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ABSTRACT 

CONSTRUCTIONS OF RESILIENT BOOLEAN FUNCTIONS  

WITH MAXIMUM NONLINEARITY 

 

�
AH �N, M. Özgür 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek D. YÜCEL 

 

August 2005, 59 pages 

In this thesis, we work on the upper bound for nonlinearity of t-resilient Boolean 

functions given by Sarkar and Maitra, which is based on divisibility properties of 

spectral weights of resilient functions and study construction methods that achieve 

the upper bound. 

One of the construction methods, introduced by Maity and Johansson, starts with a 

bent function and complements some values of its truth table corresponding to a 

previously chosen set of inputs, S, which satisfies three criteria. In this thesis, we 

show that a fourth criterion is needed for t-resiliency of the resulting function, and 

prove that three criteria of Maity and Johansson do not guarantee resiliency. 

We also work on other constructions, one by Sarkar and Maitra, which uses a 

Maiorana-McFarland like technique to satisfy the upper bound and the other by 

Tarannikov, which satisfies the nonlinearity bound using a technique with low 

computational complexity. However, these methods have tendency to maximize the 

order of resiliency for a given number of variables, therefore one cannot construct 



 v 

functions for all possible resiliency values given the number of variables, using this 

method. 

We further go into details and compute the auto-correlation functions of the 

constructed Boolean functions to find the absolute indicator and sum-of-squared-

errors for each of them. We also provide a comparison of Boolean functions 

constructed by other techniques given in the literature, together with the ones 

studied in this thesis.  

Keywords. Boolean function, nonlinearity, resiliency, correlation immunity, auto-

correalation. 
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ÖZ 

EN DO�RUSAL OLMAYAN ESNEK BOOLE ��LEVLER �N�N YAPIMI 

 

�AH �N, M. Özgür 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Doç. Dr. Melek D. YÜCEL 

 

A�ustos 2005, 59 sayfa 

Bu tezde, Sarkar ve Maitra tarafından verilen ve esnek i�levlerin açılım de�erlerinin 

bölünebilirlik özelliklerine dayanan, t-esnek Boole i�levlerinin do�rusal olmama üst 

sınırını ve bu üst sınıra ula�an yapım yöntemlerini inceledik.  

Anlatılan yapım yöntemlerinden biri, daha önce Maity ve Johansson tarafından 

önerilen bir yöntemdir. Yöntemlerinde, bükük bir i�levle ba�layıp bu i�levin 

önceden belirlenmi� ve üç kısıtı sa�layan bir girdi kümesi, S’de bulunan girdilere 

kar�ılık gelen çıktıları evirmektedirler. Bu tezde, Maity ve Johansson’un kısıtlarının 

esnekli�i kesinle�tirmedi�ini ve dördüncü bir kısıtın gerekli oldu�unu kanıtlıyoruz.  

Ayrıca, do�rusal olmama üst sınırını sa�layan Sarkar ve Maitra’nın Maiorana-

McFarland benzeri yöntemiyle Tarannikov’un hesap karma�ıklı�ı dü�ük yöntemi 

olmak üzere di�er yöntemleri inceliyoruz. Bu teknikler belirli bir de�i�ken sayısı 

için esnekli�i maksimuma çıkarma e�ilimlerinden dolayı do�rusal olmama üst 

sınırının tüm noktaları için kullanılamamaktadır. 
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Ayrıca, yapılan Boole i�levlerinin kendi kendine ba�lantı i�levlerini bulup mutlak 

gösterge ve kare-hatalar-toplamı de�erlerini hesaplıyoruz. Bu tezde yapılan ve di�er 

yöntemlerle yapılmı� Boole i�levlerinin bir kar�ıla�tırmasını da yapıyoruz. 

Anahtar Kelimeler.  Boole i�levleri, do�rusal olmama, esneklik, ba�lantı 

ba�ı�ıklı�ı, kendi kendine ba�lantı. 
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CHAPTER 1 

 INTRODUCTION 

 

Boolean functions are important tools in cryptosystems, especially used for stream 

ciphers as combining functions in the construction of key stream generators based 

on Linear Feedback Shift Registers (LFSRs). Since security of a cryptosystem 

depends on its ability to guard against known attacks, Boolean functions – as a part 

of the system – should possess certain properties, such as high nonlinearity, high 

order of resiliency, high algebraic degree and low auto-correlation properties. As the 

complexity of the cryptosystem is proportional to the number of input variables to 

the Boolean function there should be an optimization between the number of input 

variables and maximization of the above parameters. Siegenthaler has shown that for 

an n-variable, unbalanced function of correlation immunity t and algebraic degree d, 

t + d � n holds [Sieg1984]. If the function is balanced, then t + d � n–1. 

Sarkar and Maitra [SarMai2000-1] have found an upper bound for the nonlinearity 

of t-resilient Boolean functions and inspired a number of researchers ([SarMai2000-

1], [SarMai2000-2], [FedTar2001], [JohPas2003], [Tara2001], [PasJohMS2001], 

[Mait2000]) for discovering functions satisfying that upper bound, which is 

11 22 +− −≤ tn
fnl  for 22 −> nt  and 1121 222 +−− −−≤ tnn

fnl  for 22 −≤ nt . They 

have based their results to the fact that, for a t-resilient Boolean function f, Wf (�) � 

0 mod 2t+2 for all � ∈ GF(2)n, where Wf (�) is the Walsh-Hadamard transform of f 

[SarMai2000-1]. This result certainly limits the possible values of the Walsh-

Hadamard transform and therefore sets a limit to the nonlinearity of the function as 

described in Section 2.1.  

In this thesis, we work on the nonlinearity bound given by Sarkar and Maitra 

[SarMai2000-1], and study construction methods that satisfy the upper bound on 
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nonlinearity. Chapter 2 is devoted to introduce the notation and the preliminary 

concepts for comprehending the rest of the document and also includes the 

discussion on the nonlinearity bound of Sarkar and Maitra.  

The construction method described in Chapter 3 is a previously introduced method 

by Maity and Johansson [MaiJoh2002] to construct t-resilient Boolean functions of 

nonlinearity 1121
' 222 +−− −−= tnn

fnl , for t � 2
n  - 2. In their method, Maity and 

Johansson start with a bent function and complement some values of its truth table 

corresponding to a previously chosen set of input vectors, S, which satisfies three 

criteria [MaiJoh2002]. In Theorem 3.2, we show that a fourth criterion is needed to 

prove that the resulting function is t-resilient and its nonlinearity satisfies 

1121
' 222 +−− −−≥ tnn

fnl . Combining this inequality with the upper bound of Sarkar 

and Maitra [SarMai2000-1], the construction yields a nonlinearity of 

1121
' 222 +−− −−= tnn

fnl , for t � 2
n  - 2. We also show that, if t > 2

n  - 2, the same 

construction yields a nonlinearity of nlf’, where 1121 222 +−− −− tnn  < nlf’ � 11 22 +− − tn . 

Without the introduction of the fourth criterion, one cannot guarantee the resiliency 

of the function f.  

In Chapter 4, we study other construction methods, one by Sarkar and Maitra 

[SarMai2000-1], which uses a Maiorana-McFarland like technique to satisfy the 

upper bound and the other by Tarannikov [Tara2000], which satisfies the 

nonlinearity bound with a technique having low computational complexity. The 

construction method given by Sarkar and Maitra uses concatenation of functions 

with less number of variables and produces functions with high order of resiliency 

[SarMai2000-1]. A very important property of this construction technique is its 

being the first method to satisfy certain points of the nonlinearity bound, for 

example the function with nonlinearity 112, order of resiliency 3 and number of 

variables 8, given in Section 4.1. However, this method has tendency to maximize 

the order of resiliency for a given number of variables, therefore one cannot 

construct functions for all points of the upper bound for nonlinearity using this 

method, for example like the one we have constructed in Chapter 3, with 
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nonlinearity 116, order of resiliency 1 and number of variables 8. This is because 

functions constructed by the method of Sarkar and Maitra must have the properties 

(n, t, d, z) obeying the rule ( jijiijiji ++++ −++++ 122 22 ,2 , ,23 ) where i and j are 

natural numbers [SarMai2000-1].  

The construction method given by Tarannikov – just like the one by Sarkar and 

Maitra – focuses only on functions with high order of resiliency, i.e. 
3

72 −≥ n
t  

[Tara2000]. Therefore, the same weakness of inability to construct Boolean 

functions of low order of resiliency is present for the method of Tarannikov. This is 

a major weakness because the construction of functions having small order of 

resiliency to achieve higher algebraic degree and better auto-correlation 

characteristics is usually desirable. On the other hand, the construction technique 

given by Tarannikov has a computational complexity linear on the number of 

variables, n, which is very preferable compared to the other methods having 

computational complexity 2n [Tara2000].  

In Chapter 5, we go more into details of the functions constructed in Chapters 3 and 

4. We compute the auto-correlation functions of the constructed Boolean functions 

and find the absolute indicator and sum-of-squared-errors for each of them. We also 

provide a comparison of Boolean functions constructed by other techniques together 

with the ones studied in Chapters 3 and 4 in terms of nonlinearity, order of 

resiliency, the absolute indicator and sum-of-squared-errors.  
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CHAPTER 2 

 PRELIMINARIES 

 

Let n be any positive integer. An n-variable Boolean function f: GF(2)n � GF(2) 

maps each possible combination of n-bit variables to a single bit. Boolean functions 

play a major role in cryptosystems. 

