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ABSTRACT

MIXED -MODE FRACTURE ANALYSIS
OF
ORTHOTROPIC FUNCTIONALLY GRADED MATERIALS

Sarikaya, Duygu
M.S., Department of Mechanical Engineering

Supervisor: Asst. Prof. Dr. Serkan Dag

September 2005 , 109 pages

Functionally graded materials processed by the thermal spray techniques such
as electron beam physical vapor deposition and plasma spray forming are known to
have an orthotropic structure with reduced mechanical properties. Debonding related
failures in these types of material systems occur due to embedded cracks that are
perpendicular to the direction of the material property gradation. These cracks are
inherently under mixed-mode loading and fracture analysis requires the extraction of
the modes I and II stress intensity factors. The present study aims at developing
semi-analytical techniques to study embedded crack problems in graded orthotropic
media under various boundary conditions. The cracks are assumed to be aligned
parallel to one of the principal axes of orthotropy. The problems are formulated using
the averaged constants of plane orthotropic elasticity and reduced to two coupled
integral equations with Cauchy type dominant singularities. The equations are solved
numerically by adopting an expansion - collocation technique. The main results of
the analyses are the mixed mode stress intensity factors and the energy release rate as
functions of the material nonhomogeneity and orthotropy parameters. The effects of
the boundary conditions on the mentioned fracture parameters are also duly

discussed.
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0z

ORTOTROPIK FONKSiYONEL DERECELENDIRILMIi$
MALZEMELERIN KARISIK MOD KIRILMA ANALIZi

Sarikaya, Duygu
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yoneticisi: Yrd.Dog. Dr. Serkan Dag

Eyliil 2005 , 109 sayfa

Elektron 1sinlamayla fiziksel buhar biriktirme ve plazma spreyiyle olusturma
gibi 1s1l sprey teknikleriyle iiretilen Fonksiyonel Derecelendirilmis Malzemelerin,
indirgenmis mekanik 6zellikli bir ortotropik yapiya sahip olduklar1 bilinmektedir. Bu
malzeme sistemlerinde bag kopmasina bagh kirilmalar, malzeme 6zellik
derecelenmesine dik yondeki gomiilii ¢atlaklardan otiirli meydana gelir. Bu catlaklar
dogal olarak karisik mod yiikleme altindadir ve kirilma analizi, mod 1 ve mod 2
gerilme siddeti carpanlarinin hesaplanmasini gerektirir. Bu calisma, cesitli sinir
sartlarinda derecelendirilmis ortotropik ortamdaki gomiilii catlak problemlerini
cozebilmek igin yari-analitik teknikler gelistirmeyi hedeflemektedir. Catlaklarin,
ortotropi ana eksenlerinden birisine paralel olarak hizalandiklar1 varsayilmistir.
Problemler, diizlem ortotropik elastisite ortalama sabitleri kullanilarak formiile
edilmis ve Cauchy tip etkin tekillik igeren iki adet integral denklemine
indirgenmistir. Denklemler, acilim-diizenleme teknigi kullanilarak niimerik olarak
cOziilmiistiir. Analizlerin asil sonuglari, karisik mod gerilme siddeti carpanlar1 ve
malzeme homojen olmama ve ortotropi parametrelerinin fonksiyonlar1 olarak enerji
birakma miktaridir. Sinir sartlarinin bahsedilen kirilma parametrelerine olan etkileri

de beklendigi gibi tartigilmistir.
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Anahtar Kelimeler : Ortotropik Fonksiyonel Olarak Derecelenmis Malzemeler,
Gomiilii Catlak, Tekil Integral Denklemleri, Gerilme Siddeti Carpani, Enerji
Birakma Miktari .
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CHAPTER 1

INTRODUCTION

1.1 Functionally Graded Materials

Developing applications in aerospace, power generation, microelectronics
and bioengineering demand properties that are unobtainable in any single material.
These properties should include both resistance against thermal and mechanical
stresses. Structural ceramic materials are especially used in high temperature
environments, due to their high refractoriness, wear resistance and corrosion
resistance where metallic or organic materials can not survive. However, ceramics
cannot withstand the mechanical stresses which the metals easily overcome. On the
other hand, properties offered by metals are fracture strength, fracture toughness,
wear resistance and corrosion resistance, but they should be shielded from excessive
heat under operating conditions. Correspondingly, composite or layered materials are
developed to bring the desirable characteristics together of each phases in order to
meet such requirements. However, the internal stresses caused by the elastic and
thermal differences at the interface between two different materials can prevent the
successful application of such composites. Also the strength of bonding between the
two layers is generally very poor. A material designed with a soft transition from the
metallic core to the ceramic surface would avoid these thermal and
thermomechanical stresses.

The Functionally Gradient Materials (FGM) overcomes the problems arising
in the composite or bulk layered materials due to their sharp-grading structures, by
bringing the desirable properties of metals and ceramics more effectively. It has been

shown that graded material properties reduce the magnitude of residual stresses,



significantly increase the bonding strength and increase the fracture toughness in
thickness direction.

In practice, the nature of processing techniques of some FGMs may lead to
loss of isotropy. For example, graded materials processed by the electron beam
physical vapor deposition technique have a columnar structure [1] (see Fig.1.1(b)),
which leads to a higher stiffness in the thickness direction and weak fracture planes
perpendicular to the boundary. Furthermore, graded materials processed by a plasma
spray technique generally have a lamellar structure [1] (see Fig.1.1(a)), where
flattened splats and relatively weak splat boundaries create an oriented material with
higher stiffness and weak cleavage planes parallel to the boundary. Embedded cracks
that can initiate at the weak cleavage planes are inherently under mixed-mode
mechanical or thermal loading. One of the approaches to examine fracture mechanics
problems in this type of structures is to model the functionally graded medium as
orthotropic with principal directions of orthotropy parallel and perpendicular to the
free surface.

In this study, mixed—mode crack problems of orthotropic functionally graded
materials are examined using an analytical method. The behavior of the embedded

cracks is investigated under various boundary conditions.
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Figure 1.1 Cross-section microscopy of FGMs: (a) lamellar NiCrAlY-PSZ FGM
processed by plasma spray technique [1]; (b) columnar ZrO2-Y203 thermal barrier

coating with graded porosity processed by electron beam physical vapor deposition

[1].



1.2 Literature Survey

Up to now various material models have been used to solve crack problems in
FGMs and nonhomogeneous materials. Kim and Paulino [1] consider the interaction
integral for fracture analysis of orthotropic FGMs. In this study stress intensity
factors for mode I and mixed-mode two-dimensional problems are evaluated by
means of the interaction integral and the finite element method. Extensive
computational experiments have been performed to validate the proposed
formulation. The accuracy of numerical results is discussed by comparisons to
available analytical, semi-analytical, or numerical solutions.

Interface crack problems in graded orthotropic media are considered by Dag
et al. [2]. In this study the authors examine the problem using analytical and
computational techniques. In the analytical formulation an interface crack between a
graded orthotropic coating and a homogeneous orthotropic substrate is considered.
The principal axes of orthotropy are assumed to be parallel and perpendicular to the
crack plane. Mechanical properties of the medium are assumed to be continuous with
discontinuous derivatives at the interface. The problem is formulated in terms of the
averaged constants of plane orthotropic elasticity and reduced to a pair of singular
integral equations which are solved numerically to compute the mixed mode stress
intensity factors and the energy release rate. In the second part of the study, enriched
finite elements are formulated and implemented for graded orthotropic materials.
Comparisons of the finite element and analytical results show that enriched finite
element technique is capable of producing highly accurate results for crack problems
in graded orthotropic media. Finally, periodic interface cracking and the four point
bending test for graded orthotropic solids are modeled using enriched finite elements.

A surface crack in a semi-infinite elastic graded medium under general
loading is studied by Dag and Erdogan [3]. In this study it is assumed that first by
solving the problem in the absence of a crack it is reduced to a local perturbation
problem with arbitrary self-equilibrating crack surface tractions. The local problem is
then solved by approximating the normal and shear tractions on the crack surfaces by

polynomials and the normalized modes I and II stress intensity factors are given. As



an example the results for a graded half-plane loaded by a sliding rigid circular stamp
are presented.

Kadioglu et al. [4] consider internal and edge crack problems for an FGM
layer attached to an elastic foundation. This model can be used to simulate
circumferential crack problem for a thin walled cylinder. It is assumed that the
Young’ s modulus of the layer varies in thickness direction exponentially. Because of
its insignificant effect on stress intensity factors, Poisson’s ratio is assumed to be
constant. Crack is assumed to be perpendicular to the surfaces. Mode I stress
intensity factors are calculated for various values of the nonhomogeneity parameter.

Circumferential crack problem for an FGM cylinder under thermal stresses is
studied by Dag et al. [5]. In this study the stress intensity factors associated with a
circumferential crack in a thin-walled cylinder subjected to quasi-static thermal
loading are determined. In order to make the problem analytically tractable, the thin-
walled cylinder is modeled as a layer on an elastic foundation whose thermal and
mechanical properties are exponential functions of the thickness coordinate. Hence a
plane strain crack problem is obtained. First temperature and thermal stress
distributions for a crack-free layer are determined. Then using these solutions, the
crack problem is reduced to a local perturbation problem where the only nonzero
loads are the crack surface tractions. Both internal and edge cracks are considered.
Stress intensity factors are computed as functions of crack geometry, material
properties, and time.

In the paper by Yildirim et al. [6], three dimensional surface crack problems
in functionally graded coatings subjected to mode I mechanical or transient thermal
loading are examined. The surface cracks are assumed to have a semi-elliptical crack
front profile of arbitrary aspect ratio. The cracks are embedded in the functionally
graded material (FGM) coating which is perfectly bonded to a homogeneous
substrate. A three dimensional finite element method is used to solve the thermal and
structural problems. The stress intensity factors are computed by using the
displacement correlation technique. Four different coating types are considered in the
analyses which have homogeneous, ceramic-rich (CR), metal-rich (MR) and linear

variation (LN) material composition profiles. The stress intensity factors calculated



for FGM plates are in good agreement with the previously published results on three
dimensional surface cracks. The new results provided show that maximum stress
intensity factors computed during transient thermal loading period for the FGM
coatings are lower than those of the homogeneous ceramic ones.

Dag and Erdogan [7] consider the coupled problem of crack / contact
mechanics in a nonhomogeneous medium and investigate the behavior of a surface
crack in a functionally graded medium loaded by a sliding rigid stamp in the
presence of friction. In this study, the dimensions of the graded medium are assumed
to be very large in comparison with the local length parameters of the crack/contact
region. Thus in formulating the problem the graded medium is assumed to be semi-
infinite. Contact stresses, the in-plane component of the surface stress and stress
intensity factors at the crack tip are determined. The results are presented for various
combinations of friction coefficient, material nonhomogeneity constant and
crack/contact length parameters.

Mode I crack problem in an inhomogeneous orthotropic medium is
considered by Oztiirk and Erdogan [8]. In this study the symmetric crack problem is
considered and the material is both oriented and graded. The mode I crack problem
for the inhomogeneous orthotropic plane is formulated and the solution is obtained
for various loading conditions and material parameters.

The mixed mode crack problem in plane elasticity for a graded and oriented
material is considered by Oztiirk and Erdogan [9]. It is assumed that the crack is
located in a plane perpendicular to the direction of property grading and the principal
axes of orthotropy are parallel and perpendicular to the crack plane. The problem is
formulated in terms of the averaged constants of plane orthotropic elasticity and
reduced to a system of singular integral equations which is solved for various loading
conditions and material parameters. The results presented consist of the strain energy
release rate, the stress intensity factors and the crack opening displacements. It is
found that generally the stress intensity factors increase with increasing material
inhomogeneity parameter, shear parameter and decreasing stiffness ratio.

In the study by Kim and Paulino [10], a finite element methodology is

developed for fracture analysis of orthotropic functionally graded materials (FGMs)



where cracks are arbitrarily oriented with respect to the principal axes of material
orthotropy. The graded and orthotropic material properties are smooth functions of
spatial coordinates, which are integrated into the element stiffness matrix using the
isoparametric concept and special graded finite elements. Stress intensity factors
(SIFs) for mode I and mixed-mode two-dimensional problems are evaluated and
compared by means of the modified crack closure (MCC) and the displacement
correlation technique (DCT) especially tailored for orthotropic FGMs. An accurate
technique to evaluate SIFs by means of the MCC is presented using a simple two-
step (predictor—corrector) process in which the SIFs are first predicted (e.g. by the
DCT) and then corrected by Newton iterations. The effects of boundary conditions,
crack tip mesh discretization and material properties on fracture behavior are
investigated in detail. Many numerical examples are given to validate the proposed
methodology. The accuracy of results is discussed by comparison to available (semi-
) analytical or numerical solutions.

