
LOKMAN: A MEDICAL ONTOLOGY BASED TOPICAL WEB CRAWLER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALTUĞ KAYIŞOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2005

Approval of the Graduate School of Informatics

 Assoc. Prof. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assoc. Prof. Onur Demirörs

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Nazife Baykal

 Supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU) _____________________

Assoc. Prof. Nazife Baykal (METU) _____________________

Dr. Ali Arifoğlu (METU) _____________________

Prof. Dr. Feza Korkusuz (METU) _____________________

Assist. Prof. Dr. Çiğdem Turhan (Atılım University) _____________________

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Surname : Altuğ Kayışoğlu

Signature : ______________

iv

ABSTRACT

LOKMAN: A MEDICAL ONTOLOGY BASED TOPICAL WEB CRAWLER

Kayışoğlu, Altuğ

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Nazife Baykal

September 2005, 92 pages

Use of ontology is an approach to overcome the “search-on-the-net” problem.

An ontology based web information retrieval system requires a topical web

crawler to construct a high quality document collection. This thesis focuses on

implementing a topical web crawler with medical domain ontology in order to

find out the advantages of ontological information in web crawling. Crawler is

implemented with Best-First search algorithm. Design of the crawler is

optimized to UMLS ontology. Crawler is tested with Harvest Rate and Target

Recall Metrics and compared to a non-ontology based Best-First Crawler.

Performed test results proved that ontology use in crawler URL selection

algorithm improved the crawler performance by 76%.

Keywords: Web Crawler, Topical Web Crawler, Topical Web Crawling

Algorithms, Ontology Based Crawling, Ontology Based Topical Crawler

v

ÖZ

LOKMAN: TIBBİ ONTOLOJİ TABANLI ODAKLANMIŞ İNTERNET

GEZGİNİ

Kayışoğlu, Altuğ

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Nazife Baykal

Eylül 2005, 92 sayfa

Ontoloji kullanımı internette bilgi arama/süzme sorununu çözmek için etkili bir

yoldur. Bu tez çalışması, ontoloji kullanarak internet kaynakları üzerinde

odaklanmış arama yapmanın internet gezginin performansına katkısını tespit

etmeyi amaçlar. Gezgin Best-First algoritmasıyla kodlanmış ve UMLS tıbbi

ontolojisine göre tasarlanmıştır. Gezginin performas ölçümü Hasat Oranı

(Harvest Rate) ve Hedef Bulma (Target Recall) metriklerine göre

gerçekleştirilmiş ve ontoloji tabanlı olmayan başka bir Best-First gezginle

karşılaştırılmıştır. Sonuçlar ontoloji tabanlı çalışan gezginin performansının

ontoloji kullanmayan gezginden %76 daha yüksek olduğunu ortaya koymuş ve

ontolojik bilginin gezgin performansını arttıracağı savını doğrulamıştır.

Anahtar Kelimeler: İnternet Gezgini, Odaklanmış İnternet Gezgini, Odaklanmış

İnternet Gezgin Algoritmaları, Ontoloji Tabanlı İnternet Gezgini, Bilgi Geri

Getirme

vi

DEDICATION

To my family

&

People of my country who

have funded 12 years of my education….

vii

ACKNOWLEDGEMENTS

I thank my advisor Assoc. Prof. Nazife BAYKAL for providing guidance and

encouragement which promoted this study. I am grateful to Assoc. Prof. Nazife

BAYKAL for her confidence to my study and her illuminating ideas during

overall work performed.

I also express my thanks to Timur BEYAN, the most exceptional physician I

have ever met, for his precious ideas. This “engineer-minded physician”

catalyzed the mental preparation process and helped me a lot by evaluating the

system from an outer observer’s eye.

And, my old friend and project mate Mustafa KUBİLAY. I enjoyed working,

discussing and sometimes even struggling with him throughout every step of

this study. His contributions as a companion are invaluable as well as his ideas,

comments and technical assistance.

Finally, my family and especially my beloved mother… I can find no phrase to

express the value of a warm “hello” coming out of the phone in times of utter

stress. Even I am away from them physically, their spiritual and emotional

support have no place less than my own effort in this study.

viii

TABLE OF CONTENTS

PLAGIARISM ...iii

ABSTRACT... iv

ÖZ.. v

DEDICATION ... vi

ACKNOWLEDGEMENTS ..vii

TABLE OF CONTENTS...viii

LIST OF TABLES ..xii

LIST OF FIGURES..xiii

LIST OF ABBREVIATIONS AND ACRONYMS.. xv

CHAPTERS

1 Introduction .. 1

1.1 Background, Motivation and Rationale for the Study......................... 1

1.2 Ontology.. 4

1.2.1 Definition .. 4

1.2.2 Unified Medical Language System... 5

1.3 Web Crawling ... 6

1.4 Thesis Structure... 7

2 Literature Survey.. 9

2.1 Characteristics of the Web .. 9

2.1.1 Rapid Change Rate.. 9

2.1.2 Massive Document Collection .. 10

2.1.3 Inconsistent & Incoherent Document Collection 10

2.2 Web Crawling Algorithms .. 11

2.2.1 Breadth-First Search.. 12

ix

2.2.2 Depth-First Search... 13

2.3 Topical Crawling... 14

2.4 Topical Crawling Algorithms.. 16

2.4.1 Best-First Search ... 16

2.4.2 PageRank... 18

2.4.3 HITS .. 19

2.4.4 Shark-Search ... 20

3 Lokman Crawler System.. 22

3.1 Purpose and Scope .. 22

3.2 Assumptions and Dependencies.. 23

3.2.1 Assumptions .. 23

3.2.2 Dependencies .. 24

3.3 Functional Requirements... 24

3.4 System Design and Implementation.. 29

3.4.1 Decomposition Description... 30

3.4.2 Dependency Description ... 31

3.4.3 Detailed Description.. 31

3.4.3.1 UMLS Connector .. 31

3.4.3.2 XML Parser ... 36

3.4.3.3 Fetcher... 39

3.4.3.4 URL History.. 40

3.4.3.5 URL Frontier ... 41

3.4.3.6 Document Parser ... 42

3.4.3.7 Link Estimator... 45

4 Discussion and Evaluation of Lokman Crawler System................................ 48

4.1 Discussion of Lokman Crawler System.. 48

4.2 Crawler Evaluation Metrics .. 52

4.2.1 Harvest Rate Metric .. 52

4.2.2 Target Recall ... 53

4.3 Evaluation of Lokman Crawler System .. 54

x

4.3.1 ... 54 Test Bed

4.3.2 Empirical Results .. 55

5 Conclusion.. 62

5.1 Conclusion... 62

5.2 Future Work .. 64

5.3 Contribution .. 65

REFERENCES.. 67

APPENDICES

Appendix A: Lokman Crawler System Level 0 Dataflow Diagram 73

Appendix B: Lokman Crawler System Level 1 Dataflow Diagram 74

Appendix C : Package Crawl Class Crawler Class Diagram........................ 75

Appendix D: Package Crawl Class URLHistory Class Diagram.................. 76

Appendix E: Package Crawl Class URLFrontier Class Diagram 77

Appendix F: Package UMLSKSSConnector Class KSSConnector Class

Diagram... 78

Appendix G: Package UMLSKSSConnector Class KSSQuery Class Diagram

... 79

Appendix H: Package Document_Parser Class LinkExtractor Class Diagram

... 80

Appendix I: Package Document_Parser Class GeneralLinkExtractor Class

Diagram... 81

Appendix J: Package Document_Parser Class FileDocument Class Diagram

... 82

Appendix K: Package Document_Parser Class HtmlFileParser Class Diagram

... 83

Appendix L: Package Document_Parser Class HtmlStreamParser Class

Diagram... 84

Appendix M: Package Document_Parser Class UMLSConceptXmlParser

Class Diagram ... 85

Appendix N: Package Utility Class MoreString Class Diagram................... 86

xi

Appendix O: Package Utility Class LinkInfo Class Diagram....................... 87

Appendix P: Package Utility Class ConceptInfo Class Diagram.................. 88

Appendix Q: Package Utility Class ConceptOccurence Class Diagram....... 89

Appendix R: Package Utility Class CalculateComparator Class Diagram... 90

Appendix S: Seed and Target URL Sets for Term “Bedwetting”................. 91

xii

LIST OF TABLES

Table 1: Priority Queue Representations .. 16

Table 2: UMLSKSS Query Parameters ... 35

Table 3: Comparison of Lokman Crawler’s and A Standard Crawler’s

Knowledge Base without Ontology Support with Crawl Topic =

“Bedwetting”.. 50

Table 4: Explanation of Handled Exceptions by Lokman Crawler System....... 52

Table 5: Crawl Topics for Crawler Test... 54

xiii

LIST OF FIGURES

Figure 1: MedicoPort System Overview.. 5

Figure 2: Flow of a Basic Sequential Crawler .. 12

Figure 3: A Breadth-First Crawler .. 13

Figure 4: Pseudo-code for Breadth-First Algorithm ... 13

Figure 5: A Best-First Crawler .. 17

Figure 6: Pseudo-code for a Best-First Crawler .. 17

Figure 7: Pseudo-code for a PageRank Crawler ... 19

Figure 8: Pseudo-code for a Shark Search Crawler .. 21

Figure 9: Lokman Crawler System .. 32

Figure 10: Sample UMLSKSS XML Response for a “getTerminology” Query

(Parameters: dbYear = 2005AB, Language = ENG, searchTerm =

‘BREAST CANCER’) ... 37

Figure 11: Sample UMLKSS Response for a “getTerminology” Query for

“BREAST CANCER”.. 38

Figure 12: Sample UMLKSS Response for a “getRelations” Query for

“BREAST CANCER.. 38

Figure 13: Sample UMLKSS Response for a “getContext” Query for “BREAST

CANCER.. 39

Figure 14: The performance metric |Pt∩Pc|/|Pt| as an estimate of |Pr∩Pc|/|Pr| 54

Figure 15: Average Harvest Rate for Lokman Crawler using IncrementValues

Including Direct Links out of Seed URL set.. 55

Figure 16: Average Harvest Rate for Lokman Crawler using IncrementValues

Excluding Direct Links out of Seed URL set... 56

xiv

Figure 17: Average Harvest Rate for Lokman Crawler using GetGreater

Including Direct Links out of Seed URL set.. 57

Figure 18: Average Harvest Rate for Lokman Crawler using GetGreater

Excluding Direct Links out of Seed URL set... 57

Figure 19: “http://patients.uptodate.com/topic.asp?file=cancer/5162”, 17th

Visited Page by Lokman Crawler with topic “Breast Cancer” using

GetGreater Algorithm .. 58

Figure 20: “http://www.cnn.com/HEALTH/library/HQ/00348.html”, 57th

Visited Page by Lokman Crawler with topic “Breast Cancer” using

GetGreater Algorithm .. 59

Figure 21: “http://medlineplus.nlm.nih.gov/medlineplus/breastcancer.html”,

97th Visited Page by Lokman Crawler with topic “Breast Cancer” using

GetGreater Algorithm .. 59

Figure 22: Harvest Rate for a Simple Best Search Crawler............................... 60

Figure 23: Target Recall Graph for Lokman Crawler System at Page Number =

800.. 61

xv

LIST OF ABBREVIATIONS AND ACRONYMS

API : Application Programming Interface

BFS : Breadth-First Search

CUI : Concept Unique Identifier

DFS : Depth-First Search

FIFO : First-In-First-Out

HITS : Hyperlink-Induced Topic Search

HTTP : HyperText Transfer Protocol

IP : Internet Protocol

LAN : Local Area Network

LIFO : Last-In-First-Out

MAC : Media Address Control

NLM : National Library of Medicine

RAM : Random Access Memory

TCP/IP : Transmission Control Protocol/ Internet Protocol

UMLS : Unified Medical Information System

UMLSKSS : Unified Medical Information System Knowledge Source Server

URL : Universal Resource Locator

WebOnt : Web Ontology Working Group

XML : eXtended Markup Language

1

CHAPTER 1

1Introduction

1.1 Background, Motivation and Rationale for the Study

Mankind has suffered from many problems since the first human being walked

on the earth. Mostly these problems emerged from lack of needed resources. But

in today’s information world, a new type of problem comes into existence,

which is not caused by scarcity but wealth of resources.

For most of the people, idea of having more available resources than the needed

amount may seem preferable. It is no doubt that internet is such a repository

with many available information resources but when the issue is finding some

relevant and reliable pieces inside it, the excessive amount causes problems.

Web is a collection of billions of documents which are linked to each other in an

undefined and uncontrollable topology. This massive collection is built up by

millions of authors because the hyperspace enabled people publish anything

they thought to be useful freely. It has a great impact on our life in means of

information sharing. Considering the above advantages, one may wonder what

might be bad about the web. To find out the answer to this question, a closer

inspection of characteristics of the web would be useful.

Discussing the web is something different from discussing the catalogue of a

company’s products, past issues of a newspaper or the index of local library.

Web has some properties which are characteristic only to it. It is growing day by

2

day. By July, 2005 Google reports to be searching its index of more than 8.5

billion web pages 0. Another great trouble embedded in the nature of web is,

there is no control on removing/changing the pages as there is no control on

publishing them. The documents published on the web continuously change. A

document labeled as relevant to a topic may not exist or the universal resource

locator (URL) for it may indicate another document the other day.

Documents forming web are of different topics, different domains and different

languages unlike any collection constructed by humans. In addition, since there

are no standards or controls on semantic structure of the documents,

inconsistencies can be observed in the content [2].

Under these circumstances, finding some specific document is a real trouble on

the web. Many pages look like they are related to the search topic, which are in

essence not. On the other hand, too many pages are encountered related to

search topic, which need to be filtered and prioritized. Therefore, an effort to

satisfy the information need from the web is either like dying of thirst in the

middle of the ocean or trying to drink water from a fire hose.

