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ABSTRACT

CONTACT MECHANICS OF GRADED MATERIALS WITH TWO-
DIMENSIONAL MATERIAL PROPERTY VARIATIONS

Gokay, Kemal
M.S., Department of Mechanical Engineering

Supervisor: Asst. Prof. Dr. Serkan Dag

September 2005, 62 pages

Ceramic layers used as protective coatings in tribological applications are known to
be prone to cracking and debonding due to their brittle nature. Recent experiments
with functionally graded ceramics however show that these material systems are
particularly useful in enhancing the resistance of a surface to tribological damage.
This improved behavior is attributed to the influence of the material property
gradation on the stress distribution that develops at the contacting surfaces. The main
interest in the present study is in the contact mechanics of a functionally graded
surface with a two — dimensional spatial variation in the modulus of elasticity.
Poisson’s ratio is assumed to be constant due to its insignificant effect on the contact
stress distribution [30]. In the formulation of the problem it is assumed that the
functionally graded surface is in frictional sliding contact with a rigid flat stamp.
Using elasticity theory and semi-infinite plane approximation for the graded medium,
the problem is reduced to a singular integral equation of the second kind. Integral
equation is solved numerically by expanding the unknown contact stress distribution
into a series of Jacobi polynomials and using suitable collocation points. The
developed method is validated by providing comparisons to a closed form solution
derived for homogeneous materials. Main numerical results consist of the effects of
the material nonhomogeneity parameters, coefficient of friction and stamp size and

location on the contact stress distribution.
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0z

IKi BOYUTLU MALZEME OZELLIGI DEGISIMI OLAN
DERECELENDIRILMIS MALZEMELERIN TEMAS MEKANIGI

Gokay, Kemal
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Y. Dog. Dr. Serkan Dag

Eyliil 2005, 62 sayfa

Tribolojik uygulamalarda koruma kaplamasi olarak kullanilan seramik tabakalar
dogal kirilganliklarindan dolayr catlamaya ve ayrilmaya egilimlidir. Fonksiyonel
derecelendirilmis seramikler ile ilgili son deneyler bu malzeme sistemlerinin
ozellikle ylizeyin tribolojik hasarlara olan direncini kuvvetlendirmede yararh
oldugunu gostermektedir. Bu gelistirilmis davranis temas yiizeylerinde gelisen
gerilme dagilimindaki malzeme 6zelligi degisiminin etkisine baglanmigstir. Bu
calismanin ana ilgi alani elastisite modiiliindeki iki boyutlu diizlemsel degisimli
fonksiyonel derecelendirilmis yiizeyin temas mekanigidir. Temas gerilme
dagilimindaki 6nemsiz etkileri sebebiyle Poisson oranin sabit oldugu varsayilmistir.
Problemin formiilasyonunda fonksiyonel derecelendirilmis yiizeyin rijit diiz zzmba
ile kayma temasinda oldugu varsayilmistir. Problem ikinci tiir tekil integral
denklemine elastisite teorisi ve derecelendirilmis ortam i¢in yar1 sonsuz diizlem
yaklasimi kullanarak indirgenmistir. Integral denklemi sayisal olarak temas gerilme
dagilim bilinmeyenlerini Jacobi polinomlar: serilerine acilarak ve uygun siralama
noktalar1 kullanarak ¢oziilmiistiir. Gelistirmis metodun dogrulugu homojen malzeme
icin tiiretilmis kapali bicim ¢oziimiiyle karsilastirilarak sinanmistir. Ana sayisal
sonuglar derecelendirme parametreleri, siirtiinme katsayisi ve temas gerilme dagilimi

tizerindeki zimba boyutu ve konumu etkilerini icermektedir.
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CHAPTER 1

INTRODUCTION

1.1 Functionally Graded Materials (FGMs)

The needs on materials increase as the technology improves. Materials have to
withstand more severe conditions. In order to overcome this problem scientists firstly
developed traditional composite materials. But this homogeneous materials’
specification seems to be restricted. The internal stresses caused by the elastic and
thermal properties mismatch at an interface between two different materials can
mitigate the successful implementation of such traditional composites. To solve this
problem, scientists secondly developed functionally graded materials (FGMs) to
satisfy the needs for properties that are unavailable in any single material and for

graded properties to offset the adverse effects of discontinuities [1].

FGMs offer great promise in applications where the operating conditions are severe.
For example, wear-resistant linings for handling large heavy abrasive ore particles,
rocket heat shields, heat exchanger tubes, thermoelectric generators, heat-engine
components, plasma facings for fusion reactors, and electrically insulating
metal/ceramic joints ([2]-[5]). They are also ideal for minimizing thermo mechanical
mismatch in metal-ceramic bonding. The bonded structure develops very high
residual and thermal stresses because of the relatively high mismatch in thermal
expansion coefficients, so the composite medium becomes very susceptible to

cracking, debonding and spallation [6].

In order to minimize these incompatibilities and so in order to decrease thermal
stresses FGMs are used. In these materials the graded structure protect the metal
against to corrosion, oxidation or wear resistance, beside this the graded structure

minimize brittleness of homogeneous ceramic coatings and also surface cracks. An



excellent review of FGM subject can be scrutinized in [7]. FGMs have given for
example, the possibility to combine the best properties of metals and ceramics- the
toughness, electrical conductivity and machinability of metals, and the low density,
high strength, high stiffness and temperature resistance of ceramics, taking away the

brittleness of ceramics and making strong metals lighter and stiffer.

FGMs were first proposed in around 1984-85 while a researcher was studying
aerospace and advanced materials. The body of space plane has to be exposed to very
high temperature environment (about 1700 °C), therefore, is required to resist a
severe condition generated from a temperature difference (about 1000 °C difference)
between inside and outside of the space plane. There was no uniform material
capable of enduring to such condition before. Therefore, the researchers devised a
concept of FGM that was to fabricate a material by gradually changing (grading) the
composition and to improve both thermal resistance and mechanical properties. They
considered that fabricating FGM with ceramic would be able to expose to high

temperature environment at the surface.

In 1987, FGM research was selected for a big project supported by the Ministry of
Education and Science in Japan. From 1987 to 1991, a research project called the
"Research on the Generic Technology of FGM Development for Thermal Stress
Relaxation" was conducted, and many researchers from universities, national
research institutes and corporations took a part of it. In the project, they intensively
discussed on material development methods, and established a collaboration system
consisting of material design, production and evaluation. The research resulted in
generation of the thermal stress relaxing material [8]. There are a lot of fields that
FGMs are used such as the thermal barrier coatings (TBCs). TBCs are used as
thermal insulators in high temperature chambers, furnace liners, gas turbines, micro-
electronics, combustors and vane and blade platforms of aircraft engines [9]. FGMs

also proved to be highly effective when utilized as protective coatings against

tribological damage (e.g., wear and brittle fracture due to sliding contact) ([10]-[11]).
Many fields of applications are underway such as abradable seals used in stationary
gas turbines and load transfer components which are typically gears, cams and

bearings.



