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ABSTRACT

CONSTRUCTIONS OF RESILIENT BOOLEAN FUNCTIONS
WITH MAXIMUM NONLINEARITY

SAHIN, M. Ozgiir
M.S., Department of Electrical and Electronics Engieering

Supervisor: Assoc. Prof. Dr. Melek D. YUCEL

August 2005, 59 pages

In this thesis, we work on the upper bound for maarity oft-resilient Boolean
functions given by Sarkar and Maitra, which is loaea divisibility properties of
spectral weights of resilient functions and studgpstruction methods that achieve
the upper bound.

One of the construction methods, introduced by Waitd Johansson, starts with a
bent function and complements some values of it ttable corresponding to a
previously chosen set of inputs, S, which satisfiese criteria. In this thesis, we
show that a fourth criterion is needed faesiliency of the resulting function, and
prove that three criteria of Maity and Johanssomatoguarantee resiliency.

We also work on other constructions, one by Sadeat Maitra, which uses a
Maiorana-McFarland like technique to satisfy theempbound and the other by
Tarannikov, which satisfies the nonlinearity boumsing a technique with low
computational complexity. However, these methodstiandency to maximize the

order of resiliency for a given number of variabldserefore one cannot construct



functions for all possible resiliency values gitee number of variables, using this

method.

We further go into details and compute the auteetation functions of the
constructed Boolean functions to find the absolatkcator and sum-of-squared-
errors for each of them. We also provide a comparief Boolean functions
constructed by other techniques given in the litem together with the ones
studied in this thesis.

Keywords. Boolean function, nonlinearity, resiliency, coatsbn immunity, auto-

correalation.



Oz

EN DOGRUSAL OLMAYAN ESNEK BOOLE {SLEVLER iNiN YAPIMI

SAHIN, M. Ozgur
Yuksek Lisans, Elektrik ve Elektronik Mihendisligi BolUmu

Tez Yoneticisi: Dog. Dr. Melek D. YUCEL

Agustos 2005, 59 sayfa

Bu tezde, Sarkar ve Maitra tarafindan verilen weeksslevierin acilim dgerlerinin
boltnebilirlik 6zelliklerine dayanart;esnek Boolesievlerinin dgrusal olmama Ust
sinirini ve bu dst sinira g yapim yontemlerini inceledik.

Anlatilan yapim yontemlerinden biri, daha 6énce Maire Johansson tarafindan
Onerilen bir yontemdir. Yontemlerinde, bukik bglevle bglayip bu glevin

onceden belirlenmive ¢ kisitl sglayan bir girdi kimesi, S'de bulunan girdilere
karsilik gelen ciktilar evirmektedirler. Bu tezde, Mave Johansson’un kisitlarinin

esneklgi kesinlgtirmedigini ve dorduincu bir kisitin gerekli oldunu kanithyoruz.

Ayrica, dgrusal olmama Ust sinirini @ayan Sarkar ve Maitra’nin Maiorana-
McFarland benzeri yontemiyle Tarannikov'un hesapmaukligl disik yontemi
olmak Uzere dier yontemleri inceliyoruz. Bu teknikler belirli bategisken sayisi
icin esneklgi maksimuma ¢ikarma gdimlerinden dolayl dgrusal olmama Ust

sinirinin tum noktalari igin kullanilamamaktadir.

Vi



Ayrica, yapilan Booleslevlerinin kendi kendine kganti islevlerini bulup mutlak
gOsterge ve kare-hatalar-toplamgdderini hesapliyoruz. Bu tezde yapilan vgedi

yontemlerle yapilmgiBoole glevlerinin bir kagilastirmasini da yapiyoruz.

Anahtar Kelimeler. Boole &levleri, dagrusal olmama, esneklik, piant
bagisikligl, kendi kendine bdanti.
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To my beloved who has passed away
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CHAPTER 1

INTRODUCTION

Boolean functions are important tools in cryptosgst, especially used for stream
ciphers as combining functions in the constructbrkey stream generators based
on Linear Feedback Shift Registers (LFSRs). Sineeursty of a cryptosystem
depends on its ability to guard against known &aBoolean functions — as a part
of the system — should possess certain propesies) as high nonlinearity, high
order of resiliency, high algebraic degree and domo-correlation properties. As the
complexity of the cryptosystem is proportional @ thumber of input variables to
the Boolean function there should be an optimirabetween the number of input
variables and maximization of the above parame&egenthaler has shown that for
ann-variable, unbalanced function of correlation imntyih and algebraic degrek

t + d <nholds [Sieg1984]. If the function is balancednhe d < n-1.

Sarkar and Maitra [SarMai2000-1] have found an ujyoeind for the nonlinearity
of t-resilient Boolean functions and inspired a nundfeesearchers ([SarMai2000-
1], [SarMai2000-2], [FedTar2001], [JohPas2003], repe®01], [PasJohMS2001],
[Mait2000]) for discovering functions satisfying ath upper bound, which is

nl, <2"-2" for t>N, -2 andnl, < 2"t - 22t _ v for ts%—z. They

2
have based their results to the fact that, foresilient Boolean functiof W (w) =

0 mod 2 for all w O GF(2)", whereW; (») is the Walsh-Hadamard transformfof
[SarMai2000-1]. This result certainly limits the gsible values of the Walsh-
Hadamard transform and therefore sets a limit ¢onthnlinearity of the function as

described in Section 2.1.

In this thesis, we work on the nonlinearity boungleg by Sarkar and Maitra

[SarMai2000-1], and study construction methods #Hadisfy the upper bound on



nonlinearity. Chapter 2 is devoted to introduce tiogation and the preliminary
concepts for comprehending the rest of the docunaerdt also includes the
discussion on the nonlinearity bound of Sarkar lsliadtra.

The construction method described in Chapter 3pseaiously introduced method

by Maity and Johansson [MaiJoh2002] to constturesilient Boolean functions of
nonlinearity nl .. = 2" ol -2, fort < % - 2. In their method, Maity and

Johansson start with a bent function and complesemie values of its truth table
corresponding to a previously chosen set of inmatars, S, which satisfies three
criteria [MaiJoh2002]. In Theorem 3.2, we show thdburth criterion is needed to

prove that the resulting function isresilient and its nonlinearity satisfies
nl,. >2"* _ )t g Combining this inequality with the upper boundSafrkar
and Maitra [SarMai2000-1], the construction vyields nonlinearity of

— on-1 _ y—l_ t+1 n/ _ eon/
nl,. =2 227 =2 ,fortsé 2. Wealsoshowthat,ubé 2, the same

construction yields a nonlinearity of;, where2"* - Tt <l <ot
Without the introduction of the fourth criteriomp@ cannot guarantee the resiliency

of the function.

In Chapter 4, we study other construction methad® by Sarkar and Maitra
[SarMai2000-1], which uses a Maiorana-McFarlanct ltechnique to satisfy the
upper bound and the other by Tarannikov [Tara200@fich satisfies the
nonlinearity bound with a technique having low cartgtional complexity. The
construction method given by Sarkar and Maitra usexatenation of functions
with less number of variables and produces funstieith high order of resiliency
[SarMai2000-1]. A very important property of thisnstruction technique is its
being the first method to satisfy certain pointstbé& nonlinearity bound, for
example the function with nonlinearity 112, ordérresiliency 3 and number of
variables 8, given in Section 4.1. However, thighuod has tendency to maximize
the order of resiliency for a given number of vhles, therefore one cannot
construct functions for all points of the upper bdufor nonlinearity using this

method, for example like the one we have constdudte Chapter 3, with



nonlinearity 116, order of resiliency 1 and numbéwariables 8. This is because

functions constructed by the method of Sarkar amdtrisl must have the properties
(n, t, d, 2) obeying the rule 3+ 2i +j,i+ j,2+i,2** = 2¥"*1) wherei andj are

natural numbers [SarMai2000-1].

The construction method given by Tarannikov — jist the one by Sarkar and

. : , . o , 2n—-7
Maitra — focuses only on functions with high orasrresiliency, i.e.t 2

[Tara2000]. Therefore, the same weakness of imgbtb construct Boolean
functions of low order of resiliency is present tbe method of Tarannikov. This is
a major weakness because the construction of famecthaving small order of
resiliency to achieve higher algebraic degree argtteb auto-correlation
characteristics is usually desirable. On the offerd, the construction technique
given by Tarannikov has a computational compleimgar on the number of
variables, n, which is very preferable compared to the otherthods having

computational complexity"JTara2000].