A Boolean function f can be represented as a polynomial over GF(2): 

( ) nn
nji

jiij
ni

iin xxxaxxaxaaxxxf ......,...,, 21...12
11

021 ⊕⊕⊕⊕= ∑∑
≤<≤≤≤

 

where a0, aij,..., a12...n ∈ GF(2) and the multiplication and addition operations are in 

GF(2). This representation of a Boolean function is called the Algebraic Normal 

Form (ANF) and the degree of this polynomial gives the algebraic degree of the 

function. Another representation of a Boolean function is its truth table, which lists 

the function output for all possible inputs. We denote the truth table of f with the 2n 

dimensional vector ft: 

( ) ( ) ( ){ }12,...,1,0 −= n
t ffff  

There are a few properties of Boolean functions that are important in cryptographic 

applications. We now discuss those properties. 

Definition 2.1. The weight of a Boolean function f, ( )fwt , is the number of ones in 

its truth table. 

Definition 2.2. An n-variable Boolean function f is said to be balanced, if the 

number of 0’s is equal to the number of 1’s in its truth table, i.e., ( ) 12 −= nfwt . 
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Definition 2.3. A Boolean g(x) is called an affine function of x = (x1, x2,..., xn) ∈ 

GF(2)n, if its degree is at most one, in other words, if its algebraic normal form is: 

( ) 02211021 ...,...,, axxaxaxaaxxxg nnn ⊕⋅=⊕⊕⊕⊕= ω  

where a0, a1,..., an ∈ GF(2)n, ω = (a1,..., an) ∈ GF(2)n, and ⊕, . respectively denote 

addition and inner product operations in GF(2). g(x) is called linear if  a0 = 0. 

Definition 2.4. The Walsh-Hadamard transform of a Boolean function f is defined 

as:  

( ) ( )
�

∈

⋅⊕−=
nGFx

xxf
fW

)2(

)(1 ωω  

For non-Boolean functions the Walsh Hadamard Transform is defined as: 

( ) ( )
�

∈

⋅−=
nGFx

x
r xrW

)2(

1)( ωω  [Yüce2001] 

and the inverse transform is: 

( ) ( )( )
�

∈

⋅−− −==
n

r

GF

x
r

n
W WxrxW

)2(

1
)( 12)(

ω

ω
ω ω  

Definition 2.5. The Hamming distance between two functions f(x) and g(x) is 

defined as the number of inputs where the outputs differ, that is: 

( ) ( ) ( ){ }n
H GFxxgxfxgfd 2,|),( ∈≠=  

Definition 2.6. The nonlinearity of a Boolean function is defined as its minimum 

Hamming distance to the set of affine functions 

),(min gfdnl H
Ag

f
n∈

=   

where An is the set of n-variable affine Boolean functions. The Hamming distance 

between a Boolean function f and an affine function g(x) = x�� ⊕ c can be calculated 

with the Walsh-Hadamard transform as 
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2

)()1(
2),( 1

ωf
c

n
H

W
gfd

−
−= −  

Therefore, the nonlinearity of f can be obtained from the Walsh-Hadamard transform 

as 

ω

ω)(max
2

1
2 1

f
n

f Wnl −= −  

This measure of nonlinearity is important for linear cryptanalysis [Heys2000]. 

Carlet and Ding [CarDin2004] gives a more general definition for nonlinearity and 

investigates perfect nonlinear functions. 

A very well known theorem says that for any Boolean function f the sum of squared 

values of the Walsh-Hadamard transform Wf (�) is constant and equal to 22n 

n

GF
f

n

W 2

)2(

2 2)( =
�

∈ω
ω  

Definition 2.7. For a perfectly nonlinear Boolean function, also called bent 

[Roth1976], the squared spectrum is flat and 

n
fW 2)(2 =ω , for all � ∈ GF(2)n. 

Definition 2.8. Xiao and Massey [GouMas1988] provided a spectral 

characterization of correlation immune functions. Here we state that as a definition 

of correlation immunity: 

A Boolean function f is t-th order correlation immune if and only if  

0)( =ωfW , for all � ∈ GF(2)n; 1� wt(�) �t 

If further f is balanced, 0)0( =fW  and therefore  

0)( =ωfW , for all � ∈ GF(2)n; 0� wt(�) �t 
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Balanced t-th order correlation immune functions are called t-resilient functions. 

From this point on, we will consider a balanced Boolean function as 0-resilient (this 

convention is accepted in [CamCarCS1991], [SarMai1999], [PasJoh1999], 

[Tara2000]) and an arbitrary Boolean function as (–1)-resilient. 

The importance of correlation immunity is that, it provides zero mutual information 

between any t-tuple selected from the input vector and the output of the Boolean 

function i.e., 

0);,...,(
1

=YxxI
tii , for 1 ≤ i1 < … < i t ≤ n 

We define the mutual information between the two random variables X and Y as: 

)|()();( YXHXHYXI −=  

where H(X) denotes the entropy and H(X |Y) denotes the conditional entropy, which 

are defined by: 

�

=
==

x xXP
xXPXH

}{

1
log}{)( , 

∑ ==
===

yx yYxXP
yYxXPYXH

, }|{

1
log},{)|(  

Therefore, having 0);( =YXI  requires: 

)|()( YXHXH = , hence }{ xXP = = }|{ yYxXP ==  

Theorem 2.1. Let f be an n-variable Boolean function and ω ∈ GF(2)n. f is t-

resilient if and only if 
2

1
})({ == • xxfP ω  for all ω of weight 0 ≤ wt(ω) ≤ t. 
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Proof. 

We start the proof by finding the Hamming distance between the functions f(x) and 

x•ω , dH(f(x), x•ω ) in terms of the Walsh-Hadamard transform of f(x).  

( ) ( ){ }nGFxxxfxxxfdH 2,|)),(( ∈≠= •• ωω  

( ) ( )
�

∈

⋅⊕−=
nGFx

xxf
fW

)2(

)(1 ωω  

            = ( ) ( ){ }nGFxxxfx 2,| ∈= •ω  - ( ) ( ){ }nGFxxxfx 2,| ∈≠ •ω  

            =2n – 2. dH(f(x), x•ω ) 

Therefore; 
2

)(
2)),(( 1

ω
ω fn

H

W
xxfd −= −•  

Since the functions f(x) and x•ω  differ in  dH(f(x), x•ω ) number of places out of 

2n, 

n
H xxfd

xxfP
2

) ),((
})({

•
• =≠

ωω = 
12

)(

2

1
+−

n

fW ω
 

Hence, 

})({1})({ xxfPxxfP •• ≠−== ωω = 
12

)(

2

1
++

n

fW ω
 

Using the definition of t-resiliency in the equation above, we arrive at the conclusion 

that f is t-resilient if and only if 
2

1
})({ == • xxfP ω  for all ω of weight 0≤wt(ω)≤t.� 

Theorem 2.2. Let f be an n-variable Boolean function and ω ∈ GF(2)n. If the mutual 

information 0));(( =• xxfI ω  for all ω of weight 0 ≤ wt(ω) ≤ t, then f is t-resilient. 
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Proof. 

To check for resiliency by Theorem 2.1, we should compute the probability 

 

}1  ,1)({}0  ,0)({})({ ==+==== ••• xxfPxxfPxxfP ωωω   

                           

}1{} 1  1)({}0{} 0  0)({ ===+==== •••• xPxxfPxPxxfP ωωωω  

for all ω of weight twt ≤≤ )(0 ω . 

In the equation above, we can substitute the followings: 

1) }|)({ xxfP •ω = )}({ xfP . Because, by hypothesis the mutual information 

));(( xxfI •ω  is equal to zero, which in turn requires )|)(())(( xxfHxfH •= ω  for 

all ω of weight twt ≤≤ )(0 ω .  

2) }0{ =• xP ω = }1{ =• xP ω =
2

1
, since linear functions are balanced for all 0≠ω . 

3) pxfP == }0)({  (note that p = 
2

1
 if )(xf  is balanced).   

Hence, for all ω of weight twt ≤≤ )(0 ω , 

}1{} 1)({}0{} 0)({})({ ==+==== ••• xPxfPxPxfPxxfP ωωω  

                           =
2

1

2

1
)1(

2

1 =−+ pp  

Note that, for ω = 0, })({ xxfP •= ω = p, which equals 
2

1
 only if )(xf  is balanced, 

which proves t-resiliency of )(xf  by Theorem 2.1.        � 

Note that a Boolean function satisfying the above property is uncorrelated with the 

linear combination of its inputs determined by the vector ω. If 0 
�
 wt(�) 

�
 t, then the 

function is uncorrelated with all linear combinations of its inputs up to t variables.  
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Definition 2.9. The algebraic degree of a function f, denoted by deg(f), is defined as 

the number of variables in the longest term of f in its algebraic normal form. The 

algebraic degree of variable xi in f, deg(f, xi), is the number of variables in the 

longest term of f that contains xi. If deg(f, xi) = 0, then f does not depend on xi. If 

deg(f, xi) = 1, then f depends on xi linearly. If deg(f, xi) � 2, we say that f depends on 

xi nonlinearly. 

Definition 2.10. The autocorrelation function of a Boolean function is given by 

r f (d)  = �x∈GF(2)
n  (−1) f (x) (−1) f (x ⊕ d) . 

The maximum absolute value that we denote by acf = maxd�0∈GF(2)
n | r f (d) | is 

also known as the absolute indicator [ZhaZhe1995].  

Another measure related to the autocorrelation function is commonly called the 

sum-of-squares indicator [ZhaZhe1995], given by the sum �d∈GF(2)
n (r f (d))

2
. We 

prefer to use the sum-of-squared-errors (SSEf), �d�0∈GF(2)
n (r f

 (d))
2
, instead of the 

sum-of-squares indicator, since SSEf  is proportional to the sum of  squared spectrum 

deviations [Yüce2001] from that of the bent functions, that is  

�d�0∈GF(2)
n (r f (d))

2  
= 2

−n �ω∈GF(2)
n  [  (Wf (�))

2
−2

n
]
 2
. 

