

MINIMUM CONCAVE COST MULTICOMMODITY NETWORK DESIGN

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH SAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. İsmet ERKMEN
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI
Supervisor

Examining Committee Members

Prof. Dr. Hasan GÜRAN (METU, EE)

Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI (METU, EE)

Prof. Dr. Semih BİLGEN (METU, EE)

Dr. Ece Ş. (GÜRAN) SCHMIDT (METU, EE)

Erkan Ünal, M.Sc. (PETSOFTEL)

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : Fatih SAY

Signature :

v

ABSTRACT

MINIMUM CONCAVE COST MULTICOMMODITY

NETWORK DESIGN

SAY, Fatih

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI

September 2005, 90 pages

Minimum Concave Cost Multicommodity Network Design Problem arises in many

application areas, such as transportation planning, distributed energy system and

especially both circuit and packet switching backbone network design. Exact

concave optimization algorithms have been developed, but these methods are

applicable if the network size is small. Therefore, these problems are usually solved

by non-exact iterative methods.

In this thesis work, methods proposed for circuit switching and packet switching

network design are evaluated in detail. After a comprehensive literate survey,

Yaged’s Linearization, Minoux greedy and Minoux accelerated greedy methods are

found to be applicable to circuit switching network design when both solution

quality and computational time is considered. Previously, it has been found that

Minoux greedy methods may create routings with cycles and in order to eliminate

these cycles a modification has been proposed. In this work, this modification is

extended and evaluated in detail. Similarly, Gerla and Kleinrock’s Concave Branch

vi

Elimination, Gersht’s greedy and Stacey’s Concave Link Elimination methods are

investigated within the context of packet switching network design.

All of these methods consider aggregate flows on each link simultaneously re-

routing more than one commodity in one step. This thesis work also considers an

alternative disaggregate approach, where only one commodity is handled at a time.

Finally, algorithms proposed for circuit switching network design problem are

adapted to the packet switching case and an extensive comparative computational

study is performed to point out the best method with respect to time and solution

quality for a number of networks and cost structure. Computational results have

shown that modification on Minoux greedy to eliminate cycles leads to considerable

improvements and the disaggregate approach gives the best result in some networks

and cost structure.

Keywords: Concave Cost Network Design, Multicommodity Flow Problem,

Disaggregate Local Search.

vii

ÖZ

ÇOK ÜRÜNLÜ EN KÜÇÜK İÇBÜKEY MALİYETLİ AĞ

TASARIMI

SAY, Fatih

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Tez Yöneticisi : Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI

Eylül 2005, 90 sayfa

Çok ürünlü içbükey maliyetli en küçük ağ tasarımının başta devre ve paket

anahtarlamalı omurga ağ tasarımı olmak üzere; taşımacılık planlaması, enerji

dağıtım şebekeleri gibi bir çok alanda uygulamaları vardır. Bu problemi optimum

çözen yöntemler geliştirilmiş olmasına rağmen, işlem süresi düşünüldüğünde bu

yöntemler sadece küçük ölçekli ağlara uygulanabilmektedir. Bu nedenle, bu tür

problemler kesin olmayan tekrarlama yöntemleriyle çözülmektedir.

Bu çalışma kapsamında devre ve paket anahtarlamalı ağ tasarımı için önerilen

yöntemler detaylı olarak incelenmektedir. Yapılan kapsamlı literatür araştırması

sonucunda Yaged tarafından önerilen doğrusallaştırma metodu, Minoux’un önerdiği

bağlantı azalma ve yine Minoux’un önerdiği hızlandırılmış bağlantı azaltma

yöntemlerinin devre anahtarlamalı ağ tasarımlarına uygun olduğu görülmüştür.

Minoux’un önerdiği yöntemlerde döngü içeren rotalar oluşabileceği önceki

çalışmalarda gözlenmiştir. Bu çalışma kapsamında, Minoux yöntemleri için

viii

önerilen değişiklikler detaylarıyla incelenmiş ve geliştirilmiştir. Benzer şekilde,

yapılan araştırmalar sonucunda, Gerla ve Kleinrock tarafından önerilen içbükey kol

eleme, Gersht’in önerdiği bağlantı azaltma ve Stacey’in önerdiği içbükey bağlantı

eleme metotları paket anahtarlamalı ağ tasarıma uygun yöntemler olarak bulunmuş

ve detaylı olarak değerlendirilmiştir.

İncelenen tüm yöntemler, tek adımda her bağlantı üzerindeki toplam trafiği yeniden

yönlendirmektedir. Bu çalışmada, her aşamada sadece bir ürünün(trafiğin) ele

alındığı alternatif bir ayrıştırma yöntemi de değerlendirilmiştir. Ayrıca devre

anahtarlamalı ağ tasarımı için önerilen yöntemler paket anahtarlı ağ tasarımlarına

uyarlanmıştır. Yöntemlerin çözüm kalitesini incelemek ve çeşitli maliyet yapıları ve

ağ tipleri için hangi yöntemin en iyi çözümü ürettiğini görmek için kapsamlı bir

hesaplama çalışması yapılmıştır. Çalışma sonuçlarında, Minoux metoduna yapılan

döngü yok etme değişikliklerinin çözüm kalitesinde iyileştirmeler sağladığı ve

alternatif ayrıştırma yaklaşımının çeşitli ağ tiplerinde en iyi çözümü sağladığı

görülmüştür.

Anahtar Kelimeler: İçbükey maliyetli ağ tasarımı, Çok ürünlü akış problemi,

Ayrıştırılmış yerel arama yöntemi.

ix

To my wife

&

My little son

For their Love & Support

x

ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor Asst. Prof. Dr. Cüneyt F.

Bazlamaçcı for his guidance and support during the preparation of this study.

I wish to express my thanks to my colleagues and Aselsan for computational

resource support during this study.

Finally, I wish to express my gratitude to my wife Şifa SAY for her precious

support, assistance and unattainable understanding at every stage of this study.

xi

TABLE OF CONTENTS

PLAGIARISM..iii

ABSTRACT...iv

ÖZ...vi

ACKNOWLEDGEMENTS..ix

TABLE OF CONTENTS..x

LIST OF TABLES ….…..xii

LIST OF FIGURES ….…..xiii

CHAPTER

1. INTRODUCTION ...1

2. PROBLEM DEFINITION..5

2.1. Minimum Concave Cost Multicommodity Circuit Switching Network

Design Problem …..………………………………………...........................5

2.2. Minimum Concave Cost Multicommodity Packet Switching Network

Design Problem …...……………………………………………7

3. LITERATURE SURVEY ..10

4. EXISTING APPROACHES ..…………………………………….….....15

4.1. Circuit Switching Network Design Methods ….................……………….16

4.1.1. Yaged’s Linearization Method ...16

4.1.2. Minoux Greedy Method ...17

4.1.3. Minoux Accelerated Greedy Method ..20

4.2. Packet Switching Network Design Methods…………….…22

4.2.1. Gerla and Kleinrock’s Concave Branch Elimination Method22

4.2.1.1.Delay Analysis…….………...22

xii

4.2.1.2.The Capacity Assignment (CA) Problem...................................24

4.2.1.3.The Routing (Flow Assignment) Problem..................................24

4.2.1.4.The Capacity and Flow Assignment (CFA) Problem.................25

4.2.1.5.Topological Design …..27

4.2.2. Gersht and Weihmayer’s Joint Optimization Method......................27

4.2.3. Stacey, Eyers and Anido’s Concave Link Elimination Method30

5. MODIFICATION ON MINOUX GREEDY ALGORITHMS….............33

6. DISAGGREGATE LOCAL SEARCH METHOD ………………..........38

7. ADAPTATION OF CIRCUIT SWITCHING METHODS to PACKET

SWITCHING MCMNDP ……………...……………………………….44

7.1. Equal Link Utilization ………………………………..…………………..44

7.2. Adaptation Analysis ………………………………..…………………….47

8. COMPUTATIONAL STUDY ..49

8.1. Yaged’s Linearization Method Evaluation …………..……………….......51

8.2. Modified Minoux Greedy Method Evaluation ….…..…………………....53

8.3. Disaggregate Local Search Method Evaluation ...…..…………………….54

8.4. Circuit Switching Methods Comparison ………..…..…………………….56

8.4.1. Networks with Large Economies of Scale (α=0.3) ………………..57

8.4.2. Networks with Small Economies of Scale (α=0.7) ………..............59

8.4.3. Hybrid Networks (α=varying) …………………….........................60

8.5. Packet Switching Methods Comparison ………..…..…………………….61

8.5.1. Networks with Large Economies of Scale (α=0.3) ……...................62

8.5.2. Networks with Small Economies of Scale (α=0.7) ………..............64

8.5.3. Hybrid Networks (α=varying) …………………….................................65

9. CONCLUSIONS ……………..68

REFERENCES ...…………...…..……………………………….……70

APPENDIX
Computational Results………………….………………………………………….74

xiii

LIST OF TABLES

TABLE

8.1 Solution quality comparison for some number of iteration in Disaggregate Local

Search in random order ..…………………………………………………………55

8.2 Recommended circuit switching method for each network class84

8.3 Recommended packet switching method for each network class89

A.1 Computational Results for various pricing curves in Yaged’s Linearization

Method ...74

A.2 Computational Results for modification method for Minoux greedy76

A.3 Computational Results for evaluation of Disaggregate Local Search.............77

A.4 Quality comparison of circuit switching methods ..81

A.5 Average computational time requirements circuit switching methods84

A.6 Quality comparison of packet switching methods ...86

A.7 Average computational time requirements packet switching methods89

xiv

LIST OF FIGURES

FIGURES

4.1 Discrete cost function usage...……15

5.1 A cycle after re-routing ..34

8.1 Link cost function used in computational study ...50

1

CHAPTER 1

INTRODUCTION

The problem of minimum cost network design in order to satisfy a predefined set of

system requirements (such as traffic demands, timing constraints, reliability issues,

desired level of security, quality of service and so on) while minimizing the total

network cost, arises in many application areas, such as, transportation planning,

plant location and capacity expansion, production planning, waste water resource

management, distributed systems, energy systems and especially in computer and

telecommunication networks, providing a variety of services, such as voice, data

and video to subscribers.

The network under consideration in this work is a backbone communication

network, or a computer network. However, this work can easily be extended to the

other network types, like transshipment or energy distribution systems.

The marginal cost of links in these backbone networks decreases as the link

capacity increases, i.e. these links show strong economies of scale. Therefore,

concave cost functions are used to model the link costs. The traffic requirements in

these backbone networks, requires a number of different source to destination pairs

hence the network is multicommodity network. Therefore, the problem discussed in

this work is called Minimum Concave Cost Multicommodity Network Design

Problem (MCMNDP).

In addition to backbone networks, the MCMNDP is applicable to private networks,

which are based on leased lines. As the leased lines are billed on a fixed rate which

2

is independent of usage and they could be reconfigured to accommodate changes in

traffic patterns and price and to provide improved reliability, it is possible to

produce significant cost benefits by carefully approximating the cost using

analytical concave cost functions and using effective algorithms.

The minimum cost network design process involves, the configuration of the

backbone network, finding the route of network traffic and finding the link

capacities subject to certain performance requirements. This task is enormous and

there is no such thing as a closed-form algorithm for optimizing a network topology

for most applications [22]. In conventional approaches, each component of the

network is treated as a separate optimization task. However, it is not possible to

optimize the network cost simply by overlying optimized sub-networks.

Multicommodity flow problem with linear link costs in addition to fixed link

installation costs, called as the fixed charge problem in the literature, has been

studied earlier in [2,17] and shown to be an NP-hard problem. MCMNDP is a

generalization of the uncapacitated fixed charge network design problem; therefore

it is NP-hard, too. As a result, heuristic methods are used to solve MCMNDP.

The transmission media, like terrestrial microwave radio, communication satellite,

optical fiber, in current telecommunications industry show large economies of scale,

when their large bandwidth is well utilized. In the area of network design, discrete

link costs are usually approximated by a continuous function to simplify the design

problem. Although linear and offset-linear (fixed charge) cost functions simplify the

problem, and are commonly used, they cannot model the economies of scale that

often exist in the pricing of links. In this work concave link cost function is used to

capture the effect of economies of scale in link capacity pricing.

In order to make use of economies of scale, different traffic requirements, such as

voice, data and video, are combined. In this way, excess bandwidth becomes

available with a small marginal cost. This thesis work is concerned with providing a

minimum cost solution to the topological network design problem arising in the

3

backbone design phase, with link costs functions modeled with general concave

functions.

Backbone communication network models involving concave-cost functions have

been studied by many researchers. Among them, Yaged [25, 26], Zadeh [27],

Minoux [19, 20], Gerla and Kleinrock [11], Gersht and Weihmayer [12] and Stacey,

Eyers and Anido [23] have proposed methods applicable to MCMNDP. All these

methods are heuristic of the add/delete type, based on routing neighborhood

properties. Due to the inherent difficulty imposed by concave costs, the models

studied do not take into account any side constraints or capacities. They are also

static models. However, they are still useful in the design of backbone networks

within an iterative and hierarchical design framework.

In view of the potentially large sizes of the networks involved, general MCMNDP

are solvable only by non-exact, approximate algorithms. Existing such algorithms

fall into two categories: those which try to locate a local optimum and those which

solve a series of approximations to the original problem, terminating when some

nearness criterion is satisfied. The six methods which fall into the first category,

namely Yaged’s linearization [25] and Minoux’s greedy [19,20] , Minoux’s

accelerated greedy [19,20], Gerla and Kleinrock’s Concave Branch Elimination

[11], Gersht and Weihmayer’s greedy [12] and Stacey, Eyer and Anido’s Concave

Link Elimination [23] methods are not fully investigated, although the Yaged’s and

Gerla and Kleinrock’s methods are widely referred. The former three methods are

proposed for circuit switching networks while the latter three algorithms for packet

switching networks. All these algorithms use aggregate (or total) flow and consider

re-routing more than one origin-destination flow (commodity) when an edge is to be

deleted. The algorithm developed in this work, namely Disaggregate Local Search,

belongs to the same category; however, it proposes a local search technique based

on re-routing of only a single commodity at each iteration. Though simple, this

approach proved to be highly effective and it is conjectured that the local optimality

conditions defined for the proposed local search are stronger than those on which

existing methods are based.

4

In the present work, an improvement to the Minoux greedy algorithms, which leads

to solutions of higher quality, is also evaluated. These improvements are based on

the observation that these algorithms can get trapped in local optima which have

unnecessary excess flow capacities. It is demonstrated that these excess capacities

cannot be removed completely by a previously known strategy proposed by

Minoux.

It has been realized that, the methods proposed for circuit switching MCMNDP can

also be adapted to packet switching MCMNDP with some adaptation techniques.

Gerla and Kleinrock’s capacity assignment and Dutta and Lim’s equal link

utilization methods are evaluated as adaptation technique.

The rest of the thesis is organized as follows. First a formal definition of

MCMCNDP is given for both circuit and packet switching networks. Then a

literature survey in the backbone network design and concave cost flow area is

given. In chapter 4, existing methods which are applicable to MCMNDP and in

chapter 5, the modification to Minoux greedy algorithms are reviewed. Chapter 6

describes the Disaggregate Local Search method. Then the adaptation techniques

and adaptation of circuit switching methods to packet switching MCMNDP is given

in Chapter 7. Finally an extensive empirical computational study carried out to

evaluate the performance of the methods in chapter 8. Chapter 9 concludes the

thesis.

5

CHAPTER 2

PROBLEM DEFINITION

In the literature, two types of backbone networks are studied within the context of

MCMNDP. In the first type, the network is composed of circuit switching links and

there are no performance, fault tolerance and redundancy constraints. In the second

type, packet switching links are used for the backbone network and some

performance and reliability constraints must be met. Below, the MCMNDP

associated with circuit switching and packet switching links are described in detail.

2.1 Minimum Concave Cost Multicommodity Circuit
Switching Network Design Problem

This type of network design problems are encountered in transportation planning,

waste water networks, energy distribution, private networks and backbone

communication networks consisting of circuit switching links, such as telephony

networks. In practice, there is an upper limit for the channel capacity. However, in

this model, for the sake of simplicity the links are assumed to have no upper bound

on the link capacity.

Minimum cost multicommodity network design problem for circuit switching

networks can be described as follows. Given an undirected graph G=[X,U]

consisting of a set X of n nodes and a set U of m links, coupled with n-vectors

()k
i

k bb = (demand vector) and constant kr (demand value) for every Kk ∈ , where

6

K is the set of commodities. Let uψ be the aggregate flow on link u and a concave-

cost function)(uu ψΦ for each link u, solve

() ()

()
(){ }(){ }

()
()

∈∀≤

∈∀=

=−

=

=−

Φ=Φ

=

∑

∑ ∑

∑

∈∋ ∈∋

∈

3 0

2

1
otherwise 0

)(if
)(if

subject to

min

, ,

Uu

Uu

ktjr
ksir

P

u

k
k
uu

Xjij Xijj

k

k

k
ji

k
ij

Uu uu

ψ

ϕψ

ϕϕ

ψψ

assuming all demands are integral. k
uϕ indicates the k-th individual flow component

on link u and. Constraint (1) is the standard node conservation of flow for each

commodity k. Multicommodity flow requirements are in fact a list of source sink

pairs Kkktks ∈∀)(),(with corresponding prescribed flow values kr , each kr

representing, for instance the traffic quantity which should be sent between s(k) and

t(k).

This general model is more suitable for communication network synthesis although

it might represent other problems equally well. Each commodity represents distinct

traffic requirement or the same traffic requirement with different points of origin

and destination (for example, a message or channel from Ankara to Istanbul is a

commodity distinct from a message or channel from Ankara to Antalya).

Each concave-cost uΦ is a non-decreasing and continuous function on [0, +∞) of

the aggregate flow uψ on link u. In real problems, cost function are often closely

approximated by analytic formulae of the form () u
uuuuu lF αψψ +=Φ)(where uF

represent the fixed installation cost and 0>ul . uα represents the link concavity

value and 10 << uα [20].

7

The directed version of the MCMNDP was studied in detail in [3]. The major

difference between the two is the underlying network. When bidirectional links are

involved, the model is algebraic, that is, flows can be positive or negative,

depending on the arbitrarily chosen direction convention. Therefore, the objective to

be minimized is a function of the sum of absolute values of opposite flows on each

link. In the context of telecommunication network design, the number of

commodities is potentially high.

2.2 Minimum Concave Cost Multicommodity Packet
Switching Network Design Problem

Minimum Concave Cost Multi Commodity Packet Switching Network Design

Problems arise again in backbone telecommunication and computer network design.

Due to the nature of the packet switching techniques, an additional performance

requirement exists in such networks.

The design of packet switching networks is different and more complex than the

design of circuit switching networks. The use of packet switching techniques

requires the analysis of the relationship between packet delay, line utilization and

buffer utilization.

In packet switching networks, a maximum packet delay from source to destination is

generally required as the performance criterion. If the network topology and routing

is known and the network traffic is purely deterministic, it is possible to satisfy the

maximum packet delay requirement between each source and destination. However,

when the network is designed based on the expected traffic requirement, it is

difficult to satisfy the delay constraint between each source and destination pair. In

this network design problem, average packet delay of the network is used as the

performance criterion, instead.

8

The network to be designed is modeled as an undirected network G = (X, U), where

X is the set of n network nodes and U is the set of m links. Capacity cij is assigned to

each link () Uji ∈, to allow it to carry traffic in either direction (i.e., cij = cji).

Typical performance related constraints include a limit on the maximum average

queuing delay Tmax in the network, and a limit on the number, or total length, of

links in the path between origin and destination nodes. Protecting the network

against link failures can be achieved by constraining the minimum degree of each

node producing a k-connected network. For simplicity, we do not include

constraints on the path length or connectivity of the network in our mathematical

formulation of the problem. The ability to enforce these types of constraints is often

included in the design of algorithms.

Viewing the MCMNDP as a multicommodity flow problem, each node in the

network can be considered as the source of a commodity, varying volumes of which

must be delivered to the other nodes in the network. Each commodity, Kk ∈ , has a

single source node ks , a set of destination nodes)(kk
i sNt −∈ and a volume of

traffic, k
ir , to be delivered from ks to each destination k

it . Let ∑∈
=

Xi
k

i
k rr be the

total traffic for commodity k. Also, let jiiju ψψψ += denote the total traffic flow on

link u=(i, j), and k
ijϕ the total flow of commodity k on link (i, j). Using this

notation the Minimum Concave Cost Multi Commodity Packet Switching Network

Design problem is formulated as follows:

() ()

()
(){ }(){ }

 ()
()
()

∈∀≥≥
≤

∈∀≤+

=−

=

=−

Φ=Φ

= ∑ ∑

∑

∈∋ ∈∋

∈

4),(0 ,0
3 TDelay Network Average

2),(

1
otherwise 0

)(if
)(if

subject to

min

max

jiij

, ,

Uji

Ujic

ktjr
ksir

cc

P

ijij

ij

Xjij Xijj

k

k

k
ji

k
ij

Uu uu

ψψ

ψψ

ϕϕ

9

where Qy is a ceiling operator over the set of allowable link capacity values, Q.

