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ABSTRACT 

 

 

CONTROL OF pH IN NEUTRALIZATION 

REACTOR OF A WASTE WATER TREATMENT SYSTEM 

USING IDENTIFICATION REACTOR 

 

 

 

Obut, Salih 

   M. S., Department of Chemical Engineering 

   Supervisor: Prof. Dr. Canan Özgen 

 

August 2005, 61 pages 

 

 

A typical wastewater effluent of a chemical process can contain several strong acids/bases, 

weak acids/bases as well as their salts. They must be neutralized before being discharged to 

the environment in order to protect aquatic life and human welfare. However, neutralization 

process is highly non–linear and has time–varying characteristics. Therefore, the control of 

pH is a challenging problem where advanced control strategies are often considered. 

 

In this study, the aim is to design a pH control system that will be capable of controlling the 

pH-value of a plant waste-water effluent stream having unknown acids with unknown 

concentrations using an on–line identification procedure. A Model Predictive Controller, MPC, 

and a Fuzzy Logic Controller, FLC, are designed and used in a laboratory scale pH 

neutralization system. The characteristic of the upstream flow is obtained by a small 

identification reactor which has ten times faster dynamics and which is working parallel to 

actual neutralization tank. In the control strategy, steady–state titration curve of the process 

stream is obtained using the data collected in terms of pH value from the response of the 

identification reactor to a pulse input in base flow rate and using the simulated response of 

the identification reactor for the same input. After obtaining the steady–state titration curve, 

it is used in the design of a Proportional–Integral, PI, and of an Adaptive Model Predictive 
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Controller, AMPC. On the other hand, identification reactor is not used in the FLC scheme. 

The performances of the designed controllers are tested mainly for disturbance rejection, 

set–point tracking and robustness issues theoretically and experimentally. The superiority of 

the FLC is verified.  

 

Keywords: pH Control, Non–linear Control, Identification, Model Predictive Control, Fuzzy 

Logic Control.  
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ÖZ 

 

 

TANIMLAMA TEPKİME TANKI KULLANARAK, 

ATIK SU ARITIM SİSTEMİNİN NÖTRALİZASYON TANKINDA 

pH DEĞERİNİN DENETLENMESİ 

 

 

Obut, Salih 

   Yüksek Lisans, Kimya Mühendisliği Bölümü 

   Tez Yöneticisi: Prof. Dr. Canan Özgen 

 

Ağustos 2005, 61 sayfa 

 

 

Kimyasal bir sürecin atık suyunda çeşitli kuvvetli ve zayıf asitler/bazlar ile bunların tuzları da 

barınmaktadır. Atık sular, suda yaşayan canlıların ve insan sağlığının korunması amacıyla 

çevreye deşarj edilmeden önce nötralize edilmelidir. Ancak, nötralizasyon noktası civarında 

titrasyon eğrisinin eğimindeki ani değişmeler nedeniyle, pH süreçleri doğrusal olmayan ve 

zamanla değişen bir dinamiğe sahiptirler. Bu nedenle, zor olan pH değerinin denetiminde 

genellikle gelişmiş denetim teknikleri düşünülmektedir.  

 

Bu çalışmada, bilinmeyen derişimde ve çeşitlilikte asit içeren bir süreç atık suyunun pH 

değerini, hat-üstünde tanımlama metodu kullanarak denetleyebilecek denetim sistemleri 

tasarlanmıştır. Bir Model Öngörümlü Denetleç, MÖD, ve bir Bulanık Mantık Denetleç, BMD,   

tasarlanmış ve laboratuar ölçekli bir nötralizasyon sistemine uygulanmıştır. Atık suyun  

karakteristikleri, ana nötralizasyon tankına paralel olarak çalışan ve yaklaşık olarak ana 

tanktan on kat daha hızlı bir dinamiğe sahip küçük bir tanımlama tankından elde edilmiştir. 

Denetim stratejisinde, süreç akımının yatışkın–durum titrasyon eğrisi, tanımlama tankının pH 

değerinin bu tanka giren baz akımına uygulanan bir vuru etkiye verdiği yanıt ile aynı vuru 

için süreç modelinin benzetimle elde edilen tepkisinin birlikte kullanılmasından elde 

edilmektedir. Yatışkın–durum titrasyon eğrisinin elde edilmesinden sonra, Oransal–Entegral, 

PI, ve Uyarlamalı Model Öngörümlü Denetleç, UMÖD, tasarımlarında kullanılmıştır. Öte 
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yandan tanımlama tankı Bulanık Mantık Denetleç, BMD, tasarımında kullanılmamıştır. 

Tasarlanan tüm denetleçler öncelikle bozan etkeni uzaklaştırma, ayar noktası takibi ve 

gürbüzlük performansları açısından incelenmiş ve Bulanık Mantık Denetleç’in en iyi 

performansı verdiği belirlenmiştir. 

 

Anahtar Kelimeler: pH Denetimi, Doğrusal Olmayan Denetim, Tanımlama, Model Öngörümlü 

Denetim, Bulanık Mantık Denetim. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Many of the chemical processes exhibit non–linear behavior due to changing process gain in 

different operating points. The control of these processes is not easy due to this non–linear 

behavior. Control of pH neutralization is an example of such processes and it is classified as 

one of the most important and difficult control problems in the chemical process industry 

especially in the category of waste–water treatment processes. In addition to the non–linear 

behavior, they also have time–varying characteristics. 

 

In waste–water treatment plants influent stream composition changes continuously due to 

changes in waste streams of different processing units. The non–linearity of these processes 

is because of the steady–state S–shaped titration curve which also gives variable steady–

state gain. Also, the change of influent acid composition results in a change in the shape of 

the titration curve with time.  

 

During the last two decades, tradition is changed in the control area and model–based 

controllers are used frequently in process industries. Therefore, to enable such a control 

algorithm, titration curve of the influent stream has to be known and must be corrected or 

simply updated with time. “Despite potential problems in continuous model updating, 

success of pH control relies on the correctness of the titrating curve. Another approach, 

instead of continuously updating model parameters, is to reparameterize the titration curve 

when necessary” (Lin and Yu, 1993).  

 

In the literature, different approaches to identify and to control with adaptation of the pH 

processes can be found. Some of these methods are; reaction invariant control (Gustafsson 

and Waller, 1983), strong acid equivalent control (Wright and Kravaris, 1991, 2001; Wright 

et al. 1991), gain scheduled PI control (Lin and Yu, 1993), fuzzy logic control, (Garrido et al., 

1997, Adroer et al., 1999), adaptive control (Lin and Yu, 1993; Wright et al., 1998; Sung et 

al., 1995; Sung et al., 1998), model predictive control (Maiti et al., 1994; Norquay et al., 
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1998; Galán et al., 2004 and Lu et al., 2004) Regunath and Kadirkamanathan (2001). 

Actually, to overcome time–varying non–linear character of the pH processes, adaptive 

controllers must be used. 

 

In this study, an identification reactor is used to identify the characteristics of the influent 

stream of a neutralization process, which is the steady–state titration curve, similar to the 

study of Wright et al. (1998). The pH process model developed by Wright and Kravaris 

(1991) is combined with the suggested identification method to overcome the time–varying 

dynamics of the influent stream. An adaptive model predictive controller and a fuzzy logic 

controller are then designed in terms of the strong acid equivalent concept and in terms of 

pH, respectively, and used for the control of a neutralization process.  

 

The outline of this thesis is as follows. Literature survey on pH process modeling and pH 

control with advanced control techniques are given in Chapter II. A short review of Wright 

and Kravaris’s (1991) minimal–order realization model for the pH processes with PI 

controller algorithm is presented in Chapter III which is followed by brief reviews of Model 

Predictive Control, MPC, (Chapter IV) and Fuzzy Logic Control, FLC, (Chapter V). In Chapter 

VI, the experimental set–up is described. The next chapter, Chapter VII, is devoted to the 

results of the simulation and experimental studies together with discussions. Conclusions are 

given in Chapter VIII. 
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CHAPTER II 

 

 

LITERATURE SURVEY 

 

 

The control of pH is recognized as a difficult non–linear control problem and has been 

extensively treated in the literature due to its highly non–linear and time–varying behavior. 

Studies related to the development of models for static and dynamic behavior of the pH 

processes and different pH control applications will be presented in this Chapter. 

 

The general approach for modeling pH processes was first developed by McAvoy et al. 

(1972) for the dynamics of pH in stirred tank reactors. Mathematical model was derived 

from material balances, equilibrium relations and electroneutrality condition, and it is 

generally applicable. Neutralization of acetic acid with sodium hydroxide was examined and 

the accuracy of the resulting mathematical model was verified experimentally by step input 

tests. 

 

A general method for developing the dynamic model for acid–base reactions is presented in 

the work of Gustafsson and Waller (1983). The method is based on the separation of the 

model into reaction variant and invariant parts. In this way, dynamic model of pH process 

can be expressed by one linear differential equation as dynamic part and a non–linear 

implicit algebraic relation as static part. An application of adaptive reaction invariant 

feedback control of pH is also given. However, the controller requires the detailed model of 

the acid–base reactions.  

 

Gustafsson (1985) experimentally tested reaction invariant feedback control and adaptive 

linear pH–feedback control of pH in fast acid–base reactions in stirred tank reactors under 

varying buffer concentrations. Dynamic model used in the controllers was developed using 

the earlier presented method of Gustafsson and Waller (1983). Parameters of the dynamic 

model first obtained using off–line identification experiments and they used in the design of 

the controllers. Experimental results for sulfuric acid–sodium carbonate–sodium hydroxide 

system were presented.  
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A general mathematical model for pH processes was reviewed by Wright and Kravaris 

(1991). A minimal–order model having same input–output behavior as the full–order model 

was derived and the strong acid equivalent concept first introduced. The strong acid 

equivalent is the state in the reduced model and it can be calculated from online pH 

measurements by knowing only the titration curve of the inlet process stream. pH control 

problem was reformulated and an equivalent control objective in terms of the strong acid 

equivalent was proposed. A linear controller in terms of strong acid equivalent was designed 

and the performance of the proposed controller was evaluated under a variety of 

concentration disturbances and modeling errors. 