1.2 Previous Work on Contact Mechanics of Nonhomogenous

Materials

Scientists have been working on contact mechanics over a century. The main field in
contact mechanics is the analysis of the stress and displacement fields due to contact
loadings. The highest stress takes place generally in the contact region that may
cause failures through any of the mechanisms of fatigue, spallation, wear and cracks.
The first study in contact mechanics was conducted by Hertz [12]. His study has
paved way for the solution of the frictionless contact problem of two elastic bodies of
ellipsoidal profile. The review of this study can be found in the article of Barber and

Ciavarella [13].

Nonhomogeneity can be found in the nature, hence there are a lot of studies for the
contact mechanics problems for nonhomogenous materials. Gibson [14] and
Calladine and Greenwood [15] considered the problem of point and line loading
acting on the bounding surface of an elastic incompressible half plane with a linear
variation in elastic modulus. Brown and Gibson [16] made the assumption of
incompressibility and constant Poisson’s ratio between zero and one-half, Awojobi
and Gibson [17] showed the results for axisymmetric half-space, and Gibson and
Sills [18] continued to work on nonhomogeneous materials for orthotropic elastic
semi-infinite medium. Kassir [19] studied the indentation of an elastic half space by
stamps with arbitrary profile. In his study Kassir considered a frictionless contact
problem. The shear modulus is assumed to have a power low type of variation in the
depth direction. Bakirtas [20] examined frictionless planar stamp problems. The
elastic modulus was assumed to vary exponentially in the depth direction. Kassir and
Bakirtas assumed constant Poisson’s ratios in their studies. Fabrikant and Sankar

[21] examined axisymmetric contact problems for nonhomogeneous half-space

whose elastic modulus is a power function of the depth coordinate. Selvadurai and
coworkers ([22]-[24]) also have some studies on axisymmetric contact problems for

nonhomogeneous half-space with elastic non-homogeneity.

Due to the promising properties of FGMs many scientists have tried to characterize

the behavior of FGMs and discover their usage areas. Suresh and coworkers [25]

3



worked on polycrystalline alumina infiltrated with aluminosilicate glass to prove that
gradients in elastic modulus at a surface may enhance the resistance against cracking
due to the sliding contact. In this study they used a functionally graded alumina-
aluminosilicate glass FGM using infiltration method. At high temperatures
aluminosilicate glass penetrates into grain boundaries of alumina. The elastic
modulus is increased continuously by 50% from the contact surface to a depth
beneath the surface. The principal tensile stresses introduced by sliding contact are
reduced by the gradation in elastic modulus and finally they presented experimental
and computational results that show the glass-infiltrated alumina is more resistant to
a contact damage than either monolithic alumina or glass or alumina glass composite.
In this study it was seen that the resistance of a surface to frictional sliding contact
was increased. Hence FGM can be used as a protective coating against wear
resistance and cracking. Giannakopoulos and Suresh [26] worked on the indentation
of a half-space by a point force. The same scientists [27] studied the results of
analytical and computational stress and displacement field in a graded elastic half
space due to indentation by a rigid axisymmetric indentor. Giannakopoulos reviewed
the analytical, computational and experimental results on the spherical indentation of
a graded elastic half space. Giannakopoulos and Pallot [28] considered a two
dimensional sliding contact problem for an elastic graded half plane assuming a
power law type of variation for the elastic modulus. The disadvantage of this study is
that the elastic modulus becomes zero at the contact surface which is unrealistic.
Giiler [29] studied the sliding contact problem for FGM coatings loaded by a stamp
with an arbitrary profile. He considered an exponential variation for the elastic
modulus. The sliding contact problem for rigid stamps and for two contacting FGM
coatings were reduced to singular integral equations which was solved by using

collocation method.

Failure in tribological applications results from high stresses in the contact surfaces
and occurs in the form of cracking in brittle materials and plastic deformation in
ductile materials. This failure is generally the initiation and propagation of surface
cracks due to oscillatory contact loading at the contact surfaces. Dag [30] solved this
problem by examining the coupled fracture and contact mechanics problem. In his

study, he considered an elastic half plane FGM medium with an exponential type of

4



variation of the elastic modulus loaded by a stamp with arbitrary profile. Dag and
Erdogan [32] examined the initiation and subcritical growth of surface cracks in
FGMs. The coupled crack/contact problem for a nonhomogeneous half-plane is
considered in this study. The reader may refer to Dag and Erdogan [31] and [32] for

more details about the results found.

Ozatag [33] examined the effects of material nonhomogeneity and friction on contact
stresses and singularities at end of the contact region for materials with lateral
nonhomogeneity. He developed a technique to study the effect of the lateral
nonhomogenities on the contact stress distribution for a graded surface. As a result
he found that the contact stress distribution is distorted to take the shape of the shear
modulus variation. These studies and theoretical analysis show that FGMs is

perfectly suitable for applications that require wear or cracking resistance.
1.3 Motivation and Scope of the Study

The studies that are mentioned above are about the effects of depth direction
nonhomogenities or lateral direction nonhomogenities. In this study a method is
developed to examine the contact mechanics problem for a nonhomogeneous elastic
medium by assuming that there is a material nonhomogeneity both in lateral
direction and thickness directions. The graded surface is assumed to be isotropic, so
shear modulus variation can be expressed as u(x,y)=u,¢” . In this equation , is the
shear modulus at x=0 and y=0, £ and y are the nonhomogeneity constants which have
a unit of 1/length and can be used for curve-fit purposes. Poisson’s ratio is also
assumed to have a constant value. The main unknown is the contact stress

distribution at the contact surface.

The problem considered is a mixed boundary value problem. In such studies the
governing equations is reduced to a singular integral equation (SIE). The SIE can be
solved numerically by using orthogonal polynomials. The technique of the solution
of the SIE applied to the mixed boundary value problems in mechanics can be found

in Erdogan’s [34] study.



In Chapter 2, we formulated the problem using Fourier Transformations and reduce
the problem to a SIE. In Chapter 3 the problem is solved numerically using a
collocation method. A computer program is developed by using Visual Fortran
language to develop numerical solution. In Chapter 4 numerical results and

discussions are presented.



CHAPTER 2

FORMULATION

2.1 Derivation of the Singular Integral Equation for the Contact

Mechanics Problem

The general description of the sliding contact problem is shown in Figure 1.

- N

WX FGM

Figure 1: The general description of the contact problem in FGM

Top surface of the half plane is in sliding contact with a rigid stamp of arbitrary

profile. The forces are transmitted across the contact surface to the medium with the



normal force P and tangential force #P where # is the coefficient of friction and

contact area extends from a to b.

