SOFTWARE RELIABILITY ASSESSMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENIZ KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ismet Erkmen
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Semih Bilgen
Supervisor

Examining Committee Members

Assist. Prof. Dr. Ciineyt Bazlamagc1 (METU,EE)

Dr. ilkay Ulusoy (METU,EE)
Dr. Senan Ece Schmidt (METULEE)
Prof. Dr. Semih Bilgen (METULEE)

Hiiseyin Tiirkoglu (TUBITAK-SAGE)

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Deniz Kaya

Signature

il

ABSTRACT

SOFTWARE RELIABILITY ASSESSMENT

Kaya, Deniz
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih BILGEN

August 2005, 117 Pages

In spite of the fact that software reliability studies have attracted great deal of
attention from different disciplines in 1970s, applications of the subject have rarely
been involved in the software industry. With the rise of technological advances
especially in the military electronics field, reliability of software systems gained

importance.

In this study, a company in the defense industries is inspected for their abilities and
needs regarding software reliability, and an improvement proposal with metrics
measurement system is formed. A computer tool is developed for the evaluation of
the performance of the improvement proposal. Results obtained via this tool

indicate improved abilities in the development of reliable software products.

Keywords: Software Reliability, Software Process Improvement, Software Process

Simulation

v

0z

YAZILIM GUVENILIRLiGIi DEGERLENDIRIiMIi

Kaya, Deniz
Yiiksek Lisans, Elektrik-Elektronik Miihendisligi Boliimii
Tez Yéneticisi: Prof. Dr. Semih BILGEN

Agustos 2005, 117 Sayfa

Yazilim giivenilirligi alanindaki ¢aligmalarin 197011 yillarda farkli disiplinlerden
onemli dl¢tide ilgi gérmiis olmasina ragmen, konuya iliskin uygulamalardan yazilim
sanayiinde nadiren yararlanilmistir. Ozellikle askeri elektronik alanindaki teknolojik
ilerlemelerin yiikselisiyle birlikte, yazilim sistemlerinin giivenilirligi 6nem

kazanmustir.

Bu calismada, savunma sanayiinde faaliyet gosteren bir kurulusun yazilim
giivenilirligine iligkin yetenekleri ve gereksinimleri incelenmis ve metrik 6lglim
sistemi igeren bir iyilestirme Onerisi olusturulmustur. lyilestirme Onerisinin
basariminin degerlendirilmesi i¢in bilgisayar ortaminda ¢alisan bir arag
gelistirilmistir. Bu aragla elde edilen sonuglar, giivenilir yazilim f{iriinlerinin

gelistirilmesine yonelik yeteneklerin iyilestirildigini gostermektedir.

Anahtar Kelimeler: Yazilim Giivenilirligi, Yazimimm Siireci lyilestirme, Yazilim

Siireci Benzetimi

To the memory of my father ...

vi

ACKNOWLEDGMENTS

The author would like to express his feelings of gratitude to his supervisor Prof. Dr.
Semih Bilgen for his skillful guidance, endless patience, encouragement and

support throughout this study.

Contributions and cooperation of TUBITAK-SAGE administration and employees
are gratefully acknowledged.

The author would also like to thank his dear wife, Nihal, for her never-ending

morale support and extreme patience.

vii

TABLE OF CONTENTS

ABSTRACT ..ottt sttt st s v

OZ et v

ACKNOWLEDGMENTS ..ottt vii

TABLE OF CONTENTSootitiiiiree ettt viii

LIST OF TABLES ..ottt e Xii

LIST OF FIGURES......c.ooiitiiiiieereeeeeeetet ettt Xiii

LIST OF ABBREVIATIONScoiiiiiiiiiieeeeeteteeeteteeet et Xiv
CHAPTER

1. INTRODUCTION. ...ttt ettt 1

2. LITERATURE SURVEY ..ottt 3

2.1 DETINItIONS ...ttt ettt 3

2.2 Studies on Software Reliability..........cccoevveeiieeiiiciiiiiciiceeceeceeeee, 4

2.2.1 Assessment of Software Reliabilitycccccvvvevieeiiieeninnnnns 5

2.2.1.1 Software Reliability Modeling............cccccoeverenn.ne. 6

2.2.1.2 Software Testingcccecceeveererierienieeie e 8

2.2.2 Quality and Software Reliability..........ccceveviinininncncnnns 10

2.2.3 Project Management and Reliability.........cc.cceevevivennennnnnne. 11

2.2.4 Metric Collection SYStemScceevveeereereerreecreerreesereeneenns 12

3. PROPOSED MEASUREMENT SYSTEMcccccceiiiiiiiiininininincneeee, 16

3.1 Process Improvement Goals of the Companycccceeevveercreeennennns 16

3.2 Determination and Classification of Metrics to be Collected.............. 18

3.3 Formation of Metric Collection System...........cccceervereieriiienienieene. 23

3.3.1 Modifications for Requirements of Software Maturity

viii

3.3.2 Modifications for Requirements of Functional Test

COVETAZE ..veeentieeiiee ettt ettt ettt ettt e et e s be e e sabeeeebee e 25

3.4 Cost of Modifications of the Procedures............cccceeevievicninicnennenne. 26
3.4.1 Fault-Days NUMDETcccceeciriiieiiiiieieeeeeee e 26

3.4.2 Functional Test COVEIagecceouerervueneriienenienieneeneenns 27

3.4.3 Requirements Traceabilityccccovverveieecieereeniecie e 28

3.4.4 Software Maturity INdeXccecvevienviieciieieiiecee e, 28

3.4.5 Test COVETAZE....ccceurierriierireeeireerreeeireeetreesseeesereessneessreeans 29

3.4.6 Failure Rateccccoeeiiiiiniiiiiicceccceceecn 29

3.4.7 Summary of Modification CoStSccceeeerieerieesienieeiense 30

4. PROPOSAL EVALUATIONcooiiiiiiiiieeeeeee e 32
4.1 Method for Evaluationccoceverieninieninieninienieseeeeeeeie e 32
4.1.1 Evaluation AIternativescccevevuerienuenieieneneieeeeeeenen 32

4.1.2 Limitations of the Simulation...........c.ccoeveerierinniieneee 34

4.2 Simulation Tool Outline and Featurescccecceeriiniiniienveiieee 35
4.2.1 “Create Project” Command..........ccccceeeueereenieriireneenie e 37

4.2.2 “Create Programmer” Commandccccceeeereireverereeenennne 39

4.2.3 “View Available Programmers” Command......................... 40

4.2.4 “Edit Programmer” Command...........ccccccvererererrerieenrennenne 41

4.2.5 “View Projects Under Development” Command 42

4.2.6 “Edit Project” Command..........c.cccovrevereeevreenreeerieesnee e 43

4.2.7 “Simulate Project” Command.............cceeeevvvevreeeceeenneeennnen. 44

4.3 Simulation Details........cccceciriiiiiriininieienieceece e 49
4.3.1 Consumption of Time and Programmers...............cccoene.... 50

4.3.2 Variation of Project Sizecccevevievenieneniencnieiceeens 51

4.3.3 Formation and Detection of Faults.........c..ccccccoveviinnnnnnnn. 51

X

4.3.3.1 Fault Node Classc.ccceveeerrveencrieerreeeieeesneeesneeens 52

4.3.3.2 Linked List Class.......ccceveveeerveeerireerreeeireennneesneeens 52
4.4 Other Issues Regarding Simulation............ccooceeiieniiiiiiiinieeee 53
4.4.1 Size and Duration EStimation.........c..ccccceeevienervicnenicnennns 54
4.4.2 Random Number Generationc..cceceeceevereeneneenieneennens 55
4.5 Output Data and Output Format.........cc.coceeveviininiicninieninicnecienee 57
5. RESULTS AND DISCUSSIONccocoiiiiiiiiiiiiiiicieteteteeeeeesee e 60
5.1 Generation of Simulation Resultsccccoceevivviiiiinininininiiieee. 60
5.1.1 Data of INterest.........coceeeeniieieniinieinieiieeceeeeeeeeeee 60
5.1.2 Project CharacteriStiCs........eevueerurereerieeireieeieseeseeeeeeeeans 61
5.1.3 Determination of Number of Runs.........cccccoceveriincnncnnn. 62
5.2 Verification of SIMulation...........ccoeveeviriiieneeniniiieneeienceeeseene 63
5.3 Discussion 0f ReSUILScccueviiiiriiiiiniiiinieciceceece e 64
5.3.1 P1, P2, and P3: Response to Changing Duration................. 65
5.3.2 P1, P4, and P5: Response to Changing Workload Index 67

5.3.3 P1, P6, and P7: Response to Changing Fault Finding
ADIIILY e 67
5.3.4 P1, P§, and P9: Response to Changing KLOC Estimate 67
5.3.5 Overall Response Evaluationcccccceeeviieriieneeneeecieennnns 68
6. CONCLUSIONS ...ttt ettt 71
6.1 Discussion of FINAINES........cc.cccvveeiierieiiiieiierie e 72
6.2 Future WOtkcoooiiiiiiiiiiicce e 72
REFERENCESottt 75

APPENDICES

A. THE CURRENT SOFTWARE DEVELOPMENT PROCESS................. 81

B. MODIFIED SOFTWARE DEVELOPMENT PROCESSc.......... 94

C. ORIGINAL PROCESSES STEPCODEScccoviininiiinieicnecieneen 109
D. MODIFIED PROCESSES STEPCODES........ccooiiiiiriiiieecnieeieeeeene 112
E. SIMULATION RESULTS FOR PROJECT 1 ..cccceoiiiiiiiiniiniinieeieenne 116

xi

LIST OF TABLES

TABLES

Table 1 - Evaluation of the Metrics for the Companyccceeevievenienineenennen. 19
Table 2 - Metrics to be Collected........ccceriiririiiiiniiiiniinieeeeeeee e 21
Table 3 — Modification COStS SUMMATYcccveeevierierieeiieree e et esee e ereeeees 30
Table 4 — User Commands.........c..ccueoueiiieiiieieinieiieneeeee et 37
Table 5 — Output of “View Available Programmers™...........cccccevevveevveercnveenneeennen, 41
Table 6 - Output of “View Projects Under Development”c.cccoeeeveivenireinnnen. 43
Table 7 - Summary of Fault Node Class.........cccooieriieiiniiinieeeeieeee e 53
Table 8 - Summary of Linked List Classc.cccccerirvieniriiinieniniereeeeeeeieneeee 54
Table 9- Format for Simulation Results............ccceoeriininiininiiniiicecceeeeen 58
Table 10 - SiImulated ProJectsccvvevieiciierieiieeie ettt 62
Table 11 - Summary of Simulation Results of Nine Characteristic Projects........... 66
Table 12 - Percent NOFD/NOFI ValUues........cccccoocveviriininiiniiicenccneceeeeeeeee 69
Table 13 - Durations of ProJECtseecueeiuierieeieeieerie et 70
Table 14 - S1ZeS Of PTOJECTS. .. .ceiuiieiieiieiieeee e 70
Table 15 - Stepcodes for Original Processes.............coeveeruiiieniriienenienenieseeeens 109
Table 16 - Stepcodes for Modified Processesccoceeveviirienirienenienenieneene 112
Table 17 - Simulation Results for Project 1.........ccocievieiiiecieriecieeie e 117

X1l

LIST OF FIGURES

FIGURES

Figure 1 - Comparison of hardware and software reliability growth......................... 6
Figure 2 - Relations of Database Files and User Commands...........ccccceceevuerienuennen. 36
Figure 3 - Flowchart of “Create Project” Commandcccoeevvevrvereeecreeneennnennn. 38
Figure 4 - Flowchart of “Create Programmer” Command............ccccoeceevverienennenne. 40
Figure 5 - Flowchart of “View Available Programmers” Command 41
Figure 6 - Flowchart of “Edit Programmer” Command...............cccceevveeerveencnneennne. 42
Figure 7 - Flowchart of “View Projects Under Development” Command.............. 44
Figure 8 - Flowchart of “Edit Project” Commandccccvevienienienciienieeieenen. 45
Figure 9 - Flowchart of “Simulate Project” Command..........c..cccceevveverieninienennen. 47
Figure 10 - Histogram for Gaussian Random Variable Generation......................... 56
Figure 11 - Histogram for Rayleigh Random Variable Generation............c...c........ 57
Figure 12 — The Current Software Development Process..........ccccevevveeecveesnneennee. 81
Figure 13 - Requirements Elicitation Process..........cccoveeviierienienieeieeeeeeeeeee 82
Figure 14 - Software Design ProCesscoccverirriieiiieiieniieieeeeee e 85
Figure 15 - Coding PrOCESScoeiiiriiiiiniiiiinieetesieeteeeeseee e 87
Figure 16 - Software Testing Processcccceverieniniininieneiieseceeeteeeeseee 91
Figure 17 — Modified Software Development Processcccecvevveevieniieneeeveennen. 94
Figure 18 - Modified Requirements Elicitation Process........c.cccoceevevervienienienennen. 95
Figure 19 — Modified Software Design Processcccveevvveecieercvieenieecieee e 98
Figure 20 — Modified Coding PTOCESScccevierieeiieieie et 101
Figure 21 - Modified Software Testing Processc.ccceevevevierienencieecieieee 105

Xiii

LIST OF ABBREVIATIONS

CD Compact Disc
COCOMO Constructive Cost Model
GOM Goal Question Metrics
ID Identity
The Institute of Electrical and Electronics Engineers,
IEEE
Inc
IOR Input, Output, Result
KLOC Kilo LOC
KLOCE KLOC Estimate
LOC Lines of Code
MDD Mean Determination Date
MFD Mean Formation Date
MRT Mean Removal Time
MTbFD Mean Time between Formation and Determination
MTbFR Mean Time between Formation and Removal
NHPP Non-Homogeneous Poisson Process
NoFD Number of Faults Determined
NoFI Number of Faults Introduced
RODF Ratio of Determined Faults
SRWG Software Reliability Work Group
TTE Total Time Elapsed
YUB Yazilim Uygunsuzluk Bildirim Formu (Software Error

Notification Form)

X1V

CHAPTER 1

INTRODUCTION

Software reliability denotes the probability that software in a pre-defined condition
performs its tasks without malfunctioning for a specified duration. It may be
regarded as a component of software quality. Unlike software quality, however, it
concentrates on the functionality of the software and disregards such issues as
ergonomics of software products, development economics, etc. unless they

constitute functional attributes of the software product.