 

The method of strong acid equivalent introduced by Wright and Kravaris (1991) was 

implemented to a laboratory–scale pH neutralization system by Wright et al. (1991). A 

proportional–integral (PI) controller in terms of strong acid equivalent was designed to 

control a neutralization process in a continuous–stirred tank reactor. Neutralization of 

hydrochloric acid with sodium hydroxide and neutralization of acetic acid with sodium 

hydroxide were experimentally studied. Experimental results for both of the systems show 

that the pH control algorithm based on the strong acid equivalent concept can overcome 

disturbances in the presence of modeling errors.  

 

Gustafsson and Waller (1992) discussed the methods of continuous control of pH in process 

streams. The paper investigates the need for adaptation and illustrates the advantages and 

disadvantages of linear and non–linear adaptive control methods for practical pH control. 

The simulations and experiments show that non–linear control is superior if the 

characteristic of the process is well–known. On the other hand, since the process 

characteristics are usually not well–known, linear feedback from pH is often as good as non–

linear feedback. The most significant advantages of non–linear control over linear control is 

that, if the pH control system oscillates for shorter and longer periods of time, which is quite 

common in practice, non–linear feedback control results in tighter control with smaller 

amplitudes of the oscillations than that of linear feedback control. 

 

Three–region fuzzy logic controller for controlling a non–linear pH process was demonstrated 

by Qin and Borders (1994). According to the prior knowledge of the pH process (steady–

state titration curve), three operation range was determined and a fuzzy controller that uses 

pH value as an auxiliary variable was designed. Use of auxiliary enables the controller to 

make aggressive control action for low gain regions and to make mild control actions for 

high gain regions. Computer simulations were performed to evaluate the performance of the 
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proposed controller for controlling the pH value in a continuous–stirred tank reactor (CSTR) 

where neutralization takes place. Three–region controller was compared with conventional 

fuzzy controller and it was seen that proposed controller performed well for both set–point 

tracking and disturbance rejection issues. 

 

Sung et al. (1995) developed a new identification strategy which consists a small 

identification tank to incorporate both non–linearity and time–varying characteristics of the 

pH process. They obtained the equivalent titration curve of the process stream from the 

identification reactor and used this information to transform the measured pH value of the 

main neutralization reactor to the state variable that is also the controlled variable in a PI 

controller. Their work includes a simple stability analysis to determine the parameters of the 

PI controller. Simulation results show that proposed method can handle both the non–

linearities and time–varying characteristics of the pH process. 

 

Gustafsson et al. (1995) discussed the chemistry of the acid–base reactions for more 

complex situations such as formation of metal complexes and precipitation of solids. Static 

and dynamic model for pH processes were presented. Approximations on the static model 

were also investigated and it is stated that “most systems can be approximated with 

fictitious mono–protic weak acids with an accuracy that is satisfactory for pH control 

purposes”. 

 

Sung and Lee (1995) used a simple set–point change to obtain the two–parameter titration 

curve model for a pH process. In their proposed method, they used Wright and Kravaris’ 

(1991) control strategy and Yuwana and Seborg’s (1982) auto–tuning concept. Several 

simulations were performed to show the performance of the identification method. However, 

if the identification data were contaminated by the disturbances, the proposed method 

would not work well. 

 

Predictive control of pH using non–linear fuzzy model was proposed by Kavšek-Biasizzo et al. 

(1997). A non–linear fuzzy model was used to obtain the step response coefficients of the 

pH process in an on–line manner. Then these coefficients were incorporated into the 

dynamic matrix control (DMC) structure in which dynamic matrix of the controller updated at 

each sampling interval instead of being fixed. Takagi–Sugeno type inference system was 

used to obtain Non–linear Auto Regressive with eXogenous input (NARX) of the pH process. 

Base flow rate and the pH value were the inputs to the fuzzy inference system. The accuracy 

of the NARX model was tested by simulations and it was observed that the model can 
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accurately represent static and dynamic behavior of the pH process. Performance of the 

fuzzy predictive controller was tested using simulated bench scale pH process for only set–

point tracking and smooth response was obtained. 

 

Garrido et al. (1997) presented application of fuzzy logic control to a wastewater 

neutralization process. Effectiveness of the fuzzy logic was compared, through computer 

simulations, with other advanced controllers developed by Kurtz (1985), Riggs et al. (1990) 

and Gaulian et al. (1990). Fuzzy controller inputs were error in pH value and the error 

velocity which is the difference between actual error and that of the previous sampling time. 

The output was parameter S and actual flow ratio was adjusted using a power law relation. 

The pH process studied consists of a single CSTR having an acid wastewater stream and 

basic titrating stream as inputs. The control objective is to keep the effluent pH value at 7.0 

in the presence of disturbances. Comparisons were performed for two subsections; (1) 

behavior of the controller under different buffering capacity of wastewater; (2) behavior of 

the controller under changing acid concentrations of the inlet wastewater. It was observed 

that the settling time of the pH response after a disturbance enters the system increases as 

the pKa value of the acid decreases for all of the controllers tested except fuzzy logic 

controller. This is due to fact that, the process gain around pH = 7.0 increases for acids with 

low pKa value. The inverse behavior of the fuzzy logic controller showed that the controller 

was better for low buffering conditions (wastewater containing strong acids) and therefore, 

for unbuffered wastewaters fuzzy logic controller gave the best results for various step 

changes in acid concentration. 

 

Wright et al. (1998) developed a new identification method for determining the non–linearity 

of pH processes. In their method, titration curve of the process stream fitted to a two 

parameter non–linear equation which was derived from the pH process model, assuming 

unknown species in the process stream are mono–hydroxyl bases or mono-protic acids. 

Resulting identification method incorporated into the strong acid equivalent control structure 

presented in previous work of Wright and Kravaris (1991). Several computer simulations and 

experimental results demonstrated the performance of the proposed identification method. 

Comparisons between the control systems that uses identification algorithm and fixed 

titration curve were also provided.  

 

Wiener model predictive control (WMPC) applied to an experimental acid–base neutralization 

process by Norquay et al. (1998). In addition, a variety of model structures such as Auto 

Regressive with eXogenous inputs (ARX) and step response model were inspected with their 
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identification procedures. Due to its highly non–linear gain, the pH process was modeled as 

Wiener model, composed of a dynamic linear element followed by a cubic spline static non–

linearity, and model validation was also performed in the study. It was experimentally shown 

that Wiener MPC gave better disturbance rejection and set–point tracking performance as 

compared to both linear MPC and conventional PID controller. 

 

Sung et al. (1998) proposed an adaptive control strategy which uses an on–line recursive 

estimator for determining the total ion concentration and dissociation constant of a fictitious 

acid. Using the information obtained from the estimator a non–linear PI controller was 

designed and used to control the pH value of a neutralization reactor where an acid stream 

neutralized by a base stream. Several simulations were conducted to evaluate the effect of 

the feed composition variation, quantization of the actuator, parameters of the estimator 

and modeling errors and to suggest a guideline in choosing the system parameters. A good 

control performance and robustness established from the proposed controller under different 

modeling errors and measurement noise. However, it was assumed that feed stream was 

composed of a single 1–protic weak acid. Therefore, if a new chemical species enter the 

system that would change the shape of the titration curve significantly; the control 

performance would probably be poor. 

 

Adroer et al. (1999) applied the fuzzy controller developed by Garrido et al. (1997) to a 

laboratory scale neutralization process. They modified the fuzzy controller such that output 

of the controller was adjusted by a scaling parameter, which is a function of last 15 error 

measurements, to increase the robustness of the controller for varying buffering capacities 

of wastewater streams. Proposed controller performance was tested experimentally for 

changes in the wastewater buffering capacity, changes in the concentration of acid and 

changes in the type of acid in the wastewater stream. Results revealed that proposed fixed 

structure fuzzy logic controller with a tuning factor effectively control the neutralization 

process with variable buffering capacities.  

 

Wright and Kravaris (2001) successfully applied the non–linear controller developed by 

Wright et al. (1998) to an industrial pH process. The controller was tested for several 

different set–point pH values and found to be very beneficial to the plant and some of the 

earlier problems associated with the process were eliminated. Closed–loop performance of 

the non–linear controller was evaluated under normal operating conditions as well as a 

number of hardware problems and satisfactory control performance was obtained for each 

case. 
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Regunath and Kadirkamanathan (2001) applied fuzzy non-uniform scheduling approach to 

weak acid-strong base pH neutralization process. Two dimensional Sugeno type fuzzy 

inference system (FIS) was used to determine proportional and integral gains of a PI 

controller. Set–point pH and effluent pH values were inputs to the fuzzy inference system 

and proportional and integral gains of the PI controller were the outputs from the inference 

system. Six asymmetric Gaussian membership functions used in the standard fuzzy system 

and they optimized by using basic evolutionary programming (BEP). BEP optimized fuzzy 

non–uniform grid scheduling control scheme tested via simulations and its performance 

compared with gain standard scheduled PI, dynamic gain scheduled PI and the standard 

non–uniform grid scheduling scheme in terms of integral of absolute error (IAE) and 

integrated absolute control effort (IACE) criterions. It was shown that by using BEP 

optimized fuzzy non–uniform grid scheduling, IAE score reduced by 67% while having an 

increment of 0.013% in the IACE score compared to the standard scheduling PI controller. 

