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ABSTRACT 
 
 
 
 

BEFOREHAND OBTAINING A SAFETY OPERATION CONDITION BY USING 
DAILY LOAD CURVES IN TRANSIENT STABILITY AND GRAPHICAL 

SOFTWARE FOR TRANSIENT STABILIY APPLICATIONS 
 
 
 

Öztop, Celal 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Arif Ertaş 

 

August 2005, 73 pages 

 

In this thesis, relationship between two most important transient stability indices, 

critical clearing time and generator rotor angle is examined for one machine-

infinite bus system and then extended to the multimachine case and is observed 

to be linear. 

 

By using the linear relationship between critical clearing time and generator rotor 

angle and utilizing the daily load curve, a new preventive method is proposed. 

The aim of this method is to make all critical clearing times longer than the relay 

and circuit breaker combination operation time. In the proposed method, desired 

critical clearing times are obtained by using on line system data and daily load 

curves. Then desired values are adjusted by generators output rescheduling and 

terminals voltage control 

 

Visual computer language is used for graphical and numerical solutions. 

Comprehension of one machine infinite bus system and multimachine system 

transient stability become easier. 

 

 

Keywords:  Critical clearing time, power system transient stability 
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ÖZ 
 
 
 
 

GÜNLÜK YÜK EĞRİLERİNİ KULLANARAK GEÇİCİ HAL KARARLILIĞI İÇİN 
ÖNCEDEN GÜVENLİ ÇALIŞMA DURUMUNUN ELDE EDİLMESİ VE GEÇİCİ 

KARARLILIK UYGULAMALARI İÇİN BİLGİSAYAR PROGRAMI 
 
 
 

Öztop, Celal 

Y.L., Elektrik ve Elektronik Mühendisliği Bölümü 

Danışmanr: Prof. Dr. Arif Ertaş 

 

Ağustos 2005, 73 sayfa 

 

Bu tezde, geçici hal karalılığın iki en önemli indisi, kritik temizleme zamanı ve 

jeneratör rotor açısı arasındaki ilişki tek makine sonsuz bara sisteminde daha 

sonra çok makineli sistemde incelenmiş ve lineer olduğu görülmüştür. 

 

Kritik açma zamanı ve jeneratör rotor açısı arasındaki lineer ilişkiyi kullanarak ve 

günlük yük eğrilerinden faydalanılarak geçici hal kararlılık için yeni bir önleyici 

metot öne sürülmektedir. Bu metodun amacı bütün kritik açma zamanlarını kesici 

ve röle çalışma zamanından daha büyük yapmaktır. Öne sürülen metotta 

istenilen kritik açma zamanları on-line sistemden ve günlük yük eğrilerini 

kullanarak elde edilmiştir. Daha sonra bu değerler jeneratörlerin çıkış güçlerini ve 

terminal voltajlarını yeniden düzenleyerek ayarlanmıştır. 

 

Grafikler ve nümerik çözümler için görsel bilgisayar programlama dili 

kullanılmıştır. Böylece tek makine sonsuz bara sistemi ve çok makineli sistemin 

incelenmesi daha kolay olmuştur. 

 

 

 

Anahtar Kelimeler :   Kritik açma zamanı, güç sistemleri geçici hal kararlılığı  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

Today, energy consumption is increasing continuously due to growing of the 

world and technological developments. In order to provide this consumption a 

large power system with hundreds of machines and its interconnections must be 

designed and operated correctly. At this point, stability of power system becomes 

more important. In this work, by utilizing the daily load curves a new preventive 

control method is proposed in order to achieve a more stable operating point for 

power systems.  

 

To carry out preventive control method, first transient stability studies must be 

done. These studies provide the information related to the capability of a power 

system to remain in synchronism in major disturbances resulting from either the 

loss of generating or transmission facilities, sudden or sustained load changes or 

momentary faults. Specifically these studies provide the changes in voltages, 

currents, powers, and torques of the machines of the power system during and 

immediately following a disturbance. All these are used in designing the power 

system to be stable under any probable disturbance  

 

Power system design becomes increasingly difficult in present days because of 

large, heavily interconnected systems with hundreds of machines. These 

machines and interconnected system are modeled in order to reflect the correct 

dynamic performance of the system. The synchronous machines are represented 

by simplified model. Loads are represented by a static admittance to ground and 

network is represented by algebraic equations. The bus admittance matrix used 

in network equation must be modified to reflect the changes in the representation 

of the network.  
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A transient stability analysis is performed by combining a solution of the algebraic 

equations describing the network with a numerical solution of the differential 

equations. As a result rotor angles and critical clearing times are determined from 

transient stability studies. 

 

In chapter three, a new preventive control method is introduced. This method 

deals with the relationship between the rotor angles and the critical clearing 

times. The aim of this method is to determine the contingencies beforehand by 

using the relationship and then, prevent them by applying a control method. The 

relationship is first studied on a single machine infinite bus system which is 

consist of generator, transmission lines and infinite bus. Three phase to ground 

faults, these are severest ones, are considered at the different regions of the 

system. The relationship is determined by utilizing the equal area criterion. The 

results are encouraging in order to extend the study on multimachine case. 

 

In multimachine case, a simulation study on IEE of Japan EAST 10 machine 

system is used. The simulation is performed at different load condition by taking 

into consideration of severest faults. Again the relationship between critical 

clearing times and generator rotor angles are determined. By using these results 

and daily load curves a new preventive control method is proposed. 

 

The necessity of this method is determined by comparing critical clearing times 

which are obtained for future condition and predefined values (the actual 

operating times of the circuit breaker and relay combination). If necessary then 

preventive control method is applied by using generator output rescheduling and 

terminal voltage control. 

 

By the means of this method whole power system and all contingencies can be 

observed and more stable operating point is achieved. 
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CHAPTER 2 

 

 

 

TRANSIENT STABILITY STUDIES  

 

 

2.1 Introduction 

 

Transient stability studies provide information related to the capability of a power 

system to remain in synchronism during major disturbances resulting from either 

the loss of generating or transmission facilities, sudden or sustained load 

changes, or momentary faults. Specifically, these studies provide the changes in 

voltages, current, powers, speeds, and torques of the machines of the power 

system, as well as the changes in system voltages and power flows, during and 

immediately following a disturbance. The stability of power system is an important 

factor in planning of new facilities. In order to provide the reliability required by 

the dependence on continuous electric service, it is necessary that power 

systems be designed to be stable under any conceivable disturbance. 

 

Power system design becomes increasingly difficult in present day because of 

vast, heavily interconnected systems with hundreds of machines. These 

machines and interconnected system are modeled in order to reflect the correct 

dynamic performance of the system. The resultant equations describing the 

network and machines are solved in transient stability studies with numerical 

methods. 

 

This chapter describes modeling considerations, solution methods applicable to 

transient stability analysis. 

 

2.2 Rotor Dynamics and The Swing Equation  

 

The equation governing rotor motion of a synchronous machine is based on the 

elementary principle in dynamics which states that accelerating torque is the  
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product of the moment of inertia of the rotor times its angular acceleration, i.e., [1] 

  

ema2
m

2

TTT
dt

d
J −==

θ
               N-m                                                               (2.1) 

 

where, 

J    :   the total moment of inertia of the rotor masses, in kg-m2 

θm  :   the angular displacement of the rotor with respect to a stationary axis, in   

         mechanical radians (rad) 

t    :   time, in seconds(s) 

Tm :   the mechanical or shaft torque supplied by the prime mover less retarding  

         torque due to rotational losses, in  N-m 

Te  :   the net electrical or electromagnetic torque, in N-m 

Ta  :   the net accelerating torque, in N-m 

 

Since θm is measured with respect to a stationary reference axis on the stator, it 

is an absolute measure of rotor angle. Consequently, it continuously increases 

with time even at constant synchronous speed. Since the rotor speed relative to 

synchronous speed is of interest, it is more convenient to measure the rotor 

angular position with respect to a reference axis which rotates at synchronous 

speed. Therefore, it is defined 

  

 msmm t δ+ω=θ                                                                                                 (2.2) 

 

where ωsm is the synchronous speed of the machine in mechanical radians per 

second and δm is the angular displacement of the rotor, in mechanical radians, 

from the synchronously rotating reference axis. The derivative of equation 2.2 

with respect to time is 

 

dt

d

dt

d m
sm

m δ
+ω=

θ
 

2
m

2

2
m

2

dt

d

dt

d δ
=

θ
                                                                                                  (2.3) 
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Substituting equation 2.3 in equation 2.1, it is obtained   

 

ema2
m

2

TTT
dt

d
J −==

δ
               N-m                                                               (2.4) 

 

We recall from elementary dynamics that power equals torque times angular 

velocity, and so multiplying equation 2.4 by ωm, we obtain  

 

ema2
m

2

m PPP
dt

d
J −==

δ
ω                W                                                              (2.5) 

 

where  

Pm : shaft power input to the machine less rotational losses 

Pe  : electrical power crossing its air gap 

Pa  : accelerating power which accounts for any unbalance between those two   

quantities  

 

Usually, rotational losses and armature |I|2R losses are neglected and Pm and Pe 

are thought the power supplied by the prime mover and the electrical power 

output, respectively. 

