

SOFTWARE RELIABILITY ASSESSMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENİZ KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet Erkmen

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Semih Bilgen
 Supervisor

Examining Committee Members

Assist. Prof. Dr. Cüneyt Bazlamaçcı (METU,EE)

Dr. İlkay Ulusoy (METU,EE)

Dr. Şenan Ece Schmidt (METU,EE)

Prof. Dr. Semih Bilgen (METU,EE)

Hüseyin Türkoğlu (TÜBİTAK-SAGE)

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : Deniz Kaya

Signature :

iv

ABSTRACT

SOFTWARE RELIABILITY ASSESSMENT

Kaya, Deniz

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih BİLGEN

August 2005, 117 Pages

In spite of the fact that software reliability studies have attracted great deal of

attention from different disciplines in 1970s, applications of the subject have rarely

been involved in the software industry. With the rise of technological advances

especially in the military electronics field, reliability of software systems gained

importance.

In this study, a company in the defense industries is inspected for their abilities and

needs regarding software reliability, and an improvement proposal with metrics

measurement system is formed. A computer tool is developed for the evaluation of

the performance of the improvement proposal. Results obtained via this tool

indicate improved abilities in the development of reliable software products.

Keywords: Software Reliability, Software Process Improvement, Software Process

Simulation

v

ÖZ

YAZILIM GÜVENİLİRLİĞİ DEĞERLENDİRİMİ

Kaya, Deniz

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih BİLGEN

Ağustos 2005, 117 Sayfa

Yazılım güvenilirliği alanındaki çalışmaların 1970’li yıllarda farklı disiplinlerden

önemli ölçüde ilgi görmüş olmasına rağmen, konuya ilişkin uygulamalardan yazılım

sanayiinde nadiren yararlanılmıştır. Özellikle askeri elektronik alanındaki teknolojik

ilerlemelerin yükselişiyle birlikte, yazılım sistemlerinin güvenilirliği önem

kazanmıştır.

Bu çalışmada, savunma sanayiinde faaliyet gösteren bir kuruluşun yazılım

güvenilirliğine ilişkin yetenekleri ve gereksinimleri incelenmiş ve metrik ölçüm

sistemi içeren bir iyileştirme önerisi oluşturulmuştur. İyileştirme önerisinin

başarımının değerlendirilmesi için bilgisayar ortamında çalışan bir araç

geliştirilmiştir. Bu araçla elde edilen sonuçlar, güvenilir yazılım ürünlerinin

geliştirilmesine yönelik yeteneklerin iyileştirildiğini göstermektedir.

Anahtar Kelimeler: Yazılım Güvenilirliği, Yazımım Süreci İyileştirme, Yazılım

Süreci Benzetimi

vi

To the memory of my father …

vii

ACKNOWLEDGMENTS

The author would like to express his feelings of gratitude to his supervisor Prof. Dr.

Semih Bilgen for his skillful guidance, endless patience, encouragement and

support throughout this study.

Contributions and cooperation of TÜBİTAK-SAGE administration and employees

are gratefully acknowledged.

The author would also like to thank his dear wife, Nihal, for her never-ending

morale support and extreme patience.

viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ... v

ACKNOWLEDGMENTS... vii

TABLE OF CONTENTS... viii

LIST OF TABLES .. xii

LIST OF FIGURES.. xiii

LIST OF ABBREVIATIONS.. xiv

CHAPTER

1. INTRODUCTION... 1

2. LITERATURE SURVEY ... 3

2.1 Definitions... 3

2.2 Studies on Software Reliability... 4

2.2.1 Assessment of Software Reliability 5

2.2.1.1 Software Reliability Modeling................................ 6

2.2.1.2 Software Testing ... 8

2.2.2 Quality and Software Reliability.. 10

2.2.3 Project Management and Reliability 11

2.2.4 Metric Collection Systems ... 12

3. PROPOSED MEASUREMENT SYSTEM .. 16

3.1 Process Improvement Goals of the Company..................................... 16

3.2 Determination and Classification of Metrics to be Collected 18

3.3 Formation of Metric Collection System.. 23

3.3.1 Modifications for Requirements of Software Maturity

ix

Index.. 23

3.3.2 Modifications for Requirements of Functional Test

Coverage ... 25

3.4 Cost of Modifications of the Procedures... 26

3.4.1 Fault-Days Number.. 26

3.4.2 Functional Test Coverage .. 27

3.4.3 Requirements Traceability ... 28

3.4.4 Software Maturity Index .. 28

3.4.5 Test Coverage... 29

3.4.6 Failure Rate .. 29

3.4.7 Summary of Modification Costs .. 30

4. PROPOSAL EVALUATION ... 32

4.1 Method for Evaluation .. 32

4.1.1 Evaluation Alternatives .. 32

4.1.2 Limitations of the Simulation... 34

4.2 Simulation Tool Outline and Features .. 35

4.2.1 “Create Project” Command.. 37

4.2.2 “Create Programmer” Command ... 39

4.2.3 “View Available Programmers” Command......................... 40

4.2.4 “Edit Programmer” Command... 41

4.2.5 “View Projects Under Development” Command 42

4.2.6 “Edit Project” Command.. 43

4.2.7 “Simulate Project” Command .. 44

4.3 Simulation Details ... 49

4.3.1 Consumption of Time and Programmers 50

4.3.2 Variation of Project Size .. 51

4.3.3 Formation and Detection of Faults....................................... 51

x

4.3.3.1 Fault_Node Class ... 52

4.3.3.2 Linked_List Class... 52

4.4 Other Issues Regarding Simulation... 53

4.4.1 Size and Duration Estimation... 54

4.4.2 Random Number Generation ... 55

4.5 Output Data and Output Format.. 57

5. RESULTS AND DISCUSSION ... 60

5.1 Generation of Simulation Results ... 60

5.1.1 Data of Interest ... 60

5.1.2 Project Characteristics.. 61

5.1.3 Determination of Number of Runs....................................... 62

5.2 Verification of Simulation... 63

5.3 Discussion of Results .. 64

5.3.1 P1, P2, and P3: Response to Changing Duration 65

5.3.2 P1, P4, and P5: Response to Changing Workload Index 67

5.3.3 P1, P6, and P7: Response to Changing Fault Finding

Ability ... 67

5.3.4 P1, P8, and P9: Response to Changing KLOC Estimate 67

5.3.5 Overall Response Evaluation ... 68

6. CONCLUSIONS... 71

6.1 Discussion of Findings.. 72

6.2 Future Work .. 72

REFERENCES.. 75

APPENDICES

A. THE CURRENT SOFTWARE DEVELOPMENT PROCESS................. 81

xi

B. MODIFIED SOFTWARE DEVELOPMENT PROCESS 94

C. ORIGINAL PROCESSES STEPCODES .. 109

D. MODIFIED PROCESSES STEPCODES.. 112

E. SIMULATION RESULTS FOR PROJECT 1 ... 116

xii

LIST OF TABLES

TABLES

Table 1 - Evaluation of the Metrics for the Company ... 19

Table 2 - Metrics to be Collected... 21

Table 3 – Modification Costs Summary .. 30

Table 4 – User Commands... 37

Table 5 – Output of “View Available Programmers”.. 41

Table 6 - Output of “View Projects Under Development” 43

Table 7 - Summary of Fault_Node Class ... 53

Table 8 - Summary of Linked_List Class .. 54

Table 9- Format for Simulation Results... 58

Table 10 - Simulated Projects .. 62

Table 11 - Summary of Simulation Results of Nine Characteristic Projects 66

Table 12 - Percent NoFD/NoFI Values.. 69

Table 13 - Durations of Projects .. 70

Table 14 - Sizes of Projects.. 70

Table 15 - Stepcodes for Original Processes.. 109

Table 16 - Stepcodes for Modified Processes .. 112

Table 17 - Simulation Results for Project 1 ... 117

xiii

LIST OF FIGURES

FIGURES

Figure 1 - Comparison of hardware and software reliability growth......................... 6

Figure 2 - Relations of Database Files and User Commands................................... 36

Figure 3 - Flowchart of “Create Project” Command ... 38

Figure 4 - Flowchart of “Create Programmer” Command....................................... 40

Figure 5 - Flowchart of “View Available Programmers” Command 41

Figure 6 - Flowchart of “Edit Programmer” Command... 42

Figure 7 - Flowchart of “View Projects Under Development” Command 44

Figure 8 - Flowchart of “Edit Project” Command ... 45

Figure 9 - Flowchart of “Simulate Project” Command.. 47

Figure 10 - Histogram for Gaussian Random Variable Generation......................... 56

Figure 11 - Histogram for Rayleigh Random Variable Generation......................... 57

Figure 12 – The Current Software Development Process.. 81

Figure 13 - Requirements Elicitation Process .. 82

Figure 14 - Software Design Process ... 85

Figure 15 - Coding Process .. 87

Figure 16 - Software Testing Process .. 91

Figure 17 – Modified Software Development Process .. 94

Figure 18 - Modified Requirements Elicitation Process .. 95

Figure 19 – Modified Software Design Process .. 98

Figure 20 – Modified Coding Process ... 101

Figure 21 - Modified Software Testing Process .. 105

xiv

LIST OF ABBREVIATIONS

CD Compact Disc

COCOMO Constructive Cost Model

GQM Goal Question Metrics

ID Identity

IEEE
The Institute of Electrical and Electronics Engineers,

Inc

IOR Input, Output, Result

KLOC Kilo LOC

KLOCE KLOC Estimate

LOC Lines of Code

MDD Mean Determination Date

MFD Mean Formation Date

MRT Mean Removal Time

MTbFD Mean Time between Formation and Determination

MTbFR Mean Time between Formation and Removal

NHPP Non-Homogeneous Poisson Process

NoFD Number of Faults Determined

NoFI Number of Faults Introduced

RODF Ratio of Determined Faults

SRWG Software Reliability Work Group

TTE Total Time Elapsed

YUB
Yazılım Uygunsuzluk Bildirim Formu (Software Error

Notification Form)

1

CHAPTER 1

INTRODUCTION

Software reliability denotes the probability that software in a pre-defined condition

performs its tasks without malfunctioning for a specified duration. It may be

regarded as a component of software quality. Unlike software quality, however, it

concentrates on the functionality of the software and disregards such issues as

ergonomics of software products, development economics, etc. unless they

constitute functional attributes of the software product.

In order to express the reliability of a software product quantitatively, first, the

product itself must be “measured”. For this purpose, the abstraction of measurement

has to be removed. This can be achieved by defining certain measures, or metrics,

about software product and its development process.

Once reliability metrics are defined, it is wise to question if it is possible to

determine and improve the reliability of software with a system based on these

metrics.

In this work, the problem of measurement and improvement of reliability of

software products developed at a company shall be investigated. For this purpose,

first of all, previous studies on the field of software reliability are investigated. As a

next step, the costs and benefits associated with collecting reliability metrics in the

2

specific company are investigated. Then, a set of metrics are selected for the

purpose of enabling the Company to construct a measurement system. The next task

is the development of a proposal for improvement of software development

processes of the Company. This study does not aim to propose an improvement to

the software development processes in general sense; rather it introduces minor

modifications to existing processes with software reliability being the primary

concern. Once the proposal is formed, different evaluation alternatives are

presented. While a real-life improvement project would be definitely more realistic,

in this study, a simulation-based evaluation is performed. Finally, obtained results

are questioned if proposed system meets the needs of the Company, and if proposed

actions result in expected improvements to software reliability.

Chapter 2 of this study contains a survey on the software reliability literature.

General concepts of software reliability and their application areas are discussed in

that chapter.

In Chapter 3, software development system of the Company is inspected and a

system for measurement of software reliability is developed.

Alternatives for evaluation of the proposed system and the tool developed for

simulation-based evaluation is discussed in Chapter 4.

Chapter 5 is devoted to the discussion of results generated by using the tool

discussed in Chapter 4.

Chapter 6 presents conclusions regarding this study and suggestions for future

work.

3

CHAPTER 2

LITERATURE SURVEY

In this chapter, first the terminology to be used in the rest of this study is presented.

Then, studies on software reliability are summarized in subsections according to

their relevance to different aspects of software reliability: Assessment of Software

Reliability, Quality, and Project Management. Finally, general characteristics of

metric collection systems, which also constitute a major task in this study, are

presented.

2.1 Definitions

For the sake of consistency, all of the definitions are directly taken from [1].

Defect: A product anomaly. Examples include such things as (1) omissions and

imperfections found during early life cycle phases and (2) faults contained in

software sufficiently mature for test or operation.

Fault: (1) An accidental condition that causes a functional unit to fail to perform its

required function. (2) A manifestation of an error in software. A fault, if

encountered, may cause a failure. It is synonymous with ‘bug’.

4

Failure: (1) The termination of the ability of a functional unit to perform its

required function. (2) An event in which a system or system component does not

perform a required function within specified limits. A failure may be produced

when a fault is encountered.

Error: Human action that results in software containing a fault. Examples include

omission of misinterpretation of user requirements in a software specification,

incorrect translation, or omission of a requirement in the design specification.

Measure: A quantitative assessment of the degree to which a software product or

process possesses a given attribute.

