

INVESTIGATION OF GMPLS APPLICATIONS IN OPTICAL SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURCU GÖKEN

 IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2005

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. İsmet ERKMEN

Head Of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Rüyal ERGÜL

Supervisor

Examining Committee Members

Prof. Dr. Yalçın TANIK (METU,EE) ______________

Prof. Dr. Rüyal ERGÜL (METU,EE) ______________

Prof. Dr. Mete SEVERCAN (METU,EE) ______________

Assoc. Prof. Dr. Melek YÜCEL (METU,EE) ______________

M.Sc. Sıdıka BENGÜR (ASELSAN) ______________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : Burcu Göken

 Signature :

 iv

ABSTRACT

INVESTIGATION OF GMPLS APPLICATIONS IN OPTICAL

SYSTEMS

GÖKEN, Burcu

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Rüyal ERGÜL

August 2005, 110 pages

In this study, possible applications of label switching in large area, fully optical

networks are investigated. The objective was to design a label assignment method

by using Generalized Multi-Protocol Label Switching (GMPLS) concept to get an

efficient optical network operation. In order to fulfill this objective, two new

approaches were proposed: a label assignment method and a concatenated label

structure.

Label assignment method was designed to provide an efficient utilization of

resources. Concatenated label structure aimed handling the label in optical

domain. Mainly, the lambda switch capable GMPLS networks were investigated.

In order to verify the performance of label assignment method, a simulator was

developed.

 v

The results of simulation have clearly indicated that the proposed approaches

could be beneficial in an optical network operation.

Keywords: GMPLS, RSVP-TE, label assignment, resource management, lambda

switching, all-optical label switching.

 vi

ÖZ

OPTİK SİSTEMLERDE GENELLEŞTİRİLMİŞ

ÇOK-PROTOKOLLÜ ETİKET ANAHTARLAMA

UYGULAMALARININ ARAŞTIRILMASI

GÖKEN, Burcu

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Rüyal ERGÜL

Ağustos 2005, 110 sayfa

Bu çalışmada, geniş alan optik ağlardaki muhtemel etiket anahtarlama

uygulamaları araştırılmıştır. Tezin amacı, genelleştirilmiş çok-protokollü etiket

anahtarlama teknolojisini kullanarak verimli bir optik ağ iletişimi sağlayacak bir

etiket atama yöntemi tasarlamaktır. Bu amacı gerçekleştirmeye yönelik iki yeni

metot önerilmektedir: etiket atama metodu ve eklemeli etiket yapısı.

Ağdaki kaynakların en verimli şekilde değerlendirilmesini sağlamak için yeni bir

etiket atama metodu tasarlanmıştır. Eklemeli etiket yapısı ise etiketin optik

ortamda işlenebilmesini amaçlamaktadır. Temel olarak dalga boyu

anahtarlayabilen genelleştirilmiş çok-protokollü etiket anahtarlamalı ağlar ele

alınmıştır. Önerilen etiket atama metodunun doğruluğunu göstermek için bir

simulasyon programı geliştirilmiştir.

 vii

Simulasyon sonuçları, önerilen yöntemlerin bütünüyle optik ağların işleyişinde

yararlı olabileceğini açıkca göstermiştir.

Anahtar Kelimeler: GMPLS, RSVP-TE, etiket atama, kaynak yönetimi, bütünüyle

optik iletişim.

 viii

To My Family

 ix

ACKNOWLEDGEMENTS

I would like to thank Prof. Dr. Rüyal Ergül for his valuable supervision and

constructive criticism in the development of this thesis. I had the pleasure of

working with him.

I give my special thanks to my friend Murat Önder for his generous support in

writing the C++ code of the simulation software.

I would like to thank my colleagues for their continuous encouragement and

support.

I wish to express my deep gratitude to my parents for their support throughout my

life. I would like to thank my cousin İnci for her support. I also thank my brother

Çağrı for his understanding, and especially for sharing his PC with me.

 x

TABLE OF CONTENTS

PLAGIARISM..iii

ABSTRACT..iv

ÖZ...vi

ACKNOWLEDGEMENTS..ix

TABLE OF CONTENTS...x

LIST OF TABLES...xiii

LIST OF FİGURE S..xiv

LIST OF ABBREVIATIONS...xvi

CHAPTER

1. INTRODUCTION... 1

2. OVERVIEW OF GMPLS .. 4

2.1. WHAT IS MPLS? ... 4

2.1.1. Background Information ... 5

2.1.2. Basic Operation of MPLS ... 6

2.1.2.1. MPLS Label ... 7

2.1.3. Label Switch Path Establishment.. 8

2.1.3.1. MPLS Routing ... 8

2.1.3.1. MPLS Signaling... 9

2.2. GMPLS CONCEPTS AND OPERATION .. 9

2.2.1. GMPLS Evolution ... 9

2.2.2. Generalized Labels ... 10

 xi

2.2.3. Out-Of-Band Signaling ... 12

2.2.5. Extended Protocols for GMPLS Networks...................................... 12

2.2.6 GMPLS Signaling .. 13

2.2.5.1. RSVP-TE Evolution... 14

3. RESOURCE ASSIGNMENT AND MANAGEMENT IN GMPLS

NETWORKS ... 16

3.1. GMPLS SIGNALING FOR LABEL ASSIGNMENT .. 17

3.1.1. Label Set.. 18

3.1.2. Advantages of Label Set Application .. 19

3.1.3. Process of Label Set Object at the Network Nodes......................... 20

3.2. LABEL FLAGGING METHOD ... 21

3.2.1. Required RSVP-TE Extensions for Label Flagging........................ 22

3.2.2.1 Label Prioritization ... 23

3.2.2.2 Flagged Set Operation... 24

3.3. PROPOSED LABEL ASSIGNMENT METHOD ... 27

3.3.1. Network Resource Pools ... 28

3.3.2. Modified GMPLS Signaling Components 30

3.3.3. Label Assignment Procedures... 33

3.3.3.1 Label Request Signaling ... 33

3.3.3.2 Label Reservation Signaling ... 34

3.3.3.3 Removal of Label Reservation.. 35

3.3.3.4 Use of Time-Out-Timers... 36

3.3.4 Considerations at Label Suggestion .. 37

3.3.4 Label Assignment Example .. 38

3.4. BLOCKING TYPES IN A GMPLS NETWORK.. 42

3.5. USE OF CONCATENATED LABEL STRUCTURE... 43

3.5.1 All-Optical Label Switching... 44

4. SIMULATION AND EVALUATION OF THE LABEL ASSIGNMENT

METHOD .. 48

 xii

4.1. SIMULATOR OVERVIEW ... 49

4.1.1. Network Topology... 49

4.1.2. System Parameters .. 50

4.1.2.1. Choosing Source-Destination Node Pair 51

4.1.2.2. Modeling Poisson Arrivals... 53

4.1.2.3. Routing Scheme ... 54

4.1.3. Simulation Algorithm .. 55

4.1.3.1. Input Block... 55

4.1.3.2. Main Program .. 58

4.1.3.1. Output Block .. 65

4.3. SIMULATION RESULTS AND EVALUATION.. 66

5. CONCLUSIONS ... 80

REFERENCES .. 82

A. POISSON DISTRIBUTED EVENT GENERATION 85

B. C++ CODE OF THE SIMULATOR .. 88

 xiii

LIST OF TABLES

Table 2.1. MPLS generic label contents [9] ..7

Table 3.1. Match Table of OOCs with labels ..45

Table 4.1. Fixed Routing Table ...54

Table 4.2. Resource State Table ..59

Table 4.3. Structure of an Event Buffer...61

Table 4.4. Transfer scheme between the resource pools when FP is included64

Table 4.5. Transfer scheme between the resource pools when FP is excluded64

Table 4.6. Simulation Data for Number of Blocked Events69

Table 4.7. Simulation Data for Backward-link Blocking Probability Results.......70

Table 4.8. Simulation Data for Total Delay Distribution71

 xiv

LIST OF FİGURE S

Figure 2.1. Basic operation of an MPLS network...6

Figure 2.2. MPLS generic label structure [10] ...7

Figure 2.3. Waveband Label Structure ..11

Figure 2.4. Fiber/Wavelength label structure ..11

Figure 2.5. GMPLS signaling messages ..14

Figure 3.1. The order of Label Set and Flagged Sets in a Path message23

Figure 3.2. Initial states of the resource pools ...25

Figure 3.3. States of resource pools at time t 4...25

Figure 3.4. States of resource pools at time t 5...26

Figure 3.5. Suggested Labels in the Path message sent at time t4..........................26

Figure 3.6. Suggested Labels in the Path message sent at time t5..........................27

Figure 3.7. The structure of concatenated Label Set..32

Figure 3.8. The structure of concatenated Label Set..32

Figure 3.9. Initial states of the resource pools ...39

Figure 3.10. States of resource pools at time t 6...39

Figure 3.11. States of resource pools at time t 7...39

Figure 3.12. States of resource pools at time t 8...40

Figure 3.13. States of resource pools at time t 9...40

Figure 3.14. States of resource pools after t 9...40

Figure 3.15. Concatenated Label Set sent at time t 6..41

Figure 3.16. Concatenated Label Set sent at time t 7..41

Figure 3.17. Concatenated Label sent at time t 8..41

Figure 3.18. Optical encoder and decoder ...46

Figure 4.1. Simulator network topology..49

Figure 4.4. Total Time Delay vs. Number of Events...71

 xv

Figure 4.7. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=2; without FP ...73

Figure 4.8. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=4; without FP ...73

Figure 4.9. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=4; without FP ...74

Figure 4.10. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=4; with FP ..74

Figure 4.11. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=6; without FP ...75

Figure 4.12. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=6; without FP ...75

Figure 4.13. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=6; with FP ..76

Figure 4.14. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=8; without FP ...76

Figure 4.15. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=8; without FP ...77

Figure 4.16. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=8; with FP ..77

Figure 4.17. Number of Lambda Conversions vs. Number of Transmission

Requests for the operation without FP..78

Figure 4.18. Number of Lambda Conversions vs. Number of Transmission

Requests for the operation with FP...79

 xvi

LIST OF ABBREVIATIONS

 AP Available Pool

 CoS Class of Service

 CR-LDP Constraint-based Routing LDP

 FEC Forwarding Equivalence Class

 FP Flagged Pool

 FSC Fiber Switch Capable

 GMPLS Generalized Multi-Protocol Label Switching

 IGP Interior Gateway Protocol

 IETF Internet Engineering Task Force

 IS-IS Intermediate System to Intermediate System

 IS-IS-TE IS-IS with Traffic Engineering Extensions

 LSC Lambda Switch Capable

 LDP Label Distribution Protocol

 LER Label Edge Router

 LMP Link Management Protocol

 LSR Label Switch Router

 LSP Label Switched Path

 MPLS Multi-Protocol Label Switching

 OOC Optical Orthogonal Codes

 OSC Optical Switch Controller

 xvii

 OSPF Open Shortest Path First

 OSPF-TE OSPF with Traffic Engineering Extensions

 OXC Optical Cross-Connect

 PSC Packet Switch Capable

 QoS Quality of Service

 RFC Request For Comment

 RSVP ReSource reserVation Protocol

 RSVP-TE RSVP with Traffic Engineering Extensions

 SDH Synchronous Digital Hierarchy

 SONET Synchronous Optical Networks

 TDM Time Division Multiplexing

 TE Traffic Engineering

 TOT Time Out Timer

 TTL Time To Live

 UP Used Pool

 WDM Wavelength Division Multiplexing

 1

CHAPTER 1

INTRODUCTION

The optical networks have become the most important networking technology in

communication because of their bandwidth capacity, which can meet the

enormous traffic demand of today’s networks. Since the growth in traffic seems to

continue, the research and developments on optical networking will keep on and

optical networks will constitute a serious part of the future networks.

Two concepts of optical networks, namely all-optical networking and GMPLS, are

important research topics to have an efficient optical network. Designing the

network all-optically eliminates the electro-optical conversions, which slow high-

bandwidth data transmissions in optical networks.

Besides the developments on the all-optical networks technology, the Internet

Engineering Task Force (IETF) carried out a lot of researches to make the control

plane of the optical networks more flexible and controllable. As a result of these

efforts, Multi-Protocol Label Switching (MPLS) [1], and more recently

Generalized Multi-Protocol Label Switching (GMPLS) [2] have been proposed by

the IETF for the dynamic provision of control plane and restoration of lightpaths

in optical networks [3]. GMPLS provide the control plane for devices that switch

in any of the following domains: packet, time, wavelength or fiber. This common

control plane simplifies the network operation, resource management and Quality-

of-Service (QoS) provision expected in new applications [4]. Moreover, GMPLS

 2

ensures fast path setup, which enables fast resource allocation of high-speed

networks [5].

The thesis study was focused on the GMPLS which could bring new features to

optical networks. GMPLS applications in optical networks has been studied and as

a result of these studies, the following concepts were proposed: a label assignment

method, which aims to improve resource assignment and management of lambda

switch capable GMPLS networks, and a concatenated label structure, which could

be useful in all-optical label switching.

Resource assignment and resource management in a network are very critical

issues, which affect the network performance directly. If the resource assignment

procedure is not based on a reliable method, then the blocking of transmission will

be unavoidable. Hence, proposed label assignment method aims to minimize the

blocking probabilities in network links.

While investigating GMPLS signaling for label assignment and management, the

idea of concatenated label structure has been observed as a useful concept. The

concatenated label is a label structure containing the information of all labels for

an entire path. So, label concatenation may be a method to carry the resource

assignment information of the entire path, from source to destination throughout

the network. Besides that, it is thought that, if the labels used through the entire

path can be formed at once at the signaling step, this could help to realize all-

optical label switching during the data transmission. To make a data transmission

in an optical network, firstly the route has to be selected, and then the resource

reservation has to be performed. If a route and resources to be used for the

transmission are known, the data is sent using the reserved label(s) through the

determined route. If the information of all reserved labels can be used to form a

concatenated label structure, representing the labels of the entire path, then this

concatenated label will be converted to optical domain only once, and information

will be conveyed all-optically for the rest of transmission.

 3

Since the objective of the thesis is explained briefly, the outline of the thesis and

the content of this study will be presented below.

The first chapter is an introduction chapter in which some introductory materials

are given together with the objective and outline of the thesis.

The second chapter gives general information about GMPLS to form a

background. Before GMPLS is explained, general concepts of MPLS are given to

make the operation of GMPLS more understandable.

The resource assignment and management problem in a lambda switch capable

GMPLS network is investigated in the third chapter. A label assignment method

and concatenated label structure are proposed. The label assignment method is

explained in detail, which has a different algorithm on label flagging [6]. Lastly,

the blocking probability concept is given.

In Chapter 4, the simulator that is designed to verify the label assignment method

is given. Firstly, the simulator structure and algorithm are explained. Then, the

simulation results are discussed.

Finally, in the last chapter, conclusions and future work are presented.

 4

CHAPTER 2

OVERVIEW OF GMPLS

Generalized Multi-Protocol Label Switching (GMPLS) is designed for optical

networks to dynamically provision resources and to provide network survivability

[2]. GMPLS is a control plane technology proposed by the IETF to support

multiple types of switching technologies, not only packet switching but also fiber

switching, wavelength switching or time slot switching [3].

In this chapter, general concepts of GMPLS technology will be explained to

construct a background for the thesis subject. Since GMPLS is a generalized

version of MPLS, firstly MPLS and its operation will be discussed to form a basis

for GMPLS.

2.1. What is MPLS?

MPLS is an IETF developed network protocol, which uses a technique known as

label switching to forward data through the network. MPLS technology is

intended to improve the performance and Quality of Service (QoS) requirements

of IP networks [3]. MPLS stands for "Multiprotocol" Label Switching,

multiprotocol because its techniques are applicable to any network layer protocol,

where it integrates Layer 2 information about network links into Layer 3 [8].

 5

2.1.1. Background Information

In a connectionless packet switched network, each router in the network selects

the next hop for the packet independently, based on the results of the packet's

header analysis and the results of running the routing algorithm [1]. Firstly, the

incoming packet’s header is examined and then the packet is assigned to a

particular Forwarding Equivalence Class (FEC). The objective here is to increase

the payload as much as possible so that resources are used more efficiently.

Afterwards each FEC at the router is mapped to the next hop [7].

All packets belonging to the same FEC travel the same path in the network. In

MPLS, there is a term called Label Switch Path (LSP). LSP is a data forwarding

path determined by labels attached to each data packet, where the data is

forwarded at each hop according to the value of the labels [8].

In conventional IP routing, longest prefix address match look-up on the

destination address of the received IP packet header [9].As a packet is traveling in

the IP network, each hop reexamines the packet and assigns it to a FEC, where

packet headers contain more information than is needed. Instead of examining the

packet headers, Multi-Protocol Label Switching (MPLS) proposes the method of

labeling the packets to be able represent a FEC with a single label, where this label

is short, fixed length, locally significant identifier [1].

In MPLS, the assignment of a packet to a particular FEC is done only once, as the

packet enters the network. As the packet goes forward in the network, the next

hops do not make any further analysis; the packet is switched according to its

label. At each hop, the label is replaced with a new label and the packet is

forwarded to downstream [1].

 6

2.1.2. Basic Operation of MPLS

In an MPLS network, the incoming packets are assigned with a short fixed-length

label by a Label Edge Router (LER). Subsequent routing decisions made by Label

Switched Routers (LSR) are based on the MPLS label without having to examine

the packet and its header [1]. At each LSR, the label is replaced with a new label,

called label swapping, which tells the next router how to forward the packet. The

label is removed when the packet leaves the MPLS network [1]. Most of the work

is done by LERs, which are responsible for label assignment and label removal;

whereas the LSRs do the label swapping.

In Figure 2.1., an example MPLS network is given. Two transmission requests

arrive to LER X at the same time, whose destination nodes are different. LER X

assigns different labels to the packets. According to the assigned label, each

packet traverses the related LSRs and reaches its destination node without any

confusion.

Figure 2.1. Basic operation of an MPLS network

 7

2.1.2.1. MPLS Label

MPLS label is a short fixed length identifier used to represent a FEC. It has local

significance only and changes from hop to hop.MPLS stands for "Multiprotocol"

Label Switching, multiprotocol because its techniques are applicable to any

network layer protocol, where it integrates Layer 2 information about network

links into Layer 3 [8].

Figure 2.2. MPLS generic label structure [10]

MPLS generic label, which is also called shim header, is given in Figure 2.2. The

label contains 32 bits and it is composed of four parts. The contents of the label

parts are explained in Table 2.1.