In this section of the study the problem will be formulated and reduced to a singular
integral equation. The effects of material non-homogeneity, friction on contact
stresses and singularities at the ends of the contact region will be examined by

solving the problem. The shear modulus is defined by;
w(x%,y) =", k=constant (1a,b)
In equation (1) the symbols f and y define the non-homogeneity parameters. Here

e x=3-4v for plain strain,

e x=(3-v)/ (1+v) for plane stress.

v is the Poisson’s ratio. Dag [30] found that the contact stresses in FGM are not

affected by v. So, it assumed that v will be constant.

By neglecting the body forces, the equations of equilibrium can be obtained as:

do N dJo, 0 5
dy ox (22)
do,. 0J0
x4y 2 =0 2b
ox dy (2)

Assuming small deformations and plane stress or plain strain for the isotropic linear

elastic medium considered, Hooke’s Law is written as follows:

0. (1y)=#05) ((Hl)—a” +(3- ’f)ﬁ] (3a)
K—1 ox dy

o, (xy)=~ (x.) ((K+1)@+ (3- rr)—a”j (3b)
k-1 dy ox



ou o
o, )=l )| 20+ 2 e

Substituting equations (3) in (2); the governing equations for the displacements can

be written as,

(K‘+1)ﬂ+(l('—l)ﬂ+2£+ﬁ(!€+1)%+ K—l)(a—u+ avj+,6’(3— 1()@ =0 (4a)

ox’ dy>  oxdy ox dy o dy

%y R o’u ou ou v v
(K—1)§+(K+1)§+28xay+7(3—K)g+,5(/(—1)(a—y+a)+7(K+1)g=0 (4b)

If we examine the Figure 1, the boundary conditions given below have to be satisfied

for the solution of the problem;

® Since no load is applied on the outer surface of the contact area,

c,.0.y)=0 . c,(0.y)=0 . —oo<y<a,b<y<eo (5a,b)

e By using the Coulomb’s law for frictional contact problems, the shear

stresses in the contact area are;
c,0.y)=n f(y) . 0.0.y)=r(y) . a<y<b (6a,b)
e The equilibrium equation is given by
b
[o.0,y)=-P ©)

Considering the Fourier transform in the y-direction, the solutions u(x, y) and v(x, y)

can be expressed as



1 .

u(x,y)= o J; U(x, p)explip y) dp (8a)
17 .

v, y)=—— [V(x.pexpliny) dp (8b)
ﬂ'—oo

where i =+/—1 and U(x,p) and V(x, p) are the Fourier transform of respectively
u(x,y) and v(x,y). The aim of using the Fourier transform is to convert the partial

differential equations into ordinary differential equations. Substituting (8a, 8b) into

(4a, 4b),

kDY 1 2ip Yy (e o2+ Bl )Y e 1ipl
dx dx dx
. (9a)
+7(K—1)a—+(ip),8(3—K)V=0
X
v . du 2 ), dU 9V
(K_l)dszrZZpEJr(KH)(_p W+ K);/dx+,6(/c 1) o o)

+ B(x—1)ip)U + (x+1)ip)V =0

Above equations are a set of second order ordinary differential equations which can

be written in a matrix form;

¢ oA

where a, b, ¢ and d are operators and are given as follows

a=s(c+1)+ Blx+1)s+(x—1)- p* +ip) (11a)
b =s[2ip+ y(k-1)]+ fip(3- k) (11b)
c=sip+y(3- )|+ Bip(k-1) (11c)
d = 5*(x=1)+ Blx~1)s+ (x+ 1) p* + sip) (11d)

10



2
where s and s° denote the the differential operators di and%.
X X

Assuming a solution of the form exp(sx), the characteristic equation can be written

as;

s4+2,3s3+[—2p(p+i7)+ﬂ2+}/2K—_3}sz+pﬂ(—2p+i7/ 8 js
K+1 K+1 (12)

. 3—kx
+p2(p2 —2ipy -y’ +ﬁ2mj=0

The roots of the characteristic equation are;

1 3-x| 1 2 2 . 3-x 3-K
A e e

1 3-x| 1| 2 4 3-x 3-K
A i

1 3—x| 1 2 2 : 3-x 3-x
AT e

1 3-x| 1| T 3-x =K
A BT e

After solving the equations (9a, b), u(x, y) and v(x, y) are written as

11



1 T
ule.y)=—— [ (p)expls,x+ipy)dp (14a)
S j=l
1 T
v(x, y): Ey= IZMJNJ (p)exp(ij+ ipy)dp (14b)
S j=l

Above M; are unknown functions of p and

(k-1)p* - (c+1)s7 = Bl +1)s, - fx—1)pi
N,lp)= 2ips; + px—1)s, + Bip(3 - k)

(15)
j=1, 2. Note that in order to ensure the regularity condition for u(x,y) andv(x,y),
only the roots with negative real part are used.

The stresses can be obtained by substituting equations (14a), (14b) into (3a), (3b),

and (3c) as follows;

o, (x, y)= %i J-Z[(Ic+l)sj + (3— I()ipNj ]Mj exp(ij+ ipy)dp (16a)
o, (x,y)= ﬂ;g-x—’f)i Ti[(3— K‘)sj +(K‘+1)ipNj]Mj exp(ij+ipy)dp (16b)
0, (y)=plx,y) [ X lip+ N s, M expls,x+ipy)dp (16¢)

The normal displacement derivative in the contact area can be written as

ou

|7
= = j ) x+i (17)
oy )= [>ip M expls x+ipy)ip

S j=l

12



In the above equations M; is the unknown. M; can be found by using the boundary

conditions;

+oo 2
ﬂ(O,y 1 J‘Z[K_i_ls +(3 ,(le ]M exp zpy) dp =
k-1 2735 (18a)
_[f) a<y<b
0 —co<y<a,b<y<+oo

1+°°2
EJZZP-FNS M . exp(zpy) p =
—oo j=1
18b
_ (y) a<y<b (186)
0 —o<y<a,b<y<+4oo

After taking inverse Fourier Transforms of both sides, we obtain

,Z:‘[ (x+1)+ipN (3 K)]M,:j:ﬂl(((;i)f(t)exp(—ip;)d; (19)
g(ipﬂvjsj )Mj =Iﬂ (:)’t)m‘(t)exp(— ipt)dt (19b)

Thus Mj(p), j=1,2 are given by

= Lo o)f rlese o+ Pl v (o) wrOesol- o) dz} 20)

a

In equation (20) ¢;(p) and w(p) can be determined by using a symbolic manipulator.