In order to express the reliability of a software product quantitatively, first, the
product itself must be “measured”. For this purpose, the abstraction of measurement
has to be removed. This can be achieved by defining certain measures, or metrics,

about software product and its development process.

Once reliability metrics are defined, it is wise to question if it is possible to
determine and improve the reliability of software with a system based on these

metrics.

In this work, the problem of measurement and improvement of reliability of
software products developed at a company shall be investigated. For this purpose,
first of all, previous studies on the field of software reliability are investigated. As a

next step, the costs and benefits associated with collecting reliability metrics in the

specific company are investigated. Then, a set of metrics are selected for the
purpose of enabling the Company to construct a measurement system. The next task
is the development of a proposal for improvement of software development
processes of the Company. This study does not aim to propose an improvement to
the software development processes in general sense; rather it introduces minor
modifications to existing processes with software reliability being the primary
concern. Once the proposal is formed, different evaluation alternatives are
presented. While a real-life improvement project would be definitely more realistic,
in this study, a simulation-based evaluation is performed. Finally, obtained results
are questioned if proposed system meets the needs of the Company, and if proposed

actions result in expected improvements to software reliability.

Chapter 2 of this study contains a survey on the software reliability literature.
General concepts of software reliability and their application areas are discussed in

that chapter.

In Chapter 3, software development system of the Company is inspected and a

system for measurement of software reliability is developed.

Alternatives for evaluation of the proposed system and the tool developed for

simulation-based evaluation is discussed in Chapter 4.

Chapter 5 is devoted to the discussion of results generated by using the tool

discussed in Chapter 4.

Chapter 6 presents conclusions regarding this study and suggestions for future

work.

CHAPTER 2

LITERATURE SURVEY

In this chapter, first the terminology to be used in the rest of this study is presented.
Then, studies on software reliability are summarized in subsections according to
their relevance to different aspects of software reliability: Assessment of Software
Reliability, Quality, and Project Management. Finally, general characteristics of
metric collection systems, which also constitute a major task in this study, are

presented.

2.1 Definitions

For the sake of consistency, all of the definitions are directly taken from [1].

Defect: A product anomaly. Examples include such things as (1) omissions and
imperfections found during early life cycle phases and (2) faults contained in

software sufficiently mature for test or operation.

Fault: (1) An accidental condition that causes a functional unit to fail to perform its
required function. (2) A manifestation of an error in software. A fault, if

encountered, may cause a failure. It is synonymous with ‘bug’.

Failure: (1) The termination of the ability of a functional unit to perform its
required function. (2) An event in which a system or system component does not
perform a required function within specified limits. A failure may be produced

when a fault is encountered.

Error: Human action that results in software containing a fault. Examples include
omission of misinterpretation of user requirements in a software specification,

incorrect translation, or omission of a requirement in the design specification.

Measure: A quantitative assessment of the degree to which a software product or

process possesses a given attribute.

Software Reliability: The probability that software will not cause the failure of a
system for a specified time under specified conditions. The probability is a function
of the inputs to and use of the system as well as a function of the existence of faults
in the software. The inputs to the system determine whether existing faults, if any,

are encountered.

2.2 Studies on Software Reliability

The IEEE defines software reliability as the probability that software will not cause
the failure of a system for a specified time under specified conditions [1]. While the
definition is rather simple, its implications constitute a wide research field with sub-
fields of different concerns. These sub-fields can be investigated in three major

classes:

e Assessment of Software Reliability
e Quality

e Project Management

In spite of the fact that above classes have close interaction, it is necessary to make
such a classification for the sake of ensuring extensive study of the subject. In the

rest of this section, sub-fields of software reliability are studied.

2.2.1 Assessment of Software Reliability

Apart from classical hardware reliability, software reliability has rather different
nature [2, 3, 23]. While the reliability of hardware continues to change even after
the product is delivered, the reliability of software is improved throughout the
development process until the product is delivered. This matter is pointed out in
Figure 1 [2]. After the delivery, a change in reliability level is possible only if
maintenance action is performed to either compensate for defects in the software or

to catch up with technological advances.

Another major difference between software reliability and hardware reliability is
that software reliability is not a function of how frequent that specific software is
used, whereas hardware is subject to wear out [23, 26]. Also, because software is
rather conceptual, documentation is considered as an integral part of software and

software reliability [3].

Eumim UsefilLife Wear out]mggnu.;.n; Teeful Life ;l:l'hgglgtg
[}]
d test
Hatdware Falure Rate Software Fatlure Rate

Figure 1 - Comparison of hardware and software reliability growth.

A common constituent of hardware and software reliability techniques is testing [4].
The results of testing process are employed in software reliability growth models to

translate defect and/or failure data into reliability measures [24, 25].

Because of all these common points and differences mentioned, it is wise to classify
studies on assessment of software reliability into two groups: Software Reliability

Modeling, and Software Testing.

2.2.1.1 Software Reliability Modeling

In prediction and estimation of software reliability a general method is the use of
statistical models [25]. These models make use of either historical data of similar
projects or organizations or direct software measures such as fault density, defect

density, and defect detection rate of the software under investigation [1, 3, 24, 25].

Some of the well-known examples of software reliability models are Musa’s
Execution Time Model [2], Putnam’s Model [3], Goel-Okumoto Model [28],
Generalized Goel NHPP Model [5], Jelinski-Moranda Model [11], and Littlewood-
Verrall Model [14]. All these models, as expected, have their own set of advantages

and disadvantages that take their roots from their specific assumptions [11].

In addition to those model approaches, there exist other techniques for assessment
of software reliability [12]. Test coverage techniques, execution path and error

seeding are examples of these alternative approaches [13].

In the literature different approaches to estimation of the reliability of a software
program have been reported [5, 6, 7]. The problem with the estimation approach is
that it can only be used at later stages of software development process, which

channels organizations to use of reliability prediction techniques [6].

Software reliability prediction techniques are especially useful when knowledge of
approximate reliability level of the software to be developed is desired at early
stages of development life cycle [3]. When that information is of critical
importance, the performance of prediction process in determination of an initial
guess can be improved by the use of more than one prediction model over the same

data [8, 27].

One of the major problems of software reliability prediction models is that they fail
to predict the reliability accurately [9]. The reason is that they assume limited
historical data of special kind of organizations or of specific type of projects [3].
That creates the problem of loss of control over customization of model’s criteria to
fit it to a specific organization [9]. Reliability estimation models can overcome this

problem up to some extent [10].

The estimation models are usually in the form of non-homogeneous Poisson
processes (NHPP) or Markoff systems [11]. Most of the time the difference
between the models arises from the definition (or assumption) of “beginning time of
the process” or selection of random variable of the model as being either “number
of faults detected” or “total number of faults predicted” [3]. In the literature,
however, it is possible to come across with models that do not require detection of
all the failures [15]. Models that relate reliability to cost and priority of failures also
exists [16].

2.2.1.2 Software Testing

Software reliability efforts and software testing process complements each other:
The results of software testing provide statistical data to model the reliability, and
the reliability level of the software determines the amount of necessary testing [14,

17].

In order to provide reliability assessment process with healthy input data, the testing
of software must be comprehensive and complete both in terms of user
requirements and software architecture [3, 23]. While well-known software
engineering sources [21] suggest ways to improve testing process, reliability-

oriented studies are still worth mentioning.

The major difference between the viewpoints of “software engineers” and of
“software reliability engineers” is that the former is mostly interested in the
coverage of functionalities and flow paths, whereas the latter is interested in

coverage of failures (or defects) [13, 22].

There, however, exist some problems with software testing process when software
reliability is of primary concern. The first problem with software testing is
coverage: Because of the direct effect of the selection of failure data on the
reliability model performance, the content and coverage of the tests are critical [9,
18]. Coverage problem also affects the cost of a project since the cost of finding a
defect in early phases of software development process is lower than that of finding
it later in the development process [16]. Another important aspect of test coverage
is that the selection of test cases and failure data influences the way the software

reliability estimation model are formed [9].

The second problem is detection and prevention of failures; not every failure is an
independent one and it is possible that removal of a failure also remove (or
introduce) another one. That is why nature of the failures should be investigated to
see if there is correlation between failures [19]. At this point, the study of Wohlin
and Korner gains importance [20]. In that study a model has been formed to
represent the spread of defects based on a level-approach, in which the term “level”
corresponds to the phase of the development process that a specific fault is first
introduced. It is stated in that study that a defect found in a level can be the

indicator of the defects in previous levels.

In contrast to coverage of functionality, which is some sort of validation of what is
intended to implement, the business of failure coverage is not a straight-forward
action due to stochastic nature of distribution of failures. Wohlin and Korner’s
method solves this problem up to some extent [20]. However their assumption that a
failure in a level is independent of the others cause problem in real-life [19]. In
deed, the relation of a defect found in early phases of the project with another one

found in later steps is not covered in their study.

An idea to relax the testing process, which is proposed by Boland and Singh [16] is
that the effect of finding an error in early phases has more noticeable effect on the
overall failure rate of the software than that of finding it later. That idea leads to the
corollary that it is helpful to spend more effort on testing at early stages, beginning

at component testing and code-review.

There are some studies to determine a method to guarantee failure coverage. Some
researches prefer use of test-coverage methods to defect-coverage and generate the

concept of test-coverage growth [13].

It is proven in another study that ability to detect defects is correlated with code-
coverage [22]. A method is formed in that study for this purpose and the results are
compared with well-known software reliability growth models to determine their

accuracy.

2.2.2 Quality and Software Reliability

Software reliability is considered as an important metric for software quality [1, 3,
18, 26]. In [29], however, Voas indicates that highly-reliable software is not
necessarily a high-quality product, as there exist situations in which ultra-reliable
software systems showed performance degradations, poor robustness and lack of

maintenance precautions.

An approach proposed to make reliability estimations and predictions parallel to

quality is to organize the testing process in such a way to make the user

10

requirements tested more strictly with increased frequency of repetition of revealing
input set [2, 30]. The essence of this technique is that most of the time the user is
not interested in how the problem was solved; he/she wants to see that the proposed

solution is the one that meets the requirements.

The problem with the method mentioned above is that exception handling is not
always considered when such testing scenarios are created [31]. Especially in the
case of safety-critical software, it is difficult to determine the test cases that lead the
exception handling routines to run [31]. In [33] it is claimed that aspect-oriented
programming improves reliability by its nature providing direct control over

exception handling.

Another way of improvement of quality and reliability of software systems is the
code-inspection [34]. In the literature, there are examples of check-lists for

improvement of quality of code-inspection process [32].

2.2.3 Project Management and Reliability

A direct use of software reliability studies appears in deciding the time when the
product is ready to release [14, 36]. According to the current level of reliability, the
amount of necessary testing is determined from the software reliability models by
making use of failure data. By this way, it is also possible to measure cost of certain

amount of increase in the reliability in terms of time, budget and man-hours [17].

Reference [3] presents a valuable discussion on how software development models

affect the overall reliability of a software system. The models investigated in that

11

study are Waterfall Model, Classic Development Model, Prototyping Approach,
Spiral Model, Incremental Development Model, and Cleanroom Model. Among
these, Waterfall Model is criticized for not allowing the solution of an inherent
problem noticed in later phases, which increases the cost of reliability [16]. The
problem of Classic Development Model with respect to reliability is stated to be the
inefficiency of the model to help customer in determination of requirements in a
clear manner. In that study, Prototyping Approach is suggested for improvement of
quality and reliability since it provides feedback from the customer and actual users
of the system. It is also indicated that Risk Analysis actions performed in each cycle
of Spiral Model contributes to quality and reliability of the software system.
According to [3] it is advisable to employ Incremental Development Model if

specific functions/modules of the product have more strict reliability requirements.

2.2.4 Metric Collection Systems

If reliability is essential, then it has to be controllable. The necessary control
process has to be based on observations or measurements. Because the raw material
of these measurements may be defined differently from one organization to another,
a generalized method of observation or measurement is needed. Metric collection

systems are the answers to this need.

The process of creation of a software metric collection system is defined by [37] as

of six successive steps. These steps are:

1. Documentation of the software development process

2. Statement of the purpose of the metric collection system

12

3. Determination of the metrics required to be collected in order to reach
specific purposes

4. Identification of the data to be collected

5. Definition of the procedures to obtain data from the organization and
projects

6. Coding of the designed overall system.

Ramakrishnan [38] reviews the general approaches to design of metric collection

systems and remarks that two major approaches exist:

1. Fenton’s Method: There exist three classes of software entities that may be
measured; these are Process, Product, and Resources.
2. Hetzel’s Bottom-Up IOR Model: Hetzel considers Input, Output, and Result

as entities that may be measured.

Ramakrishnan’s claim is that there is a duality between these two major approaches;
Process, Product, and Resource of Fenton are equivalent to Hetzel’s Input, Output,
and Result, respectively. In that work basic principles of measurement systems are
applied to a case where data is collected via manual forms, and entered to the
system by a supervisor. Among these forms are Gannt charts, list of software
products, log sheets of the members of the development team, and contracts. The
findings are output in a report format. Once the findings are output as a report, they
are considered as records; that is why the findings need to be validated before
entered to the system. That gives birth to the problem that for large projects it is not
easy for a supervisor to go through every single finding, and on the other hand, it is
not feasible to automate the metric collection process completely without approval
of the supervisor. For this reason, current state of the project can support non-

objective criteria.

13

Another considerable metric collection system is reported by Chen [39]. Goal-
Question-Metrics (GQM) is employed as guidance. The reason why GQM is
selected for the guidance purposes is its suitability for goal-driven studies. The
system has a client-server architecture, where client —side is regarded as “assistant
agent”, and server-side is “cooperative agent”. Server actions are defined in terms
of agent roles (like “Goal Identifier Agent”, “Metrics Definer Agent”, etc.). Client-
side is mainly responsible for input-output interactions with the users of the system.
All server-side actions (roles) operate collectively according to the inputs of the
client-side and the goals to process relevant questions. That way, business goals are
transformed into measurement goals, and a software measurement plan is defined in
terms of objectives, description, implementation foresights and sustained operation

of measurement.