Table 2.1. MPLS generic label contents [9]

Label Part Content Length

Label contains the actual value of the label 20 bits

Experimental (EXP)
reserved for experimental use [e.g. Class of

Service (CoS)]
3 bits

Stack (S) indicates if the label is the last in the stack 1 bit

Time to Live (TTL) provides conventional IP TTL functionality 8 bits

 8

2.1.3. Label Switch Path Establishment

Before a data packet can be transferred in an MPLS network, an LSP must be

established. Establishing an LSP means that the labels have to be assigned to the

specified transmission at each LSR. First of all, the network topology and path

have to be determined. Then, then labels have to be assigned and distributed.

Lastly the data is forwarded through the established LSP.

2.1.3.1. MPLS Routing

MPLS network consists of routers, namely LSRs. The source and destination

LSRs are named as LERs. In an MPLS network, routers use routing protocols to

discover the network topology. Routing can be done in two ways, either on a hop-

by-hop basis or in an explicit manner [3].

In hop-by-hop routing, each LSR decides the next hop independently by running a

shortest-path algorithm [3]. The routing decision is made using the data at the

routing table, which contains the network topology information about the nodes

and the links. The routing table data can be obtained by an Interior Gateway

Protocol (IGP), such as Open-Shortest-Path-First (OSPF) [11] or Intermediate

System to Intermediate System (IS-IS) [12].

In explicit routing, the ingress LSR decides the entire route for the LSP [3]. The

routing decision is made using the network topology and link state information.

The ingress LSR can determine an explicit route by running a constraint-based

routing algorithm [3]. Explicit routing brings traffic engineering capability, since

many constraints such as network resources and link state information are taken

into account while deciding the entire route for an LSP [3].

 9

2.1.3.1. MPLS Signaling

After the route decision, a signaling protocol is used to establish the LSP. The

signaling protocols to be used for the LSP setup depend on the type of the routing.

If hop-by-hop routing is realized, then Label Distribution Protocol (LDP) [13] is

used as the signaling protocol and by use of LDP a label assignment is done at

each LSR [3].

If explicit routing is used, Resource Reservation Protocol with traffic engineering

extensions (RSVP-TE) [14] or Constraint-based Routing LDP (CR-LDP) [15]

may be used as the signaling protocol to distribute the label information between

LSRs [3].

2.2. GMPLS Concepts and Operation

In this section, general concepts of GMPLS will be introduced to form a base for

the thesis study explained in the following chapters.

2.2.1. GMPLS Evolution

GMPLS extends MPLS to provide the control plane for switching in any of the

following domains: packet, time, wavelength or fiber. To adapt the MPLS routing

and signaling protocols to the optical domain some modifications and extensions

are required to. These requirements are being standardized by the IETF [2], [3],

which can be summarized as follows:

1- Enhancements to the OSPF and IS-IS routing protocols to advertise

availability of optical resources in the network (e.g. interface types, link

types, bandwidth information).

 10

2- Enhancements to the two signaling protocols defined for MPLS-TE

signaling, namely RSVP-TE [14] and CR-LDP [15], to allow LSPs to be

explicitly established across the optical core.

3- A new Link Management Protocol (LMP) [16] designed to deal with the

problems related to link management in optical networks.

2.2.2. Generalized Labels

MPLS was introduced for a Packet Switch Capable (PSC) network, so the shim

header (generic label) is the only label structure which meets the requirements of a

PSC interface. Since GMPLS support multiple types of switching interfaces, the

generic label structure defined by MPLS has to be also enhanced. In this section,

supported switching types and label formats related to the supported switching

types are explained.

1- Packet Switch Capable (PSC) Interfaces: PSC interface can switch the data

based on the packet or cell header [17]. An LSR that forwards the data

based on the shim header can be given as an example. The label related to

PSC interface is called Packet Label. It has the same format as the MPLS

generic label, which is given in Figure 2.2.

2- Time Division Multiplex Capable (TDM) Interfaces: TDM interface can

switch the data based on the time slots that carry the data [17].

SONET/SDH cross connect can be given as an example. The label related

to TDM interface is called Timeslot Label.

3- Lambda Switch Capable (LSC) Interfaces: LSC interface can switch the

data based on the wavelengths that carry the data, e.g. an optical cross

connect (OXC) that operates at the level of single wavelength or group of

wavelengths [17]. The label related to LSC interface is called Wavelength

 11

Label or Waveband Label depending on the operating level of the OXC.

The label formats are given in Figure 2.3 and 2.4.

Figure 2.3. Waveband Label Structure

4- Fiber Switch Capable (FSC) Interfaces: FSC interface can switch the data

based on the physical ports, namely fiber ports [17]. OXCs that operate at

the level of single fiber or multiple fibers can be given as an example. The

label related to FSC interface is called Fiber Label. Its format is given

below figure.

Figure 2.4. Fiber/Wavelength label structure

As mentioned before, the format of a GMPLS label depends completely to the

switching interface. It can be complicated such as a SONET/SDH label or as

simple as an integer value such as a wavelength label [2].

 12

A GMPLS label is non-hierarchical, which means that it only carries a single level

of label. When a hierarchical LSP is wanted to be established, where multiple

levels of labels are required, each LSP setup must be occur separately [2].

2.2.3. Out-Of-Band Signaling

In a GMPLS network, to be able to transfer data, control information has to be

distributed through the entire network. Control information, which includes

routing, signaling and management, forms a base for a transmission. So, in a

GMPLS network there must to be at least one bidirectional control channel to

exchange the control information between the adjacent nodes [3].

Control information can be transmitted in-band, which means control traffic is

carried on the same optical channel, where data is transmitted. This is simple for

channel management. However, the control channel must be demultiplexed at

each node, which will increase the system complexity and also time consumption

[3]. Moreover, it would be wasteful to use a whole bandwidth of an optical

network as a signaling channel [8]. These can be avoided by carrying the control

information out-of-band, since the control channel does not have to use the same

physical medium as the data channel. Control traffic may be transmitted via

another fiber, wavelength or even using gigabit ethernet link [3].

Using out-of-band signaling has the advantages that are given in the previous

paragraph, but it requires control channel establishment, maintenance and

management. All of them can be provided by LMP [16].

2.2.5. Extended Protocols for GMPLS Networks

Since GMPLS extends the MPLS control plane, it has to extend all things related

with the control plane. Control plane has two building blocks, which are routing

and signaling. GMPLS extends “OSPF with Traffic Engineering Extensions

(OSPF-TE)” [18] and “IS-IS with Traffic Engineering Extensions (IS-IS-TE)”

 13

[19] for routing. “OSPF Extensions in Support for GMPLS” [20] and “IS-IS

Extensions in Support for GMPLS” [21] are the extended versions of routing

protocols used in a GMPLS network. The signaling protocols RSVP-TE and CR-

LDP used in MPLS networks are also extended and the required extensions are

given in [22] for RSVP-TE and in [23] for CR-LDP. GMPLS also brings a new

protocol, Link Management Protocol (LMP), which is used to define and manage

both control channels and data channels between GMPLS nodes.

LMP provides the following functions in the network:

1- Control channel management,

2- Link connectivity verification,

3- Link property correlation,

4- Fault isolation [16].

In a GMPLS network, an LSP must be established similar to the case in an MPLS

network mentioned in Section 2.1.3. To establish an LSP, the route has to be

determined which is calculated by using a routing algorithm. First the route is

decided, then the signaling session begins and an LSP is established via a

signaling protocol. Once the LSP setup is complete, the data channel is established

to carry data traffic.

2.2.6 GMPLS Signaling

The signaling is composed of two parts: label request and label reservation. Label

request is send by the source node to downstream. On reception of label request

signal by the destination node, the destination decides the label(s) used for the

transmission sends the label reservation signal to upstream. When the source

receives the reservation message, it prepares the data and sends is to the

 14

destination with the assigned label. The basic operation of signaling session is

given in the below diagram.

 −−>

Label
Request

−−>

Label
Request

<−− <−−

Source
Node

Label
Reservation

Intermediate
Node

Label
Reservation

Destination
Node

Figure 2.5. GMPLS signaling messages

Both RSVP-TE and CR-LDP can be used as the signaling protocol. These two

protocols have different terminology. Label request message sent in the

downstream direction is called Path message in the RSVP-TE, whereas it is called

Label Request message in the CR-LDP. Similarly, Label reservation message sent

in the downstream direction is called Resv message in the RSVP-TE, whereas it is

called Label Mapping message in the CR-LDP.

Since RSVP-TE is used for the signaling part of the thesis study, in the next

section the evolution of RSVP-TE is given briefly.

2.2.5.1. RSVP-TE Evolution

To understand the use of RSVP signaling in GMPLS the evolution of RSVP has to

be considered firstly:

1- RSVP is a resource reservation setup protocol designed for an integrated

services Internet. The functional specifications of RSVP are described in

[24].

 15

2- The RSVP-TE protocol adds necessary extensions to the RSVP protocol

for establishing LSPs in MPLS networks. RSVP-TE supports the

instantiation of explicitly routed LSPs, with or without resource

reservations. The extensions to the RSVP protocol are given in [14].

3- To be able to use the RSVP-TE protocol in GMPLS networks some

extensions are required to MPLS-RSVP-TE signaling to support GMPLS.

Required extensions to RSVP-TE for GMPLS networks are given in [22].

 16

CHAPTER 3

RESOURCE ASSIGNMENT AND MANAGEMENT IN GMPLS

NETWORKS

Resource assignment and management in a network is a very critical issue, which

affects the network performance directly. If the resource assignment is not based

on a reliable method, then the blocking of transmissions will be unavoidable and

as a result many connection failures will occur in the network. Hence, in order to

increase the performance of a network, resource assignment techniques have to be

improved continuously.

In this chapter, the resource assignment and management in a GMPLS network

will be investigated. It will be based on the RSVP-TE protocol, one of the defined

signaling protocols for an explicitly routed GMPLS network. The use of label

restriction by the upstream to support optical constraints will be examined. A

method called label flagging will be given in detail. Then, we will propose a new

label assignment method, which uses a modified version of label set structure

based on the label flagging, and we will discuss the advantages of this method and

its effects on the network performance.

In GMPLS, the labels are directly related to the network resources. We will

restrict the resource assignment and labels to WDM networks, where a label will

represent a specific wavelength to be used, symbolized by lambda (λ). From now

 17

on, fiber switch capable, time switch capable and packet switch capable GMPLS

networks will not be considered in this study.

3.1. GMPLS Signaling for Label Assignment

In the previous chapter, signaling in GMPLS networks is introduced. Here, we

will summarize the signaling procedures briefly and will focus on the parts of the

signaling which are related to our study.

In an explicitly routed GMPLS network, the ingress LSR decides the entire route

for the LSP by using any constrained shortest path first algorithm. After a route for

the LSP is decided, a signaling session begins to distribute the label information

between LSRs. RSVP-TE or CR-LDP may be used as the signaling protocol.

From this point, the study will be based on RSVP-TE protocol and RSVP-TE

messages will be mentioned while examining the network signaling.

Since GMPLS networks are optical networks and multiple types of switching are

supported in the network, some hardware limitations come out during the data

transfer, e.g. limitations caused by wavelength conversion incapable nodes. As

mentioned in Chapter 2, the signaling protocols used in MPLS networks have to

be improved to overcome these limitations. Therefore, GMPLS brings some

extensions to signaling protocols. One of the important extensions is label

restriction by the upstream to support optical constraints. RSVP-TE protocol

realizes the label restriction by introducing the Label Set object in the label request

message.

Before transferring the data in the optical domain, the signaling session has to be

completed to decide the label, which will be used to guide the data throughout the

network. In the signaling session, the source node initiates a label request

addressed to the destination node. The label request is forwarded from source to

destination via intermediate nodes and each node in the network forms a Label Set

according to its hardware capabilities and idle resources. When the label request

 18

message reaches to the destination, destination node prepares a label assignment

message and sends it in the backward direction. While the label assignment

message travels in the network, the nodes will learn the label to be used. When the

label assignment message reaches to the source, source node prepares the data and

sends it with the assigned label. The signaling messages are carried out-of-band.

In RSVP-TE protocol, the label request message sent in the downstream direction

is named as Path message. The label assignment message sent in the upstream

direction is named as Resv message. Since GMPLS labels are directly related to

network resources, dictating the label choice by downstream node can lead to

conflicts during LSP setup. So, to restrict the label choice of the downstream

node, the upstream node includes Label Set object in the Path message.

3.1.1. Label Set

As mentioned in Section 3.1, the Label Set is used to limit label choices of a

downstream node to a set of acceptable labels for a particular LSP setup. The

receiver of a Label Set must restrict its label selection to one of the label within

the set. Thus, the labels included in the Label Set restrict the labels that can be

selected by the egress node.

While a Path message including Label Set is traveling in the network, the general

procedures to be applied are described below:

1- The source node initiates the Path message including a Label Set object.

Label Set is formed based on the node’s hardware capabilities and idle

resources for the specified link.

2- As Path message is traveling through the specified path, each intermediate

node generates its own outgoing Label Set, based on the incoming Label

Set, the node’s hardware capabilities and the idle resources. When a Path

message is received, the Label Set represented in the message is compared

 19

against the set of available labels at the downstream interface and the

resulting intersecting Label Set is forwarded in a Path message. When the

resulting Label Set is empty, the Path is terminated, and an error message is

generated [22].

3- When the destination node receives the Path message, it decides the label

to be used according to the Label Set and prepares the Resv message.

The use of Label Set is optional. The absence of Label Set implies that all labels

are acceptable [22]. However, to reduce the chances of transmission to be failed

because of the hardware incapability or label collisions, Label Set usage is

suggested. The advantages of using Label Set are explained in the following

section.

3.1.2. Advantages of Label Set Application

The Label Set is useful in the optical domain when, for example,

1- the LSR is only capable of transmitting or receiving a subset of

wavelengths that can be switched by neighboring LSRs

2- there is a sequence of interfaces which cannot support wavelength

conversion and require the same wavelength be used end-to-end over an

entire path

3- it is desired to limit the amount of wavelength conversion to reduce the

distortion on the optical signals

4- two ends of a link support different sets of wavelengths [17].

Besides overcoming the optical constraints, Label Set is useful for reducing the

blocking probability due to label collisions when establishing lightpaths in a

lambda switched GMPLS network. An LSP setup request may fail due to one of

two blocking events, namely Forward-link Blocking and Backward-link Blocking.

 20

Forward-link Blocking happens while the label request signaling travels in the

downstream direction. It is due to insufficient label resources on the forward link

and non-load balancing routing algorithms. Backward-link blocking occurs while

the label response travels towards the source node. It is due to the conflict of label

reservations, which means that the same label over the same link is selected for

more than one connection request [6].

When Label Set is included in the Path message, the labels which can be selected

throughout the network will be restricted, which will decrease the probability of

reserving the same label, i.e. same wavelength. So, Label Set application will

decrease the wavelength conflicts and therefore the failures due to the blocking

probability of LSP setups in the network.

3.1.3. Process of Label Set Object at the Network Nodes

On reception of a Path message, the Label Set object in the Path message is

processed by the node. The receiving node compares the Label Set represented in

the message against the set of available labels at the downstream interface and the

resulting intersecting Label Set is forwarded in a Path message.

In a WDM network, where the labels are wavelengths, there are optical

crossconnects (OXCs) at the nodes to do the lambda switching. An OXC has

incoming and outgoing lambda ports, connected to neighboring OXCs, and

incoming and outgoing data ports attached to a controlling router. An OXC is

composed of OXC Switching Controller (OSC) and OXC switch fabric [25]. The

OSC converts the received messages from the control channel to the proper

control command, and sends this command to the OXC fabric, which will do the

lambda switching job [25]. When the Path message is received by a node, the

Label Set has to be processed by OSC at that node.

To process a Label Set at the node, optical switch controllers (OSCs) have two

pools of wavelengths, namely Used Pool (UP) and Available Pool (AP) [6]. The

 21

idle resources are placed at the Available Pool and the busy resources are placed at

the Used Pool. While generating the outgoing Label Set, the OSC compares the

received Label Set with the wavelength’s state information obtained from the

pools. If the wavelength is in the AP, it can be suggested to downstream, so it

remains at the Label Set. If any wavelength within the received Label Set is in the

UP, this wavelength is deleted from the Label Set before forwarding it to a

downstream node.

Although Label Set plays an important role to reduce the failure of LSP setups,

this is not sufficient to eliminate the backward-link blocking completely. When

two or more destination nodes select the same wavelength for LSPs that share the

same links, the occurrence of backward-link blocking is unavoidable. To provide

an efficient solution to the label collision problem and in turn decrease the

wavelength blocking probability effectively, a third pool namely Flagged Pool

(FP) is proposed by IETF working group. The proposed method FP represents the

wavelengths that have been suggested by an upstream node but that have not yet

been reserved by the destination node. This method, which is called Label

Flagging Method, aims the probability of selecting the same wavelength for

different LSPs that share the same links. The proposed method is published by [6]

and [26], in Section 3.2 this method is given as to build a background before

proposing our new solution [26].

3.2. Label Flagging Method

In the Label Set application, OSC controls the pools to process the Label Set. In

addition to the Available and Used Pools, Flagged Pool is proposed to reduce the

blocking in GMPLS-centric all-optical networks. The labels in the UP are reserved

and selected, where the labels in the AP are neither reserved nor selected. When

an available label selected from the AP is suggested to downstream, it is marked

as flagged and it is placed to the Flagged Pool (FP). FP provides a gray area for

the labels, which are subject to collision, and thus being in an intermediate state

 22

between the labels belonging to the Used Pool and the ones belonging to the

Available Pool. Because of the added pool FP, the signaling mechanism and Label

Set process at the OSCs has to be modified. The modifications are given in the

following sections.

3.2.1. Required RSVP-TE Extensions for Label Flagging

While proposing the new pool FP, new GMPLS Signaling mechanisms referred to

as generalized label flagging method and RSVP-TE specific signaling extensions

formats are introduced by IETF working group [26].

The Flagged Set object is added to the Path message in order to suggest

wavelengths from the FP. The Flagged Set contains wavelengths that are in the FP

of at least one node on the network traversed by its Path message, and excludes

wavelengths that are in the UP of any nodes [26].

While the Path message travels through the network, different cases may occur.

The cases can be listed as follows:

1- If a wavelength is in the Label Set of a Path message, and the wavelength

is also in the AP of a node, then the wavelength will remain in the Label

Set of the Path message.

2- If a wavelength is either in the Label Set or Flagged Set of a Path message

and the wavelength is in the FP of a node, then the wavelength will be

placed in the Flagged Set of the Path message.