Substituting (20) into (17) normal displacement derivative can be written as:

13



Jesr k-1 [ i3, sol ) ey -

au 1 a 27[ —o j=1

g(x,y)zlu—o b 13 5 @D
Jesnte {305, el ) salols -

The above equation can be simplified by introducing the following terms
H,(p,x)=ip Z 9,(p)expls; x) (22a)

H,(p,x lle// Jexp(s, x) (22b)

Thus, du/dy becomes

. j’-exp(_%)f(t)dtﬁTH116XP(i,0(y—t))dp
_y(x’y):_ N _100 [ (23)
+ [exp(- %W(t)dtg [ H,y explip(y—1)dp

a

As for the numerical solution, it is easier to deal with (0, «) instead of dealing with

(-00, ). So we convert the integrals from (-o0, ) to (0, ) as below;

IHH p.Jexpliply~1)dp = [[H,,(p. )+ H, (- p.x)leos(ply 1)) dp

_ (24a)
+Ii [HH(,O,X)— H11(_ p’x)]Sin(p(y —1t)) dp
[ Hp.expliply—1)dp = [[H,s(p.x)+ His - p. leos(oly—1) dp
” N (24b)
+I [le(p’x)_le(_p’x)]sm(p(y_t)) dp

14



Some of the new terms can be introduced as;

K, (p.x)=H,(p,x)+H, (- p,x) (25a)
K, (p.x)=i[H, (p.x)+H, (- p.x)] (25b)
K, (p.x)=H,(p,x)+ H, (- p,x) (25¢)
K, (p.x)=i[H,(p,x)-H,, (- p,x)] (25d)

Then equation (23) will take the following form;

oo

expl- 1)/ 0)dr 5[ K., (p.x)eos(ply—1)ldp

0

1 + fexnlo) LK, sin(oly )
Se)=t ° .

dy Ho jexp(_ %W(t)dti]olf (0. x)cos(p(y —1))dp

N

+

+§exp(—m(t>dtizzcl4(p,x>sin(p(y—t»dp

In the derivation of above equation, an important step is to find the asymptotic values
of the infinite integrals in (26). There are two reasons why we asymptotically expand

the infinite integrals as p — oo. The first reason, the singular behavior of the integral
equation and that of its solution comes from the leading term in the large p

expansion of the kernel of the integrands (26). The second reason is to facilitate
computational efficiency when we numerically solve the singular integral equation.

In MAPLE it can be shown that,

S;.82=-p as p— © (27a)

15



By using the result above, asymptotic expressions for the mentioned functions can be

written as,

K7 (p.x)=iple, (0)+0,(p)=0, (= p)= ¢, (- p)) exp(- p x) (27b)
K (p.x)=-plo, (p)+0,(0)+ 4, (- p)+ 6, (= p)) exp(- p x) 27¢)
K (p.x)=iply, (0)+w, (p)-w, (= p)-¥, (- p)) exp(- p ) (27d)

K (p.x)=—ply, (0)+w, (0)+w, (= p)+ v, (= p)) exp(—p x)
(27e)

Using MAPLE we have to complete the asymptotic analyses of K||,K|;,K; and

K., by expanding them into Taylor series as p —oco. The following results are

obtained,
28
Kf‘l’={a1+a—2+a—32+...+a—67}exp(—px) (28)
p P P

where;
a=as=a,=0 (29a)
Y (k +1)(2x=5)y

? 4 (29b)
4= 761746 +362 B

’ 8 (29¢)

(a2 x* 136267 =207 K8 =520 — 127k +136° K +398° —9°k)y

! 32

ep 2w @)

32

16



K :{bl +b—2+b—32+...+b—"’7}exp(—px)
p P p

where;

5 1 3 1
b =2 B2 + VK —— =2 23
3 4ﬁ 4 SV K=Y =7

—16B8% + 677 —257° K> +37° K T/ k+27°k* B

b“:( 32

K :{c1 +c—2+c—32+...+c—67}exp(—px)
p P p

17

(30)

(31a)

(31b)

(3lc)

(31d)

(3le)

(32)

(33a)

(33b)

(33¢c)



1 1 1 1
C, :_272+Z7/2K3_5}/ZK2_5'82 (33d)

2.3 2.2 2 2 4 2 4 p2
642_(777(' 23y k" —13y°k+2y° kK" +3y  —4p ),8 (33e)

32

- d, d d
K, :{dl +—2+—32+...+p—3}exp(—px)

p P (34)
where;
dy=d;=dg=0 (35a)
2 — —
4= Aok —3k-1) (35b)
4
2 _1_ 3
d, = 7(7( 1-5k+«x ),8 (350)
8
4 - (—87/2 -12° K 129k + 4yt + 120767 4387k - 287K —7,82K);/
=
32
35d
LB -9y 5

32

After using the above results, equation (26) will take the below form by subtracting

and adding the first terms

18



Jexpl ) 01Tk, . )eoslply 1 hdp
+ fexe ka1 . )b exele s plo— o)

+ Jexpt )0ty expl- pesinloty o

ou 1
—(X,y):— a oo
P L fartessl- k| [ (o)~ el preostolyoap |

We can use the following formulas to evaluate the second and third terms in closed-

form

[exp(= p x)cos(p(y 1)) dp=——— (37a)
0 X+ (y _t)

[exp(=p x)sin(p(y—1)) dp=——2—"— (37b)
0 X+ (y _t)

We can now make the following definitions

P (t)= f(t)exp(-(y+p)) (38)

0, (t)=nf (t)exp(-(y+B)) (39)

Substituting in (36), and taking the limit as x—0, we get;

19



ou(0, y)

2mu

.Yt

TPI—(t)dHTPI(t)dt[

(b (K0

o

[ K, (p.0)cos(p(y —1))dp

0

>sm(p(y—r>dp>}

oo

|

(40)

-—17@1(y>+fgl(r)d{jzcn(p,o>—cl}os(p(y—r)dp)

a 0

+Jo0 [ .o sinloly o)

0

After multiplying both sides of (40) by (4u¢/ k +1), the below form of the equation

for the displacement derivative can be obtained;

(e

+Te(r>d{ﬂ(,(%nﬁKl1<p,o>co<p<y—r)dp>+T(Ku<p,o>—q>sn</xy—r>dp>j

(41)

0 0

+iQ(r)d{ﬂ(,(%l)ﬁ(zq3<p,o)—q)comy—z)dpnfzq4<p,o>sir<p<y—z)dpﬂ

a 0

In equation (41) we have Cauchy singularities and free terms. We can make the

following definitions

=

IKll(p,O)cos(p(y—t))dp = hn(y’t)

0

(42a)

20



T(Klz (p.0)=,)sin(p(y ~1))dp = hy, (.1) (42b)

(K5 (p.0)—c,)cos(p(y —1))dp = hy; (y.t) (42c)