That is, Qy denotes the smallest value from Q, not less than y. Constraint (1) is

standard node conservation of flow for each commodity k. Constraint (2) ensures

that the capacity assigned to a link is greater than the traffic on the link. Constraint

(3) employs Gerla and Kleinrock’s expression [11] for the maximum average

queuing delay, to ensure that the capacity assigned to each link is such that the

average queuing delay does not exceed Tmax (as specified by the network designer).

Constraint (4) ensures non-negativity in the decision variables.

10

CHAPTER 3

LITERATURE SURVEY

In the literature, many variations of MCMNDP have been studied and solution

procedures have been proposed both for static and dynamic cases. Circuit switching

network design studies [19, 25, and 27] as well as packet switching network design

examples [11,12,23] exist. In these works, the traffic for each origin destination pair

is assumed to be known and deterministic. It is also assumed that the capacity

utilization on every arc can be 100% for circuit switching links or at a desired level

to meet the performance requirements for packet switching links.

Capacity expansion problems have also been studied within the context of

MCMNDP [8]. An extensive literature survey can be found in [28]. The following

paragraphs present a complementary literature survey for the MCMNDP.

Dutta and Lim [8] addressed the problem of deciding where, when and how much

transmission capacity should be installed over a multi-period horizon, to meet

traffic requirements at minimum total discounted cost, while maintaining an

acceptable performance level. Their model allows traffic among existing nodes to

increase, new nodes to be added to the network and its topology to change over

time. This model is formulated as an integer-programming problem and a

Lagrangian relaxation based solution method is proposed. Capacity and routing

decisions are made jointly over time.

Amiri and Pirkul [1] studied a minimum cost, multicommodity network flow

problem in which the total cost is piecewise linear, concave of the total flow along

the arcs. They also extend the problem to the case of piecewise nonlinear, concave

11

cost function. New mathematical programming formulations of the problems are

presented. Efficient solution procedures based on Lagrangian relaxations of the

problems are developed. This new formulation produces better results compared to

[2]. In addition, experiments has shown that the piecewise nonlinear cost function

estimates the discrete cost function more accurately than the piecewise linear

functions.

Yaged [25] proposed a fixed-point algorithm based on successive approximation

that converges in a finite number of steps to a local optimum. It is simple and

computationally effective. However, the local minimum obtained is highly

dependent on the starting solution, i.e., the algorithm strongly tends to produce an

extreme point that, in sense, is “the closest” to the starting point. Therefore, the

result is good if the starting solution is already a good approximation. This work has

been extended to the dynamic routing problem in another study by Yaged [27].

Yaged’s linearization method based on Kuhn-Tucker optimality conditions. Minoux

[19, 20] proposed another optimality condition that is stronger than Kuhn-Tucker.

He developed a greedy algorithm for the concave cost networks, which eliminates

one uneconomical link at each iteration. An acceleration method for this greedy,

called accelerated greedy method is also introduced.

In [11], Gerla and Kleinrock assumed link cost functions to be linear or concave to

reflect the effects of economies of scale in the pricing of link capacity. By using a

flow deviation technique linearization of concave link cost functions and continuous

approximations to discrete capacity variables, Kleinrock and Gerla developed a

Concave Branch Elimination (CBE) procedure to solve the Minimum Concave Cost

Multicommodity Packet Switching Network design problem. A similar design

procedure called the Cut-Saturation (CS) technique is also presented in [11]. Like

the CBE procedure, it employs the flow deviation technique to route traffic in the

network.

12

Another method proposed by Kleinrock and Gerla [11] is the Branch Exchange

Method (BXC). This method starts from an arbitrary topological configuration and

reaches a local minimum by means of local transformations (a local transformation,

often called branch exchange, consists of elimination of one or more old links and

the insertion of more new links). In [11], it has been shown than BXC method

requires more computational time compared to CBE with a worse quality network

solution.

Gersht and Weihmayer [12] formulate the TCFA problem following Kleinrock and

Gerla [11] but develop a design procedure based on the greedy elimination of links.

Gersht’s algorithm assumes only that link cost functions are concave and

continuous, without relying on the exact form of the function. Gersht claims that his

procedure produces network designs whose cost is within a few percent of those

produced by much more sophisticated algorithms in use within IBM.

While Gersht’s algorithm performs well, its processing requirements are such that it

is applicable for small network design problems only. Stacey, Eyers and Anido [23]

present a Concave Link Elimination (CLE) procedure, based on Gersht’s greedy

link elimination procedure. This algorithm is shown to perform at least as well as

Gersht’s procedure and to be significantly faster than both the CBE and Gersht

procedures. In addition, they formulate a lower bounding problem which they solve

using a continuous branch-and-bound procedure to assess the quality of the design

procedures.

Stacey, Eyers and Anido [23] claimed that the only methods applicable to concave

topology capacity and flow assignment problem are Gerla and Kleinrock’s CBE

method and Gersht’s greedy. Minoux accelerated greedy algorithm is evaluated as

non-applicable approach because it is possible to have cycles in accelerated greedy

method and the monotonocity assumption is not valid when the link cost function is

concave. A comparison of CBE, CLE and Gersht greedy has been performed and

according to results, CLE seems to be the most effective method.

13

A polynomial time dynamic-programming algorithm for MCMNDP has been

proposed by Ward [29]. However, this algorithm is applicable to strong-series-

parallel networks, which are encountered in inventory management and capacity

planning, not in backbone telecommunication/computer networks. In this work a

characterization of extreme flows in strong-series-parallel networks and an

algorithm to find these extreme flows have been given. The computational time

complexity of the proposed algorithm is O(A(N+K)), where A is the arc number, N

is the number of nodes and K is the number of commodities in the network.

A fast design algorithm for mesh or distributed circuit switched networks, called

MENTOR, is presented in [13]. The goal of the algorithm is not to find the optimal

solution but a good one that can be used as a starting point for further optimization.

Alternatively, the MENTOR algorithm could be embedded inside a design loop for

designing hierarchical networks. Link costs are assumed to be concave functions of

distance, stepwise concave with capacity, and incur a fixed installation cost. A

variant of the MENTOR algorithm, called MENTour, is presented in [4]. The

MENTour algorithm ensures that the network designs are 2-connected (i.e.,

minimum node degree of 2). This is useful when link speeds are much larger than

traffic requirements, as the MENTOR algorithm tends to produce tree networks

when this is the case.

Yan and Lou [30] have studied the MCMNDP for transportation, which can be

extended for, have studied the MCMNDP for transportation, which can be extended

for backbone telecommunication networks. They have employed simulated

annealing and threshold accepting techniques to develop a number of heuristics.

They have also designed a network generator to test heuristics. Although, the

heuristics are very fast, they are highly depends on the initial solution.

Monma and Sheng [21] describe a packet network design and analysis (PANDA)

model that captures the important features of different packet technologies. This

model evolved from much iteration with technology developers and network

planners over several years. The main contribution is a methodology for designing

14

low-cost backbone packet networks with satisfactory performance that is both

practical and useful. This methodology is useful for investigating cost/performance

tradeoffs of various network capabilities and components, thus providing a means

for identifying potential cost and performance bottlenecks for different packet

technologies and to guide capability requirements for new technologies.

Chattopadhyay, Morgan and Raghuram [5] introduced a method to solve the

minimum cost backbone design problem with multiple hop communication paths

and time delay as performance criteria. This algorithm combines a branch and

bound method, which is used to find the network topology, with the Ford-Fulkerson

algorithm. After branch and bound, the Ford-Fulkerson algorithm is applied to

determine the optimal paths between each pair of communicating nodes. A depth

first search using a cost heuristic that is a linear function of the maximum and

current depth in the tree is used. Algorithm has been compared with a branch and

bound algorithm, which is known to find the optimum with a large computation

time, and it has found that this method is much faster than branch and bound

method, therefore applicable to large sized network.

For reliable network design, Cheng proposed a 1-FT (fault tolerant to 1 link-

failure) backbone design method [6]. As networks become huge, the backbone

layout design is essential to network performance and reliability. A 1-FT backbone

can survive any 1-link failure. Cheng proposed an efficient method based on genetic

algorithms to solve the problem. The backbone network is represented by a list of

ordered links. He has shown that, the proposed algorithm find a sub-optimal

solution for most cases.

Among the above methods, Yaged’s Linearization, Minoux greedy and accelerated

greedy methods are applicable to MCMNDP with circuit switching links. For the

MCMNDP with packet switching links, Gerla and Kleinrock’s concave link

elimination, Gersht’s greedy and Stacey’s concave link elimination methods can be

used. In the next chapter, details of these algorithms are given.

15

CHAPTER 4

EXISTING APPROACHES

In this chapter, previously proposed methods which are applicable to minimum

concave cost multicommodity network problem and which are evaluated in this

work are discussed in detail. In the first part, methods for circuit switching networks

and in the second part, methods for packet switching networks are discussed. In

these models, except Gerla and Kleinrock’s method, discrete link cost functions are

converted to continuous functions, optimal backbone is found and then continuous

link capacities are converted to smallest upper discrete cost, as shown in Figure-4.1

Figure 4.1 Discrete cost function usage

Capacity Assigned

Optimal capacity found

capacity

co
st

16

4.1 Circuit Switching Network Design Methods

4.1.1 Yaged’s Linearization Method

Yaged [25] has studied the problem of selecting a path through the network for each

point to point demand in order to minimize the total network cost. He has

developed a special iterative technique based on Kuhn-Tucker necessary conditions

for optimality to provide locally optimal solution by minimizing a concave function

over a convex constraint set. A brief description of this technique is given in this

section.

If each link cost is of the form umk ψ , where km is a non-negative constant, the

problem is reduced to finding the shortest path between each pair using km as the

link length. However, the important point is to specify the “length”, km, to be used

for each link. Yaged has proposed a number of methods to assign lengths to each

link.

Using the Kuhn-Tucker necessary conditions for optimality and the properties that

the optimal routing should satisfy, the optimal path for routing found to be

∑
∈

Φ′=
k
ijpm

uuij y)(λ and the ij flow must be routed via a minimum length path.

Therefore, it has been proposed to use the marginal cost)(111 ψΦ′=c , as the link

length for the shortest path calculation.

The algorithm consists of a two stage iteration in which the link cost estimates are

assigned values in the first stage. In the second stage, a modified routing problem is

solved to minimize the linearized network cost function . The links with a large

total flow are given a smaller length and those with a small total flow are given a

larger edge length for the next iteration. In the next iteration, the inexpensive links

will draw more flow since some node pair paths will detour to a physically longer

path in order to take advantage of decreased costs. Inversely, high cost links will be

avoided. A link may become so costly that no flow traverses it and such a link will

17

not be used for a route in later iterations. These uneconomical edges are eliminated

from the network structure inherently. This iterative procedure is stopped when two

successive iteration produce same flow patters, giving a fixed point.

For the link cost function displaying non-zero fixed cost cf ,Yaged has found that

use of average cost pricing instead of marginal pricing when 0>>fc , where fc is

the fixed startup cost, will result in more economical network structures compared

to marginal cost function. It is possible to use, ψ∂Φ∂ / , ψψ /)(Φ , () ψψ /)(fc+Φ

or () ψψ /2)(fc+Φ as average cost. A useful property of the algorithm is that as the

steepness of the pricing curve increases, the number of links in the network usually

decreases. When solving a problem with fixed charges, it is better to use different

pricing curves. By increasing the cf of the average pricing curve, the number of

links ca be reduced. Once a network structure is obtained by average pricing, the

algorithm should begin using marginal curve to provide small scale improvements

in the cost.

When the link cost function has no fixed startup cost, it is still possible to use

average cost as the pricing curve. Yaged has proposed the use of fictitious fixed

cost () ψψ /)(fK+Φ as another alternative pricing curve. A detailed comparison of

these pricing curves is given in Computational Study chapter.

4.1.2 Minoux Greedy Method

Minoux [19,20] has proposed a number of greedy methods for single commodity,

multicommodity and nonsimultaneous flow network design problems. In this

section a brief summary of the greedy method for the minimum cost

multicommodity network design is given.

18

Minoux has observed that, although the method base on Kuhn-Tucker conditions

proposed by Yaged [25] is simple and easy to implement and computationally

efficient, the result obtained is highly dependent on the starting solution. As a

consequence, the resulting local optimum will be good only if the starting solution

was already a good approximation to the minimum cost solution, which is very

difficult to solve. In order to overcome this fundamental difficulty, Minoux

suggested a greedy method based on necessary optimality condition, which is

stronger than the local optimality conditions provided by Kuhn-Tucker theorem.

Let)(00
uψψ = be any multicommodity flow on G and consider any edge v=(i,j) in

G carrying strictly positive flow in this solution, i.e., such that 00 >vψ . Assign to

the edges of G lengths 0>ul as follows:

≠∀Φ−+Φ=

+∞=

vu)()(

 vedgefor
000
uuvuuu

v

l

l

ψψψ

and denote by),(0 vL ψ the length of a minimum length chain joining i and j (the

endpoints of edge v) in G.),(0 vL ψ can be interpreted as the minimum extra cost of

globally rerouting all the flow that was running through edge v on a single

alternative path in the network. Therefore, a necessary condition for 0ψ to be a

minimum cost solution is that:

Uv∈∀ such that 0)(),()(:0 000 ≥Φ−=∆> vvv vLv ψψψ .

This necessary condition for optimality tells how to improve a solution that doesn’t

meet the necessary optimality condition. One of the best strategies which can be

deduced from this result consists of a greedy type algorithm in which, at each stage

k, where kψ is the current solution, all the differences)(v∆ are computed (for all v

such that 0>k
vψ) and that edge which achieves the minimum ∆ value is actually

19

deleted, provided that ∆<0, thus generating an improved solution 1+kψ . The

algorithm stops when the minimum ∆ value is nonnegative, since this indicates that

a solution meeting the necessary condition of theorem has been obtained. More

formally stated, the greedy algorithm proposed by Minoux [20] is as follows

Step-1. Let 0ψ be the starting solution ; 0←k .

Step-2. At step k, let kψ be the current solution.

• For all Uv∈ such that 0>kψ compute)(),()(k
vv

kk vLv ψψ Φ−=∆

• Determine v such that, { }
0

)()(
>

∈
∆=∆
k
v

Uv

kk vMinv
ψ

Step-3. If 0)(≥∆ vk STOP. (The current solution kψ meets the necessary optimality

conditions.) Otherwise, let ∗L be the minimum length chain linking the endpoints of

v obtained at step-2. Let

←

∈+←

≠∉←

+

∗+

∗+

0

u if

,u if

1

1

1

k
u

k
v

k
u

k
u

k
u

k
u

L

vuL

ψ

ψψψ

ψψ

Set 1+← kk and return to step-2.

The worst-case complexity of the procedure can thus be easily evaluated. If M is the

number of links in the initial solution, then at most M shortest path calculations are

required at stage 1, M-1 at stage 2, etc.. therefore, the overall number of shortest

path computations is at most M(M-1)/2. Therefore, a worst case complexity of

O(M2N2) is achieved. In particular, in case the graph corresponding to the starting

solution is complete or about to complete, this leads to O(N6) complexity. For large

20

size networks, such a computational complexity requires too much time. Therefore,

an acceleration technique to greedy algorithm is proposed by Minoux.

4.1.3 Minoux Accelerated Greedy Method

In order to decrease the computational complexity of greedy algorithm, Minoux

proposed an acceleration to the greedy method. Minoux has observed that , as the

greedy algorithm proceeds, once the ∆ value associated with some link has become

positive, then (apart from rather infrequent cases) the ∆ value of this link doesn’t

take later on negative values again. This property indicates that, at each step , only

the ∆ values that were negative up to now, need to be recomputed. Exploiting this

property, the number of shortest path computations decreases. Based on this

observation, Minoux has made the following monotonocity assumption (M.A):

+∞=∆
∆≥∆∈ +

deletedbeen has edge when the conventionby
)()(: edgeeach for

 ..
1 vvUv

AM
kk

This monotonocity assumption holds in the case of minimum cost multicommodity

flows when the cost function on the arcs are linear with fixed cost, but is not always

satisfied in the case of arbitrary concave cost functions. The accelerated greedy

algorithm can nevertheless be applied to this case since (even if there is no strict

guarantee for that). Minoux has shown that, it most often produces the same final

solution as the standard greedy algorithm. Moreover, in view of its tremendous

efficiency, it can handle fairly large network synthesis problems. Algorithm steps

for accelerated greedy algorithm are given below.

Step-1. Let 0ψ be the starting solution ; 0←k ; UU ←0 . For each link

Ujiv ∈=),(such that 00 >vψ , determine the length),(0 vψγ of the shortest i-j

21

chain with respect to the lengths uγ on the edges, on the partial graph of G induced

by the edge subset vU −0 . Set)(),()(000
vvvv vv γψδψγψ +−←∆

Step-2. At the current step k, let kψ be the current solution.

Step-2.1. Determine v such that { })()(
0/

uMinv
k
uu

∆=∆
>ψ

 and let (i,j) be the endpoints

of v.

Step-2.2. Determine *L , the shortest i –j chain with respect to the lengths uγ on

the edges on the partial graph induced by the edge subset:

}.{vU k − If the length of ∗L is),(vkψγ , let)(),(v
k
vv

kk
v v γψδψγψ +−=∆′ . Set

.)(∆′←∆ v If
vu

u k
u

uMin
≠

>
∆>∆′

0/
)}({

ψ
return to Step-2.1.

Otherwise:

Step-2.3. If 0≥∆′ STOP: the solution kψ cannot be further improved. (i.e., kψ

is a greedy solution) Otherwise (0<∆′) set:

←

∈+←

≠∉←

+

∗+

∗+

0

u if

,u if

1

1

1

k
u

k
v

k
u

k
u

k
u

k
u

L

vuL

ψ

ψψψ

ψψ

Set 1 },{1 +←−←+ kkvUU kk and return to Step-2.

It has been reported that even for large problems, only 2 or 3 ∆ values (instead of

M) need to be recomputed at each stage with this strategy. The average speeding-up

factor over the standard greedy algorithm which is about M/3, thus increases with

22

the size of problem to be solved (resulting in an average computation time

proportional to 2MN , instead of 22 NM for standard greedy algorithm.

4.2 Packet Switching Network Design Methods

4.2.1 Gerla and Kleinrock’s Concave Branch Elimination

Gerla and Kleinrock [11,15] have proposed a number of packet switching network

design methods. They have developed an average network delay model in terms of

total network flow, link flow and the link capacity. In order to solve the design

problem, they have divided the network design problem into three simpler sub

problems. Based on this subproblems they have proposed a topology design method

called Concave Branch Elimination(CBE). In this section, first a detailed summary

of the delay model is given. Next, the three subproblems and finally the CBE

method is summarized briefly.

4.2.1.1 Delay Analysis

For a packet switching network, average “source to destination” packet delay T is

given as follows;

jk

kj
kj

jk ZT ∑
≠

=
, γ
γ

where Zjk is the average packet delay from j to k, γjk is the average packet rate

from source j to destination k and γ is the sum of all average packet rates in the

network, ∑=
kj

jk
,

γγ . Applying Little’s result, the delay expression T becomes;

u
u

m

u

TT
γ
ψ∑

=

=
1

23

where m is the number of links, uψ is the average packet rate (packet/s) on link u

and Tu is the average queuing and transmission delay on the link u. However, it is

not possible to measure Tu and uψ generally. In order to overcome this problem the

following assumptions are made.

• External Poisson arrivals

• Exponential packet rate distribution

• Infinite nodal storage

• Static routing

• Independence between interarrival times and transmission times on each

link.

Whit these assumption, average delay Tu on link u becomes,
uu

u c
T

ψµ −
=

1

where,1/µ is the average packet length (bits/packet) and cu is capacity (bits/s) of link

u. Using this average link delay, the average network delay becomes;

∑
= −

=
m

u uu

u

c
T

1

1
ψ

ψ
γ

. This delay model doesn’t include the propagation delay on the

channels and the nodal processing time.

Considering the delay expression, if link flow approaches the link capacity then

delay goes to infinity. Therefore if both capacity and delay constraint are evaluated

in the optimization, then capacity constraints is implied by the delay constraints

and can be disregarded.

24

4.2.1.2 The Capacity Assignment (CA) Problem

The aim of CA is to find minimal cost link capacities satisfying the average network

delay Tmax, with given topology, requirement matrix R and link flow vector

()nψψψψ ,...,, 11= . For linear link cost case with positive startup cost,

() 0uuuuu dcdc +=Φ the optimal solution has been obtained by Lagrange

multipliers. The optimal capacity and total cost is

u

u

m

i
ii

uu dT

d
c

ψ
γ

ψ
ψ

max

1
∑
=+= ∑

∑
=

=

++=Φ
m

u

m

i
ii

uuu T

d
dd

1 max

2

1
0 γ

ψ
ψ

For the concave link cost case, the solution to CA problem can be found by

linearizing the cost and solving a linearized problem at each iteration. This method

reaches a local minimum. Kleinrock has shown that there exists a unique local

minimum for concave cost function. Therefore, the solution found iteratively is the

optimal solution.

