
SPECIAL INDEX AND RETRIEVAL MECHANISM FOR ONTOLOGY BASED
MEDICAL DOMAIN SEARCH ENGINES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA KUBİLAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2005

Approval of the Graduate School of Informatics

 Assoc. Prof. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assoc. Prof. Onur DEMİRÖRS

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Nazife BAYKAL

 Supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU) _____________________

Assoc. Prof. Nazife Baykal (METU) _____________________

Dr. Ali Arifoğlu (METU) _____________________

Prof. Dr. Feza Korkusuz (METU) _____________________

Assist. Prof. Dr. Çiğdem Turhan (Atılım University) _____________________

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Surname :Mustafa Kubilay

Signature :______________

iv

ABSTRACT

SPECIAL INDEX AND RETRIEVAL MECHANISM FOR ONTOLOGY

BASED MEDICAL DOMAIN SEARCH ENGINES

KUBİLAY, Mustafa

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Nazife BAYKAL

September 2005, 98 pages

This thesis focuses on index and retrieval mechanism of an ontology based

medical domain search engine. First, indexing techniques and retrieval methods

are reviewed. Then, a special indexing and retrieval mechanism are introduced.

This thesis also specifies the functional requirements of these mechanisms.

Finally, an evaluation is given by indicating the positive and negative aspects of

mechanisms.

Keywords: Information Retrieval, Inverted Index, Ontology Based Search

Engines, Search Engines, Vector Space Model.

v

ÖZ

ONTOLOJİ TABANLI BİR TIB ARAMA MOTORU İÇİN ÖZEL

DİZİNLEME VE SONUC DÖNDÜRME YAPISI

KUBİLAY, Mustafa

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Assoc. Prof. Nazife BAYKAL

Eylül 2005, 98 sayfa

Bu tez ontoloji tabanlı bir tıbbi alan internet arama motoru için dizin ve bilgi

döndürme yapılarını konu alır. İlk olarak, dizinleme ve bilgi döndürme

teknikleri ele alınmıştır. Daha sonra, gerekli olan dizin ve bilgi döndürme

yapıları tartışılmıştır. İşlevsel gereksinimler belirlenmiş ve sistem

gerçekleştirilmiştir. Son olarak, sistemin olumlu ve olumsuz tarafları test edilmiş

ve sonuçlar değerlendirilmiştir.

Anahtar Kelimeler: Bilgi Döndürme, Devrik Dizinler, Ontoloji Tabanlı Arama

Motorları, Arama Motorları, Vektör Boşluk Modeli.

vi

DEDICATION

To my mother and my sister,

vii

ACKNOWLEDGEMENTS

I first thank my advisor Assoc Prof. Dr. Nazife BAYKAL for providing

guidance, encouragement and patience, which promoted this study. I am grateful

to my project mate Altuğ KAYIŞOĞLU for his inspiration and desire.

Finally, words cannot truly express my deepest gratitude to my mother and my

sister who always gave me their love and emotional support.

viii

TABLE OF CONTENTS

PLAGIARISM .. iii

ABSTRACT.. iv

ÖZ... v

DEDICATION .. vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS.. viii

LIST OF TABLES ... xii

LIST OF FIGURES... xiii

LIST OF ABBREVIATIONS AND ACRONYMS.. xiv

CHAPTERS

1 Introduction .. 1

1.1 Motivation and Problem Statement.. 1

1.2 Ontology... 4

1.3 Thesis Structure.. 4

2 Literature Survey.. 5

2.1 Types of Index Structures for Information Retrieval Systems............. 5

2.1.1 Inverted Files.. 6

2.1.2 Suffix Tree and Arrays... 8

2.1.3 Signature Files.. 10

2.1.4 Deep Web Index Structures.. 11

2.2 Compression of Indices.. 12

2.3 Distributed Index Structures... 13

2.4 Retrieval Modeling... 16

2.4.1 Boolean Model ... 17

ix

2.4.1.1 Fuzzy Set Model... 18

2.4.1.2 Extended Boolean Model ... 18

2.4.2 Vector Model.. 19

2.4.2.1 Generalized Vector Space Model... 21

2.4.2.2 Latent Semantic Indexing (LSI) Model 22

2.4.2.3 Neural Network Model... 23

2.4.3 Probabilistic Model .. 23

2.4.3.1 Bayesian Networks... 25

3 Design Principles of Medicoport Index and Retrieval Mechanism 26

3.1 Purpose and Scope ... 26

3.2 Assumptions and Dependencies... 31

3.2.1 Assumptions ... 31

3.2.2 Dependencies ... 31

3.3 Functional Requirements of Indexing and Retrieving Subsystems ... 32

3.4 System Design and Implementation:.. 33

3.4.1 Decomposition Description.. 33

3.4.2 Dependency Description .. 34

3.4.3 Detailed Description... 34

3.4.3.1 Query Translator Module ... 35

3.4.3.2 Query Manipulator Module.. 36

3.4.3.3 Searching Module .. 37

3.4.3.4 Result Ranking Module.. 37

3.4.3.5 Document Processor Module ... 38

3.4.3.6 Index Builder Module .. 38

3.4.3.7 Index... 38

4 Evaluation and Discussion of Indexing and Retrieval Subsystems 39

4.1 Discussion of System ... 39

4.2 Information Retrieval System Evaluation Metrics............................. 46

4.2.1 Recall.. 46

4.2.2 Precision ... 46

x

4.3 Evaluation of System ... 48

4.3.1 Test Bed.. 48

4.3.2 Empirical Results ... 48

4.3.3 Evaluation of Results ... 51

5 Conclusion.. 54

5.1 Future Work ... 56

5.2 Contribution ... 56

REFERENCES... 57

APPENDICES

Appendix A: MedicoPort Index and Retrieving System Level 0 Dataflow

Diagram.. 64

Appendix B: MedicoPort Index and Retrieving System Level 1 Dataflow

Diagram.. 65

Appendix C: Package: Document_Parser; Class: DocumentIterator Class

Diagram.. 66

Appendix D: Package: Document_Parser; Class: DocumentReference Class

Diagram.. 68

Appendix E: Package: Document_Parser; Class: FileDocument Class Diagram

.. 70

Appendix F: Package: Document_Parser; Class: HashMapVector Class Diagram

.. 72

Appendix G: Package: Document_Parser; Class: HtmlFileParser Class Diagram

.. 74

Appendix H: Package: Document_Parser; Class: HtmlStreamParser Class

Diagram.. 76

Appendix I: Package: Document_Parser; Class: TextStringDocument Class

Diagram.. 78

Appendix J: Package: Document_Parser; Class: Weight Class Diagram.......... 80

Appendix K: Package: Document_Parser; Class: InvertedIndex Class Diagram

.. 82

xi

Appendix L: Package: Utility; Class: PorterStemmer Diagram......................... 85

Appendix M: Package: Utility; Class: TermInfo Diagram 87

Appendix N: Package: Utility; Class: TermOccurence Diagram....................... 89

Appendix O: Package: Utility; Class: LinkInfo Diagram 91

Appendix P: Package: Utility; Class: Result Diagram....................................... 93

Appendix Q: Package: Utility; Class: MoreString Diagram.............................. 95

Appendix R: Package: User_Interface; Class: QueryScreen Diagram 97

xii

LIST OF TABLES

Table 1 Various Indexing Models Comparison. .. 41

Table 2 Term Relation Type and Weights ... 44

Table 3 Concept Generation Result for Term “Breast Cancer” 45

Table 4 Answer set of query q ... 47

Table 5 Search Topics for System Retrieval Test .. 48

xiii

LIST OF FIGURES

Figure 1: MedicoPort System Overview.. 3

Figure 2 MedicoPort Indexing and Retrieving Subsystems............................... 35

Figure 3: “http://kidshealth.org/parent/general/sleep/enuresis.html” Number 4

hit from MedicoPort answer set generated for query “bedwetting”........... 49

Figure 4 “http://www.medicinenet.com/bedwetting/article.html” Number 17 hit

from MedicoPort answer set generated for query “bedwetting”................ 50

Figure 5 System Retrieval Recall after 100th Result .. 51

Figure 6 System Average Precision without Concept Generation..................... 52

Figure 7 System Average Precision with Concept Generation 53

xiv

LIST OF ABBREVIATIONS AND ACRONYMS

API : Application Programming Interface

CTX : Contextual Relation

CUI : Concept Unique Identifier

HITS : Hyperlink-Induced Topic Search

HTTP : HyperText Transfer Protocol

IP : Internet Protocol

LSI : Latent Semantic Indexing

MAC : Media/Medium Access Control

NLM : National Library of Medicine

PAR : Partially Relevance.

RAM : Random Access Memory

SYN : Synonymy

TCP/IP : Transmission Control Protocol/ Internet Protocol

UMLS : Unified Medical Information System

UMLSKSS : Unified Medical Information System Knowledge Source Server

URL : Universal Resource Locator

tf/idf : Term Frequency/Inverse Document Frequency

WebOnt : Web Ontology Working Group

XML : eXtended Markup Language

1

CHAPTER 1

1 Introduction

1.1 Motivation and Problem Statement

Due to the advances in computer technology and introduction of the Web to the

community, traditional methods to access/publish information have changed

fundamentally. This great impact allows information seekers to reach any

information repository on the web eliminating geographical distance as well as

information publishers introduce their resources rapidly and easily 0.

On the other hand, the motivation to use the web also involves difficulties for

the community when the issue is finding the useful information. Since there is

no control over the web, many types of documents exist within. In addition,

there are no limitations or rules for representing information like the usage of

formal language. Another important point, which makes the challenge harder, is

the growth/change rate of web.

Considering the size of the web and the change rate of the documents, it is

obvious that it is impossible for an individual to find out the documents of

his/her interest without computer assistance [2]. Most common and well known

software agents dealing with this problem are web search engines.

Web search engines are complex structures to develop, but as a principle, they

provide a very simple user interface. An information seeker simply types down

his/her need in the edit field and gets the corresponding hyperlinks according to

2

the specification. Consequently, traversing the hyperspace through a web search

engine’s response page is more popular for most of the internet users than typing

down the URL of each desired page in the web browser’s address field.

To serve the users in such a manner, a web search engine has many tasks to

complete. Simply, it uses the same strategy with any web surfer. A component

named crawler visits the pages on web and downloads them. Then each

downloaded web page is saved to a special data structure named index. When a

user invokes the searching module, search is performed on the index and user is

granted a large set of answers in a very short period time.

But search engines never promise the guarantee of satisfaction due to multiple

reasons which stem from the difference between human cognition and machine

processing. First of all, a user’s specification of information need and machine’s

treatment to the specification might be different. User might receive an answer

set related with other fields of interest which are indexed with same term or a set

in another language with same term but also an irrelevant meaning. Another fact

which makes the “search on the net” problem more challenging is, user has no

chance to find a document related to his need but not indexed with any user

query terms. Last, but not least, search engines generate a long list of query

responses as answer set which sometimes reach to millions in number.

Such great number of hyperlinks is impossible for an individual to visit

regarding the normal user behavior. Mostly first 20 links are visited and rest is

omitted. Therefore, ranking the hyperlinks according to relevance to the user

query is very important to construct a successful search engine.

Although search on the web bears all the above problems, a new approach, use

of ontology in web search, promises better results than conventional search

engine strategy. When a search engine is empowered by ontology, it becomes a

domain web search engine and specializes in a single area of interest. This way,

terms to be indexed are shrunk to a terminology of a domain from any possible

term of a language. In addition, special relations defined in the ontology help

developers implement special routines that allow the system to retrieve

documents of interest indexed with other terms.

To find out the advantages of domain knowledge use in medical search on web,

MedicoPort project was proposed in September 2004. It is a medical domain

web search engine enhanced with medical ontology. Unlike most medical search

systems on the web, it is not designed to work on medical literature databases or

some specific sites. Its design purpose is constructing a domain search engine

through which users can traverse useful links related to medicine.

Figure 1: MedicoPort System Overview

MedicoPort binds the advantages of ontology use and old well-known search

engine strategies. Obtained domain knowledge is used throughout every task

during retrieval process. These tasks include crawling, URL prioritization, URL

selection, URL indexing, user query formulation and result ranking.

Crawled Docs. Related Documents
DOCUMENT

PROCESSOR

CRAWLER WEB

3

QUERY

FORMULATOR

UMLS

INDEX

INDEXER

CONCEPT

GENERATOR

USER

INTERFACE

SEARCH

MODULE

Related Concept Set
Crawl Topics

Ranked Answer Set Corresponding Docs.