S ey 8

[ Ko 0)sin{ply ~dp =, (1.1 @20)

0

In numerical computation of h;;(y,?), h;2(y,t), h;3(y,t) and hy;(y,t) integration cut-off

points are used. These expressions are simplified as;

Al]

hl1(y’t): J.KH(,O,O)COS(,O(y—t))d,O+ T(Kll(p,())—a—pz—...—%jCOS(p(y—t))dp

4 J'(ﬁ+...+a—§]008(/?(y ~1))dp
Al] p p

A

hy, (y’t) = J.(Ku (p,())—bl )Sin(p(y - t))dp

(43b)

oo

. J;(Kn(p,o)—bl —...—%jsin(p(y—t))dp+jz(b—z+...+%jsin(p(y—t))dp

(3.0)= [(K,4(p.0) e, Jeos(ply—)dp

(43c)

v [KB(/),O)—Q —...—%)cos(p(y—t))dp+j3 [%+...+%jsin(p(y—t))dp

21



Ay

halo)= [ K, (p0sinloly =)o [ Ko o)=L~ sinlply—0)

(43d)

+j( +.. +—jsin(p(y—t))dp

Ay

In equations (43), A,,,A,,,A;,A,, are the integration cut-off points. Gauss quadrature

numerical integration method is used to compute the integrals from 0...A. Big values
of A will increase the numerical efforts for the computation of the second terms on
the right hand sides of the equations (43a-d). So for the great values of A, these terms
go to zero and we have less numerical computations. However the second terms on
the right hand sides of the equations can be combined with the higher order of the
asymptotic development, then we can choose lower values of A. But the second
choice will pave way for the complexity of the asymptotic analysis, therefore we will
neglect the second terms on the right hand sides of the equations (43a-d). The third
terms can be evaluated in closed form. The evaluation of the third term can be found
in Appendix. At last the final form of the normal displacement derivative takes the

form as below

(ﬂjw - lj‘ (Pl ) dt—(K_lel (v)

K+1) dy b y—t) )

+ ((Lj{jl’l (N, (3,8)+ By, (3,8t + le (N (3, 0) + i (v, t)]dt}

w(x+1)

2.2 Normalization

In order to evaluate the parameters more easily, the equation (44) can be normalized

by changing the variables as below
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y:(b;a)s+(b-|2-a) (453)

(b—a)H_ (b+a)

t= 5 5 (45b)

Normalized P;(t) and Q,(y)can be defined as

R(t)=R[b_“r+b+“j=E(r) (46a)
2 2

Ql(r)=Ql(b;“s+b;“j=Q1(r) (46b)
b— b ~

Ql(y):Ql[ 2615+ ;aj:Ql(S) (46¢)

The normalized non-homogeneity parameter (y+ £)* is related to the size of the

contact area and can be defined as;

(y+py=(r+pBNb-a) 47)

Substituting equations (45) and (46) into equation (44), the normalized form of the

equation (44) takes form as below

[4% jaum, )1 A0 dr_(’f_—ljg (5

K+1) Oy Efl(s—r)

(48)

+ 2 (7/+'B)y 1A}’A* SI”+A*12SI’ r+lﬁrﬁ*13SI”+A*14sr r
g [ s st ool ston i sl

2 -1
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51*1 (s,7), fzf; (s,7), E;; (s,r)and Elz (s,r) are the normalized form  of

hll(y, ) hlz(y,t),hw(y,t) and h,, (y,1). When (y+ ,B)* =0, the third term in equation

(48) will disappear, then the expression for homogeneous half-plane will be formed

~(y+ B “9)

By using the above transformation, A/\(s,r)h,(s,7)h5(s,r) and & (s,r)can be

normalized differently depending on the sign of (¥ + ).

For(y+ )>0

[ [0{ r+5). (s—r)]da

ﬁl*l (s,r) = j KH[(7/+,3)6¥,O]COS )

0

+ T [a—2+...+a—6} cos[a (7+2ﬁ)‘ (s—r)}daf (502)

o a’

i) |l Pl i a2 o)

. j[ {}m[ (r+ ﬁ)( )}za (50b)
N (e e P

. j{cz {}co{ CASINN r)}a (500)
(5.1 = j K[+ ﬁ)a,o]sin{a SATIN r)}da

N j[ é}sm{ r+p) (s-r)}ra (50d)
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For(y+ ) <0, the integration cut-off points become negative. So the normalized

terms A, (s,r),h5(s,r),h5(s,r) and A, (s,r) can be written as;

El*l (s.r)= _TKU [(7+ ,B)CL’,O]COS{CZ r+ IB)* (s— r)}da

RS, i

*

e P

(R PSR

L o

*
Al 3

o) = | &, [«M)a,o)—cl]co{a‘7””* (s_r)}m

i)

S

*

. A14

o)== multr prxobinl o742 o) e

2

- T {%+...+Z—ﬂsm{a@(s—r)}m

M
A14

where

25
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(50f)

(50g)

(50h)

(51a)
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Cy =750y Cg = 51
* o (y+p) (y+p8) 1o
d 2 _ ..d, = 6 51d
T BT T e py O
Al A, j=1,.,4 (notethat A are positive) (5le)
" (y+B) !

Using the same procedure of normalization as followed above, the equilibrium

equation given in equation (7) can be normalized by equation (38) as;

[ P(Y)explly+B)yky =P (52)

Here we can define another non-homogeneity parameter related to the location of the

stamp as

(y+ B)**=(y+p)b+a) (53)

By using definitions in equations (45a) and (46a), non-homogeneity parameters
defined in equations (47) and (53), the normalized form of the equilibrium equation

can be obtained as;

j 2P 54

s)exp— L+ B) s+(y+ B)rs = ——

In this section we derived the singular integral equation and extract all the
singularities that it contains. We will give a numerical solution for the problem,
assuming that our density function is an infinite expansion of the Jacobi polynomials.

We obtained equation (48) and (54) to solve the any types of stamp profile. By using

26



a collocation technique, the problem will be reduced to an infinite system of linear

algebraic equations of the unknown coefficients A, for the flat stamp profile.
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CHAPTER 3

NUMERICAL SOLUTION

3.1 Flat Stamp Problem

In this chapter the stress distribution in the loaded region will be calculated.