In Chapter 5, we go more into details of the fumsi constructed in Chapters 3 and
4. We compute the auto-correlation functions of ¢bhastructed Boolean functions

and find the absolute indicator and sum-of-squaredrs for each of them. We also

provide a comparison of Boolean functions consedidty other techniques together
with the ones studied in Chapters 3 and 4 in teohsionlinearity, order of

resiliency, the absolute indicator and sum-of-sgdaarrors.



CHAPTER 2

PRELIMINARIES

Let n be any positive integer. Anvariable Boolean functiofi GF(2)" — GF(2)
maps each possible combinatiomebit variables to a single bit. Boolean functions

play a major role in cryptosystems.

A Boolean functiorf can be represented as a polynomial GMef2):

f (X, Xyee0sX, ) = 8 O ;nai x, O Js;jj xX; 0.0 ay, (XX, X,
whereay, &j,..., a12.nJ GF(2) and the multiplication and addition operati@ne in
GF(2). This representation of a Boolean function adled the Algebraic Normal
Form (ANF) and the degree of this polynomial gitlke algebraic degree of the
function. Another representation of a Boolean fiorctis its truth table, which lists
the function output for all possible inputs. We dinthe truth table dfwith the 2

dimensional vectof;:

f, ={f(0), f(V)..... f (2" -1}

There are a few properties of Boolean functions éna important in cryptographic

applications. We now discuss those properties.

Definition 2.1. Theweightof a Boolean functiofy wt(f), is the number of onés

its truth table.

Definition 2.2. An n-variable Boolean functiorni is said to bebalanced if the

number of 0's is equal to the number of 1's irtitgh table, i.e. wt(f)=2"".



Definition 2.3. A Booleang(x) is called araffine function ofx = (X, X,..., Xn) O

GF(2)", if its degree is at most one, in other word#sifilgebraic normal form is:

9(x, %X ) =@, Dax, Da,x, O...0ax, =alxda,

wherea ay, ..., a, 0 GF(2)", w= (ay,..., a,) 0 GF(2)", and0, - respectively denote

addition and inner product operationgG&(2). g(x) is called linear ifap = 0.

Definition 2.4. TheWalsh-Hadamard transforraf a Boolean functiof is defined
as:

@)= Ty

XOGF (2)"

For non-Boolean functions the Walsh Hadamard Tmansis defined as:

W, (@)= > r(x)(-1)“ [Yiice2001]

XOGF (2)"

and the inverse transform is:

Ww,(w) N (X) =r(x)=2" ZWr (w)(_ 1))@)

«OGF (2)"

Definition 2.5. The Hamming distancebetween two function$(x) and g(x) is

defined as the number of inputs where the outpitfer dthat is:
dy (1,0) = fx1 (9% 9(x). xOGF(2)'}

Definition 2.6. The nonlinearity of a Boolean function is defined as its minimum
Hamming distance to the set of affine functions

nl; =mind, (f,9)
where A is the set oh-variable affine Boolean functions. The Hammingtaise

between a Boolean functidand an affine functiog(x) = x-w [ ¢ can be calculated

with the Walsh-Hadamard transform as



(=D°W; (o)

d.(f,g)=2""-
4 (f,0) 5

Therefore, the nonlinearity étan be obtained from the Walsh-Hadamard transform

as
nl, =2"* —% ma>{\/:)/f (a))‘

This measure of nonlinearity is important for linegyptanalysis [Heys2000].

Carlet and Ding [CarDin2004] gives a more genegdinition for nonlinearity and

investigates perfect nonlinear functions.

A very well known theorem says that for any Booléamctionf the sum of squared
values of the Walsh-Hadamard transfani{w) is constant and equal t6'2

ZWfZ (w) =27

WOGF (2)"

Definition 2.7. For a perfectly nonlinear Boolean function, alsallexl bent

[Roth1976], the squared spectrum is flat and
W/ (w) =2", for allw O GF(2)".

Definition 2.8. Xiao and Massey [GouMas1988] provided a spectral
characterization of correlation immune functiongrédwe state that as a definition

of correlation immunity

A Boolean functiorf is t-th order correlation immune if and only if

W, (w) =0, for allo 0 GF(2)"; 1< wi(w) <t
If further f is balancedyV, (0) =0 and therefore

W, (w) =0, for allw 0 GF(2)"; 0< wi(w) <t



Balancedt-th order correlation immune functions are calte@silient functions.
From this point on, we will consider a balanced Baa function as O-resilient (this
convention is accepted in [CamCarCS1991], [SarMe8]9 [PasJoh1999],

[Tara2000]) and an arbitrary Boolean function akfesilient.

The importance of correlation immunity is thatprovides zero mutual information
between any-tuple selected from the input vector and the outifuhe Boolean

function i.e.,
(X, 0%, Y) =0, forl<i; <...<it<n
We define the mutual information between the twad@n variableX andY as:
H(X;Y) =H(X) —H(X]Y)
whereH(X) denotes the entropy andX[Y) denotes the conditional entropy, which
are defined by:

H(X):ZP{X :X}logm

H(X|Y)=> P{X=xY =y}log PIX :ilY:y}

Therefore, having (X;Y) =0 requires:
H(X)=H(X|Y), henceP{X =x} =P{X =x]|Y =y}

Theorem 2.1.Let f be ann-variable Boolean function and) 0 GF(2)". f is t-

resilient if and only ifP{ f (x) = w- X} :% for all wof weight O< wi(a) <t.



Proof.

We start the proof by finding the Hamming distabeéween the functionigx) and

e X, dy(f(x), @e x) in terms of the Walsh-Hadamard transfornfi(xy.

d, (f(X),w-x) = ‘{x| f(x)# w- x,xDGF(Z)”H

W)= Ty

:HX| f(x)= we x,xDGF(Z)n}‘ - ‘{x| f(x)# cwe x,xDGF(Z)nH

=2 — 2.0du(f(X), @+ x)

W; («)
2

Therefore;d,, (f(X),w- x) =2"" -

Since the function§x) and «. « x differ in dy(f(X), «+x) number of places out of
2",

A (F(,we %) _ 1 W, (a)
P{f(X) £ w.x = o =5 o
Hence,

_ _ _1 W(a)
P{f(x)—a-x}—1—P{f(x)¢a,ox}_§+ et

Using the definition of-resiliency in the equation above, we arrive atdbieclusion

thatf is t-resilient if and only ifP{ f (X) = w+ %} :% for all wof weight Gwt(w)<t.m

Theorem 2.2.Let f be am-variable Boolean function andJ GF(2)". If the mutual

information | (f (x); &« X) =0 for all wof weight 0< wt(w) <t, thenf ist-resilient.



Proof.

To check for resiliency by Theorem 2.1, we shourthpute the probability
P{f(X)=a X} =P{f(X)=0, &+ x=0}+P{f(X)=1, a+x=1}

=P{f(x) = 0| w* x=0}P{w+ x =0} + P{ f (x) = 1| w+ x =1} P{w= x =1}

for all wof weightO<wt(w) <t.

In the equation above, we can substitute the fatigs:

1) P{f(X)|ax}=P{f(x)}. Because, by hypothesis the mutual information
I (f(X);weXx) is equal to zero, which in turn requireg f (x)) = H(f(x)| &+ X) for

all wof weight0< wt(w) <t.

2) P{la+ x=0}=P{aw- x =1} :% , since linear functions are balanced foral 0.

3) P{f(x) =0} = p (note thap = % if f(x) is balanced).

Hence, for allkw of weight 0 < wt(a) <t,

P{f(X)=aex} =P{f(X)=0}P{csx=0} +P{f(X)=1}P{c+ x=1}

N

1 1
—_+(01- — =
P +-P)

Note that, forw= 0, P{ f (X) =a+ X} = p, which equals% only if f(x) is balanced,
which proved-resiliency of f (x) by Theorem 2.1. [
Note that a Boolean function satisfying the aborapprty is uncorrelated with the

linear combination of its inputs determined by ¥eetorw. If 0 <wt(w) <t, then the

function is uncorrelated with all linear combinaisoof its inputs up tovariables.



Definition 2.9. Thealgebraic degre®f a functionf, denoted by def)( is defined as
the number of variables in the longest ternf of its algebraic normal form. The
algebraic degree of variable ¥ f, deg(, x), is the number of variables in the
longest term of that contains. If degf, x) = 0, thenf does not depend o If
degf, x) = 1, thenf depends om; linearly. If degf, x) > 2, we say thatdepends on

X; nonlinearly.

Definition 2.10. Theautocorrelation functiorof a Boolean function is given by
r(d) = Txoer(e) (D' (D).

The maximum absolute value that we denoteay= maxyongr(2)' | 1+ (d) | is

also known as the absolute indicator [Zhazhe1995].