A common internet user usually tries to find out pages of her/his interest through

generic/domain search engines or meta-search engines. These systems respond

user needs by generating answer sets using the information they get from the

system index. In other words, they prepare a list of documents which are

indexed with the user query term. Therefore, probability of a random user’s

satisfaction is directly related to the way he/she represents his need; in more

formal terms, how user specifies her/his query.

In communication, there is one golden rule: “The message sender sends is not

the expression sent to the communication channel. It is what receiver

understands.” This statement also summarizes the problem between natural

languages and formal languages. When a user specifies her/his query to a search

system from the sender side, s/he types down an expression which is affected by

3

her/his culture, language, personality, personal life, profession, family, religion

and so on. But on the receiver side, there are some machines and codes which

are expected to send a response in return. Receiver is not affected by the facts

given above. It just accepts some input, performs some function and generates

an output. Since it does not care about these factors, the satisfaction degree of

the user by the query results would be degraded. As an expected conclusion,

user finds her/himself stuck in an answer set with many documents some of

which belong to other domains, jargons, languages or cultures.

Domain search systems which perform on the web help the users find their way

out in such a situation. These systems promise to retrieve documents from a

single area of interest. They shrink the index term set to a set of domain specific

terminology from an undefined set of user query terms. It is mentioned as

undefined because when a general search engine is of concern, the index term

set cannot be defined by means of a language or a domain. Another advantage of

domain search systems is that they shrink the social factors affecting human

thoughts, needs and representation of those to a single domain. Strength and

satisfaction rate of domain search systems heavily rely on the representation

power of domain knowledge. A weak or an incomplete representation degrades

the quality of the answer sets.

MedicoPort project was proposed in September 2004 to find out the advantages

of domain knowledge use in medical search on web. It is a medical domain web

search engine enhanced with medical ontology. This search engine does not

address health professionals but ordinary people who wish to get information on

a particular health issue. Basically MedicoPort is designed to restrict the search

list to those containing the medical information only. It is not designed for

medical literature database search. MedicoPort uses a complete medical lexicon

(Unified Medical Language System [UMLS] Specialist Lexicon) and a powerful

medical ontology (UMLS Metathesaurus). Therefore it has the ability to take a

simple specification of the user need and match it to a concept or a set of

4

concepts of a context in medical terminology. Also it exploits the advantage of

ontology use to filter irrelevant web pages. Unlike most medical search systems

on the web, it is not designed to work on medical literature databases or some

specific sites. Its design purpose is constructing a domain search engine through

which users can traverse web pages related to medicine.

MedicoPort adds the advantages of ontology use to the search engine strategies.

It is compound of three major subsystems. These include crawler module,

indexing module and retrieval-result ranking module (Figure 1). Other modules

in the system exist to support these major subsystems.

This study is performed in order to implement the crawler subsystem used in the

project. Crawler has been named as Lokman after the physician who sought the

medicine for eternal life all over the world in Turkish mythology. Indexing and

search subsystems are implemented by Mustafa Kubilay [3].

1.2 Ontology

1.2.1 Definition

Ontology is a powerful way of modeling information. It is a structured system of

categories. Each concept in the domain can be organized through this

categorization [4]. A typical ontology has a taxonomy defining the concepts

(classes) and a set of inference rules which describe the relations among these

concepts [5]. It is designed to define knowledge, reuse it and share it [6].

Ontology is data defining the relations and concepts in a domain.

Controlled vocabulary and semantic search are two of the major use cases of

ontology which are defined in [7] by Web Ontology Working Group (WebOnt).

From a more social viewpoint, ontology can be considered as a way to make

information systems “think” like humans do. They have an important role to fill

the gap between human cognition and machine processing. Using ontology,

content-based search can be performed.

5

Crawled Docs. Related Documents
DOCUMENT

PROCESSOR
CRAWLER WEB

Figure 1: MedicoPort System Overview

1.2.2 Unified Medical Language System

Unified Medical Language System (UMLS) is developed by American National

Library of Medicine (NLM). UMLS is designed to “facilitate the development

of computer systems that behave as if they ‘understand’ the meaning of the

language of biomedicine and health” [7]. UMLS involves several interrelated

sub-components. The system is not optimized or designed to serve a single

purpose. Therefore its resources can be utilized by different applications “that

create, process, retrieve, integrate, and/or aggregate biomedical and health data

and information, as well as in informatics research” [7].

UMLS has three main components: SPECIALIST Lexicon, UMLS Semantic

Network and UMLS Metathesaurus.

SPECIALIST Lexicon is a collection of biomedical terminology and medical

terms in English [9]. It also covers Lexical Tools which are a set of JAVA

programs that help users manage variation in biomedical terms [10].

QUERY
FORMULATOR

UMLS

INDEX

INDEXER

CONCEPT
GENERATOR

USER
INTERFACE

SEARCH
MODULE

Related Concept Set
Crawl Topics

Corresponding Docs. Ranked Answer Set

Search Term Set

Complete Search Term Set

Processed Docs.
Crawl Topic

User Query

Processed User

Related Concept Set

Query Term
URLs to be Indexed
With Lexicon Terms

Related Concept Set

UMLS Specialist Lexicon Terms

6

UMLS Semantic Network involves in the classification of Metathesaurus

concepts. It provides the consistent categorization of these concepts and defines

the set of relationships that can be defined among them [11].

UMLS Metathesaurus covers the semantic relations between the terms in

SPECIALIST Lexicon. It is organized by meaning. Its purpose is linking

alternative views of concepts and identifying useful relations between them [12].

It forms a powerful medical ontology whose concepts are defined by the

SPECIALIST Lexicon and the relations are provided by the Semantic Network.

1.3 Web Crawling

A crawler is a program that can be directed to automatically find information on

the Internet [13]. Crawlers search the web in the same way a person does when

s/he uses a browser.

Internet can be regarded as a graph, hyperlinks as edges and pages as vertices. It

uses the graph structure of web to move from one page to another [14]. It can

also be instructed to make decisions about where to go next based on the

information found at each site if it is a topical crawler. They are defined as

“software programs that traverse the World Wide Web information space by

following hypertext links and retrieving web documents by standard HyperText

Transfer Protocol (HTTP)” [15].

Crawlers have also been called as wanderers, robots, spiders, fish and worms.

From the beginning the key motivation designing web crawlers has been to

retrieve web pages and add them to local repositories for further use.

To start its journey, a crawler needs at least one predefined URL. This URL is

called a seed URL. Briefly, crawling begins from a seed page and continues

visiting other pages which are referenced by the current page via hyperlinks.

This process goes on until a predefined number of pages are visited, a

7

predefined condition is satisfied or crawl loop is terminated due to some other

reason. Crawlers have been shown to be useful in various web applications.

There are four main areas where crawlers have been widely used [16]:

1. Personal search: Personal crawlers try to search for Web pages of

interest to a particular user.

2. Building collections: Web crawlers have been in action especially for

this purpose. To create an index for any search and keep it up-to-date,

crawlers collect web pages continuously [17-19]. In addition to building

search engine indexes, crawlers can also be used to collect pages that are

later processed to serve other purposes.

3. Archiving: “To meet the challenge of the enormous size of the Web, fast,

powerful crawlers are developed and used to download targeted Web

sites into storage tapes” [16].

4. Web statistics: “Large number of pages collected by crawlers is often

used to provide useful, interesting statistics about the Web” [16].

1.4 Thesis Structure

Chapter 2 provides the related research on web crawling strategies and web

crawling algorithms. In addition, the concept of ‘topical web crawling’ and

factors driving the information seekers to this concept are introduced in this

chapter as well as major topical crawling algorithms and their pseudo-codes.

Chapter 3 includes the analysis study, design principles and a detailed overview

of the crawler system.

Chapter 4 covers a detailed discussion of the implemented system, introduction

of crawler evaluation metrics and evaluation of the implemented crawler with

empirical results.

8

Chapter 5 provides the conclusions, possible future work directions for the

system and ontology based search agents on the web and function of the study in

means of collaborative effort in the MedicoPort project.

9

CHAPTER 2

2Literature Survey

Web crawling is a complex problem to tackle. There are many factors affecting

web crawling strategies. Most of these factors are identical only to web. In this

chapter, characteristics of the web, similarities between graph traversal and web

traversal, primitive web crawling algorithms, concept of topical web crawling

and topical web crawling algorithms are presented sequentially.

2.1 Characteristics of the Web

Since 1990’s, web has become the prime medium for information exchange all

over the world. After the wide use of internet, users gained the ability both to

publish their information easily and to access published information eliminating

difficulties like geographical distance.

On the other hand, the advantages mentioned above formed the core of

problematic nature of the web:

2.1.1 Rapid Change Rate

Storing web pages or any kind of representation of them in a repository is a

challenging task when the very rapid changing characteristic of the web is

considered. This rapid change has two factors: first is the update rate of the

existing web pages and second is recently added/removed pages. That means, a

URL with a preferred content which is claimed to exist by a repository may not

exist or may have a different content. The percentage of such invalid links

10

stored in search engine indices varies from 2 to 9% [20]. Brewington and

Cybenko stated that a re-indexing period of 8.5 days is necessary to keep a

search-engine index up-to-date [21]. Brewington and Cybenko used the

estimation that the size of the web is 800 million pages by [22] but web has

grown much larger than this estimation today.

Another study performed on half a million pages over a 4 months time revealed

that 23% of pages changed daily [23]. It was also observed that half-life for a

web document in .com domain was 10 days and 40% of the pages in this domain

changed daily [23].

For any application using such repository, up-to-date information is required.

Therefore crawlers are heavy workers trying to cope with the pace of the change

working with no brakes. With their effort, the repositories are updated and

modified.

2.1.2 Massive Document Collection
As mentioned in Chapter 0, publishers have no restrictions on the number of

documents to publish on web. This fact makes the collection grow in a high

speed. Another reason that enforces the growth is the developments achieved in

storage media and bandwidth. Larger storage capacity enables publishers put

more and more documents on the web. More bandwidth enables information

seekers access documents kept on distant storage media faster and easier.

Studies on estimating the size of web has began in late 1990’s. In 2000, it was

estimated that the size of the static web is 4 to 10 billion web pages [24]. By

July 2005, Google reports to be searching 8.5 billion web pages 0.

2.1.3 Inconsistent & Incoherent Document Collection

Before web, document collections were about a topic like newspaper articles,

library book catalogues or medical literature. Such coherency not only enabled

users access required information by using domain-specific terminology but also

enabled them classify and sort them according to their information needs. Web,

11

from this point of view, is not coherent. It is a document collection with many

topics and interests. One can find a document with any topic on web. Therefore,

search on web is far much challenging than search on a coherent collection.

Another problem that makes the problem more challenging is the

inconsistencies in the documents on web. These include mistyping and misuse

of domain terminology. Documents, which include mistyped words or misused

terminology, cause troubles to automatic search and information retrieval

systems.

2.2 Web Crawling Algorithms

Traditional graph search algorithms have been extensively applied to computer

science. Since web can be considered as a directed graph with a set of nodes

(pages) connected with directed edges (hyperlinks) [16], graph search

algorithms can be applied to crawling.

The base algorithm executed by a web crawler takes a list of seed URLs defined

by the operators/system administrators and repeatedly executes the following

steps [18] (Figure 2):

• Remove a URL from URL list (URL Frontier),

• Determine the Internet Protocol (IP) address,

• Download the corresponding document,

• Extract links in the document,

• For each link in the document,

o Ensure that the link is a valid URL,

o Add new URL to the URL list,

• Go to step 1.

Start

Initialize Frontier with
Seed URL(s)

Pick URL From
Frontier

Fetch Page

Parse Page

Add URLs to the
Frontier

Terminate? Stop

Start

Initialize Frontier with
Seed URL(s)

Initialize Frontier with
Seed URL(s)

Pick URL From
Frontier

Pick URL From
Frontier

Fetch PageFetch Page

Parse PageParse Page

Add URLs to the
Frontier

Add URLs to the
Frontier

Terminate?Terminate? Stop

Figure 2: Flow of a Basic Sequential Crawler [14]

2.2.1 Breadth-First Search

Breadth-First search (BFS) is a tree search algorithm used for traversing or

searching a tree (graph theory) or tree structure. It considers neighbors of a

vertex (outgoing edges of the vertex's predecessor in the search) before any

outgoing edges of the vertex [25]. Extremes are searched last. URL frontier for

such a crawler is typically implemented with a first-in-first-out (FIFO) structure,

namely queue. That is to mean crawler starts at the root node (vertex) and

explores all the neighboring nodes. Then for each of those nearest nodes, the

crawler explores their unexplored neighbor nodes, and so on until it finds the

goal.

Formally, BFS is an uninformed search method that aims to expand and

examine all nodes of a tree systematically in search of a solution. In other

words, it exhaustively searches the entire tree without considering the goal until

it finds it. It does not use a heuristic to order URLs [26][26-28].

For web search, a breadth-search crawler is the simplest strategy for crawling. It

uses a FIFO queue as the frontier and crawls the links as they are appended

12

http://www.nist.gov/dads/HTML/vertex.html
http://www.nist.gov/dads/HTML/edge.html
http://www.nist.gov/dads/HTML/queue.html

(Figure 3). Since it does not use any heuristics, which is to mean any knowledge

about the topic, its performance is lower than more sophisticated crawlers [29].

Pseudo-code for breadth-first algorithm is presented in Figure 4.

