question such that, how to 

associate features observed in the image (pixels, edges, corners, etc) with the object 

itself. An initial automatic segmentation and localisation must be feasible. 

For generic objects in generic surroundings, this is usually not feasible, and 

constraints must be introduced. For example, one might suppose that the object of 

interest was the only moving object in the scene, or uniquely composed of planar 

surfaces, or the only one exhibiting regular texture. The definition of a method for 

locating hands in images seems to be complicated if one considers that hands are 

articulated objects that can present both high variation in their shape, and in their 

degree of self-occlusion. However, there is a reasonable uniformity in human skin 

colour, allowing the development of a localization method based on pixel colour 

classification.  

The next section explains why skin colour detection is quite robust within and 

between ethnic groupings, where at first sight there are variations in colour. The most 

common methods for brightness normalisation are described and compared. Section 

4.3 describes the classification method used for distinguishing skin and background 

from their colours.   
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4.2 Removing Brightness for Skin Detection 

Suppose that image entities are described by feature vector in some N-dimensional 

space, so that they are assumed to be in one class tend to cluster around a particular 

position in that space. The accuracy of a classifier is related to degree of overlap 

between clusters belonging to various classes. These classes are formed from the 

training data set (Duda and Hart, 1973), (Duda et al., 2000) and some noise. To 

represent objects, compact clusters in the same class are desirable. Also, that is true 

for low-dimensional and low-correlated feature spaces where the patterns are 

represented (Jain et al., 2000). 

To classify between skin and not-skin based on colour, pixels corresponding to skin 

which form such a tight cluster in some colour space are required. Since the 

appearance of skin has significant variations within ethnic groups, and very 

substantial variations between ethnic groups, it is natural to ask a question of the 

robustness of any such classifier. However, the colour of skin is determined by the 

same agents in any person. The spectral variability is mainly dependent on the 

amount, density, and distribution of melanin pigment, not on its colour 

(Martinkauppi, 2002). Thus mainly, it is the brightness of the skin that varies, not its 

colour (Yang et al, 1998). If images are normalised with respect to brightness, the 

remaining colour description is indeed compact. Another advantage of normalising 

the brightness of colour images is the increase in robustness to shadows and changes 

in illumination intensity. 

Brightness normalisation usually involves projecting the colour data into a plane of 

constant brightness. Several methods have been used for this purpose and, in general, 

the task is facilitated by representing images in a colour space that decouples colour 

and grey-scale information. A colour space (also called colour model or colour 

system) is a specification of a coordinate system and a subspace within that system 

where each colour is represented by a single point (Gonzalez and Woods, 2000). 

By representing data in a colour space that decouples grey-scale and colour 

information, the task of brightness normalisation is simply done by discarding the 

grey-scale information.  
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This provides a lower dimensional representation for colour images (2D rather than 

3D as in RGB) without leading to a rise in the overlap between clusters from 

different classes (skin and background). As a consequence, there is a substantial 

reduction in the amount of training data required as well as in the amount of storage 

space and in the time for classification. 

Among colour spaces that are decoupled, the most commonly used for skin detection 

are:  

• the CIE Chromatic space,  

• the perceptual colour spaces, and  

• the YUV/YCbCr colour spaces.  

In order to discuss the difference between these colour spaces, it is started by  

describing the RGB colour space (Section 4.2.1) and follow by describing the other 

above mentioned colour spaces (Sections 4.2.2, 4.2.3, 4.2.4 and 4.2.5).  

4.2.1 The RGB Colour Space 

Extensive experiments in the human visual system have showed that the cones - 

sensors in the eye responsible for colour vision - can be divided into three principal 

sensing categories, corresponding roughly to red, green and blue (Wyszecki and 

Stiles, 1967). Therefore, colours are seen as combinations of the so-called primary 

colours red (R), green (G) and blue (B) (Gonzalez and Woods, 2000).   
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For this reason, colour displays, monitors, TV receptors and some cameras represent 

pixels as a triple [R, G, B] of intensities in red, green and blue, respectively, in the 

RGB colour space. This is also the reason why the RGB space is very commonly 

used by the computer graphics and image processing community. However, RGB 

channels are very correlated, as all of them include a representation of brightness. 

This is illustrated in Figures 4.2 and 4.3, which show that brightness information can 

be recognised from R, G and B channels shown separately. 

 

      

 

 

Figure 4.1: RGB colour cube 

Figure 4.2: Sample colour image (a); its gray level version (b) 
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True colour 24 bits RGB images have the triple [R , G , B] represented by 256 

discrete values (ranging from 0 to 255) (Jack, 2001). Therefore, the whole range of 

RGB values forms the RGB colour cube of   

( )382  = 16777216 

possible values as shown in Figure 4.1.  

 
 

 

 

 
 
 

 
Figure 4.3: RGB channels of image in Figure 4.2 (a) shown separately 
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The high correlation between lightness and RGB channels can be noted by the line of 

the grey values, where R = G = B. In fact, if the corresponding elements in two 

points, [R1 , G1 , B1]  and  [R2 ,G2 , B2 ], are proportional, i.e., 

2
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2

1

2

1

B

B

G

G

R

R
==             (4.1) 

 
They have the same colour, but different brightness (Yang and Waibel, 1996). 

4.2.2 The CIE Chromatic Space 

The CIE chromatic space is a standard proposed in 1931 by the Commission 

Internationale de l'Eclairage -- the International Commission on Illumination. It has 

been used in several colour processing tasks (Gonzalez and Woods, 2000) and it is 

used to define the colour gamut, i.e., the range of possible colour values that a device 

can represent. 

This two dimensional space has the x and y axes respectively defined by the 

chromatic colours red and green (r; g). Chromatic colours, known as “pure" colours 

in the absence of brightness, are defined by a normalisation process: 

BGR

R
r

++
=    

  
BGR

G
g

++
=               (4.2) 

 
Pure blue (b) is redundant after the normalisation because (r + g + b = 1) (Wyszecki 

and Stiles, 1967). The use of this colour space for skin detection has became popular 

specially after the work on face tracking developed at SCS, Carnegie Mellon 

University (Yang and Waibel, 1996), (Yang et al., 1998). 

4.2.3 The Perceptual Colour Space 

The perceptual colour spaces were designed by Smith (Smith, 1978) in order to 

provide a more “intuitive" way of describing colours and lightness. Three quantities 

are used to define them: hue, saturation and brightness.  
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• Brightness embodies the achromatic notion of intensity. 

• Hue is an attribute associated with the dominant wavelength in a mixture of 

light waves. It represents colour as perceived by an observer. Thus, when 

we call an object blue, yellow or red, we are specifying its hue.  

• Saturation refers to the relative purity or the amount of white light (or grey 

of equal intensity) mixed with a hue.      

Primary colours (pure red, green and blue) are fully saturated, whereas colours such 

as pink (red and white) and lavender (violet and white) are less saturated. The degree 

of saturation is inversely proportional to the amount of white light added (Gonzalez 

and Woods, 2000). 

Basically, there are two distinct perceptual colour spaces:  HSL and HSV. 

• HSL (hue, saturation, lightness) 

• HSV (hue, saturation, value) 

Both are defined with polar coordinate systems.  

HSV is represented by a hexcone where  

• Hue is the angle around the vertical axis, 

• S is the distance from the central axis  

• V is the distance along the vertical axis. 

Primary and secondary pure colours are fully saturated (S = 1). 
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As illustrated in Figure 4.4, starting from H = o0  (which represents pure red), a 

secondary or primary colour is located at each 
o60  of hue. Complementary colours 

are 
o180  opposite one another measured by H. Colours along the vertical axis have 

zero saturation, i.e., gray scale values. Note that when S = 0, the value of H is 

irrelevant (Jack, 2001). 

While illustrating how HSV colour space provides an alternative way of describing 

colours, any colour (defined by H) with V = 1 and S = 1 is assumed as a pure 

pigment. Adding some amount of white corresponds to decreasing S value and 

adding black corresponds to decreasing V value. Tones are created by decreasing 

both S and V (Smith, 1978).  