Another measure related to the autocorrelation tfancis commonly called the

sum-of-squares indicator [ZhazZhe1995], given bysthmZdDGF(z)” (r¢ (d))z. We

prefer to use the sum-of-squared-err&SH), Zd;éODGF(Z)n (rs (d))z, instead of the

sum-of-squares indicator, sin8&E is proportional to the sum of squared spectrum
deviationgYtice2001] from that of the bent functions, that is

S az00GF@) (1) = 2" Tapigr(p [ W) -2]

If fis affine, this sum of squared autocorrelation rstra.e., the autocorrelation
deviations from the autocorrelation of bent funesipis maximum and equal to
2"-2"_ Hence, dividing the above equality by"-2*, one obtains the useful
measure of mean squared erfl#SE ), which takes rational values in the interval
[0,1]. The mean squared error percentageVi®B of the Boolean functiohshows
the percentage of total squared deviations ofutscorrelation function; (d) and
squared spectrurv? (w) respectively, from the autocorrelation and theasegd

spectrum of bent functions [Ylice2001].

10



Another important properties of Boolean functiom$hat, for any-resilient Boolean
functionf, W (w) = 0 mod 22, for all » O GF(2)" [SarMai2000-1]. We will make

use of this property in Section 2.1.

2.1 The Nonlinearity Bound

In Chapter 3 and Chapter 4 we study methods tageaesilient Boolean functions
of maximum nonlinearity. Sarkar and Maitra [SarM#R-1] prove upper bounds of

nonlinearity forn-variable t-resilient Boolean functions, stated as the folluyvi

1. Ifnis even and >% -2, thennl, <2"* -2,

2. Ifnisevenand <7, -2, thennl, <2™" - 2t _ gt
3. Ifnis odd and2'** > 2"™* —nImax(n), thennl, <2"* -2""*,

4. If nis odd and2"* < 2"* —nlmax(n), thennl, is the highest multiple of

2" which is less than or equal 8™ — nimax(n).
The proof is based on the congrueldyw) = 0 mod 22 for anyt-resilient Boolean
function f [SarMai2000-1]. Havingnl, = 2" - 22t _ g implies that there exist

somew, such that\; (wo) = 2% + 22 On the other hand, sind% (wo) = 0 mod
22 the integer 2 divides 2”2 +2*2 and therefore it also divideg’2, which

obviously requirest < n2_2_ This result shows that for @resilient Boolean

function with t>%—2, it is not possible to have a nonlinearity of

20— 2% _ o1 \We will make use of this result in Theorem 3.Xbfapter 3, to

evaluate the nonlinearity of the constructed Baolkesction.

11



2.1.1 The Nonlinearity Bound Figures
In this section, we draw the figures of the mergmupper bounds of nonlinearity

for some specific values of between 8-16. For>% — 2 we provide sketches of

both nl, S A YL P nl, =2"*-2"*. The curve shows the upper
bound of Sarkar and Maitra [SarMai2000-1], where tlotted part is plotted to

show what would happen if the curve, =2"" - 272 _ 2t \would continue for

t>%—2 instead ofnl, =2"*-2"". Note that, the difference between these
curves is2’2™* for allt.

The figures show the values of the maximum nontitgearovided by Sarkar and

Maitra [SarMai2000-1] for values ¢fless tham — 2. This is because, the value of

maximum nonlinearity2"™" - 2"** for t > % — 2, is not positive fot >n-2.

120 o
110 >

100 \
90 g

80

60

nIf

50 |
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

t

Figure 2-1.Nonlinearity Bounds Fon = 8
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Figure 2-1 shows the upper bound on nonlinearityaio 8-variable function. In
Chapter 3 we provide an example function of ordeesiliency 1 and nonlinearity
116, satisfying the upper bound of Sarkar and MdBarMai2000-1]. In Chapter 4

we give another example function of resiliency 8 aonlinearity 112, satisfying the
upper bound at another point.

The following figures are sketched in order to gavgeneral notion for the upper
bound of nonlinearity for resilient Boolean funct®d The existence of functions
satisfying below figures is known and shown in Bald.1 for @, t) pairs
([Sebzhaz1994], [SarMai2000-1], [SarMai2000-2]){ e will not give examples
of all points of the upper bound in this work.

Table 2-1.Known Functions Satisfying The Upper Bound

(n, 1) 1 2 3 4 5 6 7 8
5 12 8 0
6 24 24 16 0
7 56 56* 48 32 0
8 116 112 112 96 64 0
9 244 240 240* 224 192 128 0
10 492* 480 480 480* 448 384 256 0
Note: Existence of the functions marked with “*’net known yet.

13



nh

nh

500

450

400

350

300

250

200

Figure 2-2.Nonlinearity Bounds Fan = 10

2200

2000

1800

1600

1400

1200

1000

800

Figure 2-3.Nonlinearity Bounds Fon = 12

14



nh

nh

7500

7000

6500

6000

5500

5000

4500

4000

12

Figure 2-4.Nonlinearity Bounds Fon = 14

x 10"

t

Figure 2-5.Nonlinearity Bounds Fon = 16

15



CHAPTER 3

THE CONSTRUCTION METHOD

In this chapter, we investigate the constructiorthmé of Maity and Johansson
[MaiJoh2002]. First we provide a proof for the rinphrity of a 1-resilient function
produced by this method and produce an exampldifumasing this method. Note
that we use an additional criterion, which was mgsn the paper of Maity and
Johansson [MaiJoh2002], in the proof. After that gemeralize the method te

resiliency with Theorem 3.2.

3.1 Construction of 1-Resilient Boolean Functions

Lemma 3.1 for constructing 1-resilient Boolean fimts wheren is even and larger
than 5, can be considered as a preliminary foptbef of Theorem 3.2 given far
resilient functions. The construction method isyv&milar to the one proposed by
Maity and Johansson [MaiJoh2002]. However, insteadcriteria (i) and (ii)

mentioned below, they give the following condition:

> (-1 = +272 for all wsuch that and 8 wi(c) < 1, )

xas

The proof given below shows that (1) is not suéfitifor 1-resiliency, unless (i) and

(ii) of Lemma 3.1 are satisfied.

Lemma 3.1. Let f be ann-variable (0 even andn > 5) bent function, and let
S0{0,1}", such that

I Z(—l)mxm’ = +2%_1, for all wsuch thatM: (a) = + 2% and s wt(w) < 1,

xads

16



i. S (-1)'%® =2 for all @such thaW (¢) = 2’2 and 0< wi(e) < 1,

xOS

i —ZZSZ(—l)fDXE’sQ% +22, for all w such thatW (@) = +2’2 and
xas

2<wi(aw) £ n,

Iv. _(2%+22j52(‘1)fm@$+22, for all w such thatW («) = -2’2 and

xas

2<wt(a) < n,

Then
if xOS

otherwise

is ann-variable 1-resilient function with nonlinearig™ - 2%_1 -22,

Proof.

Define S={0,1}" - S.

Assume) " (-1)"% = #2777 for all wsuch thatM («) = + 2”2 and 0 wi(c) < 1.

xads

Since f'(x)=f(x)O1forx O S,
Z(_l)f'DxE) _ _2%—1.

xaJs

Note that

17



xS XS Xq04}"

2 )T = Y )T =W, (o) 2)
therefore,

(- = 427

xas

Since f'(x)= f(x) forx OS,

> () =42

xas

Therefore, W,.(w)=>"(-1)""“ +>"(-1)""* =0 follows and shows the resiliency

xads xas

of £, provided thatV (@) = +2°2.

Assumingy (-1)' 7 = 272 for all wsuch that («) = -2’2 and 0< Wi(c) < 1,
xads

similarly completes the proof of the 1-resilien@ndition forf’.

Now we have left to prove the nonlinearity. Assum2’ <> (-1)" ™ < #2024 22
xas

for all wsuch thavi (w) = + ik and 2< wt(w) < n.

Again using the definition df we write the following,

~2%2 -2 <3 (1) < 422 (3)

xdS

Using (2) together with the definition Bfwe find,

18



—ZZSZ(—l)f'M”sQ% +22, (4)
xas

Combining (3) and (4) gives us the following linfior the Walsh-Hadamard
transform off’,

—22 -2 W, (W) +272 + 2°

The condition—(zy2 +22)52(—1)mxm’s+22, for all w such thatW (@) = -2’2

x0s
and 2< wt(aw) < n gives the same interval for the Walsh-Hadamandsfam off’

and therefore shows a bound for nonlinearityf'of
nl,. > 2m - 202 o2

Combining this lower bound with the upper bound [$arMai2000-1]

(nl,. 2" - 272 _ 22 for a 1-resilient function), we conclude
nlf.:2”‘l—2%_1—22 forn>6 u
The above equality does not hold foxré, because the% +2% would not be a

multiple of 2° (remember the discussion made in Chapter 2).