Figure 2: The general description of the contact problem for flat stamp problem

For the flat stamp problem, the displacement derivative in the contact area is

constant, so we can state that

au(0, y)
dy

=0, a<y<b (55)
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Pl(s) is normalized by P/(b—a). Below 161 (s) is defined as Fl(s);

E(s)=?— (56)

By substituting equation (56) in (48) we can obtain the new version of singular

integral equation as given below, note that Q, (s)=7P,(s)

e L T R s 10 R I A S

-1<s<1

Also we can substitute equation (56) in (54), the normalized form of the equilibrium

equation becomes

1

[B(s)expL[(r+8)%s+(r+ ) =+his =2 (58)
2

-1

The normalized stress can now be written in the following form;

RO S a2 )

where W(r) is the weight function and defined as
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W, (r)=0—-r) (1+r)* (60)

A, is the unknown constant, p(ﬁl,/ﬂ’z)

n

is the Jacobi polynomials, S and f,are the

strength of singularities at the ends of the contact region for the flat stamp. Here

-1
cot(zf)=—n" (61a)
-1
cot(2p,)=n"— (61b)
B+5,=-1, -1< p, <0, -1< ,<0 (62)

Above, the bounded part of the unknown function is expanded into an infinite
expansion of the Jacobi polynomials. The equations (6la-b) can be derived by
equation by using complex function theory. For more details on the derivation these
equations, the reader may refer to Dag [30]. By substituting equation (60) in equation
(57),

lj‘Wl_(r){iAnP}fﬁl,ﬁz)(r)}dr_U[K__ljwl (s){iAnp}fﬂl,ﬁz)(s)}

A SO R ol ol | =
E et | L R G e
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S, [1 [0, _of £y (S)P;ﬁl,ﬁz)(s)}

K+1

+iAn_(7+ﬁ)*_{jwl P s+ (s,r>]dr} ©

S, M’{W(r)an[,;l;(s,,,)+,;lz(s,r)]dr}:0

where -1<s<1

In equation (63) the first term can be evaluated from the properties of the Jacobi
polynomials as below;

1
l I(l _ r)ﬁl (1 + r)ﬁz Pn(ﬁlsﬁz)(r)i — —COt(ﬂ;Bl )(l _ S)ﬁl (1 + s)ﬁz Pﬂ(ﬁl:ﬁz)(s)
Y2} s—r

(65)

where y =—(8, + ,)=1, we previously know that 3 + 3, = —1. From the equation
(61a) cot(i[ﬂl):—ﬂk—_l. By substituting these values the first term becomes as
K

below;

1 le_(r){i 4 Pl ,ﬁz)(r)} dr— U[K_‘ljwl (S){i A pUAB)( S)}

T s—r | xK+1 n=0
k-1 5 B p(5.5:) 1 (5.-5)
1— (1 + 2 20 R T N — A
i | 77K'+1( S) ( S) n Zsin(ﬂ'ﬁl) n-1 (66)
n=1 —ﬂK_l(l—S)ﬁl (1+s)ﬁz P(ﬁl 5,)
K+1

We rearrange equation (64) for simple calculation as
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Now equation (67) can be written as

>4, { y+5) szln s r)dr}JrzA {

(c+1) [|2,

where -1<s<1

m,, (s)= {(74_ 'B)*)}UZM (s,r)dr+ j-ZZn (s, r)dr}

7(xc+1

e

(67)

(68a)

(68b)

(69)

(70a)

(70b)

As for the normalized form of the equilibrium equation, substitute equation (59) in

(58)
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EZIWKﬂAﬂﬁﬁﬁwﬂem{%k7+ﬁfs+(7+ﬁfﬂ}k=—2 (71)

We rename the above term as

my, = le (S)Pn(ﬁ"ﬁz)(s)exp{% [(7+ B) s+(y+pB) ]}ds (72)

Finally we can write equation (69) as

ZAnmln (s)+ZAnm2n (S):O (733)
n=1 n=0

and equation (71) can also be written as

D Am, =2 (73b)
=0

Note that the expansion of the solution as an infinite series of Jacobi polynomials
may converge to the exact solution within a few terms of the expansion. In order to
deal with a finite number of unknowns, Equations (73a) and (73b) are truncated at an

ordern = N . So, we can write

N N
> Am,(s)+D Am,,(s)=0 (74a)
n=1 n=0

N
D> Amy, =2 (74b)
n=0

Equations (74a, b) are a set of two linear equations with N +1 unknowns which

are An,(nzO...N ). In order to be able to determine these functional equations

equation (74a) is collocated at N points. These points are chosen as the roots of the

Chebyshev polynomials and defined as follows

33



_ oo Z@i=DY
s[—cos( N j ; i=1...N (75)

Thus, we have N +1equations for N +1 unknowns with collocation equation (74a) at
N points using (75) and equation (74b). First of all the A , n=0...N are obtained,
then the final expression of the normalized stress field is obtained by equation (59),
so in order to calculate the normalized contact stress distribution }_’l(s) for -1<s<1, a

computer program is written by using Visual Fortran language. Results are in the

next chapter.

3.2 Closed Form Solution of the Contact Mechanics Problem for the

Homogeneous Half-Plane

In this study, a numerical solution is developed to examine the contact mechanics
problem for the nonhomogeneous elastic medium. However we need to check the
results of the numerical solution for contact mechanics problem for the homogeneous
elastic medium. So we will calculate the contact stress distribution on the surface
using the closed form solution for a homogeneous half plane in order to compare to
the results of the nonhomogeneous elastic half plane. On the contrary of the

nonhomogeneous elastic half plane solution, in homogeneous half plane case we take

(y+B)=(y+py=(r+B)**=0 (76)

When we apply the condition in equation (76), equation (57) and (58) take the form:

lj A (r) dr_(’(__lj,]}_wl(s):() , -l<s<1 7
e, (s—r) Kk+1
JR(shis=-2 )
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b—a b+aj
s+
(79)

B(s)= 6’“(0’

P/(b—a)

The normalized stress takes the form as

RO=0-F V| S A P8 0)

n=0

where S and S, are given by equation (61). By substituting equation (80) in (77) and

integrating it in closed form using equation (65), we obtain

1[]s

1 BB ()| —
A{Zsin(ﬂﬂl)a_l (s)} 0 (81)

The above equation is valid when

A=A=.=A,=0 (82)

The nonzero constant in equation (80) is A, so the normalized stress takes the form

as
R(s)=A1-5) (1+s)* (83)

If the equation (83) is applied to equation (78), normalized form of the equilibrium

equation takes the form as

A=) (14 5Yrds =2 (84)
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So,

A, = 2sin (78,) (85)
T

At last the normalized stress distribution for the closed form of homogeneous half

plane is obtained as,

E(s)z%”m(l—s)ﬁl (1+5)” , -l<s<l1 (86)

From the equation (62) S, is negative. If we calculate the equation (86), we can find

that the normalized stress P, (s) is negative at every point in the contact region, thus

we can easily see that the contact stresses in the contact region are compressive.
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CHAPTER 4

RESULTS & CONCLUSIONS

In this chapter the numerical results and conclusions are presented. First of all the
accuracy of results is checked by comparing the results for the graded medium with
small nonhomogenity constant (y+ B)*=0.002 to the closed-form solution for a
homogenous medium. Afterwards a detailed parametric study is done to examine
effect of the nonhomogeneity parameter and the friction coefficient. As mentioned
before, because the main the interest of the study is the effect of the nonhomogenity

constant on the contact stress distribution, xis fixed to a constant a value 2.