Mode I crack problem for a functionally graded orthotropic strip is
considered by Guo et al. [11]. In this study, internal and edge cracks perpendicular to
the boundaries are investigated. The elastic property of the material is assumed to
vary continuously along the thickness direction. The principal directions of
orthotropy are parallel and perpendicular to the boundaries of the strip. The singular
integral equation for solving the problem and the corresponding asymptotic
expression of the singular kernel are obtained. Three different loading conditions,
namely crack surface pressure, fixed-grip loading and bending, are considered during
the analysis. The influences of parameters such as the material constants and the
geometry parameters on the stress intensity factors (SIFs) are studied.

A functionally graded material strip containing an embedded or a surface
crack perpendicular to its boundaries is considered by Wang et al. [12]. In this study
the graded medium is divided into a large number of layers in the thickness direction,
with each layer being a homogeneous material. Surface crack in the functionally
graded material is considered for arbitrarily distributed material properties in the
thickness direction. In the numerical examples, the graded medium is subjected to

two different loading types, a uniform mechanical pressure on the crack surfaces and



a non-uniform thermal stress distribution. Using these loads, the mode I stress

intensity factors are computed for different crack lengths and property distributions.
Guo et al. consider the static crack problem of a functionally graded coating-

substrate structure with a crack perpendicular to the interface in [13] and the transient

problem of the same case in [14].

1.3 Scope of the Study

The aim of this study is to examine the effects of, material nonhomogeneity,
orthotropy and boundary conditions on fracture mechanics parameters for a crack in
an orthotropic functionally graded layer under various boundary conditions using a
semi-analytical technique. The geometry of the crack problem is shown in Figure 1.2
The problem having the same geometry and properties is examined for three
different boundary conditions (free — free, fixed — fixed and fixed — free) to obtain
the effect of boundary conditions on fracture mechanics parameters. The problem is
formulated using the four averaged constants of plane orthotropic elasticity which are
the effective stiffness, shear parameter, stiffness ratio and effective Poisson’s ratio.
The governing partial differential equations are obtained in terms of the displacement
components and then they are reduced to a pair of singular integral equations using
Fourier transforms. The integral equations are solved numerically using an
expansion-collocation technique to compute the modes I and II stress intensity
factors and the energy release rate at the crack tips.

This thesis contains four chapters. Introduction, literature survey and the
scope of the study are given in the present chapter. Problem definition and
formulation are given in Chapter 2. The computed results are presented in Chapter 3.

Finally, discussion of the results and conclusions are given in Chapter 4.
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CHAPTER 2
PROBLEM DEFINITION and FORMULATION
2.1 Problem Definition
In this study, embedded crack problems in orthotropic FGMs under mixed

mode loading are considered. Three different boundary conditions are studied which

are free — free, fixed — fixed and fixed — free as shown as Figures 2.1-2.3.

™
E,
h] El
1 X]

h2 orthotropic FGM

Figure 2.1 An embedded crack in an orthotropic functionally graded layer under

free — free boundary condition (Case I)

X2

A

E,
h] E 1
1 SX1
P E(x)
h2 orthotropic FGM

I,
Figure 2.2 An embedded crack in an orthotropic functionally graded layer under

fixed — fixed boundary condition (Case 1I)
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Figure 2.3 An embedded crack in an orthotropic functionally graded layer under

fixed — free boundary condition ( Case III )

In these figures x, and x, are the principal directions of orthotropy. The layer is
graded in x, direction and contains an embedded crack of length 2a,/5, at x,=0.

0, is the stiffness ratio as defined in section 2.2. Crack length is taken as 2a,/J, to

simplify the formulation of the problem. The thicknesses of medium 1 and medium 2

are given as h, and h,, respectively. The crack is loaded by arbitrary normal and/or

shear tractions which are applied at x,=0" and x,=0" for| X, |<a1 [0, -

2.2 Formulation

The crack problem is formulated using the averaged constants of plane
orthotropic elasticity which are first introduced by Krenk [15]. Using these averaged

constants, relationship between the strain and the stress components can be expressed

as
X1, X
26, P00 2+w) o,

10



Where E is the effective stiffness, x is the shear parameter, ¢ is the stiffness ratio

and v is the effective Poisson’s ratio. These parameters are given in terms of the

engineering constants for both generalized plane stress and plane strain cases as

follows

E, E, , generalized plane stress

E, E) I ]
, ptane strain
(1_‘/13 V3 ) (1_‘/23 Vi )

V2 Var , generalized plane stress

Vi, ViV Vo +ViV .
\/( 12 13 32)( 21 23 31) , planestram

(I=vvy) (L=vyvyy)

(E,/E,)=(v,/Vv,) , generalized plane stress

E. 1-v, v )
- 2332 , plane strain
E,, 1-v;vy

(2.2a)

(2.2b)

(2.20)

K= { E/(2G b ) — v, for both of generalized plane stress and plane strain (2.2d)

11



By using transformations for the coordinates, displacements and stresses it is
possible to reduce the strain — stress relation given by (2.1) to a form that does not

contain ¢ . These transformation are given by

x:xl/\/g , y:xzx/g (2.3a)
u(x,y)=u(x ,xz)\/g , vix,y)=v 2()cl,xz)/\/g (2.3b)
o, (x,y)=0 (xl,xz)/§ s 04y (X, 9)=0,,(x1,X,) 8, 0, (X, y)=0,(x,%,) (2.3¢)

where (x,y), (#,v)and (0' 0, ,0, y) are the coordinates, displacements and stress

xx % yy o

components in the transformed domain, respectively. Using (2.3), constitutive and

kinematic relations can be expressed as

E oy . I -v 0 o .,
vy P v 1 0 oy, (2.4a)
E (x,)
25” 0 0 2(k+v)||lo xy
1{ 0 0 0
y)=—| — V) + —u(x, - , 2.4b
£, (x,y) 2[axu(x y) axu(x y)j axu(x y) (2.4b)
1( 0 0 0
£,,(x, )’):E [a—yv(x, y)+ EV(X’y)jZEV(X’ y) (2.40)
1{ 0 0
£y (x,y):E [a—yu(x, y) + av(x, y)j (2.4d)

12



the strain — stress relations can be inverted to obtain the stress displacement relations

as follows

05, )= _(xvzy ) {%u (x, ””a_ay”x’ y)} (2.5
0””)_iiw%5?””+£7””} (2.5b)
o ”‘f((—iyi{ uC )+ v y)} (2.50)

In the absence of body forces equations of equilibrium in the transformed coordinate

system are expressed as,

X xy =0 (263)
0x oy
oo, OO,
24— =0 (2.6b)
0x oy
Substituting equations (2.5) into equations (2.6), it then follows that
2 2 E* E*
8L;+ﬂ8u i B, ﬂ18 8u+ ov +L*8 @_F@v ~0 (2.7a)
oy 8x8y E° 0x \ox 8y E 0Oy \dy 0x
2 2 2 E* E*
81;+ﬂ181;+28u+£:<8 ﬂ_'_ ou L*G @_F@v ~0 (2.7b)
ox oy ox0y E 0y \0Oy ox E Ox\0dy Ox

where

13



2 Br=1+vp, (2.8)

Note that in general the averaged properties E, k¥, 06 and v can be functions of x and
y. In this study, in order to make the problem analytically tractable we make some
simplifying assumptions regarding material property distribution in the graded
orthotropic medium. First, we assume that the stiffnesses E,,, E,, and G,, vary in
x,-direction. The variations in the stiffness coefficients are assumed to be

proportional. It was previously shown that the effect of the gradation in the Poisson's
ratio is rather insignificant in a crack problem [2]. Therefore, Poisson's ratios are
assumed to be constant. These assumptions imply that x, 6 and v are constants.
Furthermore, it is assumed that variation in the effective stiffness in the graded
orthotropic medium can be fitted to an exponential function. Under these

assumptions, material coefficients are given in the following form

E(x;,x,)=E(x,)=Eyexp(fx,), —h,<x,<h,, —o0<x <o (2.9)
K (X,X,) =Ky, 0 (x,x,) =0,, V (x,x,)=V,, —h,<x,<h;, —o<x <o (2.10)

where E, is the effective stiffness at x, =0 and f is a nonhomogeneity constant.

Using (2.3), variation of the effective stiffness in the transformed coordinate system

can be expressed as

E"(x,y)=Egexp(yy), —+J6oh,<y< 8, h,, —oo<x<o (2.11)

where y = /)’/\/E

From equation (2.7a), (2.7b) and (2.11) it may then be seen that

14



2 2 2

SL;"'ﬂlsL;"'ﬂzaaav +7[S—u+?j=0 (2.12a)

y X X0y y X

0%y 0%y 0’u ov ou

axz+ﬂlay2+ﬂzaxay+ﬂ17[a—y+voa =0 (2.12b)
2(Kk g+V )

Pi=—1"5" - Fa=livf (2.13)

Vo

Note that for =0, equations (2.12a) and (2.12b) would reduce to the differential
equations for a homogeneous medium. The general solution of (2.12) can be
obtained by employing Fourier transformations in x -direction. The general solutions

for the displacements in the graded orthotropic medium can be expressed as

400

u(x,y)zij‘ U(w,y)exp(iox)dw (2.14a)

—00

v(x,y)zi IV(w,y) exp(iox)dw (2.14b)

—00

Substituting (2.14) in (2.12) following differential equations are obtained:

2

dy2

2 . d
U(a)’y)_ﬂla) U(a)’y)+la)ﬂ2 d_yv(a)’y)

+y[j—yU(a},y) +ia)V(a),y)j:0 (2.15a)

15



2

d . d
—0’V(w,y) + fi—V(w,y) +iop,—U (®,y)
dy dy

+ﬂly/[diV(a),y)+voia)U(a),y)j:0 (2.15b)
y

First the system for U (w,y) and V (w,y) i.e., equations (2.15a) and (2.15b) will be

2
considered. By defining, the differential operators D:i and D =

equations
dy z
(2.15a) and (2.15b) can be written in the following matrix form,
(D2+;/D—ﬂ1a)2> (iwp, D +yio) Ulw,y) 0
= (2.16)

(0 D+ Byvyio) (B,D>+ B yD-02)|Vy]| |0

Defining the determinant of the coefficient matrix by A equation (2.16) can be

uncoupled as follows
A-U(w,y)=0 (2.17a)

AV(w,y)=0 (2.17b)

At this point one can assume a solution of the form exp(n y) . If one substitutes the

solution into equations (2.17) following characteristic equation will be obtained,

nt12yn’ + (o kytyInt-2y0 kon+ (0 +yivy)e’ =0  (2.18)

16



Roots of the characteristic equation are given by

==y [ 2)-(r | 2) 40 ky +oJo k-0 =y v, . R(n)<0  (2.19)

n2=—(7/2)—\/(7/2)2+w21c0—wazxé—wz—yzvo, R(n,)<0  (2.19b)

n3:—(7/2)+\/(7/2)2+a)21(0+a)\/a)21(§—a)2—]/2v0, R(n,)>0  (2.19)

n4=—(7/2)+J(7/2)2+w2K0 —oo k-0 -y v, . R(n,)>0  (2.19d)

The general solution can be expressed as
U(w,y)=A; (w)exp(n; y) (2.20a)
V(w,y)=A; (@) B; (@) exp(n; y) (2.20b)

where A i (), ( = 1,..., 4), are unknown functions. n ; are the characteristic roots ,

B;(w) can be determined by substituting equations (2.20) into equation (2.15a) and

they are found as,

—i <33<V(2)—1)+2a)2(l(0 +V0)_7 s ,'(1_‘/(2)))
Bf: - ) . 2
: a)(s_,. (1+v0+2/<0 v0)+}/ (1—‘/0))

The layers 1 and 2 shown in Figures 2.1 — 2.3 are both graded orthotropic, so the
solution for media 1 and 2 are the same but they are represented by different letters

for simplicity and they can be expressed as follows

17



+00

m(x y)— jZM (@) exp(s; y+iox)d @ (2.22a)

—0 J=1

+00

v (x, y)— j ZM (@) N ;(@)exp(s; y+iox)d o (2.22b)

_00]1

where superscript (1) refers to medium 1 and M i (), (G = 1,..., 4), are unknown

functions. The characteristic roots s; and the functions N ; are given as

——(7/2)—\/(7//2)2+a)2/c0 too k-0’ -y v, , R(s)<0 (2231

——(7/2)—\/(7//2)2+a)2/c0 —oJo ki-0*-y v, , R(s,)<0  (2.23b)