4.2.1.3 The Routing (Flow Assignment) Problem

Given the network topology, link capacities ()mcccc ,...,, 21= and requirement

matrix R, the aim of Flow Assignment (FA) is to achieve a fixed routing policy

minimizing the average network delay, ∑
= −

=
m

u uu

u

c
T

1

1
ψ

ψ
γ

The above formulation is a convex multi commodity (MC) flow problem on a

convex constraint set. Therefore, there is a unique local minima that is the global

minimum. Previously an optimal method called “Minimum Link Algorithm” has

been proposed by Chou and Frank [50]. However, this method requires too much

computational time. A faster downhill search algorithm called Flow Deviation (FD)

25

algorithm has been proposed. This method finds the optimal solution and is

computationally efficient as the heuristic.

Flow Deviation

Step-0. Let be a feasible starting solution. Let p=0.

Step-1.Compute ø(0) shortest route flow corresponding

to [] miTl pi
p

i ,...,1,/)(
)(=∀∂∂= =ψψψ

Step-2. Let pλ be the minimization of delay expression

()[] .10,1)()(≤≤+− λλψφλ ppT . Let)()()1()1(p
p

p
p

p ψλφλψ +−=+ .

Step-3. If the delay error is sufficiently small, εψψ <−+)()()()1(pp TT then stop.

)(pψ is optimized within the given tolerance. If not, increment p and go to Step 1.

4.2.1.4 The Capacity and Flow Assignment (CFA) Problem

The CFA problem aims to find routing and capacity assignment of link to achieve

minimal cost while satisfying average network delay. The CFA problem requires

simultaneous optimization of routing and the link capacities.

When the link cost function is linear, i.e. () 0uuuuu dcdc +=Φ it is possible to find

the closed for expression for capacity c for a given flow ψ . Then the problem

becomes minimization of cost with respect to design variable ψ as given below.

∑
∑

=

=

++=Φ
m

u

m

j
jj

uuu T

d
dd

1 max

2

1
0 γ

ψ
ψ

26

The Φ is concave over the convex polyhedron of feasible multicommodity flows.

Therefore, there are several local minima corresponding to some corners of the

polyhedron. FD algorithm with a bit modification can be used to find a local

minima. In other words, FD performs a search on extremal flows, until it finds a

local minima.

Modified Flow Deviation

Step-0. Let ψ (0) be a feasible starting solution. Let p=0.

Step-1. Let ψ (p+1) be the extremal flow corresponding to the following definition of

equivalent length. [] ,,...,2,1/)(
)(mil p

iii
p

i =∀∂Φ∂= =ψψψ

Step-2. If ()() ()()pp ψψ Φ≥Φ +1 stop and ψ (p+1) is a local minimum. Otherwise

p=p+1 and go to 1. From the total cost expression, the equivalent length expression

becomes;

+=
∑
=

jj

m

j
jj

ii dT

d
dl

ψγ

ψ
11

max

1

∞=→ ili 0limψ .This implies that whenever the flow of link i is reduced zero at the

end of an iteration, flow and capacity for that link will remain zero for all

subsequent iterations. Therefore, uneconomical links tend to be eliminated by the

algorithm. (observed by Yaged). The solution obtained by FD algorithm depends on

the starting solution. To obtain better result perform FD algorithm several times for

randomly selected flows.

27

However, it is not possible to express average network delay in terms of flow if cost

function is concave. However, Gerla has showed that ()ψΦ is concave over ψ and

flow deviation algorithm can be applied for the concave cost case.

4.2.1.5 Topological Design

Concave Branch Elimination (CBE) Method

Start from a fully connected network and apply modified Flow Deviation algorithm

until a local minimum is reached. Typically, FD algorithm eliminates uneconomical

links and strongly reduces the topology. As two-connectivity is required the FD

algorithm is terminated whenever the next link removal violated this constraint. The

last two-connected solution is assumed to be the local minima. As the result of

modified FD depends on the initial routing, to obtain several local minima, the FD

algorithm is applied to several randomly chosen initial flows.

4.2.2 Gersht and Weihmayer’s Joint Optimization Method

Instead of separating link capacity and facility selection from routing and

topological design, Gersht and Weihmayer [12] have fully integrated the

subproblems studied by Kleinrock and Gerla [11] to capture the very important

coupling between them. They have proposed a delay formulation in terms of total

network flow, number of nodes and link/node utilization, leading to a maximum

number of link requirements in the network satisfying the average network delay.

Using this maximum link number, a greedy method to design multicommodity

network has been developed.

Let t
mnψ and mψ be the total flow on link mn and on node m respectively. Then the

link and node utilizations should be bounded with values pt
L < 1 and pN < 1

respectively. Therefore the flow constrains can be formulated as;

28

1/ <≤= t
L

t
mn

t
mn

t
mn pcp ψ and 1/ <≤= Nmmm pBp ψ

t
mn

t
L

t
mn cp≤ψ and mNm p βψ ≤

where mnc is the capacity of link mn and mB is the nodal capacity of node m.

For packet switching networks, the main performance criterion is the average

network delay. The average network delay D is the sum of average link delay D1

and average node delay D2.

21 DDD += ∑∑ −
=

mn
t
mn

t
mn

p
p

D
1

1
1 λ

 ∑∑ −
=

m m

m

p
p

D
1

1
2 λ

where λ is the source to destination arrival rate. Taking the link/node utilization into

account the delay expressions becomes;

∑∑ −
=≤

tmn
t
L

t
Lt

mn p
p

DD
,

*
11 1

1 η
λ

N

N

p
p

NDD
−

=≤
∑ 1

1*
22 λ

 *
2

*
1

* DDDD +=<

The main performance requirement is 0DD ≤∗
 where D0 is the maximum

acceptable delay. This delay analysis linearizes the average network delay

constraint and introduces “maximum number of links” constraint to the problem.

The reason behind choosing equal node and link utilization for all the nodes and

link is that, the optimal capacity assignment leads to a balanced network.

Gersht and Weihmayer [12] have proposed a greedy algorithm removing the most

uneconomical link at each iteration. As the performance constraint bounds the

number of links in the network, in some cases, although no further cost

improvement is possible as the delay constraint is not meet new link reduction is

performed resulting in cost increase. The algorithm stops whenever no further

29

improvements are possible and performance constraint is meet. Below the details of

the algorithm is given.

Define a topology Tv and its associated cost Zv at each iteration v of the algorithm. A

new topology Tv
mn with cost Zv

mn is obtained by deleting candidate link mn. For

each candidate link mn evaluate ∆Zv
mn to find the cost difference. Denote the set of

pre-elimination candidates by ∆Zv ={∆Zv
mn }. At each iteration reduce the network

cost with maximum ∆Zv
mn. The algorithm steps is given below.

Step-0. Initialize T0 with starting graph G, pL and pN incremental cost metric, Z0 and

iteration number v=1.

Step-1. Pre-elimination link mn generates v
mvT by eliminating link mn in Tv

Step-2. Evaluate v
mvT with respect to reliability (if more than one path for reliability

is needed) and connectivity (two-two connectivity is still valid) constraints, if not

meet goto Step-1. Else include v
mvT in Tv .

Step-3. Find shortest path routing for v
mvT by using the cost of route given in above

definition. Compute the cost difference v
mvZ∆ and add it to cost set vZ∆ ;

vv
mn

vv
mv ZZZZ ∆→−=∆

In the shortest path problem the .measure is the cost of link startup and nodal costs.

If every feasible link mn reduced goto Step4 else goto Step1.

Step-4. From the cost set ∆Cv find the link mn with max cost difference. The

maximum cost difference can be a negative value. Select the link mn for deletion, If

 v
mvZ∆ is positive means cost improvement.

30

 v
mvZ∆ is negative (a cost increase) and there exists more links than the

maximum acceptable link, due to delay constraint relaxation.

Selection of link mn in the first case is obvious because it results in cost

improvement. In the second case, deletion of link mn results in delay improvement

in spite of cost increase. Note that second case is selected if no further cost

improvement is possible and delay constraint is not meet yet. One of the drawback

of this algorithm is the computation time. As at each stage all the links are

evaluated, requiring flow rerouting on the link, an only one link is deleted, this

method is applicable to only small sized network.

4.2.3 Stacey, Eyers and Anido’s Concave Link Elimination
Method

Stacey, Eyers and Anido [23] has proposed an acceleration technique to al Gersht

and Weihmayer’s greedy. This new method, called Concave Link Elimination

(CLE), is similar to Gersht’s greedy, except at each iteration more than one link is

deleted. Therefore this method is applicable to large sized network. Below a brief

summary of the CLE is given.

The CLE procedure starts with all possible links in the network and eliminates

subsets of links maximizing the reduction in network cost in each iteration while

continuing to satisfy any connectivity or reliability constraints. The algorithm

terminates when it cannot eliminate any more links without increasing the network

cost or violating the capacity, performance, connectivity, or reliability constraints

imposed on the design. The link cost structure in this method is proportional to link

length, therefore CLE employs physical distance as the link length for shortest path

routing. While Gersht uses a constant link utilization factor (supplied by the user) to

assign link capacities, CLE procedure can assign link capacities using either CA

31

procedure for concave link cost functions or Dutta’s equivalent link utilization

method.

To allow the algorithm to eliminate multiple “unrelated” links simultaneously, the

algorithm has to evaluate not only the effect of eliminating each link on the cost of

the network, but also its effect on the traffic levels on other links in the network.

Using this information the algorithm can eliminate all links in each iteration of the

search that reduce the cost of the network and do not affect the traffic load on each

other.

Another improvement to Gersht procedure is that, if the elimination of a link will

violate degree constraint, it should be in the final solution and this link will not be

evaluated in the remaining of the algorithm. Below the CLE procedure is given.

Step-1. The initial network is assumed to be fully meshed. Calculate all O-D

shortest pat, route traffic with this shortest path and assign link capacities using

Dutta and Lims Equal Link Utilization [8] or CA [11]. Initial cost is Z and the set

of required links is empty.

Step-2. (Candidate link elimination) Mark all links not in the set of required links as

“unevaluated”. Select a link e from the set of unevaluated links and mark as

“evaluated”. Remove link e, and recalculate O–D paths as required (to save time,

only those shortest paths affected need to be recalculated). Evaluate reliability and

performance constraints. If constraints are not satisfied, reinsert link e, recalculate

O–D paths as required (if constraint violations indicate link e is required in final

design add it to the set of required links) and go to step3.

Step-3. (Evaluation). Route traffic and assign link capacities. If the cost

improvement observed, append the cost of the new solution, link e and the set of

links affected by the removal of link e to a list of candidate link eliminations.

32

Step-4. (Link restoration). Reinsert link e, and recalculate O–D paths as required. If

there are no more candidate link eliminations to be evaluated go to step 5, else go to

step 2.

Step-5. (Link elimination). Start with two empty lists, one for the set of links to be

permanently eliminated, call this E, and another for the links affected by the

elimination of the links in E, and call this AE. Iterate through the list of candidate

link eliminations generated in step 3 in ascending (having more improvement) order

of resulting network cost . For each candidate link elimination, if neither the link to

be eliminated nor any of the links its elimination affects are included in either E or

AE, add the candidate link to E and the set of links affected by its elimination to AE.

If, when the list of improving candidate link eliminations is exhausted, set E is

empty (there are no links to eliminate) go to step 6. Otherwise, eliminate the links in

E, recalculate O–D pair shortest paths as required, route traffic, assign link

capacities and calculate the cost of the new solution C. Go to step 2.

Step-6. Assign link capacities using or Equal Link Utilization [8], calculate solution

cost, Z.

33

CHAPTER 5

MODIFICATION ON MINOUX GREEDY

ALGORITHMS

The greedy algorithms proposed by Minoux [19, 20] are based on removing a link

and re-routing the flow over the deleted link via a shortest path between edges of

the deleted links. In this way, the total network cost is reduced at each step and

finally a local minimum is obtained. However, if implemented in its given form in

[20], it is possible to have some extra and unnecessary capacity assignment, which

results in an excess network cost. Therefore, it is possible to have an improved

solution over the Minoux greedy solution.

In the Minoux greedy approaches, the aggregate flow on the deleted link is re-

routed over a new shortest path between the nodes of the deleted link. However, this

move brings the possibility to have a cycle after rerouting the aggregate flow over

the deleted link and this problem is addressed earlier in [28] and later in [23].

Figure-5.1 illustrates how a cycle can be formed after re-routing. When link (2,3) is

found to be deleted in the network by the Minoux algorithm, all the flow on link

(2,3) is rerouted through the path (2,1), (1,5), (5,4), (4,3). The algorithm is stated in

its original form to work on undirected graphs and therefore a flow originally going

from node 1 to 4 through the path (1,2), (2,3), (3,4) is changed to use the path (1,2),

(2,1), (1,5), (5,4), (4,3), (3,4). This path has unnecessary flows such as the one

going first from 1 to 2 and then from 2 to 1 and the one going first from 4 to 3 and

then from 3 to 4.

34

Figure 5.1: A cycle after rerouting

Minoux has actually realized the problem of excess network cost due to such cycles

in his first paper [19] and he proposed a flow modification method based on

algebraic manipulation as a remedy. However later, this modification scheme is

shown to be not applicable in general and a more general modification to the

original algorithm regarding the flow updating step has been proposed with an

appropriate data structure.

The proposed modification scheme considers each single commodity flowing

through the deleted link u separately. To find the best cycle free route, it first

removes the corresponding flow from the current solution and then routes it via the

shortest path between the source and destination of the commodity on a reduced

graph G′ . This reduced graph is formed from the links of the route with the cycle.

Again, incremental cost is used as the link length, i.e.)()(uu
k

uuu rl ψψ Φ−+Φ= .

The algorithm steps proposed in [28] to replace Step-3 of the Minoux greedy

method are given below. CL(u) denotes the set of commodities flowing through a

given link u where the route kL is the set of links on which the k-th commodity

35

flows. The candidate link v is chosen for deletion in the current step of the Minoux

greedy algorithm. In the following, ⊕ is an appending operation, i.e., adding and

therefore augmenting to an existing list.

Step-3.1. Given the new partial route ∗L at iteration c, do the following.

Step-3.2. Assign

←

∈+←

≠∉←

+

∗+

∗+

otherwise 0

u if

,u if

1

1

1

k
u

k
v

k
u

k
u

k
u

k
u

L

vuL

ψ

ψψψ

ψψ

Step-3.3 Assign
{ }

∈∀⊕←

∈∀⊕−←
∗

∗

LuvCLuCLuCL

vCLkLvLL kk

)()()(

)(

Step-3.4)(vCLk ∈∀ , i.e., for all commodities flowing through v , detect the

existence of a cycle. If a cycle does not exist then continue with the next commodity

and if all the commodities in)(vCL are proposed then assign {})(=vCL , increment

c and go to step 2 of the Minoux algorithm to continue with the usual iteration.

Otherwise (if a cycle exists), do the following;

Step-3.5. Assign

∈∀−←
∈∀−= ++

k

k
kc

u
c
u

LukuCLuCL
Lur

 }{)()(
 11 ψψ

Step-3.6.1. Form a reduced graph G′ composed of edges in kL

Step-3.6.2. Assign lengths Gurl c
uu

kc
uuu ′∈∀Φ−+Φ= ++)()(11 ψψ .

Step-3.6.3. Find the shortest chain ∗Γk between s(k) and t(k)

Step-3.7 ∗Γk being the shortest chain found in step 6 between s(k) and t(k), assign

{}←kL and

36

Γ∈∀+←

Γ∈∀+←

Γ∈∀+=

∗

∗

∗++

 }{

 }{)()(

 11

kkk

k

k
kc

u
c
u

uuLL

ukuCLuCL

urψψ

In the above method a shortest path calculation is required for each cycle detected.

An effective method to search for cycles is also needed. Therefore it may be worth

investigating the effect of not using shortest path computations but remove cycles as

they are encountered directly. In the following paragraph, the pseudo code for the

simple cycle search and elimination task is presented. The method just traverses the

route of each flow on the deleted link and removes a cycle from the route if

encountered. A doubly linked list structure is very suitable for the commodity route

representation.

for (ALL commodities)

{ Point_Node= Commodity.Source;

 While NOT (Point_Node==Commodity.Destination)

 { Scan_Node=Point_Node.Next_Node;

 While NOT (Scan_Node ==Commodity.Destination)

 { IF (Scan_Node==Dummy_Node) //Cycle Detected

 {Dummy_Node=Point_Node;

 While NOT(Dummy-Node==Scan_Node)

 { Link[Dummy_Node][Scan_Node].RemoveCommodity(Current_Commodity)

 Dummy_Node=Dummy_Node.Next_Node; }

 Dummy_Node=Point_Node;

 Next_Node=Point_Node.Next;

 End_Node=Scan_Node.Next;

 While NOT(Next_Node==End_Node)

 {Dummy_Node=Next_Node;

 Next_Node=Next_Node.Next;

 Delete Dummy_Node;}

 Point_Node.Next=Next_Node;

 Scan_Node=Point_Node.Next;}

37

 ELSE

Scan_Node= Scan_Node .Next;}

 }

Point_Node= Point_Node .Next;

}

}

The above method removes the cycle and routes the commodity with cycles over

the original path of the corresponding commodity. The method proposed in [28]

remove the cycle and routes the commodity with cycles over a reduced graph

induced by the links on the commodity route with cycles. It is also possible to re-

route such a commodity over the entire network topology. Such a re-routing

requires a larger time consuming shortest path calculation and the cycles will be

eliminated inherently. In order to compare the solution quality and timing

requirements of re-routing over reduced graph and local cycle removing, a number

of computational tests have been carried and results are presented in Chapter 8.2.

The computational study revealed that there is no need to re-route the commodities

over the reduced graph and removing cycles locally seems be sufficient.

38

CHAPTER 6

DISSAGREGATE LOCAL SEARCH METHOD

Minimum Concave Cost Multicommodity Network Design methods can be

classified into two groups; those iteratively deleting a number of links at each step

to reach a local minimum and those re-routing all the commodities at each step and

deleting links inherently.

Minoux [19, 20] greedy methods, Gersht’s [12] joint optimization and Stacey’s [23]

Concave Link Elimination methods are the members of the first group. They select

one or more candidate links at each step for deletion and route all the commodities

flowing through the candidate link/links. The iterations terminate when the deletion

of a link is no more feasible because of not decreasing the network cost any more.

Yaged’s [25] linearization method and Gerla and Kleinrock’s [11] Concave Branch

Elimination methods belong to the second group. These methods are based on re-

routing all the commodities at each step using different link length criteria for the

shortest path calculation. Uneconomical links are removed from the network

inherently because if a link has zero flow, it will be never selected for a route of any

commodity. If the routings of successive two iterations are exactly the same, the

optimization process stops.

Rather than considering only the total aggregate flow uψ on each link, allowing

simultaneous redirection of more than one commodity at each step, as in the

algorithms mentioned above, it may be advantageous to use a disaggregate

approach by considering a single commodity at a time. A similar approach for

transshipment networks on directed graphs has already proved effective, where a

39

partial separation of the flows on each link according to their origins was used [3,

9]. It is worth noting that flows in these works originating from the same source and

distributed to various destinations were considered as single commodity (multi-

terminal flow). In contrast, each flow corresponding to an origin-destination pair

may also be regarded as a single commodity.

A greedy technique, called the Disaggregate Local Search, based on such an

alternative single commodity definition has been proposed earlier [31]. This method

is similar to the second group where only one commodity is handled at each step

rather than the aggregate flow and hence being named as “Disaggregate”. In this

approach, un-economical links will be eliminated inherently similar to the second

group. The proposal and the results relating to the local optimality conditions of the

approach are presented in the following paragraphs in its original form.

We start by few definitions. A chain { }quuuL ,...,, 21= is a sequence of q links such

that link ru of sequence ()12 −≤≤ qr has one common endpoint with link

()rrr uuu ≠−− 11 and a second common endpoint with the link ()rrr uuu ≠++ 11 [9]. The

endpoint i of 1u which is not adjacent to 2u , and the endpoint j of qu which is not

adjacent to 1−qu are called endpoints of the chain L. An elementary chain is such a

chain that when it is traversed from one endpoint to the other, the same vertex is not

encountered twice. A cycle is a subsequence of a chain whose endpoints coincide.

A flow pattern ()Kϕϕϕε ,...,, 21= is called an extremal flow pattern if and only if

for all source nodes i, the multi terminal flows originating from i form a tree with

the common source i as root and the sinks as terminals [9].When not empty, the set

of optimal solutions of problem contains extremal flow patterns. An implication is

that, at an optimal solution each single commodity (disaggregate) flow kϕ of value
kr flows though an elementary chain between s(k) and t(k) (elementary chain

property).

40

The disaggregate approach presented here considers only solutions satisfying the

elementary chain property. It is worth noting that such solutions are not necessarily

vertices of the constraint polyhedron (not a multi-terminal tree).

Let kS be the set of all possible flow solutions kϕ corresponding to elementary

chains only and let kL denote the chain along which the k-th commodity flows.

Then the redundant constraint k
k S∈ϕ can be added to problem (P) to obtain ()P′ .

The two problems are equivalent in the sense that any solution of ()P′ is a solution

for ()P and if ()P has a solution then ()P′ has one, too.