 

The coefficient Jωm is the angular momentum of the rotor. In machine data 

supplied for stability studies another constant related to inertia is often 

encountered. This is called H constant, which is defined by 

 

mach

m
2

S

J
2

1

H

ω

=                  MJ / MVA                                                                     (2.6) 

 

where Smach is the three-phase rating of the machine in megavoltamperes. 

Solving for Jωm and substituting in equation 2.5. The equation can then be 

expressed using p.u. quantities as follows,   
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ema2

2

s

PPP
dt

dH2
−==

δ

ω
          p.u.                                                                   (2.7) 

 

Equation 2.7, called the swing equation of the machine, is the fundamental 

equation which governs the rotational dynamics of the synchronous machine in 

stability studies. It is a second order differential equation, which can be written as 

the two first-order differential equations 

 

em
s

PP
dt

dH2
−=

ω

ω
                                                                                            (2.8) 

 

sωω
dt

d
−=

δ                                                                                                         (2.9)  

 

in which ω, ωs, and δ involve electrical radians or electrical degrees. 

 

When the swing equation is solved, the expression for δ as a function of time is 

obtained. A graph of the solution is called the swing curve of the machine and 

inspection of the swing curve of all the machines of the system will show whether 

the machines remain in synchronism after a disturbance. 

 

2.3 Machine Equations  

 

2.3.1 Synchronous Machines 

 

In transient stability studies, particularly those involving short periods of analysis 

in the order of a second or less, a synchronous machine can be represented by a 

voltage source, behind  the transient impedance, that is constant in magnitude 

but changes its angular position. This representation neglects the effect of 

saliency and assumes constant flux linkages and a small change in speed. The 

voltage behind the transient reactance is determined from [2] 

 

tdtat IxjIrEE ′++=′                                                                                       (2.10) 
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where 

E’ :   voltage behind the transient reactance 

Et  :   machine terminal voltage 

It  :   machine terminal current  

ra   :   armature resistance 

x’d   :   transient reactance 

The representation of the synchronous machine used for network solutions and 

the corresponding phasor diagram are shown in figure 2.1. 

 

xd' ra

It

Et

(a)

E'

Et

ra It

jxd' It

It Reference axis

(b)

S

p' p

E'

 

Figure 2.1 Simplified representation of a synchronous machine (a) Equivalent 

circuit (b) Phasor diagram 

 

2.3.1.1 Effects Of Subtransient Circuits 

 

In transient stability study, time period of analysis is in the order of a second and 

includes subtransient and transient period. The first five cycles (i.e. 0 to 100 ms) 

of this period is subtransient period and remaining part is transient period. In this 

work period of analysis is considered as transient period and synchronous 

machines are represented by a constant voltage source behind the transient 

reactance during the time period of analysis. This representation neglects the 
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effect of saliency and assumes constant flux linkages and a small change in 

speed. Subtransient period is not considered because the time constant of 

subtransient period is very small compared to the study period, and hence the 

assumption of constant rotor flux linkage of all rotor circuits, including the 

subtransient circuits is not reasonable. As a result such a constant flux linkage 

model would not be generally acceptable for stability studies. [8] 

  

2.3.2 Induction Machines 

 

Induction motors are used extensively in industrial processes and can have 

significant effects on the transient response of a power system. In power system 

transient stability studies loads, including induction motors, usually can be 

represented adequately by shunt impedances.   

 

2.4 Power System Equations  

 

2.4.1 Representation of Loads 

 

Power system loads, other than motors represented by equivalent circuit, can be 

treated in several ways during the transient period. The commonly used 

representations are either static impedance or admittance to ground, constant 

current at fixed power factor, constant real and reactive power, or a combination 

of these representations. Static admittance representation is used in our works. 

[2] 

 

The static admittance yp0, used to represent the load at bus p is  

 

p0p0p0 jbgy +=                                                                                               (2.11) 

 

p
*

p

Lp
*

p0p0
EE

S
jbg =+                                                                                           (2.12)       
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where, Ep is the calculated bus voltage and S*
p0 is the bus load power. 

Separating the real and imaginary components of equation 2.12, 

 

2
p

2
p

Lp
p0

fe

P
g

+
=   and    

2
p

2
p

Lp
p0

fe

Q-
b

+
=                                                          (2.13) 

   

where PLp and QLp are the scheduled bus loads  

 

2.4.2 Network  Equations 

 

The network equations describe the performance of the network during a 

transient period. In transient stability studies network equations represented in 

the bus frame of reference. In this model by the use of Thevenin theorem a 

generator is represented as a new bus behind the transient reactance. Using the 

bus admittance matrix, the voltage equation for bus p is [2] 

 

( )
∑

≠

=













−

−














=

n

1q
q

pp

pq

p
*

pp

pp
p

pq

E
Y

Y

E

jQP

Y

1
E                                                               (2.14) 

 

where Ypp and Ypq are the diagonal and the off-diagonal elements of the bus 

admittance matrix respectively. When the load at bus p is represented by a static 

admittance to ground, the injected current at the bus is zero and therefore 

 

 
( )

( )
0

E

jQP

Y

1
*

p
k

pp

pp

=
−














                                                                                      (2.15) 

 

In using equation 2.14 to describe the performance of the network for a transient 

analysis, the diagonal elements of the bus admittance matrix must be modified to 

include the effects of the equivalent elements required to represent synchronous 

machines and loads. The diagonal elements Ypp must be modified for the new 

elements.  
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∑
=

′ ++=

n

1p
pqppp0pp YyyY                                                                                 (2.16) 

 

where yp0 is the static admittance representing the load and ypp’ is the machine 

equivalent admittance between new generator bus p’ and bus p. By using Gauss-

Seidel iterative method, equations of the network are represented as follow  

 

∑∑∑
=

′

+=

−

=

++ ′−













−














−=

m

1i
i

pp

pp
n

1pq
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q

pp

pq
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1q

1k
q

pp

pq1k
p E

Y

y
E

Y

Y
E

Y

Y
E                                       (2.17) 

 

where E’I is the voltages of the new buses and equal to the machine voltages  

behind their transient reactances. The upper superscript k indicates the iteration 

count. The initial bus voltages (Eq
k) are obtained from the load flow solution prior 

to the disturbance. The initial voltages for the new buses are obtained from the 

equivalent circuit representing the machines. Subsequent voltages for these 

buses are calculated from the differential equations describing the performance 

of the machines. 

 

During the iterative calculation the magnitude of the bus voltages behind the 

machine equivalent admittances are held constant. If a three-phase fault is 

simulated, the voltage of the faulted bus is set to zero and held constant. 

 

2.5 Solution techniques  

 

2.5.1 Preliminary Calculations  

 

The first step in a transient stability study is the load flow calculation to obtain the 

system conditions prior to the disturbance. Then the network data must be 

modified to correspond to the desired representation for the transient analysis. In 

addition, the machine currents prior to the disturbance are calculated from [2] 

 

        
*

ti

titi
ti

E

jQP
I

−
=
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     i   = 1, 2, 3, . . . ., m                                                          (2.18) 

 

 

where m is the number of machine and Pti and Qti are the scheduled or calculated 

machine real and reactive terminal powers. The calculated power for the machine 

at the slack bus and the terminal voltages are obtained from the initial load flow 

solution. Finally, the voltages behind the machine impedances must be 

calculated. 

 

When the machine i is represented by a voltage source of constant magnitude 

behind the transient reactance, the voltage is obtained from  

 

tiditiati)0(i IxjIrEE ′++=′                                                                                    (2.19) 

 

where 

 

)0(i)0(i)0(i fjeE ′+′=′                                                                                            (2.20) 

 

and E’i(0) is the initial value used in the solution of the differential equations. The 

initial internal voltage angle is 

 

)0(i

)0(i1
)0(i e

f
tan

′

′
=δ −                                                                                             (2.21) 

 

The initial speed ωi(0) in radians per second is equal to 2πf where f is the 

frequency in cycles per second. The initial mechanical power input Pmi(0) is equal 

to the electrical air-gap power Pei prior to the disturbance which can be obtained 

from  

 

ai

2

titiei rIPP +=                                                                                               (2.22) 

 

where |Iti|
2rai represents the stator losses.  
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The next step is to change the system parameters to simulate a disturbance. 

Loss of a generation, load, or transmission facilities can be simulated by 

removing the appropriate elements from the network. A three-phase fault can be 

simulated by setting the voltage at the faulted bus to zero. Then, the modified 

network equations are solved to obtain the system conditions at the instant after 

the disturbance occurs. 