——(7//2)+\/(7//2)2+a)2/c0 too k-0’ -y v, . R(s)>0  (2.23¢)

—(7/2)+\/(7//2)2+a)2/(0 —a)\/a)zké—a)z—yzvo . R(s,)>0  (2.23d)

o _cilsii20 2 +v)-r s, (-v2))
j w (sj (1+V(2)+2K0 V0)+7 (1—1/0))

. (=lhend)  224)

Substituting equations (2.22) into equations (2.5) the general solutions for the

stresses in medium 1 can also be determined as follows,

18



1-v;

1 (< _ |
x{; I(ZM, (za) +V, N, s_,.)exp(s_,. y)] exp(iwx) da)} (2.25a)

o, (x,y)=

Ejexp(yy)
1-v;

RN ' |
x{g I(ZM’ (v0 io+ N, s_,.)exp(s_,- y)] exp (iwx) da)} (2.25b)

o)) (x,y) =

2(ky+ V)

RN ' |
X{Z I(ZM’ (Nj io+ s_,.)exp(s_,. y)] exp(iwx) da)} (2.25¢)

ol (x,y)

The solutions for medium 2 can be expressed as

+00 4
1
(2) _ .
" (x,y)—;j ZGj(w) exp(r; y+imx)d o (2.26a)
-0 J=
400 4
v (x, y):i‘[ ZG.(w)H.(w)exp(r. y+iox)do (2.26b)
272_ = J J J

19



where superscript (2) refers to medium 2 and G j (@), (G = 1,..., 4), are unknown

functions. The characteristic roots r; and the functions H ; are given as

ﬁ:—(7/2)+\/(7/2)2+w21(0+w\/w2K§—w2—72v0, R(r)>0  (227a)

rzz—(7/2)+J(7/2)2+w2K0 —oJoiki-0 -y v, . R(n)>0  (227b)

= 1212 0"y v kB0 @270

r4=—(7/2)—J(7/2)2+602zc0 —oJolki-0 -y v, . R(n)<0  (227d)

i (ri(v3—1)+2a)2(/<0 +v, )y rj(l—vé)) a
H = o[ e Te2m vi)or (ov2)) ;o (j=lnd) 228

Substituting equations (2.26) into equations (2.5) the general solutions for the

stresses in medium 2 can also be determined as follows,

E,exp(yy) y

)
o, (x,y)=
Y l—vé

o0

4
1 ) .
X E J{ ,E_l G, (za) +VvoH, r_i)exp( r y)J exp(iox)dw (2.29a)

_Ejexp(ry)

(2)
ny (x9 y) 1_‘/3

o0

1

4
“Nox (ZGI (vpiow+ H, r.,-)exp( r y)J exp(iwx)dw (2.29b)
Zo\ j=1

20



_Epexp(ry)

J(%)(Xa )_
? Y 2 (ky+vy)

4
1 ' '
N2x I(ZGI(HI’w+r,)eXP(F,Y) exp(iwx)dw (2.29¢)

In the solution of the crack problem, the derivatives of the relative displacements of

the crack surfaces are used as the primary unknown functions. These unknown

functions are given as

, O
2 (0,00 — B 0) = | 71O Tl (2.30a)
0x, 0 , )c1|>611/50
falx) <a,/o
(w0 - P 0 )= alea (2.300)
X 0 , x1|>a,l§0

where a,/0 is the half crack length. The general solutions for the media 1 and 2

have to satisfy boundary and continuity conditions. The boundary conditions for

Case I (free — free) are given in the following form

oW (x,h,)=0 : —o0< X, < 0 (2.31a)
oWix, h,)=0 : —o0< X, < 0 (2.31b)
o) (x.,0) =0 ¥ (x,,0) : —o0< X | < 00 (2.31¢)
oW (x.,0) =0 ¥ (x,,0) : —00< x| < 00 (2.31d)

21



o (x,,~h,)=0 , —00< x, <00 (2.31e)
o (x,,~h,)=0 , —0< X, < 00 (2.311)
The boundary conditions for Case II (fixed — fixed) are given as

u,(x,,h,)=0 , —0< x, <00 (2.31g)
u,(x ,h,)=0

, —00< X< (2.31h)

o (21% (x,,0) =0 (222) (x,,0)

, —0< X < 0 (2.31i)
o (x,0) =0 ¥ (x,0) : —0< X <o (2.31)
u,(x,,~h,)=0 , —o< x, <00 (2.31k)
u,(x,,—h,)=0 , —00< X < (2.311)

The boundary conditions for Case III (fixed — free) are also given as

oW (x,h,)=0 : —o0< X, < 0 (2.31m)
oWx, ,h,)=0 : —o0< X, < 0 (2.31n)
o %) (x.0) =0 ) (,.0)

, —0< x ;< © (2.310)

o) (x.0) =0 @ (x.0) , —00< X <0 (2.31p)

22



u,(x,,~h,)=0 , —o< x, <00 (2.31q)

u,(x,~h,)=0 , —0< X, <© (2.31r)

The final two boundary conditions valid for all cases represent the arbitrary normal

and shear tractions applied to the crack surfaces :

o9 (6.0 =-p(x) , % |< a 5,
(2.32)
1] (%.0) = ~q(x) , | |< a5,

After expressing equations (2.31) and (2.30) in the transformed coordinate system
and taking Fourier transforms of both sides of these equations, the unknown

functions of the general solutions (2.22) and (2.26), ie., M ;(®)andG;(®), (j =

I,..., 4) can be solved by using the following 8 x 8 complex system of linear

equations,

ay ap a3 ay 0 0 0 0 |[M (@] 0
dyy Ay Gy Gy 00 0 0 /M, (o) 0
0

Ay Ay Az Ay 35 Ay, Ay dyg || M5 (o)

Ay Ay Au3 Ay Gus Aue Ay Ay || My (@) B 0
= (2.33)
as; dsy dasy dsy dss dsg ds; dsg || G (@) Fi ()
Agy gy dg3 dgy s dog g7 deg || Gy (@) F, (o)
0 0 0 0 a5 a a;; ay|| Gy(w) 0
0 0 0 0 ag agg ag ag || Gy(@) )| 0

The entries of the coefficient matrix are given in Appendix A for each case. The

solution can now be expressed in the following form.
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M (0)=V;(@) F (o) + W;(@) F,(o) (j=14) (2.34a)

G;(w)=Y;(0) Fi/(0) + Z;(®) F,(®) (j=1,...4) (2.34b)
where

F (o) = Igb (1) exp(—iwt) dt (2.35a)
F, (w) = Igb (1) exp(—iwt) dt (2.35b)

and ¢ (1) = f, (1 18, t), @,()=0, [ (1/50 t). Equations (2.32) can be used to derive
the singular integral equations and to solve for the unknown functions ¢ (t) and
¢, (#). Substituting o, (x,y) and o,, (x,y) from equations (2.29b) and (2.29¢) into

equation (2.32) and after some standard manipulations, the problem can be reduced

to two integral equations which can be written as

(5, y) M{IZI@I (x.3.0) (t)dt} -5, p(xy3,). =1 @.362)

2
I-vy

Ry

T 2(Kk, + V)

—a

oy (x,y) = L0 X7 V) “ Zkij(x,y,t) ¢j(t)dr}=—q(x\/ﬂ), (i=2) (2.36b)

where
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1 % . ..
E‘(‘)‘Kij(a),y) sin(w (x—1) ) do . (i=))

ki, (x,y,0)= L (i,j=1,2) 237)
1| o
a :‘)‘Kij(a),y) cos(w (x—t))dw , (i#])
4
K, (@,y) = 2i {Z(l‘wvo +r H,)Y, (@) exp(r, y) (2.38)
j=1
4
K (@,y) =2 {Z(l‘wvo +r H,)Z, (@) exp(r, ) (2.38b)
j=1
4
Ky (@,y) =2 {Z(inj + 1) Y, (@) exp(r, ) (2.38¢)
j=1
4
Kn(@,3)=2i{ Y (i0H, +1,)Z,@) exp(r; ) (2.38d)

j=1

Note that equations given above are valid for all cases. The integrands in (2.37) are

bounded and continuous for @ < o and integrable for @ =0. The singular nature of

the kernels k; ; can, therefore, be determined by examining the asymptotic behavior
of K;; as « approaches infinity. Details of the asymptotic analysis of the terms

K;; are described in Appendix B. The asymptotic forms are obtained as follows
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K| (0,y) = K [}, (@) exp(r, y) + K {}, (@) exp(r, y)
K5 (0,y) = K5 (@) exp(r, y)+K [, () exp(r, y)
K; (w,y) =K 3011 (w) exp(r, y)+K 3012 (w) exp(r, y)

K;Z (w,y) =K 3021 (w) exp(r, y)+K 3022 (w) exp(r, y)

where

a, a, a
K3 (@) =ay+—+—2+2 44
)

% I
Ky (@) =co+—+—=+—+—
0 @0 o

5 do

3 4

o d d
O w w

@ € € €3 €4
K211(a)):e0+;+— —

o’ o o

ho L fi Ja

Ky (@) = fo+—+-"S+5+
0 0 ©

® 8
K221 (a)) — gO +&+&+_3+&
(VN0

[0 [0
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(2.39a)

(2.39b)

(2.39¢)

(2.39d)

(2.40a)

(2.40b)

(2.40c)

(2.40d)

(2.40e)

(2.40f)

(2.40g)



K5, (@) = hy, +ﬁ+h—22+h—33+h—‘i1 (2.40h)
0 0 0 o

where superscript (o) stands for the asymptotic expansion as @ — oo. The

coefficients of the expansions a;, bj, s dj, e, fj, g hj (j=0,1,...,4) are

lengthy functions of the constants y,x,v,h,, h, and they are not reproduced here.

It is noted that c,+d, = e, + f, =0, ie., the leading coefficients of the coupling

terms are equal to zero. One can now write left hand side of the equations (2.36a)

and (2.36b) in the following form

E exp(ry) | 17 .
o (=P g 0 dr S [K 0.y) sin(@ (x-1) do
0 —-a 0

a 1 0
+J¢ ,(8) dtﬁ _!‘Klz (w,y) cos(w (x—1)) do} (2.41a)

@) _Eyexp(y y) f 1 ( _
R _jwr) ar - jK (@, y) cos(@ (x—1)) da

+J¢ ,(1) dti ‘!‘Kn (w,y) sin(w (x—1t))dw; (2.41b)

At this point, four integral appearing in equations (2.4la) and (2.41b) will be

considered. First we consider the first integral in equation (2.41a) which is given as
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L IK y(@,y)sin(w (x—t)) do (2.42)
27 g

the leading terms of equation (2.39a) can be subtracted from the integrands in

equation (2.42) , then equation (2.42) is expressed as,

1| . B
E '!‘K iy (@,y)sin(w (x—t)) do=

:2L J‘[Kn (a),y)_(ao e’ +b0 erz)‘)] sin (@ (x—1)) do +
T
0

¥ 2i _[[aoe'”‘ +hye™ |sin (@ (x—1)) do (2.43)
T
0

By using symbolic manipulator MAPLE 7 and r, can be expanded asymptotically

as follows

r,=a,w (2.44a)
F,=a,m (2.44b)
where

a, = \/K‘O +qc -1 R(ax,)>0 (2.45a)

a, = \/K‘O —Jx -1 R(a,)>0 (2.45b)

then equation (2.43) can be expressed in the following form
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1| . B
E '!‘K iy (@,y)sin(w (x—t)) do=

:2L J‘[Kn (a),y)_(ao e’ +b0 erz)‘)] sin (a) (x—t)) do+
T
0

o0

n Zi J[ao ™1 +by e |sin (@ (x—1)) do (2.46)

T
0

It is assumed that y<0and SR(O( j ) >0. Under these assumptions following equation

is obtained

1| . B
E '!‘K y(@,y)sin(w (x—t)) do=

:ZL J‘[Kn (a),y)_(ao e’ +b0 erz)‘)]sin (a) (x—t)) do+
T
0

+L{ a, (x—1) N by (x—1) } (2.47)
27

0{12))24—()6—02 0{5)}24—()6—02

Now, the limit is taken as y — 0 and the following expression is obtained,

lim LJ‘K” (w,y)sin(w (x—1)) dw=
Vs
0

y—>0 2

o0

1 . 1 |a, + b,
_E‘!‘[K” (@,0)—(a, +b, )] sin (@ (x—1)) do +§{m } (2.48)
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From equations (2.39a), (2.40a) and (2.40b) K| (@, 0) is obtained as