The following 1-resilient functionfc;, of nonlinearity 116, was produced using this

method.

fc1={E880D555B33366668FOF5A5A3C3C696980FF55AA33CC6GIIBAAS3
CC36997}

For finding an initial bent function, we make udefbeorem 3.1, which constructs

the bent function by concatenating affine functions

19



Theorem 3.1.Let |; be independent affine functions foxQ < n2_1_ Let fpent be

concatenation of the% affine functions,li's. Then fyen IS an n-variable bent

function.

Proof.

Recall the well-known fact that the Walsh-Hadamtahsform of an% -variable

- - - - - n - -
affine function is an impulse of magnltuma/z. Concatenating thé%-varlable

functions to form am-variable function makes anth element of the truth table of
the constructedh-variable function to be the sum d&th elements of all the
concatenated functions’ spectrums with (+) or (-9lapty. Since all the

concatenated functions are independent affine imgt only — and exactly — one of
those functions have & 2% term in thekth position of its spectrum. Therefore,

every term in the spectrum of the constructed fon¢tyen; IS+ 2%, which means

the functionfyentis bent. m

We construct the initial bent functiorgip, Using this idea as:

fc15={000055AA0FOF5AA5333366993C3C6996555500FF5A5AOFFEEB3CCH9
693CC3}

and select the set S by inspection as:

s = {0,0,0,0,0,000), (000000,0,1), (0,00,01,0),
(0,0,0,0,0,1,0,0), (0,0,0,0,1,0,0,0), (0,0,0,1@®), (0,0,1,0,0,0,0,0),
(0,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,0), (1,1,1,1 1,10}

Note that this function has sum of squares err@2640 and autocorrelation value
of 32.
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Selection of Elements of S

For constructing the set S, we first selected a Set= {(0,0,0,0,0,0,0,1),
(0,0,0,0,0,0,1,0), (0,0,0,0,0,1,0,0), (0,0,0,01,M, (0,0,0,1,0,0,0,0),
(0,0,1,0,0,0,0,0), (0,1,0,0,0,0,0,0), (1,0,0,0@@}, which consists of vectors of
weight 1. Since we are constructing a 1-resiliemtcfion, w with wt(c)) < 1 are
considered for assumptions (i) and (ii) of Theor8drh, this selection of inputs

makes the inner produst w = 1 forx =w andxew = 0 for X #w, and therefore

> (-1 =6 assuming(x) = 0 forx [ S;. This assumption is reasonable also for
xS,

we want to make the resultant function balancedthedstarting bent function has

16 (2%) more zeros than ones and therefore 8 zeros sheuttbmplemented for

balancedness. In order to satisfy the assumptipasd (ii) of Theorem 3.1 and 1-

resiliency, we must hav®(-1)""* =8, hence we need to include another set S
xS

in S such that, S =131 S and > (-2)""* =8 for all w wherewt(e) < 1. We

xS
select $ = {(0,0,0,0,0,0,0,0), (2,1,1,1,1,1,1,1)} and sigtice above condition for
f(0,0,0,0,0,0,0,0) = 0 arf@l,1,1,1,1,1,1,1) = 1.

One thing left for finalizing the set S is to guatee the assumptions made above on
the output of the starting bent function at theuinpalues selected from S. Recall
that we construct the initial bent function by catenation of linear functions.
Hence, satisfying the above assumptions is easyrdinizing the order of linear

functions used in the concatenation.

For large values oh andt, a systematic method for obtaining the set S is no
present, however a search algorithm can be usquitelatss high computational

complexity.
3.2 Construction oft-Resilient Boolean Functions
We now generalize Lemma 3.1 to the constructianresilient functions. Note that,

the construction method is very similar to the preposed by Maity and Johansson
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[MaiJoh2002] except for our additional constraii} &s in Lemma 3.1. Here we

also evaluate the nonlinearity of the resultantfiom, where > “2 - 2.

Theorem 3.2.Letf be ann-variable ( even) bent function, and I8t {0,1}", such
that

> (~1)"2 = 4272, for all wsuch that () = +22 and 0< wi(@) <t,

xS

> (=)= -2’2 for all wsuch thaW () = -2’2 and 0< wi(e) <t,

xas

—2t+1s2(—1)mxm’s+2% +2" for all w such thatw () = +22 and
xas

t+1<wt(a) < n,

—(2% +2“1) < (1) <42 for all w such that (a) = -2 and

xOS

t+1<wi(w) < n,

Then
if xOS

otherwise

is ann-variablet-resilient function with nonlinearit2"™* _0 g if t < V-2

Moreover, ift > % -2 thenf’ has nonlinearity larger tha2{"™ —2%_l -2 e,

2n—1 _ 2%_1 _ 2I+1 < nlf’ < 2n—l _ 2t+1 )
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Proof.

Define S={0,1}" - S.

Assume>(-1)'%® = +272" for all wsuch that (e = +2°2 and 0< wi{@) < t.
xS

Since f'(x)= f(x)01 forx O S,

Z (_1)f'Dxm; _ _2%-1.

xas

Note that

Z(_l)fﬂxm)_l_z(_l)fﬂx@: Z(_l)fﬂxm) —W, (w) )

xS X0S X{0,1}"

therefore,

> (1) =2,

xas

Since f'(x)= f(x) forxOS,

> () =42

xas

Therefore W,.(w)=>"(-1)" " + > (-1)""* =0 follows and shows the resiliency

xS xads

of f, provided thatV (@) = +2°2.

Assuming) (-1)' 7 = —272™ for all wsuch thaWW (c) = -2’2 and 0< wi(c) <t,
xOS

similarly completes the proof of theesiliency condition fof’.
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Now we have left to prove the nonlinearity. Assume

—2 3 (-1 < +272 42" for all wsuch that\i (o) = + 22 andt+1 < wi(e)
xS
<n.

Again using the definition df we write the following,

_2% _2t+1SX.ZS(_1)fIDX@S+2Hl' (6)

Using (5) together with the definition Bfwe find,

_ 2t+1 < Z(_l)f'tlxm; < +2% + 2t+1 ) (7)
x0s

Combining (6) and (7) gives us the following linfior the Walsh-Hadamard

transform off’,

e <W,.(w)< 4202 4 2

The condition—[z% +2“1j <> (1) <+2" for all wsuch thaw («) = %

xas
and t+1 < wt(a) < n gives the same interval for the Walsh transfornf’ odnd

therefore shows a bound for nonlinearityfof
nl, > 2wt - 02t o

Combining this lower bound with the upper bound [BarMai2000-1]

(nl,. <2 - 272 _ 2t for at-resilient function wheré < % -2), we conclude

l, =2 - 2727 -2 fort< ) -2
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Moreover, if t>%—2 then nl.<2" -2"" [SarMai2000-1] andnly =

o0t 9% ot s ot possible because of the discussion mad€hapter 2,
therefore

n-1 _ %—1_ t+1 ’ n-1 _ ot+l n/ _
2"t _9 2" < nlp <2™ -2 ,fort>A 2

Also note that, sinced >%—2, the term 2%_l above is smaller tha™ and
therefore the first meaningful term (remember tha{wo,) = 0 mod 2 for at-

resilient Boolean function) larger tha&i™ - 22 _ gt g gl _ gt Hence,

— n-1 _ »t+l n/ _—
nlg = 2 2 ,fort>A 2 m

Remember the first two assumptions of the constmctmethod. We assume

3 (-1)"%® = 427" for all w such thatW (&) = +22, 0 < wi(@) < t and

xas

> (-1 = —272 for all wsuch thaWi (@) = — 272, 0< Wi(c) < . In their work,

xas

Maity and Johansson make the assumpfof-1)'~* = 272 for all wsuch that
xaJs

0 < wit(w) < t. Here, we will show why this assumption is notfisignt for

constructing resilient Boolean functions.

Let us assumeZ(—l)fM":ﬂ%_1 for some w such thatW («) = ~2” and
xS

0<wi(c) < t. Since f'(x)= f(x)01 forx O S,

Z (_1)f'DxE) _ _2%—1.

xaJs

Making use of (5) and'(x)= f (x) forx OS we arrive
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> (1) = 3 (-1)" = 327" sinceW (@) = -2 for @

xds xos

Therefore,W,.(w) = > (-1) 7 + > (-1)"® = 2”7 0 for somew such that

xads xS

0 <wt(aw) <t andf’ is not resilient.