Search Term Set

Complete Search Term Set

Processed Docs.
Crawl Topic

User Query

Processed User

Related Concept Set

Query Term
URLs to be Indexed

With Lexicon Terms
Related Concept Set

UMLS Specialist Lexicon Terms

4

MedicoPort is compound of three major subsystems. These include crawler

module, indexing module and retrieval module (Figure 1). Other modules in the

system exist to support these major subsystems. This study is performed in order

to implement index and result ranking (retrieval) subsystems used in the project.

Crawler subsystem, Lokman Crawler, is implemented by Altuğ Kayışoğlu [3].

1.2 Ontology

Ontology is a powerful way of information modeling. It categorizes every

concept in a domain. Each concept in the domain can be organized in this

structured categorization [4,5]. Ontology has a taxonomy which defines the

concepts (classes) in a domain and a rule set describing the interrelations among

these concepts 0. It is designed to define knowledge, reuse it and share it [6].

Ontology is data defining the relations and concepts in a domain.

Unified Medical Language System (UMLS) ontology is used in this thesis

study. For further information on this issue see [3].

1.3 Thesis Structure

This text is organized as follows:

Section 2 provides the related research on indexing and result ranking strategies.

Firstly, main indexing techniques, index compression algorithms and index

distribution algorithms are presented. Secondly ranking algorithms are

introduced.

Section 3 includes the analysis study, design principles and a detailed overview

of the indexing and result ranking (retrieval) subsystems of MedicoPort.

Section 4 covers the evaluation of the implemented subsystems.

Section 5 provides the conclusions, possible future work directions for the

subsystems and function of the study in means of contribution effort in the

MedicoPort project.

5

CHAPTER 2

2 Literature Survey

This chapter introduces main indexing structures: inverted index (files), suffix

trees, signature files for information retrieval systems. Also compression of

indices and distribution of indices are explained. Finally, retrieval models (Set

theoretic, Algebraic, Probabilistic) are presented.

2.1 Types of Index Structures for Information Retrieval Systems

To retrieve an answer of a query, first solution is scanning the text sequentially.

Sequentially or online text searching involves finding the occurrences of a

pattern in a text if the text is not preprocessed. This can be a choice only if text

database is volatile or index space overhead cannot be afforded [1].

Second option is building a special data structure over the text to speed up the

search. These data structures are called indices and they are suitable for semi-

static (that it can be updated at reasonably regular intervals, e.g. daily but not in

a second) and large databases [1]. Like other research area today, hybrid

solutions that contain both online search and indexing search are very popular.

This section covers three main indexing techniques: inverted files, suffix arrays

and signature files.

Inverted files are currently the best choice for most applications. Inverted files

are useful, because the information retrieval search strategy is based on the

vocabulary which is usually much smaller than text. Suffix arrays are faster for

6

phrase search and less common queries, but they are harder to build and

maintain. Signature files are not useful relatively. Inverted files outperform

signature files on search cost, space overhead building cost and also updating

cost.

2.1.1 Inverted Files

Inverted file is a word-oriented mechanism. It has two components first of

which is the vocabulary. Vocabulary is the set of all different words in the text.

The second component is occurrences. Occurrences hold text position of a word.

Word or character positions can also be used for occurrences. Word positions

are practical for phrase and proximity queries and character positions are useful

for direct access to the text position.

Vocabulary space requirement is O(nb). Value of b is 0.4 to 0.6 [1].

Occurrences’ space requirement depends on granularity of addressing. If a full

inverted index is used, addressing words occurrences’ space requirement 30-

40% of text size without stop-words. If block addressing technique is used, then

needed space requirement is decreased since pointers’ size become smaller and

some word pointers that indicate same blocks can be collapsed.

Blocking strategy can be applied in two ways; the blocks can be divided to fixed

size or natural division can be used (e.g. document by document). Natural

division is useful whenever exact position is not required (as in MedicoPort).

But if many block retrieval units are packed in one block, it causes that block to

be traversed to learn which term is retrieved [1].

Below searching procedures are performed in inverted files:

• Vocabulary search: finding a single word in a vocabulary,

• Retrieval of occurrences: list of the occurrences that are retrieved,

• Manipulation of occurrences: processing of occurrences lists.

7

Vocabulary structure can fit the main memory even for large text sets. So it

should be a separate file. To speed up the searching, hash trees, B-trees or Trie

structures can be used. Search cost of hash tree and trie structures are

independent of text size, it depends on term size. Lexicographical order of

vocabulary also provides improvement for searching speed.

In context queries, inverted indices are ineffective. For this type of queries,

suffix arrays outperform inverted files.

The most time-demanding operation on inverted indices is to merge the

occurrences list. This is because, usually occurrences lists can’t be kept in main

memory and some disk access operations are required. Compression algorithms

and parallel (distributed) schemes are candidates for solution.

An inverted index of n characters can be built in O(n) time [1]. Maintenance is

also inexpensive for inverted files. Cost of deleting a record is O(n).

Replacement cost is O(n + n’ log(n’/M)) (n’ is size of new text and M is

available capacity of main memory) if occurrences lists (posting file) are not fit

to main memory. Algorithm of recording a new word is as follows:

While Eof (NewText) do

 Search(wi) in trie

 If it is not found

 Add(wi) to trie,

 Add an empty occurrence list to posting file

 Write position of (wi) in occurrence list

 Add pointer of new occurrence list’ pointer to trie

 Else

 Add position of (wi) to related occurrence list

 Increment i

Write to final trie to disk with occurrence lists.

8

If index does not fit in memory, partial index is used. Finally, m (index size /

memory size) partial indices are obtained. If partial indices are merged two by

two, complexity of this operation is O(Xi + Xj) (X is the size of each partial

index). An improvement can be provided if more than two indices are merged at

once. Usually 20 or 30 % of total time is required for merging [1]. In merging

process, to reduce space requirement merged new indices can be written to same

disk address that belong to old ones.

As seen, inverted index is suitable for word search and its building and

maintenance operation is also inexpensive. Improvement can be provided with

compression and distribution approach, too. But queries like phrases queries are

expensive to solve.

2.1.2 Suffix Tree and Arrays

Definition: A suffix tree is a trie data structure built over all the suffixes of the

text.

In computer science, a trie is an ordered tree data structure that is used to store

an associative array where the keys are strings. Unlike a binary search tree, no

node in the tree stores the key associated with that node; instead, its position in

the tree shows what key it is associated with. All the descendants of any one

node have a common prefix of the string associated with that node, and the root

is associated with the empty string. Values are normally not associated with

every node, only with leaves and some inner nodes that happen to correspond to

keys of interest. “A trie is a tree of degree m >= 2 in which the branching at any

level is determined not by entire key value but only a portion of it” [7].

Suffix array is a space efficient implementation of suffix trees. Solving complex

user queries with inverted files is inefficient but suffix trees and arrays are built

for this purpose. This index structure assumes that the text as a long string. Each

9

position is considered as a suffix of text. Not all the positions need to be

indexed. May be word beginnings suitable in our situation. Main drawbacks of

this structure are: its costly construction process, the text must be available at

query time and the query results are not delivered in text position order

additionally in this structure only indexed elements can be retrieved. Suffix tree

pointers are stored in leaf nodes of tree structure. Depending on the

implementation pointers, they can hold word beginnings or every character

positions. Even if only word beginnings are indexed, needed space requirement

of suffix trees can be 120 to 240 % over text size [1].

To reduce space overhead without reducing functionality suffix array can be

used. Suffix array is simply an array containing all the pointers to the text

suffixes in lexicographical order. Suffix array space requirement are almost the

same as those for inverted file, which is close to 40% of text size [1].

Binary search is suitable for suffix array but if array length is too large because

of disk operations it is inefficient. Solution of this problem is supra-indices.

Supra-index is sampling of one out of b suffix array entries. It is used as a first

step of the search to reduce external accesses. Supra-index seems like

vocabulary of inverted index and it also needs extra space requirement. If we

use vocabulary supra-index then space requirement will be same as for inverted

index.

Search cost of suffix tree is O(m) [1](m is the length of query term) but it is not

suitable for large text because of its space requirement. Suffix array search cost

is O(log n) because of binary search. If disk operation cost is added then total

cost is O(n log n) [1].

If supra-index is used in order to reduce search cost, time requirement decreases

to 75% of original time. Nevertheless if search terms are simple words search

cost can be worse than inverted index.

10

A suffix tree for a text of n characters can be built in O(n) time. Because of big

space requirement of suffix tree it must be convert to a suffix array. This

operation needs extra time and also it increases construction complexity.

Construction of suffix arrays, for large text is required one more extra time for

partial indices if it is not fit in main memory,

2.1.3 Signature Files

Signature files are another word-oriented index structures that are based on

hashing algorithm. However its search complexity is suitable for large text,

inverted files outperforms signature files for most application [1, 8]. A signature

file uses a hash function to map words to bit masks. Firstly it divides text to

blocks then to each block a bit mask is assigned. It means that signature file is a

sequence of bit masks of all blocks and a pointer to each block. Each block bit

mask contains its word’s bit masks. Consequently a query term can be checked

whether it is in a block or not easily.

Checking a word is a simple Boolean operation. When you have a query term:

Find the bit mask of term (result of hash function that takes query term is bit

mask) do a bitwise AND operation with bit mask of term and bit mask of block.

If the result of bitwise operation same with bit mask of term current block

contains this term.

There are some drawbacks of this scheme. It is possible that all the

corresponding bits are set even though the word is not there. This is called “false

drop”. The false drop is a function of the space requirement. It means that a

bigger index size, the smaller false drop probability. “For instance a 10%

overhead implies a false drop probability close to 2% while a 20% overhead errs

with probability 0.046%.”[1] The other problem is the exact position of the

query term can’t be known after the block checking operation. For all candidate

text blocks an online traversal must be performed to verify whether the query

term is actually there and the exact position of the term.

11

This scheme is more efficient to search phrases and proximity queries. You can

learn in one operation whether all the terms of phrases is in the block or not with

a pre-bitwise OR operation of terms. There is one more problem for this

operation. Because of block boundaries all phrases may not be caught. In order

to catch all the phrases, consecutive blocks must overlap in n words. This n must

be at least number of term of phrase.

Construction of signature files is easy: the texts are simply cut in blocks and for

each block an entry of signature file is generated. This signature is the bitwise

OR of the signatures of all the words in the block. Adding text is also easy, since

it is only necessary to keep adding records to the signature files. Text deletion is

carried out by deleting the appropriate bit masks.

2.1.4 Deep Web Index Structures

Some studies estimate that the size of the deep web is 400-500 times the size of

the surface web [9]. According to [9], for each distinct value of the indexing

attribute, the list of data sources can be stored instead documents. Data sources

contain at least one tuple that has the value for the indexing attribute. This is the

main idea of deep web indexing structure but it depends on just online searching

and it retrieves only the data sources not documents. In [9] there are some

extensions of this scheme. Next paragraph explains some of them.

Data-Source Clustered Index: DCI instead of storing data sources separately, a

single cluster id is stored in the data source list. Cluster id refers clustered data

sources. Value-Data-source Clustered Index: In VDCI, a cluster is a set of

values V and a set of data sources D, and implies that the data sources D are

related with respect to the values V (or equivalently, the values V are related

with respect to the data sources D). Thus, VDCI generalizes both VCI and DCI.

It is a hybrid models. Histogram Based Index: HBI is based on clustering

adjacent values into the same cluster. This is similar to grouping attribute values

into “buckets” in histograms of relational systems.

12

2.2 Compression of Indices

Today sizes of index structures of search engines are huge because of the size of

the web [9] and they don’t fit in a memory usually. On the other hand, disk

operations are slow for fast information retrieval. Solutions of these problems

are hidden in compression algorithms.

Compression reduces both the size of indices and the time needed to evaluate

queries. As it was mentioned in Section 2.1.1, uncompressed inverted index

structure consumes more than 30% of the space required to store the original

documents. But when the index is compressed, the index size is reduced to

between 10-15% of original documents size. Index compression also provides

speed-up up to twice. Basically there are two main approaches Bitwise schemes

and Bytewise schemes [10]. There are hybrid methods for compression too.

Bitwise or Variable-bit schemes store integers in an integral number of bits [11].

Well-known types of bitwise schemes are Elias gamma and delta coding [12]

and Golomb-Rice coding [13]. In the Elias gamma code, an integer x >= 1 is

represented by 1 + [log2 x] stored as a unary code. Elias delta code stores the

gamma code representations of 1 + [log2 x] and then the binary representation

of x without most significant bit.