K| (w,0)=(ay+by)+

(a,+b) (ay+by) (as+by) (az+b,) (2.49)
w

o’ w’ w*

The second term of equation (2.49) can be subtracted from the integrands in equation

(2.48)

hm _IKII (w,y)sin(w (x—1)) dw=

=LJ[K”(CO0) a, +b, )—M} sin (@ (x—1)) d +
2 w
1 OO(al_"bl 1 a, +b
+ E‘!‘ P sin (@ (X—l‘))da)-i-—{m } (2.50)

Then

lim — IK iy (@,y)sin(w (x—1)) do=

y—>0

= L J‘|:K|1 ((O’O)_(ao +b0 )_M:| sin(@ (x—1)) do +
2r g @

1 |a, +b 1 T
2 JZ0 "% _— Z g — 2.51
+2 {(x—t) }4—2 {(al+bl)2s1gn (x t)} (2.51)

The expressions used in the evaluation of integrals are given in Appendix C. Using

integration cut-off points; equation (2.51) is expressed as
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lim —JKll(w y) sin(@w (x—1t)) do =

y—>0
1 A1l
= — J {K”(a),O)—(ao +b, )-
2

0

(a, +b, )} .
sin(w (x—1t)) do +
0]

h b
L L J {K”(a),())—(ao +b, )—(al+ ')}sin(a) (x—=1)) do +
2r .
L {M+ (a,+b,) Z sien (x—t)} (2.52)
(x—1) 2

where A, is the integration cut-off point. Following equation is obtained by
subtracting the remaining terms of equation (2.49) from the integrands in equation

(2.52)

hm —JKll(w y)sin(@w (x—1)) do =

Aq b
1 {K”(a),o)—(a0 +b, )—(al+ ')}sin(a) (x—1)) do +
27 ’ 1)
h b
LJ [K”(a)()) (a +b, )-8 ‘)—---—(““4]’4)}111(@ (x—1)) do+
2 w

3

L J‘ [(a2+b 5) (a3+b ) (a4+b )} sin (@ (x—1)) do+
27 @ 2

1 |a, +b T
I 0 4+ + ¢ — 2.
5 { D) (a,+b,) > sign (x t)} (2.53)
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In summary,

lim iJ‘K” (w,y)sin(w (x—t))dw =
y—>0
0

1 |a, + b, T
= ———+ (a,+b;) —sign (x—1) +
2r 1oyt (@b S sien (v=0)

(a,+b,)

+ HK”(a),O)—(aO +b, )- }sin(a) (x—1)) do +

+ J‘ [Kll (@,0)- K ((0,0)] sin(@ (x—1)) do +

All

+ I K/ (w)sin(w (x—t)) do (2.54)

A1l
where

(a2+2b2)+(a3+3b3)+(a4+4b4) (2.55)
w w w

K ()=

Secondly, consider the following term in equation (2.41a)

1 J‘K12 (,y) cos(@w (x—1)) dw (2.56)
2r d

First, subtract the leading terms of equation (2.39b) from the integrands in equation

(2.56), and then equation (2.56) is reduced to,
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ZL IK (w,y) cos(w (x—1)) do =

ZZLJ‘KIZ(a) y)— coe "y d e’”)]cos(a) (x—1))dw +

0

+2ij[c0e'1>' +dye™ |cos(@ (x—1)) do (2.57)
T

0

Substituting equations (2.44) into equation (2.57), equation (2.57) can be expressed

as follows,

— IK (w,y) cos(w (x—1)) do =

ZZLJ‘KIZ(a) y)— coe’” +d e’”)]cos(a) (x—1)) dw +

0

+2L J[Co eV +dy e | cos(@ (x—1)) do (2.58)
T

0

Under these assumptions that y<0 and R (a ; ) >0 following result is obtained

ZL IK (w,y) cos(w (x—1)) do =

ZZLJ‘K12 (w,y)- coe "y d e’”)]cos(a) (x—1)) do -

Cc, o b, o
_L 2 20 L >t 20 22 2 (2.59)
2 o,y + (x—1t) a,y +((x-1)
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Now, the limit is taken as y — 0 and the following is obtained

hm — IK p(@,y) cos(w (x—1)) do =

:%J‘ K, (@,0)-(c, +d, )|cos(w (x—1)) dw—zi{(como);za(x—t)} (2.60)
T
Using MAPLE, it can be shown that ¢, + d, = 0. Hence

lim — IK n(@,y) cos(w (x—1)) do ——J‘K12 (@,0) cos(w (x—1)) do (2.61)

)—)0

Using integration cut-off points, equation (2.61) is then expressed as

lim —IK b (@,y)cos(w (x—1)) do =

y—>0

A2

:L J‘K12 (@,0) cos(w (x—1)) dw +L J‘K12 (@,0) cos(w (x—1)) dw (2.62)
27 0 27

Al2

From equations (2.39b), (2.40c) and (2.40d) K5 (@, 0) is obtained as

K% (@, 0) :(cl +d, )+(02+d2)+(c3+d3 )+(c4+d4)
w

o’ w’ o*

(2.63)

The first terms of equation (2.63) can be subtracted from the integrands in equation
(2.62)
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Iim — IK L (@,y) cos(w (x—1)) do=

y—>0
Al2

= 1 IKIZ (@,0) cos(w (x—1)) dw +
27

(=]

o0

+ L {Ku (@,0) —M}cos(a) (x=1) do+
2z . w

+ 1 I(C' ) cos(w (x—1)) dw
27r . w

Then,

lim — IK L (@,y) cos(w (x—1)) do=

y—>0

Aq

= 1 IKIZ (@,0) cos(w (x—1)) dw +
27

(c

+ —'+d')}cos(a) (x—1)) do+
®

1
Z |:K12 ((0,0)—

S
;'—.8 e

Alz‘x—l‘

1 _
+ o (e+d,) —7o-In (4, [x—1] ) - j cosa = 1

o
0

(2.64)

! da (2.65)

where A, is the integration cut-off point and p , is the Euler number. The

expressions used in the evaluation of integrals are given in Appendix C. Following

equation is obtained by subtracting the remaining terms of equation (2.63) from the

integrands in equation (2.65)
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1 o0
lim — IK p(@,y)cos(w (x—1))do =
y >0 2r 0

A12

_ L —(¢,+d,) In (A12 | x—] )+L IKlz(w,O)cos(w (x—1) do +
27 27 )

+ I [Ku (0,0)- K, (a),O)]cos (@ (x—1)) do +

A2
Aln ‘ x—l‘ 0
-1
—(e+d) |y, + I O~ " o |+ J‘Kfz(a))cos(a) (x—1))dw
0 @ A
(2.66)
where
s (co+d,) (ci+d;y) (c,+d,)
K}y (@) = 225423 (2.67)
0] 0] 0]
Now consider the first integral in equation (2.41b)
1 o0
pye IKZI (w,y) cos(w (x—1)) do (2.68)
V4
0

This term is similar to the second term in equation (2.41a), so the same procedure

can be followed. By using MAPLE it can be shown that ¢, + f, =0 and one can

write
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lim L JK L (@,y) cos(w (x—1)) dw
y >0 27 0

A2l

— e tar o (s x-S K @0) cost (x-1) dot
27 27 '

+ j K, (0.0)- K, (0.0)]cos (0 (x—1)) do+

A9 ‘x—l‘

—(e+f)| 7o+ j .

0 A9q

cosa —

where

2 3 4

K; (a)’0):(el_a'_)fl)+(eza_:f2)+(€3a—:f3)+(e4a_:f4)

(ez+f2)+(e3+f3)+(e4+f4)

o’ w’ o*

K} (w) =

Finally the second integral in equation (2.41b) is considered

LJ‘KZZ(a),y) sin(w (x—1)) do
27 ’

1da + J‘Kgl(a))cos (0 (x—1))dw

(2.69)

(2.70)

(2.71)

(2.72)

This term is similar to the first term in equation (2.41a), so the same procedure can

be followed and one can write
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lim LJ‘K22 (w,y)sin(w (x—t))dw =

yo>0 27

1 |g,+h

= 5= Tt)0+ (gl+hl)%sign (x—1) +
+ Aﬂlgz (@,0)—(g, +h, )—(g%h‘)} sin (@ (x—1)) do+
+ w K., (0.0)- K3, (0.0)]sin (@ (x—1)) deo+
+ jiK;Q (@) sin (@ (x—1)) do (2.73)

where

K% (@, 0) :(g0+ho)+(gl"‘hl)+(gz+h2)+(g3+h3)+(g4+h4) (2.74)
(4 a)z (03 (04

K (@) = (g2+h2)+(g3+h3)+(g4+h4)

(2.75)
o’ o’ N

The equations for the integrals can be rearranged as

lim LJ‘K”(a),y) sin(w (x—1t)) do =
yo>0 27 )

1 (a, +b0)/2+ (a,+b,)

i - 2.
_ 1) 1 sign (x—1t)+ H,, (x,t) (2.76)

where
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+b,)

H,, (x,1) i{ I K, (0,0)-(a, +b, )—(a‘w }sin (0 (x—1)) do +

o L

8

+ [ [k, @0)- K7 @.0)]sin (@ (x—1)) do +

A1l

+ I K (o) sin(® (x—1)) da)} (2.77)

All

lim iJ‘K b (@,y)cos(w (x—1)) do =
y—>0
0

-1 (Lj'j In <A12|x—t| )+ H,, (x,t) (2.78)
T

where

A2

H,(x,t)= i { IKIZ (@,0) cos(w (x—1)) dw +

o0

+ I [Klz (@,0)- K; (a),O)] cos (w (x—1)) do +

A2
Alz‘x—l‘ 1
—(c,+d) |y, + I S = dar |+
a
0
+ J‘Kl"‘z(a))cos (w (x—t))da)} (2.79)
A2
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lim i IK 5 (@,y) cos(w (x—1)) do
y—>0
0

__1 (%) In (AZI | x—1 )+ H, (x,t)

T

where

A

H, (x,t)= i { JKZI (@,0) cos(w (x—1)) dw

+ J [KZI (0,0)- K3, (a),O)] cos (o (x—1)) dw

A2l

AZI‘X—Z‘ 1
CoSa —
—(e,+f) v+ J - da

0

A2]

+ JK;l(w)cos (w (x—t))da)}

lim i IK 5, (@,y)sin (@ (x—1)) do
y—>0
0

_ (g th)/2  (&th)
T (x-1) 4

sign (x—1)+ H,,(x,t)

where
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A h
H,, (x,t) = i“ {Kn (@,0)-(g, +h, )—(g‘; ')}m(w (x—1) do +

+ I [Kzz (@,0)- K3, (a),O)] sin(w (x—1)) do+

A2

+ J K, (@) sin(o (x—1)) da)} (2.83)

A2

Now the integral equations can be written as

0

E
Oy (X,O)Zl - 2 {

[[1LCa+b)/2 (a+b)
7z (-1 4

sign (x—t) + H,, (x,t)}/ﬁ (@) dt+

a —
o

oL (le) in(A,|x— )+ H, (x,t)} (1) dt} = 5(x) ,
T

—a< x <a

(2.84a)

2(x, +Vv,)

., (x,0) S T 1

J|:_l (szlj In <A2l |x—t| )—{— H,, (x,l‘):|¢l(l‘) dt +

T

—a

+j' 1(g +hy)/2 (8 +h)
T  (x—1) 4

—a

sign (x—1)+H,, (x,t)} ¢ 2(t)dt} =g,

—a< x<a

(2.84b)
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where p(x)and g(x)expressed in the transformed coordinate system are arbitrary

normal and shear tractions applied to the crack surface.

P =-8,p(x5,) —a<x<a, (2.85)
7(x) =—-qlxy5,) . —a<x<a, (2.85b)

and ais the half crack length in the transformed coordinate system. Equations (2.84)

can also be written as

V4 (x—1) 4
¢ —a< x<a

+J‘|:—l (Ldl) In (Alz |x—t| )+ le(x’t):|¢ »(t) dt=p"(x)

a b
J-[l (a, +b,)/2 N (a,+b,) sign (x—l‘)+H||(x’t):|¢l(t) dt

. /4 2
(2.86a)
a 1 1+fl
J.[—; (_6 ) jln (Azl |x—l‘| )+H21(x’t)}¢l(t) dt
[ 1 (g, +h)/2 (g+h) . .
+_J[; — + 1 sign (x—t)+H22(x,t)}¢ (1) dt =q (x),
—a< x<a
(2.86b)

where
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p(x) (2.87a)

¢ ()= " G (2.87b)

At this point, the integrals in equations (2.86) and the intervals |x| <a, are

normalized by using the following transformations

x=as, —a< x<a , -1< s <l (2.88a)
t=ar, —a< x<a, —-1<r<l (2.88b)

Using these transformations, equations (2.86) take the following form

J‘[l (ay +b,)/2 + (@+h) sign (s—r) +aH,, (as,ar)](/ﬁl(ar) dr
JI 7 (s=r) 4
4_“‘[_l {6' +d, jln (A12 als—1] )+aH12(as,ar)}¢2(ar) dr=p (as),
-1 a 2
-1< s <1
(2.89a)

J.[_l (éﬁ_Tfl] In (A21 a|s—r| )+aH21(as,ar):|¢l(ar) dr

T
-1

+J.[l(g° hl ho)/2+(gl+hl) sign (s —r) +aH22(as,ar)}¢2(ar) dr =q (as),
T (s—r) 4

—1< s <l

(2.89b)
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where in the terms with the sign ”, nonhomogeneity constant y is replaced by y a.

