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ABSTRACT

INTERACTIVE CLASSIFICATION OF SATELLITE IMAGE CONTENT BASED ON

QUERY BY EXAMPLE

Dalay, Oral

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Volkan Atalay

January 2006, 60 pages

In our attempt to construct a semantic filter for satellite image content, we have built

a software that allows user to indicate a few number of image regions that contains

a specific geographical object, such as, a bridge, and to retrieve similar objects on

the same satellite image. We are particularly interested in performing a data analysis

approach based on user interaction. User can guide the classification procedure by

interaction and visual observation of the results. We have applied a two step pro-

cedure for this and preliminary results show that we eliminate many true negatives

while keeping most of the true positives.

Keywords: Interactive classification, query by example, remote sensing, linear clas-

sification, texture analysis
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ÖZ

ÖRNEĞE DAYALI SORGULAMA ÍLE UYDU GÖRÜNTÜ ÍÇERÍĞÍNÍN

ETKÍLESÍMLÍ SINIFLANDIRILMASI

Dalay, Oral

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Volkan Atalay

Ocak 2006, 60 sayfa

Uydu görüntü içeriği için anlamsal süzgeç oluşturma çabamız çerçevesinde kullanıcının

köprü gibi belli bir coğrafik nesneyi içeren az sayıda görüntü alanlarını belirttiği ve

ardından benzer nesneleri içeren görüntü alanlarına eriştiği bir yazılım geliştirilmiştir.

Özellikle kullanıcı etkileşime dayalı veri çözümleme ile ilgilenilmektedir. Kullanıcı

sınıflandırma işlemini etkileşim ve sonuçların görsel incelenmesi ile yönlendirmektedir.

Bu amaçla iki adımlı bir işlem uyuguladık ve sonuçlar, çoğu gerçek olumluları ko-

rurken birçok olumsuzları elediğimizi göstermektedir.

Anahtar Kelimeler: Etkileşimli sınıflandırma, örneğe dayalı sorgulama, uzaktan algılama,

doğrusal sınıflandırma, doku analizi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Classification is one of the main tasks extensively studied in many disciplines such

as machine learning, data mining and pattern recognition. Classification is an assign-

ment of new objects to a class from a given set of classes based on the attributes of

these objects.

d-features or measurements are used as a input representation of each pattern.

It is viewed as a point in d-dimensional space. The goal of representation is to oc-

cupy compact and disjoint regions in a d-dimensional feature space. The effective-

ness of feature set is determined by how well patterns from different classes can be

separated. The objective is to construct decision boundaries in feature space which

separate patterns belonging to different classes.

A recognition system is operated in two modes: training (learning) and classifi-

cation (testing). Figure 1.1 oversimplifies the pattern classification procedure. Any

operation contributing in defining a compact representation of pattern is performed

in preprocessing module. In the training mode, appropriate representative features

of input pattern are found and classifier is trained to partition the feature space. The

trained classifier assigns the input pattern to one of the pattern classes based on mea-

sured features in the classification mode.

We can think that there exist two classification approaches : data driven and user

driven approaches. Data driven classification approach reveals the internal structure

of data based on defined algorithms while user driven architecture performs com-

putations based on interaction between user and a machine. In literature, interactive

user-driven approaches are less explored than data-driven approaches.

1



Figure 1.1: Pattern classifier. (adapted from [1])

Classification problem is posed by the users with various preferences, require-

ments and background knowledge. There is no universally applicable classification

theory or method to serve the needs of users. However, user-driven approaches are

becoming more popular than data-driven approaches.

Recently launched satellites are capable of capturing panchromatic images with

higher resolutions. Ground sampling distance (GSD) of some satellites are shown

in Table 1.1. Ground sampling distance is the distance of the centers of neighbored

pixels projected to the ground. The pixel size on the ground is the physical size of the

projected pixels. State-of-the-art remote sensing image analysis systems allow only

queries by geographical location, time of acquisition or type of sensor. This informa-

tion is often less important than the content of the scene, i.e. structures, objects or

scattering properties in addition to the fact that these attributes are not appropriate

for the access to the image content [2]. Meanwhile, many new applications of remote

sensing data are closer to computer vision and require the knowledge of complicated

spatial and structural relationships among image objects. Furthermore, with the in-

crease in the resolution, the amount of data to be handled augments. Therefore, ex-

tracting data and then exploring are becoming challenging problems in remote sens-

ing. One of the alternative approaches in the analysis of such large images is to profit

from user interaction. For this purpose we designed and developed a basic software.