According to [14] gamma coding is relatively inefficient for storing integers

larger than 15 and also delta codes are suited for large integer but are inefficient

for small integers. Golomb-Rice bitwise coding offers more compact storage of

integers and faster retrieval than Elias codes [11]. In the Golomb-Rice code,

integer x >= 1 is represented relative to parameter b by sending [(x-1)/b] using a

zero-origin unary code; and then x-b*[(x-1)/b] using a one-origin binary code of

either [log2 b] or [log2 b] bits. [15] For compression of inverted list in Golomb-

Rice code, a value b is required and value of b changes according to the average

length of term occurring list if it is small, b should be small and if it is big, b

should be big.

13

In bytewise coding, an integer is stored in an integral number of eight-bit blocks.

Seven bits in each block are used to store a binary representation of integer x.

The remaining bit is used to show whether an additional block follows or not.

Bytewise compression schemes performance better than bitwise techniques.

Bytewise compressed index’s retrieval performance is better than uncompressed

index’s retrieval performance. That is true, even for a much smaller collection

which uncompressed index is fits in memory [11]. The only disadvantage of

bytewise compressed indices is that they are 30% larger than bitwise

compressed indices.

In [11] there is hybrid of bitwise and bytewise compression techniques and

evaluation and also some improvements on present techniques in here. All the

techniques were explained related with inverted files because inverted files are

selected for design.

2.3 Distributed Index Structures

The number and size of text document collections has grown at explosive rates

in the Web. Simultaneously, there is also a rapid increase in the number of users

and user queries submitted to information retrieval systems. As data volume and

query processing loads increase, large information retrieval systems are turning

to distributed and parallel storage and searching.

Basically there are two main approaches; first is building local index and second

is building global index mechanism. Name of these techniques may differ in

different sources. In [16] same techniques are named as term partitioning and

document partitioning. In partitioned systems there is a broker processor which

distributes query terms to appropriate index server and collects the results from

index servers to combine and rank results for representation. The other members

are index servers. They can keep a part of global index or they can keep full

index for its local documents. It depends on strategy of index mechanism.

14

In [17] Tomasic et al. presents a work. They compare the four partitioning

systems; disk index organization, host index organization, I/O bus index

organization and System index organization. Their results show that host index

organization is the most balanced use of resources. Since balance is a big

problem in distributed index schemes host index system has better performance.

In the host index organization, documents are partitioned into groups, one for

each CPU. Within each partition they build inverted lists. The lists are then

uniformly dispersed among the disk attached to the CPU.

In the [18] two basic index organizations (global vs local) are compared each

other. The results indicate that a global index organization outperforms a local

index organization. Similar work represents in [19] and also in that work global

index structure outperforms local one because the global index allows the

parallelization of the most time consuming phase of the algorithm - disk

seeking. Further, the global index provides a high concurrent query service,

which is particularly evidenced when the number of processors exceeds the

average number of terms in query.

The work in [16] uses similar approaches: document partitioning index, term

partitioning index. In document partitioning index, documents are distributed

among index servers and each server generates its own inverted files for its local

documents. In term partitioning index an inverted file is generated for all

documents and inverted list (vocabulary and occurrence list) are distributed

among index servers.

The document partitioning index affords easy parallelization of ranking. The

search performed locally at each index server but system produces globally

consistent document scores that can be merged directly at the broker using a

relatively inexpensive multi-way merge algorithm. In the term partitioning local

rankings are loose, because index servers have no information on the term

weights which reside on the other index servers. In this way, a large number of

documents from the top of the local ranking have to be sent to the broker that

15

computes globally consistent document scores. This increases considerably

network traffic and CPU workload at the broker. The detailed result of

comparing these techniques can be found in [9].In this paper a hybrid

partitioning index is proposed too. There are two types for this hybrid system;

hybrid-or, hybrid-and. In hybrid-or partitioning system can operate either using

a document or term partitioning but in hybrid-and system operate using both

approach at the same time.

In [20] an algorithm is introduced according to both inverted files and suffix

array and they used BSP (bulk synchronous parallel) model of computing

algorithm. They used combination of two strategies to achieve balance firstly

the term of the vocabulary are distributed uniformly at random onto the

processor. For every query the broker machine chooses a server processor

performing the ranking of documents.

This work also tries to solve problem with same two approaches local index and

global index approach. In local index documents are assumed to be uniformly

distributed onto the processors and for each processor local indices are

generated. In the second approach, a single inverted file is generated by using all

of the documents as a global index. Later on, index terms are uniformly

distributed onto the processors with related inverted list. Uniformly distribution

mechanism is a hashing algorithm that is performed by the broker machine. In

global index approach there is an efficiency reduction problem: What is to be

done when most frequently asked terms tend to be located in the same

processor.

It is mentioned that solution of this problem can be static mapping or dynamic

re-distribution. They tested both approaches and their results indicate that local

inverted indices have better performance but also have high network traffic.

Then they propose a new approach “composite inverted lists”. This approach

depends on terms’ inverted list size. As a result of this new approach test results

16

come near in computational speed to local index, and in communicational load

to global index approach. In other words, hybrid methods outperform others in

this area too.

2.4 Retrieval Modeling

One of main problems of information retrieval systems is to respond the user

request properly. Information retrieval systems convert the semantic texts to

index terms. This is because a lot of the semantics in a document or user request

are lost. Thus it is no surprise that the documents that are retrieved as a response

for a user request that is expressed as a set of keywords are frequently

information retrieval relevant. There is one more reason that decreases degree of

relevance. Most of the users have no training in properly forming their

information retrieval queries.

Actually main issues of information retrieval systems are predicting which

documents are relevant which are not. Such a decision usually depends on a

ranking algorithm which attempts to establish a simple ordering of the

documents that are retrieved. It means that ranking algorithms are at the core of

the information retrieval systems. Ranking algorithms are changed with

information retrieval models. There are tree basic retrieval model types and each

of them originates from one classic model.

• Set Theoretic: Boolean Model;

• Algebraic: Vector Space Model;

• Probabilistic: Probabilistic Model;

In a conventional information retrieval system, the documents in the database

remain relatively static while new queries are submitted to the system and it is

called as “ad hoc retrieval.” There is one similar but different task: “filtering

17

operation”. In this operation user queries are relatively static while new

documents come into the system. Filtering operation can be used while

constructing a user profile. In this section firstly classic models will be

examined and then alternative modeling paradigms for each type of model.

The classic models of information retrieval consider that each document consists

of index terms. In general, index terms are mainly nouns because nouns have

meaning by themselves and their semantic is easier to identify. [1] But full text

search systems like web search engines consider all the distinct words in a

document as an index terms. For document ranking process, describing terms

importance is very significant and difficult task. Despite this difficulty, some

properties of an index term which are easily measured and which are useful for

evaluating the potential of term can be discover. Frequency of term is one of

these properties. If there is a word which appears in just ten documents that are

collected in the information retrieval system database, this word is valuable as

an index term and value of this word is called as weight of index term.

Information retrieval systems usually assume that there is no correlation

between index-terms, but this is not true. For example, the terms “Hardware”

and “Computer” are used to index a given document which covers the area of

“Computer hardware”. Frequently, in this document, the occurrence of one of

two words attracts the appearance of the other. Consequently their weights could

reflect their correlation. However up to now it is not proved that this is

advantage or disadvantage for retrieval raking performance.

2.4.1 Boolean Model

The Boolean model is a simple retrieval model, based on set theory and Boolean

algebra. Boolean model provides a framework which is easy to understand by a

common user of an information retrieval system. So the Boolean model received

great attention in past years and was adopted by many of the early commercial

bibliographic systems. [1] But Boolean model suffers from some big drawbacks.

18

Firstly it is not simple to translate an information need into Boolean expression.

Secondly since its retrieval strategy depends on a binary decision criterion

essentially this model is data retrieval model. It means that a document is

relevant or non-relevant with query there is no any probability. Despite these

problems, Boolean model provides a good starting point for those new to the

field. [1]

The main advantages of the Boolean model are the clean formalism behind the

model and its simplicity. The main disadvantage is that exact matching may lead

to retrieval of too few or too many documents. The Boolean model is considered

as mother of Set Theoretic Models. There are alternative set theoretic models

and now two of them will be described:

2.4.1.1 Fuzzy Set Model

Fuzzy Set Theory [21] deals with the representation of classes whose boundaries

are not well defined. The key idea is to associate a membership function with

the elements of the class. This function takes values in the interval {0, 1} with 0

corresponding to no membership in the class and 1 corresponding to full

membership. Membership values between 0 - 1 indicate marginal elements of

the class. Thus, membership in a fuzzy set is a notion intrinsically gradual

instead of abrupt as in conventional Boolean logic.

The procedure, to compute the documents relevant to a query is analogous to the

procedure adopted by conventional Boolean model. The difference is that here

we deal with fuzzy sets. “Fuzzy set models for information retrieval are not

popular among the information retrieval community. “[1]

2.4.1.2 Extended Boolean Model

The extended Boolean model was introduced in 1983 by [22]. It is based on a

critique of a basic assumption in Boolean logic. Actually this strategy allows

one to combine Boolean query formulation with characteristic of vector model.

19

The extended Boolean model relaxes Boolean algebra interpreting Boolean

operation in terms of algebraic distances. In this sense, it is really a hybrid

model which includes properties of both the set theoretic models and algebraic

models. Nevertheless because of its simplicity, we can classify as a set theoretic

model. “The extended Boolean model has not been used extensively however;

the model provides a neat framework and might reveal it useful in the future.”

[1]

2.4.2 Vector Model

As it is mentioned before, in Boolean model, result ranking is not possible since

term weights are 0 or 1. Ranking documents is accomplished by assigning non-

binary weights to index terms in queries and in documents. These term weights

are ultimately used to compute the degree of similarity between each document

stored in the system and the user query. By sorting the retrieved documents, we

can reach results that better matches the user information need.

For vector model the term weight is positive and non-binary and not only

document index terms but also query index terms are weighted. The main idea

behind the vector model is evaluating the degree of similarity between

documents and query text by using correlation.

This correlation can be quantified by the cosine of the angle between document

vector and query text vector. In the ranking phase query vector has no effect

because it is same for all documents. Results can be also limited by using a

threshold. This operation solves the huge answer set size problem.

Vector model assumes that the retrieving problem as a clustering problem. The

goal of the simple clustering problem algorithm might be to separate a collection

of objects into two set. First set which is composed of objects related to the set

A and the other which is composed of objects not related to the set A. In a

clustering problem, two main issues have to be resolved. First, one needs to

20

determine, the features which better describe the objects in the set A. Second,

one needs to determine, the features which better distinguish the objects in the

set A from remaining objects in our collection. Consequently the first features

provide us intra-cluster similarity and second features provide inter-cluster

dissimilarity.

Vector model uses these two set. The raw frequency of a term inside a document

is used for intra-clustering similarity and it is called as (term frequency) tf

factor. Furthermore inter-cluster dissimilarity is quantified by measuring the

inverse of the frequency of a term among the documents in the collection. This

is called as (inverse document frequency) idf factor. These definitions can be

formulated as follows:

fi,j = fri,j /max(frl,j) (Equation 1)

idfi = log (N/ni)

fi,j : the normalized frequency of term ki in document dj

fri,j: raw frequency of term ki in document dj

max(frl,j) : is computed over all terms which are mentioned in the text of the

document dj

N: total number of documents in the system

ni: number of documents in which the index term ki appears

So we can show the term weighting algorithm as follows:

wi,j = fi,j *log (N/ni) (Equation 2)

This term weighting strategies are called “tf-idf” schemes and variation of this

formula is possible for example in 0 next formula is suggested for query term

weighting.

wi,q = (0.5 + 0.5 fri,q /max(frl,q))*log (N/ni) (Equation 3)

21

The main advantages of the vector model are:

(a) Retrieval performance better than Boolean model because of

term-weighting scheme

(b) Its partial matching strategy allows retrieval of documents

that approximate the query condition

(c) Its cosine ranking formula sorts the document according to

Their degree of similarity to the query

In vector model index term independency assumes as if disadvantage but in [1]

it is reported that sometimes term dependency can decrease the overall

performance.

A large variety of alternative ranking methods have been compared to the vector

model but, the vector model is either superior or almost as good as the known

alternatives. Since its simplicity, vector model is a popular retrieval model

nowadays.

2.4.2.1 Generalized Vector Space Model

As specified before index terms are assumed independent. In the generalized

vector space model, to index term vectors might be non-orthogonal. This means

that index term vectors are not seen as orthogonal vectors which compose the

basis of the space.