4.1 Comparisons of the Results to the Closed Form Solution

0
— (1P)x=0.n=0
8 (1#B)*=0.002,n=0
o — o (pp=0n=04
P/(bkia) 1 o (pP=0002.n=04
== (1#P)+=0,n=0.8
A (pP)+=0.002,1=0.8
-2
s

Figure 3: Comparison of the contact stress distribution to closed-form solution for various

values of the friction coefficient

37



4.1.1 Comments on Comparisons of the Results to the Closed Form

Solution

As can be seen in figure 3, the accuracy of results was checked by comparing the
results obtained form the computer program when setting (¥ + B)*=0.002 and the

results obtained from the closed-form solution by using the expressions in 3.2 for
various values of the friction coefficient. The graphs show that the results obtained
by computer program are very close to the results obtained by using the closed form

solutions.

Also the effects of the of the friction coefficient on the stress distribution in the
loaded region can be observed. The stress distribution is symmetric about s =0 for

zero values of 77 which means that no shear stress is applied, however stress

distribution in the contact area is not symmetric for the positive values of the friction

coefficient (7>0). This non- symmetric form shows that the normal stress is

increased in the front half of the punch and decreased in the rear part of the punch. In

other words the stress distribution is increased near s = —1 and decreased nears =1.
4.2 Parametric Studies

In the parametric analyses conducted in the present study following nonhomogeneity

constants are used:
y* =rb-a)
y**=ylb+a)
B* =plb-a)
B#+=plb+a)

The results are given in figures between 4 and 38.
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Figure 4: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y*[1=0,p(b-a)=Lf*=y(b+ta) =y**=f(b+a) = f**=0]
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Figure 5: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a) = y* [N=02, B (b-a) = f*=y(b+a) =y **= i (b+a) = f**=0]
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Figure 6: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)= y* (=02 B (b-a) = B*=y(b+a) =y **= f (b+a) = B**=0]
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Figure 7: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)= y* [n=04, B (b-a)=PB*=y(b+a) =y **= B (b+a) = f**=0]
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Figure 8: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y* [1=-04,B(b-a)=F*=y(b+a) =y**=f(b+a) = f7*=0]
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Figure 9: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)= y* [N=0.6, B (b-a)=B*=y(b+a) =y **= B (b+a) = f**=0]
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Figure 10: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a) = y* [77='0‘6’[’)(17'“)=,3*=V(b+a)=7**=ﬁ(b+a)=ﬁ**=0]
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Figure 11: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y*[n=0,p(b-a)=LF*=1andy(b+a) =y**=f (b+a) = [**=0]
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Figure 12: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y* [n=0.2,B(b-a)=F*=1and y (b+a) =y ** = (b+a) = [**=0]
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Figure 13: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y* [n=-02,B(b-a)=L*=1andy (b+a) =y **= B (b+a) = **=0]

43



0,0 L O I B A
-1 0 1
-0,5 L 7 . N
P - T > -\- ------ . -
7/ Pl —/ ~ * \‘
o / L S~ . \
—e 04 /0 S \ — ==yl
P/(b—a) l/ "/./ AN Yo e =
I \\ ', ! R
[ v
15 | L \
1
| \
(| Ve
2,0 1y v
S
Figure 14: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y* =04, B (b-a)=F*=1and y (b+a) =y **= B (b+a) = [**=0]
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Figure 15: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y* [n=-04, B (b-a)=F*=1and y (b+a) =y **= B (b+a) = [**=0]
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Figure 16: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y*[n=06,B(b-a)=LF*=1andy (b+a) =y **= B (b+a) = B**=0]
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Figure 17: Normalized stress distribution for various values of the nonhomogeneity constant

y(b-a)=y* [1=-06 f(b-a)=f*=1andy (b+a) =y **= f (b+a) = [**=0]
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Figure 18: Normalized stress distribution for various values of the nonhomogeneity constant

p(b-a)=B*[N=0,y(b-a)=y*=-05andy (b+a) =y **= ff (b+a) = B **=0]
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Figure 19: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=L%[n=0.2y(b-a)=y*=-05and y (b+a) =y **= B (b+a) = f**=0]

46




0,0 rrrrTrrrrT T T T T T T T T T T T T T T T T T T T T
-1 0 1
-0,5 - e —— PN
- =<x= .
yd PR ~ . AN
’ N .
7/ 4 SO \
7 - \\ . \\
14
O, / -, g \ -~ pr=1
Plo-a) SR N p
—a 2 S N R =
/ / \ |
// ; \\ L N el Br=—
/ / \ !
-1,5 1 | / \\ |
/ .
! ./ \ \
] \
T \ !
/ \
_2,0 I \

Figure 20: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=B* [n=-02 y(b-a)=y*=-05and y (b+a) =y **= p (b+a) = f**=0]
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Figure 21: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=F* [n=04,y(b-a)=y*=-05and y (b+a) =y **= B (b+a) = f**=0]
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Figure 22: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=p* [1=-04,y((b-a)=y*

-0.5and y (b+a) =y ** = B (b+a) = B **=0]
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Figure 23: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=B* [1n=0.6,y(b-a)=y*=-0.5and y (b+a) =y **= B (b+a) = B **=0]
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Figure 24: Normalized stress distribution for various values of the nonhomogeneity constant

B (b-a) =B* [n=-0.6,y(b-a)=y*=-05and y (b+a) =y **=p (b+a) = f**=0]
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Figure 25: Normalized stress distribution for various values of the nonhomogeneity constant

B (b-a)=B* =0,y (b-a)=y*=05and y (b+a) =y **= § (b+a) = B **=0]
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Figure 26: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=B*[n=0.2,y(b-a)=y*=0.5and y (b+a) =y **= B (b+a) = f**=0]
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Figure 27: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a) =% [n=-02 y(b-a)=y*=0.5and y (b+a) =y **= B (b+a) = f**=0]
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Figure 28: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=PB* [n=04,y(b-a)=y*=0.5and y (b+a) =y **= B (b+a) = f**=0]
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Figure 29: Normalized stress distribution for various values of the nonhomogeneity constant

B(b-a)=P*[n=-04,y(-a)=y*=0.5and y (b+a) =y **= B (b+a) = f** =0]
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B(b-a)=L*[n=0.6,y(b-a)=y*=05andy (b+a) =y **=f (b+a) = f**=0]

Figure 30: Normalized stress distribution for various values of the nonhomogeneity constant
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Figure 31: Normalized stress distribution for various values of the nonhomogeneity constant

B (b-a) = B* [n=-0.6,y(b-a)=y*=0.5and y (b+a) =y **= B (b+a) = f**=0]
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4.2.1 Comments on the Results Obtained for the Flat Stamp

The results is given in this section can be categorized into four groups according to
the different values of nonhomogenity parameters. In each group the stress

distribution is stated for the different values of the friction coefficient, namely,n =0,
n=02, n=-02,n=04, n=-04, n=0.6and 7=-0.6. The negative value of
friction coefficient indicates the reverse direction of the applied tangential force. As
shown in the figure 2, the positive friction coefficient indicates the tangential force
acting in the positive direction of y axis on the stamp. The zero friction coefficients

are for the frictionless contact surface.