Now, examine following terms in equations (2.89)

» aH, (as,ar)

Ay b
aH”(as,ar)=2i HK“(w,O)—(ao+b0)—M sin(aw (s—r))(ado)
T @

0

+ I[Kll(w,O)— K (@,0)]sin (ae (s—r)) (adew )

All

+ I K (w)sin(aw (s—r)) (adw ) (2.90)

All

Using the transformation a@ = «, one may obtain

Allar

I @ +b) | |
aH”(as,ar)=2— J. K, (ala,0)—(a,+b, )- sin(a (s—r)) da+
VA
0 L
+ | [k, @/a.0)- K (@/a.0)]sin(@ (s—r)) da+
AT]a
+ J‘Kl"‘l (al/a)sin(a (s—r)) da (2.91)
Alla

Normalizing the integrands a H,, (as,ar) and K, (@,0) can be written as follows
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A

aH, (as,ar) :L J.[[en (a,O)—(aO +b, )_
2

0

*
1

(G,+b,)

sin(a (s—r)) da +

+ [Iéll(a,O)—lér; (a,O)]sin(a (s—r)) da+

P
_*'—.8

1

+ | K (@) sin(a (s—r))da s = H,, (s,r) (2.92)

s C— 8

S

1

where
4

Ri@0)=2i 1Y (iavy + 7 ;)7 @) (2.93)
j=1

A=A, a (2.94)

After this case one can follow the same procedure which is applied to find
aH, (as,ar) to obtain aH,,(as,ar), aH, (as,ar) and aH,,(as,ar).

These terms are determined as follows

45



A2
1 A
aH,(as,ar) = —2 IKlz(a,O) cos(a (s—r))da +
Vs
0

+ I [1212 (a,0)- K7, (a,O)] cos (a (s—r)) da+

A2
ATQ‘.y—r‘ 1
—(&,+d,) Vot I O~ |+
[04
0
+ ‘[kl‘fz(a)cos (@ (s—r))da t =H,, (s,r) (2.95)
ATz

where

4
Kip(@,0)=2 {Z(mvo v 7 0)2, @) } (2.96)

j=1

AE:Alza (2.97)

"
A2]

aH, (as,ar) = —21 J‘kz‘ (,0) cos(a (s—r)) da+
T
0

o0

+ I [122l (a,0)- K, (a,O)] cos (o (s—r)) da+

*

A2]
A;l‘.s‘—r‘ 1
A cosa —
—(e,+fi)| 7o+ J‘ ——da |+
a
0

+ | K3 (a)cos (@ (s—r))dar p = H,, (s,r) (2.98)
A§1
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where
Ry (a,0) =2 Z(ia A+7)P, @) (2.99)
A=A, a (2.100)

X
A2)

Z> AI ]:l\l .
aHn(as,ar)=2i J.[K22 (@.0)-(g, +h, )—M sin (@ (s—r)) da+
T (04

0

+ ]2[1222 (a,0)— K2, (a,O)] sin(a (s—r)) da+

+ J‘Ieiz(a)sin(a (s—r))dat=H,,(s,r) (2.101)
A2
where
4
Rn@.0)=2i{ > (ia H,+F)Z, (@) (2.102)
j=1
Ay, =A,a (2.103)

Then integral equations can be written as
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A

J‘[l (GO +b0)/2 N (al;:bl) Sign (S—r) + ﬁll(s’r)]é (}") dr

/4 (s—r)

+j[-l [";d Jln (A ]s=r )+ Flu(s,m}@ (r) dr=p’(as),

—l< s <l

(2.104a)

j.[_ 1 (#J In (A . |s—r| )+I:12] ( s,r)]é (r) dr

T
-1

A

I[i (ga b2 (v

sign (s—r) + 1':122 ( s,r)](f) (r)dr = q*(as),

J| 7 (s—r)
—1< s <1
(2.104b)
where
$(r)=¢, (ar) (2.1052)
p(r)=¢,(ar) (2.105b)

It is observed that the dominant singularity in the integral equations is the Cauchy
type singularity. The singular integral equations given by equations (2.104) are
solved using an expansion—collocation technique. In the analysis of the problem
Chebyshev polynomials will be used. The solution can be expressed in the following

form.
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b (r) =2 ZAnTn(r) (2.106a)
n=0

1-r?

1 o0
o (r)= B,T,(r) (2.106b)
1—r2;;

T,, in this equation, is the Chebyshev polynomial of the first kind of order n and
A,, B, are unknown constants. Another condition that has to be satisfied in the

problem is the single valuedness condition. First, the equations for the crack opening

displacements are considered. Using the equation (2.30) crack opening displacement

at any point Xx, (| X, |<a\/§70 ) is expressed as follows

| {ai(ugw(xl,m - 15,0 )}dxl - [rieoax
X

—a\/% —-a,|d(

1000 - w @0 - O (ays,.0) - u?(ayfs,.0) (2.107)

Hence, crack opening displacements are expressed as follows

Ifl(xl)dxl = 9.0 - 1D (x,.0)] (2.108a)
—a\/%

Jroas =l o - a0 (2.108b)
—a,|d(
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If x,=a,/0, equations (2.108) can be written as
1 0
(2.109a)

NER
If 2 (x)dx; =0 (2.109b)

which are the so called single valuedness conditions. One can write these equations

in transformed coordinate system as follows.

I¢1(x)dx =0 (2.110a)
_[¢2(x)dx =0 (2.110b)

Substituting equation (2.88a) into equations (2.110), one can obtain

1
I¢1(as)ds =0 (2.111a)
-1

1
_[¢2(as)ds =0 (2.111b)
-1
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Substituting equations (2.105) into equations (2.111) one may obtain

1

_[43 (s)ds = 0 (2.112a)

-1

1

_[@ (s)ds =0 (2.112b)

-1

and substituting equations (2.106) into equations (2.112), one can obtain

Z.O:A j[ Lu(s) ds=0 (2.113a)
n s = 113a
n=0 a\V ?

1-s

E T, (s)
B I ds=0 (2.113b)
1

n
1-s52

1l
(=)

n

Using equations (2.113) and orthogonality property of Chebyshev polynomials given
in Appendix D, equation (D3), it can easily be shown that

A,=B,=0 (2.114)

Hence, using single — valuedness conditions, equations (2.106) can be expressed as

follows

é(r) = 122AnTn(r) (2.115a)
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(2.115b)

Substituting equations (2.115) into equations (2.104), integral equations are now

determined as

1 (a,+b,)/2 T,(r)
ZA {J:ﬂ Gon) \/?dr—i-
+J‘(ﬁl-4|-b1)sign (s—r)\/l(i)dr + IHII(S r)\/l(i) dr}+
r r

-1

1 A
= 1 ¢é+d . T,(r)
+EBn j—— —4 "L ln(A 5— r) dr +
n=1 {l T [ 2 J 12 '\/1 r
+jﬁ (s,r) L, (r) d}} = p'(as) I<s <1
12 ’ - ’ -
-1 V _r2

(2.116a)

T,(r)

4 [ L [ath (r
ZA” .—;(e; ]ln(A21 |s—r|)\/jdr+J.H21(s r)F

(1 (go+h)/2 T,(r)
+;Bn J.lﬂ G-r) —1_”2(11’

dr;+

[(@+h) T,(r) T,(r) :
+J.— sign (s —r) —dr +J.H22(s r)y———dr; =q (as),
’ 4 \ll—r 1-r?
1< s <l
(2.116b)
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Singular terms in equations (2.116) can be evaluated using the following properties

1

T
J‘l(ao +bo)/2 2 (1) di’:—(mjl]n—l(‘g)’ |s|<l, n=>1

o (s-n) J1-r2 2

1

a +b T,(r a, +b
[CACIFRNEA )dr_[l IJL =520, (s),
n

’ 4 A 1=r? 2
|s|<1, n=1
| A R
A ‘ T % T
j_l (—Cl+d‘ jln (Afz s—r ) () dr:(cl+d1] "(S),
J P 2 1_r2 2 n
|s|<1, n=1

1 ~ 7
A ‘ T P T
J‘_% (%] In (A;1 |s—r| )#dr:( e]"Z'fl ] nn(S)’
-r

|s|<1, n=1

1

J'l(go"‘ho)/z T, (r) dr:_(go_%

ST (s=n) J1-r2 2

jUn—l (s), |s]<1, n=>1

1 ~ h
g +h T, (r g, +h
J'(gl l)sign (s—7) o )dr:— $i74 1 1-52 U, (s),
| 4 2 n

|s|<1, n=1
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(2.117b)

(2.117¢)

(2.117d)

(2.117¢)
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where U ,_; (s) is the Chebyshev polynomial of the second kind. The identities used

in the evaluation of integrals are also given in Appendix D. The integral equations

can now be rewritten in the following form.

b a,+b
A”{_(ijnl (S)_[ | l}l 1_S2Un—1 () +kyp, (5)
2 2 n

= 6 +d |\ T
+ZBn{[C[_;dIJ n(S)+k12n(S)} _ p*(as)’ _1<S <1
n

(2.118a)

M

n=1

= go +h §1+}A‘1 1 *
+ZB,1“%jUnl<s>{ : J; =52 U, (8)+kq, () =4 (as),

n=1

ZM{ o ] e kmn(s)}

-l<s <l
(2.118b)
where
1
A T,(r)
ki, (s) :jHll(S,r) dr (2.119a)
‘% 1-r?
1
A T,(r)
klzn(S)ZJle(S,r) dr (2.119b)
% 1-r?
1
o T,(r)
kzln(s):J‘Hzl(S,r) zdr (2.119¢)
1-r
-1
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T,(r)
22n(s)—J‘sz(s r) —— : dr

1-r

(2.119d)

The roots of the Chebyshev polynomials given in Appendix D in equation (D8) are

used to locate the collocation points. By using these collocation points integral

equations are converted to a system of linear algebraic equations of size 2N x2N

and are solved for A, and B,, (n=1,...,N ). After solving the system of equations,

one can calculate the fracture mechanics variables. The fracture mechanics variables

that are going to be calculated for this problem are

1. Stress Intensity Factors (kl (a \/a), k, (a \/570), k, (— a\/a), k, (— a\/a))

2. Energy Release Rates (G (a \/a ), G (— a\/a ) )

The modes I and II stress intensity factors at the crack tips x;, =t a,/0, are defined

by
k(a,[5,)= (1imr)+1/2 (x,-a,[5,) 01 (x,.0)
x1—=>\a/d0

ky(aSo)=  lim Jz(x1 a\[54) 01, (x,.0)

X1 —)((l

ki (-af5,)= hm J2< 3 =a,[8¢) 03 (x,.0)

x|—> a

ky(~a[8 )= hm Jz(x1 a\[54)01,(4.0)

x|—> a
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Dominant parts of the stress components o,y and o,, can be written as

E
o, (60) = 0 (“0 by j 2 © 4 (2.121a)
1-v, 2 Td x—t
., (x0) = Ey g0+ hy | 1[40 @ 4 (2.121b)
2(xy + V) 2 Td x—t
xX=as, t=ar, —0< § <0 =
E b )1 |
o, (as,0) = —= (“” Oj—jmdr , —0< § <o (2.122a)
1-vy 2 TS
o, (as,0)= Ey g°+h° Vz(‘”) r. —w<s<wo  (2.122b)
y 2(ky + V)

Substituting equations (2.115) into equations (2.122) and then using the equation (
D7) given in Appendix D, the dominant parts of the stress components can be

written as follows

|s|>1

(2.123a)
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o,,(as,0) = Eo (g0+h0j |S| ZB ( s|/s VS ) ,

2(xy +vy) 2
|s|>1
(2.123b)
For s>1 and s <—1 one can write
> s>1
E + b, 1 S n
o, (as,0) = — (“0 Oj — ZAn(s—,/sz—l) (2.124a)
E + hy n
o, (as,0) = 0 go ZB ( 1) (2.124b)
2(xy +Vvp)
> s<-1
E + b 1 S n
o, (as0) = -2 (“0 Oj 2 ZAn(s+1/sz—l) (2.125a)
1-vg 2 Nt

E 8 +h 1 - 2 n
o, (as0) =- 0 ( 0 Oj Bn(s+w/s -1) (2.125b)
Y 2(xy + V) 2 /Sz_an:;

Equations (2.124) and (2.125) can be written in physical coordinate system as

follows
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i B 2.126
[r] e

i B 2.126b
[H o

> X <—a\/a

E

(x.0) = - 0 (a0+b0j 1 8
2T TS v ) 2 { Jz

B 2.127
i o



E h
o, (x,0) =— : (g0+ .