The main idea in the generalized vector space model is to introduce a set of

pairwise orthogonal vectors associated with the set of “minterms” and to adopt

this set of vectors as the basis for the subspace of interest. Minterm is a special

term that is a set of binaries. Minterms show that pattern of term co-occurrences.

For example the minterm m1 points to the documents are containing none of the

index terms and m2 points to documents containing solely the first index term

and the last minterm points to documents containing all index terms in the

22

query. If a minterm has a document pointer it means that, this minterm is active.

This implies that no more than N minterms can be active, where N is the number

of documents in the collection.

Different from original vector model, in the generalized vector space model

representation of documents and queries are expressed by minterm vectors. So

the ranking results combine the standard term-document weights with

correlation factors. But it is not proved that correlation factors effect on retrieval

performance. Furthermore the cost of computing the ranking in the generalized

model can be fairly high, with large collections because of the number of the

active minterms. [1] As a result it is not clear that the framework of the

generalized vector model provides a clear advantage in practical situations and

also this model is more complex and computationally more expensive than the

classic vector model. Since it introduces new ideas this scheme is still important.

2.4.2.2 Latent Semantic Indexing (LSI) Model

As is discussed Section 2.4.2, summarizing the contents of documents and

queries through a set of index terms can lead to poor retrieval performance due

to two factors. First many unrelated document might be included in the answer

set. Second relevant documents which are not indexed by any of the query

keywords are not retrieved. The main reason for two effects is the inherent

vagueness associated with a retrieval process which is based on keywords sets.

The ideas of a text are more related to the concepts that are described in it than

to the index terms that are used in its description. Thus the process of matching

documents to a given query could be based on concept matching instead term

matching. This would allow the retrieval of documents even when they are not

indexed by query index terms. In other words, a document could be retrieved

because it shares concepts with another document which is relevant to the given

query. LSI is an approach introduced which addresses these topics.

23

The main idea in latent semantic indexing model is to map each document and

query vector into a lower dimensional space which is associated with concepts.

This is accomplished by mapping the index term vectors into this lower

dimensional space. “The claim is that retrieval in the reduced space may be

superior retrieval in the space of index terms.” [23] The latent semantic indexing

model introduces an interesting conceptualization of the information retrieval

problem based on the theory of singular value decomposition. [23] Thus it has

its value as a new theoretical framework. Whether it is superior in practical

situation with general collections remains to be verified.

2.4.2.3 Neural Network Model

According to neural network model, first query term nodes send a signal to the

document term nodes and then the document term node generates a signal to the

document nodes and this is the first phase. The signals which reach a document

node are summed up. After a first phase, the activation level of the document

node is associated to the document. In here signals that are summed by

document nodes are normalized query-terms and normalized document-terms.

Activation levels provide us ranking order like classic vector model. [24]

To improve the retrieval performance the network continues with the spreading

activation process after the first phase. This modifies the initial vector ranking.

[24] However there is no conclusive evidence that a neural network provides

superior retrieval performance with general collection. A neural network

presents an alternative modeling paradigm and also it allows retrieving

documents which are not initially related to the query terms.

2.4.3 Probabilistic Model

Basics of probabilistic model depend on finding ideal answer set of documents.

If the property of ideal answer set is known there is no problem but at the start

24

we know only index terms whose semantics should be used to characterize these

properties. So an effort has to be made at initially guessing what the properties

are.

As a concept of this model an interaction is required with user for improving the

probabilistic description of the ideal answer set. Firstly the user takes a look at

the retrieved document and decides which ones are relevant and which ones are

not. Then the system uses this information to refine the description of ideal

answer set. According to this model a query is a subset of index terms.

Similarity between a document dj and query q can be expressed as follows:

sim(dj , q) =P(R\dj)/P(R’\dj) (Equation 4)

R is the set of documents known to be relevant

R’ is the complement of R

After some simplifying and transformation the expression becomes:

∑t wiq * wij * (log(P(ki\R)/1-P(ki\R)) + log(1-P(ki\R’)/P(ki\R’))) (Equation 5)

But the problem in here is at the beginning R is unknown. So a simplifying

assumption has to be made.

P(ki\R) = 0.5 (Equation 6)

P(ki\R’) = ni/N

ni: is the number of the documents which contain the index term ki

N: is the total number of document in the collection.

These are general assumptions [1]. With this initial effort we can retrieve the

documents that contain query terms and provide an initial probabilistic ranking

for them. After this phase we can improve the answer set by using the result. If

we call X the retrieved and ranked document or subset of them and Xi is the

subset of X that contain the index term. So the assumption is refined to:

25

P(ki\R) = Xi/X (Equation 7)

P(ki\R’) = (ni-Xi)/(N-X)

This process can be repeated recursively. This process does not require human

interaction. The main advantage of the probabilistic model is that documents are

ranked in decreasing order of their probability of being relevant. Drawbacks of

this model are:

(a) The need to guess the initial separation of documents into

relevant or non-relevant sets.

(b) The fact that the method does not take into account the

frequency with which index term occurs inside a document.

(c) The adoption of the independence assumption for index term.

2.4.3.1 Bayesian Networks

Bayesian networks are useful for information retrieval because they provide a

clean formalism for combining distinct sources of evidence in support of the

rank for a given document. This combination of distinct evidential sources can

be used to improve retrieval performance. In [25] this claim has been

demonstrated, and details can be found there.

There are various Bayesian network models. Inference network model and

Belief network model are good examples for information retrieval systems, for

more information about these models please look at [25-27].

26

CHAPTER 3

3 Design Principles of Medicoport Index and Retrieval
Mechanism

In Chapter 2 types of index structures and retrieving models are introduced.

Chapter 3 clarifies the scheme chosen for implementation and the rationale

behind this decision. Next, functional requirements of MedicoPort’s index and

retrieval mechanism are listed. Finally, implementation details and system

operation principles are explained.

3.1 Purpose and Scope

Search engine structure is separated into three main parts. First of them is the

crawler module that brings the text database and it works on web side. Second is

representation part that contains user interface, query engine etc. and works on

user side. Last main part is indexing module that is the base module of a search

engine on which the other parts are built. Therefore, performance of a search

engine is directly related with index. Retrieving and ranking mechanism can be

included in index structures. For these reasons, selection, implementation and

construction of index structure is a significant task.

As mentioned in Section 2.1, some examples of such indices are suffix arrays,

inverted files, and signature files. Each of them has pros and cons. Inverted files

have been traditionally the most popular indexing technique used along the

years. Although it is expected that MedicoPort users will run phrasal queries, an

inverted file structure is decided to be constructed. Actually suffix arrays have

better performance on phrase search, but its building cost is a compelling factor

27

for choosing inverted indices. Because periodically the system index structure

must be reconstructed and total cost of inverted index (construction +

maintenance + search) is lower than suffix array total cost.

An index structure alone is not enough to answer user’s queries. A result

ranking subsystem is required to find the most relevant documents. Vector space

model is used for this purpose. In the vector space model, documents and user

queries are represented as a vector of term weights [28-31]. Simply term weights

depend on frequency of that term in the text collection. If a term is observed

very often in the text collection, the term weight is low. This strategy called

tf/idf. The standard algorithm for ranking documents uses a set of accumulators.

There is one accumulator for each document in the collection. And there is a set

of inverted list, one for each term in the collection. Complexity of alternative

ranking algorithms, whose performance can compete with vector space model,

is a compelling factor for choosing this scheme in this thesis.

If it is considered that a query is a document, in other words as a vector, by

finding similar vectors, system can retrieve most relevant documents to the user.

One important drawback of vector model is that relevant documents which are

not indexed by any of the query keywords are not retrieved.

Retrieval subsystem of MedicoPort solves this problem with a special module

that is concept generate module. This module adds a new capability to vector

space module. This capability would allow the retrieval of documents even

when they are not indexed by query index terms. This is type of a concept

search strategy.

Latent Semantic Indexing Model (section 2.4.2.2) is an alternative for this

solution but this model is not verified now in practice and vector space model

provides less complex solution to be implemented [1],[23]. Another

improvement is primary index approach. Volume of the traditional index

structure gradually grows and requires disk operations even if it is type inverted

index. This reduces the performance of the search engine systems. Compression

28

algorithm may solve this type of problems. But MedicoPort proposes a new

solution which is primary index approach. MedicoPort keeps two types of

indices one of them is traditional index, the other one is primary index. Type of

primary index is an inverted index but it contains just special terms that are

taken from UMLS Specialist Lexicon source.

Since MedicoPort performs on medical domain, search terms can be limited but

limitation must be done professionally. For this reason, as a primary index terms

the Specialist Lexicon is selected and description for UMLS Specialist Lexicon

is given below:

Words and terms are selected for lexical coding from a variety of sources.

Approximately 20,000 words from the UMLS Test Collection of MEDLINE

abstracts together with words which appear both in the UMLS Metathesaurus

and Dorland's Illustrated Medical Dictionary form the core of the words entered.

In addition, an effort has been made to include words from the general English

vocabulary. The 10,000 most frequent words listed in The American Heritage

Word Frequency Book and the list of 2,000 words used in definitions in

Longman's Dictionary of Contemporary English have also been coded.

Since the majority of the words selected for coding are nouns, an effort has been

made to include verbs and adjectives by identifying verbs in current MEDLINE

citation records, by using the Computer Usable Oxford Advanced Learner's

Dictionary, and by identifying potential adjectives from Dorland's Illustrated

Medical Dictionary using heuristics developed by McCray and Srinivasan 0.

A lexicon, recording information specific to individual lexical items, is

necessarily a core component of any natural language processing system. The

SPECIALIST lexicon has been developed to provide the lexical information

needed for the SPECIALIST Natural Language Processing System. It is

intended to be a general English lexicon that includes many biomedical terms.

29

Coverage includes both commonly occurring English words and biomedical

vocabulary discovered in the NLM Test Collection and the UMLS

Metathesaurus.

The lexicon entry for each word or term records the syntactic and morphological

information. Syntactic information includes syntactic category (part of speech),

and complementation patterns for verbs, adjectives and nouns, as well as

positional and modification types for adjectives and adverbs. Inflectional

morphology is indicated for those syntactic categories which inflect, and

spelling variation is recorded for each lexical item known to exhibit such

variation.

The lexicon consists of a set of lexical entries one entry for each spelling or set

of spelling variants in a particular part of speech. Lexical items may be “multi-

word” terms made up of other words if the multi-word term is determined to be

a lexical item by its presence as a term in general English or medical

dictionaries, or in medical thesauri such as MeSH. Expansions of generally used

acronyms and abbreviations are also allowed as multi-word terms.

The lexical entry is a frame structure consisting of slots and fillers. Each entry is

enclosed in braces ({...}) and identified by a unique entry number (EUI)

recorded as the filler of the entry= slot. The EUI is a seven digit number

preceded by the letter “E”. The cat= slot indicates the part of speech of the entry

and the base= slot indicates the base form of the entry. The base form is the

uninflected citation form of the lexical item; the infinitive in the case of a verb;

the singular in the case of a noun; and the positive in the case of an inflecting

adjective or adverb. Optionally a spelling_variants= slot records spelling

variants of the base form.The lexical entries for anaesthetic given below

illustrate some of the features of a SPECIALIST lexical entries:

30

{base=anaesthetic

spelling_variant=anesthetic

entry=E0008769

cat=noun

variants=reg

}

{base=anaesthetic

spelling_variant=anesthetic

entry=E0008770

cat=adj

variants=inv

position=attrib

}

There are two entries for the base form anaesthetic, a noun entry and an

adjective entry. The variants= slot contains a code indicating the inflectional

morphology of each entry; the filler reg in the noun entry indicates that the noun

anaesthetic is a count noun which undergoes regular English plural formation

(anaesthetics); inv in the variants= slot of the adjective entry indicates that the

adjective anesthetic does not form a comparative or superlative. The position=

slot indicates that the adjective anaesthetic is attributive and appears after color

adjectives in the normal adjective order. 0

The lexicon structure is not suitable with this form to construct primary index

structure. This index will be static or semi static (if the UMLSKS is updated

then primary index structure will be rebuilt). In the UMLS lexicon there are

nearly 470.000 terms with duplications. After filtering operation we hold nearly

221.000 different lexicon terms in our primary index with its empty posting file.

Posting file includes the lists of occurrences which are stored contiguously and

it is an important part of inverted index structure. Since at the very beginning the

system does not have any file, posting file is empty.