Offen [40] points out a common mistake made by the companies that plan to
employ metric collection systems: it is usually the case that the organizations first
determine what metrics can be collected, and then define procedures to collect
those. What would be the ideal case is to determine which metrics comply with the
business goals, and then to define a complete process for measurement and metric

collection. An algorithm proposed in that study to avoid that problem is as follows:

1. Understand business strategy

Name goals, risks, and sub-strategies

Determine factors that affect the success of the process
Define specific and neat development goals

Put forward questions

Define measures

Define the procedures to collect metrics from the development team

S A U B

Review this process iteratively

14

Another software measurement system is reported by Eralp [41]. Metrics are
selected according to measurement categories and specific organizational issues and
goals, and are classified as Schedule Measures, Product Quality Measures,
Resource and Cost Measures, and Size and Stability Measures. Next,
responsibilities and priorities are assigned for each measure, and resources and
collection mechanisms for these metrics are determined. The results are monitored

via graphical user interfaces with different visual realizations.

In the next chapter, a metric collection system is formed in the light of information
presented in this chapter. For this purpose, process improvement goals of the
Company shall be discussed, metrics to be measured shall be determined, and

existing process shall be revised to cover the measurements.

15

CHAPTER 3

PROPOSED MEASUREMENT SYSTEM

This chapter covers the development of a measurement system and modification of
existing processes to include this measurement system. For this purpose, original
processes of the Company are modeled via computer tools, as presented in
APPENDIX A. Then, process improvement goals of the company are determined
by conducting interviews with the stakeholders of the processes and the Company.
Afterwards, the metrics to be collected to implement these goals are determined and
examined with the stakeholders. After that, the details of the metric collection
system are formed, and cost analysis is performed. Finally, modified processes are

modeled and presented in APPENDIX B.

3.1 Process Improvement Goals of the Company

In the light of information presented in previous chapter, the first task of generation
of a metric system was decided to be determination of process improvement goals
of the company. Interviews conducted with the Chief of the Quality Assurance
Division and a member of that division specialized in software projects have shown
that principal goals of process improvement studies of the Company focus on so

called ‘Basic Processes’ that define

16

e Organizational Management Activities (Strategic Planning, Management
Review, Budget Planning, Correspondence, Business Development,
Purchase),

e Project Management Activities (Project Planning, Project Monitoring),

e (Hardware) Production Activities,

e Infrastructure Maintenance Activities,

e (Quality Assurance Activities,

e Quality Control Activities,

e Organizational Education Activities.

Due to the short history of the organization, the primary concern is to monitor the
processes mentioned above, and those that define activities on (software)
development are of secondary concern. The policy of the organization is to first
stabilize Basic Processes, and then to improve development processes. For this
reason there is no concrete aim in improving the development processes. This fact
makes it harder to modify existing process definitions to collect a wider range of

metrics on processes and the products.

Nevertheless, there exists a tendency to determine the level of reliability of software
products. This tendency takes its roots from the customer expectations. The fact that
current process definitions do not provide data on reliability of software products is
considered as a weakness and a work-group named “Software Reliability Work
Group” (SRWG) was formed for the purpose of determination of problematic issues
in the software development procedures of the organization regarding software
reliability and preparation of a proposal in order to draw a guideline for the removal
or improvement of them. Models of process definitions for software development

processes, namely Software Development Process, Requirements Elicitation

17

Process, Software Design Process, Coding Process, and Software Testing Process,

are presented in APPENDIX A.

3.2 Determination and Classification of Metrics to be Collected

The starting point of work of Software Reliability Work Group, which is formed by
representatives from Systems Engineering Division, Quality Assurance Division,
Software Development Division and Modeling and Simulation Division, was the
understanding of software reliability metrics commonly agreed in the software
industry. The list and explanations of those metrics were obtained from IEEE Std

982.2-1988 [1].

Below, we evaluate the metrics presented in the document according to procedures
that currently run at the Company. 24 out of 39 metrics are decided to be
considerable for company goals. Software Reliability Work Group decided to scale
selected metrics according to their ‘availability’ and ‘relevance’ to company
procedures. The results are tabulated in Table 1. ‘Availability’ (A.) field in Table 1

indicates the availability of the metric with scaling explained as:

1. Currently being collected
Can be collected after minor modifications in procedures

May be collected only if there is a specific need in a project

Eall

Is not being collected and will not be collected

18

Table 1 - Evaluation of the Metrics for the Company

Metric Name A. | R. | Ava*Rel
1 Fault-days number 1 2 2
2 Functional test coverage 1 1 1
3 Cause and effect graphing 4 4 16
4 Requirement traceability 1 1 1
5 Defect indices 4 3 12
6 Error distribution(s) 4 3 12
7 Software maturity index 1 2 2
8 Man hour per major defect detected. 3 3 9
9 Number of conflicting requirements 2 2 4
10 | Software science measures 4 4 16
11 | Run reliability 4 3 12
12 | Design structure 3 3 9
13 | Mean time to discover the next K fault 3 2 6
14 | Software purity level 2 4 8
15 | Requirement compliance 3 4 12
16 | Test coverage 1 2 2
17 | Residual fault count 4 3 12
18 | Testing sufficiency 2 2 4
19 | Failure rate 1 2 2
20 | Software documentation & source listing | 3 2 6
21 | RELY(Required Software Reliability) 3 3 9
22 | Software release readiness 3 3 9
23 | Completeness 2 2 4
24 | Test accuracy 2 3 6

19

Another field present in the table is ‘Relevance’ (R.), which is a measure of how
tightly a metric is related to data requirements of work packages in the projects. The

scale for relevance is as follows:

1. Must be collected
Potentially required in future projects

May be required upon customer request

bl

Will never be required upon a direct request

In this study, we have decided to consider only those metrics with A*R value lower
than or equal to 2. The metrics satisfying this condition are summarized in Table 2.
The metric Fault-Days Number in Table 2 is defined in [1] as the number of days
that passes before faults are removed from the software product. For better usage of

this metric, average of this metric for all faults must be calculated.

Functional Test Coverage indicates what percent of functional requirements of the
system under development has a corresponding test definition. It is used to

determine if all the functional requirements are guaranteed to be tested.

Requirements Traceability is considered as a metric that helps determining what
functional requirements are defined in the system under development per customer
requirement. It may be regarded as the ratio of functional requirements to original
requirements; thus deviation from unity must be avoided as neither missing nor

additional requirements are desired.
Software Maturity Index is a measure of how stable a software product is. It can be

measured by counting changes in a software product from one baseline to other. In

cases where this is not possible, an alternative may be to count number of faults

20

determined between two baselines. While from one point of view large number of
faults determined indicates a more mature software product as faults are removed, it
should be noticed that important percent of faults are determined in testing phase,
and thus determination of faults in earlier phases may be a sign of existing faults
that may be determined in testing as it is not known what percentage of existing

faults are detectable.

Table 2 - Metrics to be Collected

| Metric Name | A| R| A*R Explanation
Fault-days .
1 11212 Fully met via YUB Forms.
number
) No direct correspondence. Technical
Functional)
2 1(1]1 Review Form and Test Result Form may
test coverage .
be used for this purpose.
3 Requirements il Technical Review Form and Test Result
traceability Form may be used for this purpose.
Because software changes are not
Software)))
. inspected in function level,
4 | maturity 11212
) Configuration Control Procedure needs
index

revising.

Content of Technical Review Form may
be adequate. It is determined by

5| Testcoverage |1 |2 |2 . o)
evaluating the test definitions with

respect to requirements and the user.

Data can be collected by adding an extra

field to YUB Forms.

6 | Failure rate 11212

21

In IEEE Std. 982.2-1988, Test Coverage metric (TC) is formulated as

(number of defined features) 8 (number of functions tested)

TC = x100

(number of desired features) (total number of functions)

According to this formulation, Test Coverage metric can be employed only after the
design phase as both “number of defined features” and “total number of functions”
are expected to vary until the end of design phase. As seen from the above equation,
in order to calculate Test Coverage metric, number of defined features and number
of desired features must precisely be known, which is possible only if the
organization employs precautions to guarantee traceability from user requirements
to product design. Also, calculation of Test Coverage metric requires the
information of what percent of implemented functions are actually tested. This
indicates the correlation with Test Coverage and Functional Test Coverage. For
these reasons, it is possible to claim that in an organization that monitors
Requirements Traceability and Functional Test Coverage, the infrastructure to

monitor Test Coverage exists.

Failure Rate is a function of occurrences of failures within time. When a software
product is tested, the occurrence times of failures are recorded and total number of
failures is plotted as a function of time. For proper use of this metric, coding phase

must be completed.

An interview has been conducted with Project Leaders and Software Quality
Assurance Team Leader to determine if there exist a mechanism or a formulation to
use the metrics mentioned above in decision making or report generation. The
interview has showed that there is no such formulation as the Company currently

lacks statistically meaningful set of data (metrics in this case) from previous or

22

current projects. It is declared that available data is interpreted as a specific case of

a specific project.

33 Formation of Metric Collection System

The process definitions altered to cover the metric collection system are presented
in APPENDIX B. These models are for Software Development Process,
Requirements Elicitation Process, Software Design Process, Coding Process, and
Software Testing Process. For reasons that will be explained in Chapter 4, the
modification is limited to changes defined by the requirements of the metrics
Software Maturity Index, and Functional Test Coverage. As explained in Section
3.2, current processes readily meet the requirements of the metrics Fault-Days
Number, and Requirements Traceability, there is no specific need for a change.
Moreover, as discussed previously, monitoring of the metric Failure Rate does not
assume any modification to the processes. This implies that the only metric that the

requirements of which are not met is the Test Coverage metric.

Subsections of this section discuss modifications regarding each metric to be

collected.

3.3.1 Modifications for Requirements of Software Maturity Index

As implied by the definition of Software Maturity Index, software products must be
evaluated after baselines if software maturity is concerned. To improve the

performance of the software development processes with respect to the metric

23

Software Maturity Index, a “Software Maturity Matrix” must be created after
baselines defined by current process definitions are formed. Among these baselines
that this work is concerned about are Software Functional Baseline, Software
Design Baseline, and Software Product Baseline. Software Functional Baseline is
formed at the end of Requirements Elicitation Phase, right after Software
Requirements Specification is prepared. Software Design Baseline is formed after
integration tests are defined at the end of Design Phase. Finally, Software Product
Baseline is formed on delivery, after acceptance testing. Thus, in the modified

processes, Software Maturity Matrix is formed and inspected after

1. Software Requirements Specification is prepared,
2. Requirements Elicitation is complete,
3. Design is complete.

To form Software Maturity Matrix, all the changes made on software products since
previous baseline is formed shall be listed in a column. In the corresponding rows
of the second column, the proof of need of the change and related explanations shall
be given. Requirements affected by these changes shall be listed in the third

column.

Each time the Software Maturity Matrix is created, a technical review must be
performed in order to see if all the changes are indeed required changes, and all
required changes are performed to modify all related functional requirements. If a
fault is determined in the matrix, it should be reported via YUB, and be removed,
and the Software Maturity Matrix must be updated. This process must be performed

until all the faults appearing in the Software Maturity Matrix are removed.

24

Modifications regarding Software Maturity Index can be traced in Figure 18
(Modified Requirements Elicitation Process), Figure 19 (Modified Software Design
Process), and Figure 21 (Modified Software Testing Process) in APPENDIX B,

where the modifications are emphasized in bold frames.

3.3.2 Modifications for Requirements of Functional Test Coverage

In order to improve the performance of the software development processes with
respect to the metric Functional Test Coverage, a “Functional Test Coverage
Matrix” must be created right after the integration test are defined at the end of
Design Phase. In the first column of the Functional Test Coverage Matrix shall be
the functional requirements. The second column shall list associated modules of the
software product. Finally, tests assigned to functional tests shall be listed in the

third column.

This matrix is used to determine if existing modules meet the functional
requirements and if a test method is associated with that module. That way it is
guaranteed if the customer needs are transformed into design elements and each
element —and thus customer need- is tested. If an improper entry is found in the
matrix, the situation is reported via YUB, and related corrections are performed in
the product after Design Review. An important fact that needs to be pointed out at
this point is that while the essence of creation of this matrix is implicitly performed
in the Company, they are not explicitly mentioned in procedures. Thus, addition of
these stages mentioned above is completely realistic and does not affect the nature

of company procedures.

25

Modifications regarding Functional Test Coverage can be traced in Figure 19

(Software Design Process) in APPENDIX B.

3.4 Cost of Modifications of the Procedures

The cost of modifying the process definitions and procedures to meet the

requirements of Table 2 is analyzed in this section.

The costs expressed as man*hours are calculated in the light of information
provided by Software Quality Assurance Team Leader, and the Chief of Systems

Engineering Division.

3.4.1 Fault-Days Number

As explained in 3.2, Fault-Days Number indicates the number of days that faults
spend in software products, and can be monitored in case of ongoing projects as
well as completed ones. Such information is especially useful for future or ongoing
projects if data on completed projects exist. The “life” of faults can be regarded as a
performance index of software development process. If statistically adequate data is
available, it would be possible for projects managers to suggest expectations of data
of determination and removal of faults. That way it would be possible to outline a
project calendar with narrower uncertainties, which in turn improves the

effectiveness of project planning process.

26

It may be expected to avoid rework as much as 10 days * 2 men * 20% of a day * 8
hours a day = 32 man*hours per project. In other words, recording Fault-Days
Number for each project would save up to 16 man*hours in future projects. On the
other hand, according to Table 2 no modification to the current development

process definitions is required; thus Fault-Days Number comes at no cost.

3.4.2 Functional Test Coverage

For properly monitoring Functional Test Coverage, Technical Review Form and
Test Result Form must be revised. Once the organization is able to monitor
Functional Test Coverage, ratio of faults determined to faults that exist in the
software product will increase as possibility of delivery of a functional unit without
testing is reduced. Moreover, excessive testing, or test duplication will be avoided,

yielding reduced testing costs.

Assuming that currently 1 functional unit in a single project undergoes duplicated
testing, 10 days * 2 men * 20% of a day * 8 hours / day = 32 man*hours per project

is saved in case Functional Test Coverage is monitored.
The modification costs are limited to revision of two forms in total. Assuming that

it takes one employee for a period of three workdays to revise a form, total cost is 2

forms * 1 man * 3 days / 1 form * § hours / day = 48 man*hours.