FIFO Queue

Web
Page

Links

FIFO Queue

Web
Page

Links

Figure 3: A Breadth-First Crawler [29]

2.2.2 Depth-First Search

Depth First Search (DFS) is a way of traversing or searching a tree (graph

theory), tree structure, or graph. It considers outgoing edges of a vertex before

any neighbors of the vertex that is, outgoing edges of the vertex's predecessor in

the search [30, 31]. Extremes are searched first. It can easily be implemented

with recursion. Intuitively, a depth-first crawler starts at the root (selecting some

node as the root in the graph case) and explores as far as possible along each

branch before backtracking.

13

Breadth-First (starting_urls){
 foreachlink(starting_urls){
 enqueue (frontier, links);
 }
 while (visited < MAX_PAGEs){
 link = dequeue (link, frontier);
 doc = fetch (link);
 enqueue (frontier, extractlinks(doc));
 if (# frontier > MAX_BUFFER){
 dequeue_last_links (frontier);
 }
 }
}

Figure 4: Pseudo-code for Breadth-First Algorithm [29]

http://www.nist.gov/dads/HTML/edge.html
http://www.nist.gov/dads/HTML/vertex.html
http://www.nist.gov/dads/HTML/recursion.html

14

From an algorithmic point-of view, all freshly expanded nodes are placed at the

front of the search queue for expansion.

Space complexity of DFS is much lower compared to BFS (Breadth-first

search). When searching large graphs that cannot be fully contained in memory,

DFS suffers from non-termination when the length of a path in the search tree is

infinite. The simple solution of "remember which nodes I have already seen"

does not work because there can be insufficient memory. This can be solved by

maintaining an increasing limit on the depth of the tree, which is called iterative

deepening depth-first search [30, 27, 28].

For a depth-first crawler, a last-in-first-out (LIFO) structure or a stack shall be

used as the URL frontier. This way the crawler always keeps on a track until it

finds a page with no links out of it. Regarding that approximately each web page

consists 7 links out [20], it is obvious that a depth-first crawler may never turn

back. Therefore, maximum depth of the crawler is usually defined. Depth-first

crawlers have the same structure and pseudo code with the breadth-first crawlers

as given in Figure 3 and Figure 4. The only difference amongst them is the data

structure of the URL frontier.

2.3 Topical Crawling

It is a fact that the users inspect only a small portion of the retrieved results in

the result set which are the top hits. Therefore ranking pages is an important

issue. First approach to rank search results was binary ranking. This method

classifies documents in the result set as related or not with no ranking among

them. For search engines, as clearly seen, it is not a proper way because of the

user behavior. In addition, it is obvious that the relevance of different documents

to a given query cannot be entirely the same. These facts brought several

ranking models which made search engines more sophisticated.

15

But before ranking the results for user’s choice, a search system needs to create

and fill an index for the web pages. Suppose that there is such a ranking

algorithm that is capable to sort the result set for a given query very close to

human cognition and there are several web documents related to the given query

(test documents). The system is expected to retrieve a set of results with the test

documents on the top of the list. But even with such an algorithm, the result may

not be as expected because the test documents may not even exist in the index of

the engine.

The problem above is related with the size and the growth rate of the web. It is

impossible to index the entire web although dramatic improvements have

occured in the storage media, bandwidth and other hardware technologies and

resources.

At this very point, to solve the problem defined above, a system which is clever

enough to search and retrieve the documents which are in user’s area of interest

is required. This may seem to be a simple approach, but it shrinks the document

space and enables the system find better matching documents in it. Such a

crawling on web is called as “topical crawling” or “focused crawling”. In the

remainder of this thesis, term “topical crawling” is preferred. Briefly, topical

crawling is an algorithm to find pages of interest from the web.

Algorithm of topical crawling can be specified as below [32]:

• Specify user interest

• Use a priority queue of URLs based on the rank of the URL.

• Start with a set of seed pages in the queue

• Get top rank URL from the queue

• Download the page P and extract URLs {U} from the page

• Measure relevance of the page P and each URL in {U}

16

• If relevance of the page P is above threshold then set P as one of the

results

• For each URL in {U}, if it already exists in the queue then update its

rank. Else add the URL to the queue

• Go to step 4

2.4 Topical Crawling Algorithms

2.4.1 Best-First Search

Best-First Search is a state-space search algorithm that considers the estimated

best partial solution next [33]. It optimizes breadth first search by ordering all

current paths according to some heuristic. The heuristic attempts to predict how

close the end of a path is to a solution. Paths which are judged to be closer to a

solution are extended first. Efficient selection of the current best candidate for

extension is typically implemented using a priority queue [34].

Table 1: Priority Queue Representations [28]

Representation Insertion Deletion

Unordered Array O (1) O (n)

Unordered Linked List O (1) O (n)

Sorted Array O (n) O (1)

Sorted Linked List O (n) O (1)

Max/Min Heap O (log2n) O (log2n)

A priority queue deletes the element with the highest/lowest priority. At any

time any element with arbitrary priority can be inserted to the queue. If the

application requires the element with the highest priority to be deleted, a

maximum (max) heap data structure is preferred. On the opposite, a minimum

(min) heap is used. Arrays and linked lists can also be used to implement

priority queues but the computational cost in deletion becomes quite high [28]

(Table 1).

Different best-first crawlers can be implemented according to their strategy but

the change is in only the heuristics they apply. The structure remains the same as

in Figure 5.

Priority Queue

Web
Page

Links

Link
Estimator

Priority Queue

Web
Page

Links

Link
Estimator

Figure 5: A Best-First Crawler [29]

Σ kЄq∩p ƒkqƒkp

17

Figure 6: Pseudo-code for a Best-First Crawler [29]

In [29], Menczer et.al. implemented a best-first crawler in which link selection

process is simply done by computing the lexical similarity (Equation 1, q is the

topic, p is the fetched page and fkd is the frequency of term k in document d)

BFS (topic, starting_urls){
 foreachlink(starting_urls){
 enqueue (frontier, link, 1);
 }
 while (visited < MAX_PAGEs){
 link = dequeue_top_link (frontier);
 doc = fetch (link);
 score = sim (topic, doc);
 enqueue (frontier, extractlinks(doc), score);
 if (# frontier > MAX_BUFFER){
 dequeue_bottom_links (frontier);
 }
 }
}

Sim (q,p) =
√((Σ kЄp ƒ2

kp)(Σ kЄƒ2
kq))

Equation 1

between the topic’s keyword and the source page for the link. This crawler

represents a web page using the vector-space model [20]. Thus the similarity

between a page p and the topic keywords is used to estimate the relevance of the

pages pointed by p.

After all estimations are calculated, the URL with the best result is selected for

crawling. Pseudo-code for a best-first crawler is given in Figure 6.

2.4.2 PageRank

This algorithm was proposed by Brin and Page in [17]. It is designed to model a

possible model of user surfing behavior. It makes use of the graph structure of

the web to calculate a quality ranking for each web page. A page’s PageRank

score depends on the PageRank scores of the pages which refer to it [17,

28].Calculation of PageRank score of a page is performed as follows:

PR(A) = (1-d) + d(PR(T1)/C(T1)+………+ PR(Tn)/C(Tn)) [17]

Here A stands for the page whose PageRank score is computed. Pages from T1

to Tn represent the web pages that point to page A and d is a damping factor

such that 0< d <1. C(T1) represents the number of links going out of page T1. In

more formal terms, PageRank calculation is given in Equation 2 where γ stands

for the damping factor.

A page can have a high PageRank score if it is linked from many other pages.

Also if the PageRank scores of the pages pointing the focus page are high, this

improves the score of the focus page. In simpler words, the quality of any page

is a function of the quality of each page pointing it. Pseudo-code for a PageRank

crawler is presented in Figure 7.

Σ

18

PR(p) =
PR(d)

(1 - γ) + γ Σ Equation 2
out(d)

dЄin(p)

2.4.3 HITS

The HITS (hyperlink-induced topic search) algorithm was first introduced by

John M. Kleinberg in [36]. He assumes that a topic can be roughly divided into

pages with good coverage of the topic, called authorities, and directory-like

pages with many hyperlinks to useful pages on the topic, called hubs.

The goal of HITS is basically to identify good authorities and hubs for a certain

topic which is usually defined by the user's query. So, HITS is a query-based

algorithm [37, 16].

19

PageRank (topic, starting_urls){
 foreachlink(starting_urls){
 enqueue (frontier, link, 1);
 }
 while (#frontier > 0 and visited < MAX_PAGES){
 if (multiplies_25 (visited)){
 foreach link (frontier){
 PR(link) = recompute_PR;
 }
 }
 link = dequeue_link_with_max_PR (frontier);
 doc = fetch_new_document (link);
 score = sim (topic, doc);
 if (#buffered_pages > MAX_BUFFER){
 dequeue_link_with_min_PR (frontier);
 }
 enqueue (frontier, extractlinks(doc), score);
 for each outlink (extract_new_links(doc)){
 if (# frontier >= MAX_BUFFER){
 dequeue_link_with_min_PR (frontier);
 }
 enqueue (frontier, outlink);
 }
 }
}

Figure 7: Pseudo-code for a PageRank Crawler [29]

Given a user query, the HITS algorithm first creates a neighborhood graph for

the query. The neighborhood contains top 200 matching web pages retrieved

from a content-based web search engine as well as all the pages these 200 web

pages linked to and pages that refer to these 200 top pages.

20

Then for each page a hub score (Equation 4) and an authority score (Equation 3)

is computed. Briefly, authority score of a page P is, sum of hub scores of pages

pointing page P relative to query Q. Hub score of a page P is, sum of authority

scores of pages to which P refers to relative to query Q.

Like PageRank, HITS is also very effective in ranking search results. But both

of these algorithms suffer from computational expenses due to iterative score

calculating.

2.4.4 Shark-Search

Shark-search algorithm was proposed by [37] in 1998 as an enhanced and more

aggressive version of Fish-Search [38]. In Fish-Search, crawlers search more

extensively in the areas of the web in which relevant pages are found while they

stop crawling the areas which are not relevant. What Shark-Search adds to the

main approach are, instead of Fish-Search’s binary relevance function, Shark-

Search uses a continuous relevance function and it has a more refined notion of

potential scores for the links in the frontier. Pseudo-code for a Shark-Search

crawler is presented in Figure 8.

H(p) = Σ A(q) Σ
q(p,q)ЄG

Equation 4

ΣA(p) = H(q) Σ Equation 3

q(q,p)ЄG

21

Shark (topic, starting_urls){
 foreachlink(starting_urls){
 set_depth (link, d);
 enqueue (frontier, link, 1);
 }
 while (visited < MAX_PAGES){
 link = dequeue_top_link (frontier);
 doc = fetch_new_document (link);
 doc_score = sim (topic, doc);
 if (depth(link) > 0){
 foreach outlink(extract_links(doc)){
 score = (1-r) * neighborhood_score(outlink)
 + r * inherited_score(outlink);
 if (doc_score > 0){
 set_depth (outlink, d);
 }
 else{
 set_depth(outlink, depth(link)-1);
 }
 enqueue (frontier, outlink, score);
 }
 if (#buffered_pages > MAX_BUFFER){
 dequeue_link_with_min_PR (frontier);
 }
 }
 }
}

Figure 8: Pseudo-code for a Shark Search Crawler [29]

22

CHAPTER 3

3Lokman Crawler System

Chapter 3 starts with the analysis study performed for the system. Analysis

study involves specifying purpose and the scope of the system, assumptions and

dependencies and functional requirements.

Issues on design and implementation based on the functional requirements are

depicted following the analysis study.

3.1 Purpose and Scope

Many crawlers have been implemented in order to serve for different

applications with the same purpose of ‘downloading the most important pages

from web’. They use different algorithms introduced in section 2.4.

An important point to be emphasized at this point is the fact that crawling is the

effort to estimate the value of an unvisited URL U by information obtained from

a visited page V which contains a hyperlink pointing to U. Therefore quality of a

visited page affects the crawler’s possibility of visiting better qualified pages.

Prime factor that affects algorithm selection and modification for a crawler is

the purpose of the super system the crawler serves for. Since MedicoPort system

aims to find out the use of ontology in medical information retrieval,

information obtained from ontology should be used in Lokman’s URL ordering

process.

23

Algorithms introduced in section 2.4 can be classified as lexical similarity based

(Best-First Search, Shark-Search) and back-link/forward-link count based ones

(HITS, PageRank). Enhancing relevance degree of a page to a given topic using

ontological information is one of the purposes of the study. Therefore URL

selection of Lokman should be performed using an algorithm based on lexical

similarity.

Lokman should not be implemented as a query agent running on databases

available through web. It should be designed to find out pages of interest from

the static web.

System should obtain context information for a given search topic from Unified

Medical Information System Knowledge Source Server (UMLSKSS) in order to

use in further processing. Information exchange between UMLSKSS and the

system should be done by remote request instead of local installation of the

UMLSKSS resources.

Crawler should use text data obtained from the downloaded pages. Other type of

information existing in the page should be out of scope and interest.

3.2 Assumptions and Dependencies

3.2.1 Assumptions

It is assumed that crawler shall be implemented as a single-threaded crawler.

It is assumed that no restrictions on downloaded web document size have been

specified.

It is assumed that a maximum URL number of 10000 is specified as the size of

the URL Frontier.

It is assumed that the computer system on which Lokman is run has an active

internet connection.

24

It is assumed that all operations for the crawler shall be performed on RAM.

It is assumed that no disc access operation for downloaded documents shall be

performed.

3.2.2 Dependencies

Crawler performance is affected by any possible UMLSKSS failures and any

possible change in terms of use of UMLSKSS resources.

Crawler shall be run on a computer system which is registered to UMLSKSS

with its IP and Media Access Control (MAC) addresses.

Crawler shall be run on a computer system which is identified to UMLSKSS

with a valid UMLS Licensee identification.