31

3.2 Assumptions and Dependencies

3.2.1 Assumptions

It is assumed that in the test phase index structure of MedicoPort has enough

terms.

It is assumed that for the first release of the system index structure fits 512 MB

of memory

It is assumed that system works on Pentium 4 1.8 GHz processor.

It is assumed that in the setup phase index must be initialized.

It is assumed that every system user is interested in medical information.

It is assumed that the computer system on which MedicoPort is run has an active

internet connection.

It is assumed that all the search operations shall be performed on main memory

It is assumed that retrieved documents are not hold in the local area.

3.2.2 Dependencies

MedicoPort’s retrieving performance is affected by any possible UMLSKSS

failures and any possible change in terms of use of UMLSKSS resources.

MedicoPort shall be run on a computer system which is registered to UMLSKSS

with its IP and MAC addresses.

MedicoPort shall be run on a computer system which is identified to UMLSKSS

with a valid UMLS Licensee identification.

Since UMLSKSS Developer’s Application Programming Interface (API)

requires JAVA 1.4 or higher to run, the system shall be implemented with a

JAVA version higher than JAVA 1.4.

32

3.3 Functional Requirements of Indexing and Retrieving

Subsystems

1. The system shall establish a connection to UMLSKSS.

2. If the connection cannot be established, the system shall generate an

error message including the reason for unsuccessful connection such as

inactive host, unidentified client (user unregistered to UMLSKSS) or

malformed host URL.

3. If connection establishment is successful the system shall generate a

notification message.

4. The query formulator module shall accept a new search topic from the

user interface module.

5. The query formulator module shall convert query string to query terms.

6. The query formulator module shall send to primary index query terms to

concept generator module.

7. The concept generator module shall obtain related concepts for each

query term.

8. The concept generator module shall send retrieved related concept and

query terms to the query formulator.

9. The query formulator shall send whole query terms to the search

module

10. The search module shall convert the query term to query vector.

11. The search module shall find similar document vectors for answer set.

12. The search module shall prepare answer set.

13. The search module shall send answer set to user interface module.

14. The user interface module shall present answer set to the user.

15. Document processor shall acquire retrieved page from crawler module.

16. The document processor shall convert document string to index terms.

17. The system shall insert index terms to the index.

18. The system shall keep two index structures.

33

19. First structure shall keep UMLS Specialist Lexicon terms.

20. Second structure shall keep other retrieved terms.

21. First index structure shall keep phrase and single terms.

22. Index structure shall be updated monthly

23. System shall hold occurrence list for each index term.

24. Each occurrence list’s item shall hold a document reference.

25. Each document reference shall hold link information to this document.

26. Each term shall have an idf value.

27. Each document reference shall have a vector length

28. The system shall compute vector length for each indexed document.

3.4 System Design and Implementation:

3.4.1 Decomposition Description

Index and Retrieving subsystem is developed with Document_Parser, Utility

and User_Interface packages:

Document_Parser: This package covers the document processing features

embedded in the system. Features include document parser, indexer and

document vector computer.

Identification : Document_Parser

Type : Package

Purpose : Framework for document parsing, indexing and searching

activities.

Function : Performs document processing functions, constructing inverted

index and searching.

Utility: This package includes the utility features used by other packages.

34

Identification : Utility

Type : Package

Purpose : Framework that keeps utility features for the system.

Function : Contains several utility features for other classes and .data

structures for index

User Interface: This package includes user interface module.

Identification : User Interface

Type : Package

Purpose : Framework that keeps user interface module.

Function : Interaction with system users. Takes user queries and represent

the answer set to the users.

3.4.2 Dependency Description

Dependency description involves classes as design entities, and provides details

related to classes of packages for Indexing and Retrieving subsystems by

addressing identification, type, purpose, function, subordinates, dependencies,

and resources design entity attributes 0.

Dependencies among classes and detailed description of these classes are given

in Appendix C to Appendix R in form of class diagrams.

3.4.3 Detailed Description

MedicoPort Indexing and Retrieving subsystems details are presented in Figure

2. Crawler subsystem of MedicoPort, UMLSKSS and system users provide

input to this system and system returns output to the system users. Subsystem

modules will be described in the next subtitles.

UMLSKS Document ProcessorIndex Bulider

Search ModuleQuery Maniplator

Result Ranking

Query Translator User

Index

Crawler
Subsystem

Figure 2: MedicoPort Indexing and Retrieving Subsystems

3.4.3.1 Query Translator Module

Query Translator module interacts with users. This module takes query string

via user interface. System assumes that user queries are unformatted, so user

query string must be converted to query terms. There are three main operations

for translation. Suppose that system is given a query string of “institutions for

breast cancer treatment”;

• All search phrases specified by the user are skimmed in order to find out

if any UMLS SPECIALIST Lexicon terms or phrases exists, (‘breast’,

‘cancer’, ‘breast cancer’ are encountered)

• Rest of the query is filtered off stop words (‘for’ is omitted),

• Rest of the terms are stemmed (institutions => institute , treatment =>

treat),

35

36

After translation operation, one of the two output lists that includes lexicon

terms is sent to Query Manipulator module. The other output list that includes

query terms is sent to Searching module.

This operation is performed by PorterStemmer (Appendix L),

TextStringDocument (Appendix I), QueryScreen (Appendix R)classes.

3.4.3.2 Query Manipulator Module

Query manipulator module takes a list that includes lexicon terms. For

manipulation, this module uses UMLSKSS. Firstly this module establishes a

connection to UMLSKSS.

UMLSKSS is free of charge and open to remote users. But registration is

required. UMLSKS allows remote to users run queries on its resources via its

web interface. For applications, UMLSKS provides Developer’s API. It consists

of a collection of interfaces for JAVA and some example applications. API

makes use of Remote Method Invocation (java.rmi package) and allows remote

applications to run queries on its resources. Responses to queries are returned in

XML format. For further information on terms of use of UMLSKS, see [35].

Actually MedicoPort Crawler subsystem Lokman has a module for connection

and retrieving information; UMLS Connector. So Query Manipulator also uses

the same module for connection and retrieving related concepts for querying

primary lexicon terms. For detailed description about UMLS Connector module

see [3].

After the manipulation task, retrieved concepts are added to the list that is taken

from Query Translator module. The result list is sent to the Searching module to

prepare the answer set. Actually, result list is an array of ConceptInfo data

structure. Each ConceptInfo entry of this list has one original query lexicon term

and related terms with their weights.

This module uses class TextStringDocument(Appendix I), class InvertedIndex

(Appendix K), LinkInfo(Appendix O) and UMLS Connector module [3].

37

3.4.3.3 Searching Module

Searching module prepares the answer set and sends the set to result raking

module. Answer set consists of index terms and related document lists. To find

the related document, Search module calculates vector length of query string.

Vector length calculation can be defined as follows:

• Firstly all acquired terms are added as uniquely as to the new list with

the number of times it occurs in the query.

• Each term is searched in primary index.

o If term is not in the primary index, this term is searched in

secondary index.

• Multiplication of “idf” value that was calculated before each term and

“count” that is the number of times it occurs in the query, gives weight

of the term.

• The weight of terms that are retrieved from UMLSKSS is multiplied

with 1, 0.8, 0.5 or 0.3 according to their concept type.

• Total value of square of term’s weights gives vector length of query.

Then module searches the primary index to find the similar vectors. The most

similar vector means the most related document.

This module uses classes, InvertedIndex (Appendix K), TextStringDocument

(Appendix I), HashMapVector (Appendix F)

3.4.3.4 Result Ranking Module

Result Ranking module takes the answer set and reorganizes it. The answer set

contains document references and document vector lengths. Answer set items’ is

sorted in ascending order.

This module uses InvertedIndex (Appendix K), Result (Appendix P) and

UserInterface (Appendix R)

38

3.4.3.5 Document Processor Module

Document Processor is fed by the Crawler with the fetched web documents. It

performs several document processing operations on these which include

stemming and parsing. After completion of these tasks, processed document is

sent to Index Builder module.

This module uses classes HashMapVector (Appendix F), HtmlStreamParser

(Appendix H), InvertedIndex (Appendix K).

3.4.3.6 Index Builder Module

At initialization of the system, Indexer retrieves UMLS Specialist Lexicon in

order to construct a primary index. The primary index is updated via the same

channel after new releases of UMLS are announced.

Second responsibility of this component is indexing the documents transmitted

by Document Processor according to terms within them.

This module uses classes TermInfo (Appendix M), TermOccurence (Appendix

N), and DocumentReference (Appendix D).

3.4.3.7 Index

Index covers two sub-indices. First of these is constructed using UMLS

SPECIALIST Lexicon and called primary index. The latter structure, which

keeps all terms appearing in document collection except the ones in primary

index, is called secondary index.

It should be emphasized that Index keeps URL of the retrieved documents.

Index also interacts with Crawler and Search Module. It serves as a topic name

generator for the first and sends query results to the second.

Index uses classes InvertedIndex(Appendix K), LinkInfo(Appendix O),

Weight(Appendix J), TermInfo (Appendix M), TermOccurence (Appendix N),

and DocumentReference (Appendix D).

39

CHAPTER 4

4 Evaluation and Discussion of Indexing and Retrieval
Subsystems

As declared in Section 1.1, this thesis focuses on two subsystems of MedicoPort

search engine system; Indexing subsystem and Retrieval (Result Ranking)

subsystem. Henceforth term System refers to these two subsystems. In previous

section, detailed description of the system is depicted. In this section, to give

better understanding, process details of system are explained.

4.1 Discussion of System

System index is assumed to be empty at initialization. As explained in Section

3.4.3.7 the system has two index structures. These indices are physically in the

same format but content of indexes are different. Normally an index is filled by

a system whenever a document is retrieved from the source (web in our case).

Since primary index contains medical terms, it must be initialized even the

system has no documents. Initialization of primary index is performed by using

medical terms obtained from UMLS Specialist Lexicon. Primary index has two

main tasks:

• It is used as a database during search process like in other information

retrieval systems. When a user specifies a query to system, system

processes this query and converts it to search terms. Every search term is

sought in the index by system. Result set for query is prepared and

presented the user.

40

• It is used in document retrieval process by Lokman Crawler subsystem

[3]. When invoked, Lokman takes a primary index term to retrieve

related documents from web. For detailed information see [3].

Thanks to primary index, every search operation can be performed in main

memory. This fact relatively increases system performance because index term

number does not increase until a new version of UMLS Specialist Lexicon is

released. For system index implementation, inverted index approach is chosen.

Characteristic of inverted index is explained in Section 2.1.1. Construction cost

of an inverted index is O(n) (n is the number of characters of the text).

System index must be reconstructed for every new version of UMLS Specialist

Lexicon. This is another reason to select inverted index structure. Other index

types that are described in Section 2.1 have the same or greater construction

costs than inverted index.

Considering the facts given in Table 1, it can be claimed that Inverted index is

suitable for word search and inexpensive to build and maintain. But Suffix array

outperforms Inverted index on phrase search case. Medical domain requires

more phrase search than word search. In this case, an information retrieval

specialist needs such a model that is as effective as suffix array on phrase search

and also as simple as inverted index. This can be possible if he/she has a set that

includes all the possible search phrases. Without domain knowledge, it is not

possible to obtain such a set because required phrase number is not limited.

UMLS Specialist Lexicon includes more than 220.000 unique terms [35]. This

term set includes many medical phrases beside single medical words. This set

(UMLS Specialist Lexicon) is reliable because it is constructed by medical

specialists and using information from more than 14 medical sources 0,0.

Therefore, the system uses this medical term set as primary index terms.

Next operation of system is to index retrieved documents from web. If the

document includes a primary index term (it has to have at least one because it is

retrieved by using this terms), this document is indexed in by the primary index

41

but for sure this document also includes many other terms which are not

members of primary index. Therefore secondary index structure is used. In other

words, secondary index keeps an index using non-primary terms existing in

retrieved documents.

Table 1: Comparison of Indexing Models.

(Req. = Requirement, n is character size of text, n’ is size of new text, m is the

length of query term, T is required time convert suffix tree to suffix array, N is

the block size and M is available capacity of main memory)

Index Types

Costs & Req.

Inverted Files

(index)

Signature

Files Suffix Tree

Suffix

Array

Building O(n) O(n/N) O(n) O(n) + T

Insertion O(n’ log(n’/M)) O(log(n/N)) O(m) O(log n)

Deletion O(n) O(log(n/N)) O(log n)

Space Req.
O(nb) or 30-

40% of text size

20% of text

size

140-240%

of text size

40-45% of

text size

Disadvantages

Bad

performance on

phrase search

False Drop
Large Space

Req.