 

The techniques described in section 2.4.2 can be employed to obtain the new 

bus voltages for the network. In the iterative solution, however, the buses behind 

the machine impedances are treated differently depending on the machine 

representation. When the machine represented by a voltage of constant 

magnitude behind transient reactance, the internal machine bus voltage is held 

fixed during the entire iterative process. The machine currents, during the fault, 

are calculated from the equation, 

 

( ) pitiiti yEEI −′=                                                                                               (2.23) 

 

When the network solution has been obtained, the machine terminal current 

becomes the initial value for the solution of the differential equations. Iti used to 

calculate the initial machine air-gap power from 

 

( ))0(i
*

)0(ti)0(ei EIReP ′=                                                                                      (2.24) 

 

when the magnitude of the voltage in behind transient reactance is held fixed  

 

2.5.2. Modified Euler Method 

 

When a machine is represented by a voltage of constant magnitude behind the 

transient reactance, it is necessary to solve the two first- order differential 

equations to obtain the changes in the internal voltage angle δ, and machine 

speed ωi. Thus for a m machine problem where all machines are represented in 
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the simplified manner, it is necessary to solve the 2m simultaneous differential 

equations. These equations are 

 

f2
dt

d
)t(i

i π−ω=
δ

 

( ))PP
H

f
dt

d
t(eimi

i

i −
π

=
ω

            i=1, 2, ……, m                                                  (2.25) 

 

In this work, Pm is considered constant at given operation condition. This 

assumption is a fair one for generators even though input from the prime mover 

is controlled by governors. Governors do not act until after a change in speed is 

sensed, and so they are not considered effective during the time period in which 

rotor dynamics are of interest in our stability studies. As a result, Pmi remains 

constant and  

 

)0(mimi PP =                                                                                                       (2.26) 

 

 

For the solution of differential equations, different methods can be applied in this 

work, here the modified Euler method is applied. In the application of the 

modified Euler method the initial estimates of the internal voltage angles and 

machine speeds at time t+∆t are obtained from 

 

t|
dt

d
)t(

i
)t(i

)1(
)tt(i

)0( ∆
δ

+δ=δ ∆+  

t|
dt

d
)t(

i
)t(i

)1(
)tt(i

)0( ∆
ω

+ω=ω ∆+         i = 1,2, . . . , m                                         (2.27)      

 

where the derivatives are evaluated from equations 2.25 and Pei(t) are the 

machine powers at time t. When t=0, the machine powers Pei(0) are obtained from 

the network solution at the instant after the disturbance occurs. 
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Second estimates are obtained by evaluating the derivatives at time t+∆t. This 

requires that initial estimates be determined for the machine powers at time t+ ∆t. 

These powers are obtained by calculating new components of the internal 

voltage from 

 

)tt(i
)0(

i)tt(i
)0( cosEe ∆+∆+ δ′=′  

)tt(i
)0(

i)tt(i
)0( sinEf ∆+∆+ δ′=′                                                                               (2.28)   

 

Then a network solution is obtained holding fixed the voltage at the internal 

machine buses. When there is three-phase fault on bus f, the voltage Ef also is 

held fixed at zero. With the calculated bus voltages and the internal voltages, 

machines currents can be calculated from 

 

( )
diai

)tt(ti
)0(

)tt(i
)0(

)tt(ti
)0(

xjr
1

EEI
′+

−′= ∆+∆+∆+                                                       (2.29) 

 

and the machines powers from 

 

( ){ }*

∆t)i(t
(0)

∆t)ti(t
(0)

∆t)ei(t
(0) EIReP +++ ′=                                                                  (2.30)             

 

The second estimates for the internal voltage angles and machine speeds are 

obtained from 

 

t
2

|
dt

d
|

dt

d
)tt(

i
)t(

i

)t(i
)1(

)tt(i
)1( ∆

















 δ
+

δ

+δ=δ
∆+

∆+  

t
2

|
dt

d
|

dt

d
)tt(

i
)t(

i

)t(i
)1(

)tt(i
)1( ∆

















 ω
+

ω

+ω=ω
∆+

∆+             i = 1,2, . . . , m                (2.31) 

where 
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f2|
dt

d
)tt(i

)0(
)tt(

i π−ω=
δ

∆+∆+  

( ))tt(ei
)0(

mi
i

)tt(
i PP

H
f

|
dt

d
∆+∆+ −

π
=

ω
                                                                       (2.32) 

 

The final voltages at time t+∆t for the time internal machine buses are  

 

)tt(i
)1(

i)tt(i
)1( cosEe ∆+∆+ δ′=′  

)tt(i
)1(

i)tt(i
)1( sinEf ∆+∆+ δ′=′           i = 1, 2, . . . ,m                                              (2.33) 

 

Then the network equations are solved again to obtain the final system voltages 

at time t+∆t. Voltages are checked for convergence. If voltages do not converge 

to the desired value, iteration is repeated for same time step. After the iteration 

converge to the desired value, bus voltages are used along with the internal 

voltages to obtain the machine currents, powers and network power flows. The 

time is advanced by ∆t and a test is made to determine if a switching operation is 

to be effected or the status of the fault is to be changed. If an operation is 

scheduled, the appropriate changes are made in the network parameters or 

variables, or both. Then the network equations are solved to obtain system 

conditions at the instant after the change occurs. In this calculation the internal 

voltages are held fixed at the current values. Then, estimates are obtained for the 

next time increment. The process is repeated until t equals the maximum time 

T(max) specified for the study.  

 

The sequence of steps for transient analysis by the modified Euler method and 

the network solution by the Gauss-Seidel iterative method using YBUS is shown in 

Figure2.2. Shown also are the main steps of the preliminary calculations. 
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Figure 2.2 Transient calculations using the modified Euler method 

 

2.6 Computer Program Application For Transient Stability Studies 

 

The effects of a three phase fault on bus 2 for a duration of 0,1 sec is determined 

on the sample system shown in Figure 2.3 by computer program.[2] 
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Figure 2.3 Sample system for transient stability application. 

 

Table 2.1 Bus voltages, generation, and loads from load flow calculation prior to 

fault. 

 

Generation Load Bus 
code  

p 
Bus voltages Ep Megawatts Megavars Megawatts Megavars 

1 1.06000+j0.0 129.565 -7.480 0.0 0.0 
2 1.04621-j0.05128 40.0 30.0 20.0 10.0 
3 1.02032-j0.08920 0.0 0.0 45.0 15.0 
4 1.01917-j0.09506 0.0 0.0 40.0 5.0 
5 1.01209-j0.10906 0.0 0.0 60.0 10.0 

 

Table 2.2 Inertia constants, direct-axis transient reactances, and equivalent 

admittance for generators of sample system. 

 

Computer result for the sample system is shown in Figure 2.4 The system is 

stable for this disturbance. Because the important factor here is the angles 

difference between machines. It is seen from Figure 2.4 the angle differences are 

small and the system settles to a new angle. 

Bus code  p-i 
Inertia 

Constant H 
Direct-axis transient 

reactance x’d 

Equivalent 
admittance 

1-6 50.0 0.25 0.0-j4.00000 
2-7 1.0 1.50 0.0-j0.66667 
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Figure 2.4 Internal voltage angle of machine with respect to time for a fault 

duration of 0.1 sec. 

 
Same application repeated for the fault duration of 0.2 sec and the result is 

shown in Figure 2.5. In this case the system is unstable. Because the rotor angle 

differences is increasing continuously.   

 

 

 

Figure 2.5 Internal voltage angle of machine with respect to time for a fault 

duration of 0.2 sec. 

Machine 1 

Machine 2 

Machine 1 
Machine 2 
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CHAPTER 3 

 

 

 

 

BEFOREHAND OBTAINING A SAFETY OPERATION CONDITION BY 

ADJUSTING GENERATOR’S ROTOR ANGLES WITH DAILY LOAD CURVES 

IN TRANSIENT STABILITY 

 

 

 

3.1 Introduction 

 

Today, energy consumption is increasing in parallel with growing economy of the 

countries and technological developments. In order to keep on this growing, an 

interconnected power system with hundreds of machine must be designed and 

operated correctly. At this point, stability of power system becomes more 

important in order to provide continuous electrical service during operation and 

enlarging of the power system to overcome severest contingency i.e. 

 

In this chapter, a new transient stability control method is introduced. The aim of 

this method is to determine the contingencies beforehand and then, prevent them 

by applying the control method. In order to determine the contingencies daily load 

curves are used. Proposed control method utilizes the relationship between 

critical clearing times and generator rotor angles. This relationship is first studied 

on a single machine and infinite bus system and then, extended to the 

multimachine case. By the means of this relationship whole power system and all 

contingencies can be observed and more stable operating point is carried out by 

generator output power rescheduling and terminal voltage control. 
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3.2 Relationship Between Critical Clearing Angle And Generator Rotor  

      Angle   

 

3.2.1 One Machine to Infinite Bus System 

 

One machine to infinite bus system is used for determining the relationship 

between critical clearing time and the generator rotor angle. This system consists 

of generator, transformer, double transmission line and infinite bus as shown in 

Figure 3.1. The generator model used here is the simplified generator model as 

explained in section 2.3.1. The resistance of the transmission line and the control 

systems ( for example, AVR and Governor ) are neglected. 

 

E S Xt

Xl (double lines)

Xd

E 

CB1 CB2 CB3

CB4 CB6

CB5 CB7

1 2

 

 

Figure 3.1 One machine to infinite system 

 

The proposed transient stability preventive control uses a relationship between 

critical clearing time and the generator rotor angle. The sample system data used 

in during the inspection of relationship is as follows. 