Software Reliability: The probability that software will not cause the failure of a

system for a specified time under specified conditions. The probability is a function

of the inputs to and use of the system as well as a function of the existence of faults

in the software. The inputs to the system determine whether existing faults, if any,

are encountered.

2.2 Studies on Software Reliability

The IEEE defines software reliability as the probability that software will not cause

the failure of a system for a specified time under specified conditions [1]. While the

definition is rather simple, its implications constitute a wide research field with sub-

fields of different concerns. These sub-fields can be investigated in three major

classes:

5

• Assessment of Software Reliability

• Quality

• Project Management

In spite of the fact that above classes have close interaction, it is necessary to make

such a classification for the sake of ensuring extensive study of the subject. In the

rest of this section, sub-fields of software reliability are studied.

2.2.1 Assessment of Software Reliability

Apart from classical hardware reliability, software reliability has rather different

nature [2, 3, 23]. While the reliability of hardware continues to change even after

the product is delivered, the reliability of software is improved throughout the

development process until the product is delivered. This matter is pointed out in

Figure 1 [2]. After the delivery, a change in reliability level is possible only if

maintenance action is performed to either compensate for defects in the software or

to catch up with technological advances.

Another major difference between software reliability and hardware reliability is

that software reliability is not a function of how frequent that specific software is

used, whereas hardware is subject to wear out [23, 26]. Also, because software is

rather conceptual, documentation is considered as an integral part of software and

software reliability [3].

6

Figure 1 - Comparison of hardware and software reliability growth.

A common constituent of hardware and software reliability techniques is testing [4].

The results of testing process are employed in software reliability growth models to

translate defect and/or failure data into reliability measures [24, 25].

Because of all these common points and differences mentioned, it is wise to classify

studies on assessment of software reliability into two groups: Software Reliability

Modeling, and Software Testing.

2.2.1.1 Software Reliability Modeling

In prediction and estimation of software reliability a general method is the use of

statistical models [25]. These models make use of either historical data of similar

projects or organizations or direct software measures such as fault density, defect

density, and defect detection rate of the software under investigation [1, 3, 24, 25].

7

Some of the well-known examples of software reliability models are Musa’s

Execution Time Model [2], Putnam’s Model [3], Goel-Okumoto Model [28],

Generalized Goel NHPP Model [5], Jelinski-Moranda Model [11], and Littlewood-

Verrall Model [14]. All these models, as expected, have their own set of advantages

and disadvantages that take their roots from their specific assumptions [11].

In addition to those model approaches, there exist other techniques for assessment

of software reliability [12]. Test coverage techniques, execution path and error

seeding are examples of these alternative approaches [13].

In the literature different approaches to estimation of the reliability of a software

program have been reported [5, 6, 7]. The problem with the estimation approach is

that it can only be used at later stages of software development process, which

channels organizations to use of reliability prediction techniques [6].

Software reliability prediction techniques are especially useful when knowledge of

approximate reliability level of the software to be developed is desired at early

stages of development life cycle [3]. When that information is of critical

importance, the performance of prediction process in determination of an initial

guess can be improved by the use of more than one prediction model over the same

data [8, 27].

One of the major problems of software reliability prediction models is that they fail

to predict the reliability accurately [9]. The reason is that they assume limited

historical data of special kind of organizations or of specific type of projects [3].

That creates the problem of loss of control over customization of model’s criteria to

fit it to a specific organization [9]. Reliability estimation models can overcome this

problem up to some extent [10].

8

The estimation models are usually in the form of non-homogeneous Poisson

processes (NHPP) or Markoff systems [11]. Most of the time the difference

between the models arises from the definition (or assumption) of “beginning time of

the process” or selection of random variable of the model as being either “number

of faults detected” or “total number of faults predicted” [3]. In the literature,

however, it is possible to come across with models that do not require detection of

all the failures [15]. Models that relate reliability to cost and priority of failures also

exists [16].

2.2.1.2 Software Testing

Software reliability efforts and software testing process complements each other:

The results of software testing provide statistical data to model the reliability, and

the reliability level of the software determines the amount of necessary testing [14,

17].

In order to provide reliability assessment process with healthy input data, the testing

of software must be comprehensive and complete both in terms of user

requirements and software architecture [3, 23]. While well-known software

engineering sources [21] suggest ways to improve testing process, reliability-

oriented studies are still worth mentioning.

The major difference between the viewpoints of “software engineers” and of

“software reliability engineers” is that the former is mostly interested in the

coverage of functionalities and flow paths, whereas the latter is interested in

coverage of failures (or defects) [13, 22].

9

There, however, exist some problems with software testing process when software

reliability is of primary concern. The first problem with software testing is

coverage: Because of the direct effect of the selection of failure data on the

reliability model performance, the content and coverage of the tests are critical [9,

18]. Coverage problem also affects the cost of a project since the cost of finding a

defect in early phases of software development process is lower than that of finding

it later in the development process [16]. Another important aspect of test coverage

is that the selection of test cases and failure data influences the way the software

reliability estimation model are formed [9].

The second problem is detection and prevention of failures; not every failure is an

independent one and it is possible that removal of a failure also remove (or

introduce) another one. That is why nature of the failures should be investigated to

see if there is correlation between failures [19]. At this point, the study of Wohlin

and Korner gains importance [20]. In that study a model has been formed to

represent the spread of defects based on a level-approach, in which the term “level”

corresponds to the phase of the development process that a specific fault is first

introduced. It is stated in that study that a defect found in a level can be the

indicator of the defects in previous levels.

In contrast to coverage of functionality, which is some sort of validation of what is

intended to implement, the business of failure coverage is not a straight-forward

action due to stochastic nature of distribution of failures. Wohlin and Korner’s

method solves this problem up to some extent [20]. However their assumption that a

failure in a level is independent of the others cause problem in real-life [19]. In

deed, the relation of a defect found in early phases of the project with another one

found in later steps is not covered in their study.

10

An idea to relax the testing process, which is proposed by Boland and Singh [16] is

that the effect of finding an error in early phases has more noticeable effect on the

overall failure rate of the software than that of finding it later. That idea leads to the

corollary that it is helpful to spend more effort on testing at early stages, beginning

at component testing and code-review.

There are some studies to determine a method to guarantee failure coverage. Some

researches prefer use of test-coverage methods to defect-coverage and generate the

concept of test-coverage growth [13].

It is proven in another study that ability to detect defects is correlated with code-

coverage [22]. A method is formed in that study for this purpose and the results are

compared with well-known software reliability growth models to determine their

accuracy.

2.2.2 Quality and Software Reliability

Software reliability is considered as an important metric for software quality [1, 3,

18, 26]. In [29], however, Voas indicates that highly-reliable software is not

necessarily a high-quality product, as there exist situations in which ultra-reliable

software systems showed performance degradations, poor robustness and lack of

maintenance precautions.

An approach proposed to make reliability estimations and predictions parallel to

quality is to organize the testing process in such a way to make the user

11

requirements tested more strictly with increased frequency of repetition of revealing

input set [2, 30]. The essence of this technique is that most of the time the user is

not interested in how the problem was solved; he/she wants to see that the proposed

solution is the one that meets the requirements.

The problem with the method mentioned above is that exception handling is not

always considered when such testing scenarios are created [31]. Especially in the

case of safety-critical software, it is difficult to determine the test cases that lead the

exception handling routines to run [31]. In [33] it is claimed that aspect-oriented

programming improves reliability by its nature providing direct control over

exception handling.

Another way of improvement of quality and reliability of software systems is the

code-inspection [34]. In the literature, there are examples of check-lists for

improvement of quality of code-inspection process [32].

2.2.3 Project Management and Reliability

A direct use of software reliability studies appears in deciding the time when the

product is ready to release [14, 36]. According to the current level of reliability, the

amount of necessary testing is determined from the software reliability models by

making use of failure data. By this way, it is also possible to measure cost of certain

amount of increase in the reliability in terms of time, budget and man-hours [17].

Reference [3] presents a valuable discussion on how software development models

affect the overall reliability of a software system. The models investigated in that

12

study are Waterfall Model, Classic Development Model, Prototyping Approach,

Spiral Model, Incremental Development Model, and Cleanroom Model. Among

these, Waterfall Model is criticized for not allowing the solution of an inherent

problem noticed in later phases, which increases the cost of reliability [16]. The

problem of Classic Development Model with respect to reliability is stated to be the

inefficiency of the model to help customer in determination of requirements in a

clear manner. In that study, Prototyping Approach is suggested for improvement of

quality and reliability since it provides feedback from the customer and actual users

of the system. It is also indicated that Risk Analysis actions performed in each cycle

of Spiral Model contributes to quality and reliability of the software system.

According to [3] it is advisable to employ Incremental Development Model if

specific functions/modules of the product have more strict reliability requirements.

2.2.4 Metric Collection Systems

If reliability is essential, then it has to be controllable. The necessary control

process has to be based on observations or measurements. Because the raw material

of these measurements may be defined differently from one organization to another,

a generalized method of observation or measurement is needed. Metric collection

systems are the answers to this need.

The process of creation of a software metric collection system is defined by [37] as

of six successive steps. These steps are:

1. Documentation of the software development process

2. Statement of the purpose of the metric collection system

13

3. Determination of the metrics required to be collected in order to reach

specific purposes

4. Identification of the data to be collected

5. Definition of the procedures to obtain data from the organization and

projects

6. Coding of the designed overall system.

Ramakrishnan [38] reviews the general approaches to design of metric collection

systems and remarks that two major approaches exist:

1. Fenton’s Method: There exist three classes of software entities that may be

measured; these are Process, Product, and Resources.

2. Hetzel’s Bottom-Up IOR Model: Hetzel considers Input, Output, and Result

as entities that may be measured.

Ramakrishnan’s claim is that there is a duality between these two major approaches;

Process, Product, and Resource of Fenton are equivalent to Hetzel’s Input, Output,

and Result, respectively. In that work basic principles of measurement systems are

applied to a case where data is collected via manual forms, and entered to the

system by a supervisor. Among these forms are Gannt charts, list of software

products, log sheets of the members of the development team, and contracts. The

findings are output in a report format. Once the findings are output as a report, they

are considered as records; that is why the findings need to be validated before

entered to the system. That gives birth to the problem that for large projects it is not

easy for a supervisor to go through every single finding, and on the other hand, it is

not feasible to automate the metric collection process completely without approval

of the supervisor. For this reason, current state of the project can support non-

objective criteria.

14

Another considerable metric collection system is reported by Chen [39]. Goal-

Question-Metrics (GQM) is employed as guidance. The reason why GQM is

selected for the guidance purposes is its suitability for goal-driven studies. The

system has a client-server architecture, where client –side is regarded as “assistant

agent”, and server-side is “cooperative agent”. Server actions are defined in terms

of agent roles (like “Goal Identifier Agent”, “Metrics Definer Agent”, etc.). Client-

side is mainly responsible for input-output interactions with the users of the system.

All server-side actions (roles) operate collectively according to the inputs of the

client-side and the goals to process relevant questions. That way, business goals are

transformed into measurement goals, and a software measurement plan is defined in

terms of objectives, description, implementation foresights and sustained operation

of measurement.

Offen [40] points out a common mistake made by the companies that plan to

employ metric collection systems: it is usually the case that the organizations first

determine what metrics can be collected, and then define procedures to collect

those. What would be the ideal case is to determine which metrics comply with the

business goals, and then to define a complete process for measurement and metric

collection. An algorithm proposed in that study to avoid that problem is as follows:

1. Understand business strategy

2. Name goals, risks, and sub-strategies

3. Determine factors that affect the success of the process

4. Define specific and neat development goals

5. Put forward questions

6. Define measures

7. Define the procedures to collect metrics from the development team

8. Review this process iteratively

15

Another software measurement system is reported by Eralp [41]. Metrics are

selected according to measurement categories and specific organizational issues and

goals, and are classified as Schedule Measures, Product Quality Measures,

Resource and Cost Measures, and Size and Stability Measures. Next,

responsibilities and priorities are assigned for each measure, and resources and

collection mechanisms for these metrics are determined. The results are monitored

via graphical user interfaces with different visual realizations.

In the next chapter, a metric collection system is formed in the light of information

presented in this chapter. For this purpose, process improvement goals of the

Company shall be discussed, metrics to be measured shall be determined, and

existing process shall be revised to cover the measurements.

16

CHAPTER 3

PROPOSED MEASUREMENT SYSTEM

This chapter covers the development of a measurement system and modification of

existing processes to include this measurement system. For this purpose, original

processes of the Company are modeled via computer tools, as presented in

APPENDIX A. Then, process improvement goals of the company are determined

by conducting interviews with the stakeholders of the processes and the Company.

Afterwards, the metrics to be collected to implement these goals are determined and

examined with the stakeholders. After that, the details of the metric collection

system are formed, and cost analysis is performed. Finally, modified processes are

modeled and presented in APPENDIX B.