27

3.4.3 Requirements Traceability

Requirements traceability is one of the major concerns of the division of Systems
Engineering at the Company. Moreover, in all of the software projects developed at
the Company, the customer asks for an official evidence of requirements
traceability. As software reliability can be judged in terms of conformance to
performance requirements [45], the metric ‘Requirements Traceability’ serves as a
measure of to what extent reliability analysis and testing is performed. Thanks to
that fact, with no effort to change current procedures it will be possible to gain
confidence with requirement traceability works, and to decrease rework effort that
frequently occurs in case of a change in project documents and the product itself. In
a typical project conducted at the Company, the rework effort can be calculated as

12 documents * 3 revisions * 1 man * 8 hours = 288 man * hours per project.

3.4.4 Software Maturity Index

This metric can be monitored after the Configuration Control Procedure is revised
accordingly. For proper interpretation of the metric, either changes or faults in

software products from one baseline to the next one are counted.

An expected outcome is parallelism between software maturity index and software
reliability. It may be possible to gain confidence with reliability predictions or
estimations, and to avoid further effort for reliability improvement work. This way,
it would be possible to save up to 10 days * 2 men * 20% of a day * 8 hours / day =

32 man*hours.

28

The cost of being able monitor this metric is that of revision of Configuration
Control Procedure, which may be approximated as 5 days * 1 man * 8 hours / day =

40 man*hours.

3.4.5 Test Coverage

Provided that the metrics Requirements Traceability and Functional Test Coverage
can be monitored, Test Coverage can be monitored at no cost, as explained in

Section 3.2.

The benefit of monitoring Test Coverage is that it indicates if all the desired
features are implemented and tested completely. That way, customer satisfaction is
guaranteed, and thus a more reliable product is delivered. Monitoring of Test

Coverage does not provide saving for development costs.

3.4.6 Failure Rate

Failure Rate is the metric that enables quantitative analysis of product reliability. As
explained in Chapter 2 in detail, the input of reliability growth models is the failure
rate of a product. For this reason, in case software reliability of a software system
has to be explicitly expressed in a quantitative manner, failure-time information

should be recorded in system tests.

29

Current software development process readily assumes that this information is
recorded. Hence, there is no need for a modification of the process definitions.

Monitoring of Failure Rate does not provide saving for development costs.

3.4.7 Summary of Modification Costs

Table 3 presents a summary of information given in 3.4.1 to 3.4.6. It indicates that a
total of 88 man * hours of work would result in a save of 384 man * hours per
project. It should be noticed that while the total cost is to be spent once, the savings

will be folded in each project completed.

Table 3 — Modification Costs Summary

1 | Fault-Days Number 0 32 per project
2 | Functional Test Coverage | 48 32 per project
3 | Requirements Traceability | 0 288 per project
4 | Software Maturity Index 40 32 per project
5 | Test Coverage 0 N/A

6 | Failure Rate 0 N/A

Total 88 384 per project

30

In the next chapter, evaluation of the modifications proposed in this chapter shall be
discussed, and operation principles and structure of the computer tool developed for

this purpose will be described in detail.

31

CHAPTER 4

PROPOSAL EVALUATION

In this chapter, first of all, alternatives for the evaluation of the system described in
Chapter 3 shall be discussed. Then, the computer tool developed for the evaluation
of the system and its features shall be described in detail. After the explanation of
general flow of the tool, simulation philosophy and associated work shall be

described.

4.1 Method for Evaluation

4.1.1 Evaluation Alternatives

It is widely accepted that the best way of evaluation of process improvement
proposals and modifications is application of modified procedures in a real project
or organization [41]. By actually applying the improved processes, it is possible to
observe direct effects of the proposed system. As the time progresses and projects
with different characteristics are developed with the new system, problematic points
are detected and removed; real statistical data about the system and projects is

obtained and used to further improve the system.

32

During the development of the proposed measurement system it was planned to
perform mentioned modifications in the Company procedures and gather statistical
data from the projects being developed by the Company. Due to re-organization of
the Company, however, computer simulation became the primary alternative for the
evaluation of the proposed system as it permits construction of the system, without
affecting the organizational structure, and requires limited resources. Consequently,
computer simulation of the system reduces the cost and managerial risk of

modifications.

It is possible with the simulation tool to characterize a set of programmers working
for the Company, define a project by providing its size and estimated development
duration, and to perform simulations as if the Company develops the defined
projects, with defined programmers. The response of the simulation tool to different
cases can be analyzed by defining and simulating different projects with different
sizes and different development duration estimates, and by altering workloads of the
programmers. More importantly, the simulation tool can be customized to account
for variations in the ability of the Company to detect faults existing within a

software product.

The tool generates output files that contain information about the fault content of
the software product developed, development duration, and size of the final product.
That way, user is provided with the ability to compare reliability levels of the
products developed with the current software development process of the Company

and with the one proposed in Chapter 3.

33

4.1.2 Limitations of the Simulation

While during the development of the system proposed in Chapter 3, the entire set of
needs of the Company is considered and all the requirements are met, the simulation
introduces certain limitations. In Chapter 3, six metrics were suggested to be

monitored. These are:

1. Fault-Days Number
Functional Test Coverage
Requirements Traceability
Software Maturity Index

Test Coverage

AN

Failure Rate

Among these metrics Functional Test Coverage, Requirements Traceability, and
Test Coverage necessitates detailed statistical data on the structure of software
products in function level such as desired functionalities, defined functionalities,
number of modules, total number of functions in a module, number of module
functions tested. To be able to include this data in a simulation, statistically
meaningful number of sample projects must be available; otherwise the data would
be misleading. Unfortunately, there is only limited number of software projects
developed by the Company, and thus limited data exists. For this reason these
metrics are not feasible for simulation purposes. Thus, Functional Test Coverage,
Requirements Traceability, and Test Coverage will not be monitored in the
simulation. Nevertheless, absence of this data does not affect the dependability of
the simulation tool as the tool treats all the metrics independently, and allows

addition of new metrics when adequate data is provided by the Company.

34

In addition, Failure Rate is a metric that may only have significance in the testing
phase; it does not affect the design phase. This is why it will not be monitored in the
simulation. As it is aimed in this study to examine how reliability of the products is
affected by the proposed modifications, exemption of Failure Rate, which does not

have effect on the design, is acceptable.

4.2 Simulation Tool Outline and Features

For the purpose of simulation of the proposed measurement system described in
Chapter 3, a computer tool with a user-friendly interface is developed. With this
computer tool, the user may define different projects for which software
development processes of the Company will be simulated; that is, the program is
supposed to simulate the Company processes as if a defined project is to be
developed via these processes. To achieve this, user may define programmers that
will participate in the development process. Moreover, the user may modify the

information regarding the projects and programmers.

Once a project is defined and opened for simulation, the computer tool runs the
computer models of both original processes of the Company and those proposed in
Chapter 3. For this purpose, process models in APPENDIX A and APPENDIX B
are of special importance as they constitute the basis of simulation flow. The

simulation results are stored in different text files for inspection.
The simulation of development of a project as well as creation of project and

programmer information is achieved via user commands. The user commands are

summarized in Table 4. Level-1 commands shown in Table 4 either perform an

35

atomic task or introduce a list of atomic tasks. Level-2 commands are all atomic

tasks.

The relations of the database files and user commands are summarized in Figure 2.

Below, the main commands are overviewed.

| \iew_Projects_Under_Development | I\.qﬁw_A\-3|wﬁ_Prbgramr'm|

Z N

rojects.txt
prel) Create_Project | |Gma1x| F'rngranmar| *::1

H/ \JI

2.xt p2.txt

=] =)
— Simulate_Project —_—

Z

original txt modified.txt pi0.txt

programmers, tet

n.ixt

Figure 2 - Relations of Database Files and User Commands

36

Table 4 — User Commands

Level-1 Commands Level-2 Commands

Create Project

Edit Programmers Pool | Create Programmer

View Available Programmers

Edit Programmer

Open Project View Projects Under Development

Edit Project

Simulate Project

Quit Program

4.2.1 “Create Project” Command

If the user selects “Create Project” command, the program prompts the user to
provide “Name of the Project”, “Project Manager”, and “Estimated Size of the
Project” as thousands lines of code. For the user to choose the project manager
among available programmers, the command “View Available Programmers” is

automatically processed.

The project information obtained from the user is stored in a text file that bears a

name which is equivalent to the order of the project; the information of the first

37

project created is stored in the file 1.txt, and that of the n™ project is stored in the
file [n].txt. The order information is obtained from the file projects.txt that stores
the order and the name of the projects created. The flowchart of “Create Project”

command is given in Figure 3.

BEGIN:

!

If *projects.txt” already exists
open it for writing
Else, create it;

|Determine number of projects created before; |

!

|C.Insa “project.td™ |

!

|Get project info from the user; |

Y

Qpen “projects. tt” for appending;
Append new project summary;

|

Create & new text file named (number_of_lines).xt;
Open the file for writing;
Write new project information;

|Clnse the fila; |

|END: |

Figure 3 - Flowchart of “Create Project” Command

38

4.2.2 “Create Programmer” Command

When the user selects “Create Programmer” command, the program expects the
user to enter a “Name”, a “Surname”, and the “Experience” of the programmer in
years. The programmer information obtained from the user is stored in a text file
that bears a name which is equivalent to the order of the programmer preceded by
the letter “p”. The information of the first programmer created is stored in the file
pl.txt, and that of n"™ programmer is stored in the file p[n].txt. The order
information is obtained from the file programmers.txt that stores the order and the
name of the programmers created. The flowchart of “Create Programmer”

command is given in Figure 4.
The simulation program permits creation of up to ten programmer profiles. This

amount is realistic when the software development team of the Company is

considered.

39

|ELEGIN:

'

If “programmens. it already exists
open it for writing
Elsia, creats it

|Datarrnlrra number of programmers created before; |

!

|C|I:IEE “programimere. b’ |

!

|G9t programmaer infa from the user; |

I

Ogpan “programmers.txt” for appending:
Appand REW pIogranmmes SUmmany:

!

Criate 3 new bext file narmed piaurmber_of_lines)
Open the e for wiiting;
'Write mew programmer infarmation;

I

|Cln:m the flla; |

|END: |

Figure 4 - Flowchart of “Create Programmer” Command

4.2.3 “View Available Programmers” Command

When the user selects “View Available Programmers” command, contents of the
files with names starting with the letter “p” is listed according to the format in Table

5. The flowchart of “View Available Programmers” command is given in Figure 5.

40

Table 5 — Output of “View Available Programmers”

1 Programmer 1 Name | Programmer 1 Surname | Exp 1
n Programmer n Name | Programmer n Surname | Exp n
BEGIN;

!

Elaa

I “programmers. tet” already axists
Crpan it for reading

Prampt the user;
it this command;

|

‘Whila |EOF|programmers. b)
Dispday content of the currant line;

!

|Clme ‘programmers_txt*; |

|

|END:

Figure 5 - Flowchart of “View Available Programmers” Command

4.2.4 “Edit Programmer” Command

In case the user desires to modify information of a specific programmer, the
command “Edit Programmer” should be employed. When called, this command
calls “View Available Programmer” command automatically to force the user to

choose the programmer whose information is to be modified. Once the programmer

41

is selected, the program displays current information and prompts the user to enter
new information. When the new information is obtained from the user, it replaces
the content of the file that keeps obsolete information. The flowchart of “Edit

Programmer” Command is given in Figure 6.

|EEGIN: |

¥
|Run “Wiew Available Programmers™; |

¥
|G&t the programmer |0 fo edit; |

¥
|Dpen plprogrammer_|D).txt for writng; |

¥
Get new information from user;

h
Write the data into p{programmer_| D). txi

Y
Close p{programmer_|D}.txt

¥

END;

Figure 6 - Flowchart of “Edit Programmer” Command

4.2.5 “View Projects Under Development” Command

The operation of “View Projects Under Development” command is similar to that

of “View Available Programmers” command. Once this command is selected,

42

contents of the files that store project information are listed according to the format
in Table 6. The flowchart of “View Projects Under Development” Command is

given in Figure 7.

Table 6 - Output of “View Projects Under Development”

1 | Pl Name | P1 Mng Name | P1 Mng Surn | PI KLOC | P1 Duration

n | Pn Name | Pn Mng Name | Pn Mng Surn | Pn KLOC | Pn Duration

4.2.6 “Edit Project” Command

“Edit Project” command acts in a similar fashion as “Edit Programmer” command.
When called by the user, it calls “View Projects Under Development” so as to force
the user to choose the project that is to be updated. When a project is selected,

current information about the project is displayed and new information is accepted.

The new information obtained from the user replaces obsolete content of the project

file. The flowchart of “Edit Project” Command is given in Figure 8.

43

BEGIN;

'

If “projects.ixt” already exists
Open it for reading

Else
Prompt the user;
Quit this commaind;

While 1EOF(projects. txt)
Display contant of the current line;

)

|CI|:|EE “projeds. xl”; |

I

B |

Figure 7 - Flowchart of “View Projects Under Development” Command

4.2.7 “Simulate Project” Command

“Simulate Project” command constitutes the heart of the tool. The projects and
programmer profiles created and updated with other commands are resources of this

command.

44

|BEGIN; |

h

|Run “Wiew Projects_Under Development™; |

h 4
|Gat the project 1D o adit; |

k4

|0pen {project_1D). for writng; |

h

|Get new information from user; |

L 4
|Wnle the data inle {praject (D). =, |

¥
|Clnsa {praject_ID).bd |

|END; |

Figure 8 - Flowchart of “Edit Project” Command

When a project is opened and “Simulate Project” command is selected, for a
realistic operation of the simulation, the tool expects two more inputs from the user:
Fault Finding Ability, and Company Workload Index. Fault Finding Ability is an
index that may have values in the range [0..100] and points what percent of the
faults in software products could be determined when software development
process is executed. This index should be obtained from the user as there is no
available statistical data due to the fact that post-developmental procedures of the
Company (e.g. Maintenance Procedure) are not defined within the organization yet.
Company Workload Index may have values in the range [0..10] and indicates how
busy the Company is. The larger the Company Workload Index, the larger the

possibility that programmers are reserved for other business activities of three days

45

long is. To account for real life situations, this probability is assigned a Rayleigh

distribution with mean 3.

“Simulate Project” command performs two different simulations on the same
resources: the first one employing original software development procedures of the

Company, the second one with proposed measurement system in Chapter 3.