3- If a wavelength is either in the Label Set or Flagged set of a Path message,

and the wavelength is in the UP of a node, then the wavelength will be

removed from the Label Set or Flagged Set of the Path message [6].

 23

3.2.2.1 Label Prioritization

The labels are inserted into the Flagged Pool by using a local timestamp to be able

to create different priority levels, which provides differentiation when selecting a

wavelength at the destination node. The priority levels are determined according

to the local timestamp information and the flagged labels with different priorities

are placed in different Flagged Sets while preparing a Path message.

The wavelengths, which are placed at the FP earlier, will have a higher priority,

since collision possibility will decrease for the wavelength at the FP as time

passes. The suggested labels within the Path message are placed from a high

priority to a low priority. The locations of Label Set and Flagged Sets in a Path

message are arranged in the order that is given in Figure 3.1. Here, N represents

the lowest priority level.

Label Set

Flagged Set (0)

Flagged Set (1)

.

.

.

Flagged Set (N-1)

Figure 3.1. The order of Label Set and Flagged Sets in a Path message

Each downstream node in the network updates the Label Set and Flagged Sets,

which provides global information about priorities of the network resources [6].

At the destination node, wavelengths in the Label Set will be preferentially

selected over wavelengths in the Flagged Sets, and the selection of flagged

wavelengths depends on the priority level of the specified Flagged Set.

 24

3.2.2.2 Flagged Set Operation

When the source node prepares a Path message, it places the wavelengths

belonging to the AP into the Label Set. The wavelengths belonging to the FP are

inserted into the Flagged Sets according to their local timestamps.

When a Path message arrives to an intermediate node, the OSC examines the

Label Set and the Flagged Sets of the Path message, and locally updates the local

timestamp for the wavelengths which have not been reserved yet. Based on the

local timestamps, OSC assign a priority to the flagged wavelengths and place

them into the appropriate Flagged Set of the Path message. The wavelengths

which are placed to the FP earlier will have a higher priority, since collision

possibility decreases as the value of time passing for the wavelength at the FP

increases.

On reception of Path message, the destination node selects a wavelength from the

Label Set. If there are no wavelengths in the Label Set, then it selects a

wavelength from the Flagged Set with next highest priority, and so on. When

destination node selects the label, it encapsulates the label into Resv message, and

forwards the Resv message to its upstream node [6].

For Flagged Set operation, an expiration threshold is defined to remove a label

from FP to the AP for the cases of connection failures in the network. So, the local

timestamp is also used to transit a wavelength from the FP to the AP when the

threshold time is expired [26].

To express the label flagging operation and label prioritization given in [6] better,

the below example can be given. This example examines only the label suggestion

procedure.

The following conditions are assumed:

1- There are 8 wavelengths per link.

 25

2- The number of priority level is 4.

3- t i < t j , if i < j.

4- t j - t i = t, if j=i+1, where t > 0.

5- The expiration threshold is equal to 4t.

6- Node 1 is the source node, Node 2 is the intermediate node, and Node 3 is

the destination node. Node 1 sends the Path message at time t 4 .

The state diagrams of resource pools are given in the below figures, and then the

operation steps are explained.

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 1 λ 2 λ 1 λ 5, t 1 λ 3 λ 3 λ 8, t 1 λ 1
λ 3 λ 2 λ 6, t 1 λ 5 λ 2
λ 4 λ 7 λ 4, t 2 λ 6 λ 7
λ 5 λ 8 λ 8
λ 6
λ 7
λ 8

Figure 3.2. Initial states of the resource pools

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
 λ 1, t 4 λ 2 λ 1 λ 5, t 2 λ 3 λ 3 λ 8, t1 λ 1
 λ 3, t 4 λ 2 λ 6, t 2 λ 4 λ 2
 λ 4, t 4 λ 7 λ 4, t 3 λ 5 λ 7
 λ 5, t 4 −−> λ 8 λ 6
 λ 6, t 4 Path
 λ 7, t 4
 λ 8, t 4

Figure 3.3. States of resource pools at time t 4

 26

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
 λ 1, t 4 λ 2 λ 2 λ 5, t 5 λ 3 λ 3 λ 1
 λ 3, t 4 λ 6, t 5 λ 4 λ 2
 λ 4, t 4 λ 4, t 5 λ 5 λ 7
 λ 5, t 4 λ 1, t 5 −−> λ 6
 λ 6, t 4 λ 7, t 5 Path λ 8
 λ 7, t 4 λ 8, t 5
 λ 8, t 4

Figure 3.4. States of resource pools at time t 5

Operation Steps of label request signaling and flagging operation:

1- At time t4, Node 1 initiates a label request signaling by sending the Path

message. Since there is no wavelength in the FP, there is only Label Set in

the Path message and no Flagged Sets. Label Set is formed by the

wavelengths belonging to the AP are they are put into the FP with local

timestamp t4. The Path message contains the following Label Set and

Flagged Sets:

Label Set: [λ1, λ3, λ4, λ5, λ6, λ7, λ8]

Figure 3.5. Suggested Labels in the Path message sent at time t4

2- At time t5,

a- Node 2 updates and sends the Path message. Firstly, it extracts the

labels at the UP from the received Label Set and Flagged Sets. Since

there are wavelengths both in the AP and FP, the Path message

contains both Label Set and Flagged Sets. Label Set is formed by the

wavelengths belonging to the AP are they are put into the FP with

local timestamp t4. The wavelengths belonging to the FP are inserted

 27

into the Flagged Sets by assigning priority levels according to their

local timestamps t2, t3. The Label Set and Flagged Sets contained in

the Path message are:

Label Set: [λ1, λ7, λ8]

Flagged Set (0): [λ5, λ6]

Flagged Set (1): [λ4]

Figure 3.6. Suggested Labels in the Path message sent at time t5

b- Node 3 updates its FP pool and transfers λ8 from FP to AP, since the

threshold time for label staying in FP is expired, t5 – t1 = 4t.

3- On reception of Path message, Node 3 (destination node) will select a label

from the Label Set. If the Label Set were empty, then the labels in the

Flagged Set (0) would be selected.

Both the several priority levels and the threshold expiration applied for the labels

in the FP enables relaxing the usage of the label set and minimize the number of

label collisions during the label selection [26]. We propose a new label

assignment method by modifying the label flagging operation to be able to further

minimize the backward blocking probability. The proposed method is given in the

following sections in detail.

3.3. Proposed Label Assignment Method

Based on the given idea in [6] and [26], and using the GMPLS signaling concepts

given in Chapter 2, we propose a new label assignment method by using the AP,

FP and UP concepts and modifying the Label Set and Label structures. As

mentioned in the previous sections, the label choice of the downstream node may

 28

be restricted by forwarding only Label Set or both Label Set and Flagged Sets in

the Path message. In our method, the OSCs will use the information in the AP, FP

and UP to restrict the downstream node’s label selection. However, the flagged

labels will not be suggested and therefore Flagged Set will not be used. We make

use of label flagging method in a different manner and we select the labels being

inserted in the Label Set according to the new algorithm which will be declared in

the following sections.

Our study is based on an all-optical GMPLS network, where a label will represent

directly a specific wavelength. So, the contents of the network resource pools,

namely AP, FP and UP, will be the wavelengths. Also we have to mention that

according to GMPLS terminology, label assignment term may be used in the

meaning of resource assignment.

3.3.1. Network Resource Pools

In an all-optical GMPLS network, where the network resources are the

wavelengths, the resource information is kept by means of the pools in the OSCs.

According to the topology of the network, a node may be connected to more than

one link, where the wavelengths on a link are independent from the ones of

another link. Therefore, the resource information of each link connected to a node

has to be kept by the OSCs.

To manage the network resources according to some procedures, the wavelengths

are placed into the pools with some parameters, e.g. local timestamp. The

definitions of resource pools and the required parameters, namely resource state

parameters, are given below.

1- Resource Pools: Three types of pools are used for resource assignment and

management.

 29

a- Available Pool (AP): AP keeps idle resources. Idle resources are the

wavelengths which are not used or not suggested to downstream.

b- Flagged Pool (FP): FP keeps flagged resources. Flagged resources are

the wavelengths which are suggested to downstream.

c- Used Pool (UP): UP keeps busy resources. Busy resources are

wavelengths which are reserved or currently in use.

2- Resource State Parameters: These parameters are independent for each

state of the resources. If a resource changes its state, for example idle to

busy, resource state parameters are updated according to this change. Three

types of resource state parameters are used.

a- Message ID (mi): Message ID is used to distinguish the data

transmissions from each other. It is a global parameter valid in the

whole network. Message ID is assigned at the beginning of the

signaling session and it is used until the data transmission is

completed. This parameter is used for the resource states of belonging

to FP or UP. When a resource is in the AP, then the resource has not

any currently assigned Message ID. Message ID is denoted by mi,

where i represents the number of the specified transmission.

b- Local Timestamp (ti): Local timestamp is used to mark the local time

when the resource changes its state, which means that the resource is

put into another pool. This parameter is used for the resource states of

belonging to FP or UP. When a resource is in the AP, then assigning a

local timestamp to that resource is not necessary. Timestamp is a local

parameter, which is valid only for the specified link of the node. Local

Timestamp is denoted by ti.

c- Time-Out-Timer (TOT): Time-Out-Timer is the maximum wait

duration of a resource at a pool. When TOT is over, then the resource

 30

has to change its state. This parameter is used for the resource states of

belonging to FP or UP. For the resources is in the AP, there is not any

TOT value. Maximum wait duration of a resource at the FP is denoted

by TOTFP. When TOTFP is over, then the resource is transported from

FP to AP. Maximum wait duration of a resource at the UP is denoted

by TOTUP. When TOTUP is over, then the label is transported from UP

to AP. TOTFP and TOTUP are different parameters, their values may be

same or different depending on the network conditions. The values of

TOTFP and TOTUP are set to constant values according to the network

performance.

In this section, we have provided some information on the resource pools and the

resource state parameters. Before explaining the proposed label assignment

method, we have to focus on the structures of Label Set and Label objects used in

the RSVP-TE Signaling. While presenting our proposal, we will use a modified

version of these objects. In the next section, the modifications which have to be

applied to the Label Set and Label objects are given.

3.3.2. Modified GMPLS Signaling Components

As mentioned at the beginning of Section 3.3, we propose a new label assignment

method by using the AP, FP and UP concepts and modifying the Label Set and

Label structures. In our method, the OSCs will use the information in the AP, FP

and UP to restrict the downstream node’s label selection. However, the flagged

labels will not be suggested and therefore Flagged Set will not be used. We make

use of label flagging method in a different manner.

When a node is source node, then the node prepares and forwards the Path

message by putting its available resources to the Label Set. In the standard use of

Label Set, each intermediate node receiving the Path message compares the

available wavelengths with the incoming Label Set and takes the intersection, and

 31

then the Label Set content is updated by the outcome of the intersection. In this

way, the resource state information is carried starting from the source node up to

the destination node. For the wavelength conversion incapable networks when the

intersection results in an empty set, then the label request process is stopped and a

failure message returns to the source node. If the node is capable of making

wavelength conversion, then the Label Set can be removed from the Path message.

Instead of using the standard structure of the Label Set, we propose a different

method to form the Label Set. According to our method, each node takes the

intersection of the available wavelengths with the incoming Label Set, but it forms

its own Label Set independent from the incoming Label Set, where the

intermediate nodes behave like a source node. Therefore, they are not responsible

for updating the Label Set. The proposed structure can be called as Concatenated

Label Set. Although the intermediate node suggests its own Label Set, it takes the

intersection of its available wavelengths with the last Label Set in the incoming

Path message. Since a concatenated version of Label Set, the last Label Set in the

concatenated structure has to be compared. The node makes the comparison only

to get information whether there will be a wavelength conversion during the

transmission. When the intersection is an empty set, this shows that during the

data transmission a wavelength conversion will occur at this node.

In the concatenated Label Set structure method, all intermediate nodes will behave

identical, and will suggest their available resources to downstream by adding their

own Label Set into the Path message. While adding the Label Set, they have put

also their Node IDs. The Label Sets of consecutive nodes are placed into the

concatenated Label Set in an ordered way. The structure of concatenated Label Set

is given in Figure 3.7.

 32

Node ID (Ni) Label Set of Source Node

Node ID (Nj) Label Set of the First Intermediate Node

Node ID (Nk) Label Set of the Second Intermediate Node

.

.

.

.

.

.

Node ID (Nn) Label Set of the Last Intermediate Node

Figure 3.7. The structure of concatenated Label Set

Traffic engineering capability of a network will be much better, when many

constraints such as network resources and link state information are taken into

account while establishing an LSP. Since the concatenated Label Set provides the

whole information of the network resources along the LSP, it will have an

important function while preparing the Resv message at the destination node.

Similar to the concatenated Label Set structure, the Resv message will have a

concatenated Label structure including all of the labels which will be used through

the specified LSP. The concatenated Label will provide an efficient solution while

transferring the data in the optical domain. The structure of concatenated Label

will be as follows:

Node ID (Ni) Label assigned to Source Node

Node ID (Nj) Label assigned to First Intermediate Node

Node ID (Nk) Label assigned to Second Intermediate Node

.

.

.

.

.

.

Node ID (Nn) Label assigned to Last Intermediate Node

Figure 3.8. The structure of concatenated Label Set

 33

Actually, the label assigned to a node means that this label (resource) will be used

when the data is being transmitted on the link between this node and the next one.

For example, if the transmission will occur from Node 1 to Node 4, then the label

will be assigned to Node 1.

3.3.3. Label Assignment Procedures

Before starting a data transmission in the optical domain, the signaling session has

to be completed to decide the label, which will be used to guide the data

throughout the network. This is called the resource assignment or label assignment

for the concerned data transmission. The signaling session has two steps: Label

Request (by sending a Path message to downstream) and Label Reservation (by

sending a Resv message to upstream). After the signaling session is completed the

data transmission in the optical domain starts. While the data is traveling through

the network, there is a thing to be done, which is to set the used resources for the

transmission free. This step is called Removal of Label Reservation. As mentioned

in Section 3.3.1, two TOTs are defined in the network, namely TOTFP and TOTUP,

which are used to set the resources free, when the signaling or data transmission is

not completed in the expected time. The use of these TOTs will be also explained

in the scope of this section.

3.3.3.1 Label Request Signaling

At the label request step of signaling, the source node prepares a Path message by

placing the wavelengths belonging to the AP into the Label Set. If a wavelength is

suggested to downstream, then it is marked as flagged and put into the FP. At this

moment, a local timestamp and a Message ID is assigned to that wavelength,

where the local timestamp indicates the time, when the wavelength is transferred

from AP to FP and Message ID shows the number of the specified transmission.

To be able to initiate a Path message, the AP of the source node should not be

empty. If the source node does not have any available resources at the moment of

 34

data transmission request, then the label request will be delayed until a resource

becomes idle.

When a Path message arrives to an intermediate node, the node controls its

available resources. The node puts the available resources into the Label Set and

adds the Label Set to the Path message. Then, the Path message including the

concatenated Label Set is forwarded to downstream. The wavelengths are assigned

with the Message ID of the related transmission and local timestamps, when they

are put in the FP. If the node does not have any available resources at the moment

of Path message arrival, then the label request will be delayed until a resource

becomes idle.

3.3.3.2 Label Reservation Signaling

In the standard case of label reservation scheme, the destination node selects a

wavelength from the Label Set on reception of a Path message. When destination

node selects the label, it encapsulates the label into Resv message, and forwards

the Resv message to its upstream node. In the proposed label assignment method,

the function of the destination node changes a little bit, because in this case there

is not only one Label Set in the received Path message, but a concatenated Label

Set is provided. On reception of the Path message the destination node obtains the

whole information of the network resources along the LSP. Using this information

the destination node will decide the label(s) to be used for the specified

transmission and inform the nodes by a Resv message including concatenated

Label.

Firstly, the destination node examines the concatenated Label Set, and cuts it into

parts of independent Label Sets. Then, it takes the intersection of all Label Sets

included. If the intersection results in a wavelength, then destination node prepares

the Resv message in a concatenated manner, where all labels assigned to each

node will be the same. If the intersection is an empty set, then the destination

 35

knows that wavelength conversion will occur during this data transmission, and it

tries to reserve labels in a way that minimum number of wavelength conversion

will occur. Therefore, it searches the wavelength which is suggested mostly and so

on. After the labels are determined, the destination prepares the Resv message

including concatenated Label and sends it to upstream. While the concatenated

Label is being prepared, the destination also put the Node IDs in front of the

labels. Node IDs are obtained from the concatenated Label Set.

On reception of Resv message, each node searches its Node ID in the

concatenated Label and gets the label information bound with its Node ID. Then,

the node will arrange the resource pools according to the assigned label. The

wavelengths suggested to downstream were waiting in the FP. The node transfers

the assigned reserved label from FP to the UP to reserve it for the specified data

transmission. At this moment, a new local timestamp is assigned to that

wavelength, where the local timestamp indicates the time, when the wavelength is

transferred from FP to UP. Message ID of the wavelength stays unchanged, which

shows the number of the specified transmission. The other wavelengths in the FP,

which have the same Message ID as the one in the Resv Message, are not

reserved, so they are put into the AP. The attached local timestamps and Message

IDs are removed from them.

When the source node receives the Resv message, like the intermediate nodes it

does the same job with the concatenated Label and resource pools. Afterwards, it

prepares the data and sends it using the assigned wavelength to downstream.

3.3.3.3 Removal of Label Reservation

With the start of data transmission, the nodes passing the data have to set the used

resources free, which means transferring the used wavelength from UP to AP and

arranging the parameters assigned to this wavelength.

 36

After the source node sends the data, it transfers the wavelength used for this

transmission from UP to AP, and the local timestamp and Message ID assigned to

this wavelength are cleared.

An intermediate node receiving a data from upstream examines the Message ID of

the incoming data and forwards it with the reserved label assigned for this

Message ID. After the node sends the data to downstream, it transfers the

wavelength used for this transmission from UP to AP, and the local timestamp and

Message ID assigned to this wavelength are cleared.

When the destination node receives the data, it takes the data makes the required

job, e.g. converting the optical data into the electrical domain.

3.3.3.4 Use of Time-Out-Timers

If there is no problem in the network, and the signaling session and the data

transmission are completed in the expected time, then the resources are set free

with the natural procedures. As explained in previous sections, a flagged label is

set to idle, when this label is not reserved with the received the Resv message.

Similarly, a reserved label is set to idle, when the data passes the node, where this

label is reserved for the specified data transmission. However, in the real life the

things may not be well as explained here. There may be unexpected collisions,

corrupted transmissions, problems with the network devices etc. So, there should

be a mechanism to reset the network resources, which means making the flagged

or reserved resources acceptable. This can be realized by using expiration

thresholds in the network. So, there are two Time-Out-Timers (TOTs) defined in

the network, namely TOTFP and TOTUP.