The classification is based on a query by example (QBE) technique where user indi-

cates a few number of example image regions that contains a specific geographical

object, for example, road, building and would like to retrieve similar objects on the

same or other satellite images.
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Table 1.1: Ground sample distances (GSD) of some recent satellites.

Satellites GSD
TK350 13m

KVR1000 2.2m
ASTER 15m

KOMPSAT-1 6.6m
IRS-1C 6.9m
SPOT5 5m

IKONOS 1m
QuickBird 0.6m

In the frame of our collaboration with Université René Descartes Paris V and

Institut Geographique National, Paris, France, our general aim is to detect man made

(structural) geographical objects from high resolution satellite images. User starts

with a small set of sample images and refines incrementally the classification results

by interaction. A simple diagram of our system is shown in Figure 1.2. The system

includes mainly two phases: a coarse search and refined detection. Spectral, linear

and textural features are used for coarse search while refined detection is performed

based on structural features [3]. Structural feature extraction algorithms not only

require existence of these geographical objects but demand a high computational

time as well. Therefore, it is necessary to apply a coarse object search algorithm to

find possible (candidate) locations on the image and then apply a refined algorithm

(structural in this case) on each candidate region.

1.2 An Overview of Related Systems

This section provides a brief overview of related research on classification of satellite

images emphasizing on interaction with the user. The problem of classification of

high resolution satellite images are being studied recently, boosted by the need to

access relevant information in an understandable and directly usable form and to

provide user friendly interface for query and browsing [2]. The resolution of satellite

images is very high due to recent technologies in the area of remote sensing as a result

the automated classification is then very difficult and often leading to an undesired

results.

To address this challenge, one possible solution is to profit from user interaction

by creating visual queries in an interactive manner. The method in a search should

3



Figure 1.2: Simple diagram of our system.

operate in real time and should maximize the ratio between the quality of results

and the amount of interaction between the user and the system. Incorporating image

information and human expert knowledge with digital image processing improves

remote sensing image analysis [4].

In recent years, the ”interactive systems” and ”human in the loop” became to be

popular approaches. An important example system QBIC [5] allows queries on a

large image and databases based on example images, user-constructed sketches and

drawings and selected color and texture patterns. In the MIT system FourEyes [6]

texture representations can be interactively managed another example WebSEEK sys-

tem [7] includes the user’s feedback for the dynamic feature vector re-computation;in

the MARS system [8] a relevance feedback approach is used to improve the retrieval

performance and in PicHunter [9, 10], a Bayesian relevance feedback architecture is

applied.

The VisiMine [11] is a system for data mining and statistical analysis of large col-

lections of remotely sensed images. It provides the methodology and the infrastruc-

ture required for the analysis of satellite images. The architecture supports three lev-

els of features: pixel, region and scene. It distinguishes feature vectors of each level.

The feature extraction at pixel level starts with the analysis of spectral and textural

properties while the segmentation algorithm is the first step of extraction of region

level features. Original images and the features extracted from these are stored in a

4



database system and indexed accordingly for fast retrieval. It also provides a user

interface, gives user the option of browsing and manipulation of satellite images.

Queries for data mining, visualization of the results of the data analysis and the im-

ages with associated features can be seen by interface. The image processing, sta-

tistics and machine learning libraries are written in C/C++, graphical user interface

(GUI) is implemented in Java. For database applications, Oracle is used as relational

database management system (RDBMS) which includes storing or accessing to satel-

lite images, feature vectors and metadata.

Interactive Visual Image Classification (IVICS) [12] has been designed to provide

the analyst with a set of interactive tools and displays which will aid in the proper

selection and labeling of training samples for image classification. It is developed in

1993 funded by NASA.

A knowledge driven approach called knowledge driven information mining (KIM)

is developed in [13]. There are 2 main modules in the system, the first includes in-

dexing, image feature extraction and computationally intensive algorithms for offline

data analysis in the archive. The second module consists of a graphical man-machine

interface that manages the information fusion for interactive interpretation and the

image information mining functions. It supports to adaptively incorporate appli-

cation specific interests. Semantic image content defined by user interpretation is

linked with Bayesian networks to a completely unsupervised content-index. Based

on this stochastic link, the user can query the archive for relevant images and obtains

a probabilistic classification of the entire image archive as an intuitive information

representation.