Given a solution ()Kϕϕϕε ,...,, 21= with kSk
k ∀∈ϕ , a neighborhood)(εN can be

defined as)()(εε kKk NN ∈= U where

 ∈≠=∈

== KhkhSN hh

k
kK

k and for and : ,...,,)(
21

ϕϕϕϕϕϕεε

Definition 1: A flow pattern kSk ∀∈ with kϕε , is a local optimum for problem ()P

if () ()εφεφ ≤ for any ()εε N∈ , where φ is the total network cost.

To check for the optimality in Definition 1, we simply consider whether we can

redirect any commodity k flowing through kL via a new chain kL such that the

current objective function value is improved. Such a move generates a total cost

difference of

[] []∑∑
∈∈

−++−−=∆
kkkk LLu

uu
k

uu
LLu

uu
k

uukk rrL
\\

)()()()()(ψφψφψφψφ

Let
() (){ }kkSLkk LMinL

kk
∆=∆

∈
*

41

()*
kk L∆ is the decrease in total cost if kk LL ≠* and is zero if kk LL =* .

Given ()Kϕϕϕε ,...,, 21= with kSk ∀∈ kϕ and a commodity k, *
kL can be easily

determined by solving the shortest path from s(k) to t(k) on []UXG ,= with link

weights UuCu ∈∀ , assigned as

() ()
() ()

(1)
 if

 if

∉−+

∈−−
=

kuu
k

uu

k
k

uuuu
U Lur

Lur
C

ψφψφ

ψφψφ

Then () ∑∑ ∈∈
+=∆

kkkk LLu uLLu ukk CCL
\\

*
** .

To see that the shortest path problem defined above does indeed lead to the desired

result, argue as follows: withdraw the flow corresponding to the commodity k under

consideration, then the cost of the flow on any link is given by equation 1 and the

cheapest chain corresponds to the shortest path. If the solution thus obtained is

cheaper than the current solution, then the saving is indicated by a negative ()*
kk L∆ ,

but if the solution remains the same, then () 0* =∆ kk L .

Letting (){ }*
kkk LMin ∆=∆ , the following propositions then follow directly.

Proposition 1. () 0* =∆ kk L if and only if () ()εφεφ ≤ for any ().εε kN∈

Proposition 2. ε is an extremal flow pattern and is a local optimum by Definition 1

if and only if 0=∆ .

Since the number of commodities K may be as large as n(n-1)/2, a steepest

descent is not computationally feasible. Instead, we employ the following non-

greedy algorithm in which k ′ indicates the last re-routed commodity. It is worth

42

noting that the resulting solution depends on the order of the commodities

processed.

Algorithm steps for Disaggregate Local Search are given below.

Step-1. (Initialization) Given a network []UXG ,= with pairs s(t)-t(k) and

requirements Kkr k ∈∀ , if initial solution 0ε is not known then assign

Uuu ∈∀= ,0ψ and route each commodity k using the shortest chain kL from s(k)

to t(k) found after assigning weights () () Uur uu
k

uu ∈∀−+ ψφψφ .

Step-2. Set the Improvement =0. Assign 1 ; 0 ==′′ kK .

Step-3. (Evaluate and Reroute)Assign UuCu ∈∀ as in equation 1. Find the shortest

chain *
kL from s(k) to t(k) and compute ()*

kk L∆ . If () 0* <∆ kk L then assign

kk
k

uukk
k

uu LLurLLur \ , \ ** ∈∀+=∈∀−= ψψψψ

and set kk =′ . Replace old chain kL with the new one *
kL . Set k=(k+1). If Kk >

then 1=k . Set the Improvement =0

Step-4. If Improvement variable is 1, goto step-2, else STOP.

As noted earlier, the solutions obtained at intermediate steps are not necessarily

vertices of the constraint polyhedron. However, when the algorithm stops, the

solution is an extremal flow solution, i.e., each multi-terminal flow origination from

the corresponding source node forms a tree.

The solution quality of the local optimum reached highly depends on the evaluation

order of the commodities in Step-3. There are 4 alternatives for the evaluation

order.

43

• From largest requirement to smallest requirement, called descending order

• From smallest requirement to largest requirement, called ascending order

• In a random order

• In a steepest descent form (in improvement order)

The computational study in 8.4 has shown that, random order gives 2-3 % better

quality network costs compared to descending order. Descending order gives 3-4%

better solutions compared to ascending order. However, it is recommended to

perform more than one random iteration to get better network cost solutions. As the

number of iterations increases, the solution quality increases. The computational

study has revealed that it may be sufficient to perform around 15 iterations for

random order.

In the steepest descent form, called the Disaggregate Local Search in Improvement

Order, the commodity that is re-routed at each iteration is the one having the

maximum cost improvement after rerouting. Therefore this approach requires

evaluation of all commodities and rerouting of the commodity with the largest

improvement. Due to evaluation of all the commodities at each iteration, larger

execution time is expected.

The computational study in Chapter 8 have shown that, the Disaggregate Local

Search in Improvement order generates better solutions then other disaggregate

approaches when the network size is small. As the network size increases, the

solution quality decreases and it takes much more computation time.

44

CHAPTER 7

ADAPTATION of CIRCUIT SWITCHING METHODS

TO PACKET SWITCHING MCMNDP

In chapter 2, problem formulation for both circuit switching network and packet

switching network designs are given. The main difference between the circuit and

packet switching network design problems is the average network delay

requirement of the packet switching network due to queuing time of packets before

transmission.

In this chapter, it will be shown that the methods proposed for circuit switching

network design problems can easily be adapted to packet switching network design

problems. Indeed, computational study has shown that, the adapted methods

perform better the than previously proposed packet switching methods.

In this thesis two adaptation methods are proposed and evaluated. The first method

uses the Capacity Assignment (CA) proposed by Gerla and Kleinrock [11] and

details of this method is given in Section 4.2.1.2. The second one uses the Equal

Link Utilization method proposed by Dutta and Lim [8]. Therefore, in the

following section only the second approach is presented.

7.1 Equal Link Utilization

Dutta and Lim [8] proposed a multiperiod capacity model for backbone computer

communication networks. The model is formulated as an integer programming

45

problem and a Lagrangian relaxation based solution is used. The backbone

computer communication networks studied is composed of packet switching type

links.

The network design problem studied in [8] has an average network packet delay D

as the performance. Each link can be regarded as an M/M/1 queue with the Gerla

and Kleinrock’s assumption of

 Poison arrival of external traffic at each node,

 exponential packet length distribution,

 infinite buffers and error free links.

Link service rate is c(l) and arrival rate is f(l). The resulting well known exponential

for average packet delay gives rise to the following performance constraint.

∑∑ ∑ ∈∈ ∈

≤
−

∗
LlNi Nj

D
lflc

lf
jir

(1)
)()(

)(
),(

1

where N is the set of nodes, L is the set of links and d(t) is the maximum allowable

average network delay.

Multiplying both sides of the delay constraints (1) by ∑∑i j
jir),(results in:

∑ ∑ ∑
∈

∈ ∈
∗≤

−Ll
Ni Nj

jirD
lflc

lf (2)),(
)()(

)(

Dutta and Lim have made the assumption of equally distributing the value on the

right-hand side over edges that exist in the network, resulting in a modified

constraint. While it is possible, in principle, to have unequal distributions of the

right-hand side over links, two factors argue strongly in favor of equal link

46

utilization. Notice, first of all, that once the right hand side of (2) is distributed over

L, equally and unequally, the ratio ())()(/)(lflclf − is constrained for each Ll ∈ .

Equivalently, the utilization f(l)/c(l) is constrained. As noted before, delay on a link

increases precipitously beyond a critical value if utilization become greater than this

value.

To distribute the right-hand side of (2) unequally over, one needs to identify

particular links that expect larger short term traffic fluctuations. These links can

than be allocated a smaller fraction of the right hand side of (2) compared to links

that are expected to experience small short-term traffic variations. The identification

of such links, however, is very difficult. Therefore, it is appropriate to distribute the

right hand-side of (2) equally over links.

 (3) for
),(

)()(
)(Ll

L

jirD

lflc
lf Ni Nj ∈∀

∗
≤

−
∑ ∑∈ ∈ .

The right hand side of (3) is known from input values, and it will be represented by

a single constant ulink, whose unit is packets. Since the link utilization,

f(l)/c(l)=ulink/(1+ulink) , ulink can be viewed as a constraint on link utilization.

Thus the modified performance constraint is

Llulink
lflc

lf
∈≤

−
 allfor

)()(
)(, where

L

jirD
ulink Ni Nj∑ ∑∈ ∈

∗
=

),(
 or

equivalently, Lllclf
ulink

ulink
∈∀≤∗

+ for)()(1

The potential drawback of this algorithm is that the network may be overdesigned,

i.e., it will have more capacity than it really needs to carry traffic demands while

meeting the average network delay constraint. For instance, even a few link

individually violate the simplified constraint by a small amount, the average

network delay could still be less than the stipulated D. However, Dutta and Lim [8]

47

has shown that in a large number of instances, this simplification caused relatively

little excess capacity to be installed; the average network delay was not more than

10% below the desired limit.

In the following adaptation of the circuit switching network design method to the

packet switching network with both Capacity Assignment[11] and Equal Link

Utilization [8] methods are presented.

7.2 Adaptation Analysis

Networks that are generated using packet switching network design methods differ

from that obtained using the circuit switching techniques by only with an excess

capacity. Therefore, it is possible to meet the average packet delay requirement by

adding enough excess capacity to each link of a network, which is already

optimized by a circuit switching method. Capacity Assignment and Equal Link

Utilization methods can easily be applied to such a network. Indeed, it is possible to

embed these two methods to circuit switching network design methods to reach a

minimized cost network with a desired average network delay.

In the linear link cost network, applying the adaptation method at the end of

optimization and embedding it to the optimization method will give the same result.

However, due to economies of scale, embedding the adaptation method to

optimization process will give better result, especially when the link cost function is

not same for all links. Therefore, in the remaining, adaptation is discussed for

Modified Minoux and Disaggregate Local Search methods.

Both the modified Minoux greedy and Disaggregate Local Search use the

incremental cost as the link length for the shortest path calculation. CA method can

be applied after each routing to meet the average network delay requirement. While

calculating the incremental cost use the link utilization assigned by CA to current

48

solution. After re-routing perform CA again. Therefore the link weight in

Disaggregate Local Search at iteration c+1 becomes,

() () / where)(c
u

cccc
uu

ckc
uuu Uurl ψφρρψφρψφ =∈∀∗−∗+=

Similarly for the Modified Minoux greedy, use the following link weight;

() () / where)(c
u

cccc
uu

ccc
uuu Uul ψφρρψρψψ λ =∈∀∗Φ−∗+Φ=

Adaptation of Modified Minoux greedy and Disaggregate Local Search methods

using Equal Link Utilization is relatively simple. The only modification required is

to change the link cost function to include the excess capacity. The cost function in

Disaggregate Local Search method becomes,

() uuuu K
ulink

ulink
+

 +

=Φ
1αβψψ where

L

jirD
ulink Ni Nj∑ ∑∈ ∈

∗
=

),(

Likewise, at the c+1 step of the Modified Minoux greedy method use the following

cost function.

() () u
c
u

c
uu K

ulink
ulink

+

 +

=Φ
1α

ψβψ where
1

),(

+

∗
=

∑ ∑∈ ∈

c

Ni Nj

L

jirD
ulink

As mentioned before, CA is an iterative method requiring more computation time

compared to Equal Link Utilization (ELU), which results in a very little

computational time overhead for adaptation. Since ELU is much easier to apply and

requires smaller computation time, ELU is chosen as the adaptation technique.

49

CHAPTER 8

COMPUTATIONAL STUDY

In this chapter, the computational study related to existing approaches, Modified

Minoux greedy and Disaggregate Local Search are given. Comparisons of the

algorithms are carried out for a number of network classes. In our study 25, 50 and

75 node networks are used where, a network size of 25 nodes is considered to be

small. 50 and 75 nodes considered to be medium and large size networks,

respectively.

The network traffic is considered as light when there is a possible network load of

10%. For moderate traffic and heavy traffic 25% and 50% load is assigned,

respectively. In order to test the efficiency of the algorithms, 100% is used for full

load traffic. Load is defined as the ratio of the number of commodities to all

possible source to destination pairs.

The link cost function is a power law function KccCost ijij += αβ)(, as shown in

Figure 8.1. For small and medium sized networks 250 randomly generated network

and traffic requirement is evaluated for each class. This number is 100 for large

sized networks. The random network traffic , except the full load case, is distributed

to nodes in balanced and unbalanced manner. When the same number of

commodities are assigned to each node, then traffic is called balanced. If this

number differs from node to node, the network traffic is unbalanced. In this work,

the following method is used to generate random unbalanced network traffic.

50

i. Assign random commodities to randomly generated origin-destination pairs

until all the nodes have exactly one commodity. If the number of nodes is

odd, then one random node will have two commodities.

ii. Select random nodes as heavy traffic nodes. The number of these random

nodes is 25% of the node number in the network.

iii. Generate random commodities with random origin-destination pairs from

the set of heavy traffic nodes. Terminate this process when heavy traffic

nodes are fully loaded or the total commodity number is the desired value.

iv. If the stopping condition is the first one, then assign random commodities

with random origin-destination pairs from the set of light loaded nodes until

the commodity number reaches to desired value.

 Figure 8.1: Link cost function used in the computational study.

In the rest of this chapter, the computational study results are given with 95 %

confidence interval. The cost comparison tables in this chapter and Appendix

represent average of percentage deviation of the corresponding method from the

Capacity

C
os

t

K

51

best result obtained for each randomly generated network. In the result tables, the

best result associated with the network type is given in bold font. The network class

is represented as “N L P T”, where

• N is the number of nodes in the network {25,50,75}

• L is the percentile of the possible traffic requirement

{10%,25%,50%,100%}

• P is the concavity value α, {0.3, 0.7, Varying[0.3 to 0.6]}

• T is the traffic distribution to nodes, Balanced or Unbalanced

The computational study is carried on a Intel Pentium 4, 2.4GHz processor with 512

MByte RAM on a IBM PS/2 compatible PC running Microsoft Windows XP. The

optimization programs are written in C++, and the timing information given in ms.

8.1 Yaged’s Linearization Method Evaluation

63 network classes have been studied to see the effect of the selected pricing curve

to reach a local minimum in Yaged’s Method. These methods use the following

pricing curves;

• Marginal cost , ψ∂Φ∂ /

• Average pricing , () ψψ /Φ

• Average pricing with fixed charge, ()() ψψ /K+Φ where K is the fixed

charge.

52

• Average pricing with fixed charge, ()() ψψ /2K+Φ

• Fictitious Kf, with average pricing curve (()() ψψ /fK+Φ

The computational study results in Table-A.1 have shown that, the quality of the

pricing curves heavily depends on the cost function. If the network is composed of

the same type of links, i.e. α is constant, then the average pricing curves yield the

best network cost with any size of network. The cost of average pricing curve with

()() ψψ /2K+Φ , is 1-2 % better than other average pricing curves. The average

pricing curve with fictitious startup cost gives network cost with a slightly different

cost compared to ()() ψψ /K+Φ average pricing curve. As the links of the

networks studied have random startup cost, introducing fictitious startup cost

doesn’t change the result. Therefore, in Yaged’s method the cost of startup is not

important.

As α decreases, i.e. concavity increases, the difference between marginal and

average pricing curves increases (up to 32 %). However as concavity decreases, i.e.

link cost value becomes more linear, the difference decreases, but average pricing

curves show better results.

This computational study shows that, as the steepness of the pricing curve increases,

the number of links in the network decreases, resulting in lower network cost. In

other words, the cost of average pricing functions can be ordered as follows;

 ()() ψψ /2K+Φ < ()() ψψ /K+Φ < () ψψ /Φ

This property has also been mentioned by Yaged [25].

The result of fictitious fixed charge is worse than ()() ψψ /2K+Φ , in all cases when

α is constant. As a result, ()() ψψ /2K+Φ is the best pricing curve for all α and

network size as long as α is constant.

53

However, when the network is a hybrid link network; marginal pricing curve gives

the best solution. The average pricing curve gives around 70% worse result, which

is very large.

As a result, when using Yaged linearization it can be recommended to use average

pricing curve ()() ψψ /2K+Φ when α is constant and marginal pricing curve

ψ∂Φ∂ / , when α is varying.

8.2 Modified Minoux Greedy Method Evaluation

As mentioned in Chapter 5, there are two alternatives to get rid of the cycles in

Minoux greed algorithms. In the first approach, the algorithm search for a cycle on

each flow route. If a cycle is found, the route of the flow is modified by just

removing cycle without any rerouting. Other path of this route remains unchanged.

In the second approach, the algorithm search for a cycle on each flow route. If a

cycle found, the traffic for that flow is rerouted over the sub-network, which is

composed of the node and link on the flow route, using the shortest path. During

calculation of the shortest path, incremental link cost is used as the cost measure.

In order to find the difference of these two approaches, 42 network classes are

evaluated using these two methods. The computational results in Table-A.2 have

shown that, there is a very little solution quality between these two methods. The

difference never exceeds 1 %. Considering the computational time, as the network

size and flow size increases, more computational time is required for the method

using rerouting over the sub-network, because rerouting process requires a shortest

path calculations for each flow with cycle. As a result it is better to use the method,

which just removes cycle from the path without rerouting the flow over the sub-

network.

54

8.3 Disaggregate Local Search Method Evaluation

As mentioned before, there are four possible approaches in Disaggregate Local

Search Algorithm. These approaches are;

• Disaggregate Local Search in largest commodity first order

• Disaggregate Local Search in smallest commodity first order

• Disaggregate Local Search in random commodity order

• Disaggregate Local Search in maximum improvement, i.e. steepest

descent, order.

Disaggregate Local Search in largest commodity first order, as its name implies

handles the commodities in a sorted order from largest demand to smallest one.

Similarly, Disaggregate Local Search in smallest commodity first order handles

commodities starting from the smallest demand to the largest one. Disaggregate

Local Search in random commodity order, handles the commodities in random

order at each iteration. Disaggregate Local Search in maximum improvement

commodity order, calculates the improvement due to commodity rerouting at each

iteration, then selects the commodity having the maximum improvement with

rerouting.

Computational study has shown that it is better to perform more than one algorithm

iteration for Disaggregate Local Search in random order. In order to find how much

iterations are enough, a computational study on Disaggregate Local Search in

random order is performed for 5,10,15,20 and 25 iterations. The results have shown

that it is better to perform around 15 random iterations to get better networks when

both cost and computational time is considered. Comparison of the results for

various numbers of iterations is shown in Table-8.1.

55

Table-8.1: Solution quality comparison for some number of iteration in
Disaggregate Local Search in random order.

5 iterations 10 iterations 15 iterations 20 iterations 25 iterations
2.21 1.44 0,94 0,85 0,84

63 network classes have been evaluated in order to compare the approaches in the

Disaggregate Local Search methods. Computation results in Table-A.3 have shown

that the Disaggregate Local search in largest order, smallest order and random order

has the same order of quality. In most cases the quality difference between these

three approaches is around 1%. Generally, these algorithms can be ordered

according to their qualities as follows;

Disaggregate Random > Disaggregate Largest > Disaggregate Smallest

The fourth method, Disaggregate Local Search in Maximum order gives almost the

same result with Disaggregate Local Search in Largest order, except in Small

network classes. It performs better than Disaggregate Local Search in Largest order.

The final issue for the Disaggregate Local Search algorithm is to find the starting

point. When compared to other heuristics (like Minoux greedy), Disaggregate Local

Search algorithm doesn’t eliminate links at each iteration. The uneconomical links

having zero flow are removed at the end of algorithm. Therefore the starting point

determines the quality of the local minimum. Two possible starting points are

considered in the computational study. In the first case, the flows are routed using

shortest path based on physical distance of each link. In the second case, routing is

performed based on hop count. Computational results have shown that it is better to

use physical distance as the starting point, except the case where the network is

fully loaded and the link concavity value is varying. In this case, it is better to use

hop count as the starting solution [Table A.3].

56

As a result Disaggregate Local Search in Random order around 15 iterations gives

the best result, in general.

8.4 Circuit Switching Methods Comparison

In order to compare the performance and computational time requirements of the

circuit switching methods for MCMNDP, 63 network classes have been examined.

Computational study has shown that, Modified Minoux greedy algorithm gives

better quality solutions in all network classes with very little computational time

increase compared to original Minoux greedy methods. When the links are highly

concave (α=0.3), Modified Minoux greedy algorithm shows 3-4% performance

improvement over the greedy algorithms. When the link cost becomes more linear

(α = 0.7) the differences decreases to around 1%. In the network classes with

varying link cost concavity (α=varying) Modified Minoux greedy algorithm

generates network with 4-5% better network cost compared to Minoux greedy

algorithm.

The acceleration method to Minoux greedy algorithm, called Minoux accelerated

greedy algorithm has also been evaluated. The modification to Minoux greedy

algorithm is also applied to the Minoux accelerated greedy algorithm, called

Modified Minoux accelerated greedy algorithm. We expect to have a faster

algorithm with a cost of solution quality degradation w.r.t. Minoux greedy

algorithm. Computational study has shown that, when the link cost concavity is

high (α = 0.3) and link cost concavity is varying (α = varying) the solution quality

of both Minoux greedy and Minoux accelerated greedy algorithm are almost the

same. As a result of this, there is a little difference between the computational

times. Minoux accelerated greedy algorithm works a bit faster. However, when the

link cost function becomes more linear (α=0.7), Minoux accelerated greedy

algorithm becomes faster (requires almost half of the computational time) compared

57

to Minoux greedy algorithm. In such networks, Minoux greedy algorithm has 1-2%

better network costs.