When simulating with original procedures, the tool monitors Total Time Elapsed
(TTE), Number of Faults Introduced within Total Time Elapsed (NoFI), Number of
Faults Determined within Total Time Elapsed (NoFD), and estimate of total lines of
code after each step of development procedure (KLOCE). In the case of simulation
of modified procedures, that is the software development process with measurement
system of Chapter 3, in addition to TTE, NoFI, NoFD, and KLOCE, the tool also
monitors identities of faults determined in each step of development process and
their removal time from the software products. The flowchart of “Simulate Project”

Command is given in Figure 9.

46

BEGIN,

Get Fault Determination Parcenl:
Get Company Waorkload Index;

Assign workloads for pragrammers,

Open (project D).t for reading:
Load KLOC Estimata, Time Estimate from the fila;
Closa the file;

Create “original.txt™;
Closa orlginal_txt;

l

While not all the steps of Original Processes are complete
Estimate time required for this step;
Draterming minimum tirms that minimum number of programmears will ba free,
Update total time collapaad;
Update workloads of programmers,
Updata KLOC estimats;
Estimate number of faults infroduced in this step;
Estimate number of faults determinad in this step;
if number of faults daterminad = number of faults introduced
number of faults determined = number of faults intfroduced;
Open ariginal txt;
Write stepcode into criginal txt;
Write total time collapsed into oniginal txt;
Write numbsear of faults introduced into ariginal. b,
Write number of faults determined into original .txt;
Write KLOC estimate into original xt;
Closa anginal txt;

&

Figure 9 - Flowchart of “Simulate Project” Command

47

Assign workloads for programmers;

k.

Open (project_|D).txt for reading;
Load KLOC Estimate, Time Estimate fram the file;
Close the file;

Create “modified "
Close modified. txt;

k4
Create Fault_List of type Linked_List of Faull_Mode type;
While not all the steps of Modified Processes are complete
Estimate fime required for this step;
Determine minimum time that minimum number of programmers will be free;
LIpdate total time collapsed;
Lpdate workloads of programmers;
Lipdate KLOC estimate;
Estimate number of faults introduced in this step;
Update Fauli_List;
Update Mean_Fault_Formation_Date;
Estimate number of faults determined in this step;
Lpdate Mean_Fault_Determination_Date;
if number of faults determined > number of faults introduced
number of faults determined = number of faults introduced;
Open modified txt;
Write stepcode into modified_txt;
Write total time collapsed into modified txt;
Write number of faults introduced into modified . txt;
‘Write number of faulls determined into modified. xt;
Write KLOC estimate into ariginal txt;
LIpdate Fault_List;
Write IDs of determined faults and determination dates to modified. txt;
Close modified. bxt;

Open modifled. txt for appending;

Write Mean_Fault_Formation_Date into modified. txt;
Write Mean_Fault_Determination_Date into modified, txt;
Calculate Mean_Fault_Removal_Time;

Write Mean_Fault_Removal_Time into modified_txt;
Close modified. txt;

END:

Figure 9 - Flowchart of “Simulate Project” Command (Continued)

48

4.3 Simulation Details

The simulation approach applied in this work assumes that each step of software
development procedures presented in APPENDIX A and APPENDIX B affects
organizational “resources”, and “fault content” of software products. Organizational
resources are time and programmers, whereas fault content contains number of
faults present in software products, number of faults determined within a step, time
spent on removal of a specific fault, and the ratio of faults determined (ROFD),
which is defined to be the ratio of number of faults determined to number of faults

introduced.

In other words, whenever a project is opened for simulation, corresponding steps of
original processes and proposed system are simulated with the assumption that each

step causes the following actions:

I. Time is consumed
2. One or more programmers are assigned a specific task, thus will not

be available for a certain time

3. Size of the project being developed changes

4. Number of faults present in the software product being developed
changes

5. Number of determined faults changes

Thus, each time a step is to be simulated, the simulation tool is internally fed with

mean values of

1. Required time for the execution of the step

2. Number of programmers required for the execution of the step

49

3. Percent change in size
4. Number of faults created in the step

5. Number of faults determined in the step.

This way, the simulation gains the ability to reflect such realistic effects as
overshoot of size and development duration estimations, which were declared by
Company officials to be typically around 35% for size, and 25% for time.
Subsections of this section describes the details of how above five actions are

simulated in the tool.

4.3.1 Consumption of Time and Programmers

The mean time required by a step is determined by taking average of corresponding
time information in projects conducted by the Company. In order to guarantee
randomness as in realistic projects, Rayleigh distribution was chosen as the

probability distribution function as it avoids negative ranges.

The time requirement obtained this way -say T1- constitutes the minimum time that
is required to complete the given step. In reality, however, a step requires certain
number of employees available to perform a given task and related statistical data is
fed to the simulation tool for this purpose. For a task requiring n employees,
employee profiles existing in the database are scanned to determine the minimum
time -T2- before n employees will be ready to perform a new task. Therefore the
simulation points that T1+T2 much time has to pass to complete a given step,

instead of T1.

50

Once time requirement is determined, employee profiles are updated according to
the new time information: If busy time of an employee was shorter than time
elapsed in a step, the employee is assigned a new task according to 4.2. If busy time
of an employee was longer than time elapsed in a step the busy time is shortened by

T1+T2.

4.3.2 Variation of Project Size

After the employee profiles are updated, the simulation tool checks if the step
currently being processed introduces a change in the estimate of total lines of codes
of the project. If it does, percent change in the total lines of codes, which is
accepted as an input from real projects of the Company, is used to stochastically
modify lines of code estimate. In this modification, Gaussian distribution [44] is
assumed as a change may mean a decrease in total lines of codes and an increase as

well.

4.3.3 Formation and Detection of Faults

The next task performed in the simulation after project size is updated is the
determination of number of faults determined in this step. The nominal value of
number of faults determined in a step for real projects of the Company can readily
be obtained from YUBs. Since number of faults introduced in a step cannot
precisely be known, the method discussed in Section 4.2.7 is used to determine that

number.

51

As mentioned in Section 4.2.7, faults introduced, determined, and removed in
modified processes are required to bear IDs. For this purpose, two classes are

designed: Fault Node and Linked List.

4.3.3.1 Fault_Node Class

This class is designed to represent “faults” in the simulation. A summary of this
class is given in Table 7. When a fault is determined, the day it is determined shall
be set with the function Set Day Determined. The method Set Day Removed
randomly assigns KLOC for the fault removed, and employs COCOMO method to

calculate the removal time.

4.3.3.2 Linked_List Class

This class is designed to prepare a list of “faults” of type Fault Node in the

simulation. A summary of this class is tabulated in Table 8.

52

Table 7 - Summary of Fault Node Class

ID integer
Day Created integer
Day Determined integer
Day Removed integer

Next Entry Fault Node *

Insert After This void Insert This Fault Node *
Delete After This void void

Return ID integer void

Return Day Created integer void

Return Day Determined | integer void

Return Day Removed | integer void

Set Day Determined void Day Determined | integer

Set Day Removed void void

4.4 Other Issues Regarding Simulation

There are issues that must be discussed as they have direct effects on the way

simulation is performed. These are:

e Size and duration estimation

e Random number generation

Table 8 - Summary of Linked List Class

Root Node Fault Node *
Last Node Fault Node *

None

Delete Node With ID | void ID integer
Add Node void ID integer

Date Created | integer
Search With ID Fault Node * | ID integer

4.4.1 Size and Duration Estimation

Statistical information on projects conducted by the Company indicates that an
average project is conducted by 30 person*month in 12 months (252 workdays)

yielding 8554 LOC.

For simulation purposes, this data is used as a guideline to determine required

resources of a project to be simulated.

If Basic COCOMO model is assumed [43], following parameters may be used for

estimation of resource requirements:

Effort = a;, * KLOC * (person*month)
Duration = ¢, * Effort ©° (month)

where

adp — 2.28, bb = 1.2, Cp = 2.55, db =0.445

Throughout the simulation, above parameters are used whenever size and

development duration estimations are performed.

4.4.2 Random Number Generation

Assignment of values to random variables constitutes an important part of this work
as it directly affects the performance of the simulation tool in terms of its realism.
For the purpose of generation of random variables, first of all, two uniformly
distributed random variables were created each time an assignment is to be done.
These random variables are then transformed into polar coordinates to obtain
Gaussian distributed random variables [44]. In cases when Rayleigh distributed
random variables were required, which is the case when time resources are
consumed, a uniformly distributed random variable was generated and then

transformed with the following equation:

rv= \/ |lo g(uni_rve uni_rv)|

where rv is the resultant random variable and uni rv is the uniformly distributed

random variable. rv is multiplied by the mean to obtain desired values.

55

Histograms of outputs of functions for generation Gaussian and Rayleigh
distributed random variables with mean 1 are given in Figure 10 and Figure 11

respectively. Both functions were run 65536 times.

1000
900 -
800
700
600
500
400
300
200
100

Frequency

0 T T I I T e T T e e e
Y o< o x
N 9 599 9

<
@

o et
o Q@

0.06
0.56
1.06
1.56
2.06
2.55
3.05
3.55
4.05
4.55
5.04

Value

Figure 10 - Histogram for Gaussian Random Variable Generation

56

Frequency

0 i

N O g Q@ ® 4 0 9§ ©

o O — — N N
Values

2.94

i
N
]

3.47
3.74
4.01
4.28
4.54

Figure 11 - Histogram for Rayleigh Random Variable Generation

Output Data and Output Format

The final step of the simulation of a step is the recording of simulation results into a
text file with the format given in Table 9. The output of simulation of original

processes of the Company is stored in a file named “Original.txt”, whereas that of

proposed system is stored in “Modified.txt”.

“Step” column shown in Table 9 contains an integer code that indicates what step of
software development process was simulated. The lists of step codes for original
and modified procedures are presented in APPENDIX C, and APPENDIX D,
respectively. In the output files, “TTE” column contains workdays that have passed
until the end of a step. “NoFI” column indicates number of faults introduced until

the end of a step. In the “NoFD” column is number of faults determined until the

57

end of a step. “KLOC” column is the one where estimate of total thousand lines of
codes is given. Finally, “Faults Determined” column contains two kinds of
information: identity of the fault determined in a step and removal time of that fault

indicated in parentheses.

Table 9- Format for Simulation Results

n | TTEn | NoFIn | NoFDn | KLOCEn | IDi(RTi),IDj(RTj)....IDk(RTK)

The removal time is calculated using the same COCOMO parameters used for the
simulation with the assumption that a fault necessitates a developmental activity
taking certain amount of lines of code. That number of lines of code is assumed to
be a random variable changing uniformly between 0 and 600, where limits are
arithmetic mean of statistical data from the Company. It should, however, be
pointed out that there is an offset of 2 weeks, that is 10 workdays due to other
organizational procedures employed in the Company. Thus, the time information
obtained with COCOMO parameters should be added to 10 to yield removal time.

Another assumption in the calculation of removal time is that determination of a
fault is an interrupt to the software development process, and no matter how busy

the employees are, priority is given to the removal of faults determined.

58

When simulation of all the steps is completed, if software development procedure
with proposed measurement system is being simulated, additional items that will be

used in interpretation of results are appended to the output. These items are:

1. Arithmetic mean of date of formation of each fault (MFD)
2. Arithmetic mean of date of determination of each fault (MDD)
3. Arithmetic mean of duration of removal of each fault (MRT)

The difference between MDD and MFD yields mean time that a fault spends in the
software product without being determined (MTbFD). Sum of MTbFD and MRT
yields mean time that a fault spends in the software product from its formation to its
removal (MTbFR). The purpose of monitoring MTbFD and MTDbFR is to show that
it is possible to calculate cost of each software fault to end up with an estimate of
cost of correction of faults in software products. It should be noted that MTbFR is
equivalent to the metric Fault-Days Number. While in a more advanced simulation
tool MRT and and MTbFR would be important outputs, in this study, they are
estimated according to the COCOMO technique based on uniformly distributed re-

work sizes per fault. As such, they have not been included in the simulation outputs.

In the next chapter, the results obtained by operating the simulation tool are

presented and discussed.

59

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, first the performance criteria for the simulation tool and test
conditions shall be defined. Then, the output shall be discussed to determine if

proposed measurement system and the simulation tool yields consistent results.

5.1 Generation of Simulation Results

In order to properly evaluate the performance of the simulation tool, first of all it
should be decided what portion of the output data actually have significance in the
evaluation of the measurement system regarding reliability. Then, the input
characteristics must be defined to extensively test the system. In addition, the
number of times that these experiments are going to be repeated should precisely be

determined. These issues are discussed in the subsections of this section.

5.1.1 Data of Interest

As mentioned in the previous chapter, when the simulation tool is run two text files

are generated: Original.txt, and Modified.txt. The file Original.txt stores the

60

simulation results of original software development procedures of the Company,
whereas the content of the file Modified.txt is the results of procedures with

proposed measurement system.

Statistically valuable part of these files is the rows corresponding to the last step of
development procedures; that is, total time elapsed from the beginning of the
project, total number of faults introduced, total number of faults determined, final
KLOC value. Also, for the modified procedures, MDD, MFD, and MRT are of

importance.

5.1.2 Project Characteristics

Another important point in generation of simulation results is the determination of
characteristics of projects for which software development procedures are executed.
To be able to analyze the response of the simulation tool to each project
characteristic each attribute of a sample project is assigned three different values
within their meaningful ranges. The summary of projects simulated is presented in

Table 10.

The projects P1, P2, and P3 are simulated to determine the response of the
simulation tool to changes in estimated duration of projects. Response of the tool to
KLOC estimate changes is investigated via the projects P1, P8, and P9. The projects
P1, P4, and P5 are simulated to monitor response of the tool to Company Workload
Index variations. Finally, the projects P1, P6, and P7 are used for the purpose of

examining the response of the tool for different Fault Finding Ability values.

61

Table 10 - Simulated Projects

P1 9 250 0 60
P2 9 375 0 60
P3 9 500 0 60
P4 9 250 5 60
P5 9 250 10 60
P6 9 250 0 75
P7 9 250 0 90
P8 12 250 0 60
P9 18 250 0 60

5.1.3 Determination of Number of Runs

Because of the fact that calculations performed within the simulation have
stochastic components, it is not possible to interpret the results with one run.
Instead, the simulation must be repeated for “enough times”. Uncertainty of
“enough times” may be removed thanks to the method described in [42], where a
method for determination of number of trials to end up with a mean that lies within
a known neighborhood of the actual mean with a given confidence level is
described. In this work, the neighborhood is limited to +£5% and the confidence
level is set to 95%, meaning that the probability that the arithmetic mean of

simulation results lies within £5% of actual mean is 95%.