Since UMLSKSS Developer’s Application Programming Interface (API)

requires JAVA 1.4 or higher to run, the system shall be implemented with a

JAVA version higher than JAVA 1.4.

3.3 Functional Requirements

1. The system shall accept a new search topic after each crawl loop from

the MedicoPort Index.

2. The system shall establish a connection to UMLSKSS.

2.a. The system shall establish a connection to UMLSKSS using

parameters host = ‘umlsks.nlm.nih.gov’ and client =

‘KSSRetriever’.

2.b. If the connection cannot be established, the system shall generate

an error message including the reason for unsuccessful connection

such as inactive host, unidentified client (user unregistered to

UMLSKSS) or malformed host URL.

25

2.c. If connection establishment is successful the system shall generate

a notification message.

3. The system shall run queries in order to get an Extended Markup

Language (XML) response including the related concept set for the given

search topic from UMLSKSS.

3.a. The system shall set other query parameters than search topic

automatically.

3.a.i. The system shall set ‘dbYear’ to ‘2005AB’. This value

determines the UMLS Release to be used in the search.

3.a.ii. The system shall set ‘Language’ to ‘ENG’. This parameter

indicates the language for the query.

3.a.iii. The system shall set ‘Sabs’ to ‘(MSH, SNOMEDCT)’.

These values indicate the source medical thesaurus from

which concepts root.

3.a.iv. The system shall set ‘Operator’ to ‘1’. This value indicates

the term matching criterion with the given search topic. 1

means an exact match.

3.b. The system shall determine the UMLS Concept Unique Identifier

(CUI) for the given search topic before running any other query on

UMLSKSS.

3.c. The system shall determine the concepts which are related to the

given search topic according to UMLS Metathesaurus.

3.d. The system shall determine the concepts which are in same

context with the given search topic according to UMLS

Metathesaurus.

3.e. The system shall determine the concepts which are synonym to the

given search topic according to UMLS Metathesaurus.

26

4. The system shall accept the XML response from UMLSKSS as a stream.

5. The system shall process the XML response to derive out concept list.

5.a. The system shall remove the query tags existing in the XML

response.

5.b. The system shall pick the concept names within <SY></SY> and

<PAR></PAR> tags which indicate a synonymy and partial

relevance sequentially for any UMLSKSS relations query.

5.c. The system shall pick the concept names within <CXT></CXT>

tags that has the rank value of 0 between <rank></rank> tags

which indicates contextual relevance for any UMLSKSS context

query.

5.d. The system shall pick the concept names between <cn></cn> tags

which indicates a synonymy or term variance (concept name) for

any UMLSKSS terminology query.

5.e. The system shall keep a temporary record for each concept

obtained from the XML response labeling them as synonym,

partially relevant or contextually relevant.

5.f. The system shall remove any duplication in the final concept list.

6. The system shall return the final concept list to link evaluation module.

7. The system shall have a seed URL to initialize the crawling process.

8. The system shall assign an initial value to the seed URL.

9. The system shall add the seed URL with the determined value to the

URL Frontier.

27

10. The system shall fetch the corresponding web page to the seed URL.

10.a. The system shall send a HTTP request to the URL.

10.b. The system shall generate an error message if any TCP/IP

communication problem occurs.

10.c. The system shall generate an error message if any malformed

URL is found.

10.d. The system shall accept the HTTP response through port 80.

10.e. The system shall send the fetched document to MedicoPort

Document Processor

11. The system shall keep a log of visited URLs (URL History).

11.a. The system shall initialize the URL History after system startup.

11.b. The system shall load the URL History to RAM.

11.c. The system shall save a hash value for each visited page.

12. The system shall convert the document to lower case.

13. The system shall analyze the fetched document.

13.a. The system shall count each of the concepts existing in the

concept list returned from UMLSKSS in the page.

13.b. The system shall compute values per each concept.

13.c. The system shall assign following factors to each concept

category, 15 for the exact search phrase, 12 for synonymy, 5 for

partial relevance and 3 for contextual relevance.

28

13.d. The system shall set the page value to sum of the values

computed in 13.c.

14. The system shall parse the fetched document.

14.a. The system shall derive each hyperlink out from the page.

14.b. The system shall check if the hyperlink has been visited before.

14.c. If the hyperlink has not been visited yet, the system shall analyze

the hyperlink by using the information between <a> tags.

14.c.i. The system shall count each of the concepts existing in the

concept list returned from UMLSKSS in the defined field.

14.c.ii. The system shall compute tf/idf values per each concept for

the defined field.

14.c.iii. The system shall assign following factors to each concept

category as in 13.c.

14.c.iv. The system shall set the hyperlink value to sum of the values

computed in 14.c.iii.

14.c.v. The system shall update the hyperlink value as the greater of

page’s value and value computed in 14.c.iv.

14.d. The system shall send the (URL, URL value) tuple to URL

Frontier.

15. The system shall insert the (URL, URL value) tuple to URL Frontier.

15.a. The system shall check if the new URL exists in the frontier.

15.b. If new URL exists in frontier, weight value for this URL shall be

updated.

29

15.b.i. The system shall remove the URL from the frontier.

15.b.ii. The system shall set the new value for the URL as greater

of existing value and the sent value.

15.b.iii. The system shall insert the URL and new value computed

in 15.b.ii.

15.c. If the URL does not exist in the frontier, the system shall insert

the new URL to the frontier.

16. The system frontier shall be implemented as a priority queue.

17. The system frontier shall be implemented as a max heap, with the

maximum valued element at the top of the queue.

18. The system shall initialize the next crawling loop by sending the top

queue element to the fetcher.

19. The system shall remove the top element after sending it to the fetcher.

20. The system shall not allow number of URL Frontier elements exceed the

defined MAX_URL.

21. The system shall continue crawling until URL Frontier is empty.

22. If the URL Frontier is empty, the system shall initialize URL History.

23. If the URL Frontier is empty, the system shall get the following crawl

topic from MedicoPort Index.

3.4 System Design and Implementation

Level 0 and Level 1 data flow diagrams (DFD) for Lokman crawler system are

provided in Appendix A and Appendix B respectively.

30

3.4.1 Decomposition Description

The system is developed with four packages:

Crawl: This package covers the classes that form prime crawler components,

Fetcher, URL Frontier and URL History.

Identification : Crawl

Type : Package

Purpose : Framework for basic crawler activities.

Function : Performs basic crawler functions (Fetching, URL Ordering,

keeping URL logs.).

Document_Parser: This package covers the document processing features

embedded in the system. Features include Document Parser (Link Extractor) and

XML Parser.

Identification : Document_Parser

Type : Package

Purpose : Framework for document parsing activities.

Function : Performs URL extraction and XML Parsing.

UMLSKSSConnector: This package includes the classes related with

UMLSKSS. Classes in this package establish/terminate a UMLSKSS connection

and run queries on it.

Identification : UMLSKSSConnector

Type : Package

Purpose : Framework connecting and interacting to UMLSKSS.

31

Function : Performs establishing connection to remote UMLS resources

and runs queries on UMLSKSS databases.

Utility: This package includes the utility features used by other packages. These

features cover concept counter, comparator computation, special data structures

like LinkInfo and ConceptInfo used for information interchange among the

classes.

Identification : Utility

Type : Package

Purpose : Framework that keeps utility features for the system.

Function : Contains several utility features for other classes.

3.4.2 Dependency Description

Dependency description involves classes as design entities, and provides details

related to classes of packages for Lokman crawler system by addressing

identification, type, purpose, function, subordinates, dependencies, and

resources design entity attributes [39].

Dependencies among classes are given in Appendix C to Appendix R in form of

class diagrams.

3.4.3 Detailed Description

With the scope, purpose and requirements defined above, Lokman crawler

system is designed as in Figure 9.

3.4.3.1 UMLS Connector

UMLS Connector module is the component that interacts with UMLSKSS.

UMLSKSS allows remote users and applications to run queries through HTTP

protocol on its resources and returns XML responses.

32

Figure 9: Lokman Crawler System

For applications, UMLSKSS provide Developer’s API (For further information

on terms of use of UMLSKSS, see [40]). UMLSKSS Developer’s API is a set of

interfaces exploiting advantages of JAVA. It makes use of JAVA’s remote

method invocation capability (java.rmi package). Using such an infrastructure

allows remote users run queries on NLM’s local resources without spending

extra effort on understanding complex relations among the databases.

UMLS Connector module is encapsulated by UMLSKSSConnector package. It

is compound of two classes: KSSConnector (Appendix F) and KSSQuery

(Appendix G). KSSConnector involves in connection issues with UMLSKSS

and KSSQuery involves in running queries on UMLSKSS.

Package UMLSKSSConnector Class KSSConnector:

WEB
FETCHER LINK

ESTIMATOR

URL
FRONTIER

DOCUMENT
PARSER

UMLS
UMLS

CONNECTOR XML PARSER

URL
HISTORY

MedicoPort
DOC. PROC.

MedicoPort
INDEX

LOKMAN CRAWLER
SYSTEM OVERVIEW

33

Identification : KSSConnector

Type : Class

Superclass : Object Class

Purpose : This class handles the connection to UMLSKSS

Function : Establishes or terminates connection to UMLSKSS

Subordinates : private static final String clientName

private static final String hostName

public KSSRetriever makeUMLSKSConnection()

public static void terminateUMLSKSConnection

(KSSRetriever retriever)

Dependencies : gov.nih.nlm.kss.api

Resources : java.io

java.net

java.rm

gov.nih.nlm.kss.api

gov.nih.nlm.kss.util

Package UMLSKSSConnector Class KSSQuery:

Identification : KSSQuery

Type : Class

Superclass : Object Class

Purpose : This class runs queries on UMLSKSS

Function : Runs different queries on UMLSKSS, merges the

responses and accepts the responses

Subordinates : public void showKSSQueryProperties()

public void setKSSQueryParameters(String searchTerm)

public KSSQuery(String searchTerm)

public KSSQuery()

public void runKSSQuery()

public void runKSSQuery(String searchTerm)

34

private void filterConcept(String xmlText)

private void getCui(String dbYear, String searchTerm,

Vector srcs, String language, int op)

private void performTerminologyQuery(String dbYear,

String searchTerm, Vector srcs, String language)

private void performRelationQuery(String dbYear, String

searchTerm, Vector srcs, String language, int op)

private void performContextQuery(String dbYear, String

searchTerm, Vector srcs, String language, int op)

public String sendXML()

public ArrayList getResultConceptSet()

public void printConcept()

public void setXml(String str)

Dependencies : UMLSKSSConnector.KSSConnector

Document_Parser.UMLSConceptXmlParser

Resources : java.io

java.net

java.rmi

gov.nih.nlm.kss.api

gov.nih.nlm.kss.util

java.util.Vector

java.util.ArrayList

Document_Parser

java.util.Iterator

First task of UMLS Connector is establishing a sound connection to UMLSKSS

to make to and fro information exchange possible. UMLSKSS is free of charge

and open to remote users but it requires user registration. User registration is

performed via internet and users are granted UMLS Licensee Numbers. Any

application that uses UMLSKSS resources shall be identified to the system by a

valid license number and IP number. UMLSKSS checks if any connection

35

attempt is sourced by a registered IP or not. If so, access to resources is granted,

else system sends a database exception terminating the connection attempt.

UMLS Connector module uses the interfaces provided in Developer’s API to

interact UMLSKSS. It runs 3 types of queries among different queries available

about the concept to be searched on the web on UMLS Metathesaurus.

Queries run on UMLSKSS resources include terminology search, relations

search and context search:

• getTerminology (String dbYear, String searchTerm, Vector srcs, String

language);

• getRelations (String dbYear, String Cui, Vector srcs, String language,

String relationType)

• getContext (String dbYear, String Cui, Vector srcs);

To get response for two of the queries, system shall provide CUI for the given

search topic. This task is accomplished by running a CUI query on the database:

• findCui (String dbYear, String searchTerm, Vector srcs, String language,

int op)

Table 2: UMLSKSS Query Parameters

Parameter Parameter Explanation Value Value Explanation

dbYear UMLS Release Version 2005AB 2nd Release for Year 2005

srcs Source Medical Thesauri
MSH

SNOMEDCT

MeSH

SNOMED-CT

language Language for the Query ENG English

op
Type of the Word

Matching
1 Exact Match

Rest of the parameters sent to UMLSKSS, their meaning and set values are as in

Table 2.

36

To lower the communication overhead, UMLS Connector module runs all

queries one after another on the database and terminates the connection after this

process. Responses to each of the queries are merged before sending them to

XML Parser module.

3.4.3.2 XML Parser

XML Parser Module is designed to process the query results obtained from

UMLS Metathesaurus. It is the module that interprets the results of the queries

run on UMLSKSS by UMLS Connector. It is implemented using

UMLSConceptXmlParser class (Appendix M).

Package Document_Parser Class UMLSConceptXmlParser:

Identification : UMLSConceptXmlParser

Type : Class

Superclass : Object Class

Purpose : This class parses the UMLSKSS query responses

Function : Extracts concept names fulfilling pre-defined

requirements

Subordinates : public UMLSConceptXmlParser(String xml , String

searchTerm)

public ArrayList extractConcept()

private String getXmlLine()

Dependencies : UMLSKSSConnector.KSSQuery

Resources : java.util

java.io

Utility

UMLSKSSConnector

XML responses to the given queries in 3.4.3.1 include a query header and a

response section (Figure 10).

<?xml version="1.0" encoding="UTF-8"?>
<TermCollection version="1.0">
<query>

<getTerms version="1.0">
<release>2005AB</release>
<term>BREAST CANCER</term>
<language>ENG</language>

</getTerms>
</query>
<termList>

<release>2005AA</release>
<cui>C0678222</cui>
<cn>Breast Carcinoma</cn>

.

.