When a label is flagged, it is put into the FP with a local timestamp assigned to it.

If the difference between the current time and the local timestamp of the label is

greater or equal to TOTFP, then it is assumed that a problem has been occurred

with the concerned network signaling and the label is transferred from FP to AP.

 37

So, the resource is set to free for other data transmissions. Similarly, when a label

is reserved, it is put into the UP with a local timestamp assigned to it. If the

difference between the current time and the local timestamp of the label is greater

or equal to TOTUP, then it is assumed that a problem has been occurred with the

concerned network signaling or data transmission and the label is transferred from

UP to AP. So, the resource is set to free for other data transmissions.

3.3.4 Considerations at Label Suggestion

In the proposed label assignment method, the available resources suggested to

downstream are marked as flagged and put into the FP. To get rid of the

probability of assigning the same label for different transmission requests, we do

not suggest the labels in the FP and we only use the labels in the AP when forming

the Label Set. In the case of consecutive transmission requests for the same LSP,

the first request will suggest all available resources, which means all acceptable

resources will be flagged and the other transmissions will be automatically

delayed until the resource reservation is done. So, this will result in an inefficient

network performance, since the resources are not used, although they are idle.

To deal with the situation given in the above paragraph, we propose to limit the

maximum number of suggestible resources. This means that the maximum

number of suggested wavelengths may be equal or less than the maximum number

of the network resources. The maximum number of suggestible wavelengths will

refer to the maximum size of the Label Set. For example, if there are 8

wavelengths per link, then the maximum size of the Label Set may be adjusted

from 1 to 8. Decreasing the number of suggested wavelengths increases the

number of transmissions per time, but the probability of wavelength conversion

increases, since the probability of suggesting the same Label Set at all nodes along

the LSP will decrease.

 38

There are two concerns: the delay due to inefficient use of available resources and

the delay due to the wavelength conversions. By decreasing the number of

suggestible resources, the delay due to inefficient use of available resources

decreases, but the delay due to wavelength conversions increases. So, the best

network performance can be achieved with the trade-off between these concerns.

According to the network resources and traffic intensity of the network, the

number of suggestible wavelengths can be adjusted to obtain an efficient network

resource usage.

3.3.4 Label Assignment Example

In Section 3.3 and in its subsections, the related information on the proposed label

assignment method is given and the assignment procedure is explained in detail.

In this section, we will give an example to consolidate the fundamentals of the

introduced method.

 The following conditions are assumed for the example:

1- There are 8 wavelengths per link.

2- The sum of message processing time at a node and transmission time

between two nodes is equal to t. This means that t j - t i = t, if j=i+1, where

t > 0.

3- Both TOTFP and TOTUP are equal to 30t.

4- The number of suggested wavelengths at a time is equal to 2.

5- Node 1 is the source node, Node 2 is the intermediate node, and Node 3 is

the destination node. Node 1 sends the Path message at time t 6.

The state diagrams of resource pools are given in the below figures, and then the

operation steps are explained.

 39

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 1 λ 7, t 1 λ 2, t 1 λ 1 λ 5, t 1 λ 3, t 1 λ 1 λ 4, t 1 λ 3, t2
λ 3 λ 8, t 1 λ 2 λ 6, t 1 λ 5 λ 2, t 3
λ 4 λ 7 λ 4, t 2 λ 6 λ 7, t 3
λ 5 λ 8 λ 8
λ 6

Figure 3.9. Initial states of the resource pools

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 4 λ 7, t 1 λ 2, t 1 λ 1 λ 5, t 2 λ 3, t 1 λ 1 λ 4, t 1 λ 3, t2
λ 5 λ 8, t 1 λ 2 λ 6, t 2 λ 5 λ 2, t 3
λ 6 λ 1, t 6 λ 7 λ 4, t 3 λ 6 λ 7, t 3
 λ 3, t 6 −−> λ 8 λ 8
 Path

Figure 3.10. States of resource pools at time t 6

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 4 λ 7, t 1 λ 2, t 1 λ 7 λ 5, t 2 λ 3, t 1 λ 1 λ 4, t 1 λ 3, t2
λ 5 λ 8, t 1 λ 8 λ 6, t 2 λ 5 λ 2, t 3
λ 6 λ 1, t 6 λ 4, t 3 λ 6 λ 7, t 3
 λ 3, t 6 λ 1, t 7 −−> λ 8
 λ 2, t 7 Path

Figure 3.11. States of resource pools at time t 7

 40

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 4 λ 7, t 1 λ 2, t 1 λ 7 λ 5, t 2 λ 3, t 1 λ 5 λ 4, t 1 λ 3, t2
λ 5 λ 8, t 1 λ 8 λ 6, t 2 λ 6 λ 2, t 3
λ 6 λ 1, t 6 λ 4, t 3 λ 8 λ 7, t 3
 λ 3, t 6 λ 1, t 7 <−− λ 1, t8
 λ 2, t 7 Resv

Figure 3.12. States of resource pools at time t 8

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 4 λ 7, t 1 λ 2, t 1 λ 2 λ 5, t 2 λ 3, t 1 λ 5 λ 4, t 1 λ 3, t2
λ 5 λ 8, t 1 λ 7 λ 6, t 2 λ 1, t 9 λ 6 λ 2, t 3
λ 6 λ 1, t 6 λ 8 λ 4, t 3 λ 8 λ 7, t 3
 λ 3, t 6 <−− λ 1, t8
 Resv

Figure 3.13. States of resource pools at time t 9

Node 1 Node 2 Node 3
AP FP UP AP FP UP AP FP UP
λ 3 λ 7, t 1 λ 2, t 1 λ 2 λ 5, t 2 λ 3, t 1 λ 5 λ 4, t 1 λ 3, t2
λ 4 λ 8, t 1 λ 1, t 10 λ 7 λ 6, t 2 λ 1, t 9 λ 6 λ 2, t 3
λ 5 λ 8 λ 4, t 3 λ 8 λ 7, t 3
λ 6 λ 1, t8

Figure 3.14. States of resource pools after t 9

 41

Operation Steps of label request signaling and flagging operation:

1- At time t6, Node 1 initiates a label request signaling by sending the Path

message. The two wavelengths having the smallest index numbers are

suggested and they are transferred from AP to FP. The Path message

contains the following concatenated Label Set:

Node 1 [λ1, λ3]

Figure 3.15. Concatenated Label Set sent at time t 6

2- At time t7, Node 2 adds its Label Set to the Path message and sends it to

downstream. The Path message contains the following concatenated Label

Set:

Node 1 [λ1, λ3]

Node 2 [λ1, λ2]

Figure 3.16. Concatenated Label Set sent at time t 7

3- At time t8, Node 3 (destination node) sends the prepared Resv message to

upstream. The Resv message is prepared by intersecting the Label Sets of

Node 1 and Node 2, which results in λ1. The Resv message contains the

following concatenated Label:

Node 1 [λ1]

Node 2 [λ1]

Figure 3.17. Concatenated Label sent at time t 8

 42

4- At time t9, Node 2 forwards the Resv message to upstream without any

change. According to the received Resv message, Node 2 updates the

pools; it puts the reserved wavelength λ1 to UP, and λ2 back to AP.

5- On reception of the Resv message, Node 1 will prepare the data and send it

to downstream using the assigned wavelength λ1.

3.4. Blocking Types in a GMPLS Network

As mentioned in Section 3.1.2, an LSP setup request may fail due to one of two

blocking events, namely Forward-link Blocking and Backward-link Blocking.

Forward-link Blocking happens while the label request signaling travels in the

downstream direction. It is due to insufficient label resources and non-load

balancing routing algorithms. Backward-link blocking occurs while the label

response travels towards the source node. It is due to the conflict of label

reservations, which means that the same label over the same link is selected for

more than one connection request [6].

Label Set and label flagging are useful for reducing the blocking probability due to

label collisions during lightpath establishment. In our developed label assignment

method, we propose to not suggest the flagged labels, which will provide to

completely get rid of the backward-link blocking. However, this may increase the

forward-link blocking. By limiting the number of suggestible labels, the forward-

link blocking may be decreased; but this method does not prevent the forward-link

blocking completely. So, we have proposed to give some delay for the blocked

label request signaling until the resources are set to be free. This means that the

label request signaling will be waited at the node, until there is an available

resource that can be suggested. So, we will not cancel or block the label request

signaling. The forward-link blocking will be eliminated by postponing the

signaling. This delay method is necessary for the networks where the data has to

 43

be certainly transmitted, since the label request will not be blocked, but the

transmission will be realized with some delay.

In the next chapter, we will give a model to simulate the proposed label

assignment method. By means of the simulation, we will be able to examine the

effect of label flagging operation on preventing the backward-link blocking and

the effect of limiting the number of suggestible label on forward-link blocking. As

mentioned in the previous paragraph, we do not block the label request signaling,

but we give some delay, until there is an available resource that can be suggested.

Forward-link blocking will increase because of the proposed method to prevent

backward-link blocking. Since forward-link blocking is get rid of by postponing

the label request signaling, there will be a trade-off between the total delay amount

of label request signaling and backward-link blocking. Therefore, in the

simulation the network performance will be evaluated according to signaling

delays and backward-link blocking probability.

Before passing the next chapter, in Section 3.5 we want to give brief information

on the use of concatenated Label Set/Label to provide integrity between the

signaling and data transmission parts.

3.5. Use of Concatenated Label Structure

As mentioned in Chapters 1 and 3, we propose a concatenated structure for both

Label Set and Label. This proposed structure has two important aspects. First one

is related with resource assignment and management, while the second one is

completely related with all-optical label switching. It is thought that such a

concatenation may provide the following functions:

1- If concatenated Label Set is used in the label request signaling, the state

information of all network resources will be transmitted up to the

destination without having any information loss at the intermediate nodes.

This has many advantages for resource assignment and management.

 44

2- If the labels used through the entire path can be formed at once at the

signaling step, this could help to realize all-optical label switching during

the data transmission. Since the concatenated label will include all reserved

labels, this concatenated label will be converted to optical domain only

once, and will be conveyed all-optically at the rest of transmission.

First advantage of concatenation, which is related with resource assignment and

management, has been explained in detail in the previous sections of this chapter.

Moreover, a simulator has been designed to verify the proposed label assignment

method, which uses concatenated Label Set and Label structures. Second

advantage of concatenation is also very important, since it may provide to

transport the data fully in the optical domain. The importance of all-optical

transmission and how this concatenated label can be used to provide all-optical

label switching is explained in the following section.

3.5.1 All-Optical Label Switching

To meet the enormous traffic demand of today’s networks, optical networks are

preferred because of their high capacity. As well as providing large capacity,

optical networks has the advantage of fast transmission provisioning [5]. If the

label recognition can be done in optical domain without making any optical to

electrical conversion, switching speed will increase considerably.

After the signaling session is completed, data transmission starts. This step is

composed of three different parts:

1- Initiating a data transmission by the source node,

2- Transmitting an incoming data attached with a label to downstream by

making the required processes for label switching,

3- Ending the data transmission by the destination node and obtaining the

data by removing the label.

 45

All-optical label switching is required at the second part of data transmission.

When a node receives the data attached with a label, the node has to make the

switching, this means that the node will take the incoming optical data and will

send it with the label assigned to itself to downstream. One way of realizing all-

optical label switching may be using Optical Orthogonal Codes (OOCs) to

encode/decode label information in the optical domain. If concatenated label

structure can be represented with a sequence of OOCs and the nodes have the

capability of decoding the incoming label structure, then the node will be able to

learn the related part of the concatenated label in the optical domain. The node

only will decode the incoming label by the help of optical correlators and get the

label assigned to itself. Since the label belonging to a node will be coded with the

specific code for that node, the node will be able only to decode the related part of

the concatenated label.

In Table 3.1., the concatenated label structure represented by OOCs is given. Each

part in the concatenated structure, which includes Node ID of a specific node and

the label assigned to that node, will be coded separately with different OOCs. So,

each OOC will symbolize a node.

Table 3.1. Match Table of OOCs with labels

OOC Content represented by the OOC

OOCj Node ID (Nj) Label assigned to First Intermediate Node

OOCk
Node ID (Nk)

Label assigned to Second Intermediate
Node

 .
.
.

.

.

.

OOCn Node ID (Nn) Label assigned to Last Intermediate Node

 46

Most common method of designing optical encoders and decoders is based on

power splitting and combining. An optical encoder/decoder can be constructed by

1xw power splitters, wx1 combiners and fiber delay lines where w is the weight of

the OOCs [27]. The weight of an OOC is the number of 1’s used in the codeword.

The encoders/decoders, which are designed using this approach, are shown in

Figure 3.17. [27].

Figure 3.18. Optical encoder and decoder

Optical orthogonal code design and the implementation of such a network

working with OOCs is out of scope of this thesis study. Related information on

OOC design concept can be found in [27].

Although some techniques are developing for all-optical label switching, there

exist still other challenges, e.g. optical data storage at intermediate nodes while

switching is being done. Studies continue to developed buffers enabling optical

data storage. Optical data storage is another concept that needs further

investigations. Optical data storage subject is out of scope of this thesis. We may

assume that we can buffer the optical data while the switching is done. If the

network is not capable of storing the optical data, then the data will be converted

to electrical domain and stored electrically until the switching job is completed.

Especially for the cases of lambda conversion, the processing at an intermediate

Encoder Correlator (Decoder)

 47

node will take more time. Hence, optical to electrical conversion of the data seems

unavoidable with today’s technology. Optical buffering and other existing

challenges of optical networks will assist in the realization of next generation of

optical networks [29].

As a conclusion, label concatenation is proposed just to give an idea for an

applicable all-optical label switching technique, the network structure and the

techniques required for all-optical networking are not studied in this thesis study.

If the reader is interested in all-optical networking, the related information can be

obtained from [28], [29].

 48

CHAPTER 4

SIMULATION AND EVALUATION OF THE LABEL

ASSIGNMENT METHOD

In this chapter, we will introduce the network simulator that is developed for the

study involved in this thesis work to support our theoretical ideas in a simulation

environment. We wanted to see whether the proposed label assignment method

works properly. We also aimed to evaluate the effect of this method on the

network performance parameters, such as blocking probability.

Here, a brief description of the simulator will be given, the details of the simulator

and simulation results will be explained in the subsections of this chapter. The

simulator has a user friendly Graphical User Interface, where the user selects some

network parameters and creates the network traffic being simulated. The simulator

is developed by using C++ programming language. The network topology of the

simulator is fixed and it is designed to model an optical lambda switch capable

GMPLS network. According to the input traffic load and the selected parameters,

the simulator realizes the required signaling (label request and label assignment)

and the data transmission automatically. While the signaling and data transfer

occur, the contents of resource pools along the LSP will change and the user will

be able to track the changes visually by the help of the bars representing AP, FP

and UP for each link of the network. In addition to the visual bars, there is also an

event screen and a result screen on the GUI. The signaling and data transfer steps

 49

are displayed on the event screen in a time order. After the simulation is

completed, the results of the simulation are shown on the result screen.

4.1. Simulator Overview

The simulator is designed mainly to simulate the label assignment method

proposed in Section 3.3. The simulation is realized with a predefined network

topology and some presumed conditions, which are described in the following

sections in detail.

4.1.1. Network Topology

The lambda switch capable GMPLS network is simulated by a fixed 10-node

network, which is shown in Figure 4.1.

Figure 4.1. Simulator network topology

 50

In Figure 4.1., we see that the total number of the links is 10. The nodes and links

are labeled with the index numbers from 0 to 9. For the network, we assume the

following conditions:

1- The link distances between the nodes are equal for the whole network.

2- There are 8 wavelengths per link.

3- Each node in the network may represent a source, an intermediate or a

destination node.

4- The nodes are composed of OXCs, which are capable of wavelength

conversion.

4.1.2. System Parameters

The following parameters are assumed and used to construct the simulator:

1- The sum of message processing time at a node and transmission time

between two nodes is equal to τ (Tao), which is represented in the

simulator by unit time 1.

2- Connection requests may be generated in two ways, namely manual or

automatic:

a- Manual Request Generation: The request number to be simulated is

left to the user. For each event, the user selects the source-destination

pair and enters the request arrival time as an integer multiple of τ.

b- Automatic Request Generation: Connection requests arrive to each

node according to a Poisson process with rate λ requests per unit time.

The simulator calculates request rate λ according to the desired

number of connection requests and the simulation time as an integer

 51

multiple of τ. The number of requests and the simulation time are

determined by the user.

3- Traffic over each source-destination node pair depends on the probability

of choosing the source-destination pair. How the source-destination pair is

selected is explained in Section 4.1.2.1.

4- Fixed routing is used in simulations in order to simplify the problem.

Therefore, the routing table is fixed in the program. Routing table is given

in Section 4.1.2.3.

5- TOTFP and TOTUP have constant values that are integer multiples of τ.

TOTs can be adjusted in the program. Default values for TOTs are: TOTFP

= 50τ, TOTUP =50τ.

6- The timing of the simulator is such that time is incremented by τ. Hence,

the local timestamps are integer multiples of τ.

7- The maximum number of suggested wavelengths can be selected by the

user. It can be any number between 1 and 8.

8- All wavelengths are indexed. The wavelength assignment is done

according to the label assignment method mentioned in Chapter 3. If there

is more than one available wavelength, then the first available wavelength

is chosen, i.e. the wavelength whose index number is the smallest.

4.1.2.1. Choosing Source-Destination Node Pair

If manual request generation is used for simulation, then the user determines the

traffic density over the network by selecting the source-destination pairs. If

automatic request generation is used, then the source and destination nodes are

selected automatically by the software.

 52

The source and destination are selected in a manner that the distribution of the

selections can be uniform or non-uniform according to the assigned probabilities

to each node. This provides flexibility while modeling the network. In some real-

life networks, certain nodes have heavy traffic, which means that most of the

network traffic originates from and goes to these nodes. To simulate this situation,

these nodes can be assigned higher probabilities than the others, which will result

in more traffic originating from and going to these nodes.

In our design, there are 10 nodes. To assign the probabilities to the nodes, we

reserve a number interval for each node in an ordered way, where the first number

of the first node is 1, and the last number of the last node is 100. To make the

choice, a random number between 1 and 100 is generated, and the obtained

number is compared with the number intervals of the nodes. We search the

interval, which the number is belonging to. In this way, we determine a node. The

source and destination nodes are selected separately according to this algorithm. If

the destination comes out the same with the source node, then the choice of

destination is tried again, until the source and destination node numbers are

distinct.