 

If f is affine, this sum of squared autocorrelation errors, i.e., the autocorrelation 

deviations from the autocorrelation of bent functions, is maximum and equal to 

23n−22n. Hence, dividing the above equality by 23n−22n, one obtains the useful 

measure of mean squared error (MSEf ), which takes rational values in the interval 

[0,1]. The mean squared error percentage 100MSEf  of the Boolean function f shows 

the percentage of total squared deviations of its autocorrelation function r f (d) and 

squared spectrum Wf
2
 (�) respectively, from the autocorrelation and the squared 

spectrum of bent functions [Yüce2001].  
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Another important properties of Boolean functions is that, for any t-resilient Boolean 

function f, Wf (�) � 0 mod 2t+2, for all � ∈ GF(2)n [SarMai2000-1]. We will make 

use of this property in Section 2.1. 

2.1 The Nonlinearity Bound 

In Chapter 3 and Chapter 4 we study methods to provide resilient Boolean functions 

of maximum nonlinearity. Sarkar and Maitra [SarMai2000-1] prove upper bounds of 

nonlinearity for n-variable, t-resilient Boolean functions, stated as the following: 

1. If n is even and 22 −> nt , then 11 22 +− −≤ tn
fnl . 

2. If n is even and 22 −≤ nt , then 1121 222 +−− −−≤ tnn
fnl . 

3. If n is odd and )(22 11 nnlmaxnt −> −+ , then 11 22 +− −≤ tn
fnl . 

4. If n is odd and )(22 11 nnlmaxnt −≤ −+ , then fnl  is the highest multiple of 

12 +t  which is less than or equal to )(2 1 nnlmaxn −− . 

The proof is based on the congruency Wf (�) � 0 mod 2t+2 for any t-resilient Boolean 

function f [SarMai2000-1]. Having 1121 222 +−− −−= tnn
fnl  implies that there exist 

some �o such that Wf (�o) = 22 22 ++ tn
. On the other hand, since Wf (�o) � 0 mod 

2t+2, the integer 2t+2 divides 22 22 ++ tn
 and therefore it also divides 22

n
, which 

obviously requires 22 −≤ nt . This result shows that for a t-resilient Boolean 

function with 22 −> nt , it is not possible to have a nonlinearity of 

1121 222 +−− −− tnn . We will make use of this result in Theorem 3.2 of Chapter 3, to 

evaluate the nonlinearity of the constructed Boolean function. 
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2.1.1 The Nonlinearity Bound Figures 

In this section, we draw the figures of the mentioned upper bounds of nonlinearity 

for some specific values of n between 8-16. For 22 −> nt  we provide sketches of 

both 1121 222 +−− −−= tnn
fnl  and 11 22 +− −= tn

fnl . The curve shows the upper 

bound of Sarkar and Maitra [SarMai2000-1], where the dotted part is plotted to 

show what would happen if the curve 1121 222 +−− −−= tnn
fnl  would continue for 

22 −> nt  instead of 11 22 +− −= tn
fnl . Note that, the difference between these 

curves is 
122

−n
 for all t. 

The figures show the values of the maximum nonlinearity provided by Sarkar and 

Maitra [SarMai2000-1] for values of t less than n – 2. This is because, the value of 

maximum nonlinearity, 11 22 +− − tn  for 22 −> nt , is not positive for 2−≥ nt . 

 

Figure 2-1. Nonlinearity Bounds For n = 8 
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Figure 2-1 shows the upper bound on nonlinearity for an 8-variable function. In 

Chapter 3 we provide an example function of order of resiliency 1 and nonlinearity 

116, satisfying the upper bound of Sarkar and Maitra [SarMai2000-1]. In Chapter 4 

we give another example function of resiliency 3 and nonlinearity 112, satisfying the 

upper bound at another point. 

The following figures are sketched in order to give a general notion for the upper 

bound of nonlinearity for resilient Boolean functions. The existence of functions 

satisfying below figures is known and shown in Table 2.1 for (n, t) pairs 

([SebZhaZ1994], [SarMai2000-1], [SarMai2000-2]), but we will not give examples 

of all points of the upper bound in this work.  

 

Table 2-1. Known Functions Satisfying The Upper Bound 

(n, t) 1 2 3 4 5 6 7 8 

5 12 8 0      

6 24 24 16 0     

7 56 56* 48 32 0    

8 116 112 112 96 64 0   

9 244 240 240* 224 192 128 0  

10 492* 480 480 480* 448 384 256 0 

Note: Existence of the functions marked with “*” is not known yet. 
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Figure 2-2. Nonlinearity Bounds For n = 10 

Figure 2-3. Nonlinearity Bounds For n = 12 

0 1 2 3 4 5 6 7
200

250

300

350

400

450

500

n
l f 

t 

0 1 2 3 4 5 6 7 8 9
800

1000

1200

1400

1600

1800

2000

2200

t 

n
l f 



 15 

Figure 2-4. Nonlinearity Bounds For n = 14 

Figure 2-5. Nonlinearity Bounds For n = 16 
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CHAPTER 3 

 THE CONSTRUCTION METHOD 

 

In this chapter, we investigate the construction method of Maity and Johansson 

[MaiJoh2002]. First we provide a proof for the nonlinearity of a 1-resilient function 

produced by this method and produce an example function using this method. Note 

that we use an additional criterion, which was missing in the paper of Maity and 

Johansson [MaiJoh2002], in the proof. After that we generalize the method to t-

resiliency with Theorem 3.2.  

3.1 Construction of 1-Resilient Boolean Functions 

Lemma 3.1 for constructing 1-resilient Boolean functions where n is even and larger 

than 5, can be considered as a preliminary for the proof of Theorem 3.2 given for t-

resilient functions. The construction method is very similar to the one proposed by 

Maity and Johansson [MaiJoh2002]. However, instead of criteria (i) and (ii) 

mentioned below, they give the following condition:  

( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω  for all ω such that and 0 ≤ wt(ω) ≤ 1, (1) 

The proof given below shows that (1) is not sufficient for 1-resiliency, unless (i) and 

(ii) of Lemma 3.1 are satisfied. 

Lemma 3.1. Let f be an n-variable (n even and n > 5) bent function, and let              

S ⊆ {0,1} n, such that 

 

i. ( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

+  and 0 ≤ wt(ω) ≤ 1, 
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ii. ( ) 1221
−

∈

⋅⊕ −=−∑ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

−  and 0 ≤ wt(ω) ≤ 1, 

iii. ( ) 222 2212 ++≤−≤− ∑
∈

⋅⊕ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

+  and           

2 ≤ wt(ω) ≤ n, 

iv. ( ) 222 2122 +≤−≤
�
�
��

�
�

+− ∑
∈

⋅⊕

Sx

xfn ω , for all ω such that Wf (ω) = 22
n

−  and        

2 ≤ wt(ω) ≤ n, 

 

Then 

( ) ( )
( )�

�
�

⊕
=

xf

xf
xf

1
'  

if x ∈ S 

otherwise 

 

is an n-variable 1-resilient function with nonlinearity 2121 222 −− −− nn . 

 

Proof.   

Define S ={0,1} n – S. 

Assume ( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

+  and 0 ≤ wt(ω) ≤ 1. 

Since ( ) ( ) 1' ⊕= xfxf  for x ∈ S, 

( ) 12' 21
−

∈

⋅⊕ −=−∑ n

Sx

xf ω . 

Note that 
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( ) ( ) ( ) ( )ωωωω
f

x

xf

Sx

xf

Sx

xf W
n

=−=−+− ∑∑∑
∈

⋅⊕

∈

⋅⊕

∈

⋅⊕

}1,0{

111  (2) 

therefore,  

( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω . 

Since ( ) ( )xfxf ='  for x ∈ S , 

( ) 12' 21
−

∈

⋅⊕ +=−
� n

Sx

xf ω . 

Therefore, ( ) ( ) ( ) 011 ''
' =−+−= ∑∑

∈

⋅⊕

∈

⋅⊕

Sx

xf

Sx

xf
fW ωωω  follows and shows the resiliency 

of f’ , provided that Wf (ω) = 22
n

+ . 

 

Assuming ( ) 1221
−

∈

⋅⊕ −=−∑ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

−  and 0 ≤ wt(ω) ≤ 1, 

similarly completes the proof of the 1-resiliency condition for f’ .  

 

Now we have left to prove the nonlinearity. Assume ( ) 222 2212 ++≤−≤− ∑
∈

⋅⊕ n

Sx

xf ω  

for all ω such that Wf (ω) = 22
n

+  and 2 ≤ wt(ω) ≤ n.  

Again using the definition of f’  we write the following, 

( ) 2'22 2122 +≤−≤−− ∑
∈

⋅⊕

Sx

xfn ω . (3) 

Using (2) together with the definition of f’  we find, 
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( ) 22'2 2212 ++≤−≤− ∑
∈

⋅⊕ n

Sx

xf ω . (4) 

Combining (3) and (4) gives us the following limit for the Walsh-Hadamard 

transform of f’ , 

( ) 32
'

32 2222 ++≤≤−−
n

f

n
W ω  

The condition ( ) 222 2122 +≤−≤
��
���

�
+− ∑

∈

⋅⊕

Sx

xfn ω , for all ω such that Wf (ω) = 22
n

−  

and 2 ≤ wt(ω) ≤ n gives the same interval for the Walsh-Hadamard transform of f’  

and therefore shows a bound for nonlinearity of  f’ : 

2121
' 222 −−≥ −− nn

fnl  

Combining this lower bound with the upper bound of [SarMai2000-1] 

( 2121
' 222 −−≤ −− nn

fnl  for a 1-resilient function), we conclude  

2121
' 222 −−= −− nn

fnl  for n � 6 � 

The above equality does not hold for n � 6, because then 32 22 +
n

 would not be a 

multiple of 32  (remember the discussion made in Chapter 2). 