 

Figure 4.4: HSV colour space 
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HSL colour space is a double hexcone and can be thought of as a deformation of the 

HSV space. The distinction between HSV and HSL lies in the representation of 

brightness information, which determines the distribution and dynamic range of both 

the brightness (L or V) and saturation (S). In practice, the HSL colour space is best 

for grey level image processing and also for representing objects in such a way that 

colour images can be distinguished even in monochrome images (e.g. showing 

colour cartoons on black-and-white TV receivers), whereas the HSV image space is a 

better representation for colour processing (Jack, 2001). 

As described in (Raja et al., 1998), (Azarbayejani and Pentland, 1996), and (Zhu et 

al., 2000), on performing skin detection, the brightness channel is discarded and the 

HS space is used instead. Therefore, there is no significant difference between HSV 

Figure 4.5: HSL colour space 
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and HSL in applications (Bowden, 1999). Figure 4.6 shows the H, S and V channels 

obtained from image from Figure 4.2(a). 

4.2.4 The YUV Colour Space 

The YUV colour space was created in order to make colour television broadcasts 

backwards-compatible with black and white TV receivers. The colour signal also 

needed to conserve bandwidth because three channels of RGB data would not fit into 

the limited broadcast signal bandwidth. By combining colour information, YUV uses 

far less bandwidth than RGB and maintained compatibility with black and white 

TVs.  

• The Y channel describes Luminance, the range of value between light and 

dark, which is the signal seen by black and white televisions. 

• The U and V chrominance channels subtract the Luminance values from Red 

(U) and Blue (V) to represent the colour only information (without 

brightness) (Maller, 2002).  
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Figure 4.6: HSV channels of image in Figure 4.2 (a) shown separately 
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Then, the basic conversion equation from RGB to YUV is: 

BGRY 1.06.03.0 ++=  
YBU −=  
YRV −=                 (4.3)    

 
The coefficients used to obtain Luminance are the same as those used for the NTSC 

standard conversion from RGB to grey level images (Poynton, 1996).  

It is shown that approximately  

• 65% of all the cones in the human eye are sensitive to red light,  

• 33% are sensitive to green light  

• 2% are sensitive to blue, but the blue cones are the most sensitive (Wyszecki 

and Stiles, 2000) 

As in HSV, brightness normalisation is done by discarding one of the channels. In 

this case, the UV channels are kept.  

4.2.5 The YCbCr Colour Space 

The YCbCr colour space was developed as part of ITU-R BT.301 during the 

development of a world-wide digital component video standard. This colour space 

was extensively used in the development of the JPEG standard, and was used for skin 

colour detection by several research projects, including the Pfinder (Wren et al., 

1997). 

As shown in equation 4.4, YCbCr is a scaled and zero-shifted version of the YUV, so 

that the chrominance values are always positive (Pennebaker and Mitchell, 1993): 

5.0
2
+=

U
Cb  

  5.0
6.1
+=

V
Cr                            (4.4) 

for U and V in the range  [ 0, 1 ]. For digital values of U and V, a 128 shift is 

employed, rather than 0.5. So, white colour representation in this colour space is such 

that Y = 255 , Cb = 128 and Cr = 128. 
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Figure 4.7 shows the RGB colour cube in the YCbCr colour space. It shows that not 

all the possible values in the triple [Y, Cb,  Cr ] (for each of then ranging from 0 to 

255) represent possible RGB colours. Therefore, special care must be taken to about 

overflow or underflow in YCbCr to RGB conversion implementations. As in HSV, 

brightness is normalized for skin detection by discarding one of the channels. In this 

case, the CbCr channels are kept. 

 

 

 

Figure 4.7: RGB colour cube in the YCbCr colour space 
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4.2.6 Colour Spaces Comparison Results ( with Normalisation) 

Previous sections have described RGB and the four most common colour spaces that 

are used for brightness normalisation for skin detection. Here, some images are 

shown in order to illustrate their properties (colour spaces normalisations for the 

Figure 4.2(a)).  

• Figure 4.8(a) shows the after brightness normalisation by representing its 

colours using its pure colour representation (r, g and b) as defined in 

equation 4.2. 

• Figure 4.8(b) shows the after brightness normalisation in HSV space       

The brightness had been set to 127 to reconstruct the normalised images 

• Figure 4.8(c) shows the after brightness normalisation in YCbCr space. The 

brightness had been set to 127 to reconstruct the normalised images 

 

 

   

 

 

 

 
 
 
 
 
 

Figure 4.8: After removing brightness, (a) using CIE colour space 
         (b) using HSV colour space  (c)YCbCr colour space 
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4.3 Classifying Pixels for Skin Detection 

Given a set of colour images containing projections of the objects which we need to 

identify, it is possible to train a classifier based on the H and S image space so that 

we can determine which pixels of a new image belong to which of the known 

objects. (Training and classifying are the terms related with neural networks. But 

within this thesis, there is no any neural network approach. So, these terms are used 

in general meaning.) 

Several methods have been applied to this problem (Duda et al., 2000). The simplest 

methods “manually" define certain range of values in a colour space to be classified 

as skin colour (Chai and Ngan, 1998). The obvious problem of this approach is the 

lack of ability to adapt to variations of the data. 

4.3.1 Histogram-Based Classifier 

For performing classification, the data is represented in the HS of HSV colour space, 

which is a two dimensional space. In practical applications, each channel of the HS 

space can have discrete values. These properties of the HS feature space allow the 

use of a histogram-based classifier. The first step on training this classifier is to build 

a colour model using a histogram in the feature space for each class. In our case, the 

feature space is the HS colour space (from HSV). Each channel (or feature) of the 

space taken separately has its number of possible values represented by a set of 

intervals called bins.  

4.3.2 Training Method 

The training process consists of selecting skin regions of images. This task is 

performed by a human operator, who usually does not know how important skin 

region being selected is for the training data. A skin patch may be more important 

and generic for training.  

For hand tracking via a skin colour model, skin regions from the users can be 

sampled by prompting them to center their face or hand in an onscreen box, or 
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selecting skin related region by a mouse. The hues and saturations derived from the 

skin pixels in the image are sampled from the H channel and S channel, and then 

binned into a 1D histograms. When sampling is complete, the histograms are saved 

for future use.  

Clearly, sampling flesh hues from multiple people may make more robust 

histograms. However, simple skin histograms tend to work quite well with a wide 

variety of people. A common misconception is that different colour models are 

needed for different races of people, for example negroids or caucasians. That is 

simply not true. All human skin is much the same hue. Dark-skinned people simply 

have more skin colour saturation than light-skinned people, and these differences are 

largely removed in the HSV colour system. 
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CHAPTER 5 
  

CONTINUOUSLY ADAPTIVE MEAN                         
SHIFT ALGORITHM 

5.1 Introduction  

As a first step towards a perceptual user interface, colour tracking algorithms are 

being developed. The algorithms that are intended to form part of a perceptual user 

interface must be fast and efficient. They must be able to track in real time yet not 

absorb a major share of computational resources. For example, other tasks must be 

able to run while the visual interface is being used. They must deal with  

• irregular object motion due to perspective (near objects to the camera seem 

to move faster than distal objects);  

• image noise;  

• distracters, such as other faces, hands and etc. in the scene;  

• occlusion by hands or other objects; 

• lighting variations.  

One of them is based on a robust nonparametric technique for climbing density 

gradients to find the mode (peak) of probability distributions. This is called the Mean 

shift algorithm (Fukunaga, 1990). In fact, The Mean shift algorithm was not 

developed intending to be used as a tracking algorithm, but it is quite effective in this 

role. The Mean shift algorithm operates on probability distributions. To track 

coloured objects in video frame sequences, the colour image data has to be 

represented as a probability distribution. Colour distributions derived from video 

image sequences change over time. 

Mean shift algorithm is efficient for handling static colour probability distributions. 

However in video sequences, this distribution is changing dynamically. Therefore, to 

deal with dynamically changing colour probability distributions derived from video 
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frame sequences, the mean shift algorithm has needs to be modified. The modified 

algorithm is called the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm 

(Bradski, 1998).  