The computational results regarding the comparison of Minoux greedy and Minoux

accelerated greedy algorithm are also valid for Modified Minoux greedy and

Modified Minoux accelerated greedy algorithms. The performances of the circuit

switching methods are discussed in the following sections for different network

classes. Cost comparison of methods is shown in Table-A.4. Table-A.5 shows the

computational time required. Table 8.2 presents the recommended network design

technique deduced from the computational study performed within the context of

circuit switching network design. The entries in the table have been derived from

the computational study results presented in Table-A.4 and Table-A.5.

8.4.1 Networks with Large Economies of Scale (α = 0.3)

Computational results have shown that, when the network is composed of links with

highly concave link cost functions, the Modified Minoux greedy algorithm gives the

best quality networks in all size of networks and traffic conditions. The Accelerated

Modified Minoux greedy algorithm gives the same result as the Modified Minoux

greedy algorithm with a little bit smaller computational time.

Disaggregate Local Search algorithm gives network solution with around 20%

larger network cost. This solution quality result is valid for almost all network sizes

and traffic, except the small network with light traffic case. For that case, the

solution quality is around 6% larger than the best solution.

For the Yaged’s Linearization, as the network traffic increases, better quality

networks are obtained. However, the networks obtained with Yaged’s Linearization

has 8-10% larger network cost compared to best solution in fully loaded networks.

This quality decreases up to 20% in lightly loaded networks.

58

Table 8.2 Recommended circuit switching method for each network class

Network
Size

Traffic
Load

Economies
of scale (α)

Method

Low Modified Minoux Greedy
High Disaggregate Local Search

Light

Varying Disaggregate Local Search
Low Modified Minoux Greedy
High Disaggregate Local Search

Medium

Varying Disaggregate Local Search
Low Modified Minoux Greedy
High Disaggregate Local Search

Large

Varying Disaggregate Local Search
Low Modified Minoux Greedy
High Disaggregate Local Search

Small

Full

Varying Modified Minoux Greedy
Low Modified Minoux Greedy
High Disaggregate Local Search

Light

Varying Disaggregate Local Search
Low Modified Minoux Greedy
High Disaggregate Local Search

Medium

Varying Modified Minoux Greedy
Low Modified Minoux Greedy
High Disaggregate Local Search

Large

Varying Modified Minoux Greedy
Low Modified Minoux Greedy
High Yaged Linearization

Middle

Full

Varying Disaggregate Local Search
Low Modified Minoux Greedy
High Disaggregate Local Search

Light

Varying Modified Minoux Greedy
Low Modified Minoux Greedy
High Disaggregate Local Search

Medium

Varying Modified Minoux Greedy
Low Modified Minoux Greedy
High Disaggregate Local Search

Large

Varying Modified Minoux Greedy
Low Modified Minoux Greedy
High Yaged Linearization

Large

Full

Varying Modified Minoux Greedy

59

When the computational time of the algorithms are compared, Yaged’s

Linearization is the fastest algorithm. The Modified Minoux greedy algorithm

requires around 40-50 times more computational time compared to Yaged

algorithm. Disaggregate Local Search Algorithm, which is the slowest algorithm,

requires around 3 times more computational time compared to Modified Minoux

greedy algorithm.

8.4.2 Networks with Small Economies of Scale (α = 0.7)

When the network is composed of links having nearly linear cost function near to

linear (α = 0.7), computational results have figured out that, Disaggregate Local

Search Algorithm gives best the result, in almost all network sizes and traffic

conditions.

The solution quality of the Modified Minoux greedy algorithm in this network class

decreases as the network size increases. In small networks its solution quality is 5%

larger than the best solution. When the network is middle sized, the quality

decreases to 10% and as the network size becomes large, solutions are about 15%

larger than the best solution.

Yaged’s Linearization method performs well in this network class, as the network

becomes heavily loaded. For small sized networks, Yaged and the Disaggregate

Local Search generate almost the same quality solution. As the network size

becomes middle and large, Yaged performs a bit better than the Disaggregate Local

Search. When the network is moderately loaded, the solution of Yaged is around 2-

3% larger than the best solution and this value increases up to 8-10% when the

network is lightly loaded.

Again, Yaged’s Linearization is the fastest algorithm. Therefore, in this network

class, it is recommended to use Yaged method when the network is heavily loaded.

60

The Modified Minoux greedy algorithm requires around 20-30 times more

computational time. Disaggregate Local Search algorithm requires 4-6 times more

computational time compared to Modified Minoux greedy algorithm [Table A.5].

8.4.3 Hybrid Networks (α =varying)

In this class of networks, according to computational results, it is not possible to

indicate a method as the best for all network sizes and traffic. In some cases,

Disaggregate Local Search algorithm is better, whereas Modified Minoux greedy

algorithm gives best result in most of the cases.

For small and middle sized networks, Modified Minoux greedy algorithm gives

better results as the network traffic increases. Network cost with Modified Minoux

greedy algorithm is around 80% larger than the best result in small networks with

light traffic. However, as traffic increases the quality increases to 10% in moderate

networks and 1% in fully loaded network, in which the Modified Minoux greedy

algorithm is best. For large size networks, Modified Minoux greedy algorithm gives

the best result all the time.

Disaggregate Local Search algorithm generates high cost networks as the network

becomes heavily loaded. When the network is lightly loaded, this algorithm gives

the best result in small and medium size networks. As the network traffic increases,

the cost of network increases around 7% compared to the best result. However, as

the network becomes fully loaded, the cost of the network decreases down to 3-4%

compared to best solution and even gives the best result for middle sized networks.

The computational results has shown that, as the network traffic increases Yaged’s

Linearization method gives better quality network. However, the cost of networks

obtained by Yaged’s Linearization method is around 10% larger than the best result.

This value increases to 20% when the network traffic becomes light.

61

The computational time requirement of the methods, are similar to other network

classes. Yaged’s Linearization is the fastest. Modified Minoux greedy requires 40-

50 times more computational time and the Disaggregate Local search method

requires 2-3 times more computation time compared to Modified Minoux greedy.

8.5 Packet Switching Methods Comparison

In order to evaluate the performance of packet switching network design algorithms

63 network classes have been evaluated. The packet switching methods evaluated

here are;

• Concave Branch Elimination (CBE) proposed by Gerla and

Kleinrock [11]

• Gersht’s [12] Joint Optimization approach

• Concave Link Elimination (CLE) proposed by Stacey [23]

• CLE Incremental, a modification to CLE

• Adapted Modified Minoux Greedy Algorithm

• Adapted Disaggregate Local Search Algorithm.

The Disaggregate Local Search Algorithm is repeated 15 times for random

commodity selection approach.

CBE method is repeated 30 times and the counter re-started from one when a better

cost network is achieved.

62

In CLE [23] while rerouting the flows, the shortest path is calculated using the

physical length. However, in order to make a comparison of physical length and

incremental length used by Minoux[19,20], CLE Incremental method is evaluated

by changing the length to incremental cost in shortest path calculation.

The network classes studied can be grouped according to the concavity of link cost

function. Computational results are shown in Table-A.6 and computational time

requirements are given in Table-A.7 The recommended packet switching network

design method for each network class is tabulated in Table-8.3 and these entities are

derived from Table-A.6 and Table-A.7.

8.5.1 Networks with Large Economies of Scale (α = 0.3)

When the network is composed of links having the same concave link cost function

resulting strong economies of scale, computational results has shown that Gersht’s

greedy gives the best result for all network size and traffic conditions.

The Adapted Modified Minoux greedy algorithm, which is around 7-8 times faster

than Gersht’s greedy gives very nice quality networks. When the network is lightly

loaded, the cost of networks obtained with this algorithm is around 0.5-1% larger

than the best quality. As the network traffic increases, the quality of this approach is

a bit degraded. The cost of the networks is around 1-1.5% larger than the best result

when the network is fully loaded.

The cost of networks generated by CLE decreases as the network traffic increases.

When the network is lightly loaded, cost is around 5-7% larger than best cost

network. As the network traffic increases, this value decreases down to 1-2%. CLE

algorithm is around 3 times faster than Gersht’s greedy when the computational

time is considered.

63

Table 8.3 Recommended packet switching method for each network class

Network
Size

Traffic
Load

Economies
of scale (α)

Method

Low Gersht greedy
High Adapted Disaggregate Local Search

Light

Varying Adapted Disaggregate Local Search
Low Gersht greedy
High CLE incremental

Medium

Varying Adapted Disaggregate Local Search
Low Gersht greedy
High CLE incremental

Large

Varying Adapted Disaggregate Local Search
Low Gersht greedy
High CLE incremental

Small

Full

Varying Adapted Disaggregate Local Search
Low Gersht greedy
High Adapted Disaggregate Local Search

Light

Varying Adapted Disaggregate Local Search
Low Gersht greedy
High CLE incremental

Medium

Varying Adapted Modified Minoux Greedy
Low Gersht greedy
High CLE incremental

Large

Varying Adapted Modified Minoux Greedy
Low Gersht greedy
High CLE incremental

Middle

Full

Varying Adapted Disaggregate Local Search
Low Gersht greedy
High CLE incremental

Light

Varying Adapted Modified Minoux Greedy
Low Gersht greedy
High CLE incremental

Medium

Varying Adapted Modified Minoux Greedy
Low Gersht greedy
High CLE incremental

Large

Varying Adapted Modified Minoux Greedy
Low CLE
High Adapted Disaggregate Local Search

Large

Full

Varying Adapted Modified Minoux Greedy

64

The modified version of CLE algorithm, CLE Incremental method generates around

1% larger cost networks compared to CLE method in all network cases. Indeed, the

computational time required for this method is around 1.5 – 2 times larger than

CLE.

Concave Branch Elimination, which is the fastest method in this class of networks

generates networks with 40-50% larger cost compared to the best network in lightly

loaded network. As the network traffic increases, CBE generates better cost

networks, however, the cost of networks is still 20-30% larger than the best quality.

The adaptation of Disaggregate Local Search Algorithm, generates larger cost

networks in this class of networks as the network size increases. For small sized

networks, cost is around 15-20 % larger than best. This value increases to 20-25 %

for middle size networks. For large size network, 25-30 % larger cost networks are

generated. The computational time required for Adapted Disaggregate Local Search

Algorithm is about the same with that of CLE algorithm.

As a result, it may be recommended to use Gersht’ greedy if computational time is

not problem. For a faster approach, Adapted Modified Minoux greedy algorithm is

the best choice.

8.5.2 Networks with Small Economies of Scale (α = 0.7)

For this class of networks the solution quality of Modified Concave Link

Elimination, namely CLE Incremental gives the best result in all network classes,

except small size networks with light traffic load. In these networks, Adapted

Disaggregate Local Search algorithm gives a bit better result.

CLE method generates networks with very little larger cost compared to the best

result, which is around 0.1-0.5 %. The computational time required is a bit shorter

compared to CLE Incremental.

65

Another good algorithm for this class of network is the adaptation of Disaggregate

Local Search Algorithm. There is a cost increase in the order of 1–2 % when

Adapted Disaggregate Local Search algorithm is used. As mentioned before, it

gives 1.5% better quality networks at small network sizes with light network traffic.

The algorithm requires almost half of the time compared to CLE incremental at

fully loaded networks. As the network traffic decreases more computational time is

required.

CLE method is better than Gersht’s greedy in this class. Gersht’s greedy generates

around 3 % larger cost network within around four times more computation time.

The quality of CBE algorithm increases as the network becomes heavily loaded. For

lightly loaded networks the cost of CBE is around 50% larger than the best result.

As traffic demand increases, this value decreases down to 20% in fully loaded

networks. Although this algorithm is the fastest method, it is not recommended for

this class of network due to its quality.

Another bad quality algorithm in this class of networks is the adaptation of

Modified Minoux greedy algorithm. The algorithm quality decreases as the network

size increases. For small networks, around 6% larger cost networks are generated.

This value increases up to 16% in larger networks. Computational time required for

this method is around quarter of time required for CLE Incremental.

As a conclusion, it is recommended to use CLE or CLE Incremental in this class of

networks.

8.5.3 Hybrid Networks (α = varying)

The adaptation of Modified Minoux greedy and Disaggregate Local Search

Algorithm are the best quality approaches in this class of networks. The size and

66

traffic density of the network determine which method to use among these two

algorithms.

Adapted Modified Minoux greedy algorithm gives better results as the network

traffic increases. For small and middle sized networks, cost of the networks

generated with Adapted Modified Minoux greedy is larger than the Adapted

Disaggregate Local Search. Network cost is about 80% larger than best in small

networks with light traffic. However as the network traffic increases, the cost

difference with the best decreases down to 10% in moderate networks and %1 in

fully loaded networks, in which case Modified Minoux greedy algorithm is best.

For large size networks, Modified Minoux greedy algorithm gives the best result all

the time.

Adapted Disaggregate Local Search generates high cost networks as the network

becomes heavily loaded. When the network is lightly loaded, this algorithm gives

the best result in small and medium sized networks. As the network traffic

increases, the cost of network increases up to around 7% compared to best.

However, as the network becomes fully loaded, the cost difference with best

decreases down to 3-4% and even gives the best result for middle sized networks.

CLE method doesn’t perform well in this class of networks according to

computational study. It generates around 35% larger cost networks when the

network size is small. As network size increases, quality becomes a bit better.

However, the cost is still 20% large in large sized networks. Indeed as the network

size increase, the computation time required increases compared to adaptation of

Modified Minoux greedy and Disaggregate Local Search algorithms.

The modification to CLE, CLE Incremental has significantly better quality in this

class of networks. CLE Incremental has around 15% better quality networks

compared to CLE algorithm, with around two times computational time

requirement compared to CLE. However, CLE Incremental also has 15% larger cost

compared to best result in small sized networks. Like CLE, its quality becomes

67

better as the network size increases. However, the cost is still 8% large in large

sized networks.

Similarly, Gersht’s greedy is not suitable in this class of networks because this

method is very similar to CLE except it removes only one link at each iteration.

Therefore, the computational time required is larger than CLE and CLE

Incremental. The solution quality of Gersht’s greedy is in between CLE and CLE

Incremental.

With the increasing network size, the network cost quality increases with CBE

method according to computational results. Although this method is a very fast

algorithm, the quality is around 30% larger in small size network and 15% in

middle sized networks compared to best results. This value decreases down to 10%

for large sized networks.

If the network is composed of different concavity link cost functions, it may be

advised to use adaptation of Modified Minoux greedy and adaptation of

Disaggregate Local Search algorithms. The network type determines which

algorithm to use according to the computational study.

68

CHAPTER 9

CONCLUSIONS

Concave cost multicommodity network optimization is quite important for many

application areas such as in backbone telecommunication networks and in

transportation planning. and is expected to remain so as long as strong economies of

scale continues to exist. A number of methods to find the true optimal solution has

been proposed but these methods are applicable only to small sized problems due to

large computational time requirements. In the literature a number of greedy

methods and optimization techniques based on Lagrangian Relaxation have also

been proposed. The latter methods still require large computational time and

therefore, heuristic techniques are usually employed for most concave cost

multicommodity flow problems.

In this thesis work, methods for the MCMNDP with circuit and packet switching

links are investigated and empirically evaluated. For the former network type with

circuit switching links only, Yaged’s linearization scheme and Minoux’s greedy and

accelerated greedy methods are considered. Previously, Minoux greedy and

accelerated greedy methods have been demonstrated to create excess flows if used

in their simplest forms. It has also been demonstrated that the original proposal for

the removal of the excess flow leads to anomalies in the general concave cost case.

In this study, the modification proposed for Minoux greedy methods has been

evaluated in detail and proved to effective.

For the second network type with packet switching links only, Gerla and

Kleinrock’s Concave Branch Elimination method, Gersht’s greedy and Stacey’s

Concave Link Elimination methods have been investigated Using Dutta and Lim’s

69

equal link utilization method, it has been shown that the methods for circuit

switching network design can easily be extended to the packet switching case. This

is the first time that the two groups of algorithms are compared with each other. In

some problem classes, the proposed adaptation proved to be quite effective.

A Disaggregate Local Search, which considers a single commodity at each iteration,

has also been evaluated for both circuit and packet switching networks. An

extensive computational study has been carried out to evaluate the performance of

the above techniques. The results reveal that compared to other algorithms, both the

modified Minoux algorithm and the Disaggregate Local Search proved to be the

most successful in finding good solutions in most cases.

The present work has also invalidated an earlier claim in [23] “that the Minoux

greedy is not applicable to the concave cost network design”. Our study has shown

that, with the proposed modification Minoux greedy method has even better

performance over CLE, which was proposed in [23].

One important result of our computational study is that the best method for the

network design depends on the size, traffic and cost function of the network. The

best technique for each class of problems employed in this work has been pointed

out and tabulated in Chapter 8.

Further works remains for the optimization of real networks with the methods

discussed in this work. Different combinations of the above heuristics in an

integrated approach may be investigated. An integrated tool may also be developed

which incorporates all the techniques and applies the appropriate ones with a higher

decision level to get the best solution.

70

REFERENCES

[1] Amiri, A., and Pirkul, H., “New formulation and relaxation to solve a

concave-cost network flow problem”, The Journal of Operational Research Society,

Vol 48, No:3 (1997) 278-287.

[2] Balakrishnan, A. and Graves, C.S., “A composite algorithm for a concave-

cost network flow problem”, Networks 9 (1978) 175-202.

[3] Bazlamaçcı, C.F., and Hindi, K.S., “Enhanced adjacent extreme-point search

and tabu search for the minimum concave-cost uncapacitated transshipment

problem”, Journal of Operations Research Society 47 (1996) 1150-1165.

[4] Cahn, R.S, “MENTour: An algorithm for designing reliable high-speed data

networks”, Canadian Journal of Electrical and Computer Engineering 20(3) (1995)

101–103.

[5] Chattopadhyay, G.N., Morgan, T.W., and Raghuram, A., “An innovative

technique for backbone network design”, IEEE Transactions on Systems, Vol: 19,

No:5 (1989) 1122-1132

[6] Cheng, S.T., “Topological optimization of a reliable communication

network”, IEEE Transactions on Reliability, Vol 47, No:3 (1998) 225-233.

[7] Chou, W., and Frank, H., “Routing strategies for computer network design”,

presented at Symp. Computer-Communication Networks and Teletraffic,

Polytechnic Inst. of Brooklyn, NY, Apr. 4- (1972).

71

 [8] Dutta, A., and Lim, J.I., “A multiperiod capacity planning model for

backbone computer communication networks”, Operations Research 40 (1992)

689-705.

[9] Gallo, G., and Sodini, C., “Concave cost minimization on networks”,

European Journal of Operations Research 3 (1979) 239-249.

[10] Gavish, B., “Topological design of computer communication networks-the

overall design problem”, European Journal of Operations Research 58 (1992) 149-

172.

[11] Gerla, M., and Kleinrock, L., “On the topological design of distributed

computer networks”, IEEE Trans. Comm. COM-25 (1987) 48-60.

[12] Gersht, A., and Weihmayer, R., “Joint optimization of data network design

and facility selection”, IEEE Journal on Selected Areas in Communications 8(9)

(1990) 1667–1681.

[13] Kershenbaum, A., Kermani, P., and Grover, G.A, “MENTOR: An algorithm

for mesh network topological optimization and routing”, IEEE Transactions on

Communications 39(4) (1991) 503–513.

[14] Kennington,.L., “A survey of linear cost multicommodity network flows”,

Operations Research 26/2 (1978) 209-236.

[15] Kleinrock, L., Queuing Systems, Vol. 2: Computer Applications, Wiley,

New York, (1976).

[16] Lindberg, P., “Network structure optimization with respect to cost and

dependability”, in Lada, L.,(ed) Network Planning in the 1990’s, Elsevier (1989)

373-378.

72

[17] Magnanti, T.L., and Wong, R.T., “Network design and transportation

planning : models and algorithms”, Transportation Science 18/1 (1984) 1-55.

[18] Magnanti, T.L., Mirchandani, P., and Vachani, R., “Modeling and solving

the two-facility capacitated network loading problem”, Operations Research 43

(1995) 142-157.

[19] Minoux, M., “Multinots de cout minimal avec functions de cout concaves”,

Annales des Telecommunications 31 (1976) 77-92.

[20] Minoux, M., “Network synthesis and optimum network design problems:

Models, solution methods and applications”, Networks 9 (1989) 313-360.

[21] Monma, C.L., and Sheng, D.D, “Backbone network design and analysis: A

method for packet switching networks”, IEEE Journal on Selected Areas in

Communications, Vol Sac-4 No:6 (1986) 946-965.

[22] Sharma, R.L., Network topology optimization: The art and science of

network design, Van Nostrand Reinhol (1990)

[23] Stacey, C.H.E., Eyers, T., and Anido, G.,J., “A concave link elimination

(CLE) procedure and lower bound for concave topology, capacity and flow

assignment network design problems” Telecommunication Systems, Vol 13 (2000)

351-372

[24] Tanenbaum, A.S., Computer Networks, 4th Ed. Pearson Education (2003).