The following 1-resilient function, fC1, of nonlinearity 116, was produced using this 

method. 

fC1={E880D555B33366668F0F5A5A3C3C696980FF55AA33CC66990FF05AA53

CC36997} 

For finding an initial bent function, we make use of Theorem 3.1, which constructs 

the bent function by concatenating affine functions. 
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Theorem 3.1. Let l i be independent affine functions for 0 ≤ i ≤ 12 −n . Let fbent be 

concatenation of the 2
n  affine functions, l i’s. Then fbent is an n-variable bent 

function.  

Proof. 

Recall the well-known fact that the Walsh-Hadamard transform of an 2
n -variable 

affine function is an impulse of magnitude 22
n

. Concatenating the 2
n -variable 

functions to form an n-variable function makes any jth element of the truth table of 

the constructed n-variable function to be the sum of kth elements of all the 

concatenated functions’ spectrums with (+) or (–) polarity. Since all the 

concatenated functions are independent affine functions, only – and exactly – one of 

those functions have a ± 22
n

 term in the kth position of its spectrum. Therefore, 

every term in the spectrum of the constructed function, fbent, is ± 22
n

, which means 

the function fbent is bent.           � 

 

We construct the initial bent function,  fC1b, using this idea as: 

fC1b={000055AA0F0F5AA5333366993C3C6996555500FF5A5A0FF0666633CC69

693CC3} 

and select the set S by inspection as: 

S = {(0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,1), (0,0,0,0,0,0,1,0), 

(0,0,0,0,0,1,0,0), (0,0,0,0,1,0,0,0), (0,0,0,1,0,0,0,0), (0,0,1,0,0,0,0,0), 

(0,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,0), (1,1,1,1,1,1,1,1)} 

Note that this function has sum of squares error of 32640 and autocorrelation value 

of 32. 
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Selection of Elements of S 

For constructing the set S, we first selected a set S1 = {(0,0,0,0,0,0,0,1), 

(0,0,0,0,0,0,1,0), (0,0,0,0,0,1,0,0), (0,0,0,0,1,0,0,0), (0,0,0,1,0,0,0,0), 

(0,0,1,0,0,0,0,0), (0,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,0)}, which consists of vectors of 

weight 1. Since we are constructing a 1-resilient function, ω with wt(ω) ≤ 1 are 

considered for assumptions (i) and (ii) of Theorem 3.1, this selection of inputs 

makes the inner product x•ω = 1 for x =ω and x•ω = 0 for x ≠ω, and therefore 

( ) 61
1

=−∑
∈

⋅⊕

Sx

xf ω  assuming f(x) = 0 for x ∈ S1. This assumption is reasonable also for 

we want to make the resultant function balanced and the starting bent function has 

16 ( 22
n

) more zeros than ones and therefore 8 zeros should be complemented for 

balancedness. In order to satisfy the assumptions (i) and (ii) of Theorem 3.1 and 1-

resiliency, we must have ( ) 81 =−∑
∈

⋅⊕

Sx

xf ω , hence we need to include another set S2 

in S such that, S = S1 ∪ S2 and ( ) 81 =−∑
∈

⋅⊕

Sx

xf ω  for all ω, where wt(ω) ≤ 1. We 

select S2 = {(0,0,0,0,0,0,0,0), (1,1,1,1,1,1,1,1)} and satisfy the above condition for 

f(0,0,0,0,0,0,0,0) = 0 and f(1,1,1,1,1,1,1,1) = 1.  

One thing left for finalizing the set S is to guarantee the assumptions made above on 

the output of the starting bent function at the input values selected from S. Recall 

that we construct the initial bent function by concatenation of linear functions. 

Hence, satisfying the above assumptions is easy by organizing the order of linear 

functions used in the concatenation.  

For large values of n and t, a systematic method for obtaining the set S is not 

present, however a search algorithm can be used despite its high computational 

complexity.  

3.2 Construction of t-Resilient Boolean Functions 

We now generalize Lemma 3.1 to the construction of t-resilient functions. Note that, 

the construction method is very similar to the one proposed by Maity and Johansson 
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[MaiJoh2002] except for our additional constraint (ii) as in Lemma 3.1. Here we 

also evaluate the nonlinearity of the resultant function, where t > 2
n  - 2. 

Theorem 3.2. Let f be an n-variable (n even) bent function, and let S ⊆ {0,1} n, such 

that 

 

 ( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

+  and 0 ≤ wt(ω) ≤ t, 

 ( ) 1221
−

∈

⋅⊕ −=−∑ n

Sx

xf ω , for all ω such that Wf (ω) = 22
n

−  and 0 ≤ wt(ω) ≤ t, 

 ( ) 121 2212 +

∈

⋅⊕+ ++≤−≤− ∑ tn

Sx

xft ω , for all ω such that Wf (ω) = 22
n

+  and    

t+1 ≤ wt(ω) ≤ n, 

 ( ) 112 2122 +

∈

⋅⊕+ +≤−≤
��
���

�
+− ∑ t

Sx

xftn ω , for all ω such that Wf (ω) = 22
n

−  and 

t+1 ≤ wt(ω) ≤ n, 

 

Then 

( ) ( )
( )�

�
�

⊕
=

xf

xf
xf

1
'  

if x ∈ S 

otherwise 

is an n-variable t-resilient function with nonlinearity 1121 222 +−− −− tnn  if 22 −≤ nt . 

Moreover, if 22 −> nt  then f’  has nonlinearity larger than 1121 222 +−− −− tnn , i.e., 

1121 222 +−− −− tnn  <  nlf’ 	 11 22 +− − tn . 
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Proof.   

Define S ={0,1} n – S. 

Assume ( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω  for all ω such that Wf (ω) = 22
n

+  and 0 ≤ wt(ω) ≤ t. 

Since ( ) ( ) 1' ⊕= xfxf  for x ∈ S, 

( ) 12' 21
−

∈

⋅⊕ −=−∑ n

Sx

xf ω . 

Note that 

( ) ( ) ( ) ( )ωωωω
f

x

xf

Sx

xf

Sx

xf W
n

=−=−+− ∑∑∑
∈

⋅⊕

∈

⋅⊕

∈

⋅⊕

}1,0{

111 . (5) 

therefore, 

( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω . 

Since ( ) ( )xfxf ='  for x ∈ S , 

( ) 12' 21
−

∈

⋅⊕ +=−
� n

Sx

xf ω . 

Therefore, ( ) ( ) ( ) 011 ''
' =−+−= ∑∑

∈

⋅⊕

∈

⋅⊕

Sx

xf

Sx

xf
fW ωωω  follows and shows the resiliency 

of f’ , provided that Wf (ω) = 22
n

+ . 

 

Assuming ( ) 1221
−

∈

⋅⊕ −=−∑ n

Sx

xf ω  for all ω such that Wf (ω) = 22
n

−  and 0 ≤ wt(ω) ≤ t, 

similarly completes the proof of the t-resiliency condition for f’ .  
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Now we have left to prove the nonlinearity. Assume 

( ) 121 2212 +

∈

⋅⊕+ ++≤−≤− ∑ t
n

Sx

xft ω  for all ω such that Wf (ω) = 22
n

+  and t+1 ≤ wt(ω) 

≤ n.  

Again using the definition of f’  we write the following, 

( ) 1'12 2122 +

∈

⋅⊕+ +≤−≤−− ∑ t

Sx

xft
n ω . (6) 

Using (5) together with the definition of f’  we find, 

( ) 12'1 2212 +

∈

⋅⊕+ ++≤−≤− ∑ t
n

Sx

xft ω . (7) 

 

Combining (6) and (7) gives us the following limit for the Walsh-Hadamard 

transform of f’ , 

( ) 22
'

22 2222 ++ ++≤≤−− tn

f
tn

W ω  

The condition ( ) 112 2122 +

∈

⋅⊕+ +≤−≤
�
�
��

�
�

+− ∑ t

Sx

xftn ω  for all ω such that Wf (ω) = 22
n

−  

and t+1 ≤ wt(ω) ≤ n gives the same interval for the Walsh transform of f’  and 

therefore shows a bound for nonlinearity of  f’ : 

1121
' 222 +−− −−≥ tnn

fnl  

Combining this lower bound with the upper bound of [SarMai2000-1] 

( 1121
' 222 +−− −−≤ tnn

fnl  for a t-resilient function where 22 −≤ nt ), we conclude  

1121
' 222 +−− −−= tnn

fnl , for 22 −≤ nt    
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Moreover, if 22 −> nt  then 11
' 22 +− −≤ tn

fnl  [SarMai2000-1] and nlf’ = 

1121 222 +−− −− tnn  is not possible because of the discussion made in Chapter 2, 

therefore 

1121 222 +−− −− tnn  <  nlf’ � 11 22 +− − tn , for 22 −> nt  

Also note that, since 22 −> nt , the term 
122

−n
 above is smaller than 12 +t  and 

therefore the first meaningful term (remember that Wf (�o) � 0 mod 2t+2 for a t-

resilient Boolean function) larger than 1121 222 +−− −− tnn  is 11 22 +− − tn . Hence, 

nlf’ = 11 22 +− − tn , for 22 −> nt  � 

 

Remember the first two assumptions of the construction method. We assume 

( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω  for all ω such that Wf (ω) = 22
n

+ , 0 ≤ wt(ω) ≤ t and 

( ) 1221
−

∈

⋅⊕ −=−∑ n

Sx

xf ω  for all ω such that Wf (ω) = 22
n

− , 0 ≤ wt(ω) ≤ t. In their work, 

Maity and Johansson make the assumption ( ) 1221
−

∈

⋅⊕ =−∑ n

Sx

xf ω  for all ω such that   

0 ≤ wt(ω) ≤ t. Here, we will show why this assumption is not sufficient for 

constructing resilient Boolean functions.  