The above discussion shows that assumEQ—l)mxm’ = 2”7 for all w such that
xads

0 < wt(w) <t alone is not sufficient for resiliency of the comsted function. This

assumption also misses the occasion for constgiegsilient Boolean functions

where we have somesuch that @& wi(a) < t where > (-1)"® = 277 we
xads

have proved in Theorem 3.2 that it is possibleawstruct resilient functions in this

case.
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CHAPTER 4

OTHER CONSTRUCTIONS SATISFYING
THE UPPER BOUND

In this chapter, we study some more methods satgsfthe upper bound for
nonlinearity given in Section 2.1. Eventhough thetimds provided in this chapter
satisfy the nonlinearity bound, they have their kmesses as well. Here we
comment on the weaknesses of these constructiohon®tand investigate the
autocorrelation properties of the constructed fiomst, which has not attracted
enough attention in the literature.

4.1 Construction by Sarkar and Maitra

In this section, we investigate the method of Sad@d Maitra [SarMai2000-1],
which focuses on achieving the best possible todflemong the cryptographic
parameters: number of variables, order of resiiemonlinearity and algebraic
degree. The authors show that functions achieViedgest possible trade-off can be
constructed by the Maiorana-McFarland like techaifsarMai2000-1].

We claim that, the weakness of the Maiorana-McRarlbke technique is that it
assigns the highest priority to resiliency. On tfieer hand, the algebraic degree or
autocorrelation characteristics, for example, mayehgreater importance in the
application. Moreover, some of the functions swingf the previously discussed
nonlinearity bound cannot be constructed with tehnique. For example, an 8-
variable function with order of resiliency 1 andnfinearity 116, to which we gave
an example in the previous chapter, cannot be aaistl by the Maiorana-
McFarland like technique. Furthermore, the intemtio maximize the order of

resiliency distorts the autocorrelation charactessof the function, as we will see.
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4.1.1 Preliminary Concepts

Before giving the description of the constructi@thnique, let us first give the

preliminary concepts for comprehension.
Maiorana-McFarland Like Construction Technique

The Maiorana-McFarland like technique is one of¢bastruction techniques used
to construct resilient Boolean functions and haanheavestigated previously in the
literature ([CamCarCS1991], [Carl1997], [ChelLeelL9dR [SarMai2000-3],
[Sebzhaz1994]). This technique of construction talli uses the following idea.

Let z be a map fror{0}" to {0}, where for any O {01}, wt(z(x)) > t + 1. Letf
be a Boolean function frorf0} ™ to {01}, such thatf (x, y) =y * z(x) O g(X),
wherex 0 {04, y 0 {0g}* andy  z(x) is the inner product of andz(x). Thenf is

t-resilient.

f can be interpreted as a concatenatio"oéffine functiondo, Iy, ... , 121 from the

set of k-variable affine functions, wheréx | (x)isnondegenertd| >t + 1 for

0<i<2" -1. The construction technique of this chapter issam this idea.

Let us define ann( t, d, 2) function as am-variable,t-resilient Boolean function of
degreed with nonlinearityx. Also note that, given amvariable function, there may
be more than one possible values of order of eesilit, such that the upper bound

on the nonlinearity is the same.

Definition 4.1. An (n, t, d, 2) function is said to be saturated maximum degree

functionif:

1. z is the upper bound on nonlinearity farvariable, t-resilient Boolean

functions.

2. tis the maximum possible value for order of resiie for given number of

variablesn, and upper bound on nonlinearity.

3. dsatisfies Siegenthaler’s inequality with equality,d =n—t —1.
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4. The spectrum of the function is three valued.

The definition of a saturated maximum degree fumcis important because, one
can generate a sequence of Boolean functions ubmgechnique described in
Section 4.1.2, each of which is a saturated maxirdegree function. This idea is
based on the fact that if am, ¢, n — t— 1,2) functionf is a saturated function, then so
isan o+ 1,t+1,n—t-1 22 functiong [SarMai2000-1].

4.1.2 The Construction Method

In this section we will construct an (8, 3, 4, 11I@hction using the technique of

Sarkar and Maitra.

For a Boolean functiof let us defineNZ(W, )={w|W, (w)# 0}, whereW is the

Walsh-Hadamard transform bf

Lemma 4.1. Let f;, f, be two (7, 3, -, 48) functions such that
NZ(W, )n NZ{W, )=0. Then the functiod, f =(@0x;)f, Ox,f,, is an (8, 3, -,

112) function [SarMai2000-1].

One can use construction or search techniquesitb(#, 3, -, 48) satisfying the
above criteria. The authors use concatenation aflsnfunctions to get;, f, and

construct an (8, 3, 4, 112) function out of them.

An example function, constructed by this methogiven below. The given function
is an (8, 3, 4, 112) function:

fc={077CE5A2F8831A5DF8831A5D077CE5A26996699669699GBEMI665A
ASAS5A}

4.1.3 Further Discussions

Note that the example function given has sum ofasegi error of 196608 and
autocorrelation value of 128. These values are lage compared to the function

of the previous chapter. This is because, the ocofleesiliency is higher, which
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leads to worse spectral characteristics. In fadtirection constructed using this
Maiorana-McFarland like technique is to be3ar@i + j,i + j,2+i,2%2* - 2&*1)
function, whera andj are larger than or equal to zero [SarMai2000-hbhtTs why
this technique cannot construct an 8-variable fonotith order of resiliency 1 and

nonlinearity 116.

4.2 Construction by Tarannikov

In this section, we investigate the method of Tateov [Tara2000], which is
introduced in On Resilient Boolean Functions with Maximal Possiblonlinearity”. In
his paper Tarannikov proves that the nonlineafitgron-variable > 4) t-resilient Boolean

function does not excee®"™ —2'"*, which is the upper bound mentioned in Section

2.1 for t >% — 2. In Section 2.1 we also provide the bound giverShykar and

Maitra [SarMai2000-1]nl, <2 - 2’2" -2 for smallt, i.e., t<"),-2. The

construction method explained in this section fesusnly on functions with high

order of resiliencyt = 2n-7 . In the rest of this section we study the methbd o

Tarannikov and investigate the strengths and wessaseof this method, in terms of

cryptographically important properties other thamlmearity.

4.2.1 Preliminary Concepts

In equivalent non-probabilistic formulation, a Beah functionf is called
correlation immune of orderif wt(f')=wt(f)/2' for any its subfunctiofi of n —t
variables [Tara2000], which is obtained by substit variables off with some
constants. Therefore, a Boolean functids calledt-resilient if wt(f')=2""" for

any its subfunctioi of n — tvariables.

Definition 4.2. A Boolean functiorf (xs,...,’) depends on a pair of its variablegs (
X;) quasilinearly iff (x1) # f (x2) for any two vector; andx, of lengthn that differ

only in ith andjth components. A pairx( ) in this case is called pair of
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guasilinear variablesn f. Note that, this definition yields toliamear variablein f if

only one variabley, is concerned.

Lemma 4.1.Let f(xy,...,’) be a Boolean function represented in the form

f(%eX)= Y (},00,) (% 00,)f (0,0 Ly 0, DL Xy oo X, ).

Suppose that alR' subfunctions f(a1 O01.,0 0Lx, ,...,xn) are t-resilient.

Then the functiori is alsot-resilient [Tara2000].

Lemma 4.2.Let f(xi,...,%) be a Boolean function. ffdepends on some variabe
linearly, thenf is balanced [Tara2000].

Corollary 4.1. Let f(xy,...,%) be a Boolean function. ffdepends on some variables

X1, ... ,Xs linearly, therf is (s-1)-resilient [Tara2000].

This result is used for constructing resilient Bl functions in Section 4.2.2 “The
Construction Method”. Note that this result alsgéisizes the fact that decreasing
the nonlinearity of a functiohmay increase its degree of resiliency, which megans
once more, resiliency and nonlinearity take coumirts for a cryptographically

strong Boolean function.

Lemma 4.3. Let f(Xq,....%, X)) = O(X1,...,%) O CX«1 wherec O {0,1}. Then
nls = 2 nlg [Tara2000].

4.2.2 The Construction Method

The method of construction, which is explained his tsection, is based on the

following lemma, Lemma 4.4.