Here, we provide an example for node selection. The intervals assigned to the

nodes are given, where Ni denotes the node ID:

{N0: 1-5, N1: 6-10, N2: 11-20, N3: 21-40, N4: 41-45, N5: 46-55, N6: 56-70, N7: 71-

75, N8: 76-85, N9: 85-100}.

For this input, the selection probabilities of the nodes become:

Pi = {N0: 0.05, N1: 0.05, N2: 0.1, N3: 0.2, N4: 0.05, N5: 0.1, N6: 0.15, N7: 0.05, N8:

0.1, N9: 0.15}.

For example, let the generated random number be 30, then the node labeled with

N3 will be selected.

 53

4.1.2.2. Modeling Poisson Arrivals

The simulator generates Poisson distributed event requests when the user selects

the automatic request option.

The number of request arrivals in a time interval is Poisson distributed with rate λ

requests per unit time. The rate λ is equal to k/T, where k is the total number of

occurred requests in the time interval T. Poisson distributed event generation is

given in Appendix A in detail.

According to the information given in [30], the inter-arrival times of a Poisson

distributed request arrivals has an exponential distribution defined by

 t..)(λ

λ
−

= etf (4.1)

Given a sequence of discrete events occurring at times t0, t1, t2, t3,..., the intervals

between successive events are ∆t1 = (t1−t0), ∆t2 = (t2 − t1),, ∆ti = (ti − ti-1) If we

calculate the inter-arrival times (∆ti), then we will find the request arrival

instances based on the inter-arrival times. For example, the time instant of the first

arrival will be equal to (t0 + ∆t1) where t0 the initial time of the time interval T.

To produce exponentially distributed inter-arrival time values the following

formula can be used [30].

λ

u
t

ln
−= (4.2)

In (4.2), u is a random number drawn from the uniform distribution in the interval

(0, 1]. u can be obtained by using a random number generator on a computer.

In the simulation program, we have used (4.2) to find the inter-arrival times of the

requests, then we have calculated the time instances of the requests based on the

initial time of the time interval T and calculated inter-arrival times.

 54

4.1.2.3. Routing Scheme

Routing is used to find a route for connections between a source-destination pair.

Fixed routing is one of the well-known routing algorithms. In fixed routing, there

is a single possible route for each pair of network nodes. Any connection between

a pair of source and destination nodes uses this route [3]. Fixed shortest path

routing is a preferable type of fixed routing algorithm. When applied in the

network, it gives the shortest path in the sense that smallest number of links from

a source node to a destination node is determined. All such paths are stored in a

look-up table.

In the simulation software, we have created a routing table based on the fixed

shortest path routing. Since same network topology is used for all simulation runs,

the following routing table, which is given in Table 4.1., is used.

Table 4.1. Fixed Routing Table

 To Destination Node

 N0 N1 N2 N3 N4 N5 N6 N7 N8 N9

N0 - N2 N2 N2 N2 N2 N2 N2 N2 N2

N1 N2 - N2 N2 N2 N2 N2 N2 N2 N2

N2 N0 N1 - N3 N4 N4 N4 N4 N4 N4

N3 N2 N2 N2 - N2 N2 N2 N2 N2 N2

N4 N2 N2 N2 N2 - N5 N6 N6 N6 N6

N5 N4 N4 N4 N4 N4 - N8 N8 N8 N8

N6 N4 N4 N4 N4 N4 N8 - N7 N8 N8

N7 N6 N6 N6 N6 N6 N6 N6 - N6 N6

N8 N6 N6 N6 N6 N6 N5 N6 N6 - N9

F
ro
m
 S
ou
rc
e
N
od
e

N9 N8 N8 N8 N8 N8 N8 N8 N8 N8 -

 55

In Table 4.1., the node IDs are denoted by Ni, e.g. Node 1 is expressed by N1. The

first column includes the source nodes and the first line includes the destination

nodes. The resulting cell of the intersection of a source and a destination gives the

next node in the path. So, a path for a connection from a source node to a

destination node is computed as follows. For example, for a connection from

source node N0 to destination node N9 the next node after the source node is N2.

Then the following node is computed by selecting N2 as the source node in the

table. The resulting next node becomes N4. If continued in this way the following

path is obtained for a connection from source node N0 to destination node N9:

{N0 −−> N2 −−> N4 −−> N6 −−> N8 −−> N9}.

4.1.3. Simulation Algorithm

The simulation algorithm is constructed to implement the label assignment

method given in Section 3.3. Since the resource assignment and management is

aimed to be simulated for different cases, it is wanted that the routing scheme is

same for all cases. Therefore, for each simulation the same routing table, which is

given in Table 4.1., is used.

The simulation program is composed of three main parts: Input Block, Main

Program, and Output Block.

4.1.3.1. Input Block

Before starting a simulation, the simulation inputs have to be entered. The

simulation inputs can be divided into two groups.

1- Inputs adjusted before program compilation: This type of inputs is

composed of some system parameter settings that will affect the simulation

algorithm. These inputs are adjusted in the program code, before the

 56

simulation program is compiled. The following inputs are included in this

group:

a- Resource Pools Setting: Flagged Pool (FP) is included or excluded in

the resource pool configuration. When FP is included, label flagging

operation is made according to the proposed label assignment method.

When FP is excluded, then label assignment is realized as declared in

the GMPLS standards. FP is a simple boolean parameter that is set as

true or false. If it is true, then FP is included in the resource pool

configuration.

b- Probability Setting of Nodes in Source-Destination Pair Selection: To

adjust the probabilities of the nodes, a number interval is assigned for

each node in an ordered way, where the first number of the first node

is 1, and the last number of the last node is 100. To implement the

probability assignment a priority array of size 10 is used. To have the

probability set Pi, the entries of the array are adjusted as given in the

set Ai. The sets Pi and Ai are given below.

Pi = {N0: 0.05, N1: 0.05, N2: 0.1, N3: 0.2, N4: 0.05, N5: 0.1, N6: 0.15,

N7: 0.05, N8: 0.1, N9: 0.15}

Ai = {5, 10, 20, 40, 45, 55, 70, 75, 85, 100}.

c- TOT Setting: TOTFP and TOTUP are defined as constants in the

program. They are set to values that are integer multiples of τ.

2- Inputs entered during program execution: These inputs are entered via the

simulator GUI during the program execution. This type of inputs

determines the traffic load to be simulated and also the maximum size of

the Label Set that effects the simulation results directly. The inputs

included in this group can be given as follows:

 57

a- Request Generation: Transmission requests may be generated in two

ways, namely manual or automatic, as mentioned in Section 4.1.2.

i- Manual Request Generation: To generate transmission request

manually, the user selects the source-destination pair and enters the

request arrival time as an integer multiple of τ. Then, the user adds

this request as an event. All events to be simulated are added in this

way. The list of added events is shown in the event screen.

ii- Automatic Request Generation: To generate transmission requests

automatically, the user enters the number of events and the time

interval of event generation. The time interval can be entered as an

integer multiple of τ. In the program, τ is represented by unit time.

The simulator generates events according to a Poisson process with

rate λ requests per unit time. The rate λ is equal to k/T, where k is

the total number of events occurring in the time interval T. In the

simulation program, the inter-arrival times of the events are found

by using (4.2), then the time instances of the events are calculated

based on the initial time of the time interval T and calculated inter-

arrival times. Initial time is assumed to be 0.

b- Maximum size of Label Set: User can set the maximum size of the

Label Set from 1 to 8. This parameter affects the simulation results

directly, since it affects the number of Path messages that can be sent

from a node at the same time. If all available labels are suggested for a

transmission request, i.e. maximum size of Label Set is 8, then the

incoming Path messages will be delayed until the suggested labels are

set as available.

 58

4.1.3.2. Main Program

In the main program, there are two main structures, which are link structure and

node structure. Link structure is used for resource pool management and node

structure is used for the main works including label request, label reservation and

data transmission. Besides that, there is a timer in the program and all works done

in the program are dependent on this timer. Timer is initially set to 0. When the

program starts, the timer is started. The sum of message processing time at a node

and transmission time between two nodes is assumed to be τ (Tao), which is

represented in the simulator by unit time 1. So, after each operation the timer is

incremented by 1.

1- Link Structure: To simplify the problem of resource pool management, the

pool configurations are arranged and updated in the link structure. To

implement the resource pools in this way is easier, since transmission

requests may travel along a link in both directions, namely from left to

right and from right to left. For example, let Link 1 connect Node1 and

Node 2, then Link 1 will be used for the transmissions in the direction from

Node 1 to Node 2 and also for the transmissions from Node 2 to Node1.

So, matching the resource pools with the links will simplify obtaining the

information of resource states during the program execution. The program

components related with link structure are given below.

a- Number of Wavelengths: The number of wavelengths supported at a

link has a constant value in the program. In this simulation, there are 8

wavelengths per link.

b- Resource Pool Configuration: An array structure is used to keep the

resource state information. For each resource, i.e. wavelength, four

parameters are assigned, which are pool type, message ID, local

timestamp and TOT. The parameters have different meanings

according to the pool type, i.e. AP, FP and UP. For example, if a

 59

wavelength is in the FP then TOT parameter refers to TOTFP. Detailed

information on these parameters is given in Chapter 3. In Table 4.2.,

an example is given to show how for the resource state information is

kept. Initially all resources are in the AP. During the program

execution the resource parameters are updated dynamically.

Table 4.2. Resource State Table

Resources Pool Type Message ID
Local

Timestamp
TOT

λ 1 UP 1 t 5 TOTUP

λ 2 UP 2 t6 TOTUP

λ 3 FP 5 t4 TOTFP

λ 4 FP 4 t6 TOTFP

λ 5 FP 7 t 8 TOTFP

λ 6 AP - - -

λ 7 AP - - -

λ 8 AP - - -

2- Node Structure: The main works including label request, label reservation

and data transmission are carried out in the node structure. Each node has

event buffers, where the events are kept. After the input block is prepared,

the simulation program has all related information on the added events.

Based on this information, all events are put into the buffers of the nodes

that will be source node for a transmission. When simulation starts, each

node make required process and updates its buffer according to the process

results. The program components related with node structure are given

below.

 60

a- Routing Table: For each transmission there is a path to be traveled in

both signaling and data transmission sessions. Each node uses the

routing table to decide the next node after making the related

operation. Operation may be label request, label reservation or data

transmission.

b- Event Buffer: Event buffers are initially empty. With the start of

simulation event buffers are filled with the related information and the

nodes make operation according to these information. After each

operation, the buffers are updated. The number of event buffers at

each node depends on the number of events that will be processed at

that node. When a node have a task to do with an event, i.e. being

source node, intermediate node or destination node for the specified

event, then the node has to have a buffer for this event. The maximum

number of the event buffers is set to 100 in the program. The structure

of an event buffer is given in the Table 4.3. The size of the event

buffer is 50 byte. Each field of the buffer uses a field of 1 byte. The

contents of the buffer are numbered according to the order of the

content fields. An event buffer has two blocks: header block and data

block. Header block includes the general information for an event and

its size is fixed. The data block includes the node IDs and the data

belonging to that node. The size of data block depends on the node

number along the specified path. Data type field is set to Path, Resv or

Data according to the current operation for the event. Based on the

data type, the field keeping the data of the node includes either Label

Set or Label. If data type is Path, then Label Set is included in this

field. If data type is Resv or Data, then Label is included. Since data

block has a variable size, the empty fields in the buffer are filled with

the integer –1 to indicate the end of the data block.

 61

Table 4.3. Structure of an Event Buffer

Block Type Field Number Content Type

1 Message ID

2 Source Node ID

3 Destination Node ID

4 Data Type

Header Block

5 Current Time

6
Node ID of the source

node

7 Data of this Node

8
Node ID of the first
intermediate node

9 Data of this Node

.

.

.

.

.

.

i
Node ID of the last
intermediate node

i+1 Data of this Node

i+2 End of the Buffer (-1)

i+3 Empty (-1)

.

.

.

.

.

.

Data Block

50 Empty (-1)

 62

According to the information given on main program components, the main

program algorithm can be explained in the following steps.

1- Before the simulation starts the initial states of the program components

are as follows:

a- Current time is equal to 0.

b- All resources of each link are in the AP.

c- The event buffers of the source nodes are filled with the information

obtained from the Input Block.

2- When the simulation starts, the timer is started. The timer is incremented

by 1, until there is an operation at any node. At each time increment, each

node controls whether there is an operation to be done at this node. If there

is any, then the node does the required operation and the time is

incremented by 1. The operation may be

a- Sending a Path or Data message or receiving a Resv message, if the

node is the source node.

b- Transmitting a Path, Resv or Data message, if the node is an

intermediate node.

c- Receiving a Resv or Data message or receiving a Path message if the

node is the destination node.

3- At the beginning of the program, each node controls, whether a Path

message will be sent or not. If a node will send a Path message, the node

prepares its Label Set. Since all resources are in the AP, the node forms the

Label Set according to the required number of resources. The number is

equal to the maximum size of the Label Set. The node adds its Label Set

into the event buffer attached with its node ID. Then the node finds the

 63

next node using the routing table, so the link to be used is determined.

When the node sends the Path message,

a- The current timer is incremented by 1.

b- The event buffer of the next node is updated with the information

contained in this buffer. This means that the next node gets all

information on this event and learns the operation to be done.

c- The resource state information of the used link is updated.

4- Since the simulation has started, there may be any operation. Therefore,

each node controls its event buffers continuously. The operation to be done

depends on both the data type field of the event buffer and the type of the

node for this operation, i.e. source node, intermediate node or destination

node. When the node makes the require operation, it updates its event

buffer, then current timer is incremented by 1 and the event buffer of the

next node is updated. At this time, the resource pool states are also

updated. The resource pools are updated according to the Table 4.4., if FP

is included in the pool configuration. If FP is excluded in the pool

configuration, then the update of the resource pools is done according to

the given information in Table 4.5.

5- During the program execution, each operation done at the nodes are shown

on the event screen to inform the user. Also, the bar chart shows the

resource pool states at each link. Both of these outputs are shown while the

program is running.

6- When all events are processed, this means that all data transmissions are

completed, the program gives the numerical results of the simulation, i.e.

number of blocked events, number of lambda conversions etc.

 64

Table 4.4. Transfer scheme between the resource pools when FP is included

 Transfer Type Transfer Reason

1 from AP to FP
When the Path message is sent to

downstream.

2 from FP to UP
On reception of the Resv message, if

the specified label is reserved.

When the data is passed to

downstream or
3 from UP to AP

When the wait duration in the UP is

expired (tcurrent – ti = TOTUP).

On reception of the Resv message, if

the specified label is not reserved or
4 from FP to AP

When the wait duration in the FP is

expired (tcurrent – ti = TOTFP).

Table 4.5. Transfer scheme between the resource pools when FP is excluded

 Transfer Type Transfer Reason

1 from AP to UP
On reception of the Resv message, if

the specified label is reserved.

When the data is passed to

downstream or
2 from UP to AP

When the wait duration in the UP is

expired (tcurrent – ti = TOTUP).

 65

4.1.3.1. Output Block

There are three types of simulation outputs: Informative Output, Graphical Output,

and Numerical Output.

1- Informative Output: During the program execution, all operations made at

the nodes are shown in the event screen. Each operation is written in a

different line. The user can follow the operation steps for the simulated

event set on the event screen.

2- Graphical Output: During the program execution, the bar chart shows the

resource pool states at each link. In the bar chart field there are 3 bars for

each link, which represent AP, FP and UP. Initially all resources are in the

AP, so AP bar is full, and the other bars are empty. During the simulation,

the status of bars is changed according to the amount of the resources at the

pools. When FP is excluded in the pool configuration, only AP and UP

bars change their status, the bar for FP is always empty.

3- Numerical Output: When all events are processed, this means that all data

transmissions are completed; the program gives the numerical results of the

simulation. The numerical outputs are shown on the result screen. The

following outputs are given as the simulation results:

a- Number of blocked events due to the backward-link blocking: This

output is calculated by counting the number of the events that have

faced with blocking at least one time. Here, blocking means that a

lambda is detected in use, as a transmission has decided to use that

lambda.

b- Amount of delay due to the forward-link blocking: The sum of

message processing time at a node and transmission time between two

nodes is assumed to be τ (Tao), which is represented in the simulator

by unit time 1, and after each operation the timer is incremented by 1.

 66

Therefore, a label request message, namely Path message is delayed at

a node by unit time, when there is no available resource to be

suggested. A unit time after, the available resources are controlled and

if there is any available resource, the Path message is sent, if there is

not then Path message wait by unit time again. This process is

continued until there is any available resource to be suggested by the

specified Path message. The delay amount for a Path message is

calculated by summing the wait times for this message. The total delay

amount is found by summing the calculated wait times of all Path

messages that are delayed. Hence, the total delay amount is not

directly added to the simulation time, but it includes all wait times.

c- Number of lambda conversions done during the data transmission:

This output is calculated at the destination node. Since concatenated

Label Set is used, the destination has the information on the available

lambdas at each link. So, using this information the destination node

decides the labels to be used for each node. Since lambda conversion

means that the label will change at a node and the destination node has

the information of all labels for a LSP, the destination determines

automatically, whether there will be a lambda conversion or not.

While deciding the labels, it is aimed that there will be minimum

lambda conversion.

4.3. Simulation Results and Evaluation

The simulations are carried out:

1- To compare the proposed label assignment method with the standard

method.

2- To investigate the effect of the maximum size of Label Set.

 67

The simulations are realized under the following conditions. These are inputs that

are adjusted before the program compilation.

1- Source-destination selection probabilities:

Pi = {N0: 0.2, N1: 0.1, N2: 0.1, N3: 0.05, N4: 0.1, N5: 0.05, N6: 0.15, N7: 0.1,

N8: 0.05, N9: 0.1}

2- TOTFP = 50τ, TOTUP=50τ.

3- Time interval of event generation is set to 100 τ.

The program has been run 400 times with different combination of the following

inputs. So, each combination has been run 10 times.

1- Resource Pool Setting: Both resource pool configurations including FP and

excluding FP have been simulated.

2- Number of Events: The program has been run for 20, 40, 60, 80 and 100

events. The events are generated automatically.

3- Maximum Size of Label Set: The program has been run for 2, 4, 6 and 8

suggested labels.

To see the effect of proposed label assignment method on backward-link blocking,

two graphs, namely Figure 4.2. and Figure 4.3., are drawn based on the obtained

simulation data. In Figure 4.2., we see the number of blocked events changing

with the number of simulated events, namely transmission requests, and in Figure

4.3, we show the variation of backward-link probability according to the number

of events. The simulations are done for both the case with FP and the case without

FP. The software has been run for different values of suggestible lambda numbers.