Let us assume ( ) 1221
−

∈

⋅⊕ +=−∑ n

Sx

xf ω  for some ω such that Wf (ω) = 22
n

−  and            

0 ≤ wt(ω) ≤ t. Since ( ) ( ) 1' ⊕= xfxf  for x ∈ S, 

( ) 12' 21
−

∈

⋅⊕ −=−∑ n

Sx

xf ω . 

Making use of (5) and ( ) ( )xfxf ='  for x ∈ S  we arrive 
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( ) ( ) 12' 2311
−

∈

⋅⊕

∈

⋅⊕ ⋅−=−=− ∑∑ n

Sx

xf

Sx

xf ωω  since Wf (ω) = 22
n

−  for ω. 

Therefore, ( ) ( ) ( ) 0211
12''

' ≠−=−+−= +

∈

⋅⊕

∈

⋅⊕ ∑∑ n

Sx

xf

Sx

xf
fW ωωω  for some ω such that  

0 ≤ wt(ω) ≤ t and f’  is not resilient. 

The above discussion shows that assuming ( ) 1221
−

∈

⋅⊕ =−∑ n

Sx

xf ω  for all ω such that   

0 ≤ wt(ω) ≤ t alone is not sufficient for resiliency of the constructed function. This 

assumption also misses the occasion for constructing resilient Boolean functions 

where we have some ω such that   0 ≤ wt(ω) ≤ t where ( ) 1221
−

∈

⋅⊕ −=−∑ n

Sx

xf ω . We 

have proved in Theorem 3.2 that it is possible to construct resilient functions in this 

case. 
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CHAPTER 4 

 OTHER CONSTRUCTIONS SATISFYING  

THE UPPER BOUND 

 

In this chapter, we study some more methods satisfying the upper bound for 

nonlinearity given in Section 2.1. Eventhough the methods provided in this chapter 

satisfy the nonlinearity bound, they have their weaknesses as well. Here we 

comment on the weaknesses of these construction methods and investigate the 

autocorrelation properties of the constructed functions, which has not attracted 

enough attention in the literature.   

4.1 Construction by Sarkar and Maitra 

In this section, we investigate the method of Sarkar and Maitra [SarMai2000-1], 

which focuses on achieving the best possible trade-off among the cryptographic 

parameters: number of variables, order of resiliency, nonlinearity and algebraic 

degree. The authors show that functions achieving the best possible trade-off can be 

constructed by the Maiorana-McFarland like technique [SarMai2000-1].  

We claim that, the weakness of the Maiorana-McFarland like technique is that it 

assigns the highest priority to resiliency. On the other hand, the algebraic degree or 

autocorrelation characteristics, for example, may have greater importance in the 

application. Moreover, some of the functions satisfying the previously discussed 

nonlinearity bound cannot be constructed with this technique. For example, an 8-

variable function with order of resiliency 1 and nonlinearity 116, to which we gave 

an example in the previous chapter, cannot be constructed by the Maiorana-

McFarland like technique. Furthermore, the intention to maximize the order of 

resiliency distorts the autocorrelation characteristics of the function, as we will see. 
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4.1.1 Preliminary Concepts 

Before giving the description of the construction technique, let us first give the 

preliminary concepts for comprehension. 

Maiorana-McFarland Like Construction Technique 

The Maiorana-McFarland like technique is one of the construction techniques used 

to construct resilient Boolean functions and has been investigated previously in the 

literature ([CamCarCS1991], [Carl1997], [CheLeeLS1996], [SarMai2000-3], 

[SebZhaZ1994]). This technique of construction basically uses the following idea. 

Let � be a map from { }r1,0  to { }k1,0 , where for any x ∈ { }r1,0 , wt(�(x)) 
�
 t + 1. Let f 

be a Boolean function from { } kr +1,0  to { }1,0 , such that, f (x, y) = y • �(x) ⊕  g(x), 

where x ∈ { }r1,0 , y ∈ { }k1,0  and y • �(x) is the inner product of y and �(x). Then f is 

t-resilient. 

f can be interpreted as a concatenation of r2  affine functions l0, l1, … , l2
r
-1 from the 

set of k-variable affine functions, where ( ){ }atenondegener is | xlx i  
�
 t + 1 for 

120 −≤≤ ri . The construction technique of this chapter is based on this idea. 

Let us define an (n, t, d, z) function as an n-variable, t-resilient Boolean function of 

degree d with nonlinearity x. Also note that, given an n-variable function, there may 

be more than one possible values of order of resiliency t, such that the upper bound 

on the nonlinearity is the same.  

Definition 4.1. An (n, t, d, z) function is said to be a saturated maximum degree 

function if: 

1. z is the upper bound on nonlinearity for n-variable, t-resilient Boolean 

functions. 

2. t is the maximum possible value for order of resiliency for given number of 

variables n, and upper bound on nonlinearity. 

3. d satisfies Siegenthaler’s inequality with equality, i.e, d = n – t –1. 
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4. The spectrum of the function is three valued. 

The definition of a saturated maximum degree function is important because, one 

can generate a sequence of Boolean functions using the technique described in 

Section  4.1.2, each of which is a saturated maximum degree function. This idea is 

based on the fact that if an (n, t, n – t – 1, z) function f is a saturated function, then so 

is an (n + 1, t + 1, n – t – 1, 2z) function g [SarMai2000-1]. 

4.1.2 The Construction Method 

In this section we will construct an (8, 3, 4, 112) function using the technique of 

Sarkar and Maitra.  

For a Boolean function f let us define ( ) ( ){ }0| ≠= ωω ff WWNZ , where Wf is the 

Walsh-Hadamard transform of f.  

Lemma 4.1. Let f1, f2 be two (7, 3, -, 48) functions such that 

( ) ( ) ∅=∩
21 ff WNZWNZ . Then the function f, ( ) 28181 fxfxf ⊕⊕= , is an (8, 3, -, 

112) function [SarMai2000-1].  

One can use construction or search techniques to find (7, 3, -, 48) satisfying the 

above criteria. The authors use concatenation of smaller functions to get f1, f2 and 

construct an (8, 3, 4, 112) function out of them. 

An example function, constructed by this method is given below. The given function 

is an (8, 3, 4, 112) function: 

fC2={077CE5A2F8831A5DF8831A5D077CE5A26996699669699696669999665A

A5A55A} 

4.1.3 Further Discussions 

Note that the example function given has sum of squares error of 196608 and 

autocorrelation value of 128. These values are very large compared to the function 

of the previous chapter. This is because, the order of resiliency is higher, which 
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leads to worse spectral characteristics. In fact, a function constructed using this 

Maiorana-McFarland like technique is to be a ( jijiijiji ++++ −++++ 122 22 ,2 , ,23 ) 

function, where i and j are larger than or equal to zero [SarMai2000-1]. That is why 

this technique cannot construct an 8-variable function with order of resiliency 1 and 

nonlinearity 116. 

4.2 Construction by Tarannikov 

In this section, we investigate the method of Tarannikov [Tara2000], which is 

introduced in “On Resilient Boolean Functions with Maximal Possible Nonlinearity”. In 

his paper Tarannikov proves that the nonlinearity of an n-variable (n � 4) t-resilient Boolean 

function does not exceed 11 22 +− − tn , which is the upper bound mentioned in Section 

2.1 for 22 −> nt . In Section 2.1 we also provide the bound given by Sarkar and 

Maitra [SarMai2000-1], 1121 222 +−− −−≤ tnn
fnl , for small t, i.e., 22 −≤ nt . The 

construction method explained in this section focuses only on functions with high 

order of resiliency, 
3

72 −≥ n
t . In the rest of this section we study the method of 

Tarannikov and investigate the strengths and weaknesses of this method, in terms of 

cryptographically important properties other than nonlinearity.  

4.2.1 Preliminary Concepts 

In equivalent non-probabilistic formulation, a Boolean function f is called 

correlation immune of order t if ( ) ( ) tfwtfwt 2/' =  for any its subfunction f’  of n – t 

variables [Tara2000], which is obtained by substituting t variables of f with some 

constants. Therefore, a Boolean function f is called t-resilient if ( ) 12' −−= tnfwt  for 

any its subfunction f’  of n – t variables. 

Definition 4.2. A Boolean function f (x1,…,xn) depends on a pair of its variables (xi, 

xj) quasilinearly if f (x1) � f (x2) for any two vectors x1 and x2 of length n that differ 

only in ith and jth components. A pair (xi, xj) in this case is called a pair of 
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quasilinear variables in f. Note that, this definition yields to a linear variable in f if 

only one variable, xi, is concerned. 

Lemma 4.1. Let f(x1,…,xn) be a Boolean function represented in the form 

( ) ( ) ( ) ( )∑ +⊕⊕⊕⊕=
n

nlllln xxfxxxxf
σσ

σσσσ
,...,

11111

1

 , ... , ,1 , ... ,1 ... ,..., . 

Suppose that all l2  subfunctions ( )nll xxf  , ... , ,1 , ... ,1 11 +⊕⊕ σσ  are t-resilient. 

Then the function f is also t-resilient [Tara2000].  

Lemma 4.2. Let f(x1,…,xn) be a Boolean function. If f depends on some variable xi 

linearly, then f is balanced [Tara2000].  