 
Table 3.1 Sample one machine to infinite bus system data 

 
Bus 1 

voltage 
Bus 2 

voltage X’d Xt Xl 
Generator 

output power 

1.0 p.u. 1.0 p.u. 0.2 p.u 0.1 p.u 0.4 p.u 1.0 p.u 
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where, 

Xt :   reactance of transformers 

Xl   :   reactance of double circuit lines 

Xd’ :   transient reactance 

Fault can be occurred in three regions. Left side of the bus 1, between bus 1 and 

bus 2 and right side of the bus 3. For these three cases, rotor angle versus 

critical clearing time changes is examined. 

 

3.2.1.1 Case 1: Fault at Bus 1 

 

In this case a three phase to ground fault at bus 1 is considered. The fault occurs 

and is cleared by tripping the circuit breakers CB2, CB3 and CB4. Hence fault is 

effective during the operation of the circuit breaker and relay combination. The 

generator is operating initially at a synchronous speed with a rotor angle of δo 

and the input mechanical power Pm equals the electrical power Po. At the instant 

of the fault electrical power is dropped to zero but mechanical input power 

doesn’t change. Power-angle curve of the system is shown in Figure 3.2. [1] 

 

Pe
max

So Scr Smax

Po

A1

A2

0

P

S

 

 

Figure 3.2 Power-angle curve for case 1 

 

where, 
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dXlXtX

E E
max Pe

′++

∞′
=                                                                                      (3.1) 

 









=

max

0
0 Pe

P
arcsinδ                                                                                          (3.2) 

 

E’ :   voltage behind the transient reactance 

E∞ :   voltage of infinite bus 

δo :   rotor angle before the fault 

δcr :   critical clearing angle 

Equal area criterion is applied to the system for obtaining both critical clearing 

angle and critical clearing time. This criterion states that the kinetic energy added 

to the rotor following a fault must be removed after the fault in order to restore the 

rotor to synchronous speed. Therefore, the acceleration area denoted by A1 and 

deceleration area denoted by A2 must be equal.[1] 

 

( )∫ −==

cr

0

δ

δ

0crmm δδPδdP1A                                                                          (3.3)   

                               

( ) ( ) ( )crmaxm

δ

δ

maxcrmaxmmax δδPδcosδcosPδdPδsinP2A
max

cr

−−−=−= ∫      (3.4) 

 

Equating the expressions for A1 and A2 and solving for δcr. The expression for 

critical clearing angle is obtained as follow, 

 

( )[ ]ooo
1

cr δcosδsinδ2πcosδ −−= −                                                            (3.5) 

 

Integration of swing equation with respect to time and for t = tcr gives, 

 

0
2

cr
ms

cr δt
4H

Pω
δ +=                                                                                         (3.6) 
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and substitute the equation 3.5. in equation 3.6 yields, 

 

( )[ ]( )oooo
1

ms
cr δδcosδsinδ2πcos  

Pω

H4
t −−−= −                                       (3.7)  

 

From equations 3.5 and 3.7 as it is seen, when Pm is changed, δo and critical 

clearing time are also changed. These changes are examined by increasing Pm 

from 0.8Pm to 1.2Pm in steps of 4% Pm by using computer program [5],[4]. The 

results are given in Table 3.2 and graphic of rotor angle versus critical clearing 

time is shown in Figure 3.3. 

 

Table 3.2 Computer program output for case 1 
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Figure 3.3 Critical clearing time versus generator rotor angle graphic. 

  

It is observed that for this case critical clearing time variation is almost linear. 

 

3.2.1.2 Case 2: Fault between Bus 1 and Bus 2 

 

A three phase to ground fault between bus 1 and bus 2 is considered in this 

case. The fault is cleared by tripping the circuit breakers at both ends on the line. 

Hence power is transmitted through one line only. Power-angle curve of the 

system is shown in Figure 3.4. [1] 
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Figure 3.4 Power-angle curve for case 2 
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where, 

Pepf max  :   maximum generator output after post fault 

Pedf max  :   maximum generator output during fault. 

By utilizing the figure 3.4, expressions for A1 and A2 are written as follow, 

 

( ) ( ) ( )0crma
df

δ

δ

0cr0max
df

0 δcosδcosPeδδPδdδsinPeP1A
cr

0

−+−=−= ∫           (3.8)                               

( ) ( ) ( )crmax0

δ

δ

maxcrmax
pf

0max
pf

δδPδcosδcosPδdPδsinP2A
max

cr

−−−=−= ∫   (3.9) 

 

Equating the expressions for A1 and A2 and solving for δcr [1].  

 

( )( )












−

−+−
= −

max
df

max
pf

omax
df

maxmax
pf

omaxo1
cr

PePe

δcosPeδcosPeδδP
cosδ             (3.10) 

 

An explicit solution for the critical clearing time is not possible in this case. To 

determine the critical clearing time, the swing equation must be solved by 

numerical method. The swing equation to be solved is, 

 

( )sinδPP
2Hdt

d
max

df
em

s
2

2

−
ω

=
δ

                                                                   (3.11) 

 

This equation is a second order differential equation. It can be written as two first 

order differential equation , 

 

( )δsinPP
H2

ω

dt

ωd
max

df
em

s −=                                                                        (3.12)   

 

sωω
dt

δd
−=                                                                                                     (3.13)          

 

and then, modified Euler method is applied. Predictor equations are, 
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and corrector equations are, 
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where, k is the iteration count  
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 Figure 3.5 Rotor angle versus critical clearing time 

 

By using the predictor and corrector equations swing equation is solved between 

upper and lower limits, i.e. from δo to δcr. Results obtained are shown in Table 

3.3 and Figure 3.6. 

 



 29 

Table 3.3 Computer program output for case 2 

 

 

 

 

 

 

Figure 3.6 Critical clearing time versus generator rotor angle graphic. 

 

As in case 1, critical clearing time variation is almost linear.  
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3.2.1.3 Case 3: Fault on Bus 2 

 

In this case, a three phase to ground fault at bus 2 is considered. The fault 

occurs and is cleared by tripping the circuit breakers CB5, CB6 and CB7. Hence 

fault is effective during the operation of the circuit breaker and relay combination. 

The generator is operating initially at a synchronous speed with a rotor angle of 

δo and the input mechanical power Pm equals the electrical power Po. At the 

instant of the fault electrical power is drop to zero but mechanical input power 

doesn’t change. Power-angle curve of the system is shown in Figure 3.7. This 

graphic is identical in case 1.  
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Figure 3.7 Power-angle curve for case 3 

 

Computer programs results are same as in Table 3.2 and Figure 3.3 too. 

Consequently rotor angle versus critical clearing time graphic is almost linear.  

 

3.2.1.4 Effect of Resistance 

 

The transmission lines have resistance about 10% of its transient reactance. The 

same inspection is repeated by taking into the consideration of the resistance. It 

is observed that the changes in the generator rotor angle and the critical clearing 

times are about 1%. This result shows that neglecting the resistance is not 
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effective on the linearity. Hence, the effect of the resistance of the transmission 

line is neglected. 

 
3.2.2 Multimachine System 

 
The relationships between critical clearing angle and the generator rotor angles 

are shown by a simulation study using a multimachine power system. The 

sample system is the IEEJ EAST 10 machine system, which is shown in Figure 

3.8. [3] 

 
The contingencies are three phase to ground faults occurring at buses having 

generators, that is, the faults at buses 11-20. It is assumed that the fault-cleared 

system condition is the same as the prefault system. That is, both the loading 

and the stable equilibrium conditions are assumed to be the same. The initial 

condition of this simulation is a 75% load condition of the original data. The 

simulations are carried out increasing the loads 5% step by step of the original 

data. The relation between critical clearing angles and the generator rotor angles 

are shown in Figure 3.9. The relationships are again showing linear variation in 

multimachine case. It is seen how large the critical clearing angle changes are 

when the generator rotor angles are changed. 
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Figure 3.8 IEEJ EAST 10 machine system 



 32 

 

C
rit

ic
al

 c
le

ar
in

g 
an

gl
e 

[s
]

-10-20 100

Generator rotor angle  [degree]

0.10

0.15

0.20

3020

0.40

0.25

0.30

0.35

0.45

G5

G10

G8
G9

G6
G7

G3
G4

G2
G1

  

Figure 3.9 Relationships between critical clearing angles and generator rotor 

angles (IEEJ EAST 10 machine system) 

 

3.3 Generator Rotor Angle Estimation 

 

In this section, generator rotor angles are estimated for present and future 

condition. These values are used for preventive control method if necessary to 

find critical clearing time utilizing the linear relationship between critical clearing 

time and generator angle. 

 

3.3.1 Generator Rotor Angle Estimation For Present Condition  

 

Consider a generator directly connected to several transmission lines as shown 

in Figure 3.10. The instrumentation around the bus can be divided into injections, 

bus metering, and line flow measurements. Each of the measurements monitor 

all three phases. The following assumptions are made: [6] 

1. Balanced three-phase flow conditions are present, and the system is in steady-

state operation. 

2. Accuracy of metering is known (i.e., the meter readings are accurate to 0.5%, 

1%, etc., of the true physical value). 
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3. The full scale range of each meter is known, i.e., from 0 to 100 MW, 0 to 50 

Mvar, etc. 