The Camshift algorithm is a generalization of the Mean shift algorithm. Camshift 

operates on a 2D colour probability distribution image produced from histogram 

back-projection. When objects in video sequences are being tracked and the object 

moves, the size and location of the probability distribution changes in time. The 

Camshift algorithm adjusts the search window size in the course of its operation. For 

each video frame, the colour probability distribution image derived from that frame 

is tracked. Within this track the center and the size of the colour object are found 

with the Camshift algorithm as well. The current size and location of the tracked 

object are reported and used to set the size and location of the search window in the 

next video image. The process is then repeated for continuous tracking. Instead of a 

fixed or externally adapted window size, Camshift relies on the zeroth moment 

information, extracted by the algorithm itself to continuously adapt its windows size 

within or over each video frame. 

 

 

 

 

 

 

 

Figure 5.1: First four head tracked degrees of freedom:  
       X, Y, Z location and head roll 
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For example if face tracking (for easy explanation and being mostly used area in 

Camshift applications) is considered, Camshift tracks the X and Y coordinates and 

the area of the flesh colour probability distribution representing a face. Area is 

proportional to Z, the distance from the camera. Head roll is also tracked as a further 

degree of freedom. So, X, Y, Z, and Roll derived from Camshift face tracking can be 

used as a perceptual user interface for controlling commercial computer games and 

for exploring 3D graphic virtual worlds (Figure 5.1). 

5.2 Colour Probability Distributions 

For Camshift, “colour probability distribution” is very important. To be able to track 

coloured objects in a video scene, a probability distribution image of the desired 

colour in the video scene must be created. In order to do this, a model of the desired 

hue, generally, using a colour histogram is created. Hue is a member of Hue 

Saturation Value (HSV) colour system. (See Chapter 4 for Colour Space Systems’ 

details.) 

 

 

 

 

 

 

 

Figure 5.2: A video image and its flesh probability image.  (Bradski, 1998)    
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The probability distribution image can be thought to be found by the transformation 

of input image pixels with some weight coefficients. If a pixel belongs to input image 

matches the tracked object’s colour (it is flesh for Figure 5.2) then that pixel is 

transformed to the second result image (probability distribution image) with 

multiplying with related coefficient. (The higher relationship results bigger pixel 

value in gray level). If it does not match, then the coefficient is zero and the effect of 

that pixel is discarded.  

5.3 CAMSHIFT Derivation 

The closest existing algorithm to Camshift is known as the Mean shift algorithm. The 

mean shift algorithm is a non-parametric technique that climbs the gradient of a 

probability distribution to find the nearest dominant mode (peak). The steps of the 

Mean shift algorithm are given below; 

1. A window W is chosen at size s. 

2. The initial search window is centered at data point kp  

3. Compute the mean position within the search window 

∑
∈

=
Wj

jk p
W

Wp
1

)(ˆ       (5.1) 

4. Center the window at point 

)(ˆ Wpk         (5.2) 

5. Repeat Steps 3 and 4 until convergence. Decision for convergence can be 

made with 

0)(ˆ ≅−
k
pWp       (5.3) 
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For discrete 2D probability distribution image, the mean location (the centroid) 

within the search window (Steps 3 and 4 above) is found as follows 

Find the zeroth moment 

),(00 yxIM
x y

p∑∑=        (5.4) 

Find the first moment for x and y 

),(10 yxxIM
x y

p∑∑=   

),(01 yxyIM
x y

p∑∑=       (5.5) 

Then the mean search window location (the centroid) is 

00

10

M

M
xc =  

00

01

M

M
yc =       (5.6) 

where ),( yxI p is the pixel (in probability distribution image) value at position 

(x,y) in the image, and x and y range over the search window 

 

Unlike the Mean Shift algorithm, which is designed for static distributions, Camshift 

is designed for dynamically changing distributions. The Camshift algorithm adjusts 

the search window size in the course of its operation. Initial window size can be set 

at any reasonable value. Instead of a set or externally adapted window size, Camshift 

relies on the zeroth moment information, extracted as part of the internal workings of 

the algorithm, to continuously adapt its window size within or over each video frame. 

Continuously Adaptive Mean Shift (Camshift) algorithm is given below; 

1. Choose the initial location of the 2D mean shift search window. 

2. Calculate the colour probability distribution in the 2D region centered at the 

search window location in an area (ROI – Region of Interest) slightly larger 

than the mean shift window size. 
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3. Run mean shift algorithm to find the search window center. Store the zeroth 

moment (area or size) and center location (centroid - mean location).  

4. For the next video frame, center the search window at the mean location 

stored in step 3 and set the window’s size to a function of the zeroth moment 

found there. Go to Step 1. 

 

 

 

 

 

 

 

Choose initial 
search window 
size and location 

Set calculation 
region at search 
window center but 
larger in size than 
the search window 

Use (X,Y) to set 
search window 

center, ( area*2 ) 
to set size 

HSV Image 

Colour histogram 
look up in 
calculation region 

Colour probability 
distribution 

Find center of mass  
within the search window 

Center search window at 
the center of mass and  
find area under it 

converged 

Report  X, 
Y,Z, and 
   Roll 

Figure 5.3: Block diagram of colour object tracking 
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Calculation of 2D Orientation 

The 2D orientation of the probability distribution is also easy to obtain by using the 

second moments during the course of Camshift’s operation where (x,y) is the range 

over the search window, and ),( yxI p is the pixel value at (x,y):  

Find the first moment for x and y 

),(2
20 yxIxM

x y

p∑∑=   

),(2
02 yxIyM

x y

p∑∑=       (5.7) 

Then the object orientation (major axis) is 
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The first two Eigenvalues (major length and width) of the probability  

distribution image found by Camshift may be calculated in closed form as   

follows. Let 
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Then length l and width w from the distribution centroid are 

( )
2

)( 22 cabca
l

−+++
=              (5.12) 

( )
2

)( 22 cabca
w

−+−+
=              (5.13) 

 

When used in face tracking, the above equations give us head roll, length, and 
width as marked in Figure 5.4. 

 

 

 

 

 

Figure 5.4: Orientation of the flesh probability distribution marked  
         on the source video image. (Bradski, 1998)      
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CHAPTER 6 
  

CAMERAS, COORDINATE SYSTEMS                          
AND STEREO VISION 

6.1 Introduction  

Camera is the basic equipment in vision applications. According to the properties of 

desired applications, the number of the cameras used can be one, two or more. 

Whatever it is, the basic and main task is to get frames and provide them to the 

system that will perform process. Usually, these systems are computer-based 

systems. In this chapter, the basic notations, descriptions and relevant equations for 

vision applications with the cameras, computer systems and the other things are 

explained. 

Section 6.2 describes the basic and commonly used geometry entities and their 

representations. Section 6.3 presents a general view on the camera model used. 

Section 6.4 presents coordinate systems in general and the relationships between 

them. The representation of points and their transformations are explained. And 

finally, the necessary explanations about the camera parameters are introduced. In 

section 6.5, idea of stereo imaging and ‘Epipoler geometry’ are explained.  

For a more complete and detailed discussion of this topics and more information 

about these, one can refer to (Özuysal, 2004). 
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6.2 Projective Geometry 

In vision-based applications while the objects in images are represented in 2D, the 

actual objects belong to 3D. In fact, the objects in images are the projection of 

objects in 3D to image plane in 2D. In this thesis, homogeneous coordinates will be 

used for the representation of these geometric entities. 

In homogeneous coordinate systems, a 2D point ‘x’ and a 3D point ‘X’ are denoted 

as follows. 

• x = [ x y 1] T   

• X = [x y z 1] T  

A projective transformation of 3D is represented by a 4x4 invertible matrix ‘T’. 

6.3 Camera Model  

3D world points are mapped onto the 2D image plane by cameras. For this mapping, 

the most commonly used camera model is pinhole camera model. This camera model 

is very simple and basic. So it is widely used for realizing vision systems (Figure 

6.1). It will be explained in more detail in the next section. 