3.1 Process Improvement Goals of the Company

In the light of information presented in previous chapter, the first task of generation

of a metric system was decided to be determination of process improvement goals

of the company. Interviews conducted with the Chief of the Quality Assurance

Division and a member of that division specialized in software projects have shown

that principal goals of process improvement studies of the Company focus on so

called ‘Basic Processes’ that define

17

• Organizational Management Activities (Strategic Planning, Management

Review, Budget Planning, Correspondence, Business Development,

Purchase),

• Project Management Activities (Project Planning, Project Monitoring),

• (Hardware) Production Activities,

• Infrastructure Maintenance Activities,

• Quality Assurance Activities,

• Quality Control Activities,

• Organizational Education Activities.

Due to the short history of the organization, the primary concern is to monitor the

processes mentioned above, and those that define activities on (software)

development are of secondary concern. The policy of the organization is to first

stabilize Basic Processes, and then to improve development processes. For this

reason there is no concrete aim in improving the development processes. This fact

makes it harder to modify existing process definitions to collect a wider range of

metrics on processes and the products.

Nevertheless, there exists a tendency to determine the level of reliability of software

products. This tendency takes its roots from the customer expectations. The fact that

current process definitions do not provide data on reliability of software products is

considered as a weakness and a work-group named “Software Reliability Work

Group” (SRWG) was formed for the purpose of determination of problematic issues

in the software development procedures of the organization regarding software

reliability and preparation of a proposal in order to draw a guideline for the removal

or improvement of them. Models of process definitions for software development

processes, namely Software Development Process, Requirements Elicitation

18

Process, Software Design Process, Coding Process, and Software Testing Process,

are presented in APPENDIX A.

3.2 Determination and Classification of Metrics to be Collected

The starting point of work of Software Reliability Work Group, which is formed by

representatives from Systems Engineering Division, Quality Assurance Division,

Software Development Division and Modeling and Simulation Division, was the

understanding of software reliability metrics commonly agreed in the software

industry. The list and explanations of those metrics were obtained from IEEE Std

982.2-1988 [1].

Below, we evaluate the metrics presented in the document according to procedures

that currently run at the Company. 24 out of 39 metrics are decided to be

considerable for company goals. Software Reliability Work Group decided to scale

selected metrics according to their ‘availability’ and ‘relevance’ to company

procedures. The results are tabulated in Table 1. ‘Availability’ (A.) field in Table 1

indicates the availability of the metric with scaling explained as:

1. Currently being collected

2. Can be collected after minor modifications in procedures

3. May be collected only if there is a specific need in a project

4. Is not being collected and will not be collected

19

Table 1 - Evaluation of the Metrics for the Company

Metric Name A. R. Ava*Rel

1 Fault-days number 1 2 2

2 Functional test coverage 1 1 1

3 Cause and effect graphing 4 4 16

4 Requirement traceability 1 1 1

5 Defect indices 4 3 12

6 Error distribution(s) 4 3 12

7 Software maturity index 1 2 2

8 Man hour per major defect detected. 3 3 9

9 Number of conflicting requirements 2 2 4

10 Software science measures 4 4 16

11 Run reliability 4 3 12

12 Design structure 3 3 9

13 Mean time to discover the next K fault 3 2 6

14 Software purity level 2 4 8

15 Requirement compliance 3 4 12

16 Test coverage 1 2 2

17 Residual fault count 4 3 12

18 Testing sufficiency 2 2 4

19 Failure rate 1 2 2

20 Software documentation & source listing 3 2 6

21 RELY(Required Software Reliability) 3 3 9

22 Software release readiness 3 3 9

23 Completeness 2 2 4

24 Test accuracy 2 3 6

20

Another field present in the table is ‘Relevance’ (R.), which is a measure of how

tightly a metric is related to data requirements of work packages in the projects. The

scale for relevance is as follows:

1. Must be collected

2. Potentially required in future projects

3. May be required upon customer request

4. Will never be required upon a direct request

In this study, we have decided to consider only those metrics with A*R value lower

than or equal to 2. The metrics satisfying this condition are summarized in Table 2.

The metric Fault-Days Number in Table 2 is defined in [1] as the number of days

that passes before faults are removed from the software product. For better usage of

this metric, average of this metric for all faults must be calculated.

Functional Test Coverage indicates what percent of functional requirements of the

system under development has a corresponding test definition. It is used to

determine if all the functional requirements are guaranteed to be tested.

Requirements Traceability is considered as a metric that helps determining what

functional requirements are defined in the system under development per customer

requirement. It may be regarded as the ratio of functional requirements to original

requirements; thus deviation from unity must be avoided as neither missing nor

additional requirements are desired.

Software Maturity Index is a measure of how stable a software product is. It can be

measured by counting changes in a software product from one baseline to other. In

cases where this is not possible, an alternative may be to count number of faults

21

determined between two baselines. While from one point of view large number of

faults determined indicates a more mature software product as faults are removed, it

should be noticed that important percent of faults are determined in testing phase,

and thus determination of faults in earlier phases may be a sign of existing faults

that may be determined in testing as it is not known what percentage of existing

faults are detectable.

Table 2 - Metrics to be Collected

Metric Name A R A*R Explanation

1
Fault-days

number
1 2 2 Fully met via YUB Forms.

2
Functional

test coverage
1 1 1

No direct correspondence. Technical

Review Form and Test Result Form may

be used for this purpose.

3
Requirements

traceability
1 1 1

Technical Review Form and Test Result

Form may be used for this purpose.

4

Software

maturity

index

1 2 2

Because software changes are not

inspected in function level,

Configuration Control Procedure needs

revising.

5 Test coverage 1 2 2

Content of Technical Review Form may

be adequate. It is determined by

evaluating the test definitions with

respect to requirements and the user.

6 Failure rate 1 2 2
Data can be collected by adding an extra

field to YUB Forms.

22

In IEEE Std. 982.2-1988, Test Coverage metric (TC) is formulated as

 TC = 100
functions) ofnumber (total

 tested)functions of(number
features) desired of(number
features) defined of(number

××

According to this formulation, Test Coverage metric can be employed only after the

design phase as both “number of defined features” and “total number of functions”

are expected to vary until the end of design phase. As seen from the above equation,

in order to calculate Test Coverage metric, number of defined features and number

of desired features must precisely be known, which is possible only if the

organization employs precautions to guarantee traceability from user requirements

to product design. Also, calculation of Test Coverage metric requires the

information of what percent of implemented functions are actually tested. This

indicates the correlation with Test Coverage and Functional Test Coverage. For

these reasons, it is possible to claim that in an organization that monitors

Requirements Traceability and Functional Test Coverage, the infrastructure to

monitor Test Coverage exists.

Failure Rate is a function of occurrences of failures within time. When a software

product is tested, the occurrence times of failures are recorded and total number of

failures is plotted as a function of time. For proper use of this metric, coding phase

must be completed.

An interview has been conducted with Project Leaders and Software Quality

Assurance Team Leader to determine if there exist a mechanism or a formulation to

use the metrics mentioned above in decision making or report generation. The

interview has showed that there is no such formulation as the Company currently

lacks statistically meaningful set of data (metrics in this case) from previous or

23

current projects. It is declared that available data is interpreted as a specific case of

a specific project.

3.3 Formation of Metric Collection System

The process definitions altered to cover the metric collection system are presented

in APPENDIX B. These models are for Software Development Process,

Requirements Elicitation Process, Software Design Process, Coding Process, and

Software Testing Process. For reasons that will be explained in Chapter 4, the

modification is limited to changes defined by the requirements of the metrics

Software Maturity Index, and Functional Test Coverage. As explained in Section

3.2, current processes readily meet the requirements of the metrics Fault-Days

Number, and Requirements Traceability, there is no specific need for a change.

Moreover, as discussed previously, monitoring of the metric Failure Rate does not

assume any modification to the processes. This implies that the only metric that the

requirements of which are not met is the Test Coverage metric.

Subsections of this section discuss modifications regarding each metric to be

collected.

3.3.1 Modifications for Requirements of Software Maturity Index

As implied by the definition of Software Maturity Index, software products must be

evaluated after baselines if software maturity is concerned. To improve the

performance of the software development processes with respect to the metric

24

Software Maturity Index, a “Software Maturity Matrix” must be created after

baselines defined by current process definitions are formed. Among these baselines

that this work is concerned about are Software Functional Baseline, Software

Design Baseline, and Software Product Baseline. Software Functional Baseline is

formed at the end of Requirements Elicitation Phase, right after Software

Requirements Specification is prepared. Software Design Baseline is formed after

integration tests are defined at the end of Design Phase. Finally, Software Product

Baseline is formed on delivery, after acceptance testing. Thus, in the modified

processes, Software Maturity Matrix is formed and inspected after

 1. Software Requirements Specification is prepared,

 2. Requirements Elicitation is complete,

 3. Design is complete.

To form Software Maturity Matrix, all the changes made on software products since

previous baseline is formed shall be listed in a column. In the corresponding rows

of the second column, the proof of need of the change and related explanations shall

be given. Requirements affected by these changes shall be listed in the third

column.

Each time the Software Maturity Matrix is created, a technical review must be

performed in order to see if all the changes are indeed required changes, and all

required changes are performed to modify all related functional requirements. If a

fault is determined in the matrix, it should be reported via YUB, and be removed,

and the Software Maturity Matrix must be updated. This process must be performed

until all the faults appearing in the Software Maturity Matrix are removed.

25

Modifications regarding Software Maturity Index can be traced in Figure 18

(Modified Requirements Elicitation Process), Figure 19 (Modified Software Design

Process), and Figure 21 (Modified Software Testing Process) in APPENDIX B,

where the modifications are emphasized in bold frames.

3.3.2 Modifications for Requirements of Functional Test Coverage

In order to improve the performance of the software development processes with

respect to the metric Functional Test Coverage, a “Functional Test Coverage

Matrix” must be created right after the integration test are defined at the end of

Design Phase. In the first column of the Functional Test Coverage Matrix shall be

the functional requirements. The second column shall list associated modules of the

software product. Finally, tests assigned to functional tests shall be listed in the

third column.

This matrix is used to determine if existing modules meet the functional

requirements and if a test method is associated with that module. That way it is

guaranteed if the customer needs are transformed into design elements and each

element –and thus customer need- is tested. If an improper entry is found in the

matrix, the situation is reported via YUB, and related corrections are performed in

the product after Design Review. An important fact that needs to be pointed out at

this point is that while the essence of creation of this matrix is implicitly performed

in the Company, they are not explicitly mentioned in procedures. Thus, addition of

these stages mentioned above is completely realistic and does not affect the nature

of company procedures.

26

Modifications regarding Functional Test Coverage can be traced in Figure 19

(Software Design Process) in APPENDIX B.

3.4 Cost of Modifications of the Procedures

The cost of modifying the process definitions and procedures to meet the

requirements of Table 2 is analyzed in this section.

The costs expressed as man*hours are calculated in the light of information

provided by Software Quality Assurance Team Leader, and the Chief of Systems

Engineering Division.

3.4.1 Fault-Days Number

As explained in 3.2, Fault-Days Number indicates the number of days that faults

spend in software products, and can be monitored in case of ongoing projects as

well as completed ones. Such information is especially useful for future or ongoing

projects if data on completed projects exist. The “life” of faults can be regarded as a

performance index of software development process. If statistically adequate data is

available, it would be possible for projects managers to suggest expectations of data

of determination and removal of faults. That way it would be possible to outline a

project calendar with narrower uncertainties, which in turn improves the

effectiveness of project planning process.

27

It may be expected to avoid rework as much as 10 days * 2 men * 20% of a day * 8

hours a day = 32 man*hours per project. In other words, recording Fault-Days

Number for each project would save up to 16 man*hours in future projects. On the

other hand, according to Table 2 no modification to the current development

process definitions is required; thus Fault-Days Number comes at no cost.

3.4.2 Functional Test Coverage

For properly monitoring Functional Test Coverage, Technical Review Form and

Test Result Form must be revised. Once the organization is able to monitor

Functional Test Coverage, ratio of faults determined to faults that exist in the

software product will increase as possibility of delivery of a functional unit without

testing is reduced. Moreover, excessive testing, or test duplication will be avoided,

yielding reduced testing costs.

Assuming that currently 1 functional unit in a single project undergoes duplicated

testing, 10 days * 2 men * 20% of a day * 8 hours / day = 32 man*hours per project

is saved in case Functional Test Coverage is monitored.

The modification costs are limited to revision of two forms in total. Assuming that

it takes one employee for a period of three workdays to revise a form, total cost is 2

forms * 1 man * 3 days / 1 form * 8 hours / day = 48 man*hours.

28

3.4.3 Requirements Traceability

Requirements traceability is one of the major concerns of the division of Systems

Engineering at the Company. Moreover, in all of the software projects developed at

the Company, the customer asks for an official evidence of requirements

traceability. As software reliability can be judged in terms of conformance to

performance requirements [45], the metric ‘Requirements Traceability’ serves as a

measure of to what extent reliability analysis and testing is performed. Thanks to

that fact, with no effort to change current procedures it will be possible to gain

confidence with requirement traceability works, and to decrease rework effort that

frequently occurs in case of a change in project documents and the product itself. In

a typical project conducted at the Company, the rework effort can be calculated as

12 documents * 3 revisions * 1 man * 8 hours = 288 man * hours per project.