The graphs given in figures 4 - 10 are drawn when f*= y**= B**=0, y*=-1,0,
for the different values of the friction coefficient. The figure 4 shows the normalized
stress distribution versus the normalized position parameter s forn =0. As easily
seen from the figure, for * =0 the stress distribution is symmetric. This symmetric
distribution can also be observed in other graphs for y* =0 for the different values
of the friction coefficients. The curves are asymmetric about s=0 for the y*=—-1 and
y*=1. The shear modulus variation is the most important factor that effects the

contact stress distribution. As can be seen from figures the contact stress distribution
takes the behavior of the shear modulus variation at x=0. In all cases the contact
stress distribution takes the shape of the exponential function with a positive
exponent that can be seen in y*=1 curves. In y*=—1 curves the contact stress
distribution takes the shape of the exponential function with a negative exponent. As
for the positive valued friction coefficient and the negative valued friction
coefficient, reversing the direction of the applied force does not significantly affect
the stress distribution for7z = 0.2 and for the other values of friction of coefficients.
The stress distribution is increasing in the middle region of the contact area and the

stress distribution is decreasing near the end points of the stamp.

The graphs between the figure 11 and figure 17 are drawn when fS*= 1,

y**=[*%*=0 and y*=—-1,0,1 for the different values of the friction coefficient. It is
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seen that for y* =0 the stress distribution is symmetric which is an expected result.
Same behavior can also be seen in other curves for y*=0 for the different values of
friction coefficients. The curves are asymmetric about s=0 for the y*=-1
and y*=1. Again as can be seen from figures the contact stress distribution takes the
behavior of the shear modulus variation at x=0. In all cases the contact stress
distribution takes the shape of the exponential function with a positive exponent that
can be seen in y*=1 curves, the contact stress distribution takes the shape of the
exponential function with a negative exponent in y* = —1 curves as mentioned above.
As easily seen from the figures, while the stress distribution is decreasing near the
end points of the stamp, the stress distribution increases in the middle region of the
contact area. Reversing the direction of the applied force does not affect the stress
distribution for small values of friction coefficient. The contact problem has no

solution for £ *<0 [30]. Hence, no results were provided for this case.

The graphs between the figure 18 and figure 24 are drawn when ¥ *=-0.5 and
y**=f**=0, B*=-1,0, and the graphs between the figure 25 and figure 31 are
drawn when y *= 0.5 and y **= f**=0, f*=-1,0,1 for the different values of the

friction coefficient. The similar trends can also be observed in these figures and cases

as compared with the graphs between the figure 4 and the figure 10.

As mentioned in chapter 1, while Ozatag [33] examined the effects of material
nonhomogeneity and friction on contact stresses and singularities at end of the
contact region for materials with lateral nonhomogeneity, Dag and Erdogan [32]
examined the initiation and subcritical growth of surface cracks in FGMs. The
behavior of graphs obtained by this study has to be compared with these studies one
by one. The results obtained by this study are in very good agreement with these

studies.
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4.3 Concluding Remarks

1. The results obtained by computer program are very close to the results obtained
by using the closed form solutions.

2. The shear modulus variation is the most important factor that affects the contact
stress distribution. As can be seen from graphs the contact stress distribution
takes the behavior of the shear modulus variation at x=0.

3. Generally while the stress distributions are decreasing near the end points of the
contact area, the stress distributions increase in the middle region of the contact
area.

4. Generally reversing the direction of the applied force does not significantly affect
the stress distribution.

5. The contact problem has no solution for #*<0 [30]. Hence, no results were

provided for this case.

6. In this problem normalized contact stress depends on the effects of the material
nonhomogeneity parameters y&p, coefficient of friction #, stamp size and stamp
location on the contact area and constant Poisson’s ratio v.

7. To use the elastically graded materials with a material nonhomogeneity both in
lateral direction and thickness direction could be very suitable especially for

tribological applications.
4.4 Future Work

The contact mechanics problem in this study is developed for elastically graded
materials both in lateral direction and thickness direction in order to examine the
effects of nonhomogenity parameters, friction of coefficient, stamp size and location
on the contact area for flat stamp medium only. For more detailed results and in
order to see the resistance of the graded materials in both lateral and thickness
direction, the contact problem can be solved for triangular and circular stamp. At the
same time an experimental study can be done to examine the physical behavior of

FGM for designers.
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The contact mechanics problem in this study is solved for isotropic medium.
However this problem can be solved also for orthotropic medium. Because in certain

applications, FGMs can have orthotropic behavior.

The model used in this study can also be studied for subsurface stresses in the semi-
infinite medium. When this is done, asymptotic analyses have to be made for all
stress components. In this study it is seen that while the stress distributions are
decreasing near the end points of the contact area, the stress distributions increase in
the middle region of the contact area. This problem can also be solved for cracking
due to sliding contact for nonhomogeneous materials graded in both lateral and

thickness direction.
Since nonhomogeneous materials are vital for the future in order to improve the

material qualities for severe conditions, the future work mentioned above is required

to understand the contact mechanics problems for nonhomogeneous materials.
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APPENDIX

SOME USEFUL INTEGRALS

In this part of study the integrals involving the asymptotic expansions of the
integrands of kernels that are in used computer program are given. The integrals are

in the following form;

c, = %cos(pu)dp (A1)
s, =] %sin(pu)dp (A2)

For n=1, following results are obtained using MAPLE,

C, =—C,(Afu|) (A3)

l

S, = sign(u ){% -, (A|u|)} (A4)

where C;( )and S;( ) are cosine and sine integrals, they are defined as

C,(x) =7, +In(x)+ j%dd (A5)
tsin(a)

5,(x)= [0 4 (A6)
y
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7,1s the Euler constant which is equal to 0.5772156649. For n>1, integrating the

equations (Al) and (A2) by parts, the following general recursive relations can be

obtained,

c —- 1 COS(I:tlA)_i_ u s
I-n A" 1-n

n>1 (AT)

S —— 1 51n(b_ti4)_ u C .
I-n A" I-n

n>1 (A8)
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