Lemma 4.4.Let n be a positive integer. L&i(X,...,%) andfa(xs,...,%) bet-resilient

Boolean functions o®F(2)" such thatnl, >N, , nl;, = N,. Moreover, there exist

two variables; andx; such thaf, depends on the variablgsandx; linearly, andf,
depends on a pair the variablgs X;) quasilinearly. Then the function
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f()(1""!)(n’)(n+1) = (Xn+1 D 1)f1(X1""’Xn)|:| Xn+1 f2()(1""1)(n)

n+1

is at-resilient Boolean function o8F(2)™* with nonlinearitynl, >2"* + N, and

the function

f(xl,...,xn,xnﬂ,xmz) = (xn+1 O X,,, U 1)fl(xl,...,xn)D (xn+l O xn+2)f2(x1,...,xn)D X1

n+2

is a ¢+1)-resilient Boolean function 08F(2)""“ with nonlinearitynl, = 2" + 2N,

and depends on a pair of the variables (x..2) quasilinearly.

The following function is derived using the methafdTarannikov [Tara2000]. The
derivation starts from a 2-variable function an@dctees to the final 8-variable
Boolean function iteratively. The algebraic norrfam of this example function is

given by

f= (x8 N 1)(x1x2x7 O X X5 X, O X X, X, O XX, O XX, O X, X, U X, O X5 O X O x6)
O Xg (X X, X5 0 X X, X O X XgXs T X Xg X LI X X, Xs [ X X, X O X, X, O XX O XX
O X, X O X, X O X%, O % O % O %)

The above functioffiis a 3-resilient Boolean function with nonlinegrit12, which

satisfies the upper bound for nonlinearity giversection 2.1.

4.2 .3 Further Discussions

The construction technique, described above, pexivesilient Boolean functions
with maximum possible nonlinearity for the givender of resiliency where

2n—-7

t> . Moreover, the computational complexity of thecaithm being used is

linear onn, which is superior to the other algorithms beingsidered. However this
technique guarantees that the constructed funaligmends on some variables
linearly, which means that those variables deceedlse overall nonlinearity in
addition to weakening the function by directly oducing linear variables to the

function.
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Considering the result give in Lemma 4.3 one cam that addition of a linear
variable to a function doubles the functions nagdirity. However, this is a little
increase in nonlinearity remembering the fact thatupper bound on nonlinearity
increases exponentially with the number of variab{@onsidering the condition=

0 makes it easier to realize this result.

In Section 2.1, we have provided an upper boundnonlinearity of resilient

Boolean functions, which lies on two different knfer t > n2 -2 andt<s "V, -2.

2
The nonlinearity bound given by Tarannikov [Tara2P® proved to be valid for
2n—7 2n—-7

t> . Note that,% -2< for n > 2, which means that the nonlinearity

bound provided by Tarannikov is already includedthe upper bound given in
Section 2.1.
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CHAPTER 5

ADDITIONAL RESULTS

In this chapter we give and study the results tat provide in this work.

Specifically, we investigate the auto-correlatiomakacteristics of the functions
constructed in Chapters 3 and 4, which is not ctamed in any of the works trying
to satisfy the upper bound on nonlinearity. Thoseka mentioned in Chapters 3
and 4 mainly consider a trade-off between nonlitgand degree of resiliency.
They focus on constructing Boolean functions of mmasn nonlinearity for a given

degree of resiliency or vice versa. Despite thet fdhat, the auto-correlation
properties of Boolean functions are cryptographycainportant, they are not

investigated in literature.

Recall from Definition 2.10 that, the auto-corrgatfunction of a Boolean function
gives the relation between the input difference #reoutput. In other words, the
auto-correlation function gives the difference leswthe number of outputs that are
same for a specific input difference vectdy,and the number of outputs that are
different for that input difference vector, in thaction’s truth table. Therefore, the
weakness in the auto-correlation properties ofration can be used for differential
cryptanalysis of the function [Heys2000]. Sincesitcryptographically important,
here we study the auto-correlation properties efftimctions introduced in Chapters
3 and 4.

Theorem 5.1.Letri(d) = ZyriGr(2) (-1) "® (-1) "*0 D he the auto-correlation

function off. Thenr, (d)=W, " (d).

Proof.
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We start the proof from the definition of auto-adation function. Then we take the

Walsh-Hadamard transform of the auto-correlatiorcfion.

R(w) :er () (w) = Z r (d)(— l)w-d
R(C()) = z z (_ 1)f(X) (_ 1)f(de) (_ 1)(4)-d

R(w) = Z (_ 1)f(X)Zd: (_ 1)f(de)(_ 1)a,d

X

Leta 0 GF(2)" and substituta = x O d.
R@ =Y (-1)""(-1)" ¥ (-1 (-2

Hence, we reach the important result

W, (¢) (@) = R(w) =W, *(@)

where,r, (d) =W, ™ (d) follows. n

f

Definition 5.1. Let f be ann-variable Boolean function. We define teequence

vectoror thepolar formof the functiorf as follows:
fs - {(_1) f(0) , (_1) (1) ,".’(_1) f(z”_l)}
Definition 5.2. We define the 2x 2" Hadamardmatrix as,

H n-1yon-1 H n-1yon-1
H, =[1] andenxzn:{Hz g }

2n—1X2n—l 2n—1x2n—1
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Hadamard matrix is important for us because itreffeasy computation of the

Walsh-Hadamard transform of a Boolean function.

Theorem 5.2. One can form the "2 dimensional spectral vector of
W, =W, QW (1)....W, (2" -1}, which is the output vector of the Walsh -

Hadamard transform of the Boolean functiphy multiplying the sequence vecfeor

by the 2 x 2" Hadamard matrix.

W, = f.xH

S 2"x2"
Proof.

The proof is based on the properties of Hadamarttixmand is given by Piotr
Porwik [Porw2003]. [

Gupta and Sarkar have introduced an alternativegpatation method for computing
Walsh-Hadamard values of a Boolean function from atgebraic normal form
[GupSar2003]. Although their method is good forcoddting the Walsh-Hadamard
transform at a specific point, the algorithm doesfmd all values of the spectrum,
which is necessary for finding the nonlinearitytloé function. Moreover, we do not
investigate functions of a large number of variablend only the function
constructed by Tarannikov is in its algebraic ndrfoem. Therefore we do not use

their method.

5.1 The Absolute Indicator and Sum-of-Squared-Erros

In Definition 2.10 we give the definition for theuta-correlation function of a

Boolean functionr:(d), and define the absolute indicator aas= maxyonGF(2)'|

rs (d) |. The absolute indicator is a measure of strerugtthe function against
differential attacks, where the attack uses thé lagto-correlation value at a single
point. Therefore, we need a low valued absolutecatdr for functions to resist this

kind of attacks.
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For finding the absolute indicator, we make us@tuéorem 5.1 and Theorem 5.2.
We use Theorem 5.2 to find the spectrum of the &wolfunction, whereas,
Theorem 5.1 is used as an easy computation methcaldulate its auto-correlation

function.

The absolute indicator is not the only measuretedlao the auto-correlation
function. As the high auto-correlation at one paiatise cryptographic weakness,
the distribution of high auto-correlation to moham one point is also a weakness.
The sum-of-squares indicator suggested by Zhaaj[#haZhel995], is a measure
of strength against attacks, using the distributegh auto-correlation. Note that
r (0) for anyn-variable Boolean functiohis constant and equal t8. Zherefore the
rs %(0) term in the sum-of-squares indicator does rotycinformation about the

function. Moreover, the sum-of squared-err@SE) defined as,

SSE=Xq+00 GF(2)" (11 (d))2

is proportional to the sum of squared deviatiomsnfrthat of the bent functions
[Ylce2001].

5.1.1 The Al and SSE of the Function ConstructediChapter 3
Recall from Section 3.1 that the truth table of tbastructed function was:

fc1={E880D555B33366668FOF5A5A3C3C696980FF55AA33CC6GIMHAAS3
CC36997}.

We use Theorem 5.2 and calculate the Walsh-Hadatremdform of the function
fc1 as:
= fClS X

fea 28x28

W. =

fe

{0008088808888881608888882-24-24-16-24-16-16-1608
8 8-24-24 -24 -16 8 8 8 16 -24 -16 -16 -16 885824 -16 -16 -16 -24 -16 -16 -16
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1616162408 -24 -2488-24-16 8 8 -24 -16816 -16 8 8 -24 -16 8 16 -16 -16
-24 -16 16 16 -16 -16 16 24 8 8 -24 -16 -24 -16.6@ 16 -16 -16 -16 -16 16 24 8
16 -16 -16 -16 -16 16 24 -16 -16 16 24 16 24 -8 -84 8 -24 8 -24 8 -16 -24 8 -24
16 -24 16 -16 16 8 -24 8 -16 8 -16 16 -16 8 -1616516 -16 16 -8 8 -24 8 -16 -24
16 -16 16 -24 16 -16 16 16 -16 16 -8 8 -16 16 1616 -16 24 16 -16 16 -8 -16 24
-8 24 8 -24 -24 16 8 -16 -16 16 -24 16 16 -16 -66l6 -8 8 -16 -16 16 16 -16 -16
2416 -16 -16 24 16 -8 -8 24 8 -16 -16 16 -16 1681616 16 16 -8 16 -8 -8 24 16
-16 -16 24 -16 24 24 -8 16 -8 -8 24 -8 24 24 0}

One can see thatmaﬁwfm(a))‘ = 24 and therefore the nonlinearity,

nl, =2°" —;maﬁV\gm (a))‘ =116.