62

The parameters that have been considered in the application of this method are

—

TTE of original procedures

NoFI of original procedures

NoFD of original procedures

KLOC Estimate of original procedures
TTE of modified procedures

NoFI of modified procedures

NoFD of modified procedures

KLOC Estimate of modified procedures
MFD of modified procedures

MDD of modified procedures

MRT of modified procedures

MTDbFD of modified procedures
MTDbFR of modified procedures

A A T o

—_— = =
W N = O

The simulation is repeated until all thirteen variables satisfy the confidence rule

described in the preceding sub-section.

5.2 Verification of Simulation

Dependability of the simulation tool can be judged by comparing its output for a
given project to actual developmental data available for this project. For this
purpose it is wise to run the simulation tool for the sample project mentioned in
Section 4.4.1, which requires 30 person*months, 252 workdays of development

duration, and consisting of 8554 LOC (rounded to 9 KLOC).

63

The summary of the results of the simulation can be found in Table 11, where the
project is designated as P1. The results show that simulation yields a development
duration of around 313 days, and size of 12.5 KLOC. The ratio of simulated
development duration to estimated duration is 24.2%, and that of simulated size to
estimated size is 38.9%. It should be noticed that these overshoots are close to the
ones mentioned in Section 4.3, namely, 35% for size, and 25% for time estimations.
Hence, it is safe to assume that the simulation tool does simulate the software

development process of the Company.

5.3 Discussion of Results

Simulations are performed in the light of explanations given in 5.1. The summary of
simulations of nine projects is presented in Table 11. For the purpose of illustration
of how Table 11 was formed from the simulation results, last ten rows of simulation
summary of Project 1 defined in Table 10 are presented in APPENDIX E. As
visualized in APPENDIX E, Run Number, TTE, NoFI, NoFD, and KLOC for

64

simulations of both original and modified processes are listed. In addition to these,
MFD, MDD, MRT, MTbFD, and MTbFR results are also provided for simulation
of modified processes. Later, the method mentioned in 5.1.3 is employed to
calculate required number of runs to have all the variables within desired
neighborhood with desired possibility. These run numbers are designated with n’.
The simulation is performed repeatedly until all n” values are larger than or equal to
the run number. When this condition is met, mean values of simulation variables are

transferred to Table 11.

When Table 10 and Table 11 are evaluated together, it is observed that the
simulation program acts consistently. To deepen the inspection of the response of

the tool, groups of projects must be considered instead of single projects.

5.3.1 P1, P2, and P3: Response to Changing Duration

As mentioned previously, sample projects considered in the calculation of
COCOMO model parameters had development duration of one year. For this reason
it is currently not possible to analyze the effects of development duration on RODF
in spite of the fact that RODF is expected to be improved with longer development

duration.

Keeping KLOC estimate constant, an increase in estimated duration of the project
must not affect the size of the project. Simulated duration must be the only variable
to change. This, indeed, is the case as seen in the simulation results. According to
Table 11, change in estimated duration only affects simulated duration for both

original and modified processes.

65

6915 GO 1L L0 GFAZE | 9Lkl | BTED G527 TETRT | 06'FSE | 8480k G674 T SPELT | A0EFE | ZTLAlE fid
d0eg Az o) 8901 QL A6L | PLBEL | BFOL g4l CLQLL | 605 | Q6 ZSE a0 sg 8451 05651 | LIEEE | 19858 &d
ol ds sad ol CILEL | PRI | CF66 1&el GORTL | SOaTL| OVglE 0L L6 BTl LEGLL | THEIEL | 8 HE d
SOEL LF0g LOOL| BEGLL | SEGHE | BYO06 Gl OUETL | OLFSH| LEFILE U Tl OLUZEL | TRl | POTLE od
+O 06 TEGL Qb LI | oFPRIL | CETL 1 GO LRl | BTFGL | BETOR A sl LESEL | ELP81 | fTElk Gd
0569 0509 OO OO0 | 8EEEl | ODTL Tl LURCL | LST6L | BE0LE R] GGl GEEEL | SLTEL) LATOLE td
QGETL | POLLL | 2901 EWGEE | ETIIT | 8T TL el Qe Qs | CEER | 20009 TLia 5Tl FOEIL | LLTERL | GEE0D &d
Glag G 6% GO0l TOAEE | LG9l Lred oLl Gl gCl | 20681 | SE9%F Lirag LT°T1 CLELL | LETLEL | ET A% Zd
E SAFE SF0L) GEGLL | AT | PUEL agel S0 Lkl | SEFEL | BFSIE O ag FE Tl AEETL | OLESL | IETLE Id

$309[014 do1ISLIg}OBIBYD) QUIN JO SINSOY uone[nuig jo Arewuuns - [d[qe],

66

5.3.2 P1, P4, and P5: Response to Changing Workload Index

Effect of change of workload index is the limited increase of development duration
in original and modified procedures. KLOC estimation and Ratio of Determined

Faults, which was defined in Section 4.3, remain unchanged, as expected.

5.3.3 P1, P6, and P7: Response to Changing Fault Finding Ability

Inspection of simulation results for P1, P6, and P7 indicates that a change in Fault
Finding Ability input, which was defined in Section 4.2.7, directly affects Ratio of
Determined Faults, without affecting other simulation parameters. This is a
consistent result as neither duration nor KLOC estimations are related with Fault
Finding Ability. It is worth pointing that for a constant KLOC, number of
determined faults remains constant while that of introduced tends to decrease

regularly with increasing Fault Finding Ability.

5.3.4 P1, P8, and P9: Response to Changing KLOC Estimate

KLOC estimate may be considered to be the main parameter of the simulation as it
constitutes the basics of COCOMO calculations. For this reason, even slight
changes in KLOC estimates give rise to significant changes in other simulation
parameters. This fact can be observed in the simulation results as well. When
KLOC estimate is increased from 9 to 12, and then to 15, duration, NoFI, and
NoFD increases accordingly. The increase, however, is not a linear relationship.

When the KLOC estimate is doubled, duration is increased by a factor of 1.33. The

67

reason for this is that, growth of duration follows COCOMO model where ratio of
durations of n-KLOC and 2n-KLOC projects converges to 1.448, instead of 2.
Variation of KLOC estimate within simulation steps is the reason that simulated

ratio is 1.33, and not 1.448.

5.3.5 Overall Response Evaluation

For the purpose of evaluation of response of the simulation tool in terms of software
reliability, it is wise to compare the resultant Percent NoFD / NoFI values of
original processes to those of modified processes. Table 12 presents these values
and the ratios of Percent NoFD/NoFI values of Original Processes to those of

Modified Processes.

Inspection of table indicates that for all nine characteristic projects, the ratios of
Percent NoFD/NoFI values of Original Processes to those of Modified Processes
are less than unity. This fact, in turn, indicates that original processes are less
promising in the sense that they are able to determined smaller ratio of existing
faults in a software product. As the definition of software reliability and failure
imply that faults present in a software product is a sign of lack of reliability, it is

wise to claim that modified processes yield more reliable software.

68

Table 12— Percent NoFD/NoFI Values

1 66.94 72.64 | 0.92
2 66.11 73.11 | 0.90
3 67.72 7228 | 0.94
4 67.61 7230 | 0.94
5 67.73 7293 | 0.93
6 83.46 90.58 | 0.92
7 97.70 99.53 | 0.98
8 65.06 7049 | 0.92
9 62.98 68.28 | 0.92
AVERAGE 71.70 76.90 | 0.93

Moreover, the durations of characteristics projects when developed via original
processes and modified processes are summarized in Table 13. It is seed from the
table that a project is developed in almost the same durations. This means that the
increase in software reliability is obtained almost at no cost. In addition to these, the
productivity of the organization is increased slightly as number of LOC produced in

a given time is increased by a factor of 7.9%, which is a fact indicated in Table 14.

In the next chapter, conclusions regarding this work and possible future studies

shall be discussed.

69

Table 13 - Durations of Projects

1 31291 315.59 | 0.99
2 458.23 456.95| 1.00
3 609.89 600.08 | 1.02
4 370.27 370.88 | 1.00
5 403.23 40298 | 1.00
6 312.04 314.87 | 0.99
7 311.38 313.10 | 0.99
8 353.61 352.96 | 1.00
9 416.12 408.78 | 1.02
AVERAGE 394.19 39291 | 1.00
Table 14 - Sizes of Projects
1 12.54 13.66 | 0.92
2 12.27 13.32] 0.92
3 12.52 13.23 | 0.95
4 12.55 13.62 | 0.92
5 12.56 13.59 | 0.92
6 12.40 13.65| 0.91
7 12.38 13.51| 0.92
8 15.78 16.88 | 0.93
9 21.22 22.59 | 0.94
AVERAGE 13.80 14.89 | 0.93

70

CHAPTER 6

CONCLUSIONS

In this work three major tasks are accomplished. First, software reliability literature
is examined; basic definitions of software reliability studies are understood;
classification and relations of software reliability growth models are inspected;

application areas of software reliability concepts are investigated.

As the second major task, software development procedures of a company are
examined with software reliability being the primary concern; problematic issues
are determined; expectations of the organization in terms of software reliability are
determined; different metrics are evaluated according to their usefulness and
availability, a selection is extracted accordingly, and in the light of information

obtained, a new set of procedures with a measurement system is proposed.
In the final stage of this work, a computer program with a user-friendly interface is

developed to simulate both original and modified procedures, to evaluate the

benefits to be achieved via the proposed measurement-based control system.

71

6.1 Discussion of Findings

This study shows that reliability of software products can be increased without

dramatically altering software development procedures, and at a low cost.

It is observed that the ability of the organization to determine faults existing in a
software product is improved. This is achieved primarily by modifying existing
processes to monitor the metrics Software Maturity Index, and Functional Test
Coverage. This point is remarkable as this study does not aim to propose an
improvement to the software development processes in general sense; rather it
introduces minor modifications to existing processes with software reliability being
the primary concern. This fact can be extracted from the simulation results if it is
realized that while the development duration and hence costs remain constant, the

reliability in increased.

6.2 Future Work

Simulation of proposed system enables evaluation of the system without actually
modifying organizational structure and procedures, which may give birth to short
chaotic periods and infeasible costs. With simulation, it is made possible to analyze
the effects of modifications without managerial and economical risks. For
organizations considering minor modifications in development procedures, it may
be advisable to perform simulations of modifications before actual changes take

place to find out defective points with the new set of changes.

72

It should, nevertheless, be noticed that the decision of performing a simulation
instead of accomplishment of actual process improvement tasks introduces certain

limitations.

The first limitation comes from the fact that the nature of simulations is limited to
internally seeded set of inputs as it requires significant resources to design and
implement a simulation tool fully characterized to real-world situations. For this
reason, simulation may only provide an outline of what would happen in a realistic
situation. The level of realism of the simulation tool may be increased if variety and
depth of statistical data obtained from real projects are increased. This may also
make it possible to implement simulation tools that monitor a broader range of
functionalities. These functionalities may range from additional metrics to monitor

to managerial activities as decision making and project management.

The second limitation is that simulations are performed on user defined projects,
which are nothing but variations of a sample project obtained by linearly varying
certain characteristics of the sample project. It would improve the dependability of
this work if it were possible to compare the simulation to projects with diverse

characteristics.

There exist alternatives to overcome the above limitations. One of these alternatives
is the actual application of the proposed system to the Company, and the second one
is the improvement of the simulation tool to cover all realistic effects and a more

detailed definition of the organization, employees, and the projects.
Apart from simulation approach, a detailed project improvement project may be a

significant choice for the improvement of reliability of software products developed

in an organization. For this purpose, it would be wise to start with classification and

73

analysis of faults determined so as to find out the roots of the problematic points
with the development process and the development team. Once these points are
determined, more specific solutions may be proposed and supported with related

trainings.

74

REFERENCES

. “IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of

Measures to Produce Reliable Software”, 1998

. L. Rosenberg, T. Hammer, J. Shaw, “Software Metrics and Reliability”,
http://satc.gsfc.nasa.gov/support/ISSRE NOV98/software metrics_and reliabil
ity.html

Last Date Accessed: 25.08.2005

. “MIL-HDBK-338B, Electronic Reliability Design Handbook”, US DoD

. J. Musa, A. Iannino, K. Okumoto, “Software Reliability: Measurement,

Prediction, Application”, 1990, McGraw-Hill

. C. Huang, M. R. Lyu., S. Kuo, “A Unified Scheme of Some Non-Homogenous
Poisson Process Models for Software Reliability Estimation®, March 2003,

IEEE Transactions on Software Engineering, Volume: 29 Issue: 3, pp. 261-269

S. Ramani, S. Gokhale, K. S. Trivedi, “SREPT: Software Reliability Estimation
and Prediction Tool”,

http://www.ee.duke.edu/~ssg/papers/tools98.ps
Last Date Accessed: 25.08.2005

75

7.

10.

11.

12.

13.

14.

M. R. Lyu, J. Schonwilder, “Web-CASRE: A Web-Based Tool for Software
Reliability Modeling*,

http://www.cse.cuhk.edu.hk/~lyu/paper ps/web-casre.ps

Last Date Accessed: 25.08.2005

S. Brocklehurst, B. Littlewood, “New Ways to Get Accurate Reliability
Measures”, July 1992, IEEE Software, Volume: 9 Issue: 4, pp. 34-42

F. Lanubile, “Why Software Reliability Predictions Fail”, July 1996, IEEE
Software, Volume: 13 Issue: 4, pp. 131-132, 137

B. Littlewood, “The Problems of Assessing Software Reliability”, 2000,
Proceedings of the Safety Critical Systems Symposium

R. C. Tausworthe, M. R. Lyu, “A Generalized Technique for Simulating
Software Reliability”, March 1996, IEEE Software, Volume: 13 Issue: 2, pp.
77-88

H. Pham, “Software Reliability and Testing”, 1995, IEEE Computer Society
Press
Y. K. Malaiya; M. N. Li; J. M. Bieman; R. Karcich, “Software Reliability

Growth with Test Coverage”, December 2002, IEEE Transactions on
Reliability, Volume: 51 Issue: 4, pp. 420-426

M. C. K. Yang; A. Chao, “Reliability-Estimation and Stopping-Rules for
Software Testing, Based on Repeated Appearances of Bugs”, June 1995, IEEE

Transactions on Reliability, Volume: 44 Issue: 2, pp. 315-321

76

15

16.