.
</termList>

</TermCollection>

Q
ue

ry
R

es
po

ns
e

<?xml version="1.0" encoding="UTF-8"?>
<TermCollection version="1.0">
<query>

<getTerms version="1.0">
<release>2005AB</release>
<term>BREAST CANCER</term>
<language>ENG</language>

</getTerms>
</query>
<termList>

<release>2005AA</release>
<cui>C0678222</cui>
<cn>Breast Carcinoma</cn>

.

.

.
</termList>

</TermCollection>

<?xml version="1.0" encoding="UTF-8"?>
<TermCollection version="1.0">
<query>

<getTerms version="1.0">
<release>2005AB</release>
<term>BREAST CANCER</term>
<language>ENG</language>

</getTerms>
</query>
<termList>

<release>2005AA</release>
<cui>C0678222</cui>
<cn>Breast Carcinoma</cn>

.

.

.
</termList>

</TermCollection>

Q
ue

ry
R

es
po

ns
e

Figure 10: Sample UMLSKSS XML Response for a “getTerminology” Query
(Parameters: dbYear = 2005AB, Language = ENG, searchTerm = ‘BREAST

CANCER’)

Parsing differs for each of the queries. For a terminology query, the sub-sections

of the response section are classified by related terms. In addition term variants

appear under these terms. Related terms appear between <cn></cn> tags where

variants are between <tn></tn> tags (Figure 11). Therefore the meaningful part

for this query for the system are these concept names between <cn></cn> tags.

XML Parser extracts these concept names for a getTerminology query response

by seeking these tags and getting the content between them.

For a getRelations query, response section of the XML stream includes related

concepts, relation types and other concept information. Concept names appear

between <cn></cn> tags. Relation types are placed between <rel></rel> tags ().

For the system, needed concept names are the ones with relevance values as SY

(synonymy) or PAR (partial relevance). Names of concepts fulfilling this

requirement are picked from the XML response.

37

<cui>C0678222</cui>
<cn>Breast Carcinoma</cn>
<term>

<lui>L0006142</lui>
<tn>Cancer of the Breast</tn>
<ts>S</ts>
<lat>ENG</lat>
<termVariant>

<sui>S0020508</sui>
<stt>VO</stt>
<str>Breast Cancer</str>
<strSource>

<sab>NCI</sab>
<scd>C4872</scd>
<srl>0</srl>
<srcinfo>

<aui>A4479049</aui>
<tty>SY</tty>

</srcinfo>
</strSource>

</termVariant>
.
.

</term>

Figure 11: Sample UMLKSS Response for a “getTerminology” Query for
“BREAST CANCER”

A context query response includes information about the context of the given

search topic. A concept name appears between <cxs></cxs> tags in context

search query responses. Contextual distance to a given topic and a retrieved

topic is stated between <rank></rank> tags (Figure 13). Names of concepts with

rank value 0 are picked through parsing process by XML Parser.

.

.
<relSource>

<cui>C0006826</cui>
<cn>Malignant Neoplasms</cn>
<aui>A0594095</aui>
<type>AUI</type>
<rel>PAR</rel>
<rui>R05218150</rui>

</relSource>
.
.

38

Figure 12: Sample UMLKSS Response for a “getRelations” Query for
“BREAST CANCER”

.

.
<cxtMember>

<cxs>Malignant tumor of breast</cxs>
<cui2>C0006142</cui2>
<aui2>A3042037</aui2>
<rank>0</rank>
<hcd></hcd>
<rel>isa</rel>
<xc>+</xc>

</cxtMember>
.
.

Figure 13: Sample UMLKSS Response for a “getContext” Query for “BREAST
CANCER

3.4.3.3 Fetcher

Fetcher Module is the component that interacts with the web server that keeps a

document specified with the URL obtained from URL Frontier. It is

implemented with Crawler class (Appendix C).

Package Crawl Class Crawler:

Identification : Crawler

Type : Class

Superclass : Object Class

Purpose : This class interacts with web.

Function : Sends HTTP request for the URL sent from URL

Frontier and accepts URL response for it.

Subordinates : public Crawler()

public void runCrawl (String crawlTerm)

private boolean isAvailable(String URLController)

Dependencies : Utility.ConceptInfo

Utility.LinkInfo

39

40

Utility.CalculateComparator

URLFrontier

URLHistory

Resources : java.util

java.io

Utility

UMLSKSSConnector

java.net

Document_Parser

Fetcher sends a request to URLFrontier to obtain the URL with highest priority

to the crawl topic. When the URL to bi visited is acquired, it generates an HTTP

request and sends it. Method “isAvailable” handles if the URL is alive and

available to download. The HTTP response is accepted as an input stream. The

stream is directed to Document Parser module as it is transmitted through

internet.

3.4.3.4 URL History

URL History is a lookup hash table kept to check if the URL has been visited

before or not. It keeps a record for every visited URL in order to stop system

visit same URLs again. It is implemented with URLHistory class.

Package Crawl Class URLHistory:

Identification : URLHistory

Type : Class

Superclass : Object Class

Purpose : This class is designed to keep record of visited links.

Function : Keeps a log for any link visited by the system.

Subordinates : public void initializeHistory()

public void saveHistory()

public boolean linkVisitedBefore(String URL)

41

public void addLinkURLHistoryHashTable(String URL)

public void showHistory()

Dependencies : None

Resources : java.util

java.io

3.4.3.5 URL Frontier

URL Frontier is the core of any crawler system that defines its characteristics

and purpose. URL Frontier for Lokman crawler system is designed as a

maximum (max) heap priority queue that places the highest value URL

according to a search topic at the top of the queue. Link Estimator module deals

with relevance calculations. URL Frontier involves in ordering URLs according

to values, sending the leading URL to Fetcher, updating values for existing but

not yet visited URLs and reordering the queue after each insertion or deletion.

URL Frontier for Lokman crawler system is implemented with URLFrontier

class.

Package Crawl Class URLFrontier:

Identification : URLFrontier

Type : Class

Superclass : Object Class

Purpose : This class serves as the URL Frontier for the system.

Function : Keeps a queue for URLs to be visited and performs the

ordering/reordering operations on this queue.

Subordinates : public URLFrontier()

public void createNewURLElement(String newLink, int

parentValue)

public void createNewURLElement(LinkInfo

newLinkInfo, int parentValue)

42

public int existsInFrontier(LinkInfo newElement)

private void pushFrontier(LinkInfo newElement)

private int removeURLElementFrontier(LinkInfo

URLToRemove, int indexOfElement)

public LinkInfo popFrontier()

public boolean isEmpty()

public boolean isFull()

Dependencies : Utility.LinkInfo

Resources : Utility

When an input is obtained from the Link Estimator, URL Frontier first checks if

this URL exists in the URL list. If it does, the URL Frontier removes the URL

from the list and invokes the reEvaluateURLValue function of Utility.LinkInfo.

Then treating the URL as it never appeared in the queue before, URL Frontier

inserts new URL to the queue, reordering the URLs. The URL at the top of the

priority queue is always resembles the web document to be retrieved by the

fetcher at next crawl loop.

3.4.3.6 Document Parser

Document Parser module gets the fetched web document from Fetcher Module

as a stream. Its main task is parsing the stream (document) and extracting

hyperlinks to be estimated further.

Document Parser is implemented with GeneralLinkExtractor (Appendix I) and

HtmlStreamParser classes (Appendix L). In addition, this module is designed to

support processing documents saved to local discs considering possible further

developments in overall system structure (Appendix K HtmlFileParser Class).

GeneralLinkExtractor class is extended from LinkExtractor abstract class

(Appendix H). File parser classes are extended from FileDocument abstract

class (Appendix J).

43

Package Document_Parser Class FileDocument:

Identification : FileDocument

Type : Abstract Class

Superclass : Object Class

Purpose : This class defines the basic properties for a file/stream.

Function : Defines the basic properties for a file/stream.

Subordinates : public FileDocument(File file, boolean stem)

public FileDocument(InputStream HTMLStream,

boolean stem)

public int numberOfTerms()

public String nextTerm()

public boolean hasMoreTerms()

public void prepareNextTerm ()

protected static void loadStopWords()

Dependencies : None

Resources : java.util

java.io

Package Document_Parser Class HtmlStreamParser:

Identification : HtmlStreamParser

Type : Class

Superclass : FileDocument Class

Purpose : This class defines parsing operations for an HTML

stream.

Function : Parses an HTML stream.

Subordinates : public HtmlStreamParser(InputStream HTMLStream,

boolean stem)

protected String getNextCandidateTerm()

public String getLine()

Dependencies : Crawl.Crawler

44

Resources : java.util

java.io

java.net

Utility

Package Document_Parser Class LinkExtractor:

Identification : LinkExtractor

Type : Abstract Class

Superclass : Object Class

Purpose : This class defines basic link extraction operations for any

HTML document/stream.

Function : Defines basic link extraction operations for any HTML

document/stream.

Subordinates : public LinkExtractor(File sourceFile)

public LinkExtractor(InputStream HTMLStream)

public LinkExtractor (BufferedReader

HTMLStreamReader)

public abstract ArrayList extractLink()

public String getLine()

public void printLinks()

public boolean checkLine()

Dependencies : None

Resources : java.util

java.io

Package Document_Parser Class GeneralLinkExtractor:

Identification : GeneralLinkExtractor

Type : Class

Superclass : LinkExtractor Class

Purpose : This class defines link extraction operations for any

HTML stream.

45

Function : Extracts links from a given HTML stream.

Subordinates : public GeneralLinkExtractor(InputStream HTMLStream)

public GeneralLinkExtractor (BufferedReader

HTMLStreamReader)

public ArrayList extractLink()

private String findLink()

private String prepareLink(String link)

private String findLinkInfo()

Dependencies : Utility

Resources : java.util

java.io

Utility

3.4.3.7 Link Estimator

Link Estimator Module is the module that assigns a weight factor for each

hyperlink h in the hyperlink set H obtained from Document Parser module. To

make a better estimation, it is enhanced with a term list from XML Parser

module. It is implemented with CalculateComparator class (Appendix R).

Package Utility Class CalculateComparator

Identification : CalculateComparator

Type : Class

Superclass : Object Class

Purpose : This class assigns a value for a given topic to

downloaded web documents and hyperlinks within.

Function : Sets weight values using information obtained from

UMLSKSS to each hyperlink.

Subordinates : public CalculateComparator(String linkDesc,

ConceptInfo[] termlist)

public double evaluate()

46

Dependencies : Utility.LinkInfo

Crawl.URLFrontier

Crawl.URLHistory

Crawl.Crawler

Resources : java.util

java.io

Utility

First task of this module is deciding if the hyperlink is visited before or not. This

is a simple binary search operation performed on the URL History. If it is not

visited before, it performs the below tasks.

The terms in the term list acquired from XML Parser have different ranks

according to their exact match, synonymy, relations and contextual relation. The

value assigned to a link is a function of several values details of which are

described below:

A visited page P which contains the link L, to which the system assigns a value,

is labeled as Father Page for the link L. An earlier visited page GP which

contains the link through the system found and visited page P is labeled as

Grandfather Page for the link L. Link Estimator uses the inherited values

(quality of pages visited until this link is found) as well as the information

obtained from the link itself.

CalculateComparator counts the number of occurrences of each Concept Set

element within the text (Page or Link Information). According to the semantic

relation to the crawl topic each concept type has a different weight.

The weight factors are given experimentally as 15 for exact match (Concept

Relation Type 1), 12 for synonymy (Concept Relation Type 2), 8 for partial

relevance (Concept Relation Type 3) and 5 for contextual relevance (Concept

Relation Type 4). Occurrence count of each element in the Concept Set is

multiplied with the corresponding weight value and finally these values are

47

summed to indicate the relevance level of the given text. To avoid the

processing overhead caused by floating point operations, normalization is not

performed.

To reflect the effect of referencing page’s weight on page and link value

calculation, a 0,1- 0,9 factor scheme is used. These values are depicted after a

series of tests on crawler’s performance. During these tests, it was found that

decreasing the ascendant pages’ effect proves better results on crawler

performance. Beginning from 0,4, crawler performance was observed with 0,05

decrements.

Page value is computed as follows:

Page Value (PV) = Father Value * 0.1 + CalculateComparator (Page) * 0.9

If CalculateComparator (Page) equals 0, this indicates that even the information

obtained from the link through which system visited this page reflected lexical

similarity to the crawl topic, the page bore no similarity. In such a condition,

system flags the links out from the page as irrelevant and stops processing them.

Else each link in the page is processed and assigned a value. Any link’s value

appearing in the page is computed as follows:

Link Value = Father Value * 0.1 + CalculateComparator (Link) * 0.9

Or;

Link Value = (Father Value * 0.1 + CalculateComparator (Page) * 0.9)*0.1

CalculateComparator (Link) * 0.9

Therefore;

Link Value = CalculateComparator (GP) * 0.01 + CalculateComparator (P) *

0.09 + CalculateComparator (L) * 0.90

After value assignment is completed for each link, they are sent to URLFrontier

and inserted to the queue.

48

CHAPTER 4

4Discussion and Evaluation of Lokman Crawler System

Chapter 4 covers a detailed discussion of the system focusing on the algorithm

performed by the Link Estimator module. Following the discussion, metrics,

which are used in crawler evaluation, are introduced. Empirical results and

evaluation of the Lokman Crawler System is presented finally.

4.1 Discussion of Lokman Crawler System

Crawler systems traverse the hyperspace using the same strategy. They find out

the links out from a visited page and follow them to visit other pages. This is the

simplest way of traversing the web but also the most brute approach. It is

obvious that the fraction of pages which truly address an information need is a

small portion of documents available on the web. Therefore, some algorithm

inserted in the crawler which makes the whole system pick and visit URLs of

interest before others make crawlers different from each other. URL ordering

(selection) algorithms are based on some real world entities like reference count

or lexical similarity.