250 300

Figure 5-1. The Walsh-Hadamard Transformfef

38



Note that,W,_(0)=W, (2")=0 for 0< n < 7, which implies that the function is 1-
resilient. Also note thatW/; («) is nonzero for all other values of, so that the

overall spectrum of the function has a small maxmmabsolute value in order to
satisfy high nonlinearity.

Now we calculate the autocorrelation functign (d) using Theorem 5.1:

r (d)=w,,

Wie, (w)

()

I =

fCl

{256 -16 -16 0 -16 0 -16 -8 -16 -16 -16 -24 -16 -848 -16 16 0-8 0 -8 -8 -8 16 -8
8-88-8-88-160-16-83288-8-16-24-88880-8-8-888-8248-8-88
8-88-8-160328-16-88-8-16-2488-880-888-8-8-8248-88-8-88
8-8-16-88-88-8-88-8-8888888-88824-8248-24-888-88-8-2416
-1616-16 8-168-8-8-1624-88-88-88-8624-8-24-8-88242488888
8-168-8-88888-88-888-8-88-24-88-88-88888-8-880-16888
-8-888-888-8-88-88-24-88-8-888-8-8-88880-8-888888-24
-88-88-888-16-888-88-881688 8036 -16}

Let us sketch the auto correlation function as:
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0 50 100 150 200 250 300

Figure 5-2. The auto-correlation function &f;

The vector form and the sketch of the auto-cor@afunction show us that the

absolute indicator is:

ac;,  =32.

We calculate the sum-of-squared errors using ifigitien and the auto-correlation

vector to get the result:

SSE_ =32640

5.1.2The Al and SSE of the Function by Sarkar an#ilaitra

Recall from Section 4.1 that the truth table of tbastructed function was:
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fc={077CE5A2F8831A5DF8831A5D077CE5A26996699669699@IROI665A
ASAS5A}.

We use Theorem 5.2 and calculate the Walsh-Hadatremdform of the function

fco as:

= oo, XH g0

fCZ

V) =

fCZ

{00000000000000032000000®W3P032032000000000000
00000320000000-32000320-32MXM®VOOO0O0O00O0O000032000
000032000-320-3200000320-32032@032-32-323203200 32
3232-3232-3232-323232-32-32000000000000000-320000000
-32000-320-3200000000000000mW-82000000032000-320
3200000000000000000-320000000320003203200000320
-32000320032-32-32-3203200 32 32333-32 32 32 32 -32 -32 -32}

One can see thatmaMfcz(w)‘ = 32 and therefore the nonlinearity,

nl

fCZ

=281 _ ; ma)#\Nsz (a))‘ =112.
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w
Figure 5-3. The Walsh-Hadamard Transformfes
One can see thatmaMfcz(w)‘ = 32 and therefore the nonlinearity,

nl, :28-1_;maMfcz (a))\ = 112. Remember that 112 is the best achievable

nonlinearity for an 8-variable, 3-resilient Boole@mction, and\ (w) = 0 mod 22
for anyt-resilient Boolean function [SarMai2000-1]. Themefo32 is the minimum
and maximum possible absolute value of the specttanmachieve both 112

nonlinearity and 3-resiliency. Note the; (w) is a three-valued function, where

the absolute value of all nonzero elements is 3#chvinherently implies a good
spectral distribution. Also note that, since thecdpum is three valued, the number

of nonzero terms is constant, remembering
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ZWfZ () =27

WOGF (2)"

from Chapter 2.

Now we calculate the autocorrelation functiqn (d) using Theorem 5.1:
I, (d) =VVszc2 (w)_l (d)

rfcz:

{256 -128 -3232-963200-963200003293232000032-3200 32 -32
96 -32-128 128 -128 0-3232323200 32 32 0®BA -323232000032-320
032-32-32-3200-1280-32323232003D30032-3232320000 32
-320032-32-32-3200128 032 -32 -32 -32-8D-320000-3232-32-3200
00-323200-323232320000000000000W000000000000000
00000000000000000000000MMXO0O0O0OOO0O0O0O0OO0O0OO0OO0O

00000000000000000000O0OO00OMMMXOOOOOOOOOOOOOOOO0O
0000000O0O0OOG}
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Figure 5-4.The auto-correlation function &

There are two basic differences between the autelation functions of the two
functions, fc1 and fco. The auto-correlation function dgi has small values for
nonzero terms and distributed over the erttiexis, which shows a slight shift from
the bent function. Howevef;, has all its nonzero places in the first 126 teofrthe
vector form of the auto-correlation function andhahigher values. Furthermore, we

calculate the SSE for this function as:

SSE_ = 196608

which is a worse value comparedf¢ggand further from a bent function.

The vector form and the sketch of the auto-coin@atunction show us that the

absolute indicator is:
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ac, = 128.

5.1.3The Al and SSE of the Function by Tarannikov

In Section 4.2.2, we give the functién as:

fcs(xl,xz,xs,...,xg): (x8 O 1)(x1x2x7 O X X3 X%, O X X, X, O XX, O X%, O X, %, O X,
O X O X5 O Xg) O Xg (X X, X5 1 X XX O X XgXg O X X5 X O X X, X5 [ X X, Xg O X, X,
O X3Xs O X% O X, % O X, % O X, O %, O %, O ;)

From here we generate the truth table of the fong¢tin order to use in the

computation of its cryptographic values.

fca={1BE43C96C369E41BE41BC3693C961BE41BE4E41BE41B1BIY3C963
C96C369}.

We use Theorem 5.2 and calculate the Walsh-Hadatremdform of the function

fcg as.

W :fcngH

fes 28x28

f(23

{00000000000000000OOC0OOOOOM®MOOOOOOOOOOOOOOOOOO
000000000-32320032-323232-32-82000000000000000000
000-32320032-323232-32-320000@6320032-3232323232000
00032-320032-323232323200000mWMWMDO0O0O0O0O0000000000
00000000000000000000000 Mm®DEB2 -3200-3232-32-323232
0000000000000000000000-3D8B2-323232-32-32000000
32-320032-3232323232000000-32 8282 32 -32 -32 -32 -32}

One can see thatmaMf01(w)‘ = 32 and therefore the nonlinearity,

nl, =2%* —;maﬁwfc1 (a))‘ =112.

fCl
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Figure 5-5. The Walsh-Hadamard Transformfef

As in the case ofcy, the functionfcs is also an 8-variable, 3-resilient Boolean
function with nonlinearity 112 and its Walsh-Hadacth&ransform is a three-valued
function, where the absolute value of all nonzdemnents is 32. The difference of
the two spectra is that, the spectrum fef is more spread than that &fs.
Eventhough this difference in the spectrum, thelinearity, absolute indicator and
sum-of-squared-errors — as we will see in Secti@n-bvalues of both functions are

the same.

Now we calculate the autocorrelation functign (d) using Theorem 5.1:

46



{256 0-1280-128000-128000001280-02810640006400000-640
-1280640640006400000-64000000000000000-128064 064
0006400000-6400000000000000WO0O00O00O00000000000000
1280-640-64000-640000064000000000000000000000000
00000000000000000000000MMXO0O0O0O0O0O0O0O0O0O0O0O0OO0OO0O
00000000000000000000000MMXOO0O0OOOOO0O0OO0O0OOOO0O
00000000000000}

300
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-150
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Figure 5-6.The auto-correlation function &fs
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As can be seen in Figure 5-6, the auto-correlatibaracteristics ofcs is very

similar to that ofc, and the SSE is the same for both functions.

SSE_, = 196608

The vector form and the sketch of the auto-con@afunction show us that the
absolute indicator is:

ac, = 128.

5.2 Comparison of the Constructed Functions

In this section, we make a comparison of the fumsiconstructed in the previous
chapters of this work, together with some othecfioms provided by some previous
works [KavYuc2003]. Table 5-1 gives the compariswinfunctions in terms of
nonlinearity, order of resiliency, absolute indaraand sum-of-squared-errors.