 

 

C 

y-axis 

z-axis 

x-axis 
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p 

x 

y 

Image Plane 

Camera 
Center 

Figure 6.1: Camera coordinate system and projection of a 3D point in real world  
                    on the image plane  
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6.4 Coordinate Systems and Two View Geometry 

First of all, coordinate systems should be introduced. This introduction helps to 

develop clear model of camera geometry. 

• World Coordinate System in which the real 3D object takes place. 

• Camera Coordinate System is described as its center is camera center. In 

this coordinate system, the imaging plane is parallel to the ’xy’ plane 

(shown as in Figure 6.1) and placed at a distance ‘f’ on the z-axis. ‘f’ is 

called as ‘focal length’. The point at which the z-axis intersects the imaging 

plane is called ‘principal point’ (shown in Figure 6.1 as ‘p’). The 

perspective projection equations are valid in this type coordinate system. If 

point CX  is a point in this coordinate frame with homogenous 

coordinates( CX , CY , CZ , 1) then its projection can be written as  

x =
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   (6.1) 

where the projected point x is in 2D homogeneous coordinate system in the 

imaging plane with the principal point as its origin. 

• Pixel Coordinate System is used in the computer systems. It is used to represent 

the points in ‘pixel’ measurement. So, a transformation from the imaging plane 

coordinates to pixel coordinates is required. The resulting projection matrix can 

be written as 

P =
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Aspect ratio is equal to xy ff . 

S is called as skew and represents a tilted imaging plane. 

xp  and yp  represents an amount of shift in the origin of the coordinate system. 

The projection matrix ‘P’ is called the ‘Camera Matrix’ and can be seen as  

a matrix composed by two types of calibration parameters. 

• The Internal parameters are those that specify optical properties of the 

camera. These parameters are   

‘focal length  ( f)’ ,  

‘principal point coordinates   ( xp , yp )’, 

‘aspect ratio’ and  ‘skew’ 

• The external parameters are those that specify the pose of the camera in the 

world coordinate system (Figure 6.2). These parameters are ‘Rotation Matrix’ 

and ‘Translation Vector’. 
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Figure 6.2: The coordinate transformation between the world and camera  
          coordinate frames 
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With those explanations, camera matrix can be expressed as given below. 

P = 
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P = K [ ]0|33xΙ   where K is called ‘the internal calibration of the camera’. 

In order to do measurements in ‘world coordinate system’ some transformations 

should be performed. Because up to now, the measurements for 3D points are 

assumed to be taken in the camera coordinate system. This transformation can be 

made by 
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where   33xR  is the rotation matrix,   13xt  is the translation vector, 

  CX  is the point defined in the camera coordinate system and 

  WX is the same point defined in the world camera system. 

So the resulting camera matrix is 
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Hence the projection of a point in 3D on the image plane can be expressed as follows 
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6.5 Stereo Vision 

The camera model and coordinate systems presented in the previous chapters are 

used to analyze the projection of the 3D points and the resulting image. In fact we 

have 2D information about the objects in computer systems. So, the inverse of that 

problem should be investigated. This new problem is to get 3D information from two 

or more 2D images.  

Let’s assume that, there are two images. These images are taken by two cameras and 

are of the same scene. Let the related camera matrices be P and P’. To get the depth 

information of a point X in 3D, the pixel coordinates of its projections, x and x’ 

should be found. If these pixel coordinates are found, point X lies at the intersection 

of the back projected lines of them. By the way, these points are called 

‘corresponding points’. 

 

 

 

 

 

Figure 6.3: A point x in the left image and its corresponding point x’  in  
         the right image can be used to reconstruct point X. 
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In Figure 6.3, some points are shown. Briefly, 

• The two cameras are indicated by their centers C and C’ and image planes. 

The camera centers, X point in 3D and its images x and x’ lie in a common 

plane ‘π’ called ‘epipolar plane’. 

• The ‘epipole (e) and (e’)’ are the points corresponding to intersection of the 

line joining the camera centers (the baseline) with the image plane.  

• An ‘epipolar line (l’)’ is the intersection of an epipolar plane with the image 

plane. All epipolar lines intersect at the epipole. An epipolar plane intersects 

the left and right image planes in epipolar lines, and defines the 

correspondence between the lines. 

 Finally, this geometry is usually motivated by considering the search for 

corresponding points in stereo matching. In terms of a stereo correspondence 

algorithm the benefit is that the search for the point corresponding to x need not 

cover the entire image plane but can be restricted to the line l’. 



 53 

CHAPTER 7 
  

EXPERIMENTAL IMPLEMENTATION                           
AND DETAILS  

In this thesis, a stereo-based hand tracking in 3D is studied. For this purpose, a 

stereo-camera system is used. The system was designed in the Computer Vision and 

Artificial Intelligence Laboratory of the Electrical and Electronics Engineering 

Department of the Middle East Technical University. The analog cameras are 

attached to a planar platform almost in parallel form. The video signals from the 

cameras are then connected to the frame grabber card installed on a personal 

computer. The cameras are assumed to be working continuously and the time 

difference between 2 frames is minimum to preserve synchronization as well.  

 

 

 

 

In order to get hand regions such as fingers and individual finger parts, some 

coloured markers are needed to be used. In this study, two different coloured markers 

are used. One of them (green marker) is used to index fingers from thumb to little 

finger. The other one (blue marker) is used to index individual finger parts from palm 

to the outer segments (Figure 7.1). 

Figure 7.1: Hand image with markers 
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Although, it is very well known that brightness normalisation can improve the 

distinction between skin and background, it is not clear which colour space is the 

best. In fact, several works have been done on comparing colour spaces for skin 

detection (Martinkauppi, 2002). However, no definitive conclusion can be drawn, 

because each work was done using different illumination conditions. Since the aim of 

this thesis is to implement a system that works on-line, it is important to minimise 

the processing time for each frame grabbed by the cameras. So the HSV colour space 

is chosen since it is obtained directly by performing transformation from RGB space. 

 

  

 

 

Visualization is done by JAVA. A required 3D model is defined in JAVA (Figure 

7.2). That model consists of ellipsoids and prisms. Ellipsoids are used as joints 

between finger parts. Prisms are used to represent palm and the fingers as well. After 

a frame is processed and completely analysed, information for the tracked object’s 

movement is obtained.  

 

Figure 7.2: 3D hand model generated in JAVA 
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This information consists of all points and hand regions’ coordinate knowledge (both 

in 2D and 3D) for the fingers, angles between the fingers and the palm, angles 

between the fingers and angles between finger parts and the joints. According to the 

tracking result, the 3D coordinate information and joint angles are sent to the JAVA 

program and 3D hand model is updated with this new data. 

So, a module-based coding is done and top down approach is followed. In the 

following lines, all the process is summarised with flowcharts. The details and the 

related explanations are presented. Table 7.1 shows the hardware and software setup 

used in this work. Figure 7.1 shows a hand image with markers. 

 

 

 

System Properties 
PC Desktop System Intel Pentium 4 2.66GHZ 

512 MB Ram 

Windows XP Professional 

Analog Camera Sony FCB-IX47AP 
Frame Grabber Card Matrox Meteor II/Standart 
IDE Platform  Borland C++ Builder 6.0 Enterprise  (Main) 

Microsoft Visual C++ 2003 

Borland Java Builder 7.0 

Software Libraries Intel OpenCV Library 4.0 
Matrox MIL-Light 7.5 

 

 

 

 

 

 

 

Table 7.1:  Hardware and Software setup used 
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Flowchart of the Process 

The overall process is summarized in the chart given in Figure 7.3 and the details are 

explained in the following.  

 

 

Left Camera Right Camera 

Get Frame 

Do Tracking 

Check Current Frame with Previous Frame. 
 
If there is/are some missed point(s),  
  correct that/those one(s) using previous succ.  
  fames. 

Find 3D Points From Stereo 2D Points. 
Calculate Required Angle Values.  
Draw Hand in 3D 

Colour Convertion 

Get Frame 

Do Tracking 

Colour Convertion 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Figure 7.3: Outer loop of the whole process. 
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Step 1)   Get Frame:  By choosing appropriate parameters, overall system can be 

achieved to run on-line mode or off-line mode. But current system is more suitable 

for off-line mode. Off-line mode means working with pre-recorded video files. These 

video files are stereo pairs. Figure 7.4 shows an image taken at this step which is the 

first and main image. 