Complex

Structure

Advantages

Good

performance on

word search

Good

performance

for small

sized DB

Good

performance

on phrase

search

Good

performance

on phrase

search

In this way, without a performance reduction, system can keep every retrieved

term and gains the ability to respond to general queries of users. Actually this is

not a main requirement but system must respond non-medical queries. Even

though a query is non-medical, answer set of this query has medical documents.

For example, if a user enters “computer” as a query term he/she will see

probably documents that are related with not only term “computer” but also

medical terms; in other words medical informatics related documents.

42

System database, because of the reasons that are mentioned in previous

paragraphs, is a collection of high quality documents. It means that every

retrieved document is related with medical domain. It is provided by Primary

index and ontology based crawler approach.

System also takes care of user interaction. If a user is not satisfied with his/her

search result, he/she can inform system via system user interface. If system

takes such a feedback from user, it invokes Lokman Crawler with this query

terms to retrieve the related documents. This operation degrades the quality of

document database, but it increases the system response quality.

As a conclusion inverted index approach with specialist lexicon outperforms all

the other indexing approaches. Therefore this scheme is chosen for

implementation of system.

System’s other task is to retrieve related documents and reorder them according

to ascending relevance degrees. In a word, it is result ranking. In the Section 2.4

most popular retrieval model types are introduced. There are three classic

retrieval models: Boolean, Probabilistic, Vector model. Boolean model is

considered to be the weakest classic method. Main problem is the inability to

recognize partial matches which frequently lead to poor performance.

There is a claim that the probabilistic model outperforms the vector model. Croft

performed some experiments and suggested that the probabilistic method

provides a better retrieval performance 0. However, experiments done

afterwards by Salton and Buckley 0 indicated that the vector model is expected

to outperform the probabilistic model with general collection. “This also seems

to be the dominant thought researchers, practitioners, and the Web community,

where the popularity of the vector model runs high.” 0. The vector model is

maybe the most popular model among the research community in information

retrieval. “Most of this research revolved around the SMART retrieval system

[38] developed at Cornell University” 0.

43

Probabilistic models are potentially open for further development but their

complex structures make them difficult to construct. An experimental study

shows that 0 probabilistic models outperform vector model. But derivation of

vector model suggests more retrieval performance like Latent Semantic

Indexing Model (Section 2.4.2.2).

The retrieval approach based on vector-space similarities can reach satisfactory

recall rates only if the terms in the query are actually present in the relevant

documents. For example, in English, the word ‘tank’ refers to both a large

receptacle in which liquids or gases are stored (as in water tank) and also to a

heavily armed and armored combat vehicle that moves on two endless metal

chains called tracks. Polysemy negatively affects precision. Overall, synonymy

and polysemy lead to a complex relation between terms and concepts that

cannot be captured through simple matching. If a user enter “tank” as a query

term he/she can meet undesirable result. To solve this problem, information

retrieval systems must know the terms relation type.

Another main retrieving problem is: although a query may conceptually be very

close to a given set of documents, its associated vector may be orthogonal or

nearly orthogonal to those document vectors, simply because the authors of the

document and the user have a different usage of language. Also last problem

type can be solved by classification of terms. But linearly it seems to be too

difficult

Latent semantic indexing is a statistical technique that attempts to estimate the

hidden structure that generates terms given concepts. It uses a linear algebra

technique known as singular value decomposition to discover the most

important associative patterns between words and concepts.

This model theoretically is a solution to problems that are mentioned above. But

implementation of this model seems to be too complex. For a specific domain, a

model that is as effectives as latent semantic indexing model and also as simple

44

as vector space model can be proposed. But it is only possible if an ontology

based concept set is at disposal. UMLSKS provides such a concept set for

medical domain. By using this database with vector space model a simple and

efficient retrieval model can be constructed. The System (Indexing and Retrieval

Subsystems) uses this idea.

After query processing operation query string turns to query term set. Some of

the query terms belong to primary index, some of them do not. System assumes

that every user is interested in medical information, so terms that are not

included in primary index have secondary importance. The System takes into

consideration term importance while answer set is prepared.

To prepare an answer set, The System calculates a vector length of query by

using every query term and System compares this vector with document vector

and finds the relevant documents.

Table 2: Term Relation Types and Weights

Relation Factor

Exact Search Term 1

SYN (Synonymy) 0.8

PAR (Partial Relevance) 0.5

CXT (Contextual Relation) 0.3

To increase the relevance degree of answer set, System uses concept generation

approach. Although UMLS defines various relations among concepts for a

medical term, System interests three of them: synonymy (SYN), partially

relevance (PAR) and contextual relation (CTX). As it is explained in Section

2.4.2 vector space model depends on term weights. Both query and document

vectors are calculated according to their term weights. The System uses this

scheme with a single difference. The related concepts of terms that are included

in primary index are retrieved from UMLS and they are changed with related

terms that are in the query and query vector is recalculated by System, but this

45

time new terms’ weight is reevaluated according to relation type. Table 2 reveals

those reevaluation factors. Table 3 indicates a result of concept generation

operation that is performed by System.

Table 3: Concept Generation Result for Term “Breast Cancer”

Query Term Concept List Obtained from UMLS Relation

Breast Carcinoma SYN

Cancer of the breast SYN

Mammary Carcinoma SYN

Carcinoma of Breast SYN

Malignant Tumor of Breast PAR

Breast Cancer

Malignant Neoplasm of Breast PAR

To calculate vectors, Vector Space Model uses term frequency/inverse

document frequency (tf/idf) formula. This formula gives term weight value. An

experimental study shows that 0 variation of formula has different efficiency

and most effective type of formula is selected by the System. This formula can

be seen from (Equation 8).

Wij = log(tij + 1) * log(N/nj + 1) (Equation 8)

As a conclusion, System proposes new solutions to problems that are mentioned

above. By using primary and secondary index structure System not only

decreases the space requirement for main index but also holds high quality

document database.

By using concept generation approach, retrieval performance of Vector Space

Model is increased. Concept generation enables System to retrieve any

document of interest even it is not indexed with the specified query term. In

addition, this way, System gains the potential to overcome possible polysemy

problems by assigning more points to a document with a search term and its

ontological relatives than any document with only search term.

46

4.2 Information Retrieval System Evaluation Metrics

Information Systems uses two main techniques to evaluate their retrieval

performance: recall and precision. To evaluate index performance system

response time is another measurement. Since this is not an objective quantity,

according to the information retrieval system purpose, whether this

measurement might be a requirement or not. For implemented system response

time is not a important requirement if this response time is smaller than human

perception.

4.2.1 Recall

Recall is the retrieval proportion of a given relevant document (Nrs) to all

relevant documents set (Nr)

P = Nrs / Nr (Equation 9)

4.2.2 Precision

Precision (P) is defined as the proportion of a selected relevant documents (Nrs)

to all retrieved document collection (Ns) (answer set generated for a given

query)

P = Nrs / Ns (Equation 10)

To give better understanding, recall and precision values are explained with an

example in next paragraphs.

Assume that a set Rq containing the relevant documents for query q has been

defined. Assume that the set Rq is composed of following documents:

Rq = {D3, D5, D8, D11, D12, D15, D21, D22, D33, D54}

47

Thus, according to a group of specialist, there are ten documents which are

relevant to query q. Consider now a new retrieval algorithm (system) which has

just been designed. Assume that this algorithm returns, for query q, a ranking of

the documents in the answer set as follows:

Table 4: Answer set of query q

No Doc. Name No Doc. Name No Doc. Name

1. D3 * 6. D168 11. D8 *

2. D31 7. D10 12. D66

3. D33 * 8. D10 13. D30

4. D17 9. D15 * 14. D84

5. D43 10. D23 15. D21 *

The documents that are relevant to the query q are marked with a star. If we

examine this ranking, starting from the top document, the following points are

observed. First, the document D3 which is ranked as number 1 is relevant.

Further, this document corresponds to 10% of the all the relevant documents in

the set Rq. Thus system has a precision 100% and 10% recall. Second, the

document D33 which is ranked as number 3 is the next relevant document. At is

point, the system has precision 66% (two documents out of three are relevant) at

20% recall (two of the ten relevant document have been seen). After 15 result

the system has precision 33% at 50% recall [1].

Usually retrieval algorithms are evaluated by running them for several distinct

queries. Table 4 presents these distinct query topics for evaluation of the

implemented system.

Table 5: Search Topics for System Retrieval Test

Topic# Topic Name Topic # Topic Name

1 Chickenpox 6 Vasectomy

2 Bedwetting 7 Tinnitus

3 Breast Carcinoma 8 Sunburn

4 Deafness 9 Motion Sickness

5 Influenza 10 Insomnia

4.3 Evaluation of System

4.3.1 Test Bed

Tests for System are performed on a Pentium 4 2.8 GHz Processor PC with 768

MB of RAM. System needs internet connection and 256 Kb/s bandwidth is used

test situation. 10 Topics are selected for test randomly from MedLine Plus web

page 0(Table 4).

4.3.2 Empirical Results

Needed documents that are related with selected query terms for test were

retrieved by Lokman Crawler [3]. Retrieved 1011 documents were indexed for

this aim. System found 41705 unique terms from these documents. Normally

System does not keep retrieved document in the disk but these 1011 documents

were saved in order to shorten test time. Total size of documents was 53.1 MB.

This document collection was indexed in 670 seconds. If document number is

reduced to 513 documents with 31983 unique terms, required time for indexing

was lessened 121 seconds.

Documents’ relevance degrees (weight factors computed by tf/idf scheme) to

queries were normalized to (0, 1) understand test results. If System finds a

document that has the same content with query its relevance degree is equaled to

1. Irrelevant document’s relevance is specified to 0 by System. This is the

normalization mechanism.

48

To test the effect of concept generation on result set, queries were run on the

System without using UMLSKS information. After the test results it is found out

that from the same document collection, System can find 34 % more related

document. For example, answer set of “breast cancer” without concept

generation has 99 related results but with concept generation 133 related

documents are found in same collection. An experimental threshold relevance

degree “0.01” was chosen during tests. This value is the experimental result for

answer sets which have more than 100 items. 133rd document has not included

“breast cancer” but “breast carcinoma”. One of the aims of this study is to

achieve similar results.

Figure 3: “http://kidshealth.org/parent/general/sleep/enuresis.html” Number 4

hit from MedicoPort answer set generated for query “bedwetting”

To illustrate the positive effect of ontological information on retrieval results,

screen shots from the answer set of query of “bedwetting” are presented in

Figure 3 and Figure 4. In this example, it is clearly noticed that System assigns a

49

higher relevance degree to documents which include more terms from ontology.

Therefore a page with a variant of exact search phrase has the chance to get a

place previous than a page with exact search phrase in the answer set.

System orders the result set ascending according to relevance degree. To depict

a set of relevant documents, a limit relevance degree must be defined. As a

minimum relevance degree “0.01” was selected for answer sets that have more

result than 100. For small answer sets that have fewer entries than 100,

relevance degree limit must be augmented. For instance term “insomnia”

System finds 43 related documents and last result’s relevance degree is 0.023.

Figure 4: “http://www.medicinenet.com/bedwetting/article.html” Number 17

hit from MedicoPort answer set generated for query “bedwetting”

System response time was measured smaller than 20 milliseconds without using

concept generation function. But if system uses concept generation, system

response time reaches nearly 6 second. The cause of this delay is connection to

UMLSKSS. When concept generation was accomplished in local area, system

response time was measured at maximum157 milliseconds.

50

System index space requirement was found 100-120 % of text size. Normally

inverted index space requirement is 30-40 % of text size. Using JAVA as

programming language and constructing two index structures are the reasons for

the increase in memory requirement.

0
5

10
15
20

25
30
35

40
45

1 2 3 4 5 6 7 8 9 10

Query Count

%
 R

ec
al

l

Figure 5: System Retrieval Recall after 100th Result

To evaluate the system retrieval performance, Recall and Precision measures are

used. These measurements are inversely proportional. High precision is

expected for a successful information retrieval system. System precision and

recall results are as in Figure 5, Figure 6, Figure 7. Figure 5 indicates system

recall value of ten query results. In Figure 6 system precision without concept

generation is presented and Figure 7 shows system precision with concept

generation.

4.3.3 Evaluation of Results

As seen in Figure 6, System finds 93 similar documents in first retrieved 100

documents without concept generation. This precision value is very high. This is

the expected result because document collection that is used in tests is retrieved

by a topical crawler. This means that test collection which is formed of 1011

51

documents is related with the search terms (Table 4). Precision value of Lokman

Crawler is 67 % and more than 500 documents are related with search terms

(Table 4) [3].