4. The errors in converting the analog quantities to digital signals for the data link 

to the central computer are known. 
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Figure 3.10 Measurements at a bus 

 

The three phases are checked for balance, then products of instantaneous 

voltage and currents are obtained for scaled, limited ranges and converted into 

serial digital data by the remote terminal unit.  

 

By utilizing these digital data power flow is carried out (appendix A) and we get 

the bus voltage and angle of load bus, angle and reactive power values for 

voltage controlled bus and slack bus real and reactive powers are determined. By 

using these values, the generator rotor angles can be obtained. Consequently, 

generators rotor angles for the present condition are found for all machines in the 

system. 
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3.3.2 Generator Rotor Angle Estimation For Future Load Condition 

 

Generator output rescheduling is used for preventive control. However generator 

output can not be rescheduled instantaneously. It is known that rescheduling time 

depends on the generator characteristics and the magnitudes of the generator 

output changes. Therefore, a load condition every 5-10 minute should be 

expected. 

 

In this proposed method, daily load curves are used to predict future condition 

load powers. Curves are sampled in discrete manner with a sampled time 

intervals of 5 minutes as shown in Figure 3.12 
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          Figure 3.11 Sample daily load curve for industrial load   
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Figure 3.12 Discrete time sampling of daily load curve with 5 minute time interval 

 

Powers, getting from the discrete time sampling are used for calculating the 

generator rotor angles. As in the present condition related data are entered the 

load flow calculations and as a result, load bus voltages and angles, voltage bus 

reactive powers and angles, slack bus real and reactive powers are obtained for 

future condition. Machine currents Iti, voltage behind the transient reactance Ei 

and the rotor angle δi are calculated. 

 

3.4 Proposed Preventive Control Method 

 

Transient stability preventive control method is proposed in this work. This 

method determines the severe contingencies by using daily load curves 

beforehand, and then prevents them by applying a control method.  

 

Determining the severe contingencies beforehand is very important for power 

system operation and also for preventive control necessity. These contingencies 

are the three phase to ground faults occurring at the buses having generators, 

because these faults are the most severe ones. In these cases if all critical 

clearing times are larger than the predefined values (the actual operating times of 
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the circuit breaker and relay combination in the power system) no preventive 

control is necessary. If one or more of the critical clearing times are smaller than 

the predefined values, preventive control is necessary..[3] 

 

This method uses the linear relationships between critical clearing times and 

generator rotor angles shown in section 3.2. The present system critical clearing 

times are calculated by using the online system and future condition critical 

clearing times are calculated by utilizing the daily load curves. These critical 

clearing times and generator rotor angles define a straight line, i.e,  

 

ppdpd CCT)δδ(mCCT +−=                                                                         

                                                                                                                        (3.18) 

)δδ/()CCTCCT(m pfpf −−=  

 

where 

CCTp :    Critical clearing time for present condition 

CCTf  :   Critical clearing time for future condition 

CCTpd :   Predefined critical clearing time (Sum of the circuit breaker and relay    

                operation time) 

δp  :   Present condition rotor angle 

δf  :   Future condition rotor angle 

δd  :   Desired rotor angle after preventive control 

 

This line (equation 3.18) can now be used for preventive control in order to 

calculate desired rotor angle δpd. This value is the marginal value for stability and 

adjusted by generator output rescheduling and generator terminal voltage 

control. 

 

By the means of this method whole power system and all contingencies can be 

observed and more stable operating point is carried out using generator output 

rescheduling and generator terminal voltage control. 
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3.5. Estimation of Generator Outputs (P,Q) 

 

In this section, the increment of the generator outputs are calculated by using the 

following equation  
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                                                                                    (3.19)  

 

where, J1, J2, J3 and J4 are the entries of the Jacobian matrix. (Appendix B). 

They are obtained by utilizing the modified bus admittance matrix used in 

transient stability.  

 

The increment in phase angles and internal voltages of the generator are 

 

pf δδiδ −=∆                                                                                                 (3.20) 

 

pfi EEE −=∆                                                                                                 (3.21) 

 

,respectively. Hence generator outputs which are used for control method are 

calculated. The obtained active and reactive powers of the generators are 

adjusted by governor system and field circuit respectively. If its governor set point 

increased, the no-load frequency of the generator shifts upward. Since the 

frequency of the system is unchanged, the power supplied by the generator is 

increases. If the power supplied is constant as the field current is changed, then 

the reactive power is changed. By the means of governor system and field circuit 

the desired rotor angle is adjusted. (Appendix C) 

 

3.6. Computer Program Application For Relationship Between Critical   

       Clearing Angle And Generator Rotor Angle In Multimachine Case 

 

Computer program is performed on a sample system used in section 2.6. Related 

values are given in Table 2.1 and Table 2.2. In this application three phase to 

ground fault occurring at buses having generators that is, the faults at buses 
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having generators, that is, the faults at buses 1 and 2 are considered individually. 

It is assumed that the fault cleared system condition is the same as the prefault 

system. That is, both the loading and stable equilibrium conditions are assumed 

to be the same. The initial condition of the simulation is a 75% load condition of 

the original data. The simulations are carried out increasing the loads 5% step by 

step of the original data. The obtained rotor angle and critical clearing times are 

given in Table 3.4 and the relations between critical clearing angles and 

generator rotor angles are shown in Figure 3.13 and Figure 3.14. 

 
Table 3.4. Generator rotor angles and critical clearing times 

 
Generator 1 Generator 2 

Loading Rotor Angle 

(degree) 

Critical clearing 

angle (sec.) 

Rotor Angle 

(degree) 

Critical clearing 

angle (sec.) 

75% 12.349 0.258 14.607 0.238 

80% 13.155 0.238 15.424 0.238 

85% 13.958 0.238 16.210 0.218 

90% 14.756 0.218 16.965 0.218 

95% 15.550 0.218 17.690 0.198 

100% 16.339 0.198 18.389 0.198 
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Figure 3.13 Relationship between generator 1 rotor angle and critical clearing   

                   time 
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Relationship Between CCts and Generator Rotor 
Angles
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Figure 3.14 Relationship between generator 2 rotor angle and critical clearing   

                    time 

 

In this application, it is seen that the relationships are almost linear as explained 

in Section 3.2.2. 
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CHAPTER 4 

 

 

 

CONCLUSION 

 

 

In this work, by utilizing the daily load curves a preventive control method is 

proposed. The aim of this method is to make all critical clearing times larger than 

the predefined values. Predefined values are the operation time of the relay and 

circuit breaker. Before the preventive method carried out, transient stability 

calculation must be done.  

 

The objective of the transient stability is to determine whether or not the rotors of 

the machines remain in synchronism during disturbances. In order to determine 

the stability, power systems which consist of machines, interconnected system 

and loads are modelled to reflect the correct dynamic performance of the system. 

The synchronous machines are represented by a voltage source, in the back of 

transient impedance, that is constant in magnitude but changes its angular 

position. This representation neglects the effect of saliency and assumes 

constant flux linkages and a small change in speed. The loads are represented 

by a static admittance and networks are represented by algebraic equations. The 

bus admittance matrix used in network equation is modified in order to include 

the equivalent circuits of machines and static admittance to ground for loads to 

reflect the changes in the representation of the network.  

 

A transient stability analysis is performed by combining a solution of the algebraic 

equations describing the network with a numerical solution of the differential 

equations describing the synchronous machines. Two first order differential 

equations are required for the simplest representation of a synchronous machine. 

Then, system parameters are changed to simulate a disturbance. Loss of a 

generation, load, or transmission facilities can be simulated by removing the 

appropriate elements from the network. A three-phase fault can be simulated by 

setting the voltage at the faulted bus to zero. Then, the modified network 
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equations are solved by iteratively to obtain the system conditions at the instant 

after the disturbance occurs. The internal machine bus voltage is held fixed 

during the entire iterative process. When the network solution has been obtained, 

the machine terminal current which is used to calculate the initial machine air-gap 

power becomes the initial value for the solution of the differential equations.  It is 

necessary to solve the two first- order differential equations to obtain the changes 

in the internal voltage angle δ, and machine speed ωi. Thus for m machine 

problem where all machines are represented in the simplified manner, it is 

necessary to solve the 2m simultaneous differential equations. During the 

solution Pm is considered constant at given operation condition. This assumption 

is a fair one for generators even though input from the prime mover is controlled 

by governors. Governors do not act until after a change in speed is sensed, and 

so they are not considered effective during the time period in which rotor 

dynamics are of interest in our stability studies. As a result internal voltage angle  

δ and machine speed ω changes versus time is determined as explained in 

Section 2.6. Critical clearing times are obtained by using the internal voltage 

angle graphics by adjusting the fault duration at the related bus terminal. 

 

The preventive control method deals with the relationship between the rotor 

angles and the critical clearing times. The relationship is first studied on a single 

machine infinite bus system which is consist of generator, transmission lines and 

infinite bus. Three phase to ground faults, that are severest ones, are considered 

at the different regions of the system.  

 

At first, fault at the generator bus is considered as explained in Section 3.2.1.1. 