 

 

 

 

 

 

 

Figure 7.4: Input image taken from the camera 

Figure 7.5: Gray mode of input image 
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Step 2)   Colour Convertion:  After getting frames which are in RGB colour space, 

they are converted to the ‘gray mode’ and ‘HSV colour space’. The rest of the 

process uses these converted images. (see Figure 7.5, Figure 7.6  and Figure 7.7)  

 

 

 

 

 

 

 

   

 

 

 

Figure 7.6: Input image in HSV Colour Space 

    (H)        (S)      (V) 

Figure 7.7: HSV channels of the input image 
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Step 3)   Do Tracking:  This is the heart of the whole process and all necessary steps 

for tracking are being done in this step. A detailed explanation will be given is given 

in the next page.  

Step 4)   Check Current Frame with …:  If everything goes all right, all necessary 

points of the hand will be available. But unfortunately, there are so many miss-placed 

or lost points. To recover these points, it is necessary to check the current frame and 

its information with some previous successful frames. If a point is found correctly or 

by assumption then that frame is a successful frame for that point. When that point is 

lost later, the last information related to this point which was saved in the memory 

will be used. 

Step 5)   Find 3D Points From…:  After getting frames from cameras, it is 

necessary to find the corresponding point in 3D from stereo images. Initially the 

camera calibration is assumed to be done. By using this calibration information, a 

point in one camera frame with its corresponding point in the other camera can be 

projected to 3D. 

               Calculate Required Angle…:  In order to fit the resulted 3D points to the 

3D hand model, some calculations are required. The relationship among these points 

is adequate. The relationship consists of some angle values and lengths.   

               Draw Hand…:   At the final step, in order to see what is going on, the 

tracked hand must be drawn on to the screen. 
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Step 3)    Do Tracking 

 

 

As said before, all necessary steps for the tracking are being done in this step (Figure 

7.8). For segmentation of fingers and finger-parts, colour markers are used. First of 

all, these markers are to be found separately. The process starts with the green 

markers and goes on with the blue ones. Finally, hand regions are processed. Here, 

green markers are used to identify and index the fingers. Hands and fingers are 

highly deformable objects. So, this task is highly difficult. Green markers are placed 

at the palm as close as possible to the fingers. Indexing those green markers means 

indexing fingers. This step gives only finger information. But a finger has two or 

more deformable parts. To separate those parts from each other and to index them in 

a finger, blue markers are used. Those markers are placed at the joints. After finding 

those markers and their positions, the related hand regions can be found. There is an 

important constraint about these overall steps.  

 

Do Tracking 
 

Find Green Markers 

Find Blue Markers 

Find Hand Regions 

3.1 

3.2 

3.3 

Figure 7.8: Steps for markers and hand regions during the tracking 
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In order to get a successful result (finding all points exactly with their information), 

the hand must be seen as clear as seen as clear as possible by the cameras. The 

markers (particularly blue markers) and hand regions should not be overlapped. If 

that kind of occlusion occurs, wrong results can be obtained.  

 

Step 3.1)    Find Green Markers 

 

 

Step 3.1.1)   Calculate Mask:  Both cameras get frames in RGB mode. By ‘Colour 

Convertion’ those frames are converted to the HSV mode. After that process, ‘Mask’ 

image can be made by filtering some values of the HSV image. These values are 

‘saturation’ and ‘value’. In the experiments, they are used as 30min =S , 

10min =V and 255max =V . 

Find Green Markers 
 

Calculate Mask  

Get Histogram Information 

BackProject Using Mask and Histogram  

Find Connected Components For Green Regions 

Index Green Markers and Find Their Properties 

3.1.3 

3.1.2 

3.1.1 

3.1.4 

3.1.5 

Figure 7.9: Steps for green markers during the tracking 
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Step 3.1.2)   Get Histogram Information:  In order to track an object, first of all, it 

must be separated from the whole image (a kind of background subtraction). For this 

purpose, collection of some information about the object to be tracked is required. 

This information describes what to be searched in the input image. In this step, there 

are 2 possibilities. One of them is that, the required information (mostly stored in 

binary file) is available at the system and there is no need to update this information. 

The other possibility is to update this information during processing. Filtering is 

performed based on this information which is colour in our case. The colour values 

may be defined previously or can be defined during the processing. This colour 

information can be assumed to be the colour ranges bounded with upper and lower 

limits. Since the frame is in HSV, the information can be in the form 

of maxmin HHH << . So in real time, in order to provide the required information 

about the object to track (shown in Figure 7.10-(2)), the user selects true colour 

information from the screen with a mouse as shown in Figure 7.10-(1)  

 

    

 

 

 

Step 3.1.3)   BackProject Using Mask …:  The process of separation of tracked 

object from background takes place in this step. By using ‘Histogram’ information 

with the ‘Mask’ information, tracked object is separated in HSV colour space and the 

result is shown in gray mode (Figure 7.11-(1)). 

 

Figure 7.10: According to the selection (1) shown with blue region, necessary  
                     information about the green marker is taken (2). 

     (1)        (2)  
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Step 3.1.4)   Find Connected Components …:  After filtering, the desired object(s) 

are extracted from the input image where the result is given as binary image. By 

accepting this binary image as the new input image, a second region-separation 

process is needed. As shown in Figure 7.10-(1), the green points are the desired 

objects and at the end of the filtering, only they are available (Figure 7.11-(1)). There 

are six well separated regions. To segment the separated regions, connectivity is 

used. With connectivity, while two regions are being processed, if there is a link in 

any shape between them then these regions are assumed to be together and accepted 

as the same region. If there is no link between, then they are decided to be different 

regions from each other. There is an important assumption in here which states that 

the regions of interest are well separated with markers. Thin markers, capturing 

frames at a very long distance from the cameras, bad lighting conditions and other 

reasons may cause a decrease in the performance of this process. At the end of this 

process, the filtered image (Figure 7.11-(1)) is separated individually and the 

necessary parameters of those parts are found as shown in Figure 7.11-(2), which are 

the center points (x,y) of those regions at pixel coordinates and the individual areas 

of those regions and can be thought as details.  

 

 

 

 

     (1)        (2)  

Figure 7.11: At the end of the filtering Figure 7.10-(1), the gray result image is 
found (1). By accepting (1) as input, the connected components are 
found in (2). 
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Step 3.1.5)   Index Green Markers ...:  After finding connected components for 

green markers, they must be ordered for the further steps of tracking. First of all, 

finding reference green marker which is placed in the palm is required. To find that 

reference easily, it is adjusted to be the biggest in terms of the area. After finding that 

one, the next step is to find some relationships between this reference point and the 

other green markers. This is done by finding line equations between 2 points. One of 

the points is always that reference point (the biggest one) and the other one is 

selected among the others. This goes on until all the line equations for pairs of points 

are found and ordered. Ordering is done by comparing angle values of these lines 

with the ‘x’ axes. As the final step, these angles are reordered in one direction. These 

final ordered points are saved to an array. Figure 7.12 shows the result of this step. 

All green markers are processed and found. Also they are indexed as shown in Figure 

7.12 respectively. At the end of this step, a great amount of information is collected. 

This information covers the coordinate knowledge, area information, predefined 

order (like sorting) and probably finger number that belong to it. Ordering is starting 

from the thumb as seen in Figure 7.12(2). In order to find the green point related to 

the thumb, that green marker is placed to be near to the reference green point. Hence 

by comparing the distances of green points to the reference one, the minimum 

distance gives us the thumb-green point. Later on, ordering (sorting) is done with 

respect to the thumb.    
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   (1)         (2)   

   (3)         (4)   

   (5)         (6)   

Figure 7.12: Green markers are found and labeled in order  
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Step 3.2)    Find Blue Markers 

 

 

 

Step 3.2.1)   Calculate Mask:  Details are almost the same as in Step 3.1.1 

 

Step 3.2.2)   Get Histogram Information:  Details are almost the same as in Step 

3.1.2. Figure 7.14-(1) and (2) shows a region selected on the blue marker and the 

resulting information of the colour respectively. 