If System uses concept generation, system precision value increases to 96.3 %

(Figure 7). Because, concept generation enables System to retrieve any

document of interest even it is not indexed with the specified query term. For

example, if a user enters “breast cancer” as search term, System can retrieve a

document that does not contain term “breast cancer” but contains “breast

carcinoma”. This outcome shows that concept generation solves one of the

information retrieval problems and this is one of the aims of this thesis study.

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

Retrieved Documents

Pr
ec

is
io

n
 %

Figure 6: System Average Precision without Concept Generation

Average recall value of the implemented system is 39 % (Figure 5). The recall

value of information retrieval systems is expected to be low with high precision.

If system recall value is high, generally it brings about low precision value.

Document collection size and quality of collection affects recall and precision

values. System recall and precision values (Figure 5, Figure 6 and Figure 7)

indicate that quality of our document collection is high. Probably if a larger test

collection is used, this value decreases because of reduction of high quality

document base of system.

52

0,000
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113

Retrieved Documents

P
re

ci
si

on
 %

Figure 7: System Average Precision with Concept Generation

Space requirement of the system was found as 100-120 % of the text size. This

ratio is too high for a system that uses inverted index. One reason of large space

requirement is the programming language used. The System is implemented

with JAVA programming language. If another low level programming language

like C was preferred, this value would probably decrease. Another reason for

high space requirement is the use of two index structures; primary index and

secondary index. This scheme, in the beginning, causes large space requirement.

But main operations of the system are performed on the primary index, so size

of the index does not affect system performance.

System response time with concept generation is nearly 6 seconds and it seems

to be high value for a web retrieval system. Reason of this delay is caused by

UMLS connection. For instance, response time of Google search engine is

approximately 0.013 second. If UMLSKS was installed in local area, response

time would reduce to 157 milliseconds. This is an acceptable response time for

an informational retrieval system. System response time is also directly related

with bandwidth. Additionally, for the implemented system, quality of presented

answer set bears more importance than rapid response time.

53

54

CHAPTER 5

5 Conclusion

Accessing the information seems easy thanks to recent technological

improvements. Especially, internet provides any kind of information in a few

seconds. But main problem of today is to find really needed information among

this pile. Because of this problem, human needs machine help. But making

machines understand human needs is another problem. Information retrieval

systems try to find solutions to above problems. Although there are many

improvements in this field, lots of problems are still waiting to be solved.

Main idea of an information retrieval system is to provide required information

with less trouble. For this reason, search engines are the most popular

information retrieval systems. Search engines, basically, are composed of three

main parts: crawler that searches and retrieves required information; index that

keeps the retrieved information in a suitable form; and retrieval module that

prepares required information and presents to user.

Information needs of people change according to their interests. The need of

domain specific search engine emerges to satisfy information requirements of

people who interest in a specific area. This thesis suggests solutions for the

indexing and result ranking problems of domain specific search engines.

Problem of index that is built for domain specific search engine is constructing a

quality document database. To solve this problem, use of ontological

information as the knowledge base is proposed by this thesis study. Medicine is

selected as domain and UMLS ontology is used as the knowledge base.

55

Since index structure is the basis for search engines, it serves to both crawler

and retrieval module. It gives search terms to the crawler to search and retrieve

related documents and also keeps those related documents for retrieval module.

Existing index of search engines are not responsible to serve to crawler this way.

Because of this duty, index in suggested system bears another responsibility.

System divides index structure to primary and secondary parts. The primary

index contains medical terms and phrases that are acquired from UMLS. Thanks

to primary index, size of index structure is limited and system operations can be

performed in memory. Primary index structure can be considered as an index of

book. In this index only required term and phrases are kept.

Secondary index structure prevents system to loose information for retrieved

documents. To use the implemented system as a general search engine, this

index keeps other terms that are not indexed by primary index. Although this

scheme increases space requirement, it offers relative performance by allowing

system keep secondary index in disk instead of memory.

Retrieval module of implemented system uses information obtained from

UMLSKSS. System finds primary index terms and phrases in user queries and

generates the related concept set for them from UMLSKSS. Search operation is

performed with both original user query and its alternatives formed of generated

concept set. With such a novel approach, system gains ability to retrieve any

document of interest even it is not indexed with the specified query term.

Performed test results also validate this fact. In addition, it is discovered that

concept generation increased precision value of system from 93% to 96.3% for

the test collection and test queries.

System is implemented with JAVA. Use of JAVA in system implementation

and communication overhead caused by remote UMLS connection increase

system response time. But for the implemented system, quality of presented

answer set bears more importance than rapid response time.

56

5.1 Future Work

If UMLSKSS was installed in local area network, system response time

decreases from 6000 milliseconds to 157 milliseconds (Section 4.3.3). UMLS

allows installation of knowledge server in local area network. System overall

performance needs to be tested if local installation of ontology is provided.

This system can be used as the backbone of a knowledge retrieval system. If a

profiling database is constituted, system precision value will increase. System

with profiling database can retrieve results which are more personalized, more

refined and more qualified.

Data structures of JAVA are used during implementation. JAVA has no trie data

structure that is more suitable for index mechanisms. If system index structure

was implemented with trie data structure, space requirement of the system

would decrease.

5.2 Contribution

Suggested indexing and retrieval subsystems are implemented as the subsystem

of MedicoPort Project. As part of a search engine, function of index and

retrieval module is increasing the quality of search engine retrieval performance.

The other part of the system is Lokman Crawler.

As test results indicated, Lokman reaches a harvest rate of 67 % excluding D = 1

[3] pages. With such a coherent document collection, Lokman eases the

workload of Indexing subsystem, keeping the index terms (the ones other than

UMLS SPECIALIST Lexicon terms) in a limit.

MedicoPort Project aimed to find out advantages of ontology use in information

retrieval and prove the positive affect on overall performance of the system from

crawling to indexing. This thesis study proved that ontology use increased

system performance from 93% to 96.3% (Section 4.3.2). This result shows that

project has reached its goal.

57

REFERENCES

[1] Baeza-Yates, R., Riberio-Neto, B., Modern Information Retrieval, Addison-

Wesley, 1999.

[2] Cho, J., Garcia-Molina, H., Estimating the Frequency of Change, ACM

Transactions on Internet Technology (TOIT), Volume 3, Issue 3, August

2003.

[3] Kayışoğlu A., Lokman: A Medical Ontology Based Topical Web Crawler,

METU, M.S. Thesis, September 2005, Ankara, Turkey

[4] Lenci, A., Building an Ontology for the Lexicon: Semantic Types and Word

Meaning, in: P.A. Jensen, P. Skadhauge (Eds.), Ontology-based

Interpretation of Noun Phrases, Proc. of the 1st International OntoQuery

Workshop, Kolding, 2001.

[5] Ding, Y., Ontology: The Enabler for the Semantic Web, Journal of

Information Science. Volume 27 (6), 2001

58

[6] Kalem, G., Semantic Web Application: Ontology-Driven Recipe Querying,

M.S. Thesis, Atılım University, June 2005, Ankara, Türkiye.

[7] Horowitz, E., Sahni, S., Anderson-Freed, S., Fundamentals of Data

Structures in C, Computer Science Press, 1997.

[8] Rmıt, J. Z., Moffat, A., Ramamohanarao, K., Inverted Files Versus

Signature Files for Text Indexing, 1998, ACM Press New York, NY, USA.

[9] Qui, J., Shao, F., Zatsman M., Shanmugasundara, J., Index Structure for

Querying Deep Web, Cornell University, 2003

[10] Witten, I., H., Moffat, A., Bell, T. C. Managing Gigabytes: Compressing

and Indexing Documents and Images, Morgan Kaufmann, San Francisco,

Second edition, 1999.

[11] Scholer, F., Williams, H. E., Yiannis, J., and Zobel, J., Compression of

inverted indices for fast query evaluation, In Beaulieu M., Baeza- Yates R.,

S. Myaeng H., and Jarvelin K. (eds), Proc. 25th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

Tampere, Finland, Aug. 2002. ACM Press, New York.

59

[12] Elias, P., Universal codeword sets and representations of the integers.

IEEE Transactions on Information Theory, Volume IT-21(2):194–203, Mar.

1975.

[13] Golomb, S. W., Run-length encodings, IEEE Transactions on

Information Theory, Volume IT–12(3):399–401, July 1966.

[14] Ziviani, N., de Moura, E., Navarro, G., Baeza-Yates, R., Compression A

key for next-generation text retrieval systems, IEEE Computer, Volume

33(11):37–44, Nov. 2000.

[15] Ngoc Anh, V., Moffat, A.: Index Compression using Fixed Binary

Codewords, Proceedings of the Fifteenth Australasian Database Conference,

(ADC2004), Dunedin.

[16] Zomaya, A.Y., Parallel and Distributed Computing Handbook, McGraw

Hill,.New York, 1996.

[17] Tomasic, A. and Garcia-Molina, H., Performance of inverted indices in

shared-nothing distributed text document information retrieval systems. In

Proceedings of the Second International Conference on Parallel and

Distributed Information Systems, pages 8–17, 1993, San Diego, California,

U.S.A.

60

[18] Ribeiro-Neto, B.,. and Barbosa R. A., Query performance for tightly

coupled distributed digital libraries, In Proceedings of the third ACM

Conference on Digital Libraries, pages 182–190, 1998.

[19] Badue, C., Baeza-Yates, R., Riberio-Neto, B., Ziviani, N, Distributed

query processing using partitioned inverted files. In 8th Symposium on

String Processing and Information Retrieval (SPIRE'01), Nov. 2001

[20] Laguna de, S.R., Using partitioned inverted files, In Proceedings of the

Eighth String Processing and Information Retrieval Symposium, pages 10–

20, 2001. IEEE Computer Society.

[21] Zadeh, L. A., Fuzzy sets, Information and Control, vol. 8, pp. 338--353,

1965.

[22] Salton, G., Fox, E A., Wu, H., Extended Boolean Information Retrieval,

Communication of the ACM, Volume 26(11) pp: 1022-1036, Nov. 1983.

[23] Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T.K., Harhman,

R.A., Streeter, L.A: and Loachbaum, K.E., Information retrieval using a

singular value decomposition model of latent semantic structure, ACM

SIGIR Conference on Research and Development in Information Retrieval

1988

61

[24] Wilkinson, R., and Hingston, P., Using the cosine measure in a neural

network for document retrieval, ACM SIGIR Conference on Research and

Development in Information Retrieval, 1991

[25] Hurtle, H. and Croft, W.B., Evaluation of Inference network-based

retrieval model, ACM Transaction on Information System, Volume. 9(3) pp.

187-222, July 1991,

[26] Hurtle, H. and Croft, W.B., Inference network for document retrieval,

ACM SIGIR Conference on Research and Development in Information

Retrieval, 1990

[27] Riberio-Neto, B., and Muntz, R., A Belief network model for

information retrieval, ACM SIGIR Conference on Research and

Development in Information Retrieval, 1996

[28] Luk, R.W.P., Kwok, K.L., Comparison of Chinese Document Indexing

Strategies and Retrieval Models, ACM Transactions on Asian Language

Information Processing (TALIP) Volume 1(3) pp: 225 – 268, September

2002

[29] Park, A. F., Spectral Based Information Retrieval, Ph.D. Thesis,

University of Melbourne, Australia, December 2003

62

[30] Wainwrigth, J., Text Mining Lecture Notes, March 2003

[31] Rijsbergen C J van: Information Retrieval, Butterworth, London, 1979.

[32] Browne, A. C., McCray, A. T., Lister, S. S., The Specialist Lexicon

Technical Report, Hill National Center for Biomedical Communications

National Library of Medicine Bethesda, Maryland REVISED: JUNE 2000

[33] Tilley C. B., Willis Jan, UMLS Basics Presentation (May 2004)

[34] IEEE Std 1016-1998, Recommended Practice for Software Design

Descriptions, 1998

[35] UMLS Knowledge Source Server, Retrieved: August 24, 2005, from

http://umlsks.nlm.nih.gov/kss/servlet/Turbine/template/

[36] Croft, W. B. and Harper, D. J., Using probabilistic models of document

retrieval without relevance information. Journal of Documentation, Volume

35 pp:285-295, 1979.