Corollary 4.1. Let f(x1,…,xn) be a Boolean function. If f depends on some variables 

x1, … , xs linearly, then f is (s-1)-resilient [Tara2000]. 

This result is used for constructing resilient Boolean functions in Section 4.2.2 “The 

Construction Method”. Note that this result also emphasizes the fact that decreasing 

the nonlinearity of a function f may increase its degree of resiliency, which means, 

once more, resiliency and nonlinearity take counter parts for a cryptographically 

strong Boolean function. 

Lemma 4.3. Let f(x1,…,xn, xn+1) = g(x1,…,xn) ⊕  cxn+1 where c ∈ {0,1}. Then         

nlf = 2 nlg [Tara2000].  

4.2.2 The Construction Method 

The method of construction, which is explained in this section, is based on the 

following lemma, Lemma 4.4. 

Lemma 4.4. Let n be a positive integer. Let f1(x1,…,xn) and f2(x1,…,xn) be t-resilient 

Boolean functions on GF(2)n such that 01
Nnl f ≥  , 02

Nnl f ≥ . Moreover, there exist 

two variables xi and xj such that f1 depends on the variables xi and xj linearly, and f2 

depends on a pair the variables (xi, xj) quasilinearly. Then the function  
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( ) ( ) ( ) ( )nnnnnn xxfxxxfxxxxf ,...,,...,1,,..., 12111111 +++ ⊕⊕=  

is a t-resilient Boolean function on GF(2)n+1 with nonlinearity 0
12 Nnl n

f +≥ −  and 

the function  

( ) ( ) ( ) ( ) ( ) 112211121211 ,...,,...,1,,,..., +++++++ ⊕⊕⊕⊕⊕= nnnnnnnnnn xxxfxxxxfxxxxxxf

 

is a (t+1)-resilient Boolean function on GF(2)n+2 with nonlinearity 022 Nnl n
f +≥  

and depends on a pair of the variables (xn+1, xn+2) quasilinearly.  

The following function is derived using the method of Tarannikov [Tara2000]. The 

derivation starts from a 2-variable function and reaches to the final 8-variable 

Boolean function iteratively. The algebraic normal form of this example function is 

given by 

( )( )65327473417417317218 1 xxxxxxxxxxxxxxxxxxxxf ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

6353416415416315316215218 ( xxxxxxxxxxxxxxxxxxxxxxxxx ⊕⊕⊕⊕⊕⊕⊕⊕⊕  

)75326454 xxxxxxxx ⊕⊕⊕⊕⊕⊕  

The above function f is a 3-resilient Boolean function with nonlinearity 112, which 

satisfies the upper bound for nonlinearity given in Section 2.1. 

4.2.3 Further Discussions 

The construction technique, described above, produces resilient Boolean functions 

with maximum possible nonlinearity for the given order of resiliency where 

3

72 −≥ n
t . Moreover, the computational complexity of the algorithm being used is 

linear on n, which is superior to the other algorithms being considered. However this 

technique guarantees that the constructed function depends on some variables 

linearly, which means that those variables decreases the overall nonlinearity in 

addition to weakening the function by directly introducing linear variables to the 

function. 
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Considering the result give in Lemma 4.3 one can see that addition of a linear 

variable to a function doubles the functions nonlinearity. However, this is a little 

increase in nonlinearity remembering the fact that the upper bound on nonlinearity 

increases exponentially with the number of variables. Considering the condition c = 

0 makes it easier to realize this result.  

In Section 2.1, we have provided an upper bound on nonlinearity of resilient 

Boolean functions, which lies on two different lines for 22 −> nt  and 22 −≤ nt . 

The nonlinearity bound given by Tarannikov [Tara2000] is proved to be valid for 

3

72 −≥ n
t . Note that, 

3

72
22

−<− nn  for n > 2, which means that the nonlinearity 

bound provided by Tarannikov is already included in the upper bound given in 

Section 2.1. 
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CHAPTER 5 

 ADDITIONAL RESULTS 

 

In this chapter we give and study the results that we provide in this work. 

Specifically, we investigate the auto-correlation characteristics of the functions 

constructed in Chapters 3 and 4, which is not considered in any of the works trying 

to satisfy the upper bound on nonlinearity. Those works mentioned in Chapters 3 

and 4 mainly consider a trade-off between nonlinearity and degree of resiliency. 

They focus on constructing Boolean functions of maximum nonlinearity for a given 

degree of resiliency or vice versa. Despite the fact that, the auto-correlation 

properties of Boolean functions are cryptographically important, they are not 

investigated in literature.  

Recall from Definition 2.10 that, the auto-correlation function of a Boolean function 

gives the relation between the input difference and the output. In other words, the 

auto-correlation function gives the difference between the number of outputs that are 

same for a specific input difference vector, d, and the number of outputs that are 

different for that input difference vector, in the function’s truth table. Therefore, the 

weakness in the auto-correlation properties of a function can be used for differential 

cryptanalysis of the function [Heys2000]. Since it is cryptographically important, 

here we study the auto-correlation properties of the functions introduced in Chapters 

3 and 4. 

Theorem 5.1. Let r f (d)  = �x∈GF(2)
n  (−1) f (x) (−1) f (x ⊕ d) be the auto-correlation 

function of f. Then ( ) ( ) ( )dWdr
fWf

1
2

−= ω . 

Proof. 
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We start the proof from the definition of auto-correlation function. Then we take the 

Walsh-Hadamard transform of the auto-correlation function. 

( ) ( ) ( )( ) ( )∑ ⊕−−=
x

dxfxf
f dr 11  

( ) ( )( )∑ •−==
d

d
fdr drWR

f

ωωω 1)()(  

( ) ( ) ( ) ( ) ( )∑∑ •⊕ −−−=
d

d

x

dxfxfR ωω 111)(  

( ) ( ) ( ) ( ) ( )∑ ∑ •⊕ −−−=
x

d

d

dxfxfR ωω 111)(  

Let a ∈ GF(2)n and substitute a = x ⊕ d. 

( ) ( ) ( ) ( ) ( ) ( )∑ ∑ •• −−−−=
x

a

a

afxxfR ωωω 1111)(  

Hence, we reach the important result 

( ) )()()( 2 ωωω fdr WRW
f

==  

where, ( ) ( ) ( )dWdr
fWf

1
2

−= ω  follows. � 

 

Definition 5.1. Let f be an n-variable Boolean function. We define the sequence 

vector or the polar form of the function f as follows: 

( ) ( ) ( ){ }1210 )1(,...,)1(,)1( −−−−=
nfff

sf  

Definition 5.2. We define the 2n x 2n Hadamard matrix as, 

]1[1 =H  and 
�
�

�
�
�

�

−
=

−−−−

−−−−

××

××
×

1111

1111

2222

2222
22

nnnn

nnnn

nn
HH

HH
H  
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Hadamard matrix is important for us because it offers easy computation of the 

Walsh-Hadamard transform of a Boolean function.  

Theorem 5.2. One can form the 2n dimensional spectral vector of f 

( ) ( ) ( ){ }12,...,1,0 −= n
ffff WWWW , which is the output vector of the Walsh - 

Hadamard transform of the Boolean function f, by multiplying the sequence vector fs 

by the 2n x 2n Hadamard matrix. 

nnHfW sf 22 ×
×=  

Proof. 

The proof is based on the properties of Hadamard matrix, and is given by Piotr 

Porwik [Porw2003].            � 

Gupta and Sarkar have introduced an alternative computation method for computing 

Walsh-Hadamard values of a Boolean function from its algebraic normal form 

[GupSar2003]. Although their method is good for calculating the Walsh-Hadamard 

transform at a specific point, the algorithm does not find all values of the spectrum, 

which is necessary for finding the nonlinearity of the function. Moreover, we do not 

investigate functions of a large number of variables and only the function 

constructed by Tarannikov is in its algebraic normal form. Therefore we do not use 

their method. 

5.1 The Absolute Indicator and Sum-of-Squared-Errors 

In Definition 2.10 we give the definition for the auto-correlation function of a 

Boolean function, r f (d), and define the absolute indicator, as acf = maxd
�
0∈GF(2)

n | 

r f (d) |. The absolute indicator is a measure of strength of the function against 

differential attacks, where the attack uses the high auto-correlation value at a single 

point. Therefore, we need a low valued absolute indicator for functions to resist this 

kind of attacks.  
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For finding the absolute indicator, we make use of Theorem 5.1 and Theorem 5.2. 

We use Theorem 5.2 to find the spectrum of the Boolean function, whereas, 

Theorem 5.1 is used as an easy computation method to calculate its auto-correlation 

function. 

The absolute indicator is not the only measure related to the auto-correlation 

function. As the high auto-correlation at one point cause cryptographic weakness, 

the distribution of high auto-correlation to more than one point is also a weakness. 

The sum-of-squares indicator suggested by Zhang et al [ZhaZhe1995], is a measure 

of strength against attacks, using the distributed high auto-correlation. Note that       

r f (0) for any n-variable Boolean function f is constant and equal to 2n. Therefore the 

r f 
2(0) term in the sum-of-squares indicator does not carry information about the 

function. Moreover, the sum-of squared-errors (SSEf) defined as,  

SSEf = �d�0∈ GF(2)
n (r f

 (d))
2 

is proportional to the sum of squared deviations from that of the bent functions 

[Yüce2001].  

5.1.1  The AI and SSE of the Function Constructed in Chapter 3 

Recall from Section 3.1 that the truth table of the constructed function was: 

fC1={E880D555B33366668F0F5A5A3C3C696980FF55AA33CC66990FF05AA53

CC36997}. 