Our system is not a final system, it is a preprocessing to structural analysis phase.

The systems in the literature have more data and image analysis techniques em-

ployed but using these systems requires to be an expert however a naive user can

employ our system to perform rough filtering.

1.3 Purpose and Improvements Achieved

We are particularly interested in performing a satellite image analysis based on user

interaction. We have designed and implemented a basic software for this purpose.

Our system allows user to select the region of interest and eliminate the non-representative

5



regions. In addition, it allows user to interact with the retrieved results of the system.

This is called relevance feedback. The basic idea of relevance feedback is to perform

an initial query, get feedback from user as to what regions are relevant and then add

more regions from these relevant candidates to the query. The user interaction com-

pensates the gap between user intention and visual appearance.

In our classification system, user initially points a few number of sample regions

that contains the sought geographical objects and features are computed from these

regions. Whole image is scanned to search for candidate regions that may contain

similar objects. Feature values of both the sample and candidate regions can be pro-

jected into 2 dimensions for visualization purposes. User can subsequently eliminate

some of the candidates and classification can be performed again in an iterative and

interactive manner. Final candidates can be input to the second phase to refine the

detection based on the structural properties.

There are several issues in our problem.

• It falls into the category of query-by-example.

• It is interactive.

• It is a binary classification problem: i.e. regions are labeled as bridge or non-

bridge.

The feature extraction and data analysis techniques are available in the literature.

In our approach, we combined these techniques to operate together in iterative and

interactive manner. However, the most challenging part is to learn from a small

set of samples which belong only to a single class. We alleviate this problem by

incrementally refining the results with user interaction.

1.4 Organization of the Thesis

The organization of thesis is as follows: In Chapter 2, the techniques that we used in

our approach are explained. The detailed system is described in Chapter 3. Chapter

4 presents experimental results. The thesis concludes with Chapter 5 in which the

presented study is discussed.
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CHAPTER 2

BASIC CONCEPTS

In this chapter, basic concepts and background information of the employed methods

are given. Feature extraction and analysis methods are organized as image analysis

and data analysis methods. Image analysis methods include spectral, linear and tex-

tural feature extraction. Support vector classifier (SVC) and multidimensional scal-

ing (MDS) make up data analysis methods.

2.1 Image Analysis Methods

2.1.1 Spectral Feature Extraction

A graylevel image consists of a byte per pixel. Each pixel in a satellite image image

has value ranging between 0 and 255. Satellite images are panchromatic; panchro-

matic images are graylevel images. The popular approach for spectral feature extrac-

tion is to use the mean and standard deviation of pixels in an image or image region.

The mean is of a data set is simply the arithmetic average of the values in the set

while the variance is the arithmetic average of the squared differences between the

values and the mean. The values are computed as follows.

µ =
1
n

n∑

i=1

I(xi, yi) σ =
1
n

n∑

i=1

(I(xi, yi)− µ)2 (2.1)

where I(xi, yi) is the graylevel of the corresponding image pixel at (xi, yi) position

at i = 1 · · ·n, n is the size of image region.
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2.1.2 Linear Segment Extraction

The aim of linear segment extraction is to extract a set of linear segments. Each linear

segment can be defined by Equation 2.2

L = {P1, P2} (2.2)

where P1 and P2 are the dominant points of line L and,

P1 =< x1, y1 > P2 =< x2, y2 >

In edge-based methods, linear segment extraction starts with the detection of lo-

cal information as the intensity edge points and continues with the boundary con-

struction by thresholding and contour following, and polygonal approximation to

the boundary curves.

Edge Detection by Canny’s Method An edge is a local information attached to

an individual image pixel and it is calculated from the image function behavior of

neighborhood of pixel. It is a vector variable containing two values:

• magnitude, and

• direction.

Edge magnitude is the magnitude of the gradient gmag(x, y), and the edge di-

rection φ(x, y) is rotated with respect to the gradient direction ψ(x, y) by −90o. The

gradient direction ψ gives the direction of maximum growth of the gradient function.