[25] Yaged, B.A., Jr. “Minimum cost routing for static network models”,

Networks 1, (1971) 139-172.

[26] Yaged, B.A., Jr. “Minimum cost routing for dynamic network models”,

Networks 3, (1973) 193-224.

73

[27] Zadeh, N., “On building minimum cost communication networks”, Networks

3, (1973) 315-331.

[28] Bazlamaçcı, C.F., “Optimised network design: minimum Spanning trees and

minimum concave cost problems”, PhD Thesis, The University of Manchester

Institute of Science and Technology, (1996)

[29] Ward, J.A, “Minimum aggregate concave cost multicommodity flows in

strong-series-parallel networks”, Mathematics of Operational Research 24, (1999)

106-129.

[30] Yan, S., and Luo, S.C., “Probabilistic local search algorithms for concave

cost transportation network problems”, European Journal of Operational Research

117, (1999) 511-521.

[31] Bazlamaçcı, C.F., “Disaggregate local search”, Unpublished Technical

Report, (1998).

74

APPENDIX

COMPUTATIONAL RESULTS

The network classes in this work are represented in the form of “N L P T”, where

• N is the number of nodes in the network

• L is the percentile of the possible traffic requirement

• P is the concavity value

• T is the traffic distribution to nodes, Balanced or Unbalanced

Table A.1 Computational Results for various pricing curves in Yaged’s
Linearization Method

Network
Type

ψ∂Φ∂ / ψψ /)(Φ
()

ψ
ψ K+Φ)(()

ψ
ψ K2)(+Φ ()

ψ
ψ Kf+Φ)(

25 10 0.3 B 10,81 ± 2,34 2,29 ± 1,04 1,70 ± 0,93 1,37 ± 0,80 2,57 ± 1,17
25 10 0.3 UB 10,44 ± 2,44 3,37 ± 1,40 1,88 ± 0,85 1,64 ± 0,81 4,05 ± 1,65
25 10 0.7 B 1,56 ± 0,34 0,97 ± 0,27 0,53 ± 0,22 0,32 ± 0,19 0,92 ± 0,26

25 10 0.7 UB 1,82 ± 0,43 1,23 ± 0,35 0,75 ± 0,26 0,35 ± 0,19 1,21 ± 0,34
25 10 V B 0,02 ± 0,07 23,03 ± 3,94 39,15 ± 5,72 51,14 ± 6,5 25,31 ± 4,24

25 10 V UB 0,05 ± 0,12 18,88 ± 3,73 34,45 ± 5,60 45,05 ± 6,85 20,78 ± 4,26
25 25 0.3 B 19,45 ± 3,65 5,03 ± 1,72 3,56 ± 1,50 2,46 ± 1,27 5,99 ± 1,84

25 25 0.3 UB 18,54 ± 3,19 4,34 ± 1,56 2,84 ± 1,20 2,11 ± 1,04 5,16 ± 1,57
25 25 0.7 B 2,90 ± 0,56 1,97 ± 0,43 1,27 ± 0,32 0,65 ± 0,27 1,88 ± 0,42

25 25 0.7 UB 2,89 ± 0,56 1,79 ± 0,42 1,11 ± 0,37 0,57 ± 0,29 1,79 ± 0,42
25 25 V B 0,03 ± 0,05 27,14 ± 4,41 48,28 ± 6,49 66,77 ± 8,50 29,25 ± 4,79

25 25 V UB 0,03 ± 0,07 27,11 ± 4,90 44,08 ± 6,55 61,41 ± 8,34 28,84 ± 4,99
25 50 0.3 B 15,10 ± 2,35 2,37 ± 0,77 1,49 ± 0,62 1,27 ± 0,66 2,61 ± 0,83

25 50 0.3 UB 13,64 ± 2,05 2,17 ± 0,75 1,30 ± 0,69 1,09 ± 0,55 2,67 ± 0,89
25 50 0.7 B 3,30 ± 0,46 1,78 ± 0,35 0,80 ± 0,23 0,34 ± 0,18 1,65 ± 0,34

25 50 0.7 UB 3,24 ± 0,45 1,85 ± 0,34 0,89 ± 0,24 0,32 ±0,17 1,72 ± 0,33

75

Table A.1 (Cont’d) Computational Results for various pricing curves in Yaged’s
Linearization Method

Network
Type

ψ∂Φ∂ / ψψ /)(Φ
()

ψ
ψ K+Φ)(()

ψ
ψ K2)(+Φ ()

ψ
ψ Kf+Φ)(

25 50 V B 0,04 ± 0,09 27,64 ± 4,44 50,61 ± 6,90 69,95 ± 9,03 29,97 ± 4,78
25 50 V UB 0,05 ± 0,09 28,28 ± 4,51 46,53 ± 5,89 66,62 ± 7,93 30,12 ± 4,63
25 100 0.3 11,67 ± 1,89 1,86 ± 0,65 0,96 ± 0,41 0,75 ± 0,44 2,02 ± 0,56
25 100 0.7 2,65 ± 0,31 1,27 ± 0,24 0,62 ± 0,18 0,14 ± 0,09 1,19 ± 0,23
25 100 V 0,00 ± 0,00 30,26 ± 4,60 52,20 ± 7,51 69,98 ± 9,18 32,97 ± 4,99

50 10 0.3 B 34,14 ± 4,08 4,84 ± 1,38 2,42 ± 0,91 1,98 ± 0,92 6,30 ± 1,61
50 10 0.3 UB 29,23 ± 3,75 3,71 ± 1,12 1,95 ± 0,64 1,46 ± 0,64 5,10 ± 1,40
50 10 0.7 B 3,79 ± 0,48 2,04 ± 0,36 0,93 ± 0,23 0,16 ± 0,11 1,89 ± 0,34

50 10 0.7 UB 4,46 ± 0,53 2,59 ± 0,42 1,23 ± 0,30 0,14 ± 0,10 2,43 ± 0,41
50 10 V B 0,00 ± 0,00 27,90 ± 3,07 51,64 ± 4,78 72,52 ± 6,12 31,26 ± 3,19

50 10 V UB 0,00 ± 0,00 25,40 ± 2,86 47,19 ± 4,44 64,93 ± 5,50 27,69 ± 3,06
50 25 0.3 B 16,89 ± 1,56 1,70 ± 0,41 0,83 ± 0,28 0,62 ± 0,26 2,70 ± 0,56

50 25 0.3 UB 15,02 ± 1,38 1,69 ± 0,44 0,94 ± 0,30 0,63 ± 0,27 2,42 ± 0,52
50 25 0.7 B 5,74 ± 0,49 2,61 ± 0,35 1,03 ± 0,25 0,20 ± 0,12 2,37 ± 0,34

50 25 0.7 UB 5,81 ± 0,48 2,52 ± 0,37 0,99 ± 0,24 0,16 ± 0,10 2,27 ± 0,35
50 25 V B 0,01 ± 0,06 25,78 ± 2,80 47,21 ± 4,30 66,27 ± 5,83 28,94 ± 3,09

50 25 V UB 0,00 ± 0,00 27,81 ± 3,11 48,21 ± 5,03 69,28 ± 6,46 30,25 ± 3,19
50 50 0.3 B 14,24 ± 1,20 1,87 ± 0,40 0,70 ± 0,24 0,41 ± 0,17 2,65 ± 0,49

50 50 0.3 UB 12,92 ± 1,19 1,62 ± 0,37 0,62 ± 0,24 0,42 ± 0,24 2,54 ± 0,49
50 50 0.7 B 4,33 ± 0,34 1,80 ± 0,24 0,55 ± 0,13 0,19 ± 0,10 1,58 ± 0,23

50 50 0.7 UB 3,88 ± 0,31 1,54 ± 0,22 0,57 ± 0,13 0,17 ± 0,09 1,33 ± 0,21
50 50 V B 0,00 ± 0,00 26,12 ± 2,96 48,01 ± 4,19 68,32 ± 5,80 28,70 ± 3,07

50 50 V UB 0,00 ± 0,00 28,53 ± 2,96 51,25 ± 5,11 73,60 ± 6,55 31,31 ± 3,36
50 100 0.3 13,22 ± 1,00 1,70 ± 0,39 0,68 ± 0,23 0,28 ± 0,16 2,51 ± 0,46
50 100 0.7 2,68 ± 0,23 1,06 ± 0,15 0,38 ± 0,11 0,08 ± 0,05 1,00 ± 0,16

50 100 V UB 0,00 ± 0,00 29,19 ± 3,46 52,64 ± 5,19 71,74 ± 6,50 31,73 ± 3,76
75 10 0.3 UB 21,85 ± 2,62 1,90 ± 0,68 1,14 ± 0,67 0,83 ± 0,56 2,99 ± 0,90
75 10 0.7 B 6,55 ± 0,92 3,36 ± 0,73 1,36 ± 0,45 0,09 ± 0,12 3,19 ± 0,72

75 10 0.7 UB 7,44 ± 0,87 3,52 ± 0,59 1,36 ± 0,40 0,09 ± 0,13 3,32 ± 0,59
75 10 V B 0,00 ± 0,00 24,02 ± 3,59 45,74 ± 5,06 67,09 ± 6,90 27,17 ± 3,56

75 10 V UB 0,00 ± 0,00 24,77 ± 3,27 45,87 ± 4,99 65,82 ± 7,51 27,69 ± 3,29
75 25 0.3 B 16,20 ± 1,43 1,72 ± 0,50 0,54 ± 0,30 0,23 ± 0,18 2,79 ± 0,67

75 25 0.3 UB 14,96 ± 1,44 1,41 ± 0,49 0,74 ± 0,36 0,32 ± 0,31 2,42 ± 0,58
75 25 0.7 B 6,99 ± 0,63 2,72 ± 0,54 0,79 ± 0,54 0,16 ± 0,13 2,36 ± 0,51

75 25 0.7 UB 6,29 ± 0,64 2,28 ± 0,39 0,62 ± 0,22 0,11 ± 0,12 1,98 ± 0,40
75 25 V B 0,00 ± 0,00 23,75 ± 3,41 45,24 ± 5,35 63,69 ± 6,38 27,12 ± 3,78

75 25 V UB 0,00 ± 0,00 28,16 ± 4,13 49,58 ± 5,91 71,78 ± 8,00 31,82 ± 4,67
75 50 0.3 B 15,67 ± 1,52 1,57 ± 0,45 0,60 ± 0,32 0,13 ± 0,11 2,66 ± 0,55

75 50 0.3 UB 14,90 ± 1,41 1,53 ± 0,57 0,47 ± 0,26 0,18 ± 0,18 2,54 ± 0,77
75 50 0.7 B 4,04 ± 0,52 1,32 ± 0,28 0,40 ± 0,16 0,20 ± 0,14 1,14 ± 0,29

75 50 0.7 UB 3,82 ± 0,47 1,19 ± 0,28 0,37 ± 0,17 0,22 ± 0,15 1,01 ± 0,26
75 50 V B 0,00 ± 0,00 26,12 ± 3,41 48,24 ± 4,64 67,60 ± 6,63 29,01 ± 3,67

75 50 V UB 0,00 ± 0,00 29,00 ± 3,63 51,21 ± 5,54 68,90 ± 6,86 32,02 ± 3,86
75 100 0.3 14,77 ± 1,35 1,69 ± 0,45 0,48 ± 0,27 0,16 ± 0,19 2,45 ± 0,54
75 100 0.7 2,42 ± 0,29 0,86 ± 0,21 0,29 ± 0,12 0,14 ± 0,10 0,76 ± 0,20
75 100 V 0,00 ± 0,00 25,91 ± 3,37 47,88 ± 5,57 68,93 ± 7,16 29,29 ± 3,64

76

Table A.2 Computational Results of modification method for Minoux greedy

Flow Reroute Cycle Remove Network
Type Quality Time Quality Time

25 10 0.3 B 0,35 ± 0,54 38 0,05 ± 0,19 40
25 10 0.3 UB 0,34 ± 0,50 34 0,03 ± 0,09 36
25 10 0.7 B 0,06 ± 0,25 31 0,05 ± 0,14 28
25 10 0.7 UB 0,00 ± 0,00 29 0,01 ± 0,04 24
25 10 V B 0,57 ± 1,16 46 0,02 ± 0,06 45
25 10 V UB 0,13 ± 0,33 37 0,08 ± 0,29 39
25 25 0.3 B 0,65 ± 0,84 193 0,10 ± 0,20 192
25 25 0.3 UB 0,60 ± 0,65 190 0,26 ± 0,40 188
25 25 0.7 B 0,00 ± 0,00 173 0,03 ± 0,06 173
25 25 0.7 UB 0,00 ± 0,01 152 0,11 ± 0,13 158
25 25 V B 0,14 ± 0,54 212 0,03 ± 0,13 211
25 25 V UB 0,39 ± 1,05 191 0,08 ± 0,29 193
25 50 0.3 B 0,25 ± 0,39 433 0,18 ± 0,29 431
25 50 0.3 UB 0,25 ± 0,34 403 0,08 ± 0,25 401
25 50 0.7 B 0,10 ± 0,25 387 0,11 ± 0,27 402
25 50 0.7 UB 0,03 ± 0,07 352 0,08 ± 0,09 350
25 50 V B 0,00 ± 0,00 448 0,04 ± 0,15 445
25 50 V UB 0,06 ± 0,14 412 0,09 ± 0,26 407
25 100 0.3 0,11 ± 0,24 815 0,19 ± 0,46 776
25 100 0.7 0,01 ± 0,03 699 0,04 ± 0,04 698
25 100 V 0,02 ± 0,07 757 0,14 ± 0,47 743
50 10 0.3 B 0,84 ± 0,71 1979 0,05 ± 0,11 2079
50 10 0.3 UB 0,82 ± 0,77 1808 0,10 ± 0,18 1886
50 10 0.7 B 0,01 ± 0,02 1577 0,06 ± 0,06 1583
50 10 0.7 UB 0,01 ± 0,02 1456 0,09 ± 0,11 1453
50 10 V B 0,29 ± 0,51 2008 0,01 ± 0,02 2045
50 10 V UB 0,41 ± 0,44 1888 0,02 ± 0,05 1916
50 25 0.3 B 0,76 ± 0,55 6794 0,03 ± 0,10 7015
50 25 0.3 UB 0,66 ± 0,63 6206 0,14 ± 0,23 6475
50 25 0.7 B 0,01 ± 0,03 6106 0,14 ± 0,14 6144
50 25 0.7 UB 0,01 ± 0,02 5908 0,18 ± 0,11 5775
50 25 V B 0,43 ± 0,46 14089 0,04 ± 0,10 7071
50 25 V UB 0,34 ± 0,37 12991 0,04 ± 0,12 6532
50 0.3 B 0,38 ± 0,33 27511 0,12 ± 0,21 13851
50 0.3 UB 0,41 ± 0,44 24371 0,35 ± 0,48 12455
50 0.7 B 0,01 ± 0,05 23951 0,09 ± 0,06 12218
50 0.7 UB 0,00 ± 0,01 23991 0,08 ± 0,05 12047
50 V B 0,32 ± 0,45 27813 0,07 ± 0,12 13983
50 V UB 0,25 ± 0,36 25431 0,06 ± 0,12 12633
50 100 0.3 0,22 ± 0,33 49423 0,19 ± 0,21 24792
50 100 0.7 0,00 ± 0,01 91153 0,06 ± 0,04 43139
50 100 V UB 0,09 ± 0,13 142883 0,00 ± 0,01 45452

77

Table A.3 Computational Results for evaluation of Disaggregate Local Search.
HC represents the result associated to starting solution with Hop Count. Similarly, PP represents Physical path distance.

Disaggregate
Largest

Disaggregate
Smallest

Disaggregate
Random

Disaggregate
Improvement

Network
Type

 HC PP HC PP HC PP HC PP

25 10 0.3 B
23,62

±
3,28

5,50
±

1,72

22,72
±

2,74

6,18
±

1,89

22,76
±

3,00

6,13
±

1,89

15,72
±

0,82

0,98
±

0,89

25 10 0.3 UB
18,30

±
3,36

5,39
±

1,95

18,48
±

3,47

5,48
±

1,89

18,24
±

3,36

4,69
±

1,58

10,61
±

7,23

2,50
±

1,27

25 10 0.7 B
2,33

±
1,89

1,12
±

1,10

2,26
±

0,79

1,85
±

0,61

2,16
±

1,84

1,16
±

0,48

2,45
±

0,81

0,93
±

0,44

25 10 0.7 UB
2,11

±
0,92

1,42
±

0,61

2,84
±

0,88

1,75
±

0,57

2,19
±

0,76

1,26
±

0,54

2,85
±

0,86

0,94
±

0,41

n25 10 V B
6,04

±
2,58

11,34
±

3,82

11,68
±

3,81

13,72
±

3,72

7,80
±

3,10

10,97
±

3,57

16,38
±

3,99

14,84
±

3,97

n25 10 V UB
7,34

±
3,11

10,42
±

3,10

12,15
±

3,79

13,08
±

3,94

8,69
±

3,23

10,54
±

3,41

16,61
±

4,01

11,43
±

3,34

n25 25 0.3 B
22,83

±
3,44

4,30
±

1,65

24,28
±

3,97

4,48
±

1,67

20,56
±

2,98

2,09
±

1,08

18,22
±

3,10

3,57
±

1,82

n25 25 0.3
UB

20,23
±

3,33

3,76
±

1,46

20,95
±

3,71

4,40
±

1,46

18,30
±

3,09

1,98
±

0,96

15,10
±

3,14

3,85
±

1,45

n25 25 0.7 B
3,92

±
1,19

1,31
±

0,45

3,71
±

1,16

1,50
±

0,55

2,39
±

0,79

0,77
±

0,39

4,65
±

1,13

1,42
±

0,54

25 25 0.7 UB
3,97

±
1,27

1,26
±

0,44

4,35
±

1,25

1,56
±

0,58

3,15
±

0,86

0,81
±

0,40

4,94
±

1,27

1,38
±

0,48

25 25 V B
18,71

±
5,00

4,27
±

2,14

33,40
±

6,52

8,08
±

2,97

21,05
±

5,38

4,30
±

2,17

21,09
±

4,99

4,80
±

2,36

25 25 V UB
14,95

±
4,84

5,67
±

2,87

24,21
±

5,70

10,37
±

3,70

15,00
±

5,12

5,99
±

2,75

16,78
±

4,88

6,72
±

3,01

25 50 0.3 B
12,41

±
2,67

4,09
±

1,51

13,34
±

2,55

3,92
±

1,66

8,74
±

2,28

1,35
±

0,84

11,17
±

2,77

3,46
±

1,44

25 50 0.3 UB
10,28

±
2,57

4,12
±

1,56

10,54
±

2,54

3,86
±

1,59

6,76
±

2,08

1,34
±

0,86

8,58
±

2,38

4,22
±

1,70

25 50 0.7 B
3,73

±
0,96

0,97
±

0,38

5,21
±

1,07

1,09
±

0,35

2,50
±

0,74

0,26
±

0,17

4,82
±

1,15

1,16
±

0,34

25 50 0.7 UB
3,81

±
1,05

0,93
±

0,34

5,68
±

1,47

0,92
±

0,32

2,22
±

0,73

0,25
±

0,20

4,61
±

1,25

1,06
±

0,37

78

Table A.3 (Cont’d) Computational Results for evaluation of Disaggregate Local
Search