 

Babuska et al. (2002) implemented a fuzzy–self tuning PI controller for controlling the pH 

value of a small scale laboratory fermentation system. The control objective is to keep the 

pH value of the fermentation medium within the range of ± 0.05 pH units. Designed control 

system consists of two parts; an adaptive PI controller and a fuzzy self–tuning mechanism 

which has two inputs as error and its time derivative. Proportional gain and integral time of 

the PI controller adjusted on–line by a single parameter updated using the output of the 

fuzzy inference system. The controller was tested via simulations and then experimentally 

verified. It was shown that the fuzzy self–tuning PI controller was capable of controlling the 

pH value of a fermentation process accurately within the required range of pH. 

 

Venkateswarlu and Anuradha (2004) introduced a dynamic fuzzy adaptive controller (DFAC) 

with a new inference mechanism for the control of pH processes. The DFAC contains a low–

level basic control phase and a high–level dynamic learning phase by which the rule base of 

the basic control phase is modified on–line during the control of the pH process. The DFAC 

learning mechanism takes error and change of the error as inputs to evaluate the controller 

performance from the past control trends and then it appropriately modifies the rule base of 

the basic control phase. Proposed control scheme was applied to a weak acid–strong base 

pH process using simulations. The performance of the DFAC was tested for regulatory and 

servo performances under different buffering conditions and compared with conventional PI 

controller, fuzzy controller and adaptive PID controller. The simulated results show that the 
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DFAC controller provides improved performance for the control of highly non–linear pH 

processes. 

 

Linearizing feedforward–feedback control scheme was successfully applied to a pH process 

by Kalafatis et al. (2004).  The pH process was modeled as a Wiener model consisting one 

dynamic linear element and a static non–linear element which is actually the titration curve 

of the pH process. Linearization performed using inverse of the exact titration curve and its 

estimate. Computer simulations verified the superiority of the linearizing feedforward–

feedback control scheme over the linearizing feedback scheme. However, an accurate 

estimate of the titration curve is vital for each controller. 

 

Neutralization of acetic acid with sodium hydroxide in a CSTR was studied by Kumar et al. 

(2004). The Wiener model consists of a linear dynamic element and a static non–linear 

element was used to model the pH process. Static non–linearity mapped by a combination of 

odd–order polynomials, and a non–linear PI controller designed based on the Wiener model. 

The non–linear PI controller was tuned by pole placement method and further improved by 

using the method of inequalities. Also, for different operation zones a local linear PI 

controller were designed and compared with the non–linear PI controller. Several computer 

simulations and experiments demonstrated the superiority of the non–linear controller over 

the local linear PI controller and the usefulness of the method of inequalities for designing 

the non–linear PI controllers was shown. 

 

Galán et al. (2004) successfully applied multi–linear model–based controllers to a laboratory 

scale neutralization reactor. The pH neutralization process modeled by first–order transfer 

function models for different operation regions according to the titration curve of the 

neutralization process. Based on these models, a standard PI, a gain scheduled PI, an H∞ 

multi–linear controller and a multi–linear model predictive controller were designed. The 

controllers were experimentally tested for set–point tracking and flow rate disturbance 

performances. Excellent closed–loop behavior of the multi–linear controllers was shown 
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CHAPTER III 

 

 

MODELING STUDIES 

 

 

The modeling of single acid/single base pH process was achieved by McAvoy et al. (1972) 

and their model was generalized by Gustafsson and Waller (1983) and later by Wright and 

Kravaris (1991) by introducing the strong acid equivalent concept. The model is based on 

first principles, material balances, and also chemical equilibria. In this chapter, a brief review 

of mathematical modeling for the pH processes developed by Wright and Kravaris (1991) will 

be given. 

 

3.1. pH PROCESS MODELING 

 

Consider an acid–base reaction process between a p–protic acid and m–hoydroyxl base in 

water. The chemical equilibria and definitions of equilibrium constants for a p–protic acid, 

where p value usually takes 1, 2 or 3, can be written as: 

 

+ −
−− +

−

+ −
−− +

− − −
−

+ −

− − − +

− −

      + =
  

      + =
  

      + =
  

p 1
p p 1 a1
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2
p 22

p 1 p 2 a2
p 1

p
(p 1) p

ap (p 1)

H H A
H A H A H K

H A

H H A
H A H A H K

H A

H A
HA A H K

HA

 (3.1) 
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Similarly for an m–hydroxyl base, the chemical equilibrium and definitions of equilibrium 

constants can be written as follows: 

( ) ( )
( )

( )

( ) ( )
( )

( )

( )
( )

+−
−+ −

−

+−
−+ + −

− − +

−

− +
− + + −

− +

     + =
  

     + =
 
 

      + =
 
 

m 1

b1m m 1
m

2

m 22

b2m 1 m 2

m 1

m
(m 1) m

bm (m 1)

OH B OH
B OH B OH OH K

B OH

OH B OH
B OH B OH OH K

B OH

OH B
B OH B OH K

B OH

 (3.2) 

The equilibrium of water is: 

+ − + −   + =    2 wH O H OH K H OH  (3.3) 

At this point the total ion concentration of each acid and base will be defined as in Wright 

and Kravaris (1991): “The total ion concentration of the ith species is defined, if i is an acid, 

as the sum of all concentrations of species containing the anion of the acid, or if i is a base, 

as the sum of all concentrations containing the cation of the base” as: 

− −
−    = + + +     … p

i p p 1x H A H A A    if i is an acid (3.4) 

( ) ( )+ +
−

    = + + +     … m
i m m 1

x B OH B OH B   if i is a base (3.5) 

In addition to the equilibrium stated above, the solution containing acid and base should be 

electrically neutral. Therefore this electroneutrality condition requires that: 

{ }
( ) ( ){ }

i

i i

j

j j

#acid
p2

p 1 p 2 i
i 1

#base
2 m

jm 1 m 2
j 1

H A 2 H A p A OH

B OH 2 B OH m B H

−− − −
− −

=

+ + + +
− −

=

       + + + + =     

       + + + +          

∑

∑

…

…
 (3.6) 

The chemical equilibria (Eqs. 3.1 – 3.3), definitions of total ion concentrations (Eqs. 3.4 and 

3.5), and the electroneutrality condition (Eq. 3.6) can be combined to obtain a single 

algebraic equation (Wright and Kravaris, 1991) which is called the “pH equation” as: 

( )+ +

+
=

   + − =      
∑

#species
w

i i
i 1

K
a H x H 0

H
 (3.7) 
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where the ( )+  ia H   is defined for an acid as: 

( )
( )

−+ +

+
−+ + +

      + − + +

  = − 
          + + + +

…

… …

i

i i i i

i i

i i i i i i i

p 1

i i
ap a2 a3 ap

i p 1 p
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H H H
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 (3.8) 

and for a base as: 

( )
( )

i
i i

i i i i

i i
i i

i i i i i i i

m 1
m m 1 ww

i i
bm b2 b3 bm

i m 1 m
m m 1 ww w

bm b2 b3 bm b1 b2 bm
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m H m 1 H

K K K K
a H

K HK K
H H

K K K K K K K

− +
−+ +

+
− +

−+ +

     + − + +   
  = −       + + + +   

…

… …

 (3.9) 

considering that if the jth dissociation of an acid or base is strong, then (1 / Kaji) = 0 for an 

acid or (1 / Kbji) = 0 for a base, respectively. Since, + = −  pH log H , Eqn. (3.7) becomes: 

( ) ( )
=

+ =∑
#species

i i
i 1

a pH x A pH 0  (3.10) 

where ai(pH)’s are given before and [H+] is replaced by 10–pH, and ( ) = −pH pH
wA pH 10 K 10 . 

Thus, the “pH equation” (Eq. 3.10) can be used to obtain the titration curve of any acid–

base neutralization process. 

 

Consider a solution with initial liquid volume V1 and containing a mixture of acids and/or 

bases of total ion concentrations x1i. This solution will be titrated with a solution having a 

volume of V2 and total ion concentrations of x2i. The total ion concentrations, xi, after mixing 

becomes: 

+
=

+
1 1i 2 2i

i
1 2

V x V x
x

V V
 (3.11) 

Thus xi (Eq. 3.11) can be substituted into Eq. (3.10) to obtain the pH value after mixing 

process as:  

( ) ( )
=

+
+ =

+∑
#species

1 1i 2 2i
i

i 1 1 2

V x V x
a pH A pH 0

V V
 (3.12) 
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rearrangement of Eq. (3.12) yields: 

( ) ( )

( ) ( )
=

=

+
= −

+

∑

∑

#species

i 1i
2 i 1

#species
1

i 2i
i 1

A pH a pH x
V
V

A pH a pH x
 (3.13) 

for a given V1 value,  plot of pH versus V2 gives the titration curve. Thus, if the right hand 

side of Eq. (3.13) is defined as T(pH) as: 

( )
( ) ( )

( ) ( )
=

=

+
= −

+

∑

∑

#species

i 1i
i 1

#species

i 2i
i 1

A pH a pH x
T pH

A pH a pH x
 (3.14) 

Then, Eq. (3.14) corresponds to the titration curve rotated by 90° and can be used to obtain 

the titration curve of any acid–base system with given total ion concentrations. 