As seen in the graph, the backward-link is completely prevented, when FP is used.

This verifies the effect of proposed label assignment method on preventing

backward-link blocking. Also, it is obviously seen that the blocking probability

 68

depends strongly on the traffic load in the network. This result verifies the

reliability of our simulation tool.

As we have mentioned before, the proposed method will result in an increase of

forward-link blocking. However, we get rid of forward-link blocking by delaying

the label request signaling, until there is any available resource. Therefore, to

show the penalty of preventing backward-link blocking, we also show the total

delay amount of label request signaling, which is given in Figure 4.4. The delay

distribution is only given for the case with FP, since it is a result of using proposed

label assignment method.

Before Figures 4.2, 4.3 and 4.4., we give the simulation data used to draw the

related graph. The simulation data is obtained by taking the average of simulation

results that come out at the simulation runs of each combination. The

combinations of parameters used during the simulation have been explained in the

previous paragraphs.

The effect of limiting the number of suggestible label is also investigated for both

backward-link blocking simulations and total delay amount of label request

signaling simulations. To do this, maximum size of label set is set to the values 2,

4, 6 and 8 at different times, and the simulation results are shown in 3 graphs for

each value. First graph shows the variation of backward-link blocking probability,

second graph shows the number of blocked events obtained by simulations and

third graph shows the total delay amount of label request signaling. The Figures

4.5, 4.6 and 4.7 show the results, when label set size is 2; the Figures 4.8, 4.9 and

4.10 show the results, when label set size is 4; the Figures 4.11, 4.12 and 4.13

show the results, when label set size is 6; and the Figures 4.14, 4.15 and 4.16

show the results, when label set size is 8. As seen in the Figures, the total delay

amount increases when the number of lambdas suggested, i.e. maximum size of

label set, is increased. This is an expected result as declared in Chapter 3.

 69

Table 4.6. Simulation Data for Number of Blocked Events

Number of Events

20 40 60 80 100
Max Size of
Label Set=2

2 8,9 16,7 28,7 39

Max Size of
Label Set=4

3,1 9,2 17,5 30 41,8

Max Size of
Label Set=6

3,4 10,1 18,4 31,3 47,1

Without
FP

Max Size of
Label Set=8

2,8 7,9 16,3 26,5 42,9

Max Size of
Label Set=2

0 0 0 0 0

Max Size of
Label Set=4

0 0 0 0 0

Max Size of
Label Set=6

0 0 0 0 0
With FP

Max Size of
Label Set=8

0 0 0 0 0

0
5

10

15

20

25
30

35
40

45
50

20 40 60 80 100

Number of Events

N
um

be
r
of
 B

lo
ck

ed
 E
ve

nt
s.
.

Without FP, Max Size of Label Set=2 Without FP, Max Size of Label Set=4

Without FP, Max Size of Label Set=6 Without FP, Max Size of Label Set=8

With FP, Max Size of Label Set=2 With FP, Max Size of Label Set=4

With FP, Max Size of Label Set=6 With FP, Max Size of Label Set=8

Figure 4.2. Number of Blocked Events vs. Number of Events

 70

Table 4.7. Simulation Data for Backward-link Blocking Probability Results

Number of Events

20 40 60 80 100
Max Size of
Label Set=2

0,1 0,2225 0,2784 0,35875 0,39

Max Size of
Label Set=4

0,155 0,23 0,2917 0,375 0,418

Max Size of
Label Set=6

0,17 0,2525 0,3067 0,39125 0,471

Without
FP

Max Size of
Label Set=8

0,14 0,1975 0,2717 0,33125 0,429

Max Size of
Label Set=2

0 0 0 0 0

Max Size of
Label Set=4

0 0 0 0 0

Max Size of
Label Set=6

0 0 0 0 0

With FP

Max Size of
Label Set=8

0 0 0 0 0

0

0,1

0,2

0,3

0,4

0,5

20 40 60 80 100

Number of Events

B
ac
kw

ar
d-
lin

k
B
lo
ck

in
g.
.

P
ro
ba

bi
lit
y

Without FP, Max Size of Label Set=2 Without FP, Max Size of Label Set=4

Without FP, Max Size of Label Set=6 Without FP, Max Size of Label Set=8

With FP, Max Size of Label Set=2 With FP, Max Size of Label Set=4

With FP, Max Size of Label Set=6 With FP, Max Size of Label Set=8

Figure 4.3. Backward-link Blocking Probability vs. Number of Events

 71

Table 4.8. Simulation Data for Total Delay Distribution

Number of Events

20 40 60 80 100
Max Size of
Label Set=2

0 0,3 6,1 35,8 76,9

Max Size of
Label Set=4

5,3 26,6 99,6 341,5 385,7

Max Size of
Label Set=6

5,6 33 107,9 281,5 2444,8

Max Size of
Label Set=8

38,9 1321,1 3269,4 4430,1 7415

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

20 40 60 80 100

Number of Events

T
ot
al
 T
im

e
D
el
ay

.
(i
n
T
ao

)

Max Size of Label Set=2 Max Size of Label Set=4

Max Size of Label Set=6 Max Size of Label Set=8

Figure 4.4. Total Time Delay vs. Number of Events

 72

0

10

20

30

40

50

20 40 60 80 100

Number of Events

N
u
m
b
er
 o
f
B
lo
ck

ed
 E
v
en

ts
..

Figure 4.5. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=2; without FP

0

0,1

0,2

0,3

0,4

0,5

20 40 60 80 100

Number of Events

B
ac

k
w
ar
d-
li
n
k
 B

lo
ck

in
g
..

P
ro
b
ab

il
it
y

Figure 4.6. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=2; without FP

 73

0
10
20
30
40
50
60
70
80
90

20 40 60 80 100

Number of Events

T
ot
al
 T

im
e
D
el
ay

.

(i
n
T
ao

)

Figure 4.7. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=2; without FP

0

10

20

30

40

50

20 40 60 80 100

Number of Events

N
u
m
b
er
 o
f
B
lo
ck

ed
 E
v
en

ts
..

Figure 4.8. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=4; without FP

 74

0

0,2

0,4

0,6

0,8

1

20 40 60 80 100

Number of Events

B
ac

k
w
ar
d
-l
in
k
 B

lo
ck

in
g
..

P
ro
b
ab

il
it
y

Figure 4.9. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=4; without FP

0

100

200

300

400

500

20 40 60 80 100

Number of Events

T
o
ta
l
T
im

e
D
el
ay

.

(i
n
 T
ao

)

Figure 4.10. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=4; with FP

 75

0

10

20

30

40

50

20 40 60 80 100

Number of Events

N
u
m
b
er
 o
f
B
lo
ck

ed
 E
v
en

ts
..

Figure 4.11. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=6; without FP

0

0,2

0,4

0,6

0,8

1

20 40 60 80 100

Number of Events

B
ac

k
w
ar
d
-l
in
k
 B

lo
ck

in
g
..

P
ro
b
ab

il
it
y

Figure 4.12. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=6; without FP

 76

0

500

1000

1500

2000

2500

3000

20 40 60 80 100

Number of Events

T
o
ta
l
T
im

e
D
el
ay

.

(i
n
 T
ao

)

Figure 4.13. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=6; with FP

0

10

20

30

40

50

20 40 60 80 100

Number of Events

N
u
m
b
er
 o
f
B
lo
ck

ed
 E
v
en

ts
..

Figure 4.14. Number of Blocked Events vs. Number of Events; Maximum Size of

Label Set=8; without FP

 77

0

0,2

0,4

0,6

0,8

1

20 40 60 80 100

Number of Events

B
ac

k
w
ar
d
-l
in
k
 B

lo
ck

in
g
..

P
ro
b
ab

il
it
y

Figure 4.15. Backward-link Blocking vs. Number of Events; Maximum Size of

Label Set=8; without FP

0

2000

4000

6000

8000

20 40 60 80 100

Number of Events

T
o
ta
l
T
im

e
D
el
ay

.

(i
n
 T
ao

)

Figure 4.16. Total Time Delay vs. Number of Events; Maximum Size of Label

Set=8; with FP

 78

Lastly, we give the amount of lambda conversions faced during the transmissions

in Figures 4.17. and 4.18. This is given both for the cases when FP is used or FP is

not used. As it is seen, the number of lambda conversions increases as the number

of transmission requests increases. An important fact is that for the operation with

FP lambda conversion is reduced when all of the lambdas are suggested to

downstream. The amount of lambda conversion decreases, since for each label

request message all available lambdas are suggested and the other incoming label

request messages are delayed. So, the probability of using different labels, i.e.

lambdas, at different nodes will decrease.

The delay amounts shown in total delay distribution graphs are only delays faced

in the signaling session. The delay amounts due to the lambda conversion are not

given in this study. We only show the amount of lambda conversions. The delay

times due to the lambda conversion process at a node is estimated to be between

10τ -20τ.

0
25
50
75

100
125

20 40 60 80 100

Number of Events

N
um

be
r
of
 L
am

bd
a.

C
on

ve
rs
io
ns

Max Size of Label Set=2, Without FP Max Size of Label Set=4, Without FP

Max Size of Label Set=6, Without FP Max Size of Label Set=8, Without FP

Figure 4.17. Number of Lambda Conversions vs. Number of Transmission

Requests for the operation without FP

 79

0
25
50
75

100
125

20 40 60 80 100

Number of Events

N
um

be
r
of
 L
am

bd
a.

C
on

ve
rs
io
ns

Max Size of Label Set=2, With FP Max Size of Label Set=4, With FP

Max Size of Label Set=6, With FP Max Size of Label Set=8, With FP

Figure 4.18. Number of Lambda Conversions vs. Number of Transmission

Requests for the operation with FP

By means of these simulations, we have been able to examine the effect of label

flagging operation on preventing the backward-link blocking. We have also seen

the total delay amount of the label request signaling messages, when the proposed

label assignment method is used. Besides that, the effect of limiting the number of

suggestible label on both blocking and delay distribution is investigated. Also, we

obtain the amount of lambda conversions, which is valuable statistical information

for optical networks. The simulation results show that the proposed label

assignment method improves the network performance by completely preventing

backward-link blocking, but there is a trade-off between backward-link blocking

and delaying the label request signaling. This study may be useful for the data

networks, where the data lost is not acceptable.

 80

CHAPTER 5

CONCLUSIONS

In this study, possible applications of label switching in large area, fully optical

networks are investigated. Two important concepts of optical networking, namely

all-optical networking and GMPLS, are covered in the thesis, which will give an

idea for the future optical networks and provide the ways to achieve an efficient

optical network. After GMPLS and all-optical networking are searched, two

concepts, namely label assignment method and a concatenated label structure are

proposed by using the background information obtained during the literature

research.

Label assignment method was designed to minimize the blocking probabilities in

the network and to provide an efficient utilization of resources. Mainly, the

lambda switch capable GMPLS networks are investigated. The studies are based

on the label flagging method introduced in [6]. A new algorithm is designed for

the label assignment including label flagging and concatenated label structure. To

verify the proposed method, a simulator is developed.

We run the simulation for different cases by changing some system parameters to

investigate the effects of flagging method and traffic load on the blocking

probability and the effects of system parameters in the network performance.

The results of simulation show that the proposed method completely prevents the

backward-link blocking, while increasing the forward-link blocking, which can be

 81

eliminated by postponing the signaling. This delay method is necessary for the

networks where the data has to be certainly transmitted, since the label request

will not be blocked, but the transmission will be realized with some delay. Hence,

simulation outputs have clearly indicated that the proposed approaches could be

beneficial in an all-optical network operation.

All-optical transmission provides high speed data transmission by eliminating the

electro-optical conversions. Label concatenation is proposed to make all-optical

transmission easier. It is thought that, if the information of all reserved labels can

be used to form a concatenated label structure including the labels of the entire

path, then this concatenated label will be converted to optical domain only once,

and will be conveyed all-optically at the rest of the transmission.

For all-optical networking topic, only a concatenated label structure is proposed

and the realization of the all-optical switching job at the nodes is left to out of this

study. So, we assume that we will be able to switch the incoming data fully in the

optical domain by the help of the concatenated label structure and we give only an

idea for the further investigations in this area.

Since the optical networks have become the most important networking

technology in communication because of their bandwidth capacity, which can

meet the enormous traffic demand of today’s networks, the research and

developments on optical networking will keep on and optical networks will

constitute a serious part of the future networks.

 82

REFERENCES

[1] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label Switching

Architecture”, IETF RFC 3031, January 2001.

[2] E. Mannie, “Generalized Multiprotocol Label Switching (GMPLS)

Architecture”, IETF RFC 3945, October 2004.

[3] J. Zheng, H. T. Mouftah, “Optical WDM Networks”, IEEE Press, 2004.

[4] The International Engineering Consortium, “Generalized Multiprotocol Label

Switching (GMPLS)”, http://www.iec.org, October 2003.

[5] Mike J. O’ Mahony, Dimitra Simeonidou, David K. Hunter, Anna Tzanakaki,

“The Application of Optical Packet Switching in Future Communication

Networks”, The International Engineering Consortium, IEEE Communications

Magazine, March 2001.

[6] T. Özügür, M. Park, J. P. Jue, “Label Prioritization in GMPLS-Cenric All-

Optical Networks”, IEEE, 2003.

[7] Bilkent University, “MPLS (Multiprotocol Label Switching)”,

http://www.ee.bilkent.edu.tr/~ee536/week_12.pdf, March 2004.

[8] N. Jerram, A. Farrel, “MPLS in Optical Networks”, Data Connection Limited,

October 2001.

[9] Opnet Technologies Inc., “Introduction to MPLS”, 2001.

 83

[10] The International Engineering Consortium, “Multiprotocol Label Switching

(MPLS)”, http://www.iec.org, April 2003.

[11] J. Moy, “OSPF Version 2”, IETF RFC 2328, April 1998.

[12] D. Oran, “OSI IS-IS Intra-domain Routing Protocol”, IETF RFC 1142,

February 1990 .

[13] L. Anderson, P. Doolan, N. Feldman, A. Fredette, B. Thomas, “LDP

Specification”, IETF RFC 3036, January 2001.

[14] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, “RSVP-

TE: Extensions to RSVP for LSP Tunnels”, IETF RFC 3209, December 2001.

[15] B. Jamoussi, L. Andersson, R. Callon, R. Dantu, L. Wu, P. Doolan, T.

WorsterN. Feldman, A. Fredette, M. GirishE. Gray, J. Heinanen, T. Kilty, A.

Malis, “Constraint Based LSP Setup Using LDP”, IETF RFC 3212, January 2002.

[16] J. Lang, “Link Management Protocol (LMP)”, IETF internet draft, October

2003.

[17] L. Berger, “Generalized Multi-Protocol Label Switching (GMPLS) Signaling

Functional Description”, IETF RFC 3471, January 2003.

[18] K. Ishiguro, T. Takada, A.Davey, A. Lindem, “Traffic Engineering

Extensions to OSPF Version 3”, IETF internet draft, March 2005.

[19] H. Smit, T. Li, “IS-IS Extensions for Traffic Engineering”, IETF RFC 3784,

June 2004.

[20] K. Kompella, Y. Rekhter, “OSPF Extension in support of Generalized

MPLS”, IETF internet draft, October 2003.

[21] K. Kompella, Y. Rekhter, “IS-IS Extension in support of Generalized

MPLS”, IETF internet draft, October 2003.

 84

[22] L. Berger, “Generalized Multi-Protocol Label Switching (GMPLS) Signaling

Resource Reservation Protocol- Traffic Engineering (RSVP-TE) Extensions”,

IETF RFC 3473, January 2003.

[23] P. Ashwood-Smith, L. Berger, “Generalized Multi-Protocol Label Switching

(GMPLS) Signaling Constraint-based Routed Label Distribution Protocol (CR-

LDP) Extensions”, IETF RFC 3472, January 2003.

[24] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource Reservation

Protocol (RSVP)”, IETF RFC 2205, September 1997.

[25] J. H. Hahm, K. Lee, “Bandwidth Provisioning and Restoration Mechanisms

in Optical Networks”, IETF internet draft, December 2000.

[26] T. Ozügür, D. Papadimitriou, “Label Set Priority and Flagging Operations”,

May 2002.

[27] C. Argon, “Applications of Code Division Multiple Access in Fiber-Optic

Communication Systems”, Ms. Thesis, Graduate School of Natural and Applied

Sciences, Middle East Technical University, June 1994.

[28] A. Koçyiğit, D. Gökışık, S. Bilgen, “All-Optical Networking”, Turk J Elec

Engin, VOL.9, NO.2, 2001.

[29] A. E. Willner, D. Gürkan, A. B. Şahin, J. E. Mcgeehan, M. C. Hauer, “All-

Optical Address Recognition For Optically-Assisted Routing in Next-Generation

Optical Networks”, IEEE Optical Communications, May 2003.

[30] Answers.Com. Homepage, http://www.answers.com, July 2005.

 85

APPENDIX A

POISSON DISTRIBUTED EVENT GENERATION

Poisson distribution is used in the simulation to model the transmission request

arrivals in the network. Below, some information on Poisson distribution is given.

 The Poisson distribution is discovered by Siméon-Denis Poisson. It is a discrete

probability distribution belonging to certain random variables N that count, among

other things, a number of discrete occurrences that take place during a time-

interval of given length [30]. The probability of having exactly k occurrences

before time t is calculated by the below formula, where λ is the rate, i.e., the

average number of occurrences per unit time.

!

).(
)(

t

k

te
kNP

k

t

λ
λ−

== (A.1)

Let Ei be an event set that is Poisson distributed with rate λ requests per unit time.

The rate λ is equal to k/T, where k is the total number of occurred requests in the

time interval T.

 Ei = {E1, E2, E3, . . . , Ei, . . . ,Ek-1, Ek} (A.2)

 86

There is another task, which is finding the arrival times of the events. The set of

arrival times is represented by ti.

 ti ={ t1, t2, t3,. . .,ti, . . . ,tk-1, tk} (A.3)

If initial time of event generation is considered to be t0, then the intervals between

successive events will be ∆t1 = (t1−t0), ∆t2 = (t2 − t1),, ∆ti = (ti − ti-1). If the inter-

arrival times (∆ti) can be calculated, then the request arrival instances will be

found based on the inter-arrival times. For example, the time instant of the second

arrival will be equal to (t1 + ∆t2).

According to the information given in [30], the inter-arrival times of a Poisson

distributed request arrival scheme have an exponential distribution defined by

 t..)(λ
λ

−
= etf (A.4)

To produce exponentially distributed inter-arrival time values the following

formula can be used [30].