[37] Salton, G. and Buckley, C., Term weighting approaches in automatic

retrieval, Information Processing & Management, Volume 24(5), 1988

http://umlsks.nlm.nih.gov/kss/servlet/Turbine/template/

63

[38] Salton G., The SMART Retrieval System--Experiments in Automatic

Document Processing, NJ: Prentice Hall, 1971.

[39] Ribeiro-Neto, B., Ziviani, N., Moura, E., and Neuber, M.. Efficient

Distributed Algorithms to Build Inverted Files. Proceedings of the

International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR Forum, pp. 105-112, August 1999.

[40] Marin M.; Index Structures for Distributed Text Databases; JCS&T, Vol.

4(1), April 2004

[41] Salton G., Lesk M. E.,Computer evaluation of indexing and text

processing, Journal of the ACM, Volume: 15(1), January, 1968.

[42] Salton G. and McGill M. J. Introduction to Modern Information

Retrieval, McGraw Hill, 1983

[43] MedLine All Health Topics Page, Retrieved: 25th August 2005, from

http://www.nlm.nih.gov/medlineplus/ all_healthtopics.html,

APPENDICES

Appendix A: MedicoPort Index and Retrieving System Level 0
Dataflow Diagram

64

Appendix B: MedicoPort Index and Retrieving System Level 1
Dataflow Diagram

65

Appendix C: Package: Document_Parser; Class:
DocumentIterator Class Diagram

66

67

Detailed Description of Class DocumentIterator:

Identification : DocımentIterator

Type : Class

Superclass : Object

Purpose : An object for iterating over a set of documents in a

directory.

Function : Iterates next document for indexing procedure

Subordinates : nextDocument()

hasMoreDocuments()

Dependencies : Document_Parser.HtmlFileParser

Document_Parser.InvertedIndex

Resources : java.io

java.lang

java.util;

Appendix D: Package: Document_Parser; Class:
DocumentReference Class Diagram

68

69

Detailed Description of Class DocumentReference:

Identification : DocımentReference

Type : Class

Superclass : Object

Purpose : This class hold document information

Function : Get the full Document for this Document reference by

recreating it with the given docType and stemming

Subordinates : getDocument(short docType, boolean stem)

Dependencies : Document_Parser.FileDocument

Document_Parser.HtmlFileParser

Document_Parser.InvertedIndex

Utility.LinkInfo

Utility.Result

Utility.TermOccurence

Resources : java.io

Utility

Appendix E: Package: Document_Parser; Class: FileDocument
Class Diagram

70

71

Detailed Description of Class FileDocument:

Identification : FileDocument

Type : Class

Superclass : Object

Purpose : Base class for for HtmlFileParser and HtmlStreamParse

Function : Convert the text files to the a term list

Subordinates : int numberOfTerms()

String nextTerm()

boolean hasMoreTerms()

void prepareNextTerm()

void printVector()

abstract String getNextCandidateTerm()

static void loadStopWords()

Dependencies : Document_Parser.DocumentReference

Document_Parser.HashMapVector

Document_Parser.InvertedIndex

Utility.Porter

Resources : java.io

Utility.Porter

java.util

Appendix F: Package: Document_Parser; Class:
HashMapVector Class Diagram

72

73

Detailed Description of Class HashMapVector:

Identification : HashMapVector

Type : Class

Superclass : Object

Purpose : A data structure for a term vector for a document stored

as a HashMap

Function : This class maps terms to Weight's that store the weight of that term

in the document.

Subordinates : Iterator iterator()

int size()

void clear()

double increment(String term,double amount)

double getWeight(java.lang.String term)

void add(HashMapVector vector)

void addScaled(HashMapVector vector,double scalingFactor)

void subtract(Document_Parser.HashMapVector vector)

void multiply(double factor)

Document_Parser.HashMapVector copy()

double maxWeight()

void print()

double cosineTo(Document_Parser.HashMapVector otherVector)

double length()

Dependencies : Document_Parser.InvertedIndex

Document_Parser.Weigth

Resources : java.util

Appendix G: Package: Document_Parser; Class:
HtmlFileParser Class Diagram

74

75

Detailed Description of Class HtmlFileParser:

Identification : HtmlFileParser

Type : Class

Superclass : FileDocument

Purpose : An HTML file document where HTML commands are

removed from the term stream.

Function : To include HTML terms, just create a Text File

Document from the HTML file

Subordinates : String getNextCandidateTerm()

Dependencies : Document_Parser.InvertedIndex

Resources : java.io

java.util

Appendix H: Package: Document_Parser; Class:
HtmlStreamParser Class Diagram

76

77

Detailed Description of Class HtmlStreamParser:

Identification : HtmlStreamParser

Type : Class

Superclass : FileDocument

Purpose : An HTML stream where HTML commands are removed

from the term stream.

Function : To include HTML terms, just create a Text File

Document from the HTML file

Subordinates : String getNextCandidateTerm()

String getLine()

Dependencies : Document_Parser.InvertedIndex

Utility.ConceptInfo

Utility.ConceptOccurence

Resources : java.io

java.util

Appendix I: Package: Document_Parser; Class:
TextStringDocument Class Diagram

78

79

Detailed Description of Class TextStringDocument:

Identification : TextStringDocument

Type : Class

Superclass : FileDocument

Purpose : An object that handles query strings as if text documents

Function : This class convert the query string to the query term list

Subordinates : String getNextCandidateTerm()

Dependencies : Document_Parser.InvertedIndex

Resources : java.io

java.util

Appendix J: Package: Document_Parser; Class: Weight Class
Diagram

80

81

Detailed Description of Class Weight:

Identification : Weigth

Type : Class

Superclass : Object

Purpose : A simple wrapper data structure for storing a double

weight

Function : as an Object that can be put into lists, maps, etc. and then

incremented, decremented, and set

Subordinates : double increment()

double decrement()

double getValue()

double setValue(int value)

Dependencies : Document_Parser.InvertedIndex

Document_Parser.HashMapVector

Resources : java.io

java.lang

java.net

java.util

Appendix K: Package: Document_Parser; Class: InvertedIndex
Class Diagram

82

83

Detailed Description of Class InvertedIndex:

Identification : InvertedIndex

Type : Class

Superclass : Object

Purpose : An inverted index for vector-space information retrieval.

Function : Contains methods for creating an inverted index from a set of

documents

Subordinates : void importIndex()

void indexDocuments()

void indexTerm(String term, int count, DocumentReference docRef)

String queryTerm(java.lang.String queryterm)

void print()

void printPri()

String[] getPrimaryIndexTerm()

void loadPrimaryIndex()

int size()

HashMapVector processQueries(String query)

HashMapVector findMatchingPrimaryIndexTerms(String query,

HashMapVector queryVector)

void

presentAnswerSet(HashMapVector queryVector,Result[] retrievals)

boolean showRetrievals(Utility.Result[] retrievals)

void printRetrievals(Utility.Result[] retrievals, int start)

Result[] retrieve(HashMapVector vector)

double-combineTerm(String term,double count,hashMap retrievalHash)

HashMapVector findMatchingPrimaryIndexTerms(String query)

84

Dependencies : User_Interface.QueryScreen

Document_Parser.Weight

Document_Parser.TextStringDocument

Document_Parser.HtmlStreamParser

Document_Parser.HtmlFileParser

Document_Parser.HashMapVector

Document_Parser.FileDocument

Document_Parser.DocumentReference

Document_Parser.DocumentIterator

Utility.LinkInfo

Utility.DoubleValue

Utility.GetInput

Utility.MoreString

Utility.PorterStemmer

Utility.TermInfo

Utility.Result

Utility.TermOccurence

Utility.MoreMath

Resources : java.io

java.lang

java.net

java.util

Appendix L: Package: Utility; Class: PorterStemmer Diagram

85

86

Detailed Description of Class PorterStemmer:

Identification : PorterStemmer

Type : Class

Superclass : Object

Purpose : The Porter stemmer for reducing words to their base stem

form.

Function : This class implements the PORTER stemming algorithm,

which is fully described in "An algorithm for suffix

stripping",

Subordinates : String stripAffixes(java.lang.String str)

boolean isVowel(char c)

Dependencies : Document_Parser.InvertedIndex

Resources : Java.lang

Appendix M: Package: Utility; Class: TermInfo Diagram

87

88

Detailed Description of Class TermInfo:

Identification : TermInfo

Type : Class

Superclass : Object

Purpose : A lightweight object for storing information about a term

in an inverted index.

Function : This class holds occurrence list

Subordinates : This class has no method

Dependencies : Document_Parser.InvertedIndex

Resources : java.io

java.lang

java.util

Appendix N: Package: Utility; Class: TermOccurence Diagram

89

90

Detailed Description of Class TermOccurence:

Identification : TermOccurence

Type : Class

Superclass : Object

Purpose : A lightweight object for storing information about an

occurrence of a term in a Document.

Function : This class stores document references and term occurring

counts

Subordinates : This class has no method

Dependencies : Document_Parser.InvertedIndex

Resources : java.io

java.lang

java.util

Appendix O: Package: Utility; Class: LinkInfo Diagram

91

92

Detailed Description of Class LinkInfo:

Identification : LinkInfo

Type : Class

Superclass : Object

Purpose : A lightweight object for storing information about an document’s

link

Function : This class holds document’s link information and evaluates link

value.

Subordinates : String getLink()

String getLinkDesc()

int getLinkValue()

void reEvaluateURLValue(String URL, int newValue,int oldValue)

void printURLElement()

Dependencies : Crawl.crawler

Crawl.URLFrontier

Document_Parser.GeneralLinkExtracter

Document_Parser.InvertedIndex

Document_Parser.DocumentReference.

Resources : java.io

java.lang

java.util

Appendix P: Package: Utility; Class: Result Diagram

93

94

Detailed Description of Class Result:

Identification : Result

Type : Class

Superclass : Object

Purpose : A lightweight object for element of answer set

Function : Compares this Result to another for sorting from best to worst.

Subordinates : int compareTo(Object obj)

Dependencies : Document_Parser.InvertedIndex

Document_Parser.DocumentReference

Resources : java.io

java.lang

java.util

Appendix Q: Package: Utility; Class: MoreString Diagram

95

96

Detailed Description of Class MoreString:

Identification : MoreString

Type : Class

Superclass : Object

Purpose : This object provide string facility

Function : Pad a string with a specific char on the right to make it the

specified length. It checks the query string has primary index term

or not

Subordinates : static String padTo(String string, int length, char ch)

static String bindStream(File HTMLFile)

static int counter(String parentString, String childString, int

count)

static String bindStream(InputStream HTMLStream)

static int queryCounter(String parentString, String childString, int

count)

Dependencies : Utility.CalculateComparator

Utility.ConceptOccurence

Document_Parser.InvertedIndex

Resources : java.io

java.lang

java.util

Appendix R: Package: User_Interface; Class: QueryScreen
Diagram

97

98

Detailed Description of Class QueryScreen:

Identification : QueryScreen

Type : Class

Superclass : JComponent

Purpose : Interface with system users

Function : This class interacts with system users

Subordinates : void actionPerformed(ActionEvent e)

Dependencies : Document_Parser.InvertedIndex

Resources : java.awt.*;

javax.swing.*;

com.borland.jbcl.layout.*;

javax.swing.border.*;

Document_Parser.InvertedIndex;

java.io.File;

java.awt.event.*;

	Introduction
	Motivation and Problem Statement
	Ontology
	Thesis Structure

	Literature Survey
	Types of Index Structures for Information Retrieval Systems
	Inverted Files
	Suffix Tree and Arrays
	Signature Files
	Deep Web Index Structures

	Compression of Indices
	Distributed Index Structures
	Retrieval Modeling
	Boolean Model
	Fuzzy Set Model
	Extended Boolean Model

	Vector Model
	Generalized Vector Space Model
	Latent Semantic Indexing (LSI) Model
	Neural Network Model

	Probabilistic Model
	Bayesian Networks

	Design Principles of Medicoport Index and Retrieval Mechanis
	Purpose and Scope
	Assumptions and Dependencies
	Assumptions
	Dependencies

	Functional Requirements of Indexing and Retrieving Subsystem
	System Design and Implementation:
	Decomposition Description
	Dependency Description
	Detailed Description
	Query Translator Module
	Query Manipulator Module
	Searching Module
	Result Ranking Module
	Document Processor Module
	Index Builder Module
	Index

	Evaluation and Discussion of Indexing and Retrieval Subsyste
	Discussion of System
	Information Retrieval System Evaluation Metrics
	Recall
	Precision

	Evaluation of System
	Test Bed
	Empirical Results
	Evaluation of Results

	Conclusion
	Future Work
	Contribution