3.4.4 Software Maturity Index

This metric can be monitored after the Configuration Control Procedure is revised

accordingly. For proper interpretation of the metric, either changes or faults in

software products from one baseline to the next one are counted.

An expected outcome is parallelism between software maturity index and software

reliability. It may be possible to gain confidence with reliability predictions or

estimations, and to avoid further effort for reliability improvement work. This way,

it would be possible to save up to 10 days * 2 men * 20% of a day * 8 hours / day =

32 man*hours.

29

The cost of being able monitor this metric is that of revision of Configuration

Control Procedure, which may be approximated as 5 days * 1 man * 8 hours / day =

40 man*hours.

3.4.5 Test Coverage

Provided that the metrics Requirements Traceability and Functional Test Coverage

can be monitored, Test Coverage can be monitored at no cost, as explained in

Section 3.2.

The benefit of monitoring Test Coverage is that it indicates if all the desired

features are implemented and tested completely. That way, customer satisfaction is

guaranteed, and thus a more reliable product is delivered. Monitoring of Test

Coverage does not provide saving for development costs.

3.4.6 Failure Rate

Failure Rate is the metric that enables quantitative analysis of product reliability. As

explained in Chapter 2 in detail, the input of reliability growth models is the failure

rate of a product. For this reason, in case software reliability of a software system

has to be explicitly expressed in a quantitative manner, failure-time information

should be recorded in system tests.

30

Current software development process readily assumes that this information is

recorded. Hence, there is no need for a modification of the process definitions.

Monitoring of Failure Rate does not provide saving for development costs.

3.4.7 Summary of Modification Costs

Table 3 presents a summary of information given in 3.4.1 to 3.4.6. It indicates that a

total of 88 man * hours of work would result in a save of 384 man * hours per

project. It should be noticed that while the total cost is to be spent once, the savings

will be folded in each project completed.

Table 3 – Modification Costs Summary

Metric Cost (man*hour) Savings (man*hour)

1 Fault-Days Number 0 32 per project

2 Functional Test Coverage 48 32 per project

3 Requirements Traceability 0 288 per project

4 Software Maturity Index 40 32 per project

5 Test Coverage 0 N/A

6 Failure Rate 0 N/A

Total 88 384 per project

31

In the next chapter, evaluation of the modifications proposed in this chapter shall be

discussed, and operation principles and structure of the computer tool developed for

this purpose will be described in detail.

32

CHAPTER 4

PROPOSAL EVALUATION

In this chapter, first of all, alternatives for the evaluation of the system described in

Chapter 3 shall be discussed. Then, the computer tool developed for the evaluation

of the system and its features shall be described in detail. After the explanation of

general flow of the tool, simulation philosophy and associated work shall be

described.

4.1 Method for Evaluation

4.1.1 Evaluation Alternatives

It is widely accepted that the best way of evaluation of process improvement

proposals and modifications is application of modified procedures in a real project

or organization [41]. By actually applying the improved processes, it is possible to

observe direct effects of the proposed system. As the time progresses and projects

with different characteristics are developed with the new system, problematic points

are detected and removed; real statistical data about the system and projects is

obtained and used to further improve the system.

33

During the development of the proposed measurement system it was planned to

perform mentioned modifications in the Company procedures and gather statistical

data from the projects being developed by the Company. Due to re-organization of

the Company, however, computer simulation became the primary alternative for the

evaluation of the proposed system as it permits construction of the system, without

affecting the organizational structure, and requires limited resources. Consequently,

computer simulation of the system reduces the cost and managerial risk of

modifications.

It is possible with the simulation tool to characterize a set of programmers working

for the Company, define a project by providing its size and estimated development

duration, and to perform simulations as if the Company develops the defined

projects, with defined programmers. The response of the simulation tool to different

cases can be analyzed by defining and simulating different projects with different

sizes and different development duration estimates, and by altering workloads of the

programmers. More importantly, the simulation tool can be customized to account

for variations in the ability of the Company to detect faults existing within a

software product.

The tool generates output files that contain information about the fault content of

the software product developed, development duration, and size of the final product.

That way, user is provided with the ability to compare reliability levels of the

products developed with the current software development process of the Company

and with the one proposed in Chapter 3.

34

4.1.2 Limitations of the Simulation

While during the development of the system proposed in Chapter 3, the entire set of

needs of the Company is considered and all the requirements are met, the simulation

introduces certain limitations. In Chapter 3, six metrics were suggested to be

monitored. These are:

1. Fault-Days Number

2. Functional Test Coverage

3. Requirements Traceability

4. Software Maturity Index

5. Test Coverage

6. Failure Rate

Among these metrics Functional Test Coverage, Requirements Traceability, and

Test Coverage necessitates detailed statistical data on the structure of software

products in function level such as desired functionalities, defined functionalities,

number of modules, total number of functions in a module, number of module

functions tested. To be able to include this data in a simulation, statistically

meaningful number of sample projects must be available; otherwise the data would

be misleading. Unfortunately, there is only limited number of software projects

developed by the Company, and thus limited data exists. For this reason these

metrics are not feasible for simulation purposes. Thus, Functional Test Coverage,

Requirements Traceability, and Test Coverage will not be monitored in the

simulation. Nevertheless, absence of this data does not affect the dependability of

the simulation tool as the tool treats all the metrics independently, and allows

addition of new metrics when adequate data is provided by the Company.

35

In addition, Failure Rate is a metric that may only have significance in the testing

phase; it does not affect the design phase. This is why it will not be monitored in the

simulation. As it is aimed in this study to examine how reliability of the products is

affected by the proposed modifications, exemption of Failure Rate, which does not

have effect on the design, is acceptable.

4.2 Simulation Tool Outline and Features

For the purpose of simulation of the proposed measurement system described in

Chapter 3, a computer tool with a user-friendly interface is developed. With this

computer tool, the user may define different projects for which software

development processes of the Company will be simulated; that is, the program is

supposed to simulate the Company processes as if a defined project is to be

developed via these processes. To achieve this, user may define programmers that

will participate in the development process. Moreover, the user may modify the

information regarding the projects and programmers.

Once a project is defined and opened for simulation, the computer tool runs the

computer models of both original processes of the Company and those proposed in

Chapter 3. For this purpose, process models in APPENDIX A and APPENDIX B

are of special importance as they constitute the basis of simulation flow. The

simulation results are stored in different text files for inspection.

The simulation of development of a project as well as creation of project and

programmer information is achieved via user commands. The user commands are

summarized in Table 4. Level-1 commands shown in Table 4 either perform an

36

atomic task or introduce a list of atomic tasks. Level-2 commands are all atomic

tasks.

The relations of the database files and user commands are summarized in Figure 2.

Below, the main commands are overviewed.

Figure 2 - Relations of Database Files and User Commands

37

Table 4 – User Commands

User Commands

Level-1 Commands Level-2 Commands

Create Project

Create Programmer

View Available Programmers

Edit Programmers Pool

Edit Programmer

View Projects Under Development

Edit Project

Open Project

Simulate Project

Quit Program

4.2.1 “Create Project” Command

If the user selects “Create Project” command, the program prompts the user to

provide “Name of the Project”, “Project Manager”, and “Estimated Size of the

Project” as thousands lines of code. For the user to choose the project manager

among available programmers, the command “View Available Programmers” is

automatically processed.

The project information obtained from the user is stored in a text file that bears a

name which is equivalent to the order of the project; the information of the first

38

project created is stored in the file 1.txt, and that of the nth project is stored in the

file [n].txt. The order information is obtained from the file projects.txt that stores

the order and the name of the projects created. The flowchart of “Create Project”

command is given in Figure 3.

Figure 3 - Flowchart of “Create Project” Command

39

4.2.2 “Create Programmer” Command

When the user selects “Create Programmer” command, the program expects the

user to enter a “Name”, a “Surname”, and the “Experience” of the programmer in

years. The programmer information obtained from the user is stored in a text file

that bears a name which is equivalent to the order of the programmer preceded by

the letter “p”. The information of the first programmer created is stored in the file

p1.txt, and that of nth programmer is stored in the file p[n].txt. The order

information is obtained from the file programmers.txt that stores the order and the

name of the programmers created. The flowchart of “Create Programmer”

command is given in Figure 4.

The simulation program permits creation of up to ten programmer profiles. This

amount is realistic when the software development team of the Company is

considered.

40

Figure 4 - Flowchart of “Create Programmer” Command

4.2.3 “View Available Programmers” Command

When the user selects “View Available Programmers” command, contents of the

files with names starting with the letter “p” is listed according to the format in Table

5. The flowchart of “View Available Programmers” command is given in Figure 5.

41

Table 5 – Output of “View Available Programmers”

No
Name of the
Programmer

Surname of the
Programmer Experience

1 Programmer_1_Name Programmer_1_Surname Exp_1
. . . .
. . . .
. . . .
n Programmer_n_Name Programmer_n_Surname Exp_n

Figure 5 - Flowchart of “View Available Programmers” Command

4.2.4 “Edit Programmer” Command

In case the user desires to modify information of a specific programmer, the

command “Edit Programmer” should be employed. When called, this command

calls “View Available Programmer” command automatically to force the user to

choose the programmer whose information is to be modified. Once the programmer

42

is selected, the program displays current information and prompts the user to enter

new information. When the new information is obtained from the user, it replaces

the content of the file that keeps obsolete information. The flowchart of “Edit

Programmer” Command is given in Figure 6.

Figure 6 - Flowchart of “Edit Programmer” Command

4.2.5 “View Projects Under Development” Command

The operation of “View Projects Under Development” command is similar to that

of “View Available Programmers” command. Once this command is selected,

43

contents of the files that store project information are listed according to the format

in Table 6. The flowchart of “View Projects Under Development” Command is

given in Figure 7.

Table 6 - Output of “View Projects Under Development”

No
Project
Name

Project
Manager
Name

Project
Manager
Surname

Estimated
KLOC

Estimated
Duration

1 P1_Name P1_Mng_Name P1_Mng_Surn P1_KLOC P1_Duration
.
.
.
n Pn_Name Pn_Mng_Name Pn_Mng_Surn Pn_KLOC Pn_Duration

4.2.6 “Edit Project” Command

“Edit Project” command acts in a similar fashion as “Edit Programmer” command.

When called by the user, it calls “View Projects Under Development” so as to force

the user to choose the project that is to be updated. When a project is selected,

current information about the project is displayed and new information is accepted.

The new information obtained from the user replaces obsolete content of the project

file. The flowchart of “Edit Project” Command is given in Figure 8.

44

Figure 7 - Flowchart of “View Projects Under Development” Command

4.2.7 “Simulate Project” Command

“Simulate Project” command constitutes the heart of the tool. The projects and

programmer profiles created and updated with other commands are resources of this

command.

45

Figure 8 - Flowchart of “Edit Project” Command

When a project is opened and “Simulate Project” command is selected, for a

realistic operation of the simulation, the tool expects two more inputs from the user:

Fault Finding Ability, and Company Workload Index. Fault Finding Ability is an

index that may have values in the range [0..100] and points what percent of the

faults in software products could be determined when software development

process is executed. This index should be obtained from the user as there is no

available statistical data due to the fact that post-developmental procedures of the

Company (e.g. Maintenance Procedure) are not defined within the organization yet.

Company Workload Index may have values in the range [0..10] and indicates how

busy the Company is. The larger the Company Workload Index, the larger the

possibility that programmers are reserved for other business activities of three days

46

long is. To account for real life situations, this probability is assigned a Rayleigh

distribution with mean 3.

“Simulate Project” command performs two different simulations on the same

resources: the first one employing original software development procedures of the

Company, the second one with proposed measurement system in Chapter 3.

When simulating with original procedures, the tool monitors Total Time Elapsed

(TTE), Number of Faults Introduced within Total Time Elapsed (NoFI), Number of

Faults Determined within Total Time Elapsed (NoFD), and estimate of total lines of

code after each step of development procedure (KLOCE). In the case of simulation

of modified procedures, that is the software development process with measurement

system of Chapter 3, in addition to TTE, NoFI, NoFD, and KLOCE, the tool also

monitors identities of faults determined in each step of development process and

their removal time from the software products. The flowchart of “Simulate Project”

Command is given in Figure 9.

47

Figure 9 - Flowchart of “Simulate Project” Command

48

Figure 9 - Flowchart of “Simulate Project” Command (Continued)

49

4.3 Simulation Details

The simulation approach applied in this work assumes that each step of software

development procedures presented in APPENDIX A and APPENDIX B affects

organizational “resources”, and “fault content” of software products. Organizational

resources are time and programmers, whereas fault content contains number of

faults present in software products, number of faults determined within a step, time

spent on removal of a specific fault, and the ratio of faults determined (ROFD),

which is defined to be the ratio of number of faults determined to number of faults

introduced.

In other words, whenever a project is opened for simulation, corresponding steps of

original processes and proposed system are simulated with the assumption that each

step causes the following actions:

 1. Time is consumed

 2. One or more programmers are assigned a specific task, thus will not

be available for a certain time

 3. Size of the project being developed changes

 4. Number of faults present in the software product being developed

changes

 5. Number of determined faults changes

Thus, each time a step is to be simulated, the simulation tool is internally fed with

mean values of

 1. Required time for the execution of the step

 2. Number of programmers required for the execution of the step

50

 3. Percent change in size

 4. Number of faults created in the step

 5. Number of faults determined in the step.

This way, the simulation gains the ability to reflect such realistic effects as

overshoot of size and development duration estimations, which were declared by

Company officials to be typically around 35% for size, and 25% for time.