Edge profile in the direction of gradient is usually given for an edge and Figure

2.1 illustrates in one dimension a few examples among several standard edge pro-

files. Edge detectors are generally tuned for a certain type of edge profile. Gradient

magnitude, whose absolute value |gmag(x, y)| is often used, and gradient direction ψ

continuous image functions calculated from Equation 2.3

|gmag(x, y)| =
√(

∂I

∂x

)2

+
(

∂I

∂y

)2

(2.3)

ψ(x, y) = arctan(
∂I

∂x
,
∂I

∂y
) (2.4)

respectively, where arctan(x,y) is the angle (in radians) from the x-axis to the point

(x,y). Since a digital image is discrete in nature, Equation 2.3 and 2.4 must be ap-

proximated by difference equations [14, 15]. Gradient operators can be examined in

three categories:
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Figure 2.1: Typical edge profiles.

• Operators approximating derivatives of the image function using differences.

Some of the are rotationally invariant (e.g. Laplacian [16, 15]), and thus are

computed from one convolution mask [15]. Others that approximate first deriv-

atives using several masks (e.g. Roberts, Prewitt and Sobel operators [14, 17,

15]).

• Operators based on zero crossings of the image function second derivative (e.g.

Canny edge detector [18, 17]).

• Operators which attempt to match an image function to a parametric model of

edges (e.g. Hueckel’s method [19]).

Edge detection is the first phase of linear segment extraction, and Canny’s edge

operator is used for this purpose. It is an optimal edge detection approach for step

edges corrupted by white noise [18] where a step edge is given by its position, orien-

tation and magnitude.

Suppose G is a 2D Gaussian process defined in Equation 2.5, and assume that

we wish to convolve the image with an operator Gn which is a first derivative of G

in the direction n.

Gn =
∂G

∂n
= n · ∇G (2.5)

The direction n should be oriented perpendicular to that of edge. Since this di-

rection is not known in advance, a robust estimate of it can be obtained based on

smoothed gradient direction. If I is the image, n can be estimated as in Equation 2.6
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n =
∇(G ∗ I)
|∇(G ∗ I)| (2.6)

Location of the edge is, then, at the local maximum in the direction n of the oper-

ator Gn convolved with image I .

∂

∂n
G ∗ I = 0 (2.7)

Substituting Gn from Equation 2.5 into Equation 2.7, the Equation 2.8 is ob-

tained.

∂2

∂n2
G ∗ I = 0 (2.8)

Equation 2.8 gives the local maxima in the perpendicular direction to the edge

(non maximal suppression).

After an input image I is convolved with a symmetric Gaussian G using an es-

timate direction n, the directional second derivative can be computed. Then, the

strength of the edge is measured as in Equation 2.9.

|Gn ∗ I| = |∇(G ∗ I)| (2.9)

Algorithm 1 Canny Edge Detection Algorithm
1: A gaussian of scale σ is used to convolve Image I

2: local edge normal directions n are estimated using Equation 2.6 for each pixel in the

image

3: Edge locations are found using Equation 2.8 (non-maximal suppression)

4: The magnitude of the edges are calculated using Equation 2.9

2.1.2.1 Boundary Curve Forming by Linking Nonzero Pixels

Once an edge map of an image is constructed and thresholded to produce a binary

image, a connected components labeling algorithm can employed to group edge pix-

els into maximal connected regions [14].

If there is a sequence of pixels (p0, p1, . . . , pn) where p0 = p, pn = q and pi is a

neighbor of pi−1 for i = 1, 2, . . . , n then, two edge pixels p and q are belong to the
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same connected component C. Thus, the definition of a connected component de-

pend on the definition of the neighborhood. When only the North, South, East, West

neighbors of a pixel are considered as a part of its neighborhood, then the result-

ing regions are called 4-connected. If Northeast, Northwest, Southeast, Southeast

and Southwest neighbors are also considered, the the resulting regions are called

8-connected. Literature regarding connected components labeling contains various

efficient and well known algorithms and detailed information about these algorithms

can be found in [14, 15].

The second step is forming a boundary curve, the gradient or strength measure

is used for marking each pixel as a result of edge detection method. The true edges

are likely to be corresponded by the high valued pixels.

Canny’s hystresis thresholding [18] uses both high threshold and low threshold

values rather than using a single threshold on the gradient value. The main idea is;

weak responses usually corresponds to noise, but if these are connected to a pixel

with strong responses, then they are more likely to be actual edges in an image.

Streaking can be eliminated by this method. This method prevents breaking an edge

into many small disconnected pieces b starting an edge when a pixel is above the

high threshold and keeping all pixels above the low threshold in intervals bounded

by pixels above the high threshold. When tracking adjacent non-zero edge elements

higher than low threshold, connected components are searched. Figure illustrates

the results of linking with hystresis on a set of edge magnitude images.