λ

u
t

ln
−= (A.5)

In (A.5), u is a random number drawn from the uniform distribution in the

interval (0, 1]. u can be obtained by using a random number generator on a

computer.

When Poisson distributed events are generated, exponentially distributed inter-

arrival times will be obtained. If inter-arrival times are calculated, the time

 87

instances of the events will be obtained by using the inter-arrival times and initial

time of the event generation process.

 88

APPENDIX B

C++ CODE OF THE SIMULATOR

//---

#include <vcl.h>
#include <windows.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <dos.h>

#pragma hdrstop

#include "Unit1.h"
//---

#pragma package(smart_init)
#pragma resource "*.dfm"

#define MAX_NUM_OF_NODES 10
#define MAX_NUM_OF_LINKS 10
#define NODE_DIAMETER 25
#define MAX_NUM_LAMBDA 8
#define TOTFP 50
#define TOTUP 50
#define TAU 1

#define DATATYPE_PATH 0
#define DATATYPE_NOTIF 1
#define DATATYPE_RESV 2
#define DATATYPE_DATA 3

#define POOL_AP 0
#define POOL_FP 1
#define POOL_UP 2

 89

#define POOL_PRP 3
#define POOL_NOLAMBDA 4

//node->link->pool[][x].. x = ..

#define POOLSTATE_OFFSET 0
#define MESSAGEID_OFFSET 1
#define TIME_OFFSET 2
#define TOT_OFFSET 3

#define BUFFERLENGTH 50
#define NUMOFBUFFERS 100

#define LAMBDA_CONVERSION_TIME 1

//#define MAX_TIME 100

#define EXTRA_TIME 50

TForm1 *Form1;

int FindAvailableBufferNo(int nodeNo);
void PrepareRoutingTable(void);
void PreparePacket(int source, int destination, int time);
void GetOrderedIndexes(int input[], int output[], int length);
void DrawSimulationBars_And_CheckTOT(void);

int currentTime = 0;
int messageNumber = 1; //This will used as message ID, and it will be

incremented by 1 with a new message
int maxLambdaToOffer;
int MAX_TIME = 100;

bool Flagged = false;

struct links
{
 int numOfLambda;
 int pool[MAX_NUM_LAMBDA][4]; //pool[0 for lambda1][0] = state of

lambda1: AP, FP, UP, NO LAMBDA1
 int numOfAP;
 int numOfFP;
 int numOfUP;
 //int linkID;

 90

}link[MAX_NUM_OF_LINKS];

struct nodes
{
 int x; //x coordinate of left upper corner
 int y; //y coordinate of left upper corner
 int routingTable[MAX_NUM_OF_NODES];
 int numOfLinks; //The number of links can be maximum 4, in the network the

number of links connected to a node is maximum 4
 int data[NUMOFBUFFERS][BUFFERLENGTH];

}node[MAX_NUM_OF_NODES];

int linkTable[MAX_NUM_OF_NODES][MAX_NUM_OF_NODES] = {{-1,-1,
0,-1,-1,-1,-1,-1,-1,-1},
 {-1,-1, 1,-1,-1,-1,-1,-1,-1,-1},
 { 0, 1,-1, 2, 3,-1,-1,-1,-1,-1},
 {-1,-1, 2,-1,-1,-1,-1,-1,-1,-1},
 {-1,-1, 3,-1,-1, 5, 4,-1,-1,-1},
 {-1,-1,-1,-1, 5,-1,-1,-1, 8,-1},
 {-1,-1,-1,-1, 4,-1,-1, 6, 7,-1},
 {-1,-1,-1,-1,-1,-1, 6,-1,-1,-1},
 {-1,-1,-1,-1,-1, 8, 7,-1,-1, 9},
 {-1,-1,-1,-1,-1,-1,-1,-1, 9,-1,}};

int routTable[MAX_NUM_OF_NODES][MAX_NUM_OF_NODES] = {{-1, 2,
2, 2, 2, 2, 2, 2, 2, 2},
 { 2,-1, 2, 2, 2, 2, 2, 2, 2, 2},
 { 0, 1,-1, 3, 4, 4, 4, 4, 4, 4},
 { 2, 2, 2,-1, 2, 2, 2, 2, 2, 2},
 { 2, 2, 2, 2,-1, 5, 6, 6, 6, 6},
 { 4, 4, 4, 4, 4,-1, 8, 8, 8, 8},
 { 4, 4, 4, 4, 4, 8,-1, 7, 8, 8},
 { 6, 6, 6, 6, 6, 6, 6,-1, 6, 6},
 { 6, 6, 6, 6, 6, 5, 6, 6,-1, 9},
 { 8, 8, 8, 8, 8, 8, 8, 8, 8,-1}};
/*
int routTable[MAX_NUM_OF_NODES][MAX_NUM_OF_NODES] = {{-1, 2,
2, 2, 2, 2, 2, 2, 2, 2},
 { 2,-1, 2, 2, 2, 2, 2, 2, 2, 2},
 { 0, 1,-1, 3, 4, 4, 4, 4, 4, 4},
 { 2, 2, 2,-1, 2, 2, 2, 2, 2, 2},
 { 2, 2, 2, 2,-1, 5, 6, 6,56,56},
 { 4, 4, 4, 4, 4,-1,48,48, 8, 8},

 91

 { 4, 4, 4, 4, 4,48,-1, 7, 8, 8},
 { 6, 6, 6, 6, 6, 6, 6,-1, 6, 6},
 {56,56,56,56,56, 5, 6, 6,-1, 9},
 { 8, 8, 8, 8, 8, 8, 8, 8, 8,-1}};
*/
//Program starts with this function

//---

__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
}
//---

void __fastcall TForm1::FormCreate(TObject *Sender)
{
 int k;

 node[0].x = 40; node[0].y = 320;
 node[1].x = 75; node[1].y = 50;
 node[2].x = 110; node[2].y = 200;
 node[3].x = 200; node[3].y = 320;
 node[4].x = 200; node[4].y = 180;
 node[5].x = 300; node[5].y = 40;
 node[6].x = 290; node[6].y = 160;
 node[7].x = 320; node[7].y = 260;
 node[8].x = 380; node[8].y = 175;
 node[9].x = 450; node[9].y = 100;

 networkImage->Canvas->MoveTo(0,0);
 simImage->Canvas->MoveTo(0,0);

 networkImage->Canvas->Pen->Color = clRed;
 for (int i=0; i<MAX_NUM_OF_NODES; i++)
 {
 networkImage->Canvas->Brush->Color = clBlack;
 networkImage->Canvas->Ellipse(node[i].x, node[i].y,
node[i].x+NODE_DIAMETER, node[i].y+NODE_DIAMETER);

 for (int j=0; j<NUMOFBUFFERS; j++)
 for (k=0; k<BUFFERLENGTH; k++)
 node[i].data[j][k] = -1;

 for (int m=0; m<MAX_NUM_OF_LINKS; m++)
 for (int j=0; j<MAX_NUM_LAMBDA; j++)
 link[m].pool[j][POOLSTATE_OFFSET] = POOL_AP; //initial ap

 92

//start of debug code

/*

 link[0].pool[0][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
 link[0].pool[1][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
 link[0].pool[2][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
 link[0].pool[3][POOLSTATE_OFFSET] = POOL_NOLAMBDA;

 link[3].pool[4][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
 link[3].pool[5][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
 link[3].pool[6][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
 link[3].pool[7][POOLSTATE_OFFSET] = POOL_NOLAMBDA;
*/
/*
 int inArray[8] = {2, 0, 1, 2, 3, 2, 3, 0};
 int outArray[8];

 GetOrderedIndexes(inArray, outArray, 8);

 for (int j=0; j<8; j++)
 Memo1->Lines->Add(outArray[j]);
*/
//end of debug code

 node[i].numOfLinks = 0;
 for (int j=0; j<MAX_NUM_OF_NODES; j++)
 {
 node[i].routingTable[j] = routTable[i][j];

 if ((node[i].routingTable[j]>-1) && (node[i].routingTable[j]<10))
 {
 //draw links

 networkImage->Canvas->MoveTo(node[i].x +
NODE_DIAMETER/2,node[i].y+NODE_DIAMETER/2);
 networkImage->Canvas->LineTo(node[node[i].routingTable[j]].x +
NODE_DIAMETER/2,node[node[i].routingTable[j]].y+NODE_DIAMETER/2);
/*
 for (k=0; k<node[i].numOfLinks; k++)
 if (node[i].link[k].linkID == (i*10) + node[i].routingTable[j])
 break;
 if (k == node[i].numOfLinks)
 {
 node[i].link[node[i].numOfLinks].linkID = (i*10) +
(node[i].routingTable[j]);
 node[i].numOfLinks++;
 }

 93

*/
 }//if
 }//for

/*
 Memo1->Lines->Add("Node " + IntToStr(i));
 Memo1->Lines->Add(IntToStr(node[i].link[0].linkID) + " " +
IntToStr(node[i].link[1].linkID) + " " + IntToStr(node[i].link[2].linkID) + " " +
IntToStr(node[i].link[3].linkID));
 Memo1->Lines->Add(IntToStr(node[i].numOfLinks));
*/
 }//for

 //Enter number of lambda for every link

 link[0].numOfLambda = 8;
 link[1].numOfLambda = 8;
 link[2].numOfLambda = 8;
 link[3].numOfLambda = 8;
 link[4].numOfLambda = 8;
 link[5].numOfLambda = 8;
 link[6].numOfLambda = 8;
 link[7].numOfLambda = 8;
 link[8].numOfLambda = 8;
 link[9].numOfLambda = 8;

 node0->Left = node[0].x; node0->Top = node[0].y;
 node1->Left = node[1].x; node1->Top = node[1].y;
 node2->Left = node[2].x; node2->Top = node[2].y;
 node3->Left = node[3].x; node3->Top = node[3].y;
 node4->Left = node[4].x; node4->Top = node[4].y;
 node5->Left = node[5].x; node5->Top = node[5].y;
 node6->Left = node[6].x; node6->Top = node[6].y;
 node7->Left = node[7].x; node7->Top = node[7].y;
 node8->Left = node[8].x; node8->Top = node[8].y;
 node9->Left = node[9].x; node9->Top = node[9].y;

 link0->Left = (node[0].x + node[2].x + 30) / 2; link0->Top = (node[0].y +
node[2].y + 30) / 2;
 link1->Left = (node[1].x + node[2].x + 20) / 2; link1->Top = (node[1].y +
node[2].y + 30) / 2;
 link2->Left = (node[3].x + node[2].x + 70) / 2; link2->Top = (node[3].y +
node[2].y + 30) / 2;
 link3->Left = (node[4].x + node[2].x + 30) / 2; link3->Top = (node[4].y +
node[2].y + 30) / 2;

 94

 link4->Left = (node[4].x + node[6].x + 50) / 2; link4->Top = (node[4].y +
node[6].y + 30) / 2;
 link5->Left = (node[4].x + node[5].x + 30) / 2; link5->Top = (node[4].y +
node[5].y + 30) / 2;
 link6->Left = (node[6].x + node[7].x + 10) / 2; link6->Top = (node[6].y +
node[7].y + 30) / 2;
 link7->Left = (node[6].x + node[8].x + 30) / 2; link7->Top = (node[6].y +
node[8].y + 30) / 2;
 link8->Left = (node[5].x + node[8].x + 70) / 2; link8->Top = (node[5].y +
node[8].y + 30) / 2;
 link9->Left = (node[8].x + node[9].x + 30) / 2; link9->Top = (node[8].y +
node[9].y + 30) / 2;

 for (int i=0; i<MAX_TIME; i++)
 timeCombo->Items->Add(IntToStr(i));

 Memo1->Lines->Add("");

 //Seed for random function rand()

 time_t t1 = time(NULL);
 srand((long)t1);

 DrawSimulationBars_And_CheckTOT();
}
//---

//---

void __fastcall TForm1::addEventBtnClick(TObject *Sender)
{
 if (sourceCombo->ItemIndex < 0) {Application->MessageBox("Choose a source
node !!!", "ERROR", MB_OK); return;}
 if (destCombo->ItemIndex < 0) {Application->MessageBox("Choose a
destination node !!!", "ERROR", MB_OK); return;}
 if (timeCombo->ItemIndex < 0) {Application->MessageBox("Choose the
starting time of the event !!!", "ERROR", MB_OK); return;}
 if (sourceCombo->ItemIndex == destCombo->ItemIndex) {Application-
>MessageBox("Source and destination cannot be the same node !!!", "ERROR",
MB_OK); return;}

 Memo1->Lines->Add(sourceCombo->Text + " -> " + destCombo->Text + " at
t=" + timeCombo->Text);
 PreparePacket(sourceCombo->ItemIndex, destCombo->ItemIndex, timeCombo-
>ItemIndex);

 95

}
//---

class MainLoopThread:public TThread
{
 public:
 MainLoopThread():TThread(false){}

 void __fastcall Execute()
 {
 int lambdaIntersection = 0xFF;
 int foundLambda = 0;
 int nextNode = 0;
 int lambda;
 int temp,k,x;
 int linkNo;
 int availBufferNo;
 int sumsOfAvailableLambdas[8];
 int orderedLambdaArray[8];
 int tempNextNode;
 int tempSource;
 int numOfFoundLambda;
 //For both flagged and non-flagged cases; if there is no available lambda, then

delay by 1 unit time

 int bostaLambdaYok = 0;
 //For non-flagged case only; if the lambda to be suggested is in use by another

event, then delay by 1 unit time

 int onerilenLambdaKullanimda = 0;
 //For both flagged and non-flagged cases; if there is a lambda conversion, then

delay by 1 unit time

 int lambdaConversionYapiliyor = 0;

 int bostaLambdaYokArray[200] = {0,0,0};
 int onerilenLambdaKullanimdaArray[200] = {0,0,0};

 Form1->addEventBtn->Enabled = false;
 Form1->addEventsBtn->Enabled = false;
 Form1->startSimBtn->Enabled = false;

 currentTime = 0;
 while (currentTime < MAX_TIME + EXTRA_TIME)
 {
 for (int i=0; i<MAX_NUM_OF_NODES; i++)
 {
 for (int j=0; j<NUMOFBUFFERS; j++)

 96

 {
 if ((node[i].data[j][0] > 0) && (node[i].data[j][4] == currentTime))
 {
 switch (node[i].data[j][3])
 {
 case DATATYPE_PATH:
 //
 //// ////
 //// P A T H ////
 //// ////
 //
 if (node[i].data[j][2] == i) //if this node is destination
 {
 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has received
PATH message sent to itself, t=" + IntToStr(currentTime));

 nextNode = node[i].routingTable[node[i].data[j][1]];
 availBufferNo = FindAvailableBufferNo(nextNode);
 node[nextNode].data[availBufferNo][0] = node[i].data[j][0];
 node[nextNode].data[availBufferNo][1] = node[i].data[j][1];
 node[nextNode].data[availBufferNo][2] = node[i].data[j][2];
 node[nextNode].data[availBufferNo][3] = DATATYPE_RESV;
 node[nextNode].data[availBufferNo][4] = currentTime + 1;

 //determine lambda to use

 k = 5;
 while (node[i].data[j][k] > -1)
 {
 lambdaIntersection &= node[i].data[j][k+1];
 k += 2;
 }

 if (lambdaIntersection != 0)
 {
 k = 0;
 while (!(lambdaIntersection & 0x80)) {
 lambdaIntersection <<= 1;
 k ++;
 }
 foundLambda = k;
 //The lambda is determined, prepare Resv message and sent it

upstream

 k = 5;
 while (node[i].data[j][k] > -1)
 {

 97

 node[nextNode].data[availBufferNo][k] = node[i].data[j][k];
 node[nextNode].data[availBufferNo][k+1] = foundLambda;
 k+=2;
 }
 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has started
reservation session by sending RESV message that will end at Node " +
IntToStr(node[i].data[j][1]) + ", NO Lambda Conversion, t=" +
IntToStr(currentTime));
 }
 else //Here, the intersection of Label Sets is empty set, therefore there

will be LAMBDA CONVERSION
 {
 //Find the number of repeated available lambdas, do this for each

available lambda

 k = 5;
 for (int s=0; s<8; s++)
 sumsOfAvailableLambdas[s] = 0;
 while (node[i].data[j][k] > -1)
 {
 for (int s=0; s<8; s++) {
 temp = node[i].data[j][k+1];
 if (temp & 0x80)
 sumsOfAvailableLambdas[s] ++;
 temp <<= 1;
 }
 k+=2;
 }
 //Find the index order of available lambdas

 GetOrderedIndexes(sumsOfAvailableLambdas, orderedLambdaArray,
8);

 k = 5;
 while (node[i].data[j][k] > -1)
 {
 tempNextNode = node[i].data[j][k+2];
 if (tempNextNode < 0) //Since destination node is not written in the

message packet

 tempNextNode = node[i].data[j][2];

 tempSource = node[i].data[j][k];
 //To control the pools find link ID

 linkNo = linkTable[tempSource][tempNextNode];

 if (Flagged) {

 98

 for (x=0; x<8; x++)
 if
(link[linkNo].pool[orderedLambdaArray[x]][POOLSTATE_OFFSET] ==
POOL_FP)
 if
(link[linkNo].pool[orderedLambdaArray[x]][MESSAGEID_OFFSET] ==
node[i].data[j][0]) //check message id
 break;
 }
 else {
 for (x=0; x<8; x++)
 if
(link[linkNo].pool[orderedLambdaArray[x]][POOLSTATE_OFFSET] ==
POOL_AP)
 break;
 }

 node[nextNode].data[availBufferNo][k] = node[i].data[j][k];
 node[nextNode].data[availBufferNo][k+1] = x;
 k+=2;
 }
 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has started
reservation session by sending RESV message that will end at Node " +
IntToStr(node[i].data[j][1]) + ", LAMBDA CONVERSION, t=" +
IntToStr(currentTime));
 }
 }
 else //This is an intermediate node, so the node adds its message and

sends the message to the next node
 {
 //Find the next node, to which message will be transmitted

 nextNode = node[i].routingTable[node[i].data[j][2]];

 //Find the link to be used for the transmission

 linkNo = linkTable[i][nextNode];

 //Find the lambda vector that will be added to the end of

the message packet; and arrange the pools

 numOfFoundLambda = 0;
 foundLambda = 0;
 for (int s=0; s<MAX_NUM_LAMBDA; s++) {
 if (link[linkNo].pool[s][POOLSTATE_OFFSET] ==
POOL_AP) {
 numOfFoundLambda ++;
 if (numOfFoundLambda <= maxLambdaToOffer)