Subsections of this section describes the details of how above five actions are

simulated in the tool.

4.3.1 Consumption of Time and Programmers

The mean time required by a step is determined by taking average of corresponding

time information in projects conducted by the Company. In order to guarantee

randomness as in realistic projects, Rayleigh distribution was chosen as the

probability distribution function as it avoids negative ranges.

The time requirement obtained this way -say T1- constitutes the minimum time that

is required to complete the given step. In reality, however, a step requires certain

number of employees available to perform a given task and related statistical data is

fed to the simulation tool for this purpose. For a task requiring n employees,

employee profiles existing in the database are scanned to determine the minimum

time -T2- before n employees will be ready to perform a new task. Therefore the

simulation points that T1+T2 much time has to pass to complete a given step,

instead of T1.

51

Once time requirement is determined, employee profiles are updated according to

the new time information: If busy time of an employee was shorter than time

elapsed in a step, the employee is assigned a new task according to 4.2. If busy time

of an employee was longer than time elapsed in a step the busy time is shortened by

T1+T2.

4.3.2 Variation of Project Size

After the employee profiles are updated, the simulation tool checks if the step

currently being processed introduces a change in the estimate of total lines of codes

of the project. If it does, percent change in the total lines of codes, which is

accepted as an input from real projects of the Company, is used to stochastically

modify lines of code estimate. In this modification, Gaussian distribution [44] is

assumed as a change may mean a decrease in total lines of codes and an increase as

well.

4.3.3 Formation and Detection of Faults

The next task performed in the simulation after project size is updated is the

determination of number of faults determined in this step. The nominal value of

number of faults determined in a step for real projects of the Company can readily

be obtained from YUBs. Since number of faults introduced in a step cannot

precisely be known, the method discussed in Section 4.2.7 is used to determine that

number.

52

As mentioned in Section 4.2.7, faults introduced, determined, and removed in

modified processes are required to bear IDs. For this purpose, two classes are

designed: Fault_Node and Linked_List.

4.3.3.1 Fault_Node Class

This class is designed to represent “faults” in the simulation. A summary of this

class is given in Table 7. When a fault is determined, the day it is determined shall

be set with the function Set_Day_Determined. The method Set_Day_Removed

randomly assigns KLOC for the fault removed, and employs COCOMO method to

calculate the removal time.

4.3.3.2 Linked_List Class

This class is designed to prepare a list of “faults” of type Fault_Node in the

simulation. A summary of this class is tabulated in Table 8.

53

Table 7 - Summary of Fault_Node Class

Private Data
Name Type
ID integer
Day_Created integer
Day_Determined integer
Day_Removed integer

Public Data
Name Type
Next_Entry Fault_Node *

Methods
Name Type Input Name Input Type
Insert_After_This void Insert_This Fault_Node *
Delete_After_This void void
Return_ID integer void
Return_Day_Created integer void
Return_Day_Determined integer void
Return_Day_Removed integer void
Set_Day_Determined void Day_Determined integer
Set_Day_Removed void void

4.4 Other Issues Regarding Simulation

There are issues that must be discussed as they have direct effects on the way

simulation is performed. These are:

• Size and duration estimation

• Random number generation

54

Table 8 - Summary of Linked_List Class

Public Data
Name Type
Root_Node Fault_Node *
Last_Node Fault_Node *

Private Data
Name Type
None

Methods
Name Type Input Name Input Type
Delete_Node_With_ID void ID integer
Add_Node void ID integer
 Date_Created integer
Search_With_ID Fault_Node * ID integer

4.4.1 Size and Duration Estimation

Statistical information on projects conducted by the Company indicates that an

average project is conducted by 30 person*month in 12 months (252 workdays)

yielding 8554 LOC.

For simulation purposes, this data is used as a guideline to determine required

resources of a project to be simulated.

If Basic COCOMO model is assumed [43], following parameters may be used for

estimation of resource requirements:

55

Effort = ab * KLOC bb (person*month)

Duration = cb * Effort db (month)

where

ab = 2.28, bb = 1.2, cb = 2.55, db = 0.445

Throughout the simulation, above parameters are used whenever size and

development duration estimations are performed.

4.4.2 Random Number Generation

Assignment of values to random variables constitutes an important part of this work

as it directly affects the performance of the simulation tool in terms of its realism.

For the purpose of generation of random variables, first of all, two uniformly

distributed random variables were created each time an assignment is to be done.

These random variables are then transformed into polar coordinates to obtain

Gaussian distributed random variables [44]. In cases when Rayleigh distributed

random variables were required, which is the case when time resources are

consumed, a uniformly distributed random variable was generated and then

transformed with the following equation:

uni_rv)log(uni_rv •=rv

where rv is the resultant random variable and uni_rv is the uniformly distributed

random variable. rv is multiplied by the mean to obtain desired values.

56

Histograms of outputs of functions for generation Gaussian and Rayleigh

distributed random variables with mean 1 are given in Figure 10 and Figure 11

respectively. Both functions were run 65536 times.

0
100
200
300
400
500
600
700
800
900

1000

-3
.4

-2
.9

-2
.4

-1
.9

-1
.4

-0
.9

-0
.4

0.
06

0.
56

1.
06

1.
56

2.
06

2.
55

3.
05

3.
55

4.
05

4.
55

5.
04

Value

Fr
eq

ue
nc

y

Figure 10 - Histogram for Gaussian Random Variable Generation

57

0

100

200

300

400

500

600

700

800

900

0

0.
27

0.
53 0.
8

1.
07

1.
34 1.
6

1.
87

2.
14 2.
4

2.
67

2.
94

3.
21

3.
47

3.
74

4.
01

4.
28

4.
54

Values

Fr
eq

ue
nc

y

Figure 11 - Histogram for Rayleigh Random Variable Generation

4.5 Output Data and Output Format

The final step of the simulation of a step is the recording of simulation results into a

text file with the format given in Table 9. The output of simulation of original

processes of the Company is stored in a file named “Original.txt”, whereas that of

proposed system is stored in “Modified.txt”.

“Step” column shown in Table 9 contains an integer code that indicates what step of

software development process was simulated. The lists of step codes for original

and modified procedures are presented in APPENDIX C, and APPENDIX D,

respectively. In the output files, “TTE” column contains workdays that have passed

until the end of a step. “NoFI” column indicates number of faults introduced until

the end of a step. In the “NoFD” column is number of faults determined until the

58

end of a step. “KLOC” column is the one where estimate of total thousand lines of

codes is given. Finally, “Faults Determined” column contains two kinds of

information: identity of the fault determined in a step and removal time of that fault

indicated in parentheses.

Table 9- Format for Simulation Results

Step TTE NoFI NoFD KLOC
Estimate

Faults Determined

.

.
n TTEn NoFIn NoFDn KLOCEn IDi(RTi),IDj(RTj),...IDk(RTk)
.
.

The removal time is calculated using the same COCOMO parameters used for the

simulation with the assumption that a fault necessitates a developmental activity

taking certain amount of lines of code. That number of lines of code is assumed to

be a random variable changing uniformly between 0 and 600, where limits are

arithmetic mean of statistical data from the Company. It should, however, be

pointed out that there is an offset of 2 weeks, that is 10 workdays due to other

organizational procedures employed in the Company. Thus, the time information

obtained with COCOMO parameters should be added to 10 to yield removal time.

Another assumption in the calculation of removal time is that determination of a

fault is an interrupt to the software development process, and no matter how busy

the employees are, priority is given to the removal of faults determined.

59

When simulation of all the steps is completed, if software development procedure

with proposed measurement system is being simulated, additional items that will be

used in interpretation of results are appended to the output. These items are:

1. Arithmetic mean of date of formation of each fault (MFD)

2. Arithmetic mean of date of determination of each fault (MDD)

3. Arithmetic mean of duration of removal of each fault (MRT)

The difference between MDD and MFD yields mean time that a fault spends in the

software product without being determined (MTbFD). Sum of MTbFD and MRT

yields mean time that a fault spends in the software product from its formation to its

removal (MTbFR). The purpose of monitoring MTbFD and MTbFR is to show that

it is possible to calculate cost of each software fault to end up with an estimate of

cost of correction of faults in software products. It should be noted that MTbFR is

equivalent to the metric Fault-Days Number. While in a more advanced simulation

tool MRT and and MTbFR would be important outputs, in this study, they are

estimated according to the COCOMO technique based on uniformly distributed re-

work sizes per fault. As such, they have not been included in the simulation outputs.

In the next chapter, the results obtained by operating the simulation tool are

presented and discussed.

60

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, first the performance criteria for the simulation tool and test

conditions shall be defined. Then, the output shall be discussed to determine if

proposed measurement system and the simulation tool yields consistent results.

5.1 Generation of Simulation Results

In order to properly evaluate the performance of the simulation tool, first of all it

should be decided what portion of the output data actually have significance in the

evaluation of the measurement system regarding reliability. Then, the input

characteristics must be defined to extensively test the system. In addition, the

number of times that these experiments are going to be repeated should precisely be

determined. These issues are discussed in the subsections of this section.

5.1.1 Data of Interest

As mentioned in the previous chapter, when the simulation tool is run two text files

are generated: Original.txt, and Modified.txt. The file Original.txt stores the

61

simulation results of original software development procedures of the Company,

whereas the content of the file Modified.txt is the results of procedures with

proposed measurement system.

Statistically valuable part of these files is the rows corresponding to the last step of

development procedures; that is, total time elapsed from the beginning of the

project, total number of faults introduced, total number of faults determined, final

KLOC value. Also, for the modified procedures, MDD, MFD, and MRT are of

importance.

5.1.2 Project Characteristics

Another important point in generation of simulation results is the determination of

characteristics of projects for which software development procedures are executed.

To be able to analyze the response of the simulation tool to each project

characteristic each attribute of a sample project is assigned three different values

within their meaningful ranges. The summary of projects simulated is presented in

Table 10.

The projects P1, P2, and P3 are simulated to determine the response of the

simulation tool to changes in estimated duration of projects. Response of the tool to

KLOC estimate changes is investigated via the projects P1, P8, and P9. The projects

P1, P4, and P5 are simulated to monitor response of the tool to Company Workload

Index variations. Finally, the projects P1, P6, and P7 are used for the purpose of

examining the response of the tool for different Fault Finding Ability values.

62

Table 10 - Simulated Projects

Project # Estimated
KLOC

Estimated
Duration
(Workdays)

Company
Workload
Index

Fault Finding
Ability

P1 9 250 0 60
P2 9 375 0 60
P3 9 500 0 60
P4 9 250 5 60
P5 9 250 10 60
P6 9 250 0 75
P7 9 250 0 90
P8 12 250 0 60
P9 18 250 0 60

5.1.3 Determination of Number of Runs

Because of the fact that calculations performed within the simulation have

stochastic components, it is not possible to interpret the results with one run.

Instead, the simulation must be repeated for “enough times”. Uncertainty of

“enough times” may be removed thanks to the method described in [42], where a

method for determination of number of trials to end up with a mean that lies within

a known neighborhood of the actual mean with a given confidence level is

described. In this work, the neighborhood is limited to ±5% and the confidence

level is set to 95%, meaning that the probability that the arithmetic mean of

simulation results lies within ±5% of actual mean is 95%.

63

The parameters that have been considered in the application of this method are

1. TTE of original procedures

2. NoFI of original procedures

3. NoFD of original procedures

4. KLOC Estimate of original procedures

5. TTE of modified procedures

6. NoFI of modified procedures

7. NoFD of modified procedures

8. KLOC Estimate of modified procedures

9. MFD of modified procedures

10. MDD of modified procedures

11. MRT of modified procedures

12. MTbFD of modified procedures

13. MTbFR of modified procedures

The simulation is repeated until all thirteen variables satisfy the confidence rule

described in the preceding sub-section.

5.2 Verification of Simulation

Dependability of the simulation tool can be judged by comparing its output for a

given project to actual developmental data available for this project. For this

purpose it is wise to run the simulation tool for the sample project mentioned in

Section 4.4.1, which requires 30 person*months, 252 workdays of development

duration, and consisting of 8554 LOC (rounded to 9 KLOC).

64

The summary of the results of the simulation can be found in Table 11, where the

project is designated as P1. The results show that simulation yields a development

duration of around 313 days, and size of 12.5 KLOC. The ratio of simulated

development duration to estimated duration is 24.2%, and that of simulated size to

estimated size is 38.9%. It should be noticed that these overshoots are close to the

ones mentioned in Section 4.3, namely, 35% for size, and 25% for time estimations.

Hence, it is safe to assume that the simulation tool does simulate the software

development process of the Company.