17.

18.

19.

20.

21.

22.

. P. K. Kapur, R. B. Garg, “A Software Reliability Growth Model for an Error-
Removal Phenomenon®, July 1992, Software Engineering Journal, Volume: 7

Issue: 4, pp. 291-294

P. J. Boland, H. Singh, “A Birth-Process Approach to Moranda's Geometric
Software-Reliability Model”, June 2003, IEEE Transactions on Reliability,
Volume: 52 Issue: 2, pp. 168-174

W. Ehrlich, B. Prasanna, J. Stampfel, J. Wu, “Determining the Cost of a Stop-
Test Decision®, March 1993, IEEE Software, Volume: 10 Issue: 2, pp. 33-42

M. Sahinoglu, “Compound-Poisson Software Reliability Model”, July 1992,
IEEE Transactions on Software Engineering, Volume: 18 Issue: 7, pp. 624-630

K. Goseva-Popstojanova, K. S. Trivedi, “Failure Correlation in Software
Reliability Models”, March 2000, IEEE Transactions on Reliability, Volume: 49
Issue: 1, pp. 37-48

C. Wohlin, U. Korner, “Software Faults: Spreading, Detection and Costs”,
January 1990, Software Engineering Journal, Volume: 5 Issue: 1, pp. 33-42

S. L. Pfleeger, “Software Engineering: Theory and Practice”, 1998, Prentice
Hall

M. Chen, M. R. Lyu, W. E. Wong, “Effect of Code Coverage on Software

Reliability Measurement”, June 2001, IEEE Transactions on Reliability,
Volume: 50 Issue: 2, pp. 165-170

77

23

24.

25.

26.

27.

28.

29.

30.

. J. D. Musa, “A Theory of Software Reliability and Its Applications”, September
1975, IEEE Transactions on Software Engineering, Volume: SE-1, No: 3,
pp-312-327

B. Littlewood, “Software Reliability”, 1987, Blackwell Scientific Publications

W. W. Everett, “Software Component Reliability Analysis”, 1995, “Software
Reliability and Testing”, Los Alamitos, California, IEEE Computer Society
Press, pp.45-46

A.L. Goel, “Software Reliability Models: Assumptions, Limitations, and
Applicability”, December 1975, IEEE Transactions on Software Engineering,
Volume: SE-11 No: 12, pp. 1411-1423

M. R. Lyu, A. Nikora, “Applying Reliability Models More Effectively”, July
1992, IEEE Software, pp. 43-52

A. L. Goel, K. Okumoto, “Time-Dependent Error-Detection Rate Model for
Software Reliability and Other Performance Measures”, August 1979, IEEE

Transactions on Reliability, Vol. R-28 No. 3, pp. 206-211

J. Voas, “Assuring Software Quality Assurance”, May-June 2003, IEEE
Software, Volume: 20 Issue: 3, pp. 48-49

R. L. Glass, “Defining Quality Intuitively”, May-June 1998, IEEE Software, pp.
103-107

78

31.

32.

33.

34.

35.

36.

37.

J. Viega, J. Voas, “Can Aspect-Oriented Programming Lead to More Reliable
Software?”, November-December 2000, IEEE Software, pp. 19-21

J. R. de Almeida Jr., J. B. Camargo Jr.,, B. A. Basseto, S. M. Paz, “Best
Practices in Code Inspection for Safety-Critical Software”, May-June 2003,
IEEE Software, Volume: 20 Issue: 3, pp. 56-63

R. Laddad, “Aspect-Oriented Programming Will Improve Quality”, November-
December 2003, IEEE Software, pp. 90, 92

J. Barnard, A. Price, “Managing Code Inspection Information”, March 1994,
IEEE Software, Volume: 11 Issue: 2, pp. 59 -69

V. T. Rokosz, “Long-Term Testing in a Short-Term World”, May-June 2003,
IEEE Software, pp. 64-67

M. R. Lyu, S. Rangarajan, A. P. A. van Moorsel, “Optimal Allocation of Test
Resources for Software Reliability Growth Modeling in Software
Development”, June 2002, IEEE Transactions on Reliability, Volume: 51 Issue:
2, pp- 183 -192

“Creating a Metrics Program”, Software Productivity Center Inc.,
http://spc.ca/resources/metrics/

Last Date Accessed: 25.08.2005

79

38

39.

40.

41.

42.

43.

44,

45.

. S. Ramakrishnan, T. Menzies, M. Hasslinger, P. Bok, H. Mccharty, B.
Devakadadcham, D. Moulder, “On Building an Effective Measurement System
for OO Software Process, Product and Resource Tracking”, November 1996,

TOOLS Pacific, pp. 239 - 247

T. Chen, B. Homayoun Far, Y. Wang, “Development of an Intelligent Agent-
Based GQM Software Measurement System”, August 2003, The First
International Conference on Agent-Based Technologies and Systems, pp. 187-

197

R. Offen, R. Jeffery, “Establishing Software Measurement Programs”, March-
April 1997, IEEE Software, pp. 45-53

O. Eralp, “Design and Implementation of a Software Development Process
Measurement System”, 2004, Master of Science Thesis, Middle East Technical
University

Prof. Dr. S. Bilgen, 2005, Lecture Notes

B. W. Boehm, “Software Engineering Economics”, 1981, Prentice Hall

A. Papoulis, “Probability, Random Variables, and Stochastic Processes”, 1991,
McGraw Hill

P. B. Crosby, “Quality is Free: the Art of Making Quality Certain”, 1979,
McGraw Hill

80

APPENDIX A

THE CURRENT SOFTWARE DEVELOPMENT PROCESS

Need for running
\' Software Development
Process"

T . "
Determination of
|
| ;?:;?0?; Project Manager and
| Project Employees
Project

Manager and |
Work-Package
Leaders

SRS, SDD

Project
Employees

Project |
Employees

Project |
Employees

Project |
Employees

Deliverable Code

Project |
Employees

i [l

Project
Employees

- Software Test Reports
Project

Employees

v e 8

Figure 12 — The Current Software Development Process

81

Requirements Elicitation Process

Project
Manager

-

Request for Software

Requirements Elicitation

N7

User Level Requirements and

Provision and Examination of

Related Inputs

N

Is it required to prepare an
SRS?

&

&

Project
Employees

Project
Employees

Determination of
Requirements

Determination

Project
Employees

of Verification 1
Methods

-

Preparation of

Project
Employees

SRS

i —

Inspection of

SRS

—

SRS

Figure 13 - Requirements Elicitation Process

82

(ponunuo))) ss9901J UONBIII[H SIUSWAINDIY - €] AN

L)

ueld 1S9 9oueidaddy alemyos

ue|d
1S3 99ue1daddy a1emlyos Jo uolesedald

Jabeuepn
108l01d

saakojdwg

s1sa) 9oueidadoy Jo uoniuyad —

ue|d uoljeoiyr
saakojdwzg
JUe|d uoneodlllaj pue 1sal ,, jo uonesedald o
| N
a1 90ueldaday Jo uoneulwdleg K seA K X
—" =R
saakojdwg
BEI(e)] y
L) @E_:umw_ LBunsa] aosueidasoy, @
ue|d uawdo|anaqg alemyos _/
= Jue|d saakojdwg
1uawdojanaq alemyos,, Jo uonesedald 108l01d

T

m 109[01d Jo Buluue|d [ea1UYyda |

Jabeuen

109f0ud

83

&

Project
Employees

:

Definition of System Test I

Project Pr
Employees

!

eparation of " System/Integration Test I

Plan" I
ystem/Integration Test Plan - Draft

Project
Employees

:

Requirements Analysis I

Project P
Employees

:

reparation of "Software Requirement I

Analysis Report" I

Project
Employees

Software Requirement Analysis Report

Project All th
Employees

e Output Sent to Software Development|
Library

Project
Manager

1

"End-of-Phase" Presentation

Figure 13 - Requirements Elicitation Process (Continued)

84

Software Design Process

Request for Software Design

!

Project | Provision of Related Inputs and
Manager Delivery to Project Employees

Project _—[Inspection of Inputs j
Employees

Project
Employees A
Determclnatlon 0 ST ‘ Eetermination of Reuse Compone@
omponents
Project
Employees fl\
\\\/\{

Determination of Component ‘ ‘ Detail Design of

Integration Order Components ‘ ‘ DS &7 [THEHE0ES

o

Project Preparation of " Software Design
Employees Report"

Software Design Report

B

Figure 14 - Software Design Process

85

(ponunuo))) ssa001d USISo(21eMYOS - [AN

1abeuep

m uolejuasald ,aseyd-jo-pug, j08l0.d

—

Areliqi] uawdojanag
91eM]J0S 011ussS INdINO 8yl ||V

saakojdwg
MmaInay ubiseq 108f0id

labeuep
uonyenbiyuod

H

Meiq - apIng 19N 19NP0Id 218 M)0S

A= j yeiq .epino 1asn saakojdwg
@uo& a1em)yos , Jo uoneledald JLE] (]

SaA
ue|d 1S9 uolelbalu| walsAs

WUeld
1S9 UoIyelBajul/walsAs , JO UOISINDY

1

m s1sa] uolelBbalul jo uoiulaq

_/

saakojdwg
103foid

|
Jawoisny |
|
1

86

Work-Package
Employees

Coding Process

Need for Running " Software
Coding Process"

Work-Package
Employees

J Preparation of Software
7l Component Test Plan

—

‘ Inspection of Software
‘ Component Test Plan

Approved?

Not Approved

Work-Package
Employees

Work-Package
Employees

| §

; Approved
[

Software Component Test Plan

Codlng of Software Components

!

Codes Sent to Configuration Manager
via Component Coding Form

Figure 15 - Coding Process

)

" - Coding Farm = s pected and Cade_j
I:D"I-‘mg"r aticn Addedto Software Development
anagar Wiy -J
Projest Software Componert Coding Form
Emplovees |
1 Cornponert Ejde e pection }
Frojct
Emplayees 4' Check for Fauls
J n
Ernploye e that
reapd?l'rz Code 4[_ Are there arypfadts?
Code Rewview .
® Fie qired? Record via YUBE
—

|
Ernplowe e that Ernployes that
Readthe Code Readthe Code

Code and Component TP addedto
Software Deweloprment Librariy

Figure 15 - Coding Process (Continued)

88

Project Component Testing According tﬁ,
Employees Component STP

J

L

reparation of "Software Component
Test Result Form"

Project Pl
Employees

Software Component Test Result Form

Project 5
Employees Are there any faults? j

i

| Code Review
Required?

—

Employee that

Record via YUB

Employee that

Software Development Library ’\

Project .
Employees Integration of Componentsj

Prepared the Prepared the
Form Form
Need to Repeat Test?
Project Meeting for Discussion of Software Test
Employees Results
Configuration Documents and Code are Sent to \,
Manager

Figure 15 - Coding Process (Continued)

89

=

Project
Employees

-—[Integration Testing }

Project
Employees

—[Are there any faults? j

Record via YUB

ﬁ

)
Need to Repeat

Integration
Test?

Employee that
Performed the
Test

Employee that
Performed the
Test

Project
Employees

| Preparation of "Software Test
Result Form"

Software Test Result Form

Configuration

No

Source Code Sent to Software L
Development Library F

Manager

Project Meeting for Discussion of Software
Employees Test Results

Project
Employees -—@tware Product Handbook UpdaB

Project System Test Preliminary R@W
Employees

Figure 15 - Coding Process (Continued)

90

SSAJ30.Id wﬁﬁmorﬁ 2IemijosS - 91 AInsI

&3

(o]

Software Testing Process
®

SOA

£1S9] WalsAS 1eaday 01 pasN:

ALK

o {6

18] ay}
ul paredidnied
aakoldw3
abexoed-)I10M

m ¢ syneq Auy alayl aly)

Wwiod)Nsay 1S9 dIeM}0S _/

| Jwiod ynsay |

18] ay}
ul paledioiued
aakojdw3g
abexoed-)I10M

i 1S9] 8Jemljos,, Jo uoiresedald i

]

VW U’I
> lempyo
NF

saakojdwg
10901d

@h Wa1SAS Jo 14e1s 1oy co_m_qu

91

Configuration Software Code Sent to Software
Manager Development Library

Work-Package __Eeparation of "Software Prod@

Employee User Guide" Completed J

Software Product User Guide

Project __Eoftware System Test R%n
Employees

l

An "Acceptance Testing"
Required by "Systems Eng. Man.
Plan" or "SDP"?

@ m { Software Ready for Use j

Yes

0 the Customer Desire to Review)
Customer Software Acceptance Testing

Plan?