The fault occurs and is cleared by tripping the circuit breakers. Hence fault is 

effective during the operation of the circuit breaker and relay combination. Power-

angle curve of the system is obtained, as given in Figure 3.2, then, equal area 

criterion is applied to the system for obtaining both critical clearing angle and 

critical clearing time. As it is seen from the result, when input power Pm is 

changed, rotor angle δo and critical clearing time are also changed. These 

changes are examined by increasing Pm from 0.8Pm to 1.2Pm in steps of 4% Pm 

by using computer program. The results given in Figure 3.3 show that for this 

case critical clearing time variation is almost linear. Then, a three phase to 
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ground fault between bus generator bus and infinite bus is considered as 

explained in Section 3.2.1.2. The fault is cleared by tripping the circuit breakers at 

both ends on the line. Hence power is transmitted through one line only. Power-

angle curve of the system is obtained, as given in Figure 3.4. An explicit solution 

for the critical clearing time is not possible in this case. To determine the critical 

clearing time, the swing equation must be solved by numerical method. For this 

purpose Modified Euler Method is used. Again, the results (Figure 3.6) show that 

for this case critical clearing time variation is again linear. Finally a three phase to 

ground fault at infinite bus is considered as explained in Section 3.2.1.3. Power-

angle curve is same as the first case (Figure 3.7) and the results are same too. 

During these examinations the resistance of the transmission line is neglected. 

The same inspection is repeated by taking into the consideration of the 

resistance. It is observed that the resistance is not effective on the linearity. The 

results are encouraging in order to extend the study to multimachine case. 

 

In multimachine case, a simulation study on IEE of Japan EAST 10 machine 

system is used. The contingencies are three phase to ground faults occurring at 

buses having generators. It is assumed that the fault-cleared system condition is 

the same as the prefault system. That is, both the loading and the stable 

equilibrium conditions are assumed to be the same. The initial condition of this 

simulation is a 75% load condition of the original data. The simulations are 

carried out increasing the loads 5% step by step of the original data. It is 

observed that the relation between critical clearing angles and the generator rotor 

angles show linear variation too as given in Figure 3.9.  

 

By using these results and daily load curves a new preventive control method is 

proposed. This method determines the severe contingencies by using daily load 

curves beforehand, and then prevents them by applying a control method. 

Determining the severe contingencies beforehand is very important for power 

system operation and also for preventive control necessity. These contingencies 

are the three phase to ground faults occurring at the buses having generators. In 

these cases if all critical clearing times are larger than the predefined values no 

preventive control is necessary. If one or more of the critical clearing times are 

smaller than the predefined values, preventive control is necessary. 
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This method uses the linear relationships between critical clearing times and 

generator rotor angles. The present system critical clearing times are calculated 

by using the online system and future condition critical clearing times are 

calculated by utilizing the daily load curves. These critical clearing times and 

generator rotor angles define a straight line. This line is used for preventive 

control in order to calculate desired rotor angle δpd. This value is the marginal 

value for stability and adjusted by generator output rescheduling and generator 

terminal voltage control. 

 

The generator outputs are estimated by using the Jacobian matrix. Its entries are 

obtained by using the modified bus admittance matrix used in transient stability. 

The obtained active and reactive powers of the generators are adjusted by 

governor system and field circuit, respectively.  

 

By means of this method whole power system and all contingencies can be 

observed and more stable operating point is achieved. Critical clearing times, one 

of the most important indices for transient stability, can be controlled by the 

proposed preventive control by generator output rescheduling and generator 

terminal voltage control.  

 

However the proposed preventive control method has some drawbacks. In this 

work, multimachine simulation is performed by considering all loads and input 

power increasing at the same rate. In fact this not realistic case, they changes 

arbitrarily. As a future work, arbitrarily load and generation changes can be 

studied. 

 

Limits of the synchronous machines and the insulation problem is the another 

drawbacks. The active and the reactive power supplied from the generator can 

not exceed these limits. Hence, by the use of preventive control the generators 

could be operated within their limits successfully. 
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Inspections show that daily load curves are almost same except the weekend 

and special days. These curves are used to estimate the future condition critical 

clearing times and rotor angles.  
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APPENDIX A 

 

 

LOAD FLOW 

 

 

1.1 Introduction 

 

Load flow calculations provide power flows and voltages for specified power 

system subject to the regulating capability of generators, condensers, and tap 

changing under load transformers as well as specified net interchange between 

individual operating systems. This information is essential for the continuous 

evaluation of the current performance of a power system and for analyzing the 

effectiveness of alternative plans for system expansion to meet increased load 

demand. These analyses require the calculation of numerous load flows for both 

normal and emergency operating conditions. 

 

The load flow problem consists of the calculation of power flows and voltages of 

a network for specified terminal or bus conditions. A single-phase representation 

is adequate since power systems are usually balanced. Associated with each bus 

are four quantities: the real and reactive power, the voltage magnitude, and the 

phase angle. Three types of buses are represented in the load flow calculation 

and at a bus, two of the four quantities are specified. It is necessary to select one 

bus, called the slack bus, to provide the additional real and reactive power to 

supply the transmission losses, since these are unknown until the final solution is 

obtained. At this bus the voltage magnitude and the phase angle are specified. 

The remaining buses of the system are designated either as voltage controlled 

buses or load buses. The real power and voltage magnitude are specified at a 

voltage-controlled bus. The real and reactive powers are specified at a load bus. 

Network connections are described by using code numbers assigned to each 

bus. These numbers specify the terminals of the transmission lines and 

transformers. Code numbers are used also to identify the types of buses, the 

location of static capacitors, shunt reactors, and those network elements in which 

off nominal turns ratios of transformers are to be represented. 



 47 

The two primary considerations in the development of an effective engineering 

computer program are: (1) the formulation of a mathematical description of the 

problem; and (2) the application of a numerical method for a solution. The 

analysis of the problem must be consider the inter relation between these two 

factors. 

 

The mathematical formulation of the load flow problem results in a system of 

algebraic nonlinear equations. These equations can be established by using the 

bus frame of reference. The coefficients of the equations depend on the selection 

of the dependent variables, i.e., voltages or currents. Thus, either the admittance 

or the impedance network matrices can be used. Bus admittance matrix is used 

for computer programs in this work. 

  

The majority of load flow programs for large power system studies employ 

methods using the bus admittance matrix. This approach remains the most 

economical from the point of view of the computer time and memory 

requirements. 

 

1.2 Power flow equations  

 

The bus self and mutual admittances which compose the bus admittance matrix 

Ybus is used in solving the power flow problem. The starting point in obtaining the 

data, which must be furnished to the computer, is the single line diagram of the 

system. Transmission lines are represented by their per phase nominal π 

equivalent circuits. For each line numerical values for the series impedance Z 

and the total line charging admittance Y are necessary so that the computer can 

determine all the elements of the NxN bus admittance matrix of which the typical 

element Yij is [1] 

 

ijijijijijijij jBGijθsinYjθcosYθYY
ij

+=+=∠=                                                (A.1) 
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Other essential information includes transformer ratings and impedances, shunt 

capacitor ratings, and transformer tap settings. In advance of each power flow 

study certain bus voltages and power injections must be given values. 

 

The voltage at a typical bus i of the system is given in polar coordinates by 

 

( )iiiii δsinjδcosVδViV +=∠=                                                                        (A.2) 

 

and the voltage at another bus j is similarly written by changing the subscript from 

i to j. The net current injected into the network at bus i in terms of the elements 

Yin of Ybus is given by the summation  

 

∑
=

=+++=

N

1n
ninNiN212i11ii VYVY...VYVYI                                                             (A.3) 

 

Let Pi and Qi denote the net real and reactive power entering the network at the 

bus i. Then the complex conjugate of the power injected at bus i  is 
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=
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N
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nin

*
iii VYVjQP                                                                                         (A.4) 

 

Equation A.1 and A..2 is substituted in A..4 to obtain 

 

∑
=

−+∠=−

N

1n
ininniinii δδθVVYjQP                                                                    (A.5) 

 

Expanding this equation and equating real and reactive parts to obtain 

 

( )∑
=

−+=

N

1n
ininniini δδθcosVVYP                                                                       (A.6) 
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( )∑
=

−+=

N

1n
ininniini δδθsinVVYQ                                                                       (A.7) 

 

Equation A.6 and A.7 constitute the polar form of the power flow equations; they 

provide calculated values for the net real power Pi and reactive power Qi entering 

the network at typical bus i. Let Pgi denote the scheduled power being generated 

at bus i and Pdi denote the scheduled power demand of the load at that bus. 