We use Theorem 5.2 and calculate the Walsh-Hadamard transform of the function 

fC1 as:  

88
1 221 ×

×= HfW
sC Cf  

=
1Cf

W  

{0 0 0 8 0 8 8 8 0 8 8 8 8 8 8 16 0 8 8 8 8 8 8 16 -24 -24 -24 -16 -24 -16 -16 -16 0 8 

8 8 -24 -24 -24 -16 8 8 8 16 -24 -16 -16 -16 8 8 8 16 -24 -16 -16 -16 -24 -16 -16 -16 
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16 16 16 24 0 8 -24  -24 8 8 -24 -16 8 8 -24 -16 8 16 -16 -16 8 8 -24 -16 8 16 -16 -16 

-24 -16 16 16 -16 -16 16 24 8 8 -24 -16 -24 -16 16 16 8 16 -16 -16 -16 -16 16 24 8 

16 -16 -16 -16 -16 16 24 -16 -16 16 24 16 24 -8 -8 0 -24 8 -24 8 -24 8 -16 -24 8 -24 

16 -24 16 -16 16 8 -24 8 -16 8 -16 16 -16 8 -16 16 -16 16 -16 16 -8 8 -24 8 -16 -24 

16 -16 16 -24 16 -16 16 16 -16 16 -8 8 -16 16 -16 -16 16 -16 24 16 -16 16 -8 -16 24 

-8 24 8 -24 -24 16 8 -16 -16 16 -24 16 16 -16 -16 16 16 -8 8 -16 -16 16 16 -16 -16 

24 16 -16 -16 24 16 -8 -8 24 8 -16 -16 16 -16 16 16 -8 -16 16 16 -8 16 -8 -8 24 16    

-16 -16 24 -16 24 24 -8 16 -8 -8 24 -8 24 24 0} 

One can see that )(max
1

ω
Cf

W  = 24 and therefore the nonlinearity, 

ω

ω)(max
2

1
2

11

18

CC ff Wnl −= −  = 116.  

 

Figure 5-1. The Walsh-Hadamard Transform of fC1 
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Note that, )0(
1Cf

W = )2(
1

n
fC

W =0 for 0 � n � 7, which implies that the function is 1-

resilient. Also note that, )(
1

ω
Cf

W  is nonzero for all other values of �, so that the 

overall spectrum of the function has a small maximum absolute value in order to 

satisfy high nonlinearity.  

Now we calculate the autocorrelation function )(
1

dr
Cf

 using Theorem 5.1: 

( ) ( ) ( )dWdr
Cf

C Wf
1

2
1

1

−= ω
 

=
1Cf

r  

{256 -16 -16 0 -16 0 -16 -8 -16 -16 -16 -24 -16 -24 -8 -8 -16 16 0 -8 0 -8 -8 -8 16 -8 

8 -8 8 -8 -8 8 -16 0 -16 -8 32 8 8 -8 -16 -24 -8 -8 8 8 8 8 0 -8 -8 -8 8 8 -8 24 8 -8 -8 8 

8 -8 8 -8 -16 0 32 8 -16 -8 8 -8 -16 -24 8 8 -8 -8 8 8 0 -8 8 8 -8 -8 -8 24 8 -8 8 -8 -8 8 

8 -8 -16 -8 8 -8 8 -8 -8 8 -8 -8 8 8 8 8 8 8 -8 -8 -8 24 -8 24 8 -24 -8 8 8 -8 8 -8 -24 16 

-16 16 -16 8 -16 8 -8 -8 -16 24 -8 8 -8 8 -8 8 -16 -8 -24 -8 -24 -8 -8 8 24 24 8 8 8 8 8 

8 -16 8 -8 -8 8 8 8 8 -8 8 -8 8 8 -8 -8 8 -24 -8 -8 8 8 -8 8 -8 8 8 8 8 -8 -8 8 0 -16 8 8 8 

-8 -8 8 8 -8 8 8 -8 -8 8 -8 8 -24 -8 8 -8 -8 8 8 -8 8 8 -8 -8 8 8 8 0 -8 -8 8 8 8 8 8 -24   

-8 8 -8 8 -8 8 8 -16 -8 8 8 -8 8 -8 8 16 8 8 8 0 8 0 -16 -16} 

Let us sketch the auto correlation function as: 
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Figure 5-2. The auto-correlation function of fC1 

 

 

The vector form and the sketch of the auto-correlation function show us that the 
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1Cf
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We calculate the sum-of-squared errors using its definition and the auto-correlation 
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SSE  = 32640 
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fC2={077CE5A2F8831A5DF8831A5D077CE5A26996699669699696669999665A

A5A55A}. 

We use Theorem 5.2 and calculate the Walsh-Hadamard transform of the function 

fC2 as:  

88
2 222 ×

×= HfW
sC Cf  

=
2Cf

W  

{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 32 0 0 0 32 0 32 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 32 0 0 0 0 0 0 0 -32 0 0 0 32 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 

0 0 0 0 32 0 0 0 -32 0 -32 0 0 0 0 0 32 0 -32 0 0 0 32 0 0 32 -32 -32 32 0 32 0 0 32 

32 32 -32 32 -32 32 -32 32 32 -32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0  

-32 0 0 0 -32 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0 32 0 0 0 -32 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0 -32 0 0 0 32 0 32 0 0 0 0 0 32 0  

-32 0 0 0 32 0 0 32 -32 -32 -32 0 32 0 0 32 32 32 32 32 -32 32 32 32 -32 -32 -32} 

One can see that )(max
2

ω
Cf

W  = 32 and therefore the nonlinearity, 

ω

ω)(max
2

1
2

22

18

CC ff Wnl −= −  = 112. 
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Figure 5-3. The Walsh-Hadamard Transform of fC2 
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n

GF
f

n

W 2

)2(

2 2)( =
�

∈ω
ω  

from Chapter 2. 

Now we calculate the autocorrelation function )(
2

dr
Cf

 using Theorem 5.1: 

( ) ( ) ( )dWdr
Cf

C Wf
1

2
2

2

−= ω
 

=
2Cf

r  

{256 -128 -32 32 -96 32 0 0 -96 32 0 0 0 0 32 -32 -96 32 0 0 0 0 32 -32 0 0 32 -32 

96 -32 -128 128 -128 0 -32 32 32 32 0 0 32 32 0 0 0 0 32 -32 32 32 0 0 0 0 32 -32 0 

0 32 -32 -32 -32 0 0 -128 0 -32 32 32 32 0 0 32 32 0 0 0 0 32 -32 32 32 0 0 0 0 32    

-32 0 0 32 -32 -32 -32 0 0 128 0 32 -32 -32 -32 0 0 -32 -32 0 0 0 0 -32 32 -32 -32 0 0 

0 0 -32 32 0 0 -32 32 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0} 
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Figure 5-4. The auto-correlation function of fC2 
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2Cf
ac  = 128. 

5.1.3 The AI and SSE of the Function by Tarannikov 

In Section 4.2.2, we give the function fC3 as: 

( ) ( ) 2747341741731721883213 (1,...,,, xxxxxxxxxxxxxxxxxxxxxfC ⊕⊕⊕⊕⊕⊕⊕=

416415416315316215218653 () xxxxxxxxxxxxxxxxxxxxxxxx ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
)753264546353 xxxxxxxxxxxx ⊕⊕⊕⊕⊕⊕⊕⊕  

From here we generate the truth table of the function, in order to use in the 

computation of its cryptographic values. 

fC3={1BE43C96C369E41BE41BC3693C961BE41BE4E41BE41B1BE4C3693C963

C96C369}. 

We use Theorem 5.2 and calculate the Walsh-Hadamard transform of the function 

fC3 as:  

88
3 223 ×

×= HfW
sC Cf  

=
3Cf

W  

{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 -32 32 0 0 32 -32 32 32 -32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 -32 32 0 0 32 -32 32 32 -32 -32 0 0 0 0 0 0 32 -32 0 0 32 -32 32 32 32 32 0 0 0 

0 0 0 32 -32 0 0 32 -32 32 32 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 -32 0 0 -32 32 -32 -32 32 32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 32 0 0 32 -32 32 32 -32 -32 0 0 0 0 0 0 

32 -32 0 0 32 -32 32 32 32 32 0 0 0 0 0 0 -32 32 0 0 -32 32 -32 -32 -32 -32} 

One can see that )(max
1

ω
Cf

W  = 32 and therefore the nonlinearity, 

ω

ω)(max
2

1
2

11

18

CC ff Wnl −= −  = 112.  



 46 

 

Figure 5-5. The Walsh-Hadamard Transform of fC3 
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3

dr
Cf

 using Theorem 5.1: 
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( ) ( ) ( )dWdr
Cf

C Wf
1

2
3

3

−= ω
 

=
3Cf

r  

{256 0 -128 0 -128 0 0 0 -128 0 0 0 0 0 128 0 -128 0 64 0 64 0 0 0 64 0 0 0 0 0 -64 0 

-128 0 64 0 64 0 0 0 64 0 0 0 0 0 -64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -128 0 64 0 64 

0 0 0 64 0 0 0 0 0 -64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

128 0 -64 0 -64 0 0 0 -64 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 5-6. The auto-correlation function of fC3 
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As can be seen in Figure 5-6, the auto-correlation characteristics of fC3 is very 

similar to that of fC2 and the SSE is the same for both functions. 

3Cf
SSE  = 196608 

The vector form and the sketch of the auto-correlation function show us that the 

absolute indicator is: 

3Cf
ac  = 128. 

5.2 Comparison of the Constructed Functions  

In this section, we make a comparison of the functions constructed in the previous 

chapters of this work, together with some other functions provided by some previous 

works [KavYüc2003]. Table 5-1 gives the comparison of functions in terms of 

nonlinearity, order of resiliency, absolute indicator and sum-of-squared-errors.  