Disaggregate
Largest

Disaggregate
Smallest

Disaggregate
Random

Disaggregate
Improvement

Network
Type

 HC PP HC PP HC PP HC PP

25 50 V B
7,67

±
3,17

10,50
±

3,71

9,19
±

2,95

13,09
±

4,81

5,28
±

2,44

8,76
±

3,64

5,47
±

2,64

9,03
±

3,78

25 50 V UB
7,50

±
2,45

10,99
±

4,31

10,26
±

3,58

11,57
±

4,79

4,97
±

2,48

8,28
±

4,31

5,58
±

2,77

10,06
±

4,85

25 100 0.3
7,63

±
1,86

4,47
±

1,42

6,99
±

1,67

4,54 ±
1,47

1,95
±

0,85

1,62 ±
0,83

5,51 ±
1,51

4,61 ±
1,85

25 100 0.7
1,43

±
0,49

1,25
±

0,34

2,44
±

0,68

1,26
±

0,35

0,24
±

0,18

0,64
±

0,23

1,35
±

0,45

1,55
±

0,35

25 100 V
3,88

±
1,26

21,32
±

5,40

5,18
±

1,45

22,94
± 5,74

0,64
±

0,50

19,10
± 5,05

2,79 ±
1,01

20,98
± 5,18

50 10 0.3 B
31,18

±
,43

6,52
±

1,71

31,58
±

3,14

4,96
±

1,20

25,22
±

2,28

0,49
±

0,42

24,45
±

2,65

4,36
±

1,59

50 10 0.3 UB
26,21

±
2,52

5,11
±

1,62

26,61
±

2,52

5,05 ±
1,42

21,68
±

2,25

0,79 ±
0,53

18,44
± 2,21

3,60 ±
1,46

50 10 0.7 B
3,57

±
0,78

1,63
±

0,45

3,59
±

0,64

2,04
±

0,48

1,31
±

0,41

0,23
±

0,16

4,12
±

0,75

1,34
±

0,36

50 10 0.7 UB
3,83

±
0,77

1,60
±

0,46

3,80
±

0,73

1,85 ±
0,47

1,10
±

0,44

0,34 ±
0,20

4,58 ±
0,80

1,66 ±
0,41

50 10 V B
23,57

±
4,05

4,48
±

1,22

43,75
±

5,01

6,91 ±
1,78

22,78
±

3,74

0,35 ±
0,39

32,43
± 4,69

3,50 ±
1,24

50 10 V UB
17,88

±
3,63

4,36
±

1,46

31,40
±

3,96

7,51
±

1,76

16,21
±

2,91

0,32
±

0,34

25,57
±

3,18

5,24
±

1,32

50 25 0.3 B
17,13

±
2,79

4,42
±

1,46

17,83
±

3,20

3,42 ±
1,26

12,32
±

2,57

0,26 ±
0,28

16,64
± 3,10

3,58 ±
1,46

50 25 0.3 UB
15,30

±
3,14

3,79
±

1,54

15,24
±

3,12

3,35
±

1,31

11,05
±

2,55

0,13
±

0,26

13,98
±

3,24

3,65
±

1,29

50 25 0.7 B
6,04

±
1,31

1,16
±

0,48

6,82
±

1,44

1,17
±

0,44

3,03
±

0,98

0,07
±

0,10

6,35
±

1,38

1,44
±

0,48

50 25 0.7 UB
5,11

±
1,11

1,52
±

0,47

7,26
±

1,46

1,21
±

0,40

3,04
±

0,78

0,09
±

0,14

6,43
±

1,33

1,38
±

0,50

50 25 V B
21,64

±
4,44

2,75
±

1,25

23,00
±

4,72

3,83
±

1,90

18,31
±

4,27

0,06
±

0,20

20,30
±

4,53

2,23
±

1,12

79

Table A.3 (Cont’d) Computational Results for evaluation of Disaggregate Local
Search

Disaggregate
Largest

Disaggregate
Smallest

Disaggregate
Random

Disaggregate
Improvement

Network
Type

 HC PP HC PP HC PP HC PP

50 25 V UB
20,42

±
4,86

2,29
±

0,87

23,92
±

4,55

4,81
±

1,77

16,24
±

4,76

0,10
±

0,16

18,67
±

4,60

2,74
±

0,94

50 50 0.3 B
10,47

±
3,51

3,08
±

1,99

9,74
±

3,27

3,23
±

1,93

6,02
±

2,68

0,23
±

0,43

10,61
±

3,20

4,69
±

2,61

50 50 0.3 UB
8,99

±
2,73

3,59
±

1,72

7,92
±

3,28

3,28
±

1,74

4,11
±

2,22

0,28
±

0,58

8,57
±

3,11

2,78
±

1,79

50 50 0.7 B
5,95

±
1,96

0,75
±

0,48

9,11
±

2,97

0,75
±

0,51

3,95
±

1,39

0,11
±

0,28

6,49
±

2,25

1,03
±

0,58

50 50 V B
8,93

±
4,27

3,14
±

2,64

9,56
±

4,50

4,95
±

4,63

5,26
±

3,20

0,83
±

1,91

8,66
±

4,09

3,47
±

2,25

50 50 V UB
4,36

±
2,67

3,65
±

1,69

5,48
±

2,81

5,11
±

2,93

1,45
±

1,90

1,56
±

1,36

3,53
±

2,56

3,46
±

1,99

50 100 0.3
6,98

±
3,16

3,68
±

1,54

5,90
±

3,21

3,86
±

2,18

1,29
±

1,09

1,08
±

1,36

6,09
±

2,74

3,50
±

2,65

50 100 0.7
1,47

±
1,30

0,76
±

0,52

2,26
±

1,14

0,99
±

0,60

0,25
±

0,27

0,29
±

0,41

1,19
±

1,18

1,02
±

0,64

50 100 V UB
4,90

±
2,74

13,32
±

6,28

4,01
±

1,76

13,19
±

6,46

0,25
±

0,56

10,56
±

5,68

2,75
±

2,30

12,69
±

6,22

75 10 0.3 B
23,69

±
2,06

4,20
±

1,27

24,10
±

2,17

3,93
±

0,99

19,39
±

1,84

0,21
±

0,23

19,79
±

1,82

3,83
±

1,19

n75 10 0.3
UB

22,48
±

2,03

4,01
±

0,94

22,77
±

2,11

4,11
±

0,97

18,59
±

1,69

0,30
±

0,28

17,42
±

1,81

3,13
±

0,89

n75 10 0.7 B
4,32

±
0,65

1,53
±

0,41

4,00
±

0,70

1,60
±

0,34

1,91
±

0,43

0,13
±

0,13

4,80
±

0,70

1,52
±

0,32

n75 10 0.7
UB

4,76
±

0,73

1,39
±

0,36

5,09
±

0,80

1,64
±

0,40

2,44
±

0,50

0,09
±

0,10

5,35
±

0,81

1,28
±

0,32

n75 10 V B
36,85

±
3,86

2,83
±

0,81

47,93
±

4,69

4,23
±

1,04

34,27
±

3,59

0,20
±

0,20

37,93
±

4,07

2,51
±

0,91

n75 10 V UB
29,73

±
3,44

3,30
±

0,99

39,39
±

4,16

4,87
±

1,13

26,93
±

8,61

0,19
±

0,20

32,16
±

3,68

3,12
±

0,94

75 25 0.3 B
13,33

±
4,29

3,08
±

1,74

12,82
±

3,00

2,06
±

1,62

9,34
±

3,17

0,33
±

0,44

13,46
±

5,79

2,93
±

2,20

80

Table A.3 (Cont’d) Computational Results for evaluation of Disaggregate Local
Search

Disaggregate
Largest

Disaggregate
Smallest

Disaggregate
Random

Disaggregate
Improvement

Network
Type

 HC PP HC PP HC PP HC PP

75 25 0.3 UB
12,54

±
3,00

3,38
±

2,37

12,51
±

3,18

2,92
±

1,49

8,31
±

2,55

0,11
±

0,37

11,54
±

4,18

2,33
±

2,26

75 25 0.7 B
6,57

±
2,30

1,38
±

0,55

8,49
±

2,65

1,21
±

0,90

4,55
±

1,61

0,02
±

0,06

6,84
±

2,51

1,17
±

0,72

75 25 0.7 UB
8,59

±
2,14

1,37
±

0,96

9,01
±

2,55

1,52
±

0,97

4,29
±

2,07

0,04
±

0,10

8,06
±

2,83

1,35
±

1,25

50 50 0.7 UB
4,14

±
1,94

0,82
±

0,47

6,49
±

1,95

0,83
±

0,37

2,57
±

1,13

0,02
±

0,05

4,74
±

1,80

0,97
±

0,43

75 25 V B
18,27

±
5,16

1,78
±

1,21

19,07
±

5,29

2,52
±

1,07

15,62
±

4,51

0,04
±

0,14

17,48
±

4,93

1,51
±

1,03

75 25 V UB
20,14

±
3,96

2,48
±

1,74

20,95
±

4,00

2,81
±

1,48

17,15
±

3,77

0,00
±

0,00

17,89
±

6,27

2,97
±

2,40

75 50 0.3 B
8,22

±
2,45

2,83
±

1,60

7,66
±

2,74

3,07
±

1,76

5,09
±

2,32

0,20
±

0,52

8,70
±

4,13

2,62
±

2,02

75 50 0.3 UB
8,72

±
3,49

2,95
±

1,27

8,00
±

3,17

3,19
±

1,04

5,29
±

2,79

0,00
±

0,00

7,78
±

5,10

2,15
±

2,01

75 50 0.7 B
6,91

±
2,63

0,97
±

0,59

11,36
±

1,99

0,95
±

0,56

5,69
±

1,92

0,08
±

0,19

7,75
±

3,47

0,60
±

0,75

75 50 0.7 UB
4,47

±
1,57

0,93
±

0,50

7,11
±

1,77

1,14
±

0,65

3,52
±

1,37

0,01
±

0,02

5,07
±

2,27

1,17
±

0,74

75 50 V B
5,99

±
3,05

2,38
±

1,54

6,50
±

3,40

2,60
±

1,71

3,84
±

2,93

0,16
±

0,47

6,53
±

5,81

1,42
±

1,64

75 50 V UB
6,79

±
2,55

2,82
±

1,96

6,77
±

3,30

2,62
±

1,35

3,59
±

2,15

0,44
±

0,72

6,44
±

2,49

2,78
±

2,22

75 100 0.3
6,17

±
2,26

2,55
±

1,71

5,30
±

2,66

2,84
±

1,31

1,76
±

1,39

0,25
±

0,50

Not
Tested

Not
Tested

75 100 0.7
1,35

±
1,07

0,82
±

0,61

1,73
±

0,92

0,79
±

0,57

0,31
±

0,58

0,56
±

1,01

Not
Tested

Not
Tested

75 100 V
2,77

±
1,62

5,97
±

1,78

2,66
±

1,63

5,70
±

2,14

0,12
±

0,32

3,90
±

2,83

Not
Tested

Not
Tested

81

Table A.4 Quality comparison of circuit switching methods.

Y: Yaged’s Linearization MG: Minoux Greedy MAG: Minoux Accelerated Greedy MMG: Modified Minoux
Greedy MAMG: Modified Accelerated Minoux Greedy DLS: Disaggregate Local Search

Network Type Y MG MAG MMG MAMG DLS

25 10 0.3 B 37,55 ±
3,27

1,14 ±
0,27

1,14 ±
0,27

0,22 ±
 0,2

0,22 ±
 0,2

6,77 ±
1,14

25 10 0.3 UB 32,00 ±
3,12

2,59 ±
0,71

2,59 ±
0,71

1,38 ±
0,66

1,38 ±
0,66

3,76 ±
1,11

25 10 0.7 B 7,35 ±
0,74

4,83 ±
0,57

5,05 ±
0,58

4,43 ±
0,57

4,77 ±
0,59

0,007 ±
0,02

25 10 0.7 UB 7,50 ± 0,81 5,33 ±
0,61

5,62 ±
0,62

4,89 ±
0,62

5,32 ±
0,63

0,006 ±
0,02

25 10 V B 76,6 ±
11,33

75,02 ±
11,06

75,23 ±
11,09

71,96 ±
10,90

72,20 ±
10,95

0,05 ±
0,24

25 10 V UB 88,73 ±
12,66

87,82 ±
12,44

87,91 ±
12,46

84,22 ±
12,20

84,35 ±
12,22

0,007 ±
0,03

25 25 0.3 B 23,65 ±
2,93

2,27 ±
0,22

2,27 ±
0,22

0,0006 ±
0,002

0,0006 ±
0,002

20,69 ±
1,42

25 25 0.3 UB 22,49 ±
2,59

2,28 ±
0,24

2,28 ±
0,24

0,0001 ±
0,004

0,0001 ±
0,004

20,46 ±
1,32

25 25 0.7 B 7,50 ± 0,80 4,71 ±
0,53

5,41 ±
0,56

4,08 ±
0,53

5,05 ±
0,56

0,01 ±
0,03

25 25 0.7 UB 6,78 ± 0,76 5,01 ±
0,54

5,06 ±
0,56

4,32 ±
0,52

5,18 ±
0,54

0,02 ±
0,04

25 25 V B 14,70 ±
4,44

12,33 ±
4,28

12,35 ±
4,29

8,95 ±
4,07

8,96 ±
4,07

2,7 ±
0,99

25 25 V UB 17,92 ±
4,56

15,62 ±
4,51

15,63 ±
4,51

11,97 ±
4,37

11,97 ±
4,37

2,09 ±
0,92

25 50 0.3 B 13,29 ±
1,21

2,81 ±
0,25

2,81 ±
0,25

0,00 ±
0,00

0,00 ±
0,00

19,25 ±
1,27

25 50 0.3 UB 14,06 ±
1,26

2,86 ±
0,25

2,86 ±
0,25

0,00 ±
0,00

0,00 ±
0,00

19,63 ±
1,32

25 50 0.7 B 2,92 ± 0,52 4,74 ±
0,50

5,44 ±
0,52

4,12 ±
0,50

5,08 ±
0,52

0,02 ±
0,03

25 50 0.7 UB 2,72 ± 0,47 5,08 ±
0,50

5,85 ±
0,51

4,36 ±
0,51

5,44 ±
0,51

0,02 ±
0,03

25 50 V B 14,85 ±
3,46

11,80 ±
3,27

11,81 ±
3,28

7,88 ±
2,93

7,87 ±
2,93

4,64 ±
1,68

25 50 V UB 16,42 ±
4,57

13,55 ±
4,25

13,59 ±
4,29

9,16 ±
3,88

9,16 ±
3,88

4,30 ±
1,69

25 100 0.3 10,07
±1,05

3,02 ±
0,24

3,02 ±
0,24

0,00 ±
0,00

0,00 ±
0,00

16,04 ±
1,12

25 100 0.7 1,18 ±
0,25

5,29 ±
0,41

6,11 ±
0,45

4,64 ±
0,40

5,75 ±
0,45

0,11 ±
0,07

25 100 V 9,51 ±
 3,56

5,25 ±
3,46

5,27 ±
3,46

1,32 ±
3,22

1,32 ±
3,22

3,81 ±
0,69

50 10 0.3 B 29,4 ±
2,46

2,85 ±
0,20

2,85 ±
0,20

0,00 ±
0,00

0,00 ±
0,00

22,53 ±
0,81

50 10 0.3 UB 29,8 ±
2,26

2,85 ±
0,21

2,85 ±
0,21

0,001 ±
0,004

0,001 ±
0,004

20,64 ±
0,88

50 10 0.7 B 10,28 ±
0,58

9,13 ±
0,43

9,87 ±
0,46

8,56 ±
0,43

9,56 ±
0,46

0,00 ±
0,00

82

Table A.4 (Cont’d) Quality comparison of circuit switching methods.

Network Type Y MG MAG MMG MAMG DLS

50 10 0.7 UB 9,54 ±
0,63

10,15 ±
0,51

10,92 ±
0,54

9,41 ±
0,51

10,49 ±
0,54

0,00 ±
0,00

50 10 V B 12,30 ±
2,16

9,03 ±
2,08

9,03 ±
2,08

6,22 ±
1,97

6,22 ±
1,97

0,76 ±
0,33

50 10 V UB 18,22 ± 2,7 15,71 ±
2,74

15,71 ±
2,74

12,74 ±
2,65

12,74 ±
2,65

0,17 ±
0,18

50 25 0.3 B 14,21 ±
0,89

4,07 ±
0,24

4,07 ±
0,24

0,00 ±
0,00

0,00 ±
0,00

23,60 ±
0,91

50 25 0.3 UB 15,98 ±
0,91

4,09 ±
0,24

4,09 ±
0,24

0,00 ±
0,00

0,00 ±
0,00

24,05 ±
0,91

50 25 0.7 B 3,35 ±
 0,46

9,91 ±
0,48

10,88 ±
0,52

9,23 ±
0,47

10,51 ±
0,52

0,01 ±
0,03

50 25 0.7 UB 2,79 ±
0,37

10,83 ±
0,50

11,84 ±
0,53

10,83 ±
0,50

11,38 ±
0,52

0,007 ±
0,02

50 25 V B 8,37 ±
1,06

3,79 ±
0,78

3,79 ±
0,78

0,56 ±
0,74

0,56 ±
0,74

3,90 ±
0,54

50 25 V UB 9,04 ±
 1,28

4,57 ±
1,03

4,57 ±
1,03

0,93 ±
0,95

0,93 ±
0,95

3,85 ±
0,59

50 50 0.3 B 11,24 ±
0,71

4,45 ±
0,25

4,45 ±
0,25

0,00 ±
0,00

0,00 ±
0,00

21,38 ±
0,82

50 50 0.3 UB 12,43 ±
0,83

4,53 ±
0,24

4,53 ±
0,24

0,00 ±
0,00

0,00 ±
0,00

21,69 ±
0,90

50 50 0.7 B 0,57 ± 0,18 10,28 ±
0,45

11,23 ±
0,48

9,66 ±
0,44

10,91 ±
0,47

0,25 ±
0,11

50 50 0.7 UB 0,74 ± 0,22 11,10 ±
0,51

12,08 ±
0,54

10,39 ±
0,48

11,69 ±
0,54

0,15 ±
0,08

50 50 V B 9,51 ± 0,97 3,55 ±
0,26

3,55 ±
0,26

0,05 ±
0,16

0,05 ±
0,16

5,77 ±
0,61

50 50 V UB 9,87 ± 0,99 4,30 ±
0,50

4,30 ±
0,50

0,42 ±
0,38

0,42 ±
038

7,70 ±
1,36

50 100 0.3 8,08 ± 0,65 4,64 ±
0,23

4,64 ±
0,23

0,00 ±
0,00

0,00 ±
0,00

18,44 ±
0,74

50 100 0.7 0,23 ± 0,11 10,44 ±
0,44

11,36 ±
0,47

9,88 ±
0,43

11,07 ±
0,46

0,38 ±
0,11

50 100 V UB 12,68 ±
1,14

5,73 ±
0,77

5,73 ±
0,77

1,83 ±
0,70

1,83 ±
0,70

1,49 ±
0,51

75 10 0.3 B 18,58 ±
1,61

4,27 ±
0,35

4,27 ±
0,35

0,00 ±
0,00

0,00 ±
0,00

27,97 ±
1,29

75 10 0.3 UB 19,96 ±
1,67

4,01 ±
0,32

4,01 ±
0,32

0,00 ±
0,00

0,00 ±
0,00

26,87 ±
1,18

75 10 0.7 B 8,32 ±
 0,79

11,52 ±
0,56

12,48 ±
0,59

10,88 ±
0,56

12,16 ±
0,59

0,00 ±
0,00

75 10 0.7 UB 6,76 ±
0,76

13,07 ±
0,75

14,02 ±
0,77

12,29 ±
0,75

13,58 ±
0,77

0,00 ±
0,00

75 10 V B 8,58 ±
1,27

3,65 ±
0,96

3,65 ±
0,96

0,67 ±
0,91

0,67 ±
0,91

3,72 ±
0,99

75 10 V UB 8,34 ±
1,44

4,11 ±
0,93

4,11 ±
0,93

0,90 ±
0,89

0,90 ±
0,89

2,71 ±
0,91

75 25 0.3 B 12,98 ±
1,01

5,19 ±
0,37

5,19 ±
0,37

0,00 ±
0,00

0,00 ±
0,00

25,98 ±
1,14

83

Table A.4 (Cont’d) Quality comparison of circuit switching methods.

Network Type Y MG MAG MMG MAMG DLS

75 25 0.3 UB 14,56 ±
1,11

4,90 ±
0,34

4,90 ±
0,34 0,00 ±0,00 0,00 ±

0,00
26,00 ±

1,21

75 25 0.7 B 1,51 ± 0,45 13,28 ±
0,83

14,32 ±
0,88

12,70 ±
0,80

14,02 ±
0,87

0,10 ±
0,14

75 25 0.7 UB 1,44 ± 0,46 14, 99 ±
0,73

16,12 ±
0,77

14,21 ±
0,71

15,69 ±
0,76

0,05 ±
0,06

75 25 V B 10,35 ±
1,16

3,55 ±
0,25

3,55 ±
0,25

0,00 ±
0,00

0,00 ±
0,00

7,65 ±
0,82

75 25 V UB 10,49 ±
1,16

3,84 ±
0,36

3,84 ±
0,36

0,08 ±
0,23

0,08 ±
0,23

7,11 ±
0,92

75 50 0.3 B 9,47 ± 0,96 5,37 ±
0,40

5,37 ±
0,40

0,00 ±
0,00

0,00 ±
0,00

22,63 ±
1,19

75 50 0.3 UB 11,37 ±
1,09

5,44 ±
0,36

5,44 ±
0,36

0,00 ±
0,00

0,00 ±
0,00

23,88 ±
1,11

75 50 0.7 B 0,43 ± 0,25 15,04 ±
0,87

16,11 ±
0,90

14,46 ±
0,86

15,83 ±
0,90

0,30 ±
0,17

75 50 0.7 UB 0,50 ± 0,27 15,47 ±
0,81

16,58 ±
0,88

14,79 ±
0,79

16,23 ±
0,87

0,28 ±
0,18

75 50 V B 11,19 ±
1,09

3,71 ±
0,28

3,71 ±
0,28

0,00 ±
0,00

0,00 ±
0,00

8,45 ±
0,80

75 50 V UB 11,74 ±
1,15

4,01 ±
0,25

4,01 ±
0,25

0,00 ±
0,00

0,00 ±
0,00

8,98 ±
0,86

75 100 0.3 6,40 ±
0,82

5,72 ±
0,38

5,72 ±
0,38

0,00 ±
0,00

0,00 ±
0,00

19,31 ±
1,05

75 100 0.7 0,23 ±
0,20

15,01 ±
0,66

16,06 ±
0,68

15,01 ±
0,66

15,01 ±
0,68

0,53 ±
0,20

75 100 V 12,72 ±
1,29

4,19 ±
0,32

4,19 ±
0,32

0,07 ±
0,15

0,07 ±
0,15

5,26 ±
1,13

84

Table A.5 Average computational time (ms) requirements of circuit switching
methods.