 

Find Blue Markers 
 

Calculate Mask  

Get Histogram Information 

BackProject Using Mask and Histogram  

Find Connected Components For Blue Regions 

Index Blue Markers and Find Their Properties 

3.2.3 

3.2.2 

3.2.1 

3.2.4 

3.2.5 

Figure 7.13: Steps for blue markers during the tracking 
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Step 3.2.3)   BackProject Using Mask …:  Details are almost the same as in Step 

3.1.3. For images see Figure 7.15-(1) 

 

 

Step 3.2.4)   Find Connected Components …:  Details are almost the same as in 

Step 3.1.4 

 

   

 

 
 

 

 

 

 

Figure 7.14: According to the selection (1), necessary information about the  
           blue marker is taken (2).  

     (1)        (2)  

     (1)        (2)  

Figure 7.15: At the end of the filtering Figure 7.14-(1), the gray result image is 
found (1). By accepting (1) as input, the connected components are 
found in (2). 
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Step 3.2.5)   Index Blue Markers ...:  The same types of explanations are also valid 

for this step. Additionally, after finding all connected components for blue markers, 

firstly, all line equations are found according to the green reference point with other 

blue marker points (Figure 7.16). Let’s call these equations as ‘EQU 1’. With these 

line equations, in fact, some other useful data (as detail) becomes available. The 

slopes, lengths and the corresponding angle values for the lines are obtained. Hence, 

all lines (and also all blue points) can be sorted by using these angles. After that, the 

next step is to assign every blue marker point to its correct finger and to find its 

correct position in the finger. For that reason, a second find-line equations process is 

required (Figure 7.17). Again, the same approach is valid with only one difference. 

Now, every other green marker is taken as reference point and according to that new 

point, all line equations of blue points are found. This group of lines can be called as 

‘EQU 2’. So, we have all blue points (in terms of their line equations with respect to 

main reference green point and individual reference green points). The aim is to get 

the green marker points and blue marker points probably belong to the same finger 

together. So, these two kinds of equations are used to decide which point belongs to 

which finger. The next step is to match those equations to each other (First ones with 

the second ones). For this reason, the length and the slope of a line can be used. 

There is a common axis (x-axis) and all the equations have a slope with respect to 

this axis. By sorting these angles (from slopes), points can be grouped and assigned 

to their fingers. In the experiments, to group these green and blue marker points as if 

they belong to the same finger, it is adequate that the difference between two angle 

values to be equal or less than 10 degrees. By looking at these differences, the blue 

points with the appropriate green point are found. With this process, all related points 

(blue and green) are collected together. For a finger, there are only one green point 

and at least two blue points. After finding all points belonging to a finger, the points 

must be ordered according to the palm or more accurately, to the reference point(s). 

While finding the line equations, the length information also becomes available. 

According to this length information, a sorting process is adequate to order those 

points in a finger. All related lines are found in memory with a lot. For simplicity, in 

Figure 7.16 the arranged lines are drawn. In Figure 7.17, all of them are shown in 

their final ordered forms. 



 69 

     
 
 

     
 
 

     
 
 

     
 
 

     

 

    (1)       (2)     (3)  

   (7)       (8)     (9)  

   (4)       (5)     (6)  

Figure 7.16: Blue markers are found and labeled in order (according to the  
           reference green point )  

   (13)       (14)     (15)  

   (10)       (11)     (12)  
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   (4)       (5)    (6)   

   (1)       (2)     (3) 

   (7)       (8)     (9)  

   (13)       (14)     (15)  

   (10)       (11)     (12)  

Figure 7.17: Blue markers are found and labeled in order (according to their  
           individual reference green point ). 
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Step 3.3)    Find Hand Regions 

 

 

 

Step 3.3.1)   Mouse Selection:  In this part, user can select the object that he/she 

wants to track. By mouse, the user can specify the coordinates of the selection area. 

According to this selection, the data needed to be used in the ‘Get Histogram 

Information’ step is collected. Also when the selection is in progress, it triggers to 

update all histogram information for markers and hand regions as well. 

 

Find Hand Regions 

Calculate Mask  

Get Histogram Information 

BackProject Using Mask and Histogram  

Find Connected Components For Hand Regions 

Index Hand Regions and Find Their Properties 

3.3.3 

3.3.2 

3.3.1 

3.3.4 

3.3.5 

Mouse Selection 

Track Object  

3.3.6 

3.3.7 

Figure 7.18: Steps for hand regions during the tracking 
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Step 3.3.2)   Calculate Mask:  Details are almost the same as in Step 3.1.1 

Step 3.3.3)   Get Histogram Information:  Details are almost the same as in Step 

3.1.2. Figure 7.19-(1) and (2) shows an update process for hand region and the result 

information of that process respectively. 

 

    

 

 

 

 

Step 3.3.4)   BackProject Using Mask …:  Details are almost the same as in Step 

3.1.3 and for images see Figure 7.20-(1) 

 

   

 

 
 
 

 

 

Figure 7.19: According to the selection (1), necessary information about the  
           hand region is taken (2).  

     (1)        (2)  

     (1)        (2)  

Figure 7.20: At the end of the filtering Figure 7.19-(1), the gray result image is 
found (1). By accepting (1) as input, the connected components are 
found in (2). 
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Step 3.3.5)   Track Object:  Object tracking is achieved by ‘Camshift Algorithm’. If 

the user does ‘mouse selection’, track window’s coordinates are updated with the 

selection ones. Tracking goes on with this new coordinates. If some problem occurs 

and track window is lost then the whole image is set as track window and according 

to the histogram values, the track object in the picture is tried to be found. If ‘mouse 

selection’ is not done then the related data values are read from files and the whole 

image is set as search window. Then, process goes on like this. 

 

    
 
 

 

 

Step 3.3.6)   Find Connected Components …:  Details are almost the same as in 

Step 3.1.4 

Step 3.3.7)   Index Hand Regions ...:  The same explanations are also valid for this 

step as said before. It resembles to ‘Index Blue Markers and Find Their Properties’. 

Because at every finger, there are blue marker points as much as (separated) hand 

regions. So, everything told for blue points are valid for this part as well. There is 

only one difference. By means of hand regions, the ‘Find Connected Component’ 

process finds the whole hand region as a component. This is true. But it is not useful. 

So this component must be deleted. By searching the component that has the biggest 

area and coordinate information is near to the track window center (white circle 

region) is deleted. After this deletion, every hand region can be thought as a 

corresponding point of related blue points. In Figure 7.22 and 7.23, the hand regions 

process can be seen. 

Figure 7.21: At the end of Camshift, this raw image is found. This image with its 
          track information is inputted to the system in the internal processings.
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   (1)       (2)     (3)  

   (7)       (8)     (9)  

   (4)       (5)     (6)  

Figure 7.22: Hand regions are found and labeled in order (according to the  
           reference green point ) 

   (13)       (14)     (15)  

   (10)       (11)     (12)  
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   (4)       (5)    (6)   

   (1)       (2)     (3) 

   (7)       (8)     (9)  

   (13)       (14)     (15)  

   (10)       (11)     (12)  

Figure 7.23: Hand regions are found and labeled in order (according to their  
           individual reference green point ). 
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Step 4)    Check Current Frame with Previous Frame 

 
 
 
 
 
Step 4)   Check Current Frame…:  As said before, if everything goes all right, all 

necessary points of the hand and markers will be available. But unfortunately, there 

may be so many miss-placed or lost points. To recover these points, it is necessary to 

check the current frame with the previous successful frames. This check is finger-

based. For example, for the index finger, there are 3 finger segments and 3 blue 

markers which are used to separate these segments and a green marker at the bottom 

of this finger on the palm. During the process, if these points are found successfully 

then they are recorded. If an error with a point in a finger is occurred, it is searched 

and recovered from previous recorded data. For example, for a randomly chosen 

point, if nth frame is a successful frame for this point but in the (n+1)th  frame that 

point could not be found then its nth  information will be used as the (n+1)th 

information. Until the first following frame which is error-free, this will go on like 

this. But whenever an error-free frame for that point is caught, then for that point the 

recorded data is updated and will be used later. By doing this, both point(s)-based 

recovery and finger(s)-based recovery is possible. In Figure 7.25, an example can be 

seen. 