Algorithms like PageRank evaluate URLs according to the number of inward

links (links referencing to the URL from other URLs) or outward links (links out

from the URL referencing other URLs). Such approaches decide the value of a

web page as the possibility of a random internet surfer’s visiting the given URL,

starting the surf from any random point of the graph.

49

Other algorithms try to evaluate an URL according to its lexical analysis,

presenting its resemblance of the crawl topic. Lexical analysis for a page may be

quite simple or quite complex according to implementation. Deciding the

complexity of the analysis is affected by available bandwidth, software and

hardware issues. Simply such algorithms try to estimate a page’s “lexical

distance” to the “needed information”.

Since the main target of MedicoPort project is finding out the advantages of

ontology use in information retrieval systems, URL ordering algorithm selected

for Lokman Crawler is a lexical based one, Best First Search (Section 2.4.1).

Best First Search algorithm provides a quite simple but also quite effective way

of graph traversal. Very briefly, the algorithm executed is “go to the most

relevant node and keep acting so”. But the problem of finding the most relevant

node still remains to be solved.

Link evaluation algorithm executed by Lokman Crawler system addresses and

solves this problem with ontology support. Unlike standard crawlers

implementing any algorithms introduced in Section 2.2, Lokman has a greater

knowledge of the problem context than the simple crawl topic before starting the

crawl task (Table 3). This information is obtained from UMLSKSS.

Lokman begins the crawl task by visiting the seed URL. Selecting a seed URL is

a major fact that affects the overall performance of the system. Since it is the

first page and the starting point for a long journey through many web pages, it

must include plenty of references. An important issue to be emphasized for

Lokman is that: System also uses a dynamic page to determine a set of relevant

URLs. Namely, when a runCrawl() command is invoked, system runs the crawl

topic on a search engine and gets a limited set of hyperlinks addressing related

URLs. Using the major seed URL and 15 other URLs obtained from the search,

Lokman begins crawling.

50

Table 3: Comparison of Lokman Crawler’s and A Standard Crawler’s
Knowledge Base without Ontology Support with Crawl Topic = “Bedwetting”

 Term 1 Term 2 Term 3 Term 4

Standard Crawler Bedwetting - - -

Lokman Crawler Bedwetting
Nocturnal

Enuresis

Nocturnal

incontinence

of urine

Wets bed

Since seed URL is the only element in the URLFrontier, regardless of the crawl

topic, it is the first document to download. While picking the URL from the

URLFrontier, system also gets the value of the URL. This value is labeled as

“inherited value”. After download, system evaluates the value of the URL

according to the given topic and its ontological related term set. This value is

labeled as “page value” (See Section 3.4.3.7 for details).

Page value for a page P is updated as a function of inherited value and page’s

own value. This operation increases or decreases the value of the page P

according to the information gained from the previous page Q, through which

crawler visited the page P. Such an evaluation for a page’s value also makes the

system behave not only lexically but also forward/backward link count based.

An important point to be emphasized is system still assigns the prime factor to

the page’s lexical value. While the page’s value keeps growing up and up in a

forward/backward link count based algorithm as long as some other pages have

references to it, Lokman Crawler System keeps the positive effect in a limit.

After computing the value of the page, the links within it are extracted. This set

of links form the next possible stops for the crawler. The links point to non-

visited pages but they reflect and carry some information about the page they are

referencing. Therefore, the hyperlink H after “href” tag and also the visible text

for H between <a…> tags are processed in same manner with the page

evaluation. At the end of the process, each link in the set is assigned a value

resembling its relevance degree to the crawl topic labeled as “link value”. Link

51

value is updated as a function of Link Value and Page value. This way, quality

of the ascendants of the link is represented in the link value. Finally each link is

added to the URLFrontier with its link value.

URLFrontier for a best first crawler is implemented as a priority queue. Priority

queue adds elements according to their comparator, in crawler’s case, link value.

After each deletion or insertion, the URL with maximum link value should be

on the top of the queue. Priority queue can be implemented in several ways

(Table 1) among which maximum/minimum heap representation provides the

best algorithmic computational cost and complexity.

Another important issue to decide is the algorithm to reevaluate an URL which

has not been visited yet and encountered more than once. Suppose that the URL

(http://www.metu.edu.tr) indicating the home page of METU is referenced by

page P and page P is a downloaded page. After computations described above,

the URL referencing METU home page is assigned the link value of 5 and

inserted into the queue. Crawler picked the top URL from the frontier and

downloaded it. R, too, included a link to METU home page and this time link

value for same URL is computed as 12. Same URL, which already existed in the

queue, is sent to URLFrontier to be inserted. At this point a reevaluation

function should be implemented to solve the above problem.

In this thesis study, two algorithms are tested to perform the reevaluation

function. First algorithm updates the new URL value as the sum of old and new

values of the link, therefore increases the value of http://www.metu.edu.tr to 17

for the given example. This algorithm is named as IncrementValues algorithm.

Second algorithm updates the new URL value as the greater of both computed

values, updating the value of http://www.metu.edu.tr to 12 for the given

example. This algorithm is called as GetGreater algorithm.

When crawler finishes the procedure for an URL, it gets back and picks the

topmost URL from the URLFrontier until URLFrontier is empty.

52

Table 4: Explanation of Handled Exceptions by Lokman Crawler System

Exception Explanation

MalformedURLException The URL address is not in true format.

NoProtocolException The URL address contains no communication

protocol.

NoRouteToHostException No route to host is found, no corresponding IP

found in routers’ routing table, connection timed

out.

ConnectException The URL does not address a valid document,

document does not exist.

UnknownHostException The URL does not exist; domain does not exist or

cannot be reached.

IOException HTTP connect request rejected.

To perform a successful crawl, a crawler must be implemented so as to handle

any possible internet sourced failure. Design should not allow termination of

crawl loop due to any exceptions. Standard HTTP errors are not designed for

applications other than web browsers. Exceptions in Table 4, which are

generated due to HTTP errors, are thrown by JAVA. These exceptions are

handled by isAvailable() method.

4.2 Crawler Evaluation Metrics

4.2.1 Harvest Rate Metric

Harvest rate (Acquisition Ratio) is the ratio of number of important pages (PR)

to the number of all crawled pages (PA) (Equation 5) [41]. A topical crawler’s

target is visiting relevant URLs to the given topic before irrelevant URLs.

Therefore it requires an algorithm to prioritize the URLs in its frontier. Harvest

rate is an indicator of the success or failure of a crawler’s URL prioritization

algorithm.

#PR
Harvest Rate = Equation 5

#PA

To label a visited page as important can be performed using different techniques

according to implementation. It can be performed by computer using a threshold

lexical similarity, occurrence of some specific phrases or all pages can be

inspected manually. In this study’s testing case, pages with a page value higher

than 0 are regarded as important pages (See 3.4.3.7 for page value computation

details).

4.2.2 Target Recall

Well-known URLs are split into two disjoint sets labeled seeds (PS) and targets

(PT). Crawler starts with the URLs in seed set and recall of the target set is

measured (Equation 6, PC stands for pages crawled) [14, 42].

53

Target recall metric tries to estimate the overall recall performance of a crawler.

It is obvious that it is impossible to determine the number and location of all

relevant URLs for a specific topic. Therefore, a selected set of relevant URLs

are used for this estimation called the target URL set. In addition it is impossible

to determine all pages with a reference to a relevant page. To model such URLs,

another set of URLs are selected and named as the seed URL set. Capability of a

| Pt ∩ Pc |
Target Recall = Equation 6

| Pt |

crawler to visit target set by starting the crawl from members of the seed set is

called as target recall (Figure 14) [14].

Using target recall values for different crawl topics, therefore different target

and seed URL sets, estimation on crawler’s recall rate can be made.

Figure 14: The performance metric |Pt∩Pc|/|Pt| as an estimate of |Pr∩Pc|/|Pr|
[14]

4.3 Evaluation of Lokman Crawler System

4.3.1 Test Bed

Tests for Lokman Crawler System are performed on a Pentium 4 2.8 GHz

Processor PC with 768 MB of RAM. 10 Topics are selected for test randomly

from MedLine Plus web page [43] (Table 5).

Table 5: Crawl Topics for Crawler Test

Topic# Search Topic Topic # Search Topic
1 Chickenpox 6 Vasectomy
2 Bedwetting 7 Tinnitus
3 Breast Carcinoma 8 Sunburn
4 Deafness 9 Motion Sickness
5 Influenza 10 Insomnia

54

4.3.2 Empirical Results

Empirical results for the system reflect the average results after 5 crawls for

each topic given in Table 5. All results for harvest rate are presented for

crawler’s performance including the direct links out from seed URL (D = 1

links) and excluding such links. It is clear that D = 1 links refer to relevant pages

for a given topic but content of the links afterwards (D = 2 and further) are not

that predictable. Since Lokman is a topical crawler, its behavior further than D =

1 is quite important resembling its URL prioritization power.

Results begin with evaluation of two algorithms to reevaluate URLs, which are

introduced in Section 4.1, IncrementValues algorithm (Algorithm I in graphs)

and GetGreater (Algorithm II in graphs) algorithm. First tests were performed to

find out the one which improved Lokman Crawler’s performance. Lokman

performed 5 crawls for each topic given in Table 5 for both algorithms. Metric

selected to make the decision is Harvest Rate. Test is based on algorithm’s

performance after visiting first 100 URLs.

 Harvest Rate For Lokman Crawler with Algorithm I

0
10
20
30
40
50
60
70
80
90

100

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Pages Crawled

Ha
rv

es
t R

at
e

%

Figure 15: Average Harvest Rate for Lokman Crawler using IncrementValues
Including Direct Links out of Seed URL set.

55

Figure 15 reflects the results of tests performed using IncrementValues

algorithm. First 15 of the pages are the direct links found out of the seed URL.

This test revealed that IncrementValues has an average harvest rate of 67,095%

with topmost 15 hits (D = 1 pages, pages which are directly referenced by the

seed URL). In Figure 16, harvest rate for same algorithm excluding topmost 15

hits are presented. Without these URLs, IncrementValues has an average harvest

rate of 41,234%.

Harvest Rate for Lokman Crawler with Algorithm I

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85

Pages Crawled

Ha
rv

es
t R

at
e

%

Figure 16: Average Harvest Rate for Lokman Crawler using IncrementValues
Excluding Direct Links out of Seed URL set.

GetGreater outperformed IncrementValues by means of harvest rate. GetGreater

reached an average harvest rate of 76,9057% with topmost 15 hits (Figure 17)

and an average harvest rate of 67,2906% without them (Figure 18).

Since GetGreater increased the harvest rate of Lokman by 9,811% for first

condition and by 26,0562% for second condition, reevaluation of URLs for the

crawler system is performed with this algorithm. In other words, GetGreater

algorithm improves the probability of Lokman’s directing itself to more relevant

56

Harvest Rate for Lokman Crawler with Algorithm II

0

20

40

60

80

100

1 9 17 25 33 41 49 57 65 73 81 89 97

Pages Crawled

Ha
rv

et
 R

at
e

%

0

20

40

60

80

100

Algorithm I
Algorithm II

Figure 17: Average Harvest Rate for Lokman Crawler using GetGreater
Including Direct Links out of Seed URL set.

Harvest Rate for Lokman Crawler with Algorithm II

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Pages Crawled

Ha
rv

et
 R

at
e

%

0

20

40

60

80

100

Algorithm I
Algorithm II

Figure 18: Average Harvest Rate for Lokman Crawler using GetGreater

Excluding Direct Links out of Seed URL set.

57

pages by 9,811% if D = 1 pages are included in test results. Excluding D = 1

pages, a more dramatic improvement of 26,0562% is achieved by the crawler.

Therefore, Figure 17 also resembles the average harvest rate for Lokman

Crawler System.

To illustrate the efficiency of GetGreater algorithm, screenshots for 3 different

URLs provided encountered for a crawl with “Breast Cancer” topic. Figure 19 is

from http://patients.uptodate.com/topic.asp?file=cancer/5162, 17th visited page

during crawl. Figure 20 is from http://www.cnn.com/HEALTH/library/

HQ/00348.html, 57th visited page. Figure 21 is from

http://medlineplus.nlm.nih.gov/medlineplus/breastcancer.html, 97th visited

page.

Figure 19: “http://patients.uptodate.com/topic.asp?file=cancer/5162”, 17th

Visited Page by Lokman Crawler with topic “Breast Cancer” using GetGreater
Algorithm

58

Figure 20: “http://www.cnn.com/HEALTH/library/HQ/00348.html”, 57th

Visited Page by Lokman Crawler with topic “Breast Cancer” using GetGreater
Algorithm

Figure 21: “http://medlineplus.nlm.nih.gov/medlineplus/breastcancer.html”,

97th Visited Page by Lokman Crawler with topic “Breast Cancer” using
GetGreater Algorithm

59

Harvest Rate for Best First Crawler - No Ontology
Support

0

20

40

60

80

100

1 9 17 25 33 41 49 57 65 73 81 89 97

Pages Crawled

H
ar

ve
st

 R
at

e
%

0

20

40

60

80

100

Including Top 15 Hits
Excluding Top 15 Hits

Figure 22: Harvest Rate for a Simple Best Search Crawler

To illustrate the positive effect of ontology use in crawling, an ordinary best first

crawler with no ontology support is implemented as well. Harvest rates for same

conditions are measured. This crawler scored a harvest rate of 63,3287% for

first condition and 38,0434% for second (Figure 22).

Using the above values of the ontology based crawler and the crawler with no

ontology support, it is proved that ontology increases the harvest rate of the

crawler by 13,577% for first condition and by 29,2472% for second condition.