Yes

Project | | Software Acceptance Testing
Employees Preliminary Review
Project
Employees

'— Software Acceptance Testing H
Customer
&y

Figure 16 - Software Testing Process (Continued)

92

Work-Package
Employee
Participated in
the Test

&

Preparation of "Software Test
Result Form"

Work-Package
Employee
Participated in
the Test

Software Test Result Form

—[Are There Any Faults? I

Record via YUB e i (et

Acceptance Testing?|

Work-Package
Employee

Participated in
the Test

Project
Employees

T
|
| Customer
|

Software Ready for Use

Figure 16 - Software Testing Process (Continued)

93

APPENDIX B

MODIFIED SOFTWARE DEVELOPMENT PROCESS

Need for running

'Software De p)
Process"

" a
| Board of Determination of P(oject
| Directors and Project

Employees

Project
Manager and

Project
Employees
Project
Employees

Project
Employees

Project
Employees
Deliverable Code
Project
Employees

Project X
Employees
Software Test Reports
Project

Employees

SRS, SDD

Figure 17 — Modified Software Development Process

94

Modified Requirements Elicitation Process

Request for S oftware
Requirements Elicitation

Provision and Examination of
User Level Requrements and
Related inputs

[Is it required to prepare an]
SRS ?
Ho

Employees

Project Determination of

Employees Verification Methods_J \L
foect Preparation of SRS

Employees

S oftware Maturity Matrix

Project
Employees

Figure 18 - Modified Requirements Elicitation Process

95

(poanunuo))) ss9901d UONBIDI[H SIUSWAINDY PIYIPOIA - 8T N3

e

ALK

ue|d 1Sa] 9oue1dadody aiemyos

ue|d 1sal Jabeuep
99oue1daday alemijos jo uoneredald | 109l01d

m s1sa] 9ouedadoy Jo uonulad U|| mmuwmwo_mu_m_

ue|d UOITeIIIIBA pUe 1S9
| &3
_/ j Jueld saakoldwg
@%oz:mS pueisa] , jo uoneiedaid | 109l01d
91110 9oueldad2Yy JO UolIeUIW IS S9, \
Bu21D 20uE) _5 neulw21acK _4 A K /vw
saakoldwg
109l01d ¢palinbay
bunsa] aosueidasoy, uy
ue|d Juswdo|anaq a.1eMm}o0S _/
A~ .ueld wawdojanag saakoldwg
9lemyyos ,, jo uolresedald | 108[01d

T

mum._n:n_ jJo Buruueld _mo_:;om._.u | 19beuep

109l01d
)

96

Project
Employees

Definition of System Test I

Project
Employees

Requirements Analysis I

Project Preparation of " System/Integration
Employees Test Plan”
J/ System/Integration Test Plan - Draft

eparation of " Software Requiremen

Project Pr
Employees Analysis Report"

Software Requirement Analysis Report

Project
Employees

Project
Employees

All the Output Sent to Software
Development Library

L

Project
Manager

"End-of-Phase" Presentation

Figure 18 - Modified Requirements Elicitation Process (Continued)

97

Modified Software Design Process

Request for Software Design

Manager

Project Provision of Related Inputs and
Delivery to Project Employees

Project
Employees

Inspection of Inputs]

Project

Employees

of Software

Determination

Components

Determination
of Reuse
Components

Project

Employees

Determination
of Component
Integratio...

Detail Design Design of
of Components Interfaces

Figure 19 — Modified Software Design Process

98

(ponunuod) ss3001d USISA(] 2IeMIJOS PAYIPOIA — 6T dIN3I

(e

ALK

1yeld - 9pIND 13SN 19NPo.Id I8 MI0S

ue|d 1531 uoneibalul walshs

WUeld1sal
uonelbaluywalshs,,

JO UoISINSY

saakoldwg
108l01d

s)sa| uoneibalul
Jo uoniuyaq

£9pIng
J9sn e alsedald
01 pasN

1loday ubisaq alemyos

JHoday ubiseq
8I1emyos,,
jo uoneredald

saakoldwg
108l01d

1eIq ,APIND 19SM 19NPo.Id
91emos , Jo uoneredald

saakoldw3g
199f0.1d

Jawoisny

99

|
| Functional Test Coverage hatrix |

Created

\|, Froject

Ernpl
A Fault Deter mined? EONEES

‘\iﬂ

Software Maturity Matrix Created

A Fault Deter mined?

\| Recard «ia YUB
2 D {

4

Project _E_ Design Revew
Ernployees

L

Corfiguration Allthe Ot put Sent to Software
hEnzger Dewveloprment Library

Project _| "End-of- Phase" Fresertation j
hEnzger

Figure 19 — Modified Software Design Process (continued)

100

Modified Coding Process

eed for Running " Softwar
Coding Process"

Work-Package J Preparation of Software
Employees 4 Component Test Plan
Work-Package \ Inspection of Software
Employees \ Component Test Plan
Approved?
Not Approved L X Approved

Software Component Test Plan

Work-Package |

Employees Coding of Software Componeng

L

Codes Sent to Configuration
Manager via Component Coding
Form

Work-Package
Employees

l

Coding Forms Inspected and
Code Added to Software
Development Library

Configuration
Manager

. Software Component Coding Form
1

Figure 20 — Modified Coding Process

101

(o

(panunuo))) sso001d SUIpo)) POJIPOIA - (7 9INSIg

Areaqi uswdojanag
9.1eM1J0S 0} pappe
dlS luauodwo) pue apod

1abeuep
uoneunbiyuo)d

9po) 8yl peay
1ey) askojdwg

A\

¢siney
Aue alay) aly

9p0) 8y} peay
1ey1 aakojdw3

gNA ©IA PI093Y

Q ipalinbay

g MBINSY BP0

8poD 3y} pesy
1ey) aakojdw3g

m s)ned 10J %9940

M',

1

saakojdw3
103l01d

uonoadsu| apod EmcanooJ\

)y

SOA

- B

L

saakojdwzg
109(o1d

102

Component Testing

Ersnl)éecetes According to Component
ploy! STP
Project Preparation of " Software
Component Test Result (A3)
Employees Form®
Software Component Test Result Form
- Yes
Project Are there any
Employees faults?
. . Code Review
\Record via YUB Required?
Employee that Employee that
Prepared the Prepared the
Form Form
Need to Repeat
Project Meeting for Discussion of Test?
Employees Software Test Results

Documents and Code are
Sent to Software

Configuration

Slanage Development Library
PIEEER Integration of Components|
Employees

Figure 20 - Modified Coding Process (Continued)

103

Project
Employees

Project
Employees

Project
Employees

Configuration
Manager

-—[Integration Testing

Project
Employees

Project
Employees

w

Are there any faults?

Preparation of

Record via YUB | —)

Need to Repeat
Integration
Test?

Employee that
Performed the

Test

Employee that
Performed the
Test

"Software Test
Result Form"

b

/;
Source Code Sent to

Software Test Result Form

Software Development
Library

Meeting for Discussion of
Software Test Results

Software Product
Handbook Updated

Project
Employees

System Test Preliminary RE#W

Figure 20 - Modified Coding Process (Continued)

Modified Software Testing Process

$S90014 Sunsa], 9I1eM)JOS PIYIPOIA — [IS

a

¢15aL walshs dNA BIA pl023ay SaA ¢ X

1eaday 01 paaN N

mn..m::mu_ Auy ai1ay] aiy
1591 ayj ui pajedidnied

Ao|d 6 -
aakojdw3 abexoed-3I1o0Mm W04 1NSOY 1S9 SIBMIIOS _/ mmmmwm%ﬁw_;
~ | .wioqynsay isaL
| a1remyos, Jo uonesedaid
T

J soakojdwg
\prmh Wa1SAS a1em)os , Joalold

1S9] Wa1sAs
0 11e1S 10} uoisioag

105

Configuration
Manager

Work-Package
Employee

Project
Employees

iy
e

Customer

| Software Code Sent to Software
Development Library

N

|Preparation of " Software Product.
User Guide" Completed I

S

Software Product User Guide

An "Acceptance Testing"
Required by " Systems Eng. Man.
Plan" or "SDP"?

Software Ready

e for Use

Yes

Do the Customer Desire to
Review Software Acceptance
Testing Plan?

Figure 21 — Modified Software Testing Process (Continued)

106

Project Software Acceptance Testing
Employees Preliminary Review

Project

Employees

Software

Acceptance
Customer Testing
—
N
Work-Package IPreparatlon of

'Software Test
EnRloyc Result Form"
Software Test Result Form
Yes
Work-Package Are There Any [}
Employe... Faults?

Need to Repeat
Acceptance
Testing?

Record via YUB

Work-Package Employee
Participated in the Test

(VX

Figure 21 — Modified Software Testing Process (Continued)

107

&

Elftware M aturity Matrix Creat@

r A Fault Determined?

2]—{ Record via YUB

Project @

Employees

Software Acceptance Test
Review

N

L Software Ready for Use W

END

v Customer

Figure 21 — Modified Software Testing Process (Continued)

108

APPENDIX C

ORIGINAL PROCESSES STEPCODES

Table 15 - Stepcodes for Original Processes

Requirements Provision of Related Inputs and
Elicitation Delivery to Project Employees
Requirements .
Elicitation Preparation of SRS
quplre?ments Technical Planning of the Project
Elicitation
Requirements . .
Elicitation Preparation of Acceptance Testing
Requirements Declaration of System Test
Elicitation Requirements
Requirements Preparation of Requirements Analysis
Elicitation Report
Requirements . . .
Elicitation Requirements Analysis Review
quplrgments Requirements Elicitation Review
Elicitation

. Provision of Related Inputs and
Design

Delivery to Project Employees

109

Table 15 - Stepcodes for Original Processes (Continued)

10 Design Inspection of Inputs
Determination of Software Components,
11 Design and Determination of Reuse
Components
12 Design gi‘;&;mmatlon of Component Integration
13 Design Detail Design of Components
14 Design Design of Interfaces
15 Design Preparation of Software Design Report
16 Design Definition of Integration Tests
17 Design gf;[:aratlon of System/Integration Test
18 Design Software Design Review
19 Coding gfzgaratlon of Software Component Test
20 Coding {)ﬁ:ﬁectlon of Software Component Test
21 Coding Coding of Software Components
. Inspection of Coding Forms by the
22 Coding Configuration Manager
23 Coding Component Code Inspection
. Component Testing According to
24 Coding Component STP

110

Table 15 - Stepcodes for Original Processes (Continued)

25 Coding Component Code Inspection
26 Coding Integration of Components
27 Coding Integration Testing
. New Revision of Software Product
28 Coding Handbook
29 Coding Pre-Test Review
30 Testing System Test
31 Testing Preparation of System Test Result Form
. Final Version of Software Product User
32 Testing Guide
33 Testing Software System Test Review
34 Testin Software Acceptance Testing
& Preliminary Review
35 Testing Software Acceptance Testing
36 Testing Software Test Result Form
37 Testing Critical Design Review

111

APPENDIX D

MODIFIED PROCESSES STEPCODES

Table 16 — Stepcodes for Modified Processes

1 Requirements Provision of Related Inputs and
Elicitation Delivery to Project Employees
Requirements .

2 Elicitation Preparation of SRS
Requirements Preparation of Software Maturity

101 T .

Elicitation Matrix

3 quglrgments Technical Planning of the Project
Elicitation
Requirements . .

4 Elicitation Preparation of Acceptance Testing

5 Requirements Declaration of System Test
Elicitation Requirements

6 Requirements Preparation of Requirements Analysis
Elicitation Report
Requirements . . .

7 Elicitation Requirements Analysis Review

8 Re.ql.nre.:ments Requirements Elicitation Review
Elicitation

112

Table 16 - Stepcodes for Modified Processes (Continued)

9 Desion Provision of Related Inputs and Delivery
& to Project Employees
10 Design Inspection of Inputs
Determination of Software Components,
11 Design and Determination of Reuse
Components
12 Design Igiizmmatlon of Component Integration
13 Design Detail Design of Components
14 Design Design of Interfaces
15 Design Preparation of Software Design Report
16 Design Definition of Integration Tests
17 Design Efzﬁaratlon of System/Integration Test
102 Design ﬁzfr?)r(atlon of Functional Test Coverage
103 Design Preparation of Software Maturity Matrix
18 Design Software Design Review
19 Coding E{:Earatlon of Software Component Test
20 Coding ;ri:flectlon of Software Component Test
21 Coding Coding of Software Components

113

Table 16 - Stepcodes for Modified Processes (Continued)

. Inspection of Coding Forms by the
22 Coding Configuration Manager
23 Coding Component Code Inspection
. Component Testing According to
24 Coding Component STP
25 Coding Component Code Inspection
26 Coding Integration of Components
27 Coding Integration Testing
. New Revision of Software Product
28 Coding Handbook
29 Coding Pre-Test Review
30 Testing System Test
31 Testing Preparation of System Test Result Form
. Final Version of Software Product User
32 Testing Guide
33 Testing Software System Test Review
. Software Acceptance Testing
34 Testing Preliminary Review
35 Testing Software Acceptance Testing
36 Testing Software Test Result Form

114

Table 16 - Stepcodes for Modified Processes (Continued)

104 Testing ﬁzi)rail)r(atlon of Software Maturity
37 Testing Critical Design Review

115

APPENDIX E

SIMULATION RESULTS FOR PROJECT 1

In this appendix, for the sake of brevity, only last ten rows of summary of results of
P1 has been included. The full results have been presented in the attached CD,
under the folder named “Simulation Results”. Results of the projects are available

in the folders bearing the names of respective projects.
The simulation tool is run 83 times for P1, 62 times for P2, 90 times for P3, 77

times for P4, 92 times for P5, 104 times for P6, 231 times for P7, 72 times for PS,
and 82 times for P9, adding up to 893.

116

I T A ER A e S CT T g1 [emt sl [sIg
ST, e ST, VR
i 3 S1_[1z_[s¢ [0 [18_ [z5 [el [eL__ |e@ 01 [L80 [8I1 |s1_ |6El |3l [lec |28 [1i_ [#F |2 [e1 _ [O11 [csl |2t |c8
i = S1_|1z_[s¢_ |08 [e8 [es [el |@5 s 01 [oil [wel |51 |15t [s0c |ogt £ |12 [s¢ & [e1 [sel [esl |elt |es
t i} S A A N A A I S U1 |80 |etr |21 [eet |vsl |@0c |v% |12 |o¢ |8 |11 |oor [191 |=éc |18
b 03 ST |1z [z |18 [e8 [#5 [e1 |1 12 01 [s20 [#0T 101|601 [s91 |36z £ [69 [#¢ |2 |#1 [ee1 |vel |ezc |08
¥] S1_[1z_[%¢_[sL_ |08 [e5 [el [é% i 01 |88 [est [L1 |081 |ebe |ese |9 [oL [s¢ |8 [e1 |18l [esl |elt |l
¥ 13 ST |1z [s¢_[% [og_ |&F |el |1 2 01 [sil [£11 |51 |651 |90t |eec |#% [0i [s¢ |8 a1 [e%1 |oee |6ve |8l
o 8 ST |1z |sz (s [og [eF [zt |er |em 01 [Zil [#IT [#1 |epl |tz [6lc |65 [e2 [w¢ |& st [iel |tie |eve [id
i 8 S1_|zz |se [eb [18 [F |21 |e® i 11 |sl |12t |51 [éet |s0¢ [v2c L5 |#e |oF |2 11 |#11_[&91 [&6T |8L
i 3 SN A P R A A T S ET =T A L T T e S 2 2 I ET =5 T =
i 3 S A A A I A A I 5 [T G T A L A I A R A T E -

[309l01 10} SINSY uone[NWIS - L] dqe],

117