    

 

  

Check Current Frame with Previous Frame 

Figure 7.24: Comparison and correction of current frame with  
           previous frame in terms of points. 

Figure 7.25: All the points related with the last finger are lost in (1). By using previous  
           successful frames for each point in that finger, they are recovered (2). 

   (1)             (2)   
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Step 5)    Find 3D Points From Stereo 2D Points.  Calculate Required Angles 

and Draw Hand in 3D 

 
 
 
 
 

Step 5)   Find 3D Points ...:  In this part, in order to see the tracked hand in 3D, 

stereo images must be used. To get the depth information, a second camera is 

required. If those cameras are called ‘Left Camera’ and ‘Right Camera’, firstly Left 

Camera image is processed and the required points and related data are obtained. 

And then, Right Camera image is processed in the same way as well. Using 2D 

information obtained from each camera separately, all found points are matched 

between stereo pairs and using camera projection matrices 3D information for each 

point is obtained (Özuysal, 2004).  

                Calculate Required Angle ...:  In this part, the hand which is being 

tracked is visualized in 3D. For this purpose, a function is used which is written by 

Erdem Akagündüz in Java. For drawing (for example index finger), some angle 

values are required. For the index finger, we have a green marker point, 3 blue 

marker points and 3 hand region points. Also, since the fingers have some amount of 

degrees of freedom (DOF), their positions are given as angle values. After finding all 

related points in 3D from the corresponding 2D points, the required angle values are 

calculated and the resulting 3D points and angles are transferred to JAVA for 

visualizing the position and the movement of the whole hand in 3D.  

 

Find 3D Points From Stereo 2D Points 
Calculate Required Angle Values and 
Draw Hand in 3D 

Figure 7.26: Reconstruction of 3D Point from stereo 2D Points and  
         3D Hand Drawing 
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In order to update the pose of the 3D Java hand model, total 22 angles are defined. 

Some of these angles describe the orientation of the hand and some of them describe 

the relative position of the finger segments to each other. 

 

If  A  and  B  are two different points in 3D, then these points can be represented 

in terms of vectors and their notations are shown such that vector A and B  

Additionally, vector AB  is defined as  

ABAB −=        (7.1) 

If  C and D are another two different points in 3D, then vector CD  is defined  

CDCD −=        (7.2) 

Then, dot product of these two vectors is defined as the following. 

θcosCDABCD.AB =       (7.3) 

And angle between two vectors can be found with the following equation. 
















=

CDAB

CD.AB
arccosθ

      (7.4) 
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Figure 7.27: All fingers and finger segments are indexed. The posture of the Java 3D 
         hand model is updated by angle calculations on Java 3D hand model 
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(R means reference green marker) 

(G means green marker)  (B means blue marker) (H means hand region) 

 

1. First of all, a normal vector (N) of the palm is found. It is in (+z) direction.  

5xRGRGN 1=        (7.5) 

By using this normal vector, the direction of the palm (and hand as well) in 3D can 

be found. In fact, in our system, we use this obtained normal vector to calculate the 

amount of deviation from initial z direction. As seen in Figure 7.27, the hand model 

is initialized and its direction is assumed to be in z direction with zero deviation. For 

every frame, this vector is calculated and during the process, it is used to calculate 

the necessary angles to update the posture of the hand model.     

2. If the obtained normal vector is defined as (  ), then 

• Rotation on the y axis is  
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n

n
arctan         (7.6) 

• Rotation on the x axis is  
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In fact, these calculated angles are used to compare the current tracked hand 

posture with the initial hand posture in terms of rotation. So, these angles are not 

used directly. Instead, their differences with the related angles of the initial hand 

posture are used. Hence, the model is rotated in related directions by amount of 

those differences.  

 

zyx nnn ,,
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3. For the thumb finger, total 4 angles are calculated. Since its DOF is 2, one of 4 

angles is related with the ‘Abduction and Adduction’ and the other 3 angles are 

related with the ‘Flexion and Extension’. 

• Abduction and Adduction 

1RBRG .2         (7.8) 

• Flexion and Extension 

NRG .1         (7.9) 

111 HBBG .1        (7.10) 

222. HBBH1        (7.11) 

Initialy, equations 7.8, 7.9, 7.10 and 7.11 are calculated and saved in memory. These 

initial angles describe the initial posture of the thumb finger of our 3D hand model as 

seen in Figure 7.27. During the overall process, when these angles are calculated, by 

looking at the differences of new calculated angles with the corresponding initial 

angles, the necessary information for the thumb is sent to the Java hand model. 

Hence, the pose of the thumb can be updated.   

Equation 7.9 describes the movement of the finger into the palm.  

Equation 7.10 and Equation 7.11 describes the movements of the joints labelled 1B  

and 2B  respectively. 

 

4. For the index finger, total 4 angles are calculated and all explanations previously 

told for the thumb finger are also valid. 

• Abduction and Adduction 

3232 . HGGG       (7.12) 
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• Flexion and Extension 

3332 . HBBG       (7.13) 

4443 . HBBH       (7.14) 

5554 . HBBH       (7.15) 

In initial pose of the 3D Java hand model (Figure 7.27), from equations 7.12, 7.13, 

7.14 and 7.15, initial angles for the index finger are calculated and saved to be used 

later during the comparisons. During the overall process, when these angles are 

calculated, by looking at the differences of new calculated angles with the 

corresponding initial angles, the necessary information for the index finger is sent to 

the Java hand model. 

 

5. The procedure for the middle finger is also similar to the previous fingers. The 

related equations are given below.  

• Abduction and Adduction 

6343 . HGGG       (7.16) 

• Flexion and Extension 

6663 . HBBG       (7.17) 

7776 . HBBH       (7.18) 

8887 . HBBH       (7.19) 
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6. The procedure for the ring finger is also similar to the previous fingers. The 

related equations are given below.  

• Abduction and Adduction 

9454 . HGGG       (7.20) 

• Flexion and Extension 

9994 . HBBG       (7.21) 

1010109 . HBBH       (7.22) 

11111110 . HBBH       (7.23) 

 

7. The procedure for the little finger is also similar to the previous fingers. The 

related equations are given below.  

• Abduction and Adduction 

12545 . HGGG       (7.24) 

• Flexion and Extension 

1212125 . HBBG       (7.25) 

13131312 . HBBH       (7.26) 

14141413 . HBBH       (7.27) 
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In order to provide a visualization of region, segment and marker detection, all points 

(green points, blue points and hand regions) are shown with different colours on a 

black screen in (Figure 7.28, Figure 7.29 and Figure 7.30) 

 

 

 

     
 
 

     
 
 
 
 

 

 

 

 

 

 

   (1)       (2)     (3)  

   (4)       (5)     (6)  

Figure 7.28: The green points in tracked image. These points can be thought as   
          if they are palm points. They are ordered and known in detail. 
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   (1)       (2)     (3)  

   (7)       (8)     (9)  

   (4)       (5)     (6)  

   (10)       (11)     (12)  

Figure 7.29: The blue and green points together in tracked image. The blue  
         points can be thought as if they are our seperators in the fingers.  
         They are ordered and known in detail. 