3.2. pH PROCESS DYNAMICS 

Consider a continuous–stirred tank reactor where the neutralization process takes place 

(Figure 3.1). Assuming perfect mixing and constant volume, the material balances around 

the system can be written as follows (Wright and Kravaris 1991): 

( ) ( )i
i i i i

dx
V F c x u b x

dt
= − + −  for I = 1, …, n (3.15) 

where ci , bi and xi are the total ion concentration of the ith species in the process, titrating 

and the effluent streams, respectively. F is the volumetric flow rate of the process stream, u 

is the volumetric flow rate of the titrating stream, and V is the volume of liquid in the reactor 

vessel. 

 Titrating stream 

u [L/min] bi [mol/L] 

Process stream 

F [L/min] ci [mol/L] 

Effluent stream 

F+u [L/min] xi [mol/L] 

 

Figure 3.1. A Simple pH Neutralization System 



 

 14

The pH value of the effluent stream can be evaluated using pH equation (3.10) and Eqs. 

(3.10) and (3.15) form the general mathematical model for the pH process in Figure 3.1. 

 

Wright and Kravaris (1991) introduced the strong acid equivalent concept to reformulate the 

pH control problem. The weighted sum: 

( )
=

= − ∑
#species

i sp i
i 1

Y a pH x  (3.16) 

is defined as the strong acid equivalent of a mixture of electrolytes. The strong acid 

equivalent is related to the amount of base needed to bring the system pH to desired set–

point pH value. Thus, instead of pH one can use Y as a controlled variable. Since the 

dynamics of the process are the same for both pH and Y, an equivalent control objective can 

be defined as: 

“For the system given by (3.15) and (3.16) keep Y ≈ −pH pH
w10 K 10  

in the presence of disturbances” 

requiring that Y can be measured or computed on–line. 

 

As shown by Wright and Kravaris (1991) by measuring the effluent pH value it is not 

possible to determine the value of total ion concentrations, xi. Because all state equations 

are uncoupled and have same time constants. A minimal order model providing same input–

output behavior as the detailed model shown above was also derived by Wright and Kravaris 

(1991). Assuming the model parameters F, V, ci and bi are constant and that the system is 

initially at steady state, Eq. (3.15) can be rearranged to give: 

( )( ) ( )
( ) ( )( )

( )
i i i i i i

i i

d c x t / c b c x t
V u F u

dt c b

 − − −  = − +
−

 (3.17) 

for each i. If the scaled total ion concentration is defined as: 

i i

i i

c x (t)
X(t)

c b
−

=
−

 (3.18) 

then Eq. (3.15) can be written as: 

( )= − +
dX

V u F u X
dt

 (3.19) 
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Therefore, the inverse of the titration curve of the process stream: 

( )
( ) ( )

( ) ( )

#species

i i
i 1

#species

i i
i 1

A pH a pH c
T pH

A pH a pH b

=

=

+
= −

+

∑

∑
 (3.20) 

can be expressed as: 

( )
( )

=
+

T pH
X(t)

1 T pH
  (3.21) 

by combining pH equation (Eq. 3.10) with Eq. (3.20). Eqs. (3.19) and (3.21) form the pH 

process model having exactly the same input–output as the process given by Eq. (3.10) and 

(3.15). The strong acid equivalent and the scaled total ion concentration, X(t), are linearly 

related with each other as (Wright and Kravaris, 1991): 

( )
( )

( )
( ) ( ) ( )( )

sp sp

#species
sp

sp i sp i sp
i 1

T pH Y A pH
X(t)

1 T pH
A pH a pH b 1 T pH

=

−
= −

 +
+ + 

 
∑

  
(3.22) 

by defining: 

 ( )′ = − = −sp spY Y Y Y A pH  

( )sp spu u u u F T pH′ = − = −  

(3.23) 

 (3.24) 

reduced pH process model (3.19 and 3.21) becomes: 

( )( ) ( ) ( )

( ) ( ) ( ) ( )
( )

#species

sp sp i sp i
i 1

#species
sp

sp i sp i
i 1

dY
V 1 T pH FY Y A pH a pH b u

dt

T pH T pH
Y A pH a pH b

1 T pH

=

=

′  
′ ′ ′= − + − + + 

 

− 
′ = +  + 

∑

∑
 (3.25) 

where Y' is the state of the model which provides nearly linear dynamics. In most of the 

industrial processes, titrating streams are much more concentrated than the process streams 

and thus u << F. Reduced pH process model may be further simplified considering X << 1 

and T(pH) << 1: 

( ) ( ) ( ) ( )= − + =
dX t

V u F u X t and X(t) T pH
dt

 (3.26) 
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or in terms of deviation variables as: 

( ) ( )

( ) ( ) ( ) ( )( )

#species

sp i sp i
i 1

#species

sp i sp i sp
i 1

dY
V FY A pH a pH b u

dt

Y A pH a pH b T pH T pH

=

=

′  
′ ′= − − + 

 
 

′ = + − 
 

∑

∑
 (3.27) 

A first order transfer function for the simplified model (Eq. 3.27) can easily be derived:  

( )
( )
′

= =
′ τ +

p

p

KY s
G(s)

U s s 1
 (3.28) 

where: 

 ( ) ( )
#species

sp i sp i
i 1

U A pH a pH b u
=

 
′ ′= + 

 
∑  (3.29) 

p

V
F

τ =  (3.30) 

= −P

1
k

F
 (3.31) 

Using the transfer function in (Eq 3.28), a linear PI controller can easily be formulated: 

( ) ( )

t

c 0
I

#species

sp i sp i
i 1

1K Y Y dt
u

A pH a pH b
=

 
′ ′+ τ ′ =

 
+ 

 

∫

∑
 (3.32) 

or in discretized form as in Wright and Kravaris (1991): 

( ) ( )

c k c k 1
I

k k 1 #species

sp i sp i
i 1

tK 1 Y K Y
u u

A pH a pH b

−

−

=

 ∆ ′ ′+ + τ ′ ′− = −
 

+ 
 

∑
 (3.33) 

where ∆t is the sampling time of the discrete controller. 
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CHAPTER IV 

 

MODEL PREDICTIVE CONTROL 

 

 

Model Predictive Control, MPC, is a powerful control technique in which future plant behavior 

is optimized by the use of an explicit plant model. Also, it is possible to include input and/or 

output constraints in the optimization problem. Basically, at any sampling interval, n, the 

process model is used to evaluate the future plant outputs, y(n+k) for k=1…P, for a finite 

prediction horizon, P, using past plant input–output data and future plant inputs, u(n+k), for 

k=1…C, where C is the control horizon. Next, plant behavior is optimized, in which future 

errors minimized, using an objective function that is usually quadratic. After evaluating the 

optimal manipulated variable profile, u(n+k), the first input in this optimal profile, u(n), is 

applied to the plant. The procedure above is repeated for the next sampling instant, n+1, 

updating the state of the process with new process measurements. This strategy is shown in 

Figure 4.1 (Garcia et al., 1989). Since, MPC is a control method based on a model, its 

success, in fact, depends on the accuracy of the model developed for the process. 

 

Time 
n       n+1    n+2                                                  n+P 

Prediction horizon at t = n

Prediction horizon at t = n+1

Set point 

Past Future 

Manipulated variable

Output

Predicted output 
Past outputs 

 

Figure 4.1. MPC Strategy (Garcia et al., 1989). 
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MPC constitutes two main parts: Model and Optimizer (Figure 4.2). The model of the plant, 

e.g. first principle model, black box model etc., is used to predict the plant outputs at future 

sampling instants. Future error values are then calculated. MPC Optimizer then minimizes 

the future tracking error using an objective function with available constraints obtaining the 

optimal future manipulating variable values. Instead of applying all of the evaluated values 

of these optimal set, only the first element of it is sent to the plant as input and complete 

procedure is repeated when new plant output measurements are available.  

Plant 

Model 

Optimizer 

Reference 
trajectory 

Future 
Errors  

Constraint
Objective 
Function 

+ 

– 
Past 
inputs 

First element of 
future inputs 

Future 
inputs 

Predicted 
outputs  

Measured outputs 

Model Predictive Controller

 

Figure 4.2. Basic Structure of MPC (Camacho and Bordons, 2000). 

4.1. MPC MODELS 

As its name implies, the model of the plant plays the key role in Model Predictive Control. 

Several types of process models exist ranging from simple linear first principle model to 

black box model. However, the process dynamics are generally represented by step or 

impulse discrete convolution models in the MPC structure. These models are simple and can 

be used to represent any stable plant dynamics. In addition, they can easily be obtained 

from input–output data of the process. On the other hand, these models have unavoidable 

truncation errors. 

 



 

 19

Figure 4.3 shows the open loop response of a linear stable process to a unit step input. 

From this process response curve step response model of the process can easily be 

obtained. In Figure 4.3, ai values stands for step response coefficients and hi values 

corresponds to the impulse response coefficients. The step response coefficient of the plant 

at any sampling instant is the summation of the impulse response coefficients up to the this 

sampling instant, (Seborg et al. 1989), namely: 

i

i j
j 1

a h
=

= ∑   for i = 1 … M  (4.1) 

Eq. (4.1) can be used to obtain the process output for knowing the process input. Thus, a 

discrete step response model of a single input–single output process can be written as 

(Peterson et al. 1992): 

( ) ( ) ( ) ( )
M

i M
i 1

y k a u k i a u k M 1 d k
=

= ∆ − + − − +∑  (4.2) 

where, k is the sampling time, u is the input, ai are the step response coefficients, d is the 

unmodeled disturbance effects on the output, M is the model horizon which corresponds to 

the number of step response coefficients that is required to describe adequately the 

complete process dynamics, and ∆u is the difference between two successive inputs 

( ) ( ) ( )( )∆ = − −u k u k u k 1 . 