2.1.2.2 Boundary Curve Segmenting by Polygonal Approximation

Edge detection and edge linking algorithms produce a sequence of linked < x, y >

coordinate pairs. Polygonal approximation is generally applied to obtain a more

compact representation from the linked description of edge pixels, and to decrease

memory and computational costs for feature extraction.

A polygonal approximation routine consists of three steps as indicated below.

• First step is the initialization where the dominant points are tentatively located

in the curve data providing an initial approximation.

• In the second step, this initial polygon is iteratively adjusted, by adding addi-

tional dominant points. This adjustment continues until some specific good-
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ness of criteria are met.

• Finally, in the third step, edges which have similar properties are merged or

concatenated.

Let us have a boundary curve C composed of linked edge pixels defined in Equa-

tion 2.10

C = P1, . . . , Pn where

P1 =< x1, y1 > and,

Pn =< xn, yn >

(2.10)

Main objective of these methods is to represent a given C with a list of connected

straight lines Li, defined in Equation 2.11

L = L1, . . . , Lm where

L1 = < x1, y1 >,< xi, yi > and,

Lm = < xk, yk >,< xn, yn >

(2.11)

starting P1 and ending at Pn which are presented in 2.10, such that the result is

similar to the original digital boundary curve as much as possible.

A boundary curve can be approximated with varying precision; if a more precise

description is necessary, a large number of line segments may be employed. One po-

tential drawback of polygonal approximation is that the result is not usually unique;

for example an approximation of same the curve that begin at a different initial point

on the curve will likely yield different results.

There is a variety of techniques for segmenting digital arcs into simple line seg-

ments. The techniques range from iterative end-point fitting and splitting to using

tangent angle detection, prominence, or high curvature as the basis of the segmenta-

tion, and related work can be found in [14].

The segmentation problem is formalized in [14] as follows. Let L = (x, y)|αx + βy + γ

where α2 + β2 = 1 be the line segment defined by the end points < x1, y1 > and

< xn, yn >.

For any point < xn, yn >, dn is the distance between point < xn, yn > and L. The

distance between point and a line is calculated using an Equation 2.12.

dn =
|αxn + βyn + γ|√

α2 + β2
(2.12)
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Figure 2.2: Geometry of the iterative end point fit and split. a) C is the pixel having
the farthest distance to line AB. The algorithm segments the curve sequence at pixel
C, creating two curve sequences. b) Splitting procedure is recursively applied to
newly created segments.

If dm > d∗, the sequence C is split into two subsequences, S1 = < x1, y1 >, · · · , < xm, ym >

and S2 = < xm+1, ym+1 >, · · · , < xn, yn >, and these sequences are represented by

their line segments L1 and L2.

Splitting is applied recursively until the edge is reduced into the short segments,

if the threshold granularity is larger than the distance of point to the fragment the

recursion is stopped.

2.1.3 Textural Feature Extraction

In computer vision and image processing applications, ”texture” is one of the most

important characteristics for identifying, discriminating and synthesizing an objects

in an image. Textural features contain information about the spatial distribution of

the tonal variations creating patterns on the surface. Analysis of images by using

textural properties has a very wide of range of application areas such as medical

imaging, remote sensing, industrial quality inspection and content based image re-

trieval.

There have been two alternative approaches to describe one dimensional (1-d)

signals, the first one represents signals as a function of time and the second as a

function of frequency. A representation can be transformed from one to another via

the Fourier or inverse Fourier transforms and they thus carry the same information

but in different forms. Both of the representations are somewhat idealizations since

the first one operates on sharply defined time instants and the second with infinite
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waveform trains on rigorously defined frequencies. It is motivated to construct an

approach that represents signals as a function of both time and frequency. Dennis Ga-

bor in 1946 proposed the use of special elementary functions, later named after him

as Gabor functions, to represent signals simultaneously in time and frequency [20].

In this section, a brief introductory description of Gabor function is given. Interested

readers may refer to the cited references for further investigation.

2.1.3.1 Gabor Functions

Gabor functions are one of the most widely used and biologically plausible texture

feature extraction tools in the current state of the art of low-level image processing.

Since Gabor filters can be considered as orientation and scale tunable edge and line

(bar) detectors, and the statistics of these micro features in a given region are often

used o characterize underlying texture information, they have been extensively used

in several image analysis applications [21]. Gabor filtering in texture features and its

advantages are confirmed by many researchers in the field of image processing and

pattern recognition.