 

   (13)       (14)      



 86 

     
 
 

     
 
 

     
 
 

     
 
 

   
 
  

 

 

   (1)       (2)     (3)  

   (7)       (8)     (9)  

   (4)       (5)     (6)  

   (10)       (11)     (12)  

   (13)       (14)      

Figure 7.30: All points together in tracked image. The red points can be thought 
        as if they are our hand regions separated  with blue markers in the  
        fingers. They are ordered and known in detail. 
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In the following (Figure 7.31), the input images of the hand and the resulted Java 

hand images are presented. The upper-left one belongs to the “Left image” and the 

lower left is the “Right image”. In the input images, background is eliminated (seen 

as black in the images). 3D information obtained from these stereo images is 

visualized on the 3D model given on the right of each figure. (See Appendix A)   

 

   
 
 

  
 
 

  
 
 
 

     (1)         (2)    

     (3)         (4)    

     (5)         (6)    

Figure 7.31: Hand tracking results in 3D Java hand model 
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CHAPTER 8 
  

CONCLUSION AND FUTURE WORKS 

In this thesis, we aimed to develop a hand tracker system. This system should work 

in real-time as well as off-line mode. It should not require any specific hardware 

(means a standard PC Desktop system should be enough).It should track finger 

movements as well as hand movements. It should be free on external devices like 

gloves, sensors etc. and tracking should be achieved in 3D.    

In the experiments, the frame rate is found as ~8 frames per second. So with this 

result, our system can be said to be working on real-time. 

System consists of the equipments summarized in the Table 7.1. Cameras seem to be 

special but when the system is worked with the cheap web-cams, the tracking 

process is achieved but the performance is worse than when special cameras are used 

since it is tightly correlated with the quality of image pictures. 

Our hand tracking system is based on skin colour and coloured-markers. So any 

object which has the similar colour as the hand can be accepted as hand region. This 

is a handicap for the tracking system and may cause it to fail. The same handicaps 

are valid for the markers, also. Because, after finding hand in the picture, the 

segmentation of the finger regions is done using those coloured markers. Any 

additional objects which have similar colours with those markers drop the 

performance of correct segmentation or may it be wrong totally. So during the 

tracking of hand and fingers, there must be no object other than the object and its 

markers with colours similar to the flesh colours and marker colours. In other words, 

to get a better result for this segmentation, the background should be clear and empty 

as much as possible. Additionally, background colour should be far away from 

colours of the tracked object and its markers. 
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Under these conditions, our system can track hand and finger movements. When they 

are compared in terms of robustness, the hand tracking is much more robust than the 

fingers. Hand region is the overall of the all finger and non-finger areas. Besides, the 

fingers have much more degrees of freedom and more deformable than a hand. 

Our system does not handle finger-finger occlusion. When that kind of a situation 

happens, the tracking of the occluded fingers fail.  

In terms of lighting, there must be soft-lightened and stable environment. The 

lightning conditions must be as stable as possible. When the lightning conditions are 

changed, this affects the overall system and probably it drops the performance of the 

tracking or at the worst, it may cause the system to fail totally. When it fails, until the 

next frames, the system does nothing. 

Our system is based on an image-based hand tracking method. Because, high 

detailed quantitative description of the hand pose and movements are not used. But 

stereo vision approach is used to achieve the tracking in 3D. First of all, the images 

taken from the stereo cameras are processed in 2D. The hand regions are segmented 

from the background by using their colour information. The fingers are indexed and 

segmented into individual parts by using the markers. Up to this point, all processes 

take place in 2D. In order to reconstruct the tracked object in 3D, its feature points 

(both defined previously and found at the end of the segmentation) are used. To 

recover 3D information of a point, its projection points information (the 

corresponding points on the left and right image) and camera projection matrices 

(derived from the stereo calibration of the cameras) are used. When all the 

corresponding feature points are back-projected to the 3D environment, the positions 

of the feature points in 3D are obtained. By using these 3D points, the 3D hand 

model’s pose is updated.  

This update process includes some angle calculations, vector calculations and 

orientation information. After all feature points are found and translated into the 3D 

coordinate system, palm orientation and finger positions are decided. For this 

purpose, first of all, the direction of the palm is found by using the information 

related to palm feature points (for detail explanation of this paragraph, see Chapter 
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7). Here, palm points are the green reference points. After that, the finger points, 

which are the blue markers and hand regions between those blue markers, are 

extracted and their positions with respect to each other (by means of angle) are 

calculated. At the same time, the finger locations according to the palm (in 3D) are 

found in terms of angles.  

The results are obtained without doing any big and mainly important optimization. 

For image processing, OpenCV library and for 3D hand model, Java 3D virtual 

engine, which is based on OpenGL, is used. 

In this study, hand and fingers are tracked in video sequences using markers placed 

on hand and fingers. The main purpose to achieve is to track hand using only camera 

and pure human hand without any markers. Because, human hands and fingers have 

high degree of freedom, in this initiative study in our Computer Vision and 

Intelligent Systems Research Laboratory, we used markers to simplify the problem. 

This breaks the naturalness and in the future, the requirements of these markers are to 

be eliminated. From just hand images, without using any devices or markers on the 

hands, the tracking should be done. 

Another important point is the reduction of dependency on the lightning conditions. 

Although HSV colour space, which is more robust than RGB, is used, the 

dependency on the lightning is very high and the changes on the lightning (to be very 

shiny or opposite) drops the performance of the tracking. 

One of the biggest problems met during this study is the indexing of the fingers and 

individual finger parts. Most of time, hand regions and markers are found separately 

and exactly. The most important situations which break that operation (finding and 

indexing) are the poor lightning conditions, the occlusion problem and the closeness 

of the points of interest to each others. Especially, for the fingers there is high degree 

of freedom and deformability and this results the occlusion problem frequently. 

Once, the segmentation of hand from the background and the individual finger parts 

within a finger is achieved, the next step is to find which point belongs to which 

finger and at which position it must be. Indexing is done with finding some linear 

equations and the relationship between them. Line equations are extracted between 
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the reference points, which are the green and blue markers, and the hand regions. 

According to a green marker, the other blue points and hand regions which are found 

to be at the same direction from that green point are tried to be grouped and assigned 

that corresponding finger. Although all the related points are found at the end of 

segmentation, during the indexing process some of them are lost. The method used 

for indexing seems to be fine and while the hand seems to be clear on the screen in 

terms of occlusion, that indexing process works correctly. However, the high degrees 

of freedom of fingers and their deformable structure make indexing process difficult 

to deal with them. Some orientation of the hand or some finger movements within 

the hand bring the loose of some points while indexing. In order to overcome those 

kinds of lost, the indexing process must be reviewed and developed. 

In order to simplify the hand tracking problem, we restricted the movement of the 

hand so that it is close to frontal view in some degree of freedom. We used 

cylindrical stripes around the fingers as markers and we have taken the center of the 

marker at each image as the corresponding point. Although this assumption works 

well for the frontal view of hand when fingers are open, it causes problem when the 

hand is rotated and fingers are bended. In future study, special care should be paid on 

finding corresponding points on the fingers when considering more general 

orientation and posture of the hand. 

The reconstruction is done with the camera matrices and the corresponding 2D 

information of the points. Both the left and the right images are processed separately. 

After finding all related points with their index information, the points with the same 

index number (in terms of finger number and position in a finger) are assumed to be 

the corresponding points. In traditional stereo vision, the corresponding points in 

image pairs are decided on the properties of the feature points and camera calibration 

data. But in our system, they are found separately and matched according to their 

index numbers. This is a reasonable assumption when indexing is correct. The 

performance of the reconstruction process is also related with the camera matrices. 

With the camera calibration process, the most suitable camera matrices parameters 

are generated. But always there are some errors within the tolerance. So, the 

correctness of the reconstruction is concerned with the correctness of the calibration 
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parameters and correctness of matching procedure. The camera calibration process 

and its results should be improved for a better performance. 

Finally, we have used a simple 3D hand model made of cylinders and spherical 

joints. For a better representation of the hand in 3D, a more detailed model close to 

appearances of the hand will improve the visual quality.   
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APPENDIX  A 
  

HAND TRACKING RESULTS IN                                       
3D JAVA HAND MODEL  
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Figure A.1: Hand tracking results in 3D Java hand model 
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Figure A.2: Hand tracking results in 3D Java hand model 
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Figure A.3: Hand tracking results in 3D Java hand model 
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Figure A.4: Hand tracking results in 3D Java hand model 
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Figure A.5: Hand tracking results in 3D Java hand model 
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Figure A.6: Hand tracking results in 3D Java hand model 
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Figure A.7: Hand tracking results in 3D Java hand model 
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Figure A.8: Hand tracking results in 3D Java hand model 