5.3 Discussion of Results

Simulations are performed in the light of explanations given in 5.1. The summary of

simulations of nine projects is presented in Table 11. For the purpose of illustration

of how Table 11 was formed from the simulation results, last ten rows of simulation

summary of Project 1 defined in Table 10 are presented in APPENDIX E. As

visualized in APPENDIX E, Run Number, TTE, NoFI, NoFD, and KLOC for

65

simulations of both original and modified processes are listed. In addition to these,

MFD, MDD, MRT, MTbFD, and MTbFR results are also provided for simulation

of modified processes. Later, the method mentioned in 5.1.3 is employed to

calculate required number of runs to have all the variables within desired

neighborhood with desired possibility. These run numbers are designated with n’.

The simulation is performed repeatedly until all n’ values are larger than or equal to

the run number. When this condition is met, mean values of simulation variables are

transferred to Table 11.

When Table 10 and Table 11 are evaluated together, it is observed that the

simulation program acts consistently. To deepen the inspection of the response of

the tool, groups of projects must be considered instead of single projects.

5.3.1 P1, P2, and P3: Response to Changing Duration

As mentioned previously, sample projects considered in the calculation of

COCOMO model parameters had development duration of one year. For this reason

it is currently not possible to analyze the effects of development duration on RODF

in spite of the fact that RODF is expected to be improved with longer development

duration.

Keeping KLOC estimate constant, an increase in estimated duration of the project

must not affect the size of the project. Simulated duration must be the only variable

to change. This, indeed, is the case as seen in the simulation results. According to

Table 11, change in estimated duration only affects simulated duration for both

original and modified processes.

66

T
ab

le
 1

1
- S

um
m

ar
y

of
 S

im
ul

at
io

n
R

es
ul

ts
 o

f N
in

e
C

ha
ra

ct
er

is
tic

 P
ro

je
ct

s

67

5.3.2 P1, P4, and P5: Response to Changing Workload Index

Effect of change of workload index is the limited increase of development duration

in original and modified procedures. KLOC estimation and Ratio of Determined

Faults, which was defined in Section 4.3, remain unchanged, as expected.

5.3.3 P1, P6, and P7: Response to Changing Fault Finding Ability

Inspection of simulation results for P1, P6, and P7 indicates that a change in Fault

Finding Ability input, which was defined in Section 4.2.7, directly affects Ratio of

Determined Faults, without affecting other simulation parameters. This is a

consistent result as neither duration nor KLOC estimations are related with Fault

Finding Ability. It is worth pointing that for a constant KLOC, number of

determined faults remains constant while that of introduced tends to decrease

regularly with increasing Fault Finding Ability.

5.3.4 P1, P8, and P9: Response to Changing KLOC Estimate

KLOC estimate may be considered to be the main parameter of the simulation as it

constitutes the basics of COCOMO calculations. For this reason, even slight

changes in KLOC estimates give rise to significant changes in other simulation

parameters. This fact can be observed in the simulation results as well. When

KLOC estimate is increased from 9 to 12, and then to 15, duration, NoFI, and

NoFD increases accordingly. The increase, however, is not a linear relationship.

When the KLOC estimate is doubled, duration is increased by a factor of 1.33. The

68

reason for this is that, growth of duration follows COCOMO model where ratio of

durations of n-KLOC and 2n-KLOC projects converges to 1.448, instead of 2.

Variation of KLOC estimate within simulation steps is the reason that simulated

ratio is 1.33, and not 1.448.

5.3.5 Overall Response Evaluation

For the purpose of evaluation of response of the simulation tool in terms of software

reliability, it is wise to compare the resultant Percent NoFD / NoFI values of

original processes to those of modified processes. Table 12 presents these values

and the ratios of Percent NoFD/NoFI values of Original Processes to those of

Modified Processes.

Inspection of table indicates that for all nine characteristic projects, the ratios of

Percent NoFD/NoFI values of Original Processes to those of Modified Processes

are less than unity. This fact, in turn, indicates that original processes are less

promising in the sense that they are able to determined smaller ratio of existing

faults in a software product. As the definition of software reliability and failure

imply that faults present in a software product is a sign of lack of reliability, it is

wise to claim that modified processes yield more reliable software.

69

Table 12– Percent NoFD/NoFI Values

Project #
Original Processes
Percent NoFD/NoFI

Modified Processes
Percent NoFD/NoFI Ratio

1 66.94 72.64 0.92
2 66.11 73.11 0.90
3 67.72 72.28 0.94
4 67.61 72.30 0.94
5 67.73 72.93 0.93
6 83.46 90.58 0.92
7 97.70 99.53 0.98
8 65.06 70.49 0.92
9 62.98 68.28 0.92

AVERAGE 71.70 76.90 0.93

Moreover, the durations of characteristics projects when developed via original

processes and modified processes are summarized in Table 13. It is seed from the

table that a project is developed in almost the same durations. This means that the

increase in software reliability is obtained almost at no cost. In addition to these, the

productivity of the organization is increased slightly as number of LOC produced in

a given time is increased by a factor of 7.9%, which is a fact indicated in Table 14.

In the next chapter, conclusions regarding this work and possible future studies

shall be discussed.

70

Table 13 - Durations of Projects

Project #

Original
Processes
Duration

Modified
Processes
Duration Ratio

1 312.91 315.59 0.99
2 458.23 456.95 1.00
3 609.89 600.08 1.02
4 370.27 370.88 1.00
5 403.23 402.98 1.00
6 312.04 314.87 0.99
7 311.38 313.10 0.99
8 353.61 352.96 1.00
9 416.12 408.78 1.02

AVERAGE 394.19 392.91 1.00

Table 14 - Sizes of Projects

Project #

Original
Processes Project
Size

Modified
Processes Project
Size Ratio

1 12.54 13.66 0.92
2 12.27 13.32 0.92
3 12.52 13.23 0.95
4 12.55 13.62 0.92
5 12.56 13.59 0.92
6 12.40 13.65 0.91
7 12.38 13.51 0.92
8 15.78 16.88 0.93
9 21.22 22.59 0.94

AVERAGE 13.80 14.89 0.93

71

CHAPTER 6

CONCLUSIONS

In this work three major tasks are accomplished. First, software reliability literature

is examined; basic definitions of software reliability studies are understood;

classification and relations of software reliability growth models are inspected;

application areas of software reliability concepts are investigated.

As the second major task, software development procedures of a company are

examined with software reliability being the primary concern; problematic issues

are determined; expectations of the organization in terms of software reliability are

determined; different metrics are evaluated according to their usefulness and

availability, a selection is extracted accordingly, and in the light of information

obtained, a new set of procedures with a measurement system is proposed.

In the final stage of this work, a computer program with a user-friendly interface is

developed to simulate both original and modified procedures, to evaluate the

benefits to be achieved via the proposed measurement-based control system.

72

6.1 Discussion of Findings

This study shows that reliability of software products can be increased without

dramatically altering software development procedures, and at a low cost.

It is observed that the ability of the organization to determine faults existing in a

software product is improved. This is achieved primarily by modifying existing

processes to monitor the metrics Software Maturity Index, and Functional Test

Coverage. This point is remarkable as this study does not aim to propose an

improvement to the software development processes in general sense; rather it

introduces minor modifications to existing processes with software reliability being

the primary concern. This fact can be extracted from the simulation results if it is

realized that while the development duration and hence costs remain constant, the

reliability in increased.

6.2 Future Work

Simulation of proposed system enables evaluation of the system without actually

modifying organizational structure and procedures, which may give birth to short

chaotic periods and infeasible costs. With simulation, it is made possible to analyze

the effects of modifications without managerial and economical risks. For

organizations considering minor modifications in development procedures, it may

be advisable to perform simulations of modifications before actual changes take

place to find out defective points with the new set of changes.

73

It should, nevertheless, be noticed that the decision of performing a simulation

instead of accomplishment of actual process improvement tasks introduces certain

limitations.

The first limitation comes from the fact that the nature of simulations is limited to

internally seeded set of inputs as it requires significant resources to design and

implement a simulation tool fully characterized to real-world situations. For this

reason, simulation may only provide an outline of what would happen in a realistic

situation. The level of realism of the simulation tool may be increased if variety and

depth of statistical data obtained from real projects are increased. This may also

make it possible to implement simulation tools that monitor a broader range of

functionalities. These functionalities may range from additional metrics to monitor

to managerial activities as decision making and project management.

The second limitation is that simulations are performed on user defined projects,

which are nothing but variations of a sample project obtained by linearly varying

certain characteristics of the sample project. It would improve the dependability of

this work if it were possible to compare the simulation to projects with diverse

characteristics.

There exist alternatives to overcome the above limitations. One of these alternatives

is the actual application of the proposed system to the Company, and the second one

is the improvement of the simulation tool to cover all realistic effects and a more

detailed definition of the organization, employees, and the projects.

Apart from simulation approach, a detailed project improvement project may be a

significant choice for the improvement of reliability of software products developed

in an organization. For this purpose, it would be wise to start with classification and

74

analysis of faults determined so as to find out the roots of the problematic points

with the development process and the development team. Once these points are

determined, more specific solutions may be proposed and supported with related

trainings.

75

REFERENCES

1. “IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of

Measures to Produce Reliable Software”, 1998

2. L. Rosenberg, T. Hammer, J. Shaw, “Software Metrics and Reliability”,

http://satc.gsfc.nasa.gov/support/ISSRE_NOV98/software_metrics_and_reliabil

ity.html

 Last Date Accessed: 25.08.2005

3. “MIL-HDBK-338B, Electronic Reliability Design Handbook”, US DoD

4. J. Musa, A. Iannino, K. Okumoto, “Software Reliability: Measurement,

Prediction, Application”, 1990, McGraw-Hill

5. C. Huang, M. R. Lyu., S. Kuo, “A Unified Scheme of Some Non-Homogenous

Poisson Process Models for Software Reliability Estimation“, March 2003,

IEEE Transactions on Software Engineering, Volume: 29 Issue: 3, pp. 261-269

6. S. Ramani, S. Gokhale, K. S. Trivedi, “SREPT: Software Reliability Estimation

and Prediction Tool”,

 http://www.ee.duke.edu/~ssg/papers/tools98.ps

 Last Date Accessed: 25.08.2005

76

7. M. R. Lyu, J. Schönwälder, “Web-CASRE: A Web-Based Tool for Software

Reliability Modeling“,

 http://www.cse.cuhk.edu.hk/~lyu/paper_ps/web-casre.ps

 Last Date Accessed: 25.08.2005

8. S. Brocklehurst, B. Littlewood, “New Ways to Get Accurate Reliability

Measures”, July 1992, IEEE Software, Volume: 9 Issue: 4, pp. 34-42

9. F. Lanubile, “Why Software Reliability Predictions Fail”, July 1996, IEEE

Software, Volume: 13 Issue: 4, pp. 131-132, 137

10. B. Littlewood, “The Problems of Assessing Software Reliability”, 2000,

Proceedings of the Safety Critical Systems Symposium

11. R. C. Tausworthe, M. R. Lyu, “A Generalized Technique for Simulating

Software Reliability”, March 1996, IEEE Software, Volume: 13 Issue: 2, pp.