Y: Yaged’s Linearization MG: Minoux Greedy MAG: Minoux Accelerated Greedy MMG: Modified Minoux
Greedy MAMG: Modified Accelerated Minoux Greedy DLS: Disaggregate Local Search

Network Type Y MG MAG MMG MAMG DLS
25 10 0.3 B 6.4 43.7 34.13 42.06 34.45 112.5

25 10 0.3 UB 7.2 40.1 29.55 38.42 30.48 120.2
25 10 0.7 B 5,32 28,94 8,43 29,12 8,9 89.92

25 10 0.7 UB 5,28 28,66 8,2 29,06 8,9 90,7
25 10 V B 4,7 44,44 23,86 43,13 25,48 18,69

25 10 V UB 5,6 40,22 20,91 37,61 22,32 18,96
25 25 0.3 B 30 203 187 200 190 1272

25 25 0.3 UB 24 189 173 187 176 1238
25 25 0.7 B 24 169 56 170 56 1352

25 25 0.7 UB 26 154 50 154 51 1289
25 25 V B 17 210 164 206 170 51

25 25 V UB 18 188 144 184 151 50
25 50 0.3 B 59 437 413 428 419 2726

25 50 0.3 UB 55 404 380 396 387 2532
25 50 0.7 B 61 385 156 385 157 3480

25 50 0.7 UB 45 362 147 364 148 3302
25 50 V B 39 431 365 423 379 2058

25 50 V UB 40 410 346 401 362 1918
25 100 0.3 127 761 757 760 754 6326
25 100 0.7 151 682 322 684 323 13620
25 100 V 90 780 762 774 736 4504

50 10 0.3 B 161 3995 3813 3918 3827 18382
50 10 0.3 UB 164 4005 3472 3611 3442 17606
50 10 0.7 B 117 3057 765 3058 802 18841

50 10 0.7 UB 131 2838 690 2809 707 19324
50 10 V B 118 4117 4031 4004 3813 12106

50 10 V UB 103 3602 3126 3550 3182 11759
50 25 0.3 B 367 14229 13788 14306 13687 50837

50 25 0.3 UB 375 13069 11651 12998 11094 49571
50 25 0.7 B 540 12905 5011 12993 5145 75989

50 25 0.7 UB 520 11662 4532 11849 4697 70897
50 25 V B 335 14380 12673 14567 12686 36443

50 25 V UB 321 13675 12318 13559 12348 36153
50 50 0.3 B 786 28458 26290 27297 26901 96462

50 50 0.3 UB 734 26791 25887 26284 26214 90286
50 50 0.7 B 1321 24975 11754 24980 11965 195744

50 50 0.7 UB 1254 25336 11024 23900 11281 182186
50 50 V B 742 26796 25745 29045 25947 81813

50 50 V UB 710 24606 23775 24101 23817 42395
50 100 0.3 1592 45956 44162 52507 46214 171949
50 100 0.7 2894 42607 22727 40745 22780 358346

50 100 V UB 1600 47089 44832 49823 47001 116202
75 10 0.3 B 625 36611 36122 36534 37738 107301

75 10 0.3 UB 1123 32574 32442 35750 32350 98345
75 10 0.7 B 646 29144 8595 29776 8954 133332

75 10 0.7 UB 692 26214 8092 26311 7875 134152
75 10 V B 489 36513 35108 36219 35141 68050

85

Table A.5 (Cont’d) Average computational time (ms) requirements of circuit
switching methods.

Network Type Y MG MAG MMG MAMG DLS
75 10 V UB 480 33261 31659 32669 31685 66095
75 25 0.3 B 1457 113255 115936 115061 114153 239527

75 25 0.3 UB 1417 105516 107115 101778 106317 237016
75 25 0.7 B 2835 143143 44740 103223 89273 592640

75 25 0.7 UB 2396 95648 40779 93428 40351 515771
75 25 V B 1540 139595 139727 134471 140984 235030

75 25 V UB 1485 125650 125232 120935 126674 227129
75 50 0.3 B 3916 264982 251397 244298 268375 498899

75 50 0.3 UB 3587 253226 243440 231164 279711 497148
75 50 0.7 B 7380 252984 123953 268417 127728 1677364

75 50 0.7 UB 5936 203112 106098 198150 101409 1180746
75 50 V B 3716 265629 272986 258051 234845 426876

75 50 V UB 2863 210476 210267 202572 213977 366612
75 100 0.3 6349 370168 383723 400696 378015 858405
75 100 0.7 15888 338978 195815 338484 194012 2396452
75 100 V 3547 465470 418773 450262 348789 716995

86

Table A.6 Quality comparison of packet switching methods

AMG: Adapted Minoux Greedy ADLS: Adapted Disaggregate Local Search

Network Type CBE Gersht CLE CLE Inc AMG ADLS

25 10 0.3 B 32,41 ±
1,96

0,23 ±
0,19

2,53 ±
0,50

3,42 ±
0,60

0,57 ±
0,24

6,99 ±
1,13

25 10 0.3 UB 30,02 ±
1,72

1,25 ±
0,62

3,25 ±
0,77

3,98 ±
0,73

1,74 ±
0,63

4,02 ±
1,15

25 10 0.7 B 5,18 ±
0,74

4,18 ±
0,82

1,70 ±
0,42

1,67 ±
0,42

5,48 ±
0,63

0,39 ±
0,20

25 10 0.7 UB 4,83 ±
0,66

2,67 ±
0,63

1,50 ±
0,38

1,52 ±
0,38

5,70 ±
0,67

0,65 ±
0,29

25 10 V B 76,15 ±
9,58

81,94 ±
12,30

94,34 ±
13,80

85,11 ±
12,80

80,37 ±
12,43

0,03 ±
0,12

25 10 V UB 86,01 ±
10,02

93,63 ±
13,33

103,1 ±
14,12

97,68 ±
14,01

93,30 ±
13,55

0,01 ±
0,04

25 25 0.3 B 37,06 ±
2,28

0,19 ±
0,10

4,58 ±
0,60

4,72 ±
0,66

0,84 ±
0,24

20,44 ±
1,30

25 25 0.3 UB 36,74 ±
2,09

0,17 ±
0,09

4,60 ±
0,63

4,88 ±
0,59

0,73 ±
0,21

19,93 ±
1,33

25 25 0.7 B 3,69 ±
0,51

2,37 ±
0,53

0,67 ±
0,24

0,52 ±
0,19

6,56 ±
0,57

2,07 ±
0,36

25 25 0.7 UB 3,54 ±
0,51

1,75 ±
0,48

0,83 ±
0,26

0,64 ±
0,23

6,94 ±
0,56

2,01 ±
0,35

25 25 V B 19,25 ±
4,61

19,28 ±
5,4

30,77 ±
6,19

16,72 ±
5,19

9,82 ±
4,16

2,54 ±
0,99

25 25 V UB 20,43 ±
4,38

22,45 ±
5,64

32,70 ±
6,33

21,12 ±
5,32

13,27 ±
4,72

2,10 ±
0,88

25 50 0.3 B 28,92 ±
2,23

0,18 ±
0,12

3,34 ±
0,53

3,40 ±
0,50

1,04 ±
0,26

19,52 ±
1,16

25 50 0.3 UB 28,28 ±
2,09

0,27 ±
0,13

3,67 ±
0,60

3,78 ±
0,52

0,74 ±
0,23

19,26 ±
1,22

25 50 0.7 B 2,87 ±
0,36

2,35 ±
0,55

0,39 ±
0,13

0,36 ±
0,15

6,81 ±
0,51

2,42 ±
0,29

25 50 0.7 UB 2,58 ±
0,34

1,99 ±
0,48

0,46 ±
0,16

0,34 ±
0,16

6,72 ±
0,48

2,11 ±
0,28

25 50 V B 20,22 ±
4.03

17,51 ±
4,64

31,46 ±
5,86

15,18 ±
4,05

8,82 ±
3,52

4,05 ±
1,54

25 50 V UB 20,82 ±
3,96

18,07 ±
5,05

32,94 ±
6,07

16,73 ±
4,76

10,14 ±
3,98

3,71 ±
1,49

25 100 0.3 23,48 ±
1,96

0,19 ±
0,11

1,96 ±
0,38

1,88 ±
0,39 1,33 ±0,28 16,84 ±

1,05

25 100 0.7 2,47 ±
0,28

2,09 ±
0,49

0,31 ±
0,10

0,14 ±
0,07

6,42 ±
0,42

1,58 ±
0,19

25 100 V 32,51 ±
5,24

17,07 ±
5,42

37,34 ±
7,29

21,27 ±
5,58

16,72 ±
5,26

0,24 ±
0,27

50 10 0.3 B 54,01 ±
1,84

0,03 ±
0,03

6,29 ±
0,53

7,64 ±
0,57

0,95 ±
0,18

23,38 ±
0,85

50 10 0.3 UB 50,74 ±
1,83

0,02 ±
0,02

6,54 ±
0,53

7,56 ±
0,65

0,96 ±
0,20

21,58 ±
0,91

50 10 0.7 B 5,25 ±
0,44

4,43 ±
0,69

0,81 ±
0,23

0,69 ±
0,22

10,29 ±
0,51

0,67 ±
0,18

87

Table A.6 (Cont’d) Quality comparison of packet switching methods

Network Type CBE Gersht CLE CLE Inc AMG ADLS

50 10 0.7 UB 5,10 ±
0,46

3,57 ±
0,67

0,89 ±
0,26

0,82 ±
0,24

11,12 ±
0,57

0,62 ±
0,19

50 10 V B 16,13 ±
2,58

20,10 ±
3,07

29,15 ±
3,61

14,67 ±
2,51

6,87 ±
2,12

0,60 ±
0,31

50 10 V UB 21,76 ±
2,93

26,24 ±
3,30

35,92 ±
3,71

22,23 ±
3,07

13,71 ±
2,76

0,19 ±
0,19

50 25 0.3 B 33,90 ±
1,73

0,10 ±
0,08

4,59 ±
0,45

6,17 ±
0,53

1,27 ±
0,26

24,95 ±
0,95

50 25 0.3 UB 33,72 ±
1,61

0,08 ±
0,07

5,25 ±
0,46

6,55 ±
0,54

1,19 ±
0,26

25,34 ±
0,93

50 25 0.7 B 3,52 ±
0,35

2,93 ±
0,49

0,62 ±
0,19

0,31 ±
0,14

12,29 ±
0,49

2,36 ±
0,24

50 25 0.7 UB 3,42 ±
0,32

2,61 ±
0,52

0,50 ±
0,14

0,33 ±
0,12

12,79 ±
0,50

1,96 ±
0,25

50 25 V B 11,79 ±
1,46

13,82 ±
1,99

23,17 ±
2,73

7,92 ±
1,34

0,68 ±
0,76

3,71 ±
0,54

50 25 V UB 12,33 ±
1,49

13,10 ±
1,90

25,93 ±
2,60

8,83 ±
1,42

1,02 ±
0,97

3,63 ±
0,58

50 50 0.3 B 28,13 ±
1,33

0,12 ±
0,08

2,12 ±
0,32

3,21 ±
0,37

1,40 ±
0,27

22,96 ±
0,89

50 50 0.3 UB 27,83 ±
1,36

0,12 ±
0,08

2,39 ±
0,37

3,49 ±
0,40

1,24 ±
0,27

23,07 ±
0,95

50 50 0.7 B 3,00 ±
0,25

2,53 ±
0,48

0,53 ±
0,14

0,17 ±
0,09

12,18 ±
0,45

2,32 ±
0,21

50 50 0.7 UB 3,03 ±
0,26

2,46 ±
0,50

0,48 ±
0,13

0,22 ±
0,10

12,97 ±
0,46

2,15 ±
0,21

50 50 V B 13,08 ±
1,27

8,21 ±
1,72

20,77 ±
2,32

6,33 ±
0,79

0,10 ±
0,18

5,76 ±
0,61

50 50 V UB 13,43 ±
1,38

9,98 ±
1,68

21,74 ±
2,50

7,13 ±
0,96

0,44 ±
0,35

7,60 ±
1,35

50 100 0.3 23,94 ±
1,91

0,28 ±
0,20

0,93 ±
0,39

1,16 ±
0,41

1,73 ±
0,17

20,28 ±
1,34

50 100 0.7 2,40 ±
0,32

0,55 ±
0,19

0,46 ±
0,19

0,13 ±
0,16

11,78 ±
0,92

1,64 ±
0,29

50 100 V UB 17,35 ±
2,90

2,72 ±
1,53

21,13 ±
4,70

6,46 ±
1,78

2,38 ±
1,45

2,14 ±
1,16

75 10 0.3 B 45,60 ±
2,09

0,02 ±
0,04

7,17 ±
0,45

9,67 ±
0,58

1,33 ±
0,22

29,28 ±
0,81

75 10 0.3 UB 46,01 ±
2,20

0,02 ±
0,03

7,95 ±
0,51

10,00 ±
0,51

1,34 ±
0,20

28,42 ±
0,87

75 10 0.7 B 4,86 ±
0,38

4,57 ±
0,63

0,65 ±
0,19

0,29 ±
0,13

14,08 ±
0,43

1,96 ±
0,23

75 10 0.7 UB 4,51 ±
0,41

2,89 ±
0,52

0,64 ±
0,17

0,45 ±
0,18

14,94 ±
0,49

1,30 ±
0,25

75 10 V B 10,73 ±
0,91

16,93 ±
1,63

25,0 ±
1,91

8,26 ±
1,09

0,81 ±
0,59

3,47 ±
0,62

75 10 V UB 10,96 ±
1,01

17,07 ±
1,64

26,52 ±
2,15

9,91 ±
1,10

1,06 ±
0,59

2,44 ±
0,58

75 25 0.3 B 33,00 ±
1,1

0,02 ±
0,04

3,95 ±
0,35

6,13 ±
0,42

1,81 ±
0,27

28,02 ±
0,80

88

Table A.6 (Cont’d) Quality comparison of packet switching methods

Network Type CBE Gersht CLE CLE Inc AMG ADLS

75 25 0.3 UB 33,13 ±
1,09

0,03 ±
0,03

4,39 ±
0,36

6,81 ±
0,44

1,58 ±
0,26

27,89 ±
0,79

75 25 0.7 B 3,69 ±
1,34

3,49 ±
0,60

0,69 ±
0,15

0,15 ±
0,08

16,18 ±
0,49

2,44 ±
0,26

75 25 0.7 UB 3,75 ±
0,37

3,06 ±
0,54

0,69 ±
0,18

0,25 ±
0,12

17,57 ±
0,47

2,32 ±
0,25

75 25 V B 12,53 ±
0,82

13,81 ±
1,46

22,3 ±
1,87

7,34 ±
0,67

0,00 ±
0,00

7,46 ±
0,52

75 25 V UB 13,68 ±
1,07

13,30 ±
1,18

24,12 ±
1,72

8,66 ±
0,74

0,10 ±
0,15

7,14 ±
0,58

75 50 0.3 B 28,33 ±
2,26

0,06 ±
0,10

1,32 ±
0,47

2,77 ±
0,66

1,74 ±
0,53

24,78 ±
1,87

75 50 0.3 UB 28,92 ±
2,01

0,09 ±
0,11

1,57 ±
0,71

3,20 ±
0,83

1,59 ±
0,60

25,00 ±
1.67

75 50 0.7 B 2,80 ±
0,49

2,63 ±
1,10

0,54 ±
0,36

0,17 ±
0,18

16,62 ±
1,03

1,74 ±
0,45

75 50 0.7 UB 3,02 ±
0,57

2,93 ±
1,04

0,67 ±
0,40

0,16 ±
0,16

17,00 ±
0,90

1,81 ±
0,49

75 50 V B 13,99 ±
1,82

8,53 ±
3,72

20,41 ±
3,41

6,63 ±
1,77

0,15 ±
0,52

8,49 ±
1,25

75 50 V UB 14,89 ±
1,98

8,03 ±
2,76

19,22 ±
2,96

6,64 ±
1,93

0,007 ±
0,02

8,71 ±
1,23

75 100 0.3 24,06 ±
2,28

Not
Tested

0,02 ±
0,13

Not
Tested

1,94 ±
0,66

21,36 ±
1,93

75 100 0.7 1,94 ±
0,37

Not
Tested

0,42 ±
0,30

Not
Tested

15,13 ±
1,04

0,27 ±
0,31

75 100 V 15,77 ±
1,98

Not
Tested

14.26 ±
2.82

Not
Tested

0.05 ±
0.14

4.60 ±
1.43

89

Table A.7 Average computational time (ms) of packet switching methods

AMG: Adapted Minoux Greedy ADLS: Adapted Disaggregate Local Search

Network Type CBE Gersht CLE CLE Inc AMG ADLS
25 10 0.3 B 585 430 164 187 82 235

25 10 0.3 UB 563 425 147 175 74 268
25 10 0.7 B 389 342 110 127 63 673

25 10 0.7 UB 381 336 108 127 60 200
25 10 V B 359 446 135 218 84 37

25 10 V UB 361 402 114 205 83 40
25 25 0.3 B 1366 3053 1271 1804 404 2431

25 25 0.3 UB 1536 2879 1197 1702 378 2267
25 25 0.7 B 1203 2595 821 1042 362 2526

25 25 0.7 UB 1154 2491 831 1097 323 2507
25 25 V B 913 3156 1102 2485 436 100

25 25 V UB 895 2826 1004 2225 207 100
25 50 0.3 B 2565 11037 4863 7272 884 5409

25 50 0.3 UB 2453 10753 4533 7191 839 4997
25 50 0.7 B 2484 8359 3245 4207 800 6652

25 50 0.7 UB 2416 7942 3396 4201 750 6271
25 50 V B 1754 11067 4436 10734 862 3959

25 50 V UB 1720 10394 4240 9998 810 3660
25 100 0.3 5101 38134 17609 29540 1544 11817
25 100 0.7 5610 25707 12996 16792 1472 18236
25 100 V 3586 36892 37138 66049 1578 9538

50 10 0.3 B 8341 32432 10901 14111 4255 17464
50 10 0.3 UB 8756 27084 9843 13135 3858 16496
50 10 0.7 B 6213 21690 5492 6592 3441 18411

50 10 0.7 UB 6098 19680 5150 6498 3254 18265
50 10 V B 5023 30139 8258 24597 4404 11786

50 10 V UB 4507 27186 7295 20885 3834 11647
50 25 0.3 B 13582 188101 62659 93620 12563 43825

50 25 0.3 UB 13123 162871 42623 91229 10964 34741
50 25 0.7 B 13657 129312 41961 48257 11103 61948

50 25 0.7 UB 13553 121365 40539 48688 10446 58825
50 25 V B 10141 214447 60477 213794 12879 29956

50 25 V UB 10319 213787 54359 157991 12039 30723
50 50 0.3 B 27521 685217 317522 536774 29836 110345

50 50 0.3 UB 25248 678291 239534 492967 26654 98434
50 50 0.7 B 31165 607080 208710 247842 27473 207404

50 50 0.7 UB 30933 511785 205961 248307 35272 217325
50 50 V B 20611 717425 613770 1277154 30294 50546

50 50 V UB 20498 701614 287755 831765 29842 66131
50 100 0.3 37331 2439425 875837 1770192 24597 108184
50 100 0.7 49366 2420746 922611 784993 22747 219433

50 100 V UB 30785 2744897 923248 784993 22784 220029
75 10 0.3 B 12067 273578 67370 90937 19976 62240

75 10 0.3 UB 11806 249418 59017 84033 17622 59461
75 10 0.7 B 12440 192117 38035 42577 16232 81949

75 10 0.7 UB 12085 179811 33923 39819 14953 80561
75 10 V B 10173 256833 53932 178539 19135 40682

75 10 V UB 9166 239072 49361 173085 17456 39474

90

Table A.7 (Cont’d) Average computational time (ms) of packet switching methods

Network Type CBE Gersht CLE CLE Inc AMG ADLS
75 25 0.3 B 53993 2086273 650016 1052103 108927 205881

75 25 0.3 UB 36936 1918897 604201 1063565 100543 214329
75 25 0.7 B 65651 1727722 477616 567420 95952 488422

75 25 0.7 UB 64778 1627417 396781 667440 93350 566030
75 25 V B 53722 2798224 808162 3303387 146348 227373

75 25 V UB 42282 2058640 599214 2544078 106459 187743
75 50 0.3 B 100651 9711897 2743613 5499306 224292 436724

75 50 0.3 UB 98387 8467110 2762821 5199884 227373 380531
75 50 0.7 B 170920 10374845 2402039 2676900 270342 1683230

75 50 0.7 UB 135353 6846510 1520332 1917042 160729 1004648
75 50 V B 90053 9480570 2765113 12332508 249383 389638

75 50 V UB 85718 8761094 2228377 11088760 198649 499082
75 100 0.3 169663 No Test 14073573 No Test 198902 605440
75 100 0.7 238385 No Test 11211180 No Test 192449 1556902
75 100 V 268750 No Test 20575245 No Test 497449 976261