 

Time 

y 

yM = aM 

y1= a1 

y2 = a2 

y3 = a3

y4 = a4

h4

h2

h1 

h3

4∆t3∆t2∆t∆t 0 

Steady state 

M∆t  

Figure 4.3. An Open Loop Step Response of a Linear Plant (Seborg et al., 1989). 



 

 20

The value of ( )d k  can be calculated by using input data history of the plant and by 

measuring the current plant output, ( )*y k : 

( ) ( ) ( ) ( )
M

*
i M

i 1

d k y k a u k i a u k M 1
=

 
= − ∆ − + − − 

 
∑  (4.3) 

In industrial MPC implementations, such as Dynamic Matrix Control, DMC, future values of 

disturbance, ( )d k i+  for i 1 P= … , kept constant over the prediction horizon, P. However, a 

sluggish disturbance rejection response is obtained when a slow disturbance enters to the 

upstream of the dominant lag (Lee et al., 1994; Muske and Badgwell, 2002; Pannocchia, 

2003). As an alternative, instead of assuming constant unmeasured disturbance, one can 

assume constant slope of the disturbance effect, that is, ( ) ( ) ( )∆ = + − + −d k d k i d k i 1  is 

constant for i 1 P= … . Furthermore, different disturbance modeling studies exist in the 

literature (Lee et al., 1994; Muske and Rawlings, 1993; Muske and Badgwell, 2002; 

Pannocchia, 2003; Pannocchia and Rawlings, 2003). 

 

Future prediction of the output given in Eq. (4.4) can be written in an open form as follows: 

( )
( )
( )

( )

( )

( )
( )
( )

( )

( )

( )
( )
( )

( )

M
2 3 M

M
3 4 M

M 4

C 1M

P 1
M

y k 1 a u k M y k 1a a a
y k 2 a u k M 1 y k 2a a a 0
y k 3 a u k M 2 y k 3a 0

a 0 0y k C a u k M C 1 y k C

a 0 0y k P a u k M P 1

+

+

   + − +    
 + − + +   
    + − + +    
    = +     
    + − + − +    
    
      + − + −       ( )

( )
( )
( )

( )

( )
( )
( )

( )

( )

1

2 1

3 2

M M 1 1

P P 1 P C 1

y k P

d k 1a
u k d k 2a a

u k 1 d k 3a a
u k 2

a a a d k C

u k C 1
a a a d k P

+

− − +

 
 
 
 
 
 
 
 
 
 
 

+  

 +   
   ∆ + 
     ∆ + +     
     + ∆ + +     
     +     
   ∆ + −        +  

 (4.4)

 

Here, the first two terms on the right hand side of Eq. (4.4) corresponds to the effects of 

known past input on the predicted outputs, the second term stands for the effect of future 
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control action on the future output and the last term represents the disturbance effects. Eq 

(4.4) may be written in more compact form in vector-matrix notation: 

= + ∆ +pasty y A u d  (4.5) 

where A is called “Dynamic Matrix”, y is the predicted output vector, ypast is the vector 

which represents the effects of known past input on the predicted outputs, ∆u is the input 

vector and d is the disturbance vector. 

4.2. MPC OPTIMIZATION 

The second part of the MPC is the optimization process. Future values of the manipulated 

variable are calculated in MPC optimization where an objective function is minimized. The 

objective function may contain any performance criteria such as, product purity, raw 

material and energy cost, control effort etc. as well as some input and/or output hard or soft 

constraints. However, in general, the plant output error and manipulating variable change 

are together penalized to yield a quadratic objective function such as in Eq. (4.6): 

( ) ( )
P C2 2

1 2u
i 1 j 1

min r y k i u k C j
∆

= =

   λ − + + λ ∆ + −   ∑ ∑  

  subject to 

( )
( )

min max

min max

u u k C j u j 1 C

y y k i y i 1 P

≤ + − ≤ =

≤ + ≤ =

…

…
 

(4.6) 

where r is the set-point, λ1 and λ2 are the weights for output error and manipulated variable 

change and the variables umin, umax, ymin, and ymax are the constraints.  

 

In Section 4.1., model for predicting the future plant output is given for a single input–single 

output plant. By defining E as closed–loop prediction of error vector and E* as open–loop 

prediction error vector (Seborg et al. 1998), Eq. (4.5) can be written as follows: 

= − ∆ + *E A u E  (4.7) 

where E = r – y, E* = r – (ypast + d), and r is the set–point vector. If it is desired for 

output to follow the reference trajectory exactly, then E must be zero. Thus, 

0 = − ∆ + *A u E  (4.8) 
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If prediction horizon and control horizon are equal to each other (P = C), then solution of  

Eq. (4.8) is as follows: 

( ) 1−
∆ = − *u A E  (4.9) 

However, in Dynamic Matrix Control (DMC), control horizon should be smaller than the 

prediction horizon and therefore, system of equations in Eq. (4.7) become overdetermined. 

At this point, there is no unique solution of Eq. (4.7). However, this overdetermined system 

of equations can be used to obtain the best solution in least–squares sense (Seborg et al., 

1989): 

TJ ∆ =  u E E  (4.10) 

and the solution is: 

( )∆
-1T T *u = A A A E  (4.11) 

The control law in Eq. (4.11) has one drawback; if the the matrix ATA is ill–conditioned or 

singular, inverse of this matrix produce very large values which results in excessively large 

control actions. To eliminate this before performing matrix inversion, one can multiply the 

diagonal elements of ATA to suppress the large changes in the manipulated variable. 

Alternatively, one can modify the optimization problem such as in Eq. (4.6) to penalize the 

manipulated variable change also in the optimization (Marchetti et al. (1983): 

∆ ∆ ∆  
T T

1 2J u = E W E + u W u  (4.12) 

where W1 and W2 are the diagonal weighting matrices by which one can tune the controller 

to obtain good control performance and can be defined as follows:  

1 2

1 2

2

1 2P P C C

0 0 0 0
0 0

0 0
0 0 0 0

× ×

λ λ   
   λ λ   
   = =
   
   
   λ λ   

1W W  (4.13) 

It must be noted that, in the quadratic objective function given in Eq. (4.12), there are no 

constraints imposed on the process input, u, and on the process output, y. If Eq. (4.12) is 

solved by inserting Eq. (4.7), the final form of the control law is obtained as: 
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( )
( ) ( )

∆ =

 = − + 

-1T T *
1 2 1

-1T T past
1 2 1

u A W A + W A W E

A W A + W A W r y d
 (4.13) 

However, in most of the chemical processes there are limitations for the process inputs due 

to the physical limitations of actuators. Therefore, manipulated variable value may be limited 

as given below: 

( )min maxu u k C j u j 1 C≤ + − ≤ = …  (4.14) 

Also, the process output may be constrained for several reasons such as purity requirements 

of the product, downstream process limitations, process safety etc. Thus, there may be 

constraints on the process output as: 

( )min maxy y k i y i 1 P≤ + ≤ = …  (4.15) 

Thus, when the quadratic objective function in Eq. (4.12) is minimized, subject to constrains 

given in Eqs. (4.14) and (4.15), it is not possible to find an analytical solution to obtain best 

estimates of ∆u. However, it is possible to find the best solution by quadratic programming 

techniques. For this purpose, first of all, the objective function must be converted to 

standard form of a quadratic problem: 

min

1
J

2∆

∆ = ∆ ∆ + ∆  
T

u

u u H u g u  

     subject to  ∆ =eq. eq.A u B  

     ∆ ≤ineq. ineq.A u B  

(4.16) 

where H is Hessian matrix, g is Gradient vector, Aeq., Beq., Aineq. and Bineq. are equality and 

inequality constraint matrices. After converting the standard form Hessian and Gradient 

matrices takes following values, respectively (Dokucu, 2002): 

= +T
1 2H A W A W  (4.17) 

= T *
1g A W E  (4.18) 

Input and output constraints in Eqs. (4.14) and (4.15) are in the form of inequality 

constraints and can easily be converted to the matrix form shown in Eq. (4.16) as follows: 
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( )
( )
( )

( )
( )

( )
( )

( )

max k 1

max k 1

max k 1

max k 1

k 1 min

k 1 min

k

u k
u u1

u k 1
u u1 1 0

u k 2 u u

u k C 1 u u1 1 1 1
1 u uu k
1 1 0 u uu k 1

uu k 2

1 1 1
u k C 1

−

−

−

−

−

−

 ∆
−  

∆ +   −   ∆ +   −
  
  
   ∆ + − −
   ≤

− − ∆ 
  − − −∆ +  
   ∆ +  
  
  − − −   ∆ + − 

1 min

k 1 min

u

u u

−

−

 
 
 
 
 
 
 
 
 
 
 
 −
 
 
 − 

 (4.19) 

where right hand side of inequality represents the distance of last process input from the 

constraints and the terms on the left hand side stands for the summation of manipulation 

variable change up to corresponding time instant (k + i). In this way it is guaranteed that, 

there will be no violations occurring over the control horizon. In a similar fashion, output 

constraints can be expressed in matrix form as: 

( )
( )
( )

( )
( )

( )
( )

( )

( )
( )
( )

( )
( )
( )
( )

past
max k 1

past
max k 2

past
max k 3

past
max k P

past
mink 1

past
mink 2

past
mink 3

past

y y d

u k y y d
u k 1

y y d
u k 2

y y du k C 1

u k y d y

u k 1 y d y
u k 2

y d y

u k C 1

y

+

+

+

+

+

+

+

− +

 ∆ − + 
∆ +  − + ∆ + 

 
 

− + ∆ + −    ≤ −  ∆ + − 
 

∆ +  + − ∆ +  + − 
 
 ∆ + − 

A
A

( ) mink P
d y

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ −  

 (4.20) 

where right hand side again is the distance of the process output from the bounds of the 

constraints and the left hand side represents the forced response of the process.  