77-88

12. H. Pham, “Software Reliability and Testing”, 1995, IEEE Computer Society

Press

13. Y. K. Malaiya; M. N. Li; J. M. Bieman; R. Karcich, “Software Reliability

Growth with Test Coverage“, December 2002, IEEE Transactions on

Reliability, Volume: 51 Issue: 4, pp. 420-426

14. M. C. K. Yang; A. Chao, “Reliability-Estimation and Stopping-Rules for

Software Testing, Based on Repeated Appearances of Bugs”, June 1995, IEEE

Transactions on Reliability, Volume: 44 Issue: 2, pp. 315-321

77

15. P. K. Kapur, R. B. Garg, “A Software Reliability Growth Model for an Error-

Removal Phenomenon“, July 1992, Software Engineering Journal, Volume: 7

Issue: 4, pp. 291-294

16. P. J. Boland, H. Singh, “A Birth-Process Approach to Moranda's Geometric

Software-Reliability Model”, June 2003, IEEE Transactions on Reliability,

Volume: 52 Issue: 2, pp. 168-174

17. W. Ehrlich, B. Prasanna, J. Stampfel, J. Wu, “Determining the Cost of a Stop-

Test Decision“, March 1993, IEEE Software, Volume: 10 Issue: 2, pp. 33-42

18. M. Şahinoğlu, “Compound-Poisson Software Reliability Model”, July 1992,

IEEE Transactions on Software Engineering, Volume: 18 Issue: 7, pp. 624-630

19. K. Goševa-Popstojanova, K. S. Trivedi, “Failure Correlation in Software

Reliability Models”, March 2000, IEEE Transactions on Reliability, Volume: 49

Issue: 1, pp. 37-48

20. C. Wohlin, U. Korner, “Software Faults: Spreading, Detection and Costs”,

January 1990, Software Engineering Journal, Volume: 5 Issue: 1, pp. 33-42

21. S. L. Pfleeger, “Software Engineering: Theory and Practice”, 1998, Prentice

Hall

22. M. Chen, M. R. Lyu, W. E. Wong, “Effect of Code Coverage on Software

Reliability Measurement”, June 2001, IEEE Transactions on Reliability,

Volume: 50 Issue: 2, pp. 165-170

78

23. J. D. Musa, “A Theory of Software Reliability and Its Applications”, September

1975, IEEE Transactions on Software Engineering, Volume: SE-1, No: 3,

pp.312-327

24. B. Littlewood, “Software Reliability”, 1987, Blackwell Scientific Publications

25. W. W. Everett, “Software Component Reliability Analysis”, 1995, “Software

Reliability and Testing”, Los Alamitos, California, IEEE Computer Society

Press, pp.45-46

26. A.L. Goel, “Software Reliability Models: Assumptions, Limitations, and

Applicability”, December 1975, IEEE Transactions on Software Engineering,

Volume: SE-11 No: 12, pp. 1411-1423

27. M. R. Lyu, A. Nikora, “Applying Reliability Models More Effectively”, July

1992, IEEE Software, pp. 43-52

28. A. L. Goel, K. Okumoto, “Time-Dependent Error-Detection Rate Model for

Software Reliability and Other Performance Measures”, August 1979, IEEE

Transactions on Reliability, Vol. R-28 No. 3, pp. 206-211

29. J. Voas, “Assuring Software Quality Assurance”, May-June 2003, IEEE

Software, Volume: 20 Issue: 3, pp. 48-49

30. R. L. Glass, “Defining Quality Intuitively”, May-June 1998, IEEE Software, pp.

103-107

79

31. J. Viega, J. Voas, “Can Aspect-Oriented Programming Lead to More Reliable

Software?”, November-December 2000, IEEE Software, pp. 19-21

32. J. R. de Almeida Jr., J. B. Camargo Jr., B. A. Basseto, S. M. Paz, “Best

Practices in Code Inspection for Safety-Critical Software”, May-June 2003,

IEEE Software, Volume: 20 Issue: 3, pp. 56-63

33. R. Laddad, “Aspect-Oriented Programming Will Improve Quality”, November-

December 2003, IEEE Software, pp. 90, 92

34. J. Barnard, A. Price, “Managing Code Inspection Information”, March 1994,

IEEE Software, Volume: 11 Issue: 2, pp. 59 -69

35. V. T. Rokosz, “Long-Term Testing in a Short-Term World”, May-June 2003,

IEEE Software, pp. 64-67

36. M. R. Lyu, S. Rangarajan, A. P. A. van Moorsel, “Optimal Allocation of Test

Resources for Software Reliability Growth Modeling in Software

Development”, June 2002, IEEE Transactions on Reliability, Volume: 51 Issue:

2, pp. 183 -192

37. “Creating a Metrics Program”, Software Productivity Center Inc.,

http://spc.ca/resources/metrics/

 Last Date Accessed: 25.08.2005

80

38. S. Ramakrishnan, T. Menzies, M. Hasslinger, P. Bok, H. Mccharty, B.

Devakadadcham, D. Moulder, “On Building an Effective Measurement System

for OO Software Process, Product and Resource Tracking”, November 1996,

TOOLS Pacific, pp. 239 - 247

39. T. Chen, B. Homayoun Far, Y. Wang, “Development of an Intelligent Agent-

Based GQM Software Measurement System”, August 2003, The First

International Conference on Agent-Based Technologies and Systems, pp. 187-

197

40. R. Offen, R. Jeffery, “Establishing Software Measurement Programs”, March-

April 1997, IEEE Software, pp. 45-53

41. Ö. Eralp, “Design and Implementation of a Software Development Process

Measurement System”, 2004, Master of Science Thesis, Middle East Technical

University

42. Prof. Dr. S. Bilgen, 2005, Lecture Notes

43. B. W. Boehm, “Software Engineering Economics”, 1981, Prentice Hall

44. A. Papoulis, “Probability, Random Variables, and Stochastic Processes”, 1991,

McGraw Hill

45. P. B. Crosby, “Quality is Free: the Art of Making Quality Certain”, 1979,

 McGraw Hill

81

APPENDIX A

THE CURRENT SOFTWARE DEVELOPMENT PROCESS

Need for running
"Software Development

Process"

"Software
Requirements
Elicitation Process"

"Requirements
Elicitation Review"

"Coding Process"

"Pre-Test Review"

Determination of
Project Manager and
Project Employees

"Software Testing
Process"

"Critical Design Review
Process"

END

Board of
Directors

SRS, SDD

Deliverable Code

Software Test Reports

PMP

"Software Design Process"

"Software Design Review"

Project
Manager and

Work-Package
Leaders

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Figure 12 – The Current Software Development Process

82

Requirements Elicitation Process

Request for Software
Requirements Elicitation

Provision and Examination of
User Level Requirements and

Related Inputs

1

Project
Manager

Project
Employees

Project
Employees

Is it required to prepare an
SRS?

Project
Employees

No Yes

Determination of
Requirements

Determination
of Verification

Methods

Preparation of
SRS

SRS

Inspection of
SRS

Project
Employees

Figure 13 - Requirements Elicitation Process

83

2

1

So
ftw

ar
e

De
ve

lo
pm

en
t P

la
n

Ye
s

Pr
ep

ar
at

io
n

of
 "

So
ftw

ar
e

De
ve

lo
pm

en
t

Pl
an

"

N
o

Te
ch

ni
ca

l P
la

nn
in

g
of

 P
ro

je
ct

An
 "

Ac
ce

pt
an

ce
 T

es
tin

g"
 R

eq
ui

re
d?

De
te

rm
in

at
io

n
of

 A
cc

ep
ta

nc
e

Cr
ite

ria

Pr
ep

ar
at

io
n

of
 "

Te
st

 a
nd

 V
er

ifi
ca

tio
n

P
la

n"

Te
st

 a
nd

 V
er

ifi
ca

tio
n

Pl
an

De
fin

iti
on

 o
f A

cc
ep

ta
nc

e
Te

st
s

Pr
ep

ar
at

io
n

of
 S

of
tw

ar
e

Ac
ce

pt
an

ce
 T

es
t

Pl
an

So
ftw

ar
e

Ac
ce

pt
an

ce
 T

es
t P

la
n

Pr
oj

ec
t

M
an

ag
er

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

M
an

ag
er

Fi
gu

re
 1

3
- R

eq
ui

re
m

en
ts

 E
lic

ita
tio

n
Pr

oc
es

s (
C

on
tin

ue
d)

84

2

Definition of System Test

Preparation of "System/Integration Test
Plan"

System/Integration Test Plan - Draft

Requirements Analysis

Preparation of "Software Requirement
Analysis Report"

Software Requirement Analysis Report

Requirement Review

All the Output Sent to Software Development
Library

"End-of-Phase" Presentation

END

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Manager

Figure 13 - Requirements Elicitation Process (Continued)

85

Software Design Process

Request for Software Design

Inspection of Inputs

1

Provision of Related Inputs and
Delivery to Project Employees

Determination of Software
Components Determination of Reuse Components

Determination of Component
Integration Order

Detail Design of
Components Design of Interfaces

Preparation of "Software Design
Report"

Software Design Report

Project
Manager

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Figure 14 - Software Design Process

86

1

Co
nf

ig
ur

at
io

n
M

an
ag

er

De
fin

iti
on

 o
f I

nt
eg

ra
tio

n
Te

st
s

Ne
ed

 to
 P

re
pa

re
 a

 U
se

r G
ui

de
? N

o

Ye
s

Pr
ep

ar
at

io
n

of
 "

So
ftw

ar
e

Pr
od

uc
t

Us
er

 G
ui

de
"

Dr
af

t

So
ftw

ar
e

Pr
od

uc
t U

se
r G

ui
de

 -
Dr

af
t

Re
vi

si
on

 o
f "

Sy
st

em
/In

te
gr

at
io

n
Te

st
Pl

an
" Sy

st
em

 In
te

gr
at

io
n

Te
st

 P
la

n

De
si

gn
 R

ev
ie

w

Al
l t

he
 O

ut
pu

t S
en

t t
o

So
ftw

ar
e

De
ve

lo
pm

en
t L

ib
ra

ry

"E
nd

-o
f-P

ha
se

"
P

re
se

nt
at

io
n

EN
D

Pr
oj

ec
t

M
an

ag
er

Cu
st

om
er

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Fi
gu

re
 1

4
- S

of
tw

ar
e

D
es

ig
n

Pr
oc

es
s (

C
on

tin
ue

d)

87

Coding Process

Need for Running "Software
Coding Process"

Preparation of Software
Component Test Plan

1

Work-Package
Employees

Work-Package
Employees

Inspection of Software
Component Test Plan

Approved?

Not Approved Approved

Software Component Test Plan

Coding of Software Components

Codes Sent to Configuration Manager
via Component Coding Form

Work-Package
Employees

Work-Package
Employees

Figure 15 - Coding Process

88

Figure 15 - Coding Process (Continued)

89

3

Employee that
Prepared the

Form

A1

2

Employee that
Prepared the

Form

Integration of Components

Preparation of "Software Component
Test Result Form"

Software Component Test Result Form

Are there any faults?

Component Testing According to
Component STP

Yes

No

Yes

Record via YUB Code Review
Required?

No

Need to Repeat Test?

Yes

Meeting for Discussion of Software Test
Results

Documents and Code are Sent to
Software Development Library

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Configuration
Manager

Project
Employees

Figure 15 - Coding Process (Continued)

90

Employee that
Performed the

Test

3

Employee that
Performed the

Test

Need to Repeat
Integration

Test?

Integration Testing

Are there any faults?

No

Yes

Preparation of "Software Test
Result Form"

Yes

Software Test Result Form

Source Code Sent to Software
Development Library

Record via YUB

No

Meeting for Discussion of Software
Test Results

Software Product Handbook Updated

System Test Preliminary Review

END

Project
Employees

Project
Employees

Project
Employees

Configuration
Manager

Project
Employees

Project
Employees

Project
Employees

Figure 15 - Coding Process (Continued)

91

Software Testing Process

De
ci

si
on

 fo
r S

ta
rt

 o
f S

ys
te

m
 T

es
t

So
ftw

ar
e

Sy
st

em
 T

es
t

1

Pr
oj

ec
t

Em
pl

oy
ee

s

W
or

k-
Pa

ck
ag

e
Em

pl
oy

ee
Pa

rt
ic

ip
at

ed
 in

th
e

Te
st

Ne
ed

 to
 R

ep
ea

t S
ys

te
m

 T
es

t?

Pr
ep

ar
at

io
n

of
 "

So
ftw

ar
e

Te
st

Re
su

lt
Fo

rm
"

Ar
e

Th
er

e
An

y
Fa

ul
ts

?

So
ftw

ar
e

Te
st

 R
es

ul
t F

or
m

N
o

Ye
s

R
ec

or
d

vi
a

YU
B

Ye
s

N
o

W
or

k-
Pa

ck
ag

e
Em

pl
oy

ee
Pa

rt
ic

ip
at

ed
 in

th
e

Te
st

Fi
gu

re
 1

6
- S

of
tw

ar
e

Te
st

in
g

Pr
oc

es
s

92

A2

2

Customer

1

Software Acceptance Testing
Preliminary Review

An "Acceptance Testing"
Required by "Systems Eng. Man.

Plan" or "SDP"?

Software Ready for Use

Yes

Yes

No

Software Code Sent to Software
Development Library

Preparation of "Software Product
User Guide" Completed

Software Product User Guide

Software System Test Review

Do the Customer Desire to Review
Software Acceptance Testing

Plan?

No

Software Acceptance Testing

Configuration
Manager

Work-Package
Employee

Project
Employees

Project
Employees

Project
Employees

Customer

Figure 16 - Software Testing Process (Continued)

93

A2

2

Need to Repeat
Acceptance Testing?

Preparation of "Software Test
Result Form"

Software Test Result Form

Are There Any Faults?

No

Yes Record via YUB

Yes

No

Software Acceptance Testing
Review

Software Ready for Use

END

Work-Package
Employee

Participated in
the Test

Work-Package
Employee

Participated in
the Test

Work-Package
Employee

Participated in
the Test

Project
Employees

Customer

Figure 16 - Software Testing Process (Continued)

94

APPENDIX B

MODIFIED SOFTWARE DEVELOPMENT PROCESS

Need for running

"Software Development
Process"

"Software Requirements
Elicitation Process"

"Requirements Elicitation
Review"

"Coding Process"

"Pre-Test Review"

Determination of Project
Manager and Project

Employees

"Software Testing Process"

"Critical Design Review
Process"

END

Board of
Directors

SRS, SDD

Deliverable Code

Software Test Reports

PMP

"Software Design Process"

"Software Design Review"

Project
Manager and

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Figure 17 – Modified Software Development Process

95

Modified Requirements Elicitation Process

Figure 18 - Modified Requirements Elicitation Process

96

2

1

So
ftw

ar
e

De
ve

lo
pm

en
t P

la
n

Ye
s

Pr
ep

ar
at

io
n

of
 "

So
ftw

ar
e

De
ve

lo
pm

en
t P

la
n"

N
o

Te
ch

ni
ca

l P
la

nn
in

g
of

 P
ro

je
ct

An
 "

Ac
ce

pt
an

ce
 T

es
tin

g"
Re

qu
ire

d?