 99

 {
 foundLambda |= 0x01;
 if (Flagged) {
 //transfer lambda from AP to FP, adjust the pool parameters

 link[linkNo].pool[s][POOLSTATE_OFFSET] =
POOL_FP;
 link[linkNo].pool[s][MESSAGEID_OFFSET] =
node[i].data[j][0];
 link[linkNo].pool[s][TIME_OFFSET] = currentTime;
 link[linkNo].pool[s][TOT_OFFSET] = TOTFP;
 }
 }
 }
 if (s != MAX_NUM_LAMBDA-1)
 foundLambda <<= 1;
 }

 if (foundLambda == 0) //There is no available lambda, delay by 1 unit

time

 {
 if (node[i].data[j][0] < 200)
 bostaLambdaYokArray[node[i].data[j][0]] ++;
 bostaLambdaYok ++;
 node[i].data[j][4] += 1;
 break;
 }

 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has transmitted
PATH message sent from Node "+ IntToStr(node[i].data[j][1]) + " to Node " +
IntToStr(node[i].data[j][2]) + ", t=" + IntToStr(currentTime));
 availBufferNo = FindAvailableBufferNo(nextNode);
 //prepare the message

 node[nextNode].data[availBufferNo][0] = node[i].data[j][0];
 node[nextNode].data[availBufferNo][1] = node[i].data[j][1];
 node[nextNode].data[availBufferNo][2] = node[i].data[j][2];
 node[nextNode].data[availBufferNo][3] = node[i].data[j][3];
 node[nextNode].data[availBufferNo][4] = currentTime + 1;
 k = 5;
 while (node[i].data[j][k] > -1)
 {
 node[nextNode].data[availBufferNo][k] = node[i].data[j][k];
 node[nextNode].data[availBufferNo][k+1] = node[i].data[j][k+1];
 k+=2;
 }
 //Add your message to the end

 100

 node[nextNode].data[availBufferNo][k] = i;
 node[nextNode].data[availBufferNo][k+1] =
foundLambda;
 }

 //the array is processed, empty array

 for (k=0; k<BUFFERLENGTH; k++)
 node[i].data[j][k] = -1;
 break;
 case DATATYPE_NOTIF:
 break;
 case DATATYPE_RESV:
 //
 //// ////
 //// R E S V ////
 //// ////
 //
 //get the lambda we are reserved to use

 k = 5;
 while (node[i].data[j][k] > -1)
 {
 if (node[i].data[j][k] == i)
 {
 foundLambda = node[i].data[j][k+1];
 break;
 }
 k+=2;
 }

 //arrange the pools

 nextNode = node[i].routingTable[node[i].data[j][2]];
 //find the link to be used for the transmission

 linkNo = linkTable[i][nextNode];

 if (Flagged) {
 for (int s=0; s<MAX_NUM_LAMBDA; s++) {
 if (link[linkNo].pool[s][MESSAGEID_OFFSET] ==
node[i].data[j][0]) {//message IDs are same
 if (link[linkNo].pool[s][POOLSTATE_OFFSET] == POOL_FP) {
 if (s == foundLambda) {
 link[linkNo].pool[s][POOLSTATE_OFFSET] =
POOL_UP;
 link[linkNo].pool[s][MESSAGEID_OFFSET] =
node[i].data[j][0];
 link[linkNo].pool[s][TIME_OFFSET] = currentTime;

 101

 link[linkNo].pool[s][TOT_OFFSET] = TOTUP;
 }
 else
 link[linkNo].pool[s][POOLSTATE_OFFSET] =
POOL_AP;
 }
 }
 }
 }
 else {
 if (link[linkNo].pool[foundLambda][POOLSTATE_OFFSET] ==
POOL_AP) {
 link[linkNo].pool[foundLambda][POOLSTATE_OFFSET] =
POOL_UP;
 link[linkNo].pool[foundLambda][MESSAGEID_OFFSET]
= node[i].data[j][0];
 link[linkNo].pool[foundLambda][TIME_OFFSET] = currentTime;
 link[linkNo].pool[foundLambda][TOT_OFFSET] = TOTUP;
 }
 else {//offered lambda is used by another event, so delay by 1 unit time
 if (node[i].data[j][0] < 200)
 onerilenLambdaKullanimdaArray[node[i].data[j][0]] ++;
 onerilenLambdaKullanimda ++;
 node[i].data[j][4] += 1;
 break;
 }
 }

 if (node[i].data[j][1] == i) //if this node is destination

(actually source, since RESV moves reverse)

 {
 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has received
RESV message as a response of its PATH message, and has started DATA
transmision session to destination Node " + IntToStr(node[i].data[j][2]) + ", t=" +
IntToStr(currentTime));

 availBufferNo = FindAvailableBufferNo(nextNode);

 node[nextNode].data[availBufferNo][0] =
node[i].data[j][0];
 node[nextNode].data[availBufferNo][1] = node[i].data[j][1];
 node[nextNode].data[availBufferNo][2] = node[i].data[j][2];
 node[nextNode].data[availBufferNo][3] = DATATYPE_DATA;
 node[nextNode].data[availBufferNo][4] = currentTime + 1;
 k = 5;

 102

 while (node[i].data[j][k] > -1)
 {
 node[nextNode].data[availBufferNo][k] = node[i].data[j][k];
 node[nextNode].data[availBufferNo][k+1] = node[i].data[j][k+1];
 k+=2;
 }

 if (link[linkNo].pool[node[i].data[j][6]][POOLSTATE_OFFSET] ==
POOL_UP)
 link[linkNo].pool[node[i].data[j][6]][POOLSTATE_OFFSET] =
POOL_AP;
 else {
 Form1->Memo1->Lines->Add("WARNING NO_1: Used lambda is
not in the UP, because the threshold time for UP has expired!!!");
 Form1->Memo2->Lines->Add("WARNING NO_1: Used lambda is
not in the UP, because the threshold time for UP has expired!!!");
 }
 }
 else //intermediate node, transmit the same message
 {
 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has transmitted
RESV message sent from destination Node " + IntToStr(node[i].data[j][2]) + " to
source Node " + IntToStr(node[i].data[j][1]) + ", t=" + IntToStr(currentTime));

 //If this is an intermediate node, we sent the message in the

backward direction, the next node has to be found

 nextNode = node[i].routingTable[node[i].data[j][1]];

 availBufferNo = FindAvailableBufferNo(nextNode);

 node[nextNode].data[availBufferNo][0] = node[i].data[j][0];
 node[nextNode].data[availBufferNo][1] = node[i].data[j][1];
 node[nextNode].data[availBufferNo][2] = node[i].data[j][2];
 node[nextNode].data[availBufferNo][3] = node[i].data[j][3];
 node[nextNode].data[availBufferNo][4] = currentTime + 1;
 k = 5;
 while (node[i].data[j][k] > -1)
 {
 node[nextNode].data[availBufferNo][k] = node[i].data[j][k];
 node[nextNode].data[availBufferNo][k+1] = node[i].data[j][k+1];
 k+=2;
 }
 }
 //array is processed,empty array

 for (k=0; k<BUFFERLENGTH; k++)

 103

 node[i].data[j][k] = -1;

 break;
 case DATATYPE_DATA:
 //
 //// ////
 //// D A T A ////
 //// ////
 //
 if (node[i].data[j][2] == i) //if this node is destination: do

nothing

 {
 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + "
has received DATA sent by source Node " + IntToStr(node[i].data[j][1]) + ", t=" +
IntToStr(currentTime));
 Form1->Memo1->Lines->Add(" ");
 }
 else //intermediate node, transmit the same message
 {
 k = 5;
 while (node[i].data[j][k] > -1)
 {
 if (node[i].data[j][k] == i)
 break;
 k+=2;
 }

 if (node[i].data[j][k-1] != node[i].data[j][k+1]) //LAMBDA

CONVERSION

 {
 lambdaConversionYapiliyor ++;
 node[i].data[j][k-1] = node[i].data[j][k+1]; //1 unit time after, do not

make lambda conversion

 node[i].data[j][4] += LAMBDA_CONVERSION_TIME; //Process 1

unit time after

 break;
 }

 Form1->Memo1->Lines->Add("Node " + IntToStr(i) + " has
transmitted DATA sent from source Node " + IntToStr(node[i].data[j][1]) + " to
destination Node " + IntToStr(node[i].data[j][2]) + ", t=" +
IntToStr(currentTime));
 //arrange the pools

 nextNode = node[i].routingTable[node[i].data[j][2]];

 104

 linkNo = linkTable[i][nextNode];

 for (int s=0; s<MAX_NUM_LAMBDA; s++) {
 if (link[linkNo].pool[s][MESSAGEID_OFFSET] ==
node[i].data[j][0]) //message IDs are same
 if (link[linkNo].pool[s][POOLSTATE_OFFSET] == POOL_UP)
 link[linkNo].pool[s][POOLSTATE_OFFSET] =
POOL_AP;
 }

 availBufferNo = FindAvailableBufferNo(nextNode);

 node[nextNode].data[availBufferNo][0] = node[i].data[j][0];
 node[nextNode].data[availBufferNo][1] = node[i].data[j][1];
 node[nextNode].data[availBufferNo][2] = node[i].data[j][2];
 node[nextNode].data[availBufferNo][3] = node[i].data[j][3];
 node[nextNode].data[availBufferNo][4] = currentTime + 1;
 k = 5;
 while (node[i].data[j][k] > -1)
 {
 node[nextNode].data[availBufferNo][k] = node[i].data[j][k];
 node[nextNode].data[availBufferNo][k+1] = node[i].data[j][k+1];
 k+=2;
 }
 }
 //array is processed, empty array

 for (k=0; k<BUFFERLENGTH; k++)
 node[i].data[j][k] = -1;

 break;
 }
 }
 }
 }
 currentTime ++;

 Synchronize(SimDraw);

 Sleep(TAU);
 } //while(1)

 Form1->addEventBtn->Enabled = true;
 Form1->addEventsBtn->Enabled = true;
 Form1->startSimBtn->Enabled = true;

 105

 Form1->Memo2->Lines->Add("SIMULATION RESULTS:");
 Form1->Memo2->Lines->Add("Number of unavailable lambdas: " +
IntToStr(bostaLambdaYok));
 Form1->Memo2->Lines->Add("Number of offered lambdas in use: " +
IntToStr(onerilenLambdaKullanimda));
 Form1->Memo2->Lines->Add("Number of lambda conversions: " +
IntToStr(lambdaConversionYapiliyor));

 bostaLambdaYok = 0;
 onerilenLambdaKullanimda = 0;

 for (int i=0; i<200; i++) {
 if (bostaLambdaYokArray[i] != 0)
 bostaLambdaYok ++;
 if (onerilenLambdaKullanimdaArray[i] != 0)
 onerilenLambdaKullanimda ++;
 }
 Form1->Memo2->Lines->Add("Number of unavailable lambdas in distinct
events: " + IntToStr(bostaLambdaYok));
 Form1->Memo2->Lines->Add("Number of offered lambdas in use for distinct
events: " + IntToStr(onerilenLambdaKullanimda));

 return;
 }
 //---

 void __fastcall SimDraw()
 {
 DrawSimulationBars_And_CheckTOT();
 }
}; //class
//---

void __fastcall TForm1::startSimBtnClick(TObject *Sender)
{
 int addedAnyEvent = 0;

 for (int i=0; i<MAX_NUM_OF_NODES; i++)
 for (int j=0; j<NUMOFBUFFERS; j++)
 if (node[i].data[j][0] > 0) {
 addedAnyEvent = 1;
 break;
 }

 if (addedAnyEvent == 0) {Application->MessageBox("You must enter at least
one event before running the simulation !!!", "ERROR", MB_OK); return;}

 106

 if (maxLambdaCombo->ItemIndex < 0) {Application->MessageBox("Enter
maximum number of lambdas to offer !!!", "ERROR", MB_OK); return;}
 maxLambdaToOffer = maxLambdaCombo->ItemIndex + 1;

 MainLoopThread *mainClass = new MainLoopThread;
 mainClass->Resume();
}
//---

int FindAvailableBufferNo(int nodeNo)
{
 int a = 0;

 while (a<NUMOFBUFFERS)
 {
 if (node[nodeNo].data[a][0] < 0)
 break;
 a++;
 }

 if (a == NUMOFBUFFERS)
 Form1->Memo2->Lines->Add("BUFFER IS FULL!!!!");

 return (a);
}
//---

void PreparePacket(int source, int destination, int time)
{
 int bufferNo;

 if ((source<0) || (source>=MAX_NUM_OF_NODES) || (destination<0) ||
(destination>=MAX_NUM_OF_NODES)) {
 Form1->Memo1->Lines->Add("Entered data has source-destination
problem");
 return;
 }

 bufferNo = FindAvailableBufferNo(source);

 node[source].data[bufferNo][0] = messageNumber ++;
 node[source].data[bufferNo][1] = source;
 node[source].data[bufferNo][2] = destination;
 node[source].data[bufferNo][3] = DATATYPE_PATH;
 node[source].data[bufferNo][4] = time;
}
//---

 107

void GetOrderedIndexes(int input[], int output[], int length)
{
 int a,temp;
 int change;

 for (a=0; a<length; a++)
 output[a] = a;

 do
 {
 change = 0;
 for (a=0; a<length-1; a++)
 {
 if (input[a] < input[a+1])
 {
 temp = input[a];
 input[a] = input[a+1];
 input[a+1] = temp;

 temp = output[a];
 output[a] = output[a+1];
 output[a+1] = temp;

 change++;
 }
 }
 } while (change > 0);
}
//---

void __fastcall TForm1::addEventsBtnClick(TObject *Sender)
{
 int numOfTotalEvent;
 int node1, node2, deltaT;
 int myTime = 0;
 double temp;
 int j;
 int priorities[MAX_NUM_OF_NODES] = {20,30,40,45,55,60,75,85,90,100};

 try {
 numOfTotalEvent = StrToInt(Edit1->Text);
 } catch (EConvertError &e) {Application->MessageBox("Please enter an integer
for the number of events!!!", "ERROR", MB_OK); return;}

 for (int i=0; i<numOfTotalEvent; i++)

 108

 {
 node1 = (int)(rand()*100/RAND_MAX);
 j = 0;
 while (node1 >= priorities[j]) j++;
 node1 = j;
 //Find node2 that is different than node1

 do {
 node2 = (int)(rand()*100/RAND_MAX);
 j = 0;
 while (node2 >= priorities[j]) j++;
 node2 = j;
 } while (node2 == node1);

 temp = (-log((float)rand()/RAND_MAX) /
((float)numOfTotalEvent/MAX_TIME));
 if ((temp - floor(temp)) > 0.5) deltaT = ceil(temp); else deltaT = floor(temp);
 myTime += deltaT;

 Memo1->Lines->Add(IntToStr(node1) + " ---> " + IntToStr(node2) + " at t=" +
IntToStr(myTime));
 PreparePacket(node1, node2, myTime);
 }
}
//---

void __fastcall TForm1::resetBtnClick(TObject *Sender)
{
 for (int i=0; i<MAX_NUM_OF_NODES; i++)
 for (int j=0; j<NUMOFBUFFERS; j++)
 for (int k=0; k<BUFFERLENGTH; k++)
 node[i].data[j][k] = -1;

 for (int m=0; m<MAX_NUM_OF_LINKS; m++)
 for (int j=0; j<MAX_NUM_LAMBDA; j++)
 link[m].pool[j][POOLSTATE_OFFSET] = POOL_AP; //initial ap

 DrawSimulationBars_And_CheckTOT();
}
//---

void DrawSimulationBars_And_CheckTOT()
{
 //Draw simulation bars

 for (int ss=0,kk=0; ss<MAX_NUM_OF_LINKS; ss++) {
 link[ss].numOfAP = 0;
 link[ss].numOfFP = 0;
 link[ss].numOfUP = 0;

 109

 for (int m=0; m<8; m++) {
 if (link[ss].pool[m][POOLSTATE_OFFSET] == POOL_AP)
link[ss].numOfAP++;
 else if (link[ss].pool[m][POOLSTATE_OFFSET] == POOL_FP) {
 if (link[ss].pool[m][TOT_OFFSET] + link[ss].pool[m][TIME_OFFSET] <=
currentTime) {
 link[ss].pool[m][POOLSTATE_OFFSET] = POOL_AP;
 link[ss].numOfAP++;
 }
 else
 link[ss].numOfFP++;
 }
 else if (link[ss].pool[m][POOLSTATE_OFFSET] == POOL_UP) {
 if (link[ss].pool[m][TOT_OFFSET] + link[ss].pool[m][TIME_OFFSET] <=
currentTime) {
 link[ss].pool[m][POOLSTATE_OFFSET] = POOL_AP;
 link[ss].numOfAP++;
 }
 else
 link[ss].numOfUP++;
 }
 }

 Form1->simImage->Canvas->Brush->Color = clWhite;
 Form1->simImage->Canvas->Rectangle(kk*23, 150, (kk+1)*23, 0);

 Form1->simImage->Canvas->Brush->Color = clGreen;
 Form1->simImage->Canvas->Rectangle(kk*23, 150, (kk+1)*23, 150 -
link[ss].numOfAP*150/8);

 Form1->simImage->Canvas->Brush->Color = clWhite;
 Form1->simImage->Canvas->Rectangle((kk+1)*23, 150, (kk+2)*23, 0);
 Form1->simImage->Canvas->Brush->Color = clBlack;
 Form1->simImage->Canvas->Rectangle((kk+1)*23, 150, (kk+2)*23, 150 -
link[ss].numOfFP*150/8);

 Form1->simImage->Canvas->Brush->Color = clWhite;
 Form1->simImage->Canvas->Rectangle((kk+2)*23, 150, (kk+3)*23, 0);
 Form1->simImage->Canvas->Brush->Color = clRed;
 Form1->simImage->Canvas->Rectangle((kk+2)*23, 150, (kk+3)*23, 150 -
link[ss].numOfUP*150/8);
 kk+=4;
 }
}

 110

//---

void __fastcall TForm1::clearBtnClick(TObject *Sender)
{
 Memo1->Text = "";
}
//---

void __fastcall TForm1::maxTimeBtnClick(TObject *Sender)
{
 try {
 MAX_TIME = StrToInt(Edit2->Text);
 } catch (EConvertError &e) {Application->MessageBox("Please enter an integer
for the max time!!!", "ERROR", MB_OK); return;}

 timeCombo->Items->Clear();
 for (int i=0; i<MAX_TIME; i++)
 timeCombo->Items->Add(IntToStr(i));
}
//---

void __fastcall TForm1::clearbtn2Click(TObject *Sender)
{
 Memo2->Text = "";
}
//---