Table 5-1. Comparison of 8-Variable Functions 

Function  f nlf 

Order of 

Resiliency, 

t 

0
max

≠d 
(d)||r f

 

(acf ) 

�

≠0

2

d   all  
(d)r f

 

(SSEf ) 

8167116

0
2

.

dall  
(d)r f

�
≠  

(100MSEf ) 

Affine 0 -1 or 0 256 16711680 100 % 

Function 

constructed in 

Chapter 3 

116 1 32 32640 0.1953125% 

Function by Sarkar 

and Maitra 

[SarMai2000-1] 

112 3 128 196608 1.176471 % 

 



 49 

Table 5-1 Comparison of 8-Variable Functions (Continued) 

Function  f nlf 

Order of 

Resiliency, 

t 

0
max

≠d 
(d)||r f

 

(acf ) 

�

≠0

2

d   all  
(d)r f

 

(SSEf ) 

8167116

0
2

.

dall  
(d)r f

�
≠  

(100MSEf ) 

Function by 

Tarannikov 

[Tara2000] 

112 3 128 196608 1.176471 % 

Stanica, Sung (see 

[KavYüc2003]) 
112  256 196608 1.176471 % 

Cauteaut et al (see 

[KavYüc2003]) 
112  256 172032 1.029412 % 

Maitra (see 

[KavYüc2003]) 
116  128 55296 0.330882 % 

Kavut, Yücel 

[KavYüc2003] 
114 0 16 23424 0.140165 % 

Kavut, Yücel 

[KavYüc2003] 
116 0 24 21120 0.126378 % 

Bent 120 -1 0 0 0 % 
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CHAPTER 6 

 CONCLUSIONS 

 

In this thesis work, we have studied the upper bound on nonlinearity of a resilient 

Boolean function, provided by Sarkar and Maitra [SarMai2000-1]. In Section 2.1, 

we investigated the given upper bound, given to be 11 22 +− −≤ tn
fnl  for 22 −> nt  

and 1121 222 +−− −−≤ tnn
fnl  for 22 −≤ nt , and based on the fact that for any given 

t-resilient Boolean function f, Wf (�) � 0 mod 2t+2 for all � ∈ GF(2)n. We then 

commented on the meaning of this upper bound in terms of cryptographic properties 

and sketch it for different number of variables for easy interpretation.  

In Chapter 3 we worked on a construction method, which was previously introduced 

by Maity and Johansson [MaiJoh2002]. We pointed out that, in their work Maity 

and Johansson omitted a criterion on the set, S, they use in the construction. 

Moreover, we give a complete description of the construction method – together 

with the criterion missed by Maity and Johansson – and prove that any t-resilient 

Boolean function constructed by this technique satisfies the upper bound on 

nonlinearity, studied in Section 2.1. We also proved that, if t > 2
n  - 2, the 

construction technique yields a nonlinearity of nlf’, where 1121 222 +−− −− tnn  < nlf’ 
� 11 22 +− − tn . We show that without the introduction of the fourth criterion, one 

cannot guarantee the resiliency of the function f. 

The construction method of Chapter 3 is a method, which starts with a bent function 

and modifies it at a set of pre-selected points. The strength of this method is that, the 

selection of the set, S, depends on the required order of resiliency and therefore any 

order of resiliency can be obtained using this method. On the other hand, obtaining 
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the set, S, has no obvious algorithm and is a major weakness of this method (see 

Appendix A). 

We have also studied two more construction techniques achieving the nonlinearity 

bound of Sarkar and Maitra, in Chapter 4. One of these methods was by Sarkar and 

Maitra, and uses a Maiorana-McFarland like technique to construct a Boolean 

function having the maximum order of resiliency for given number of variables. We 

have pointed that the intention to maximize order of resiliency distorts other 

cryptographic parameters – like the autocorrelation characteristics – of the function, 

as we have investigated in Chapter 5. Also it is impossible to construct functions 

having small order of resiliency – like the one constructed in Chapter 3 – using this 

method. 

The other construction method studied in Chapter 4 is by Tarannikov and 

emphasizes the computational complexity. The author starts with functions of less 

number of variables and adds new variables linearly to the initial function to have 

resilient functions of large number of variables. This method again produces 

functions with high order of resiliency, namely functions for which 
3

72 −≥ n
t . The 

most important property of this construction technique is its advantageous 

computational complexity, although it cannot produce functions with small order of 

resiliency.  

In the final chapter of the thesis, we investigated the functions that have been 

constructed using the methods introduced in Chapters 3 and 4, in terms of their auto-

correlation characteristics, pointing the fact that although auto-correlation is an 

important parameter against differential attacks, it has not attracted attention in the 

literature for resilient functions. We have computed the spectrum, and auto-

correlation function of each constructed function and calculated the absolute 

indicator and sum-of-squared-errors for each of them.  
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APPENDIX A 

SEARCH FOR THE SET S 

Although we have selected elements of the set S, used in Chapter 3, by inspection, 

there is not a certain way to select elements of S. Therefore, we have tried searching 

for a suitable set S satisfying the criteria listed in Chapter 3.  

Note that since the initial function is bent, there is a difference of 22
n

 between the 

number of ones and zeros and therefore the set S should at least contain 
122

−n
 

elements to satisfy balancedness. Additional elements should have outputs with 

same number of ones and zeros, which implies the set S has even number of 

elements. Moreover, using the set S or its complement S gives the same function 

except an inversion. Therefore, choosing S or S is the same in terms of nonlinearity, 

resiliency and auto-correlation, which sets an upper limit to the number of elements 

of S to be 12 −n .  

A.1 Search Starting with an Initial Set 

In this algorithm we first select an initial set S1 and then search for a second set S2 in 

order to form S = S1 ∪ S2. We first select S1 to be {1, 2, 4, 8, 16, 32, 64, 128}, 

where the numbers represent the decimal equivalent of the input vectors. Note that 

this is the same set selected in Chapter 3. 

Now we run an algorithm shown in Figure A-1 to form an S2 such that S = S1 ∪ S2 

satisfies our criteria. Our approach is to use a pair of inputs, with one element being 

the complement of the other. Since the number of elements to be searched is small 

(128 for n = 8) this is a deterministic search.  

In order to organize the search in a systematic manner, in other words, to finish the 

search after the first 128 tries, we take the input vectors to the algorithm in the order 

of gray code, excluding the vectors {(0,0,0,0,0,0,0,1), (0,0,0,0,0,0,1,0), 
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(0,0,0,0,0,1,0,0), (0,0,0,0,1,0,0,0), (0,0,0,1,0,0,0,0), (0,0,1,0,0,0,0,0), 

(0,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,0)} since they are already included in S1. 

 

 

Figure A-1. Search Algorithm Starting with an Initial Set 

 

This search finds only S2 = {0, 255}, which is the one used in Chapter 3. There is no 

other S to be constructed with this search.  

Instead of S1 above, if another set S1
’ = {127, 191, 223, 239, 247, 251, 253, 254} 

(the complemented versions of vectors of S1) is selected initially, the search does not 

give any result satisfying our criteria. 

A.2 Random Search 

Another algorithm used to find a suitable S set is randomized search for all elements 

of the set. Here we have used two basic approaches: 

Complement TV 
Set S2 = {TV, TV } 

Initialize S1  
Initialize trial vector 

(TV) 

for ω ∈ {ω | wt(ω) ≤ 1}

( ) 1221
21

−

∪=∈

⋅⊕ =−
� n

SSSx

xf ω  

Save 
Increment TV in gray 

Set S2 = {TV, TV } 

Increment TV in gray 
Set S2 = {TV, TV } 

YES NO 

Stop if end of 
trial 
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1. Set number of variables of S and randomly select elements. 

2. Start with a random set of size 
122

−n
, randomly select new elements, 

incrementing the number of elements after a certain number of trials. 

By randomized search we have tried over 820 million sets for number of elements 8, 

10, 12 and up to 32 elements with the incremental search and not been successful in 

finding any other S set.  

 

Figure A-2. Random Search 

 

Figure A-2 and Figure A-3 show the two algorithms that apply randomized search. 

Modifying the number of variables of S enlarges the search space, but also slows 

down the computation.  

Randomize S 

for ω ∈ {ω | wt(ω) ≤ 1}

( ) 1221
−

∈

⋅⊕ =−∑ n

Sx

xf ω  

Save 

YES NO 

Stop if end of 
trial 
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Figure A-3. Random Search with Variable Number of Elements 

 

A.3 Further Discussions 

The two basic search methods we have investigated, the one with an initial set and 

randomized search, does not give many sets that satisfy the required criteria.  

The only set obtained is the one obtained by the search starting with an initial set 

and is same as the one used in Chapter 3. Although this method decreases the 

number of elements to be searched by selecting some elements initially, still there is 

no obvious way to form the initial set. However, forming S1 from the vector of 

Randomize S 

for ω ∈ {ω | wt(ω) ≤ 1}

( ) 1221
−

∈

⋅⊕ =−∑ n

Sx

xf ω  

Save 

YES NO 

Stop if end of 
trial 

End of trial for that 
number of elements NO 

Increment # 
of elements 
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weight one, for example, as done in this work may be a wise guess. The advantage 

here is the possibility to perform a deterministic search since the search space is 

small. 

The random search on the other hand is performed in a very large search space. For 

example, there are 2.79 x 1017 possible sets for n = 8 and |S| = 10. Moreover, the 

number of elements of S may have many other values rather than 10 for n = 8 and 

this number increases exponentially with increasing n.  

We have tried 820 million different sets with number of variables 8, 10 and 12, 

which takes days to complete such a search on a computer with 2800 GHz 

processor. Note that this number of trials, even though it is large and requires a very 

long time, is very small compared to the number of possible sets.  

 

 

 