To compute the target recall value, 50 pages are selected randomly from

different search engines for each topic. These pages are split to two sets, 10 for

seed set and 40 for target set. Seed set and target set for “Bedwetting” is

provided in Appendix S.

Target recall value increases proportionally to the number of pages crawled.

During tests, crawls with length = 800 are performed and the crawler reached an

average recall value of 21,25% at 800 pages (Figure 23). Case studies performed

in [14] and [29] reveal non-ontology supported crawlers’ target recall

60

performances. Shark Search crawler reaches a target recall value of 12% at same

level. A best first crawler’s performance varies from 9% to 30%. An InfoSpiders

crawler reaches a target recall level close to 20%. Using this information, it can

be claimed that ontology support increases the recall value considerably in

comparison to crawlers with no ontology support.

Lokman Crawler System Target Recall

0

5

10

15

20

25

1 45 89 133 177 221 265 309 353 397 441 485 529 573 617 661 705 749 793

Pages Crawled

Ta
rg

et
 R

ec
al

l %

Figure 23: Target Recall Graph for Lokman Crawler System at Page Number =
800

61

62

CHAPTER 5

5Conclusion

This chapter presents the concluding remarks of the study, future work about the

system and contribution of the thesis study to MedicoPort Project.

5.1 Conclusion

As the information sharing medium of information age, web has a very dynamic

nature. Some information on the web change, some disappear and some appear

continuously. Dynamism of the web is accelerated by increasing number of

users making the web the greatest structure humankind ever constructed.

On the other hand, it is obvious that handling the information on web is

impossible without computer support. No matter what the focus of a search

performed on the web is; reliable software is required to find out and filter

excessive amount of information.

Crawler systems form the backbone of any web information retrieval systems.

In this thesis study, use of ontological information as the knowledge base for a

topical crawler, Lokman, is discussed. Lokman is designed to serve MedicoPort

web search engine therefore, medicine is selected as domain and UMLS

ontology is used as the domain knowledge base.

Since ontology provides larger information on the topic to be crawled, Lokman

has the potential to inspect the downloaded pages and hyperlinks within in a

more effective way discussed in previous chapters. While a simple topical

63

crawler performs crawling tasks with a phrase or a word, Lokman, as ontology

based crawler, has information about the term, the synonyms and other terms

from same context.

Such contextual information helps to prioritize URLs and visit the ones

resembling more similarity to the topic before the ones with less similarity. In

this thesis, two different versions of URL prioritization algorithms are discussed

and evaluated. Although GetGreater algorithm is chosen to implement the

system, it is proved that even worse performancing IncrementValues algorithm

outperforms a standard crawling algorithm when ontology support is provided.

Ontology support is largely used during downloaded page analysis. It can be

claimed that analyzing the pages and hyperlinks with a larger set of information

makes the crawler system more robust against the hazards of natural language

ambiguities. Such robustness allows crawler visit relevant pages and find out

relevant hyperlinks faster.

Lokman Crawler System is an example of ontology enhanced web crawler.

Enhancing a topical crawler’s performance with domain knowledge

representation is an effective way to improve the document collection’s quality

unless it is a general repository. Lokman’s test results reveal that ontology

increases the harvest rate for a topical crawler by 13,577% if D (depth) = 1

pages (pages which are directly referenced by the seed URL) are included to the

visited pages and by 29,2472% if D=1 pages are excluded. Harvest rate values

acquired by Lokman are 76,9057% with D = 1 pages and 67,2906% without

them. Since seed URL selection is a very important factor affecting the overall

performance of crawler systems, second harvest rate value is more significant.

This study also revealed that ontology support increases the performance of a

topical crawler by 76,87% raising it from 38,04% to 67,29%. This significant

conclusion proves that an ontology based crawler finds out 76,87% more

relevant pages than a simple crawler when same number of pages are crawled.

64

Generic search systems addressing classic user behavior are getting away from

satisfying user needs as information published on web grows. Therefore, more

sophisticated, more focused and more personalized systems are required to

answer the user needs. A sophisticated system needs a better understanding of

the human need. Therefore, it requires more information than a simple search

phrase. The better is the information granted by human to machine, it is obvious

that the higher the quality of retrieval results. Concept of ontology, in this

manner, provides a good framework for information to be fed to computers.

Future’s ontology based information retrieval systems should rely on ontology

based crawlers like Lokman promising better performance consuming less

resources.

5.2 Future Work

Although Lokman Crawler System forms a good example of embedding

ontology in crawling process, there is still much to do to increase the

performance of the system. As emphasized in previous section, ontology

information is heavily used in page and link evaluation.

In this study, it is assumed that all HTML tags are of same importance except <a

href> tags. Rest of the document excluding the lines between <a href>

tags are treated the same. Assigning different weight values to other HTML tags

appearing in the page has the potential to increase link and page quality. These

tags are namely, bold tag (), header tags (<h1></h1>, (<h2></h2>, etc.)

and font tags.

Another issue remains to be tested and discussed is, how crawler’s performance

would change if different weight factors were used for information obtained

from a hyperlink and information carried by the page except hyperlinks while a

page’s value is computed. In other words, how would crawler behavior change

needs to be tested if different weight schemes are used in computing hyperlink

value as an information indicator and page’s value as an information resource.

65

Although Lokman is implemented as a subsystem of MedicoPort project, its

infrastructure also supports crawling as an independent search agent harvesting

documents of interest from web as well. It also supports implementation of a

stand alone application accepting input as search terms and weight factors from

user instead of ontology.

Lokman is designed to run with UMLS ontology but it is capable of performing

with any ontology provided. To run the system with other ontology, required

modifications on XML Parser and UMLS Connector modules should be

performed. Modifications include the interfaces used in connection and semantic

relations within the ontology used in parsing. Such modular structure of the

design allows the system act as an independent agent seeking information in the

web for any purpose. In addition, considering the similarities between topical

crawling on web and crawling on enterprise local area networks (LAN), it has

the potential to serve for any LAN search engine with small modifications.

5.3 Contribution

Lokman Crawler is implemented as the crawler subsystem of MedicoPort

Project. As part of a search engine, a crawler’s function is increasing the quality

of documents retrieved from web.

Search Engine performance is directly affected by the capability of its crawler.

An index of documents with high quality means a better set of answers

presented to the user. Therefore, especially for a domain specific search engine

like MedicoPort, quality of pages is more important than the quantity. Lokman’s

effective URL ordering (page selection) algorithm and detailed page analysis

algorithm addresses this fact.

Analyzing a downloaded document, even it is processed in RAM as an input

stream, is a time consuming task. Lokman performs a crawl of 100 pages at an

average time of 588,215 seconds. Considering that MedicoPort serves for

66

medical domain and promises to retrieve a set of answers with high relevance

degree to given queries, Lokman has to download the whole HTML document

instead of first n bytes of it from any source before processing. Main reason for

longer processing time is this fact.

On the other hand, document collection formed by Lokman crawler is of pretty

high quality. As test results indicated, Lokman reaches a harvest rate of

67,2906% excluding D = 1 pages thanks to the information obtained from

UMLSKSS. With such a coherent document collection, Lokman eases the

workload of Indexing subsystem, keeping the index terms (the ones other than

UMLS SPECIALIST Lexicon terms) in a limit [3].

MedicoPort Project aimed to find out advantages of ontology use in information

retrieval and prove the positive affect on overall performance of the system from

crawling to indexing. This thesis study proved that ontology use almost doubled

the crawler performance using the algorithm details of which are presented in

section 3.4.3. Lokman Crawler System provided a framework for ontology

based crawling strategy. The author of this thesis hopes that future studies on

document processing issues will make the system more intensive about the

content and faster to process.

67

REFERENCES

[1] Google Inc., Retrieved August 30, 2005, from http://www.google.com.

[2] Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.,

Searching the Web, ACM Transactions on Internet Technology (TOIT),

Volume 1, No. 1, August 2001.

[3] Kubilay, M., Special Index and Retrieval Mechanism for Ontology Based

Medical Domain Search Engines, M.S. Thesis, METU, September 2005,

Ankara, Türkiye.

[4] Lenci, A., Building an Ontology for the Lexicon: Semantic Types and

Word Meaning, in: P.A. Jensen, P. Skadhauge (Eds.), Ontology-based

Interpretation of Noun Phrases, Proc. of the 1st International OntoQuery

Workshop, Kolding, 2001.

[5] Ding, Y., Ontology: The Enabler for the Semantic Web, Journal of

Information Science, Volume 27 (6),, 2001.

[6] Kalem, G., Semantic Web Application: Ontology-Driven Recipe Querying,

Atılım University, M.S. Thesis, June 2005, Ankara, Türkiye.

http://www.google.com/

68

[7] Web Ontology Working Group (WebOnt), World Wide Web Consortium

(W3C), Retrieved August 23, 2005, from

http://www.w3.org/2001/sw/WebOnt.

[8] UMLS Introduction, National Library of Medicine, Retrieved August 21,

2005, from http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html.

[9] UMLS Documentation, Unified Medical Language System (UMLS),

Retrieved August 21, 2005, from http://www.nlm.nih.gov/research/

umls/umlsdoc_intro.html#s1_0.

[10] Specialist Lexical Tools, Unified Medical Language System (UMLS),

Retrieved August 16, 2005, from

http://specialist.nlm.nih.gov/LexTools.html.

[11] UMLS Metathesaurus Introduction, Unified Medical Language System

(UMLS), Retrieved July, 21, 2005, from http://www.nlm.nih.gov/research/

umls/meta3.html#s3_0.

[12] UMLS Metathesaurus, Unified Medical Language System (UMLS),

Retrieved August 20, 2005, from http://www.nlm.nih.gov/research/

umls/meta2.html#s2_0.

[13] Dunne, D. (2001, April), What is a Bot?, Retrieved August 20, 2005, from

http://www.darwinmag.com/learn/curve/column.html?ArticleID=95.

[14] Pant, G., Srinivasan, P., Menczer, F., Crawling the Web, in Web Dynamics

Adapting to Change in Content, Size, Topology and Use, Levene, M.;

Poulovassilis, A. (Eds.), Springer-Verlag, 2004.

http://www.w3.org/2001/sw/WebOnt
http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html
http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html%23s1_0
http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html%23s1_0
http://specialist.nlm.nih.gov/LexTools.html
http://www.nlm.nih.gov/research/umls/meta3.html%23s3_0
http://www.nlm.nih.gov/research/umls/meta3.html%23s3_0
http://www.nlm.nih.gov/research/ umls/meta2.html%23s2_0
http://www.nlm.nih.gov/research/ umls/meta2.html%23s2_0
http://www.darwinmag.com/learn/curve/column.html?ArticleID=95

69

[15] Cheong, F.C., Internet Agents: Spiders, Wanderers, Brokers, and Bots,

New Riders Publishing, USA, 1996.

[16] Chau, M., Chen, H., Personalized and Focused Web Spiders, in Web

Intelligence, Zhong N. et al. (eds), pp 197-216, Springer-Verlag, Berlin,

2003.

[17] Brin, S., Page, L., The Anatomy of a Large-Scale Hypertextual Search

Engine, Proc. the 7th International World Wide Web Conference,

Australia, 1998.

[18] Heydon, A., Najork, M., Mercator: A Scaleable, Extensible Web Crawler,

World Wide Web Conference, 2(4) 219-229, April 1999.

[19] Koster, M., The Web Robots Pages, Retrieved December 13, 2004, from

http://info.webcrawler.com/mak/projects/robots/robots.html.

[20] Baeza-Yates, R., Riberio-Neto, B., Modern Information Retrieval,

Addison-Wesley, 1999.

[21] Brewington, B.E., Cybenko, G. (1999), How Dynamic is the Web?,

Retrieved: August 27, 2005, from http://www9.org/w9cdrom/264/264.html.

[22] Lawrence, S., Giles, C.L., Accessibility of Information on the Web, Nature,

1999.

[23] Cho, J., Garcia-Molina, H., Estimating the Frequency of Change, ACM

Transactions on Internet Technology (TOIT), Volume 3, Issue 3, August

2003.

http://info.webcrawler.com/mak/projects/robots/robots.html
http://www9.org/w9cdrom/264/264.html

70

[24] Cyveillance, Sizing the Internet, Retrieved September 1, 2004, from

http://www.cyveillance.com.

[25] Breadth-first Search National Institute of Standards and Technology,

Retrieved August 26, 2005, from

http://www.nist.gov/dads/HTML/breadthfirst.html.

[26] Breadth-first Search, Brainy Encyclopedia, Retrieved August 15, 2005,

from http://www.brainyencyclopedia.com/encyclopedia/b/br/

breadth_first_search.html.

[27] Design and Analysis of Algorithms Lecture Notes, Retrieved April 11,

2005, from http://www.ics.uci.edu/~eppstein/ 161/960215.html.

[28] Horowitz, E., Sahni, S., Anderson-Freed, S., Fundamentals of Data

Structures in C, Computer Science Press, 1997.

[29] Menczer, F., Pant, G., Srinivasan, P., Topical Web Crawlers: Evaluating

Adaptive Algorithms, ACM Transactions on Internet Technology, Volume

4, November 2004.

[30] Depth-First Search, National Institute of Standards and Technology,

Retrieved August 26, 2005, from

http://www.nist.gov/dads/HTML/depthfirst.html.