Then Pi,sch = Pgi - Pdi is the net scheduled power being injected into the network at 

bus i. Denoting the calculated value of Pi by Pi,calc leads to the definition of 

mismatch ∆Pi as the scheduled value Pi,sch minus the calculated value Pi,calc,  

 

( ) calc,idigicalc,isch,ii PPPPPP −−=−=∆                                                                 (A.8) 

 

Likewise, for reactive power at bus i we have  

 

( ) calc,idigicalc,isch,ii QQQQQQ −−=−=∆                                                            (A.9)                   

 

Mismatches occur in the course of solving a power flow problem when calculated 

values of Pi and Qi do not coincide with the scheduled values. If the calculated 

values Pi,calc and Qi,calc match the scheduled values Pi,sch and Qi,sch perfectly, then it 

is said that the mismatches ∆Pi and ∆Qi are zero at bus i,, and the power 

balance equations are written 

 

( ) 0PPPPPg digiisch,iii =−−=−=
′                                                                     (A.10) 

 

( ) 0QQQQQg digiisch,iii =−−=−=
″                                                                (A.11)   

 

If bus i has no generation or load, the appropriate terms are set equal to zero in 

equation A.10 and A.11. Each bus of the network has two such equations, and 

the power flow problem is to solve equation A.6 and A.7 for the values of the 

unknown bus voltages which cause equation A.10 and A.11 to be numerically 

satisfied at each bus. There is no scheduled value Pi,sch  for bus i, then the 
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mismatch ∆Pi= Pi,sch  - Pi,calc cannot be defined and there is no requirement to 

satisfy the corresponding equation A.10  in the course of solving the power flow 

problem. Similarly, if Qi,sch is not specified at bus i, then equation A.11  does not 

have to be satisfied .   

 

Four potentially unknown quantities associated with each bus i are Pi, Qi, voltage 

angle δi and voltage magnitude |Vi|. At most, there are two equations like 

equation A.10 and A.11 available for each node, and so we must consider how 

the number of the unknown quantities can be reduced to agree with the number 

of available equations before beginning to solve the power flow problem. The 

general practice in power flow studies is to identify three types of buses in the 

network. At each bus i two of the four quantities δi, |Vi|, Pi and Qi are specified 

and the remaining two are calculated. Specified quantities are chosen according 

to the following discussion: 

 

Load buses : At each non-generator bus, called a load bus, both Pdi and Qdi 

drawn from the system by the load are known from historical records, load 

forecast, or measurement. The scheduled values Pi,sch = -Pdi and Qi,sch = -Qdi are 

known and mismatches ∆Pi and ∆Qi can be defined . δi and |Vi| values for the 

bus are being determined . 

 

Voltage-controlled buses : Any bus of the system at which the voltage 

magnitude is kept constant is said to be voltage controlled. At each generator 

bus, we may properly specify Pgi and |Vi| with Pdi is also known, we can define 

mismatch ∆Pi. Generator reactive power Qgi cannot be known in advance and so 

mismatch ∆Qi is not defined. Voltage angle δi is the unknown quantity to be 

determined and equation A.10 for Pi is the available equation. After the power 

flow problem is solved, Qi can be calculated from equation A.7. 

 

Slack Bus : The voltage angle of the slack bus serves as reference for angle of 

all other bus voltages. The usual practice is to set δslack = 00. Mismatch are not 

defined for the slack bus, because voltage magnitude |V1| is specified as the 

other known quantity along with δ1= 00.  
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To understand with P1 and Q1 are not scheduled at the slack bus, consider that; 

 

∑∑∑
===

−==

N

1n
di

N

1n
gi

N

1n
iL PPPP                                                                               (A.12) 

 

The term PL in this equation is evidently the total I2R loss in the transmission lines 

and transformers or the network. The individual currents in the various 

transmission lines of the network cannot be calculated until after the voltage 

magnitude and angle are known at every bus of the system. Therefore, PL
  is 

initially unknown. In the formulation of the power flow problem, we chose one 

bus, the slack bus, at which Pg is not scheduled. After the power flow problem 

has been solved, the difference (slack) between the total specified P going into 

the system at all the other buses and the total output P plus I2R losses are 

assigned to the slack bus. For this reason, a generator bus must be selected as 

the slack bus. 

 

1.3 Solution of Power Flow Equation  

 

The unscheduled bus voltage magnitudes and angles in the input data of the 

power flow study are called state variables since their values, which describe the 

state of the system, depend on the quantities specified at all the buses. Hence, 

the power flow problem is to determine values for all state variables by solving an 

equal number of the power flow equations based on the input data specifications. 

If there are Ng voltage controlled buses (not counting the slack bus) in the system 

of N buses, there will be (2N-Ng-2) equations to be solved for (2N-Ng-2) state 

variables. Once the state variables have been calculated, the complied state of 

the system is known and all the other quantities, which depend on the state 

variables, can be determined. Quantities such as P1 and Q1 at the slack bus, Qi 

at each voltage controlled bus, and the power loss PL of the system are examples 

of the dependent functions. [1] 

 

The function Pi and Qi of Equations (6) and (7) are nonlinear functions of the 

state variables δi and | Vi |. Hence, power flow calculations usually employ 
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iterative techniques such as the Gauss-Seidel and Newton-Raphson procedures. 

The Newton-Raphson method solves the polar form of the power flow equations 

until the ∆P and ∆Q mismatches at all buses fall within specified tolerances. The 

Gauss-Seidel method solves the power flow equations in rectangular coordinates 

until differences in bus voltages from one iteration to another are sufficiently 

small. Both methods are based on bus admittance equations. 

 

1.4 The Gauss-Seidel Method  

 

The complexity of obtaining a formal solution for power flow in a power system 

arises because of the differences in the type of data specified for the different 

kinds of buses. Although the formulation of sufficient equations to match the 

number of unknown state variables is not difficult, as we have seen, the closed 

form of the solution is not practical. Digital solutions of the power-flow problems 

follow an iterative process by assigning estimated values to the unknown bus 

voltages and by calculating a new value for each bus voltage from the estimated 

values at the other buses and the real and reactive power specified. A new set of 

values for the voltage at each bus is thus obtained and used to calculate still 

another set of bus voltages. Each calculation of a new set of voltages if called 

iteration. The iterative process is repeated until the changes at each bus are less 

than a specified minimum value. [1] 

 

For a system of N buses the general equation for the calculated voltage at any 

bus i where P and Q are scheduled is  
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The superscript (k) denotes the number of the iteration in which the voltage is 

currently being calculated and (k-1) indicates the number of the preceding 

iteration. Thus, it is seen that the values for the voltages on the right- hand side 

of this equation are most recently calculated values for the corresponding buses 
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(or the estimated voltage if k is 1 and no iteration has yet been made at that 

particular bus). 

 

Convergence upon an erroneous solution is usually avoided if the initial values 

are of reasonable magnitude and do not differ too widely in phase. It is common 

practice to set the initial estimates of the unknown voltages at all load buses 

equal to 1.0 0
0∠  per unit. Such initialization is called a flat start because of the 

uniform voltage profile assumed.  

 

Since equation A.13 applies only at load buses where real and reactive powers 

are specified, an additional step is necessary at voltage-controlled buses where 

voltage magnitude is to remain constant. 

 

When voltage magnitude rather than reactive power is specified at bus i, the real 

and imaginary components of the voltage for each iteration are found by first 

computing a value for the reactive power 
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which has the equivalent algorithmic expression 
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where Im means “imaginary part of” and the superscripts indicate the relevant 

iteration. Reactive power Qi
(k) is evaluated by equation A.15 for the best previous 

voltage values at the buses, and this value of Qi
(k) is substitute in equation A.13  

to find a new value of Vi
(k). The components of the new Vi

(k) are then multiplied by 

the ratio of the specified constant magnitude |Vi| to the magnitude of Vi
(k) found by 

equation A.13. The result is the corrected complex voltage of the specified 

magnitude.       

 



 54 

Experience with the Gausse-Seidel method of solution of power-flow problems 

has shown that the number of iterations required may be reduced considerably if 

the correction in voltage at each bus is multiplied by some constant that 

increases the amount of correction to bring the voltage closer to the value it is 

approaching. The multiplier that accomplishes this improved convergence is 

called an acceleration factor. The difference between the newly calculated 

voltage and the best previous voltage at the bus is multiplied by the appropriate 

acceleration factor to obtain a better correction to be added to the previous value. 

More generally, for the bus i during iteration k the accelerated value is given by 

 

( )acc,
)1k(

i
)k(

iacc,
)1k(

i
)k(

iacc,
)1k(

iacc,
)k(

i VVαVVαV)α1(V −−−
−+=+−=                    A.16                 

 

In this equation α is the acceleration factor. If α=1, then the Gausse-Seidel 

computed value of Vi is stored as the current value. In power-flow studies α is 

generally set at about 1.6 and cannot exceed 2 if convergence is to occur.  

 

The sequence of steps for the load flow solution by the Gauss-Seidel iterative 

method is shown in Figure A.1. In this flow chart voltage of the bus shown by E 
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Figure A.1 Load flow solution by the Gauss-Seidel iterative method using YBUS 

 

1.5 The Newton-Raphson Method Power-Flow Solution  

 

The load-flow problem can be solved by the Newton-Raphson method using a 

set of nonlinear equations to express the specified real and reactive powers in 

terms of bus voltages. The power at bus p is [2] 

 

p
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Substituting from the network performance equation  BUSBUSBUS EYI =  for Ip  in 

equation A.17.  
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Since Ep= ep + jfp and Ypq = Gpq – j Bpq, equation A.18 becomes   
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pqqpqqppqqpqqpp BeGffBfGeeP                                            (A.19)                                                              
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1q
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This formulation results in a set of nonlinear simultaneous equations, two for 

each bus of the system. The real and reactive powers Pp and Qp are known and 

the real and imaginary components of voltage ep and fp are unknown for all buses 

except the slack bus, where the voltage is specified and remains fixed. Thus 

there are 2(n-1) equations to be solved for a load flow solution. 