2(x, +V,) 2

(2.127b)

Substituting equations (2.126a) ,(2.126b), (2.127a) and (2.127b) into equations
(2.120a) ,(2.120b), (2.120c) and (2.120d), respectively the stress intensity factors can

be determined as

SO e e ORI @128

_ E, 8o + hy 12X
ka(ay00)= 2(xy + Vo) ( 2 j(a\/?o) ZB” (2.128b)

K (—a [y )=——0 (“02”’0} (a\/?o)‘/ziAn(—l)” (2.128¢)
n=1

0 (l—vé)

ky (—anf5y )= ——0 (gogh"j(a\/?o)”zi}en(—l)” (2.128d)
n=1

2(ky +vy)

The crack closure energy method can be used to derive the expressions for the
energy release rates at the crack tips. In graded orthotropic solids, principal axes of
material orthotropy are preferred cleavage planes [9]. Hence, generally the growth

path of an embedded crack will be confined to the direction along the x, axis.

59



Consequently, in applying the crack closure energy method, crack extension can be

assumed to be along the x, axis and the work done by the normal and shear stresses
can be summed to calculate the total closure work. Under fixed-grip conditions, the

expressions for the energy release rates at the crack tips x; =ta,/d, are defined by

AW,
G= lim — <% (2.129)
A4a-0 BAa

where B is the thickness.

At the tipx, =a,/J, , one can write

a\/ﬁio-ma
1 1) 2)
AW, = Eazz(xl,O)B(uz (x,.0) — ) (x,,0) )d x,+
a\/ﬁio-ma
1 ) @)
+ Ealz(xl,O)B(ul (x,.0) — u®(x,,0) )d x, (2.130a)

and at x, =—a,/0 ,

—‘l\/TO
AW, = I —0 o (x,.00B( 1V (x,,0) — u?(x,.0) )dx, +
—am—Aa
—‘l\/TO
1
+ I Ean(xl,O)B(uﬁ”(xl,0) —u?(x,.,0) )dx, (2.130b)
—am—Aa
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First integral in equations (2.130a) and (2.130b) is the closure work due to mode 1

loading. Second is the closure work due to mode Il loading. Expressing equations

(2.121) in the physical coordinate system and then substituting z=s / A0, in these

equations the dominant parts of the expressions for the stresses can be written as

follows
E b1
Gy (%,,0) =— o (“O“L Oj_ I FA) 4 (2.131a)
50(1—1/0) 2 T 5 s—X,
w50
E S
o, (%,,0) = — ——— (g“h"jl j UEOFS (2.131b)
2(x, +Vv,) 2 Jr_a\/%s—xl

Using asymptotic behavior of the Cauchy integral defined in Appendix D, f, and f,

can be written as

Si(x)=G,(x) (x +a\/a)_l/2 (a\/a—xl )_1/2 (2.132a)
FGD=Gy(x) (x+a[85) 7 (a5, —x) 72 (2.132b)

Substituting these equations into equations (2.131) one may obtain

E

0 0 bO -1/2 -1/2
e Ly TR T e
~Gi(af5,) (2aJ5,)"* (5 ~af5,) "]

(2.133a)
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E, 5, (go + h

712 (41.0) :_2(1(0 +V,) > j{Gz(_a\/éT) (—a\/570—x1 )2 (Za\/a )12
~G(ay5,) (205, ) (x,—a\[5,)""*}

(2.133b)

Asymptotic expression of the stresses near x;=a./d, can now be expressed as

follows

E,

Oy (%,0) = 50(1—1/(2) )(a();-bole(a\/?O) (261\/a )_1/2 (X _a\/é‘io)_l/z,
x1>a\/a

(2.134a)

E,5, (go + hy

o (0 = |5 ijJ% (2a/5, )77 (x,-a,[5,)7?

(2.134b)
Near x; =a,/d, f, and f, are reduced to

A)=G(a[50) (2a\[5,)7"* (a5, —x)7"? x<as, (21352
F(0)=G,(a\[54) (2a,[5,)7 (a\[5, —x)7"7, x<as, (2.135b)

the equations for the crack opening displacements are given as
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X1
uW(x,,00—u? (x,,0)= Ifl(xl)dxl:

a5 o
as o NEDY NED)

If (x,) dx, — If (x,) dx, = — If (x)) dx; (2.136a)
o

X1

0 (x,,0)—u ) (x, ,0)= jfz(xodxl:

_aF

ar ar 50

Ifz(x ) dx, — If J(x,) dx, =— Ifz(xl) dx, (2.136b)
—am x

Substituting equations (2.135a) and (2.135b) into equations (2.136a) and (2.136b),

respectively and then taking the integrals, following equations are obtained.

u (. 00-u P (x,.00=-2G,(a,[5,) (2a,[5) " ? (af5, —x) "2,
x < a8,

(2.137a)
ul) (00— P (x,,00=-2G,(a,[54) (2a[5, )" ? (a [, —x) "2,
x < a8,

(2.137b)

Substituting equations (2.134a) and (2.134b) into equations (2.120a) and (2.120b)
respectively, the stress intensity factors at the crack tips x, = a,/J, can be expressed

in the following form

] e [T R R IO
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_ E,5, go+hoj -1/2
kz(a\/ﬁ)_z(lco ) ( ; (a8, )% Gy(af5) (2.138b)

From equations (2.138) following equations can be obtained easily

2

Gi(a,[5,) = 50(;%) (ao iboj(a\/?o )2 ky (af5,) (2.1392)

2
Gz(a\/a): (kg + V) ( 2 ] (a\/a)l/zkz(a\/?o) (2.139b)

Ey o, 8o + hy

Substituting equations (2.139a) and (2.139b) into equations (2.134a) and (2.134b)

respectively, following equations can be obtained

02 (3.0) = ky (0, (2 —a\/a))_l/2 . x>ayfs, (2.1402)
71 (%,.0) = k5 (,[8) (2 —a\/a))_l/2 . x>ayfs, (2.140b)

Now substituting equations (2.139a) and (2.139b) into equations (2.137a) and

(2.137b), respectively, following equations are obtained

2
u (21)(x1 ,0)—u (22) (x,,0)=- 50(1_‘/ 0 ) (a ib j k, (a\/a) (2(61\/570—)51 ))1/2,
0 0

(2.141a)
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2(x, +vy)

2 /
E, 50 (go +h0jk2(a\/a) (2(61\/570_)61 ))1 2 ’

(2.141b)

u 51)(x1 ,0)—u 52) (x,,0)=—

Using equations (2.140) and (2.141) in equations (2.130a), 4 W is expressed as

closure

AWC,W=—BA"”kl(a\/afo)kl(a\/gfowa)%(l;%)( 2 ]

4 0 a, + b,

BAarx 2(K() +Vo) 2
- k,(ay/0,) k,(a,|]0,+A
4 2 (a\0) ky(aqo, a) E, o, 0 + o

(2.142)

Substituting equations (2.142) into equations (2.129), the energy release rate at the

crack tips x, = a,/0, can be obtained in the following form

_ 7r50(1—vé) 7 (ko + V)
G(aﬁ)__ZEo(ao +by) K (ayfda) - EyS5,(80 +hy) (@) 2143

The same procedure can be applied to get the energy release rate at the crack tips

X == a\/a :

T 50<1—V(2J) s 7 (Ko + Vo) 2
G(_a\/570)2_2 E,(a, +b,) d (a\/§70) B E 6,(8y) +hy) “ (a\/§70) 214
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CHAPTER 3
NUMERICAL RESULTS

In order to implement the numerical methods, a computer program is
developed using Visual Fortran language. In this program after obtaining the
coefficients of the asymptotic expansions integrals are computed and then by using
linear equation solver unknown functions are obtained. Finally the energy release
rate and stress intensity factors are calculated. To obtain these twenty-three

collocation points are used. The numerical results obtained are presented in this

chapter. The effects of the orthotropy parameters x,, o ', v,, nonhomogeneity

0° 0°
parameter fa./0 , and boundary conditions on the energy release rate, mode I and

mode II stress intensity factors are examined in Figures 3.1 — 3.36 for a crack

subjected to uniform normal stress. In all the results presented crack length in the
physical coordinated is denoted by c, i.e, c=a+/0 , . In these figures Sc is the
normalized nonhomogeneity parameter, k,=0c, ¢ /2 and G,=7 k. / E, which are

the mode I stress intensity factor and the energy release rate for a crack embedded in

a homogeneous isotropic medium, respectively are the normalization constants.
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6 L
s 7
= 4+t
S
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-0.5 0.0 1.0 2.0 3.0 4.0

Figure 3.1 Normalized energy release rate versus the shear parameter x, and the
nonhomogeneity parameter £ ¢ for an embedded crack (see Figure 2.1,i.e.,Case I)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.

G(c)/G,
W

-0.5 0.0 1.0 2.0 3.0 4.0

Figure 3.2 Normalized energy release rate versus the shear parameter x, and the
nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.2,i.e.,Case II)
subjected to uniform tension, o 3 =2, v,=03, hl/c:l , hz/c =5, p(x)=0,,

q(x,)=0.
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s 7
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-0.5 0.0 1.0 2.0 3.0 4.0

Figure 3.3 Normalized energy release rate versus the shear parameter x, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3,i.e.,Case III)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.

1.9

1.8 |

1.6 |

ki) / k,

15|

1'3 [ | | | |
-0.5 0. 1.0 20 3.0 4.0

Figure 3.4 Normalized mode I SIF versus the shear parameterx, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.1, i.e., Case I)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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k,(c) ! k,

Figure 3.5 Normalized mode I SIF versus the shear parameter x, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.2, i.e., Case II)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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1.8 |

1.6 |

ki) / k,

15|

1'3 [ | | | |
-0.5 0. 1.0 20 3.0 4.0

Figure 3.6 Normalized mode I SIF versus the shear parameter x, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.7 Normalized mode II SIF versus the shear parameter x, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.1, i.e., Case I)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,
q(x,)=0.

0.6

04 -

0.2 1

ky(c) / kg
()
[e)

-0.5 0. 110 210 310 4.0

Ko
Figure 3.8 Normalized mode II SIF versus the shear parameter x, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.2, i.e., Case II)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.9 Normalized mode II SIF versus the shear parameter x, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, & 3=2, v,=0.3, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.

G (o) /Gy

504

Figure 3.10 Normalized energy release rate versus the stiffness ratio §, and the

nonhomogeneity parameter S c¢ for an embedded crack (see Figure 2.1, i.e., Case 1)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.
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G (c)/ G,

&

Figure 3.11 Normalized energy release rate versus the stiffness ratio 5, and the
nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.2, i.e., Case II)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.

G (o) /Gy

504

Figure 3.12 Normalized energy release rate versus the stiffness ratio 5, and the

nonhomogeneity parameter [ ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.
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ki(c)/ ko

Figure 3.13 Normalized mode I SIF versus the stiffness ratio &, and the

nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.1, i.e., Case 1)

subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.

ky(c) 1 kg

Figure 3.14 Normalized mode I SIF versus the stiffness ratio &, and the

nonhomogeneity parameter £ ¢ for an embedded crack (see Figure 2.2, i.e., Case II)

subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.
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ki(c)/ ko

Figure 3.15 Normalized mode I SIF versus the stiffness ratio &, and the
nonhomogeneity parameter [ ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.16 Normalized mode Il SIF versus the stiffness ratio 6, and the
nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.1, i.e., Case I)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.

74



0.8

c=2

06*ﬁ \ :

0.4 f fe=1 |
< \
o 02¢F - .
% Pc=0 Be=-1
-~

0.0 | \ .