[31] Depth-first Search, Brainy Encyclopedia, Retrieved August 15, 2005, from

http://www.brainyencyclopedia.com/encyclopedia/d/de/depth_first_search.

html.

http://www.cyveillance.com/
http://www.nist.gov/dads/HTML/breadthfirst.html
http://www.brainyencyclopedia.com/encyclopedia/b/br/ breadth_first_search.html
http://www.brainyencyclopedia.com/encyclopedia/b/br/ breadth_first_search.html
http://www.ics.uci.edu/~eppstein/ 161/960215.html
http://www.nist.gov/dads/HTML/depthfirst.html
http://www.brainyencyclopedia.com/encyclopedia/d/de/depth_first_search.html
http://www.brainyencyclopedia.com/encyclopedia/d/de/depth_first_search.html

71

[32] Tengli, A., Focused Crawling, Retrieved June 19, 2005, from

http://www.cs.cmu.edu/~tengli/ clair/slides/Focused-Crawling.ppt.

[33] Best-first Search, National Institute of Standards and Technology,

Retrieved August 26, 2005, from

http://www.nist.gov/dads/HTML/bestfirst.html.

[34] Best-first Search, Brainy Encyclopedia, Retrieved August 15, 2005,

Available: http://www.brainyencyclopedia.com/encyclopedia/b/be/

best_first_search.html.

[35] Menczer, F., Pant, G., Srinivasan, P., Ruiz, M.E., Evaluating Topic Driven

Web Crawlers, Proc. of the 24th Annual International ACM/SIGIR

Conference, New Orleans, USA, 2001.

[36] Kleinberg, J., Authoritative Sources in a Hyperlinked Environment, Proc.

of the 9th Ann. ACM-SIAM Symp. Discrete Algorithms, ACM Press, New

York, 1998.

[37] Hersovici, M., Jacovi, M., Maarek, Y.S., Pelleg, D., Shaltaim, M., Ur, S.,

The Shark-Search Algorithm – An Application: Tailored Web Site

Mapping, Proc. of the 7th International World Wide Web Conference,

Australia, 1998.

[38] De Bra, P., Post, R., Information Retrieval in the World Wide Web:

Making Client-based Searching Feasible, Proc. of the 1st International

World Wide Web Conference, Geneva, 1994.

[39] IEEE Std 1016-1998, Recommended Practice for Software Design

Descriptions, 1998

http://www.cs.cmu.edu/~tengli/ clair/slides/Focused-Crawling.ppt
http://www.nist.gov/dads/HTML/bestfirst.html
http://www.brainyencyclopedia.com/encyclopedia/b/be/ best_first_search.html
http://www.brainyencyclopedia.com/encyclopedia/b/be/ best_first_search.html

72

[40] Unified Medical Language System Knowledge Source Server, Retrieved:

August 24, 2005, from

http://umlsks.nlm.nih.gov/kss/servlet/Turbine/template/.

[41] Aggarwal, C. C., Al-Garawi, F., Yu, P.S. Intelligent Crawling on the World

Wide Web with Arbitrary Predicates, In WWW10, Hong Kong, May 2001.

[42] Pant, G., Menczer, F., Topical Crawling for Business Intelligence,

Retrieved: August 27, 2005, from http://dollar.biz.uiowa.edu/~pant/Papers/

BizIntelECDL.pdf.

[43] MedLine All Health Topics Page, Retrieved August 31, 2005, from

http://www.nlm.nih.gov/medlineplus/ all_healthtopics.html

http://umlsks.nlm.nih.gov/kss/servlet/Turbine/template/
http://dollar.biz.uiowa.edu/~pant/Papers/BizIntelECDL.pdf
http://dollar.biz.uiowa.edu/~pant/Papers/BizIntelECDL.pdf
http://www.nlm.nih.gov/medlineplus/ all_healthtopics.html

APPENDICES

Appendix A: Lokman Crawler System Level 0 Dataflow
Diagram

UM
LS

KS
S

M
ed

ico
Po

rt
IN

DE
X

W
EB

M
ed

ico
Po

rt
DO

C.
 P

RO
C.

SY
ST

EM
Do

cu
m

en
ts

Co
rre

sp
on

din
g

to
 S

en
t U

RL
s

UR
Ls

 to
 be

 D
ow

nlo
ad

ed
XM

L
Re

sp
on

se

Cr
aw

l T
op

ic
to

be
 S

ea
rc

he
d

on
 W

eb

Ne
xt

Cr
aw

l T
op

ic
Do

wn
loa

de
d W

eb
 D

oc
um

en
t

UM
LS

KS
S

UM
LS

KS
S

M
ed

ico
Po

rt
IN

DE
X

M
ed

ico
Po

rt
IN

DE
X

W
EB

W
EB

M
ed

ico
Po

rt
DO

C.
 P

RO
C.

M
ed

ico
Po

rt
DO

C.
 P

RO
C.

SY
ST

EM
Do

cu
m

en
ts

Co
rre

sp
on

din
g

to
 S

en
t U

RL
s

UR
Ls

 to
 be

 D
ow

nlo
ad

ed
XM

L
Re

sp
on

se

Cr
aw

l T
op

ic
to

be
 S

ea
rc

he
d

on
 W

eb

Ne
xt

Cr
aw

l T
op

ic
Do

wn
loa

de
d W

eb
 D

oc
um

en
t

73

Appendix B: Lokman Crawler System Level 1 Dataflow
Diagram

U
M

LS
K

S
S

M
ed

ic
oP

or
t

IN
D

E
X

W
E

B

M
ed

ic
oP

or
t

D
O

C
. P

R
O

C
.

D
oc

um
en

ts

C
or

re
sp

on
di

ng
to

 S
en

t U
R

Ls

U
R

L
 to

 b
e

D
ow

nl
oa

de
d

X
M

L
R

es
po

ns
e

C
ra

w
l T

op
ic

 to
 b

e
S

ea
rc

he
d

on
 W

eb

N
ex

t C
ra

w
l T

op
ic

D
ow

nl
oa

de
d

W
eb

D

oc
um

en
t

U
M

LS
 C

on
ne

ct
or

X
M

L
P

ar
se

r

F
et

ch
er

X
M

L
R

es
po

ns
e

Li
nk

 E
st

im
at

or

R
el

at
ed

C

on
ce

pt
 S

et

D
oc

um
en

t P
ar

se
r

D
ow

nl
oa

de
d

W
eb

D

oc
um

en
t

H
yp

er
lin

k
Li

st

U
R

L
H

is
to

ry

V
is

ite
d

Li
nk

In

fo
.

Li
nk

 V
is

ite
d

C
he

ck
Li

nk
 In

fo
.

U
R

L
F

ro
nt

ie
r

Li
nk

s
(U

R
L)

U
R

L
 to

 b
e

D
ow

nl
oa

de
d

U
M

LS
K

S
S

U
M

LS
K

S
S

M
ed

ic
oP

or
t

IN
D

E
X

M
ed

ic
oP

or
t

IN
D

E
X

W
E

B
W

E
B

M
ed

ic
oP

or
t

D
O

C
. P

R
O

C
.

M
ed

ic
oP

or
t

D
O

C
. P

R
O

C
.

D
oc

um
en

ts

C
or

re
sp

on
di

ng
to

 S
en

t U
R

Ls

U
R

L
 to

 b
e

D
ow

nl
oa

de
d

X
M

L
R

es
po

ns
e

C
ra

w
l T

op
ic

 to
 b

e
S

ea
rc

he
d

on
 W

eb

N
ex

t C
ra

w
l T

op
ic

D
ow

nl
oa

de
d

W
eb

D

oc
um

en
t

U
M

LS
 C

on
ne

ct
or

U
M

LS
 C

on
ne

ct
or

X
M

L
P

ar
se

r
X

M
L

P
ar

se
r

F
et

ch
er

F
et

ch
er

X
M

L
R

es
po

ns
e

Li
nk

 E
st

im
at

or
Li

nk
 E

st
im

at
or

R
el

at
ed

C

on
ce

pt
 S

et

D
oc

um
en

t P
ar

se
r

D
oc

um
en

t P
ar

se
r

D
ow

nl
oa

de
d

W
eb

D

oc
um

en
t

H
yp

er
lin

k
Li

st

U
R

L
H

is
to

ry
U

R
L

H
is

to
ry

V
is

ite
d

Li
nk

In

fo
.

Li
nk

 V
is

ite
d

C
he

ck
Li

nk
 In

fo
.

U
R

L
F

ro
nt

ie
r

U
R

L
F

ro
nt

ie
r

Li
nk

s
(U

R
L)

U
R

L
 to

 b
e

D
ow

nl
oa

de
d

74

Appendix C : Package Crawl Class Crawler Class
Diagram

75

Appendix D: Package Crawl Class URLHistory Class
Diagram

76

Appendix E: Package Crawl Class URLFrontier Class
Diagram

77

Appendix F: Package UMLSKSSConnector Class
KSSConnector Class Diagram

78

Appendix G: Package UMLSKSSConnector Class KSSQuery
Class Diagram

79

Appendix H: Package Document_Parser Class
LinkExtractor Class Diagram

80

Appendix I: Package Document_Parser Class
GeneralLinkExtractor Class Diagram

81

Appendix J: Package Document_Parser Class
FileDocument Class Diagram

82

Appendix K: Package Document_Parser Class
HtmlFileParser Class Diagram

83

Appendix L: Package Document_Parser Class
HtmlStreamParser Class Diagram

84

Appendix M: Package Document_Parser Class
UMLSConceptXmlParser Class Diagram

85

Appendix N: Package Utility Class MoreString Class
Diagram

86

Appendix O: Package Utility Class LinkInfo Class
Diagram

87

Appendix P: Package Utility Class ConceptInfo Class
Diagram

88

Appendix Q: Package Utility Class ConceptOccurence
Class Diagram

89

Appendix R: Package Utility Class CalculateComparator
Class Diagram

90

91

Appendix S: Seed and Target URL Sets for Term “Bedwetting”

Seed URL Set

http://www.med.umich.edu/1libr/yourchild/topics.htm

http://about.com/health/

http://www.nlm.nih.gov/medlineplus/all_healthtopics.html

http://www.cincinnatichildrens.org/health/info/growth/diagnose

http://www.drgreene.com/54_28.html

http://www.noah-health.org/en/sleep/index.html

http://kidshealth.org/teen/diseases_conditions/

http://childparenting.about.com

http://familydoctor.org/alpha_results.xml?letter=B

http://www.medicinenet.com/site_map/article.htm

Target URL Set

http://pediatrics.about.com/od/bedwetting/

http://www.bedwettingstore.com/

http://www.medicinenet.com/bedwetting/article.htm

http://www.bedwettinghelp.com/

http://kidshealth.org/parent/general/sleep/enuresis.html

http://www.dryatnight.com/

http://www.bedwettinghelp.com/bedwetting_purchase.html

http://www.amazon.com/exec/obidos/redirect?tag=bedwettingsto-

20&path=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fbrowse.html%3F%2

55Fencoding%3DUTF8%26me%3DA26OASPQYU1JXQ

http://www.bedwettingstore.com

http://www.nlm.nih.gov/medlineplus/toilettrainingandbedwetting.html

http://www.medicinenet.com/script/main/art.asp?articlekey=47923

http://familydoctor.org/handouts/168.html

92

http://www.baltimorepsych.com/adhd_and_bedwetting.htm

http://www.wetbuster.com/

http://www.netdoctor.co.uk/diseases/facts/bedwetting.htm

http://www.pottytrainingsolutions.com/

http://www.drgreene.com/54_11.html

http://childdevelopmentinfo.com/disorders/bedwetting.shtml

http://www.keepkidshealthy.com/parenting_tips/bedwetting.html

http://www.daycare.com/fastfacts/bedwetting.html

http://www.cincinnatichildrens.org/health/info/growth/diagnose/enuresis.htm

http://hcd2.bupa.co.uk/fact_sheets/html/nocturnal_enuresis.htm

http://www.med.umich.edu/1libr/yourchild/enuresis.htm

http://sleepdisorders.about.com/b/a/190664.html

http://www.netdoctor.co.uk/diseases/facts/bedwetting.htm

http://www.bedwet.com/

http://www.herbalremedies.com/bedwetting.html

http://www.stopwetting.com/

http://www.health-nexus.com/enuresis-bed-wetting.htm

http://www.medical-library.org/journals2a/bed_wetting.htm

http://www.pediatricspec.com/Pediatrics/Articles/bedwetti.asp

http://www.surgerydoor.co.uk/medical_conditions/Indices/E/enuresis_and_bed

wetting.htm

http://www.drgreene.com/21_1082.html

http://www.caringforkids.cps.ca/behaviour/Bedwetting.htm

http://www.nevdgp.org.au/ginf2/murtagh/Childrens/Bedwetting.htm

http://health.allrefer.com/health/enuresis-info.html

http://www.chiroweb.com/archives/17/03/34.html

http://health.allrefer.com/health/urination-bed-wetting-info.html

http://www.noah-health.org/en/sleep/specific/bedwetting.html

	Introduction
	Background, Motivation and Rationale for the Study
	Ontology
	Definition
	Unified Medical Language System

	Web Crawling
	Thesis Structure

	Literature Survey
	Characteristics of the Web
	Rapid Change Rate
	Massive Document Collection
	Inconsistent & Incoherent Document Collection

	Web Crawling Algorithms
	Breadth-First Search
	Depth-First Search

	Topical Crawling
	Topical Crawling Algorithms
	Best-First Search
	PageRank
	HITS
	Shark-Search

	Lokman Crawler System
	Purpose and Scope
	Assumptions and Dependencies
	Assumptions
	Dependencies

	Functional Requirements
	System Design and Implementation
	Decomposition Description
	Dependency Description
	Detailed Description
	UMLS Connector
	XML Parser
	Fetcher
	URL History
	URL Frontier
	Document Parser
	Link Estimator

	Discussion and Evaluation of Lokman Crawler System
	Discussion of Lokman Crawler System
	Crawler Evaluation Metrics
	Harvest Rate Metric
	Target Recall

	Evaluation of Lokman Crawler System
	Test Bed
	Empirical Results

	Conclusion
	Conclusion
	Future Work
	Contribution