 

The Newton-Raphson method requires that a set of linear equations to be formed 

expressing the relationship between the changes in real and reactive powers and 

the components of bus voltages as follows: 
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where the coefficient matrix is the Jacobian and the nth bus is the slack. In matrix 

form, equation A.21 is  
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Equation  for determining the elements of the Jacobian  can be derived from the 

bus power equations. The real power from the equation A.19  is  
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Differentiating, the off-diagonal elements of J1 are 
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and the diagonal elements of J1 are 
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However, the equation for the current at bus p is 
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which  can be separated into the real and imaginary parts 
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Therefore, the expression for the diagonal elements of J1 can be simplified by 

substituting the real component of current cp in equation A.25. to obtain 
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From equation A.23, the off- diagonal elements of J2 are 
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and the diagonal element of J2 are 
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The imaginary component of current from equation A.27 is substitute in A.30 to 

obtain  
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The reactive power from equation A.20 is   
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Differentiating, the off- diagonal elements of J3 are 
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and the diagonal elements of J3 are 
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The imaginary component of current from equation A.27 is substituted in 

equation A.34 to obtain  
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From equation A.32, the off-diagonal elements of J4 are 
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and the diagonal element of J4 are  
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The real component of current from equation A.27 is substituted in equation A.37 

to obtain 
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Given an initial set of bus voltages, the real and the reactive powers are 

calculated from equations A.19 and A.20. The changes in power are the 

differences between the scheduled and calculated values  
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The estimated bus voltages and calculated powers are used to compute bus 

currents in order to evaluate the elements of the Jacobian. The linear set of 

equations A.21 can be solved for ∆ep and ∆fp, p=1, 2, 3, . . . , n-1, by a direct or 

an iterative method. Then, the new estimates for bus voltages are  
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The process is repeated until ∆Pp
k  and ∆Qp

k for all buses are within a specified 

tolerance.  

 

1.5.1 Voltage Control Buses 

 

The equations for a voltage controlled bus p are [2] 
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and  
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where equation A.42 replace the equation for the reactive power. The matrix 

equation relating the changes in bus powers and the square of voltage 

magnitudes to changes in real and imaginary components of voltage is  
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The elements of the sub matrices J1, J2, J3 and J4 are calculated as shown before. 

The off-diagonal elements of J5, from equation A.42, are 
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and the diagonal elements are  
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Similarly, the off-diagonal elements of J6 are 
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and the diagonal elements are  
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The change in the squire of the voltage magnitude at bus p is 
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If sufficient reactive capability is not available to hold the desired magnitude of 

bus voltage the reactive power must be fixed at a limit. In this case the bus is 
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treated as a load bus with fixed reactive power. The sequence of steps for the 

load flow solution by the Newton-Raphson method is shown in Figure A.2. 
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Figure A.2.Load-flow solution by the Newton-Raphson method using Ybus. 
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1.6 Application For Load Flow  

 

1.6.1 IEEE 14 Bus System 

 

IEEE 14 bus system data and load flow results are shown below. The computer 

program designed for this thesis is tested by this system. Gauss-Seidel method is 

used in this application and the result shown in Table A.6 is taken. The results 

are very close to the test system. 

 

Table A.1 Bus data and load flow result 

 

Bus Voltage Generation Load 

Bus 

No 
Magnitude 

per unit 

Phase 

angle 

degrees 

Real MW 
Reactive 

MVAR 
Real MW 

Reactive 

MVAR 

1 1.060 0.0 232.4 -16.9 0.0 0.0 

2 1.045 -4.98 40 42.4 21.7 12.7 

3 1.010 -12.72 0.0 23.4 94.2 19.0 

4 1.019 -10.33 0.0 0.0 47.8 3.9 

5 1.020 -8.78 0.0 0.0 7.6 1.6 

6 1.070 -14.22 0.0 12.2 11.2 7.5 

7 1.062 -13.37 0.0 0.0 0.0 0.0 

8 1.090 -13.36 0.0 17.4 0.0 0.0 

9 1.056 -14.94 0.0 0.0 29.5 16.6 

10 1.051 -15.10 0.0 0.0 9.0 5.8 

11 1.057 -14.79 0.0 0.0 3.5 1.8 

12 1.055 -18.07 0.0 0.0 6.1 1.6 

13 1.050 -15.16 0.0 0.0 13.5 5.8 

14 1.036 -16.04 0.0 0.0 14.9 5.0 
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Table A.2 Line data 

 

Line Impedance 
Line No Between Buses 

R per unit X per unit 

Half line charging 

susceptance per unit 

1 1-2 0,01938 0,05917 0,02640 

2 2-3 0,04699 0,19797 0,02190 

3 2-4 0,05811 0,17632 0,01870 

4 1-5 0,05403 0,22304 0,02460 

5 2-5 0,05695 0,17388 0,01700 

6 3-4 0,06701 0,17103 0,01730 

7 4-5 0,01335 0,04211 0,0064 

8 5-6 0,0 0,25202 0,0 

9 4-7 0,0 0,20912 0,0 

10 7-8 0,0 0,17615 0,0 

11 4-9 0,0 0,55618 0,0 

12 7-9 0,0 0,11001 0,0 

13 9-10 0,03181 0,08450 0,0 

14 6-11 0,09498 0,19890 0,0 

15 6-12 0,12291 0,25581 0,0 

16 6-13 0,06615 0,13027 0,0 

17 9-14 0,12711 0,27038 0,0 

18 10-11 0,08205 0,19207 0,0 

19 12-13 0,22092 0,19988 0,0 

20 13-14 0,17093 0,34802 0,0 

 

Table A.3 Transformer data 

 

Transformer Between Buses Tap setting 

1 4-7 0,978 

2 4-9 0,969 

3 5-6 0,932 
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Table A.4 Shunt capacitor data 

 

Bus Number Susceptance per unit 

1 0,978 

 

Table A.5 Regulated bus data 

 

Reactive Power Limits 
Bus No 

Voltage magnitude 
per unit  Minimum MVAR Maximum MVAR 

2 1.045 -40.0 50.0 

3 1.010 0.0 40.0 

6 1.070 -6.0 24.0 

8 1.090 -6.0 24.0 

 

Table A.6 Computer program results 
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APPENDIX B 

 

 

JACOBIAN MATRIX 

 

 

Generator outputs are calculated by using Jacobian matrix. The following 

equation is used for this purpose: 
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The Jacobian matrix elements can be obtained by using the polar coordinates as 

follow: The polar form of bus voltage and bus admittance at bus p and between 

bus p and q respectively are  
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anp power at bus p is  
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Substituting equation B.2 and B.3 into the equation B.4,  
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Since, 

 



 70 

( ) ( )qppqqppq
qppqj sinj)cos(e δ−δ+θ−δ−δ+θ=δ−δ+θ−                                     (B.6) 

 

The real and the imaginary of the components of the power are 
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The elements of the Jacobian are calculated from equations B.7 and B.8 

For J1, the off-diagonal elements  
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For J2 , the off-diagonal elements  
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For J3, the off-diagonal elements  
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For J4 , the off-diagonal elements  
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APPENDIX C 

 

 

GENERATOR OUTPUT RESCHEDULING AND GENERATOR TERMINAL 

VOLTAGE CONTROL 

 

Power system is very large and includes a lot of machines, buses in it. Therefore, 

one of the generator operations doesn’t have much of an effect on the power 

system. When a generator operates in parallel with a large system, the frequency 

and the terminal voltage of all the machines must be the same. If its governor set 

point increased, the no-load frequency of the generator shifts upward. Since the 

frequency of the system is unchanged, the power supplied by the generator is 

increases. Notice in the phasor diagram Figure C.1 that EA.sinδ (VФ is constant) 

has increased, while the magnitude of EA (=K.Ф.ω) remains constant, since both 

the field current IF and the speed of the rotation ω are unchanged. In section 3.5 

active power value is determined and it can be adjusted by governor system. As 

the governor set points are further increased, the no-load frequency increases 

and the power supplied by the generator increases. EA remains at constant 

magnitude while EA.sinδ is further increased by changing rotor angle δ.  
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Figure C.1 The effects of increasing the governor’s set point on the phasor 

diagram 
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If the power supplied is constant as the field current is changed, then the 

distance proportional to the power in the phasor diagram (IA.cosθ and EA.sinδ ) 

can not change. When the field current is increased, the flux Ф increases and 

therefore EA=K.Ф.ω increases. If EA increase, but EA.sinδ must remain constant, 

then the phasor EA must “slide” along the line of constant power, as shown in 

Figure C.2. Since VФ is constant, the angle of jXs.IA changes as shown, and 

therefore the angle and magnitude of IA change. As a result the distance 

proportional to Q (IA.sinθ) increases.  
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Figure C.2 The effects of increasing the generator’s field current on the phasor 

diagram  

 

Desired rotor angles δpd are adjusted by satisfying the determined active and 

reactive powers which are determined in section 3.5. 
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