 

After defining, Hessian, Gradient and Inequality matrices final form of quadratic optimization 

problem is obtained and it can be solved using any suitable quadratic programming 

algorithm or simply using a suitable software package such as MATLAB®. 
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4.3. MPC TUNING 

There are several parameters that affect the performance of MPC. These parameters are: 

 

 Model horizon, M 

 Prediction horizon, P 

 Control horizon, C 

 Weighing matrix for predicted errors, W1 

 Weighing matrix for manipulated variable changes, W2 

 

The value of model horizon, M, should be selected appropriately so that the model 

adequately represents the process behavior such that M∆t ≥ t99. The M value between 20 

and 70 is generally recommended (Seborg et al., 1989). However, in order to avoid the 

truncation problem its value should be large enough to capture the whole process dynamics.  

 

The value prediction horizon, P, also affects the performance of the MPC. When its value 

increases, the system become more stable. On the other hand, since its value determines 

the dimension of the prediction vector, large P values requires more computational power.  

 

The third tuning parameter is the control horizon, C. The value of control horizon also effects 

the required computational power because, dimension of the future control actions vector is 

determined by C. Since, only the first element of the optimal future control actions is applied 

to the process, large values of C does not affect the performance of the MPC too much 

(Seborg et al. 1989). Nevertheless, if C value increased to very large values, the value of 

process input will become oscillatory.  

 

The last tuning parameter group is the weighting matrices W1 and W2. Generally, W1 is 

selected as identity matrix, I, and W2 = fI. The scalar f is called as move suppression factor 

and instead of adjusting the values of the weighting matrices only f is used as tuning 

parameter. When f value is decreased, controller become more aggressive and causes large 

manipulated variable changes mainly because of the singularity of the matrix multiplication 

ATA. 

4.4. MPC DESIGN 

In this study, linearized process model given in Eq. (3.27) is used in the MPC algorithm. For 

MPC, step response coefficients are obtained by a simulation using the simplified process 

model. The MPC is designed for the constant disturbance assumption in the algorithm used 
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which resulted in poor performance in the simulation studies. Therefore, in this study, 

constant derivative of disturbance is assumed in the algorithm. 

 

For all simulations and experimental runs, control horizon, C, is taken as one (1) and kept 

constant. Prediction horizon, P, and move suppression factor, f, are tuned by simulations. It 

is observed that, according to the identification data, which is actually the identified steady–

state titration curve, the value of f have to be changed appropriately to achieve a good 

control performance and to obtain mild control input changes. Therefore, the slope of the 

process gain around the set–point is used to adapt the f value to the changes in the process 

gain around the set-point, resulting in an adaptive MPC (AMPC). 
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CHAPTER V 

 

FUZZY LOGIC CONTROL 

 

 

After the introduction of Fuzzy Logic by Zadeh (1965), different Fuzzy Logic Controller, FLC, 

designs were developed (Mamdani type, Sugeno type). FLC’s incorporate simple if–then 

(condition–action) rules to solve the control problems without using a process model. They 

are designed using the operator’s knowledge about the process rather than the 

mathematical model of the process. Therefore, FLC’s are suitable to control the processes 

that have complex nature or that are difficult to model.  

 

Typical structure of a FLC is given in Figure 5.1. It has four main parts; input signal 

normalization and fuzzification, fuzzy inference engine, fuzzy rule base, defuzzification and 

denormalization to crisp control input (Passino and Yurkovich, 1998). 
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Figure 5.1. Block Diagram of a Basic FLC. 

 

Working principle of a FLC is simple. First, crisp inputs values are normalized and are 

fuzzified by the use of membership functions, MF. After obtaining fuzzified inputs, inference 

engine makes decisions about the inputs according to the if–then rules incorporated in the 

rule base. Finally, inferred results are defuzzified and are normalized to obtain crisp output 

values.  
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FLC’s are tuned by modifying the input and output membership functions, MF’s, the rule 

base and also by changing the input normalization factors, Ne, Nde, and output 

denormalization factor, Ndu. Among these, the latter one has a stronger influence on the 

performance of FLC (Zheng, 1992). 

 

In this study, Mamdani type FLC is proposed to control the effluent pH value in the 

neutralization process. The structure of the proposed FLC is shown in Figure 5.2. In the 

proposed FLC, error (e = pHsp – pH) and rate–of–error (de/dt) are used as inputs and the 

manipulated variable change (∆u = uk – uk-1) is selected as output. Nine MF’s (Negative very 

big, NVB; Negative big, NB; Negative medium, NM; Negative small, NS; Zero, Z; Positive 

small, PS; Positive medium, PM; Positive big, PB; Positive very big, PVB) for error, seven 

MF’s (NB, NM, NS, Z, PS, PM, PB) for rate–of–error and seven MF’s (NB, NM, NS, Z, PS, PM, 

PB) for manipulated variable change are defined in FLC structure. Triangular type 

membership functions are used for both inputs and outputs and they are tuned for their best 

values by simulations. The graphical representations of membership functions for inputs are 

given in Figures 5.3 and 5.4 and that of output is given in Figure 5.5.  
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[e, de/dt] 

[e, de/dt] 

Figure 5.2. Block Diagram of the Proposed Fuzzy Logic Controller. 

 

The 9–by–7 rule table is prepared for the FLC by considering that, as base added to the 

neutralization reactor, pH value in the reactor increases and vice versa. The rule table and 

corresponding fuzzy control surface are shown in Figure 5.6. 
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Figure 5.3. Membership Functions for Error, e = pHsp – pH. 
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Figure 5.4. Membership Functions for Rate–of–Error, de/dt. 
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Figure 5.5. Membership Functions for Manipulated Variable Change, ∆u. 
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  Rate-of-Error, de/dt 
  NB NM NS Z PS PM PB

NVB NB NB NB NB NB NB NB
NB NB NB NB NM NM NS Z 
NM NB NB NM NM NS Z PS
NS NB NM NM NS Z PS PM
Z NM NM NS Z PS PM PM

PS NM NS Z PS PM PM PB
PM NS Z PS PM PM PB PB
PB Z PS PM PM PB PB PB

Er
ro

r,
 e

 

PVB PB PB PB PB PB PB PB  
-1

0

1

-1

0

1
-1

-0.5

0

0.5

1

e
de/dt

du

Figure 5.6. FLC Rule Table and Fuzzy Control Surface. 

 

In the FLC algorithm, nonlinear pH process is directly controlled by measuring only the 

effluent pH value without the use of identification reactor. However, in order to improve the 

performance of the FLC for high gain regions of the pH process, a tuning mechanism by 

means of a tuner (Figure 5.2) is added to reduce possible oscillations by multiplying the 

output, ∆u, by gain multiplication factor, α, (output of tuner). Seven MF’s for error (e = pHsp 

– pH), seven MF’s for rate–of–error (de/dt) and five MF’s for the gain multiplication factor, 

α, are used in the tuner (Figure 5.7 – 5.9). The tuning module adjusts α value according to 

the error and the rate–of–error and increases it when output is away from the set-point and 

decreases it when output is close to the set-point. The magnitude of this change depends on 

the value of the second input, rate–of–error. The rule table and the control surface of the 

tuner are given in Figure 5.10. 
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Figure 5.7. Membership Functions for Error, e = pHsp – pH. 

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
NB NM NS Z PS PM PB

Universe of Discourse for Rate-of-Error, de/dt

D
eg

re
e 

of
 M

em
be

rs
hi

p

 

Figure 5.8. Membership Functions for Rate–of–Error, de/dt. 
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Figure 5.9. Membership Functions for Gain Multiplication Factor, α. 
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  Rate-of-Error, dt/dt 
  NB NM NS Z PS PM PB

NB B B VB VB VB B B 
NM M B B VB B B M 
NS S M B VB B M S 
Z S S S S S S S 

PS S M B VB B M S 
PM M B B VB B B M 

Er
ro

r,
 e

 

PB B B VB VB VB B B  
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0
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1

ede/dt

α
 fa

ct
or

Figure 5.10. Rule Table and Graphical Representation of the Rules for Tuner Module. 
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CHAPTER VI 

 

EXPERIMENTAL SET-UP 

 

 

In this section the pH neutralization system constructed for this study will be described in 

detail and online identification strategy used in the study will be explained briefly. 

6.1. THE EXPERIMENTAL SET–UP 

In the experimental set–up used in the study (Figure 6.1), two continuous–stirred tank 

reactors (CSTR’s) are used one being as the main reactor and the other being the 

identification reactor as main equipments.  

 

Acid Feed Tanks 

Identification 
Reactor 

Main Reactor

Base 
Feed Tank 

Controller 

AD/DA Converter

Effluent

 

Figure 6.1. Schematic Diagram of the Experimental Set–up for pH Neutralization System.  

The control objective is to keep the effluent pH value of the main reactor at a desired set–

point value, mostly at pH = 7.0, by adjusting the flow rate of titrating stream of the main 

reactor. Thus, the controlled variable is the pH value of the effluent stream and the 

manipulated variable is the flow rate of the titrating stream. The major disturbances that can 
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affect the system are the variations of acid composition and the flow rate of the entering 

acid stream to the main reactor.  

 

The acidic solution (process stream) is taken from the acid feed tanks and is selected by a 

three–way valve. The volume of the main reactor is 15.0L. Reactor content is mixed with an 

axial flow type impeller and effluent stream is taken out at the impeller level where the 

highest efficiency of mixing is obtained. The effluent stream tube with sufficiently large 

diameter is located to a desired liquid level of the main reactor, to keep the volume 

constant. In addition, baffles are located in the main reactor to prevent vortex formation. 