_O'Q\N

c=-2
_04 \ﬁ I I I
0 2 4 6 8 10
&

Figure 3.17 Normalized mode Il SIF versus the stiffness ratio 6, and the
nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.2, i.e., Case II)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.18 Normalized mode Il SIF versus the stiffness ratio 6, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, x, =2, v,=0.3, h/c=1, h,/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.19 Normalized energy release rate versus the effective Poisson’s ratio v,
and the nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.1, i.e.,
Case I) subjected to uniform tension, o 3 =2, K,=2, hl/c:l , h, /c =5,

p(XI)ZO'O, CI(XI)ZO.

5 ‘
Pc=2
4l A//
3k Pec=1
S
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S \ Pc=-2
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N *
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Figure 3.20 Normalized energy release rate versus the effective Poisson’s ratio v,
and the nonhomogeneity parameter [fc¢ for an embedded crack (see Figure
2.2,i.e.,Case II) subjected to uniform tension, & =2, x, =2, h /c=1, h,/c=5,

p(XI)ZO'O, CI(XI)ZO.
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Figure 3.21 Normalized energy release rate versus the effective Poisson’s ratio v,
and the nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3, i.e.,
Case III) subjected to uniform tension, & =2, k,=2, h/c=1, h,/c=5,
p(x)=0y, q(x,)=0.
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Figure 3.22 Normalized mode I SIF versus the effective Poisson’s ratio v, and the
nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.1, i.e., Case I)
subjected to uniform tension, §,=2, x,=2, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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ky(c) 1 kq

Vo
Figure 3.23 Normalized mode I SIF versus the effective Poisson’s ratio v, and the
nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.2, i.e., Case II)
subjected to uniform tension, §,=2, x,=2, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.24 Normalized mode I SIF versus the effective Poisson’s ratio v, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, §,=2, x,=2, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.
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Figure 3.25 Normalized mode II SIF versus the effective Poisson’s ratio v, and the

nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.1, i.e., Case I)

subjected to uniform tension, §,=2, x,=2, h/c=1, h/c=5, p(x)=0,,

q(x,)=0.

kz(C) / k()
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Figure 3.26 Normalized mode II SIF versus the effective Poisson’s ratio v, and the

nonhomogeneity parameter fc¢ for an embedded crack (see Figure 2.2, i.e., Case II)

subjected to uniform tension, §,=2, k,

q(x,)=0.

=2, h/c=1, h/Jc=5, p(x)=0,,
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Figure 3.27 Normalized mode II SIF versus the effective Poisson’s ratio v, and the
nonhomogeneity parameter ¢ for an embedded crack (see Figure 2.3, i.e., Case III)
subjected to uniform tension, §,=2, x,=2, h/c=1, h/c=5, p(x)=0,,
q(x)=0.
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Figure 3.28 Normalized energy release rate versus the nonhomogeneity parameter

L ¢ and the boundary conditions for an embedded crack (see Figures 2.1, 2.2, 2.3)
subjected to uniform tension, & =2, x,=2, v,=0.3, h/c=0.5, h,/c=10,

p(XI)ZO'O, C](XI)ZO.
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Figure 3.29 Normalized mode I SIF versus the nonhomogeneity parameter f¢ and
the boundary conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected
to uniform tension, & =2, x, =2, v,=0.3, h/c=0.5, h,/c=10, p(x,)=0,,

q(x,)=0.

ky(c)/ ko

Figure 3.30 Normalized mode II SIF versus the nonhomogeneity parameter fc
and the boundary conditions for an embedded crack (see Figures 2.1, 2.2, 2.3)
subjected to uniform tension, § =2, x,=2, v,=0.3, h/c=0.5, h,/c=10 ,

p(XI)ZO'O, Q(XI)ZO-
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Figure 3.31 Normalized energy release rate versus the shear parameter x, and the

boundary conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected to

uniform tension, §,=2, v,=0.3, Bc=2, h/c=05, h,/c=10, p(x,)=0,,

q(x,)=0.
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Figure 3.32 Normalized mode I SIF versus the shear parameter x, and the boundary

conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected to uniform

tension, § ; =2, v,=0.3, Bc=2, h /c=0.5, h,/c=10, p(x,)=0,, q(x,)=0.
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Figure 3.33 Normalized mode II SIF versus the shear parameter x, and the
boundary conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected to
uniform tension, §,=2, v,=0.3, Bc=2, h/c=05, h,/c=10, p(x,)=0,,

q(x,)=0.

Free-Free (Case I) .

Fixed-Free (Case III)
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&'
Figure 3.34 Normalized energy release rate versus the stiffness ratio & ; and the
boundary conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected to
uniform tension, x, =2, v,=03, fc=2, h /c=05, h,/c=10, p(x,)=0,,

q(x,)=0.
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Figure 3.35 Normalized mode I SIF versus the stiffness ratio §  and the boundary

conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected to uniform

tension, x, =2, v,=0.3, Bc=2, h /c=0.5, h,/c=10, p(x,)=0,, q(x,)=0.
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Figure 3.36 Normalized mode II SIF versus the stiffness ratio & ; and the boundary

conditions for an embedded crack (see Figures 2.1, 2.2, 2.3) subjected to uniform

tension, x, =2, v,=0.3, fc=2, h /c=0.5, h,/c=10, p(x,)=0,, q(x,)=0.
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

4.1 Discussion of The Results

The coupled effect of the shear parameter and the nonhomogeneity constant
on the energy release rate is depicted in Figures 3.1-3.3. As can be seen in all three

figures, the energy release rate is an increasing function of x,. In Figures 3.1, 3.3 it
is seen that if fc=0 energy release rate reaches the minimum value for any x ,. But

in Figure 3.2, as the nonhomogenity constant is increased from 0 to 2, the energy
release rate increases. Figures 3.4-3.6 depict the effects of shear parameter and the
nonhomogeneity constant on the mode I stress intensity factor. In Figures 3.4, 3.6,

the mode I stress intensity factor is an increasing function of x, for all values of
P, butin Figure 3.5 it is an increasing function of x, only when fc¢ isequalto 1

and 2. Due to the nonhomogeneity of the medium, the stress intensity factors exhibit
mixed mode condition even though the loading is uniform tension, so in Figures 3.7-
3.9 the influence of shear parameter on the mode II stress intensity factor is
presented. From the Figures 3.4-3.9 it can be concluded that the mode II stress
intensity factor is of secondary importance as compared to mode I under uniform
normal stress. This is an expected result. It is also noted that in an orthotropic

medium the sum x; +v, should be a positive number in order to have a positive
value for the ratio E, / G,,, ( see for example equation (2.2d) ).

In Figures 3.10-3.12 the energy release rate vs. the stiffness ratio are ploted at

different values of nonhomogeneity parameter. In Figures 3.10, 3.12 energy release

rate increases significantly as &, approaches zero and for fc=0 it is minimum.
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The influence of the stiffness ratio on the mode I stress intensity factor is shown in

Figures 3.13-3.15. In Figures 3.13, 3.15 it is seen that also as &, approaches zero

mode [ stress intensity factor increases and for equal absolute values of

nonhomogenity parameter the magnitude of mode I stress intensity factors are very

close to each other. In Figure 3.14 for fc=1 and 2, as §, approaches zero mode I

stress intensity factor again increases but for the other values of fc¢ it decreases.

Figures 3.16-3.18 give the effect of the stiffness ratio on the mode II stress intensity

factors. In these figures as the nonhomogenity constant is increased the mode II

stress intensity factor increases. In Figures 3.16, 3.18 as &, approaches zero mode II

stress intensity factor decreases.

The influence of the effective Poisson’s ratio on the energy release rate and
on the mode I stress intensity factor are given in Figures 3.19-3.21 and in Figures
3.22-3.24, respectively. In Figures 3.19, 3.21 and Figures 3.22, 3.24 as the absolute
value of nonhomogeneity constant is increased the energy release rate and mode I
stress intensity factor increase. It is also noted that for free boundaries energy release

rate and mode I stress intensity factor are independent of the value of v, if the crack

is in a homogeneous orthotropic medium ( fc¢ =0). Figures 3.25-3.27 show the

effect of the effective Poisson’s ratio on the mode II stress intensity factor. In these
figures it is seen that as the value of nonhomogenity constant is increased the mode 11

stress intensity factor increases. In Figures 3.25, 3.27 for all values of fc¢ and in
Figure 3.26 except the negative value of ¢, mode II stress intensity factor is almost

constant while Poisson’s ratio is changing. It can be concluded that the influence of
the effective Poisson’s ratio is not as much as the effects of the shear parameter and
the stiffness ratio.

Finally the effect of boundary conditions on fracture mechanics parameters
are examined. This has not been considered in the literature. In the results given in
Figures 3.28-3.36 the crack is located closer to the top surface so the effect of
bottom condition is negligible. Therefore the graphs of case I and case III coincide in

all Figures 3.28-3.36. In these figures it can be seen that the case of free top surface
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has greater value of energy release rate and mode I stress intensity factor but less
value of mode II stress intensity factor than the fixed one. The effect of the
nonhomogenity parameter on energy release rate is shown in Figure 3.28. In Figure
3.29 the effect of the nonhomogenity parameter on mode I stress intensity factor is
given. In Figures 3.28, 3.29, for case Il energy release rate and mode I stress

intensity factor are increasing functions of fc. In Figure 3.30 the influence of the

nonhomogenity parameter on mode II stress intensity factor is given. As can be seen

in all three cases, the mode II stress intensity factor is an increasing function of fc.

The effect of the shear parameter on energy release rate, mode I stress intensity
factor and mode II stress intensity factor are given in Figure 3.31, Figure 3.32 and
Figure 3.33, respectively. In Figure 3.31 the energy release rate is an increasing

function of «, for all cases. In Figure 3.33 for case I and case III the mode II stress
intensity factor is an increasing function of x,, for case II it is a decreasing
function of x . Figures 3.34-3.36 give the effect of stiffness ratio on energy release

rate, mode I stress intensity factor and mode II stress intensity factor, respectively. In

Figures 3.34, 3.35 it is seen that energy release rate and mode I stress intensity factor

increases as &, approach zero especially for case I and case III. In Figure 3.36 mode
II stress intensity factor decreases as &, approach zero for case I and case III. For

case Il mode II stress intensity factor is an decreasing function of & .

4.2 Concluding Remarks

In this study, semi-analytical techniques are developed to examine embedded
crack problems in orthotropic functionally graded material under mixed—-mode
loading. The problem is formulated using the averaged constants of plane orthotropic
elasticity. Using transform techniques, the crack problem is reduced to a couple of
singular integral equations which are solved numerically. Calculated results consists
of modes I and II stress intensity factors and energy release rate at the crack tips. In

this study same problem is examined for three different boundary conditions. The
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effects of the boundary conditions, material nonhomogenity and orthotropy on
fracture mechanics parameters are determined.

The results provided in this study show that the energy release rate is an
increasing function of the shear parameter for all cases and the mode I stress
intensity factor is also an increasing function of the shear parameter for case I and
case III. The mode II stress intensity factor is of secondary importance as compared
to mode I stress intensity factor under uniform normal stress. Furthermore, the
influence of the effective Poisson’s ratio is not as pronounced as the effects of shear
parameter and stiffness ratio. The energy release rate and mode I stress intensity
factor for the free boundaries are calculated to be higher than those calculated for the
fixed-fixed boundary condition. Hence, the probability for the crack to grow is

higher when the upper surface is free.
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APPENDIX A

The Entries Of The Coefficient Matrix

The entries of the coefficient matrix given in (2.33) are given as follows

Case I (Free — Free)

ay;=(vyio+ N;s;)exp(s; /8o hy) (j=lmb) (Ala)
ay;=(Njio+s;)exp(s; 5, hy) (j=lb) (Alb)
ay;=voi®+ N;s; (j=1...,.4) (Alc)
= —voio—H 4 s (j=5...8) (Ald)
a,=Nio+s, (j=1,..4) (Ale)
ay=-H_ _ jio-r._ (j=5,....8) (A1f)
as;= ioN, (j=1,..4) (Alg)
as;=—ioH (j=5..8)  (Alh)
ag; = i (j=1,..4) (Ali)
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ag;= —iw (j=5..8) (A}

J

ay;=\voio+ H v Jexp(=r 5, hy) (j=5..8)  (AlK)
ag;=(H, _iovr | Jep(-r  \[54h) (j=5..8)  (AlD

Case II (Fixed — Fixed)

ay;=exp(s;[5o ) (j=ld) (A2a)
ay;=N,;exp(s;[8o ) (j=ld) (A2b)
ay;=Vvoi®+ N;s; (j=1...,4) (A2c)
ay;=~Voio —H ;4 14 (j=5..8) (A2d)
a;=Nio+s, (j=ld) (A2¢)
ay=-H_  io-r (j=5...8) (A2f)
as;= ioN, (j=ld) (A2g)
as;=—ioH (j=5...8) (A2h)
ag;= i@ (j=ld) (A2i)
ag;= — i@ (j=5..8) (A2))
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a; = exp(—r(j_4) \/ahz)

ag;=H ;_y, exp(—r(j_4) \/ahz)
Case I1I (Fixed — Free)

a,; = (voia) +N; sj)exp(sj\/yohl)
ay; = (Njia) + sj)exp(sj\/?ohl)
az;=Vvolw+ N;s;

az;==Vol® = Hj 4T a)

agj=—H  jio=r,,
as;= ioN;
aSj:_in(_]._4)

ag;= 1@

ag; = —io
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(j=5,....8)

(j=5,....8)

(A2K)

(A2])

(A3a)

(A3b)

(A3c¢)

(A3d)

(A3e)

(A3f)

(A3g)

(A3h)

(A3i)

(A3])



ay; = exp(—r, 5o h) (j=5..8)  (A3K)

ag;=H ;_gyexp(~r  , \[55h) (j=5..8) (A31)
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APPENDIX B

Asymptotic Expansions

In order to determine the asymptotic terms it is sufficient to consider two

half-planes as shown in Figure B.1.