Table 5-1.Comparison of 8-Variable Functions

Order of > r(d) 2oail g0 (@)
I (e all'd#0 1671168
Function f nl; | esiliency, g
(acr)
t (SSEf) | (100MSEf)
Affine 0 -lor0 256 16711680 100 %
Function
constructed in | 116 1 32 32640 0.1953125%
Chapter 3
Function by Sarkar
and Maitra 112 3 128 196608 1.176471 %
[SarMai2000-1]
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Table 5-1Comparison of 8-Variable Functions (Continued)

Order of Ir (@ > rid) Zall azo" 1 (@)
f g all d#0
Function f nl; | Resiliency, 40 leriie
(ac )
t (SSEf) | (100MSEy)
Function by
Tarannikov 112 3 128 196608 1.176471 %
[Tara2000]
Stanica, Sung (see
112 256 196608 1.176471 %
[KavY1ic2003])
Cauteaut et al (see
112 256 172032 1.029412 %
[KavYiic2003])
Maitra (see
116 128 55296 0.330882 %
[KavYiic2003])
Kavut, Yucel
114 0 16 23424 0.140165 %
[KavYiic2003]
Kavut, Yucel
116 0 24 21120 0.126378 %
[KavYic2003]
Bent 120 -1 0 0 0%
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CHAPTER 6

CONCLUSIONS

In this thesis work, we have studied the upper doom nonlinearity of a resilient
Boolean function, provided by Sarkar and MaitrarpM&2000-1]. In Section 2.1,

we investigated the given upper bound, given toihe< 2" - 2'** for t>% -2

andnl, <2"* - 2P _ ot fort < % -2, and based on the fact that for any given

t-resilient Boolean functiori, Wi (w) = 0 mod 2 for all @ O GF(2)". We then
commented on the meaning of this upper bound mgef cryptographic properties

and sketch it for different number of variables dasy interpretation.

In Chapter 3 we worked on a construction methodg¢hvivas previously introduced
by Maity and Johansson [MaiJoh2002]. We pointedtbat, in their work Maity
and Johansson omitted a criterion on the set, & tise in the construction.
Moreover, we give a complete description of thestarttion method — together
with the criterion missed by Maity and Johanssomnd prove that aniresilient

Boolean function constructed by this technique s§as the upper bound on

nonlinearity, studied in Section 2.1. We also ptbubat, ift > % - 2, the

construction technique yields a nonlinearityndf, where 2"* _t g ¢ nle
<2t -2" We show that without the introduction of the fiucriterion, one

cannot guarantee the resiliency of the function

The construction method of Chapter 3 is a methdudghvstarts with a bent function
and modifies it at a set of pre-selected point® Jtnength of this method is that, the
selection of the set, S, depends on the requirder @f resiliency and therefore any

order of resiliency can be obtained using this mettfOn the other hand, obtaining
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the set, S, has no obvious algorithm and is a magakness of this method (see
Appendix A).

We have also studied two more construction techescachieving the nonlinearity
bound of Sarkar and Maitra, in Chapter 4. One e$¢hmethods was by Sarkar and
Maitra, and uses a Maiorana-McFarland like techaigo construct a Boolean
function having the maximum order of resiliency fmven number of variables. We
have pointed that the intention to maximize ordérrasiliency distorts other
cryptographic parameters — like the autocorrelatioaracteristics — of the function,
as we have investigated in Chapter 5. Also it ipassible to construct functions
having small order of resiliency — like the one stoacted in Chapter 3 — using this

method.

The other construction method studied in Chapters 4oy Tarannikov and
emphasizes the computational complexity. The auskemts with functions of less
number of variables and adds new variables lindarlhe initial function to have
resilient functions of large number of variableshisT method again produces

n—-7

functions with high order of resiliency, namely @ilons for whicht > . The

most important property of this construction tecju@ is its advantageous
computational complexity, although it cannot proglfienctions with small order of

resiliency.

In the final chapter of the thesis, we investigathd functions that have been
constructed using the methods introduced in Chat@nd 4, in terms of their auto-
correlation characteristics, pointing the fact tladthough auto-correlation is an
important parameter against differential attackbas not attracted attention in the
literature for resilient functions. We have compltthe spectrum, and auto-
correlation function of each constructed functiond acalculated the absolute
indicator and sum-of-squared-errors for each afthe
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APPENDIX A
SEARCH FOR THE SET S

Although we have selected elements of the set&] usChapter 3, by inspection,
there is not a certain way to select elements dhgrefore, we have tried searching

for a suitable set S satisfying the criteria listedChapter 3.

Note that since the initial function is bent, thexa difference 012% between the

number of ones and zeros and therefore the seto@dsiat least containZ%_1
elements to satisfy balancedness. Additional elésnehould have outputs with

same number of ones and zeros, which implies theSskas even number of
elements. Moreover, using the set S or its compiérBegives the same function
except an inversion. Therefore, choosing $as the same in terms of nonlinearity,
resiliency and auto-correlation, which sets an upipet to the number of elements

of Sto be2"™.
A.1  Search Starting with an Initial Set

In this algorithm we first select an initial seté&hd then search for a second sahS
order to form S = S0 S,. We first select Sto be {1, 2, 4, 8, 16, 32, 64, 128},
where the numbers represent the decimal equivafethte input vectors. Note that

this is the same set selected in Chapter 3.

Now we run an algorithm shown in Figure A-1 to foam S such that S =851 S,
satisfies our criteria. Our approach is to useiagfanputs, with one element being
the complement of the other. Since the numbereyhehts to be searched is small

(128 forn = 8) this is a deterministic search.

In order to organize the search in a systematicn@ann other words, to finish the
search after the first 128 tries, we take the iryaators to the algorithm in the order
of gray code, excluding the vectors {(0,0,0,0,0,00 (0,0,0,0,0,0,1,0),
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(0,0,0,0,0,1,0,0), (0,0,0,0,1,0,0,0), (0,0,0,1m@), (0,0,1,0,0,0,0,0),
0,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,0)} since they already included in;S

Initialize §
Initialize trial vector
(TV)

v
Complement TV
Set$={TV, TV}

Save |
Increment TV in gray

Set$={TV, TV}

Increment TV in gray
SetS={TV, TV}

fora O {a|Wi(a) < 1}
Z(_l)mxm; _ 2%—1

x0S=S,0S,

YE NO

Stop if end of
trial

Figure A-1. Search Algorithm Starting with an Initial Set

This search finds only,S {0, 255}, which is the one used in Chapter 3efkhis no

other S to be constructed with this search.

Instead of $above, if another set; S= {127, 191, 223, 239, 247, 251, 253, 254}
(the complemented versions of vectors gfiS selected initially, the search does not

give any result satisfying our criteria.
A.2 Random Search

Another algorithm used to find a suitable S searslomized search for all elements
of the set. Here we have used two basic approaches:
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1. Set number of variables of S and randomly selechents.

2. Start with a random set of sizfé%_l, randomly select new elements,

incrementing the number of elements after a certamber of trials.

By randomized search we have tried over 820 mikiets for number of elements 8,
10, 12 and up to 32 elements with the incrememi@ich and not been successful in

finding any other S set.

v

Randomize S

Save

for o U{a |wi(a) < 1}
z(_l)mxm; _ 2%—1

xads

NO

YE

Stop if end of
trial

Figure A-2. Random Search

Figure A-2 and Figure A-3 show the two algorithrhattapply randomized search.
Modifying the number of variables of S enlarges $earch space, but also slows

down the computation.
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v

Randomize S

for o O{a |wit(a) < 1}

—q)f0x@ — 2%—1
YES %( ) NO
Save
End of trial for that Increment #
number of elements of elements

Stop if end of
trial

Figure A-3. Random Search with Variable Number of Elements

A.3  Further Discussions

The two basic search methods we have investigdiedone with an initial set and

randomized search, does not give many sets thatystite required criteria.

The only set obtained is the one obtained by tlaeckestarting with an initial set
and is same as the one used in Chapter 3. Alththighmethod decreases the
number of elements to be searched by selecting steneents initially, still there is

no obvious way to form the initial set. Howeverrnmiing S from the vector of
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weight one, for example, as done in this work mayalwise guess. The advantage
here is the possibility to perform a determinig@&arch since the search space is
small.

The random search on the other hand is performedvery large search space. For
example, there are 2.79 x1(@ossible sets fon = 8 and |S| = 10. Moreover, the
number of elements of S may have many other vahtker than 10 fon = 8 and

this number increases exponentially with increasing

We have tried 820 million different sets with numloé variables 8, 10 and 12,
which takes days to complete such a search on guem with 2800 GHz
processor. Note that this number of trials, eveaudjh it is large and requires a very

long time, is very small compared to the numbeguasfsible sets.
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