  

The identification reactor has similar properties with the main reactor. The volume of the 

identification reactor is 0.45L. Thus, the time constant of the identification reactor is 

approximately ten times smaller than that of main reactor. The effluent stream of the 

identification reactor is returned to the main reactor and it can be viewed as a disturbance 

(as flow rate/composition disturbances) to the main reactor. 

 

Acid feed pumps are adjusted to constant flow rates of 0.5L/min and 0.15 L/min for the 

main neutralization reactor and for the identification reactor, respectively. The process 

streams are neutralized separately with two input base streams. Flow rates of base streams 

are adjusted with two peristaltic pumps connected to the controller through an AD/DA card. 

The value of the manipulated variable (the flow rate of the titrating stream of main reactor) 

is estimated by the controller, by using the measurement of the pH in the main reactor.  

 

The pH values of the solution in both of the reactors are measured with two separate pH 

electrodes located just at the effluent stream exit locations. Their measurement signals sent 

to the controller through the AD/AD card. The schematics of the communication interface 

between controller and the experimental set–up is shown in Figure 6.2. The experimental 

runs are performed nearly at room temperature around 20–25°C. In the experiments, acid 

solutions are prepared using tap water to simulate real plant conditions. Sampling time of 5s 

is used in all controller schemes presented in the study. 
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Figure 6.2. Communication Interface Between Experimental Set–up and Controller.  

6.2. IDENTIFICATION STRATEGY 

In the experimental studies, experiments are performed to find the set–point tracking, 

disturbance rejection and robustness issues of the proposed controllers. Three runs are 

designed for each controller by using a three-acid mixture (HCl, HNO3 and H3PO4) similar to 

the acid ingredients of the industrial waste water of a plant located in Ankara, Turkey, which 

manufactures aircraft parts.  

 

During the experiments the identification of the incoming stream has to be done as a 

titration curve to find the time varying characteristics of the input. To achieve this, a portion 

of the main input stream is fed to the identification reactor and titrated with a base input 

stream. Sung et al. (1995) suggests using identification of the incoming stream in terms of 

pH value (titration curve) in intervals of half time constant of the main reactor (0.5V/F). 

Thus, a pulse input is given by changing the base flow rate entering to the identification 

reactor to increase the pH value in the reactor to a predefined high pH value. The 

magnitude of this pulse input is determined arbitrarily to obtain reasonable response. The 

duration of the pulse input is a dependent function of the acid concentration of the incoming 

stream. 

 

The identification is done by solving, at the same time, Eq. (3.27) (the model) to find Y’ and 

T(pH) for the same pulse input. Thus, for every ∆pH≥0.15, the calculated T(pH) value is 

matched with the measured pH value and the steady–state titration curve is constructed 

(Figure 6.3). In order to reduce possible effects of noise on the identification data, raw data 

is filtered once and cubic spline is applied. Then, for the 0.5V/F time duration the  pH 
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measurements of the main reactor can be used to find the T(pH) and Y’, from the identified 

titration curve, which is further used in the control algorithm for this time interval until the 

next identification run. 
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CHAPTER VII 

 

RESULTS AND DISCUSSION 

 

 

The simulations and experimental studies are divided into three sub sections. In the first 

section, set–point tracking tests are performed for each controller scheme, PI, AMPC and 

FLC, and in the second part, disturbance rejection capabilities of the controller are tested. 

Finally, robustness’ of the controllers are checked in disturbance rejection case by changing 

the main neutralization reactor volume. After the simulations and the experiments, 

performances of the controllers are evaluated according to the Integral of the Absolute 

Error, IAE, and according to the Integral Absolute of the Control Change, IACC scores, which 

are given in Eqs. (7.1) and (7.2):  

( )∞
=∫0IAE e t dt  (7.1) 

( )∞
= ∆∫0IACC u t dt  (7.2) 

The scores above are further normalized by dividing them by the largest corresponding 

value of each set and the normalized scores are compared. In the simulation studies, trial 

runs are performed to find the best controller parameters considering the performance 

scores and these parameters are later used in the experiments. 

7.1. SET–POINT TRACKING 

In the simulation and experimental runs, input acid mixture (HCl, HNO3 and H3PO4) is 

titrated by a base solution (NaOH). Set-point tracking performances of the proposed 

controllers are found for different set-point changes. Process parameters, controller 

parameters and set-point changes for different time intervals are given in Table 7.1 for both 

the simulation and experimental studies. Only, in the experiments, the second set–point 

interval given in Table 7.1 is increased by 400s due to the unknown additional buffering 

effect introduced by the tap water used, which is not possible to be integrated into the 

simulations. 
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PI and AMPC can only be activated after the first identification run due to the need of the 

titration curve data to evaluate the strong acid equivalent (Y’) from the pH measurements. 

On the other hand, although FLC does not require this, it is also deactivated until the end of 

the first identification. Set-point responses of the pH control system are shown in Figures 

7.1–7.3 for PI controller, AMPC and FLC, respectively. It is observed that in the experiments 

response is more sluggish due to the additional buffering effect of the tap water. 

Considering the normalized IAE scores (Table 7.2), all the controllers have similar 

performances in simulations and experiments, the lowest belonging to FLC. However, 

considering the control moves, IACC score, the FLC is better in simulations whereas AMPC is 

better in experimental runs due to its constraint handling ability and extended buffer effect 

in the experiments.  

Table 7.1. The Process and the Controller Parameters for Set–point Tracking. 

Process Parameters:  
Process stream compositions  : 0.002M HCl – 0.002M HNO3 – 0.005M H3PO4  
Titrating stream  compositions  : 0.1M NaOH 
Fmain     : 0.50 L/min 
Vmain     : 15.0 L 
Fid.     : 0.15 L/min 
Vid.     : 0.45 L 
Time intervals : pH value (Set-point) : 1. 0 – 700s  : pHsp = 7.0 
       2. 700 – 1400s : pHsp = 5.0 
      3. 1400 – 1900s : pHsp = 6.5 
       4. 1900 – 2400s : pHsp = 8.5 
 
Controller Parameters:  
PI  : P1 = P2 = 0.85 
AMPC  : P = 30, C = 1, f = variable, constrained : 0 ≤ u(mL/min) ≤  350                  
FLC  : Error normalization factor    Ne  = 1.354 
    Rate–of–error normalization factor   Nde = 0.026 
    Error normalization factor    Ndu = 6.171 

 

Table 7.2. Normalized Performance Scores for Set–point Tracking. 

Simulation Score Experiment Score Controller 
IAE IACC IAE IACC 

PI 0.911 1.000 0.996 0.945 
AMPC 1.000 0.736 1.000 0.756 
FLC 0.891 0.675 0.960 1.000  
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(b) 

Figure 7.1. Set-point Tracking for PI Controller, (a) Simulation, (b) Experiment. 
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Figure 7.2. Set-point Tracking for AMPC, (a) Simulation, (b) Experiment. 
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(b) 

Figure 7.3. Set-point Tracking for FLC, (a) Simulation, (b) Experiment. 

7.2. DISTURBANCE REJECTION 

The most important problem in the waste water neutralization processes is the variation of 

the input feed compositions. Therefore, regulatory performance is more important than the 

servo performance for these processes. Thus, the process stream acid concentrations are 

changed to find the disturbance rejection performance of the proposed controllers.            

In Table 7.3, the process and controller parameters used in these runs are given.  

 

During the simulation and experimental runs, two input acid stream contents are used as 

Type 1 and Type 2, which are buffer dominant and strong acid dominant acid mixtures, 

respectively. The responses of each control system to acid composition changes are given 

for simulations and experiments in Figures 7.4–7.6. 
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Table 7.3. The Process and the Controller Parameters for Disturbance Rejection. 

Process Parameters:  
Process stream     : Type 1 →  0.002M HCl – 0.002M HNO3 – 0.0050M H3PO4  
       Type 2 →  0.020M HCl – 0.020M HNO3 – 0.0001M H3PO4   
Titrating stream  : 0.1M NaOH 
Fmain   : 0.50 L/min 
Vmain   : 15.0 L 
Fid.   : 0.15 L/min 
Vid.   : 0.45 L 
Disturbances  : At time = 200s →  Change from Type 1 to Type 2 
       At time = 1400s →  Change from Type 2 to Type 1 
 
Controller Parameters: 
PI   : P1 = P2 = 0.85 
AMPC   : P = 35, C = 1, f = variable, constrained: 0 ≤ u(mL/min) ≤ 350 
FLC   : Error normalization factor   Ne  = 1.354 
     Rate–of–error normalization factor  Nde = 0.026 
     Error normalization factor   Ndu = 6.171 

 

It can be seen that deviation from the set–point is found to be more when input stream is 

changed from Type 2 to Type 1 than that of from Type 1 to Type 2. This is due to fact that, 

Type 2 is the strong acid dominant mixture in which the process is much more sensitive to 

disturbances around the set-point. In the simulation studies, the tuner of FLC is used to 

eliminate the aggressive control action seen in the trial simulation runs due to the noise 

added, by introducing the factor α. However, in the experimental runs, use of the same α 

factor resulted in sluggish response. Therefore, the experiments are repeated without the 

tuner. Considering the IAE scores given in Table 7.4, FLC is found to be better both in 

simulations (with tuner) and also in experiments (without the tuner), than the other two, 

although the identification reactor is not included in the FLC scheme. Similar performance as 

in set–point tracking is also seen for AMPC in the experiments of disturbance rejection 

resulting in the lowest IACC score for the AMPC for the same reason.  

 

Table 7.4. Normalized Performance Scores for Disturbance Rejection. 