De
te

rm
in

at
io

n
of

 A
cc

ep
ta

nc
e

Cr
ite

ria

Pr
ep

ar
at

io
n

of
 "

Te
st

 a
nd

 V
er

ifi
ca

tio
n

Pl
an

"

Te
st

 a
nd

 V
er

ifi
ca

tio
n

Pl
an

De
fin

iti
on

 o
f A

cc
ep

ta
nc

e
Te

st
s

Pr
ep

ar
at

io
n

of
 S

of
tw

ar
e

Ac
ce

pt
an

ce
Te

st
 P

la
n So

ftw
ar

e
Ac

ce
pt

an
ce

 T
es

t P
la

n

Pr
oj

ec
t

M
an

ag
er

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

M
an

ag
er

Fi
gu

re
 1

8
- M

od
ifi

ed
 R

eq
ui

re
m

en
ts

 E
lic

ita
tio

n
Pr

oc
es

s (
C

on
tin

ue
d)

97

2

Definition of System Test

Preparation of "System/Integration
Test Plan"

System/Integration Test Plan - Draft

Requirements Analysis

Preparation of "Software Requirement
Analysis Report"

Software Requirement Analysis Report

Requirement Review

All the Output Sent to Software
Development Library

"End-of-Phase" Presentation

END

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Project
Manager

Figure 18 - Modified Requirements Elicitation Process (Continued)

98

Modified Software Design Process

Request for Software Design

1

Inspection of Inputs

Provision of Related Inputs and
Delivery to Project Employees

Determination
of Software

Components

Determination
of Reuse

Components

Determination
of Component

Integratio...

Detail Design
of Components

Design of
Interfaces

Project
Manager

Project
Employees

Project
Employees

Project
Employees

Figure 19 – Modified Software Design Process

99

1

2

Pr
ep

ar
at

io
n

of
"S

of
tw

ar
e

De
si

gn
 R

ep
or

t"

So
ftw

ar
e

De
si

gn
 R

ep
or

t

D
ef

in
iti

on
 o

f
In

te
gr

at
io

n
Te

st
s

Ne
ed

 to
Pr

ep
ar

e
a

 U
se

r
G

ui
de

?

N
o

Ye
s

Pr
ep

ar
at

io
n

of
 "

So
ftw

ar
e

Pr
od

uc
t U

se
r G

ui
de

"
Dr

af
t

So
ftw

ar
e

Pr
od

uc
t U

se
r G

ui
de

 -
Dr

af
t

Re
vi

si
on

 o
f

"S
ys

te
m

/In
te

gr
at

io
n

Te
st

 P
la

n" Sy
st

em
 In

te
gr

at
io

n
Te

st
 P

la
n

Pr
oj

ec
t

Em
pl

oy
ee

s

Cu
st

om
er

Pr
oj

ec
t

Em
pl

oy
ee

s

Pr
oj

ec
t

Em
pl

oy
ee

s

Fi
gu

re
 1

9
–

M
od

ifi
ed

 S
of

tw
ar

e
D

es
ig

n
Pr

oc
es

s (
co

nt
in

ue
d)

100

Figure 19 – Modified Software Design Process (continued)

101

Modified Coding Process

Need for Running "Software
Coding Process"

Preparation of Software
Component Test Plan

1

Work-Package
Employees

Work-Package
Employees

Inspection of Software
Component Test Plan

Approved?

Not Approved Approved

Software Component Test Plan

Coding of Software Components

Codes Sent to Configuration
Manager via Component Coding

Form

Coding Forms Inspected and
Code Added to Software

Development Library

Software Component Coding Form

Work-Package
Employees

Work-Package
Employees

Configuration
Manager

Figure 20 – Modified Coding Process

102

A3

2

1
Pr

oj
ec

t
Em

pl
oy

ee
s

Em
pl

oy
ee

 th
at

Re
ad

 th
e

Co
de

Pr
oj

ec
t

Em
pl

oy
ee

s

Co
m

po
ne

nt
 C

od
e

In
sp

ec
tio

n

Ch
ec

k
fo

r F
au

lts

Ar
e

th
er

e
an

y
fa

ul
ts

?

N
o

R
ec

or
d

vi
a

YU
B

Ye
s

Co
de

 R
ev

ie
w

Re
qu

ire
d?

Ye
s

N
o

Co
de

 a
nd

 C
om

po
ne

nt
 S

TP
ad

de
d

to
 S

of
tw

ar
e

De
ve

lo
pm

en
t L

ib
ra

riy

Em
pl

oy
ee

 th
at

Re
ad

 th
e

Co
de

Em
pl

oy
ee

 th
at

Re
ad

 th
e

Co
de

Co
nf

ig
ur

at
io

n
M

an
ag

er

Fi
gu

re
 2

0
- M

od
ifi

ed
 C

od
in

g
Pr

oc
es

s (
C

on
tin

ue
d)

103

3

Employee that
Prepared the

Form

A3

2

Employee that
Prepared the

Form

Integration of Components

Preparation of "Software
Component Test Result

Form"

Software Component Test Result Form

Are there any
faults?

Component Testing
According to Component

STP

Yes

No

Yes

Record via YUB Code Review
Required?

No

Need to Repeat
Test?

Yes

Meeting for Discussion of
Software Test Results

Documents and Code are
Sent to Software

Development Library

Project
Employees

Project
Employees

Project
Employees

Project
Employees

Configuration
Manager

Project
Employees

Figure 20 - Modified Coding Process (Continued)

104

Employee that
Performed the

Test

3

Employee that
Performed the

Test

Need to Repeat
Integration

Test?

Integration Testing

Are there any faults?

No

Yes

Preparation of
"Software Test
Result Form"

Yes

Software Test Result Form

Source Code Sent to
Software Development

Library

Record via YUB

No

Meeting for Discussion of
Software Test Results

Software Product
Handbook Updated

System Test Preliminary Review

END

Project
Employees

Project
Employees

Project
Employees

Configuration
Manager

Project
Employees

Project
Employees

Project
Employees

Figure 20 - Modified Coding Process (Continued)

105

Modified Software Testing Process

De
ci

si
on

 fo
r S

ta
rt

 o
f

Sy
st

em
 T

es
t

So
ftw

ar
e

Sy
st

em
 T

es
t

1

Pr
oj

ec
t

Em
pl

oy
ee

s

W
or

k-
Pa

ck
ag

e
Em

pl
oy

e.
..

Ne
ed

 to
 R

ep
ea

t
Sy

st
em

 T
es

t?

Pr
ep

ar
at

io
n

of
 "

So
ftw

ar
e

Te
st

 R
es

ul
t F

or
m

"

Ar
e

Th
er

e
An

y
Fa

ul
ts

?

So
ftw

ar
e

Te
st

 R
es

ul
t F

or
m

N
o

Ye
s

R
ec

or
d

vi
a

YU
B

Ye
s

N
o

W
or

k-
Pa

ck
ag

e
Em

pl
oy

ee
Pa

rt
ic

ip
at

ed
 in

 th
e

Te
st

Fi
gu

re
 2

1
–

M
od

ifi
ed

 S
of

tw
ar

e
Te

st
in

g
Pr

oc
es

s

106

2

Customer

1

An "Acceptance Testing"
Required by "Systems Eng. Man.

Plan" or "SDP"?

Software Ready
for Use

Yes

No

Software Code Sent to Software
Development Library

Preparation of "Software Product
User Guide" Completed

Software Product User Guide

Software System Test Review

Do the Customer Desire to
Review Software Acceptance

Testing Plan?

Configuration
Manager

Work-Package
Employee

Project
Employees

END

Figure 21 – Modified Software Testing Process (Continued)

107

3

2

Need to Repeat
Acceptance

Testing?

Software Acceptance Testing
Preliminary Review

Yes

No

Software
Acceptance

Testing

Preparation of
"Software Test
Result Form"

Software Test Result Form

Are There Any
Faults?

No

Yes Record via YUB

Yes

No

Project
Employees

Project
Employees

Customer

Work-Package
Employe...

Work-Package
Employe...

Work-Package Employee
Participated in the Test

Figure 21 – Modified Software Testing Process (Continued)

108

Figure 21 – Modified Software Testing Process (Continued)

109

APPENDIX C

ORIGINAL PROCESSES STEPCODES

Table 15 - Stepcodes for Original Processes

Stepcode Development Phase Step Name

1 Requirements
Elicitation

Provision of Related Inputs and
Delivery to Project Employees

2 Requirements
Elicitation Preparation of SRS

3 Requirements
Elicitation Technical Planning of the Project

4 Requirements
Elicitation Preparation of Acceptance Testing

5 Requirements
Elicitation

Declaration of System Test
Requirements

6 Requirements
Elicitation

Preparation of Requirements Analysis
Report

7 Requirements
Elicitation Requirements Analysis Review

8 Requirements
Elicitation Requirements Elicitation Review

9 Design Provision of Related Inputs and
Delivery to Project Employees

110

Table 15 - Stepcodes for Original Processes (Continued)

Stepcode Development Phase Step Name

10 Design Inspection of Inputs

11 Design
Determination of Software Components,
and Determination of Reuse
Components

12 Design Determination of Component Integration
Order

13 Design Detail Design of Components

14 Design Design of Interfaces

15 Design Preparation of Software Design Report

16 Design Definition of Integration Tests

17 Design Preparation of System/Integration Test
Plan

18 Design Software Design Review

19 Coding Preparation of Software Component Test
Plan

20 Coding Inspection of Software Component Test
Plan

21 Coding Coding of Software Components

22 Coding Inspection of Coding Forms by the
Configuration Manager

23 Coding Component Code Inspection

24 Coding Component Testing According to
Component STP

111

Table 15 - Stepcodes for Original Processes (Continued)

Stepcode Development Phase Step Name

25 Coding Component Code Inspection

26 Coding Integration of Components

27 Coding Integration Testing

28 Coding New Revision of Software Product
Handbook

29 Coding Pre-Test Review

30 Testing System Test

31 Testing Preparation of System Test Result Form

32 Testing Final Version of Software Product User
Guide

33 Testing Software System Test Review

34 Testing Software Acceptance Testing
Preliminary Review

35 Testing Software Acceptance Testing

36 Testing Software Test Result Form

37 Testing Critical Design Review

112

APPENDIX D

MODIFIED PROCESSES STEPCODES

Table 16 – Stepcodes for Modified Processes

Stepcode Development Phase Step Name

1 Requirements
Elicitation

Provision of Related Inputs and
Delivery to Project Employees

2 Requirements
Elicitation Preparation of SRS

101 Requirements
Elicitation

Preparation of Software Maturity
Matrix

3 Requirements
Elicitation Technical Planning of the Project

4 Requirements
Elicitation Preparation of Acceptance Testing

5 Requirements
Elicitation

Declaration of System Test
Requirements

6 Requirements
Elicitation

Preparation of Requirements Analysis
Report

7 Requirements
Elicitation Requirements Analysis Review

8 Requirements
Elicitation Requirements Elicitation Review

113

Table 16 - Stepcodes for Modified Processes (Continued)

Stepcode Development Phase Step Name

9 Design Provision of Related Inputs and Delivery
to Project Employees

10 Design Inspection of Inputs

11 Design
Determination of Software Components,
and Determination of Reuse
Components

12 Design Determination of Component Integration
Order

13 Design Detail Design of Components

14 Design Design of Interfaces

15 Design Preparation of Software Design Report

16 Design Definition of Integration Tests

17 Design Preparation of System/Integration Test
Plan

102 Design Preparation of Functional Test Coverage
Matrix

103 Design Preparation of Software Maturity Matrix

18 Design Software Design Review

19 Coding Preparation of Software Component Test
Plan

20 Coding Inspection of Software Component Test
Plan

21 Coding Coding of Software Components

114

Table 16 - Stepcodes for Modified Processes (Continued)

Stepcode Development Phase Step Name

22 Coding Inspection of Coding Forms by the
Configuration Manager

23 Coding Component Code Inspection

24 Coding Component Testing According to
Component STP

25 Coding Component Code Inspection

26 Coding Integration of Components

27 Coding Integration Testing

28 Coding New Revision of Software Product
Handbook

29 Coding Pre-Test Review

30 Testing System Test

31 Testing Preparation of System Test Result Form

32 Testing Final Version of Software Product User
Guide

33 Testing Software System Test Review

34 Testing Software Acceptance Testing
Preliminary Review

35 Testing Software Acceptance Testing

36 Testing Software Test Result Form

115

Table 16 - Stepcodes for Modified Processes (Continued)

Stepcode Development Phase Step Name

104 Testing Preparation of Software Maturity
Matrix

37 Testing Critical Design Review

116

APPENDIX E

SIMULATION RESULTS FOR PROJECT 1

In this appendix, for the sake of brevity, only last ten rows of summary of results of

P1 has been included. The full results have been presented in the attached CD,

under the folder named “Simulation_Results”. Results of the projects are available

in the folders bearing the names of respective projects.

The simulation tool is run 83 times for P1, 62 times for P2, 90 times for P3, 77

times for P4, 92 times for P5, 104 times for P6, 231 times for P7, 72 times for P8,

and 82 times for P9, adding up to 893.

117

T
ab

le
 1

7
- S

im
ul

at
io

n
R

es
ul

ts
 fo

r P
ro

je
ct

 1