X2

orthotropic FGM E,

E;
1 X7

2 ajs, a5,

A\ 4

E(x2)

Figure B.1 A crack in a graded orthotropic infinite medium

The displacements for y>0 can be expressed as

00 2
u(l)(x,y)zzLJ‘ M ; (@) exp(s; y+iox)d @ (Bla)
7[—00 J=1
1 +00 2
v (x, y)_zﬂj Z:M](a))N] (@)exp(s; yriox)d o (B1b)
-0 J=

where
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5= (1 /2= /2) +0 Kk, +oJo kim0 =y v, . R(s)<0  (B2a)

s2=—(7/2)—J(7/2)2+w2K0 —oNJo k-0 -y, . R(s,)<0 (B2b)

—i (Si(vé—l)+2a) 2(/('0 +V0)_7 s _j(l_V(ZJ))

M= a)(sj(1+v§+2/c0 v0)+;/ (1—1/3))

J

. (j=L2) (B3)

Substituting equations (B1) into equations (2.5) the general solutions for the stresses

in medium 1 can also be determined as follows,

E,exp(yy) 8

M
o) (x,y)=
XX ( y) 1 (2J

o0

1 : ' |
X Ey. J‘(ZM,(M)+V0 N; s,)exp(s,y)] exp(iox) dw (B4a)

E,exp(yy) 8

o

o, (x,y)=
T
o0

2
1 ' '
X Eys J‘(ZM, (Vola) + N, s_,.)exp(sj y)] exp(iox)dw (B4b)

E,exp(yy) 8

oV (x,y)=
w (1.7 2 (Ky+ V)

o0

1 : ' |
X5 J‘(ZM, (N.,. io+ sj)exp(sj y)] exp(iox)dw (B4c)

Similarly, the solution for medium 2, is written as
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+00

u® (xy) = J ZG (@) exp(r, y+imwx)d o (B5a)

—wo  J=1

+00

v (x, y)— J ZG (0)H ;(@)exp(r; y+iox)d o (B5b)
where

—(;//2)4—\/(;//2)24—(02/(0 +a)\/a)2K§—a)2—}/2V0 . R(rn)>0 (B6a)

—(;//2)4—\/(7/2)24—(02/(0 —a)\/a)zlcé—a)z—;/zvo . R(r,)>0 (B6b)

_—i(ri(v§—1)+2w2(;(0 +v) yr. (1 v )) -
"= a)(rj (1+v3+2/c0 v0)+;/ (l—vo)) ’ (]—1,2) (B7)

Substituting equations (B5) into equations (2.5) the general solutions for the stresses

in medium 2 can also be determined as follows,

E,exp(yy) y

2)
o, (x,y)=
Y l—vé

4 2
1 ' '
) EJ‘(ZG’(MO_'—VOH/ rj)exp(r_,‘)’) exp(iox)dw (B8a)
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_Eyexp(ry)

)
o, (x,y)
a Y 1-v;

o0

1 = ' |
) E J‘(ZG’ (VO io+ H,; rj)exp(rj )’)] exp(iox)dw (B8b)

E,exp(yy) 8

0-(2,) X,y) =
w (6Y) 2 (Ky+ V)

0

1 : ' |
X ;J‘(ZG,(H,za)+r,)exp(r,y)] exp(iox)dw (BSc¢)

In order to determine the unknown functions M,, M,, G,, G, the boundary

conditions given bellow must be used.
0-(21% (xl 0)=0 (222)(x1 ,0) s —< X <™ (B9a)

o) (x.0) =0 P (x.0) , —00< X | <0 (B9b)

x|< a5,
x1|>a\/a (B9c¢)

0 Faa) s
a—x](u(zl)(xl,O)—u(zz)(xl,O)): 01 1

b

fz(xl) s

x1|<a\/a
x1|>a\/§70

0
—( u 51)()61 ,0) —u 52) (x,,0) ) =

B9d
ox (B9d)

9

After expressing equations (B9) in the transformed coordinate system and taking

Fourier transform of both sides of these equations, the unknown functions M ; (@)
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and G, (@), (j=1,..., 2) can be solved for using the following 4 x 4 complex system

of linear equations,

ay ap ay ay || M (o) 0

Ay Gy Ay Gy || M, (@) _ 0 (B10)
az; Ay azp ay || G () F (o)

ay Gy Ay Gy ]| Gy (0) F, (o)
The entries of the coefficient matrix are given as

a;=vyi®+ N;s; (j=1,2) (Blla)
aj;j=-volo —H; 5 1o (j=3,4) (B11b)
a;=N;io+s; (j=1,2) (Bllc)
azj:—H(j_z)ia)— Tl (j=3,4) (B11d)
a;;=1iwN; (j=1,2) (Blle)
a,=-ioH (j=3,4) (BI1f)
ay,= io (j=1.2) (Bl1g)
as;= —i® (j=3,4) (B11h)

The solution can now be expressed in the following form.
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M (0)=V;(0) F(®) + W;(0) F,(®)
G;(@)=Y;(0) Fi/(o) + Z;(0) F,(®)

where

F (o) = _[cﬁ () exp(—iwt) dt

F (o) = _[cﬁ »(t) exp(—iwt) dt

(j=12)

(j=12)

(B12a)

(B12b)

(B13a)

(B13b)

and  §,(0) = f,(([551) and ¢,(0) =5, 1, ([5,1). Vi@). Y,@). W,@) and

Z;(w), (j=1,2) are related the unknown functions and they can be obtained from

(Bl4a)

(B14b)

where a; (i=1,...4),(j=1,...,4)are given in the equations (Bl1). Stresses are

obtained in the following form
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j Zk,,(x y.t) ¢, (0 dt

—a J=l1

{a

E,ex ( )
ol (x,y) = p 7Y {

I
i

Eyexp(y y)
2(xy +vy)

| ik,,(x w1) (0 dr

—g Jj=1

2
ol (x,y) =
where

1 IKij(w,y) sin (@ (x—1) ) do
27

0
ki (x,y,1)=

1 IKij(w,y) cos(w (x—t)) dw
2r

K]](a),)’) = Zl

M-

(ia)vo +7; Hj)Yj (@) exp (r; )’)}

(ia)vo +7; Hj)Zj (@) exp (r; y)}

g

(i0H, +1,)Y, @) exp(r, y)}

D lioH,; +1,)Z,@ expr; )

1

|

j=
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(i=1) (B15a)
(i=2) (B15b)
(i=))

, (i,j=1,2) (B16)

(i#])

(B17a)

(B17b)

(B17¢)

(B17d)



The integrands in (B16) are bounded and continuous for @ < coand integrable @ =0.

The singular nature of the kernels k;; can, therefore, be determined by examining

the asymptotic behavior of K, as @ approaches to infinity. Asymptotic expansions

can be expressed in the following form

K (@,y) = K [}, (@) exp(r; y) + K |}, (@) exp(r, y)

K (@,y) = K 15 (@) exp(r; y) + K 15 (@) exp(r, y)

K; (w,y) =K (;11 (w) exp(r, y)+K 3012 (w) exp(r, y)

K;z (w,y) =K 3021 (w) exp(r, y) +K ;Ozz (w) exp(r, y)

(B18a)

(B18b)

(B18c)

(B18d)

Using the symbolic manipulator MAPLE, five - term asymptotic expansions of the

integrands are obtained in the following form

a, a, a, a

K7 (@) = ag+—+—+—+—=
o o o o

b, b

0 1 2 3 4
o o

234
o 3

C
K5, (@) = cy+—L+
[4] (0] (]

» d d, dy d
K5 (@) =dy+—+—2+—2+-2%
o o o o

23y
o 3

e
K5, (o) = ey +—+
[4] (0] (4]
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(B19b)

(B19c¢)

(B19d)

(B19e)



K5, (@) = f, +£+JC—22+L33+JC—‘:1 (B19f)
0 0 o

- g
K3 (@) = go+5L 4824 83, 84 (B19g)
o w w

, hy hy, hy h
K5 () = hy +Z‘+w—22+w—33+w—‘i1 (B19h)

where superscript (o) stands for the asymptotic expansion as @ — oo. The

c

coefficients of the expansions a;, b d;,e;, fi, g;» hj, (j=0,1,..4) are

j B ] B
lengthy functions of the constants y,x,v,h,, h, and they are not reproduced here.
Note that ¢, +d, = e, + f, =0, ie., the leading coefficients of the coupling terms

are equal to zero.
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APPENDIX C
Integral Formulae

Here, the expressions that are used to evaluate the integrals involving the asymptotic
expansions of the integrands of the kernels are given. The integrals to be evaluated

are in the following form

1
C, :I_” cos(p u) dp n=1273,...,N. (Cla)
o,
A

S, :J‘Ln sin (p u) dp n=1273,...,N. (Cl1b)
o,
A

For n =1, following results are obtained using maple

C, =—Ci(Alul), (C2a)

S, :sign(u)(%—Si (A|u|)j (C2b)

where Ciand Siare cosine and sine integrals, respectively, and they are defined by

X

J‘cos(a) -1
a

Ci(x)=y,+In(x)+ da (C3a)

0
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Si(x) =I sin(@) (C3b)
(04
0

and the Euler constantis y , = 0.5772156649 . For n>1, Integrating ( Cla) and (

C1Db) by parts the following general recursive relations can be obtained [16],

1 cos(ul) N u

C =- S , n>1 C4a
" l-n A" 1-n "' (C42)
in (u A
§ —_ 1 sm@A) _ u o n>1 (C4b)
l-n A"! l-n

Following result is also used in the integration of asymptotic expressions,

o0

J‘sin (p u) dp = i sign (1) (C5)
Yo, 2

0
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APPENDIX D

Chebyshev Polynomials

Chebyshev polynomials are defined as

T (x)=cos(ncos'x) , n=0,1,2,.. (D1)

Explicitly these polynomials are defined as follows

T, (r)=1

T (r)=r

T, (r)=2r*-1

T,(r)=4r>-3r (D2)

Orthogonality property of Chebyshev polynomials are given as follows [17]

1 o , ik
%J‘T,.(t) T () F=—==1{1 . i=k=0 (D3)
5 I=t7 W2, izk>0

The singular integral equations are regularized by using the following properties

given in [17].
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10T, a
LN A _ 1 D4
71':[\/? f—x U, x) |x|< (D4)

T
J n ) dt = -1 1-x* U, (x) | x|<1 (D5)
dy1-t? n

1

1

1J‘Tn(t) n|t- x| _ T . 6)
T n

lj 1,0 ar_Js| b-ls)/s)lfs?1) [s[>1 (D7)
7d J1-r2 s=r s s7-1 ’

where T, and U, are the Chebyshev polynomials of first and second kind,

respectively.

The roots of the Chebyshev polynomials are given as follow

T (2j-1) )
. =cos | —— 7~ =1,.....N D8
) ( T ] j (DY)

Consider a function f,(¢)
fl(t):Gl(t)(t—d)“(c—t)ﬂ, d<t<c, —-l<a<0, -1<f<0 (D9)

Cauchy Integral is defined as,
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l fl(t)dt
t_
7Z'd y

(D10)

Asymptotic behavior of the Cauchy integral near the end points can be expressed as

follows

1[A®

TJd t—
” y

d1=G(d) (d—y)* (c=d)’ =G\ (c) (c=d)* (y—c)” (D11)
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