Simulation Score Experiment Score Controller 
IAE IACC IAE IACC 

PI 1.000 0.799 0.419 0.745 
AMPC 0.643 1.000 1.000 0.481 
FLC 0.382 0.686 0.335 1.000  

 



 

 42

0 0.5 1 1.5
6

6.5

7

7.5

8

t/τp
 [-]

pH
 V

al
ue

 [-
]

Response
Set Point

0 0.5 1 1.5
0

100

200

300

400

t/τp
 [-]

Ba
se

 F
lo

w
 R

at
e 

[m
L/

m
in

]

 
(a) 

0 0.5 1 1.5
6

6.5

7

7.5

8

t/τp
 [-]

pH
 V

al
ue

 [-
]

Response
Set Point

0 0.5 1 1.5
0

100

200

300

400

t/τp
 [-]

Ba
se

 F
lo

w
 R

at
e 

[m
L/

m
in

]

 
(b) 

Figure 7.4. Disturbance Rejection for PI Controller, (a) Simulation, (b) Experiment. 
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(b) 

Figure 7.5. Disturbance Rejection for AMPC, (a) Simulation, (b) Experiment. 
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(b) 

Figure 7.6. Disturbance Rejection for FLC, (a) Simulation, (b) Experiment. 

 

7.3. ROBUSTNESS 

Robustness of the controllers is tested by reducing the volume of the main reactor by 10%. 

Since, disturbance rejection is more important than the set-point tracking for the 

neutralization processes, robustness of the controllers are tested for disturbance rejection 

case only. The process parameters are the same as those for disturbance rejection given in 

Table 7.3. As indicated in Figures 7.7–7.9, all of the controllers are found robust to modeling 

errors and there is no significant change in the responses with a 3% increase in the IAE 

scores in the simulations. In the experiments however, relative changes in the IAE scores 

are different for the designed controllers and AMPC is found to be more sensitive to 

modeling errors while FLC has superior performance than the others considering the IAE 

scores given in Table 7.5. 
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(b) 

Figure 7.7. Robustness Run for PI Controller in Disturbance Rejection, (a) Simulation, (b) 

Experiment. 
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(b) 

Figure 7.8. Robustness Run for AMPC in Disturbance Rejection, (a) Simulation, (b) 

Experiment. 
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(b) 

Figure 7.9. Robustness Run for FLC in Disturbance Rejection, (a) Simulation, (b) 

Experiment. 

 

Table 7.5. Normalized Performance Scores for Disturbance Rejection with Modeling Error. 

Simulation Score Experiment Score Controller 
IAE IACC IAE IACC 

PI 1.000 0.796 0.540 0.966 
AMPC 0.662 1.000 1.000 0.725 
FLC 0.397 0.682 0.275 1.000  

 

7.4. TEST OF FLC USING ACTUAL PLANT’S WASTE WATER 

The performance of the FLC is tested for disturbance rejection case by using actual plant 

waste water samples obtained from TUSAŞ Aerospace Industries, Inc. (TAI). Two waste 

water samples whose acid contents are comparatively different were taken at different times 

in a daily operation of the plant. 

 

In the experiment, the process and controller parameters are taken as in Table 7.3. with a 

difference in the concentrations of the samples where Type 1 process stream corresponds to 

the waste water sample which has relatively low acid content and Type 2 represents the 
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high acid content sample. In addition, instead of the disturbances indicated in Table 7.3., for 

disturbance test, the reactor process stream is changed from Type 1 (low acid content waste 

water) to Type 2 (high acid content waste water) and the response of the FLC is obtained. 

The desired set–point value is taken as pH = 7.0. The NaOH solution used in this run is not 

same with the one used in previous experiments due to the concentration of acid in the 

actual plant effluent. Therefore, titrating stream concentration is also increased to 3.0M 

NaOH. 

 

In Figure 7.10, experimental response of the FLC is shown. As seen form Figure 7.10, the 

FLC is able to keep the effluent pH value at pH = 7.0 with a short settling time (about 15% 

of time constant of the main reactor). Thus, the performance of the designed FLC shown by 

simulation studies and laboratory experiments are also verified by the experiment performed 

with actual plant waste water. 
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Figure 7.10. Experimental Response of the FLC for Disturbance Rejection Test Performed 

Using Actual Plant Waste Water Samples.  
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CHAPTER VIII 

 

CONCLUSIONS 

 

 

In this study, two advanced control techniques, Model Predictive Control and Fuzzy Logic 

Control, are successfully implemented to a laboratory scale pH neutralization system 

containing an identification reactor. After performing a number of computer simulations and 

experimental runs, following conclusions are obtained: 

 

• An identification reactor can be used successfully in identifying the titration curve of 

an incoming stream in a waste water neutralization system.  

 

• Experimental responses are found be more sluggish compared to the simulation 

responses due to the buffering effect of the tap water. 

 

• As a result of all the evaluations done to find the performances of the designed 

controllers, it is found that, the system can be modeled accurately and effective 

model–based controllers can be designed.  

 

• Simulation runs done forehand are very crucial in the evaluation of the tuning 

parameters for all the controllers, reducing the time of implementation in 

experiments.  

 

• The PI controller and AMPC can only be applied by using the identification reactor 

which is easy to implement and use. On the other hand, FLC does not necessitate 

the identification reactor and considering the IAE scores it is the best controller 

design.     

 

• Conventional PI controller is robust and can satisfactorily be used for both set–point 

tracking and disturbance rejections as good as others.  
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• The designed AMPC is the best controller for adjusting the control moves due to 

adaptation done in the f factor during the experimental runs. However, in the 

disturbance rejection application, AMPC gave poor results with the constant 

disturbance assumption in the simulation studies. Therefore, constant derivative of 

disturbance is assumed in the algorithm for the AMPC and then satisfactory control 

performance is obtained. 

 

• The testing of the FLC with the actual plant (aircraft parts manufacture plant) waste 

water for the disturbance rejection case revealed that the designed controller is very 

good in performance in controlling the pH of the plant effluent as good as the 

laboratory studies done with the artificial composed acid mixtures.  

 

Finally, in this highly non-linear and time varying process, although all the designed 

controllers can effectively be used, the FLC which does not necessitate an identification 

reactor and which shows far better performance than others, is recommended. 
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APPENDIX A 

 

CALIBRATION DATA 

 

 

Calibrations of the pH meters were done using three calibration buffer solutions; pH=4.01, 

pH=7.00 and pH=10.01. Calibration plots for the pH meters are given in Figure A.1 and 

Figure A.2. Calibration data are plotted as pH versus Voltage, which refers output voltage of 

the preamplifier, and the data points are fitted to a straight line. Calibration equations and 

correlation coefficient, r2, are shown on the plots.  
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Figure A.1. Calibration Plot for pH Meter 1.  

Peristaltic pumps are also calibrated in the range on 0–350 mL/min for selected voltage 

values of 2, 4, 6, 8 and 10 Volts. AD/AD card output voltage versus flow rate is plotted for 

each peristaltic pump and curve fitting is applied. Figure A.2 and Figure A.4 show the 

calibration plots and the resulting calibration equations are also shown on the corresponding 

figures with their correlation coefficients.  
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Figure A.2. Calibration Plot for pH Meter 2.  
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Figure A.3. Calibration Plot for Peristaltic Pump 1.  
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Figure A.4. Calibration Plot for Peristaltic Pump 2.  
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APPENDIX B 

 

SIMULINK MODEL OF THE CONTROL SYSTEM 

 

 

In the study, simulations and experimental studies are performed in MATLAB®/SIMULINK® 

software package. SIMULINK model used in simulation studies is shown in Figure B.1 for PI 

controller only and for other controllers only PI controller subsystem is replaced with 

corresponding controller subsystem. The SIMULINK model used for simulations is also used 

in the experimental studies only by changing the pH process model subsystems (Main 

Reactor and Identification Reactor subsystems in Figure B.1) with input/output interfaces to 

enable the controller to communicate the experimental system (Figure B.2). All of the 

subsystems in the models shown in Figure B.1 and B.2 and the controller subsystems can be 

seen from Figure B.3 through Figure B.12. 
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Figure B.1. SIMULINK Model Used in Simulations Studies. 
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Figure B.2. SIMULINK Model Used in Experimental Studies. 
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Figure B.3. SIMULINK Model for Simulation of pH Neutralization Process. 
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Figure B.4. SIMULINK Model for Identification. 
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Figure B.5. SIMULINK Model for IAE and IACC Calculation. 
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Figure B.6. SIMULINK Model Strong Acid Equivalent Observer. 

 

2

u_m
(L/s)

1

u_m 
(L/min)

dt

dt (s)

V_m

V_m (L)

Switch

MATLAB
Function

Save new
u_m (L/min)

Saturation

P1

P1

mod

Math
Function

 -5
Z   

Integer Delay

u1

if(u1 == 0)

else

If

-K-

From
 L/min to L/s

F_m

F_m (L/s)

else { }

u_m(k) u_m(k+1)

Controller Hold

if { }
u_m(k) (L/min)

Y'(k)

Y'(k-1)

pH set

Contr. Param.

u_m(k+1) (L/min)

Controller Action

Clock

Cbase

Base Conc.
 mol/L

u_i

Base 
Flow Rate (L/min)

2

pH Set Point

1

Y'

 

Figure B.7. SIMULINK Model for PI Controller. 
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Figure B.8. SIMULINK Model for AMPC. 
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Figure B.9. SIMULINK Model for FLC. 
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Figure B.10. SIMULINK Model for Data Recording and Display. 
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Figure B.11. SIMULINK Models for Identification Reactor Interface. 
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Figure B.12. SIMULINK Models for Main Reactor Interface. 

 