Another benefit of Gabor functions is their response which is highly localized

in both spatial and frequency domain. Empirical studies suggest that distributed

conjoint spatial/spatial-frequency representations are fundamental to visual infor-

mation encoding in the cortex of all mammals, including the human species [22]

and they are also ideally suited for low-level image representations. They are pri-

marily useful because they improve pattern separability achieving at the same time

geometrical invariance to scale, rotation changes and perspective distortions.

A two dimensional Gabor function g(x, y) and its Fourier transform G(u, v) is

written in Equation 2.13 and Equation 2.14 respectively.

g(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σx
2

+
y2

σy
2

)
+ 2πWjx

]
(2.13)

and

G(u, v) = exp

{
−1

2

[
(u−W )2

σu
2

+
v2

σv
2

]}
(2.14)

where σu = 1/2πσx and σv = 1/2πσy.

A set of filtered images obtained by convolving the given image with Gabor fil-

ters.
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By appropriate rotations and dilations of g(x, y) in Equation 2.13 through the

functions generated on Equation 2.15 will form a self-similar filter dictionary.

gmn(x, y) = a−mG(x̃, ỹ), a > 1, m, n = integer

x̃ = a−m(x cos θ + y sin θ), and ỹ = a−m(−x sin θ + y cos θ)
(2.15)

where θ = nπ/K and S is the number of scales and K is the total number of

orientations. The scale factor a−m in Equation 2.15 is meant to ensure that energy is

independent of m.

2.1.3.2 Feature Representation

For an image I(x, y), the discrete Gabor wavelet transform is given by a convolution:

Wmn(x, y) =
∫

I(x1, y1)g∗mn(x− x1, y − y1)dx1dy1 (2.16)

where * indicates complex conjugate.

µmn =
∫ ∫

|Wmn(xy)|dxdy, and σmn =

√∫ ∫
(|Wmn(x, y)| − µmn)2dxdy

(2.17)

µmn and σmn are used to construct feature vector. The resultant feature vector be-

comes

f̄ = [µ00 σ00 µ01 · · · µmn σmn] (2.18)

2.2 Data Analysis Methods

2.2.1 Data Classification

Classification is one of the main tasks extensively studied in many disciplines such

as machine learning, data mining and pattern recognition. Classification is an assign-

ment of new objects to a class from a given set of classes based on the attributes of

these objects.

Two approaches to classification can be introduced. The first assumes the knowl-

edge of the underlying class conditional probability density functions. In the second

one, the data is used to estimate the decision boundaries directly without calculation

of probability density functions.
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The classification scheme is usually based on already labeled set of patterns. This

set of pattern is called training set and learning strategy is then called as supervised

learning. The strategy can also be unsupervised, in the sense that the system is not

given an a priori labeling of patterns, instead it establishes the classes itself based on

the statistical regularities of the patterns.

Figure 2.3 shows various dichotomies that appear in statistical pattern recogni-

tion which is adapted from [1]. Bayes decision theory 2.2.1.1 constitutes the basis of

almost all classifiers.

Figure 2.3: Various approaches in statistical pattern recognition. (adapted from [1])

2.2.1.1 Bayes Decision Theory

Consider C classes, ω1, · · · , ωC with a priori probabilities p(ω1), · · · , p(ωC), assumed

known. If we have no other information regarding an object other than the class

probability distribution then we would assign an object to class ωj if

p(ωj) > p(ωk) k = 1, · · · , C; k 6= j (2.19)

If we have a measurement vector or observation vector x, we may wish to assign x

to one of the C classes. A decision rule based on probabilities is if the probability of

class ωj given the observation x is greater than over all classes ω1, · · · , ωc then assign

x to class ωj . That is,
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p(ωj |x) > p(ωk|x) k = 1, · · · , C; k 6= j (2.20)

The measurement space is partitioned into C regions Ω1, · · · , ΩC such that if x ∈
Ωj then x belongs to class ωj . It can also be expressed informally stating that

posterior =
likelihood× prior

evidence
(2.21)

The a posteriori probabilities p(ωj |x) may be expressed in terms of the a priori prob-

abilities and the class conditional density functions p(x|ωi) using Bayes’ theorem

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
(2.22)

Therefore the decision rule may be written as : assign x to ωj if

p(x|ωj)p(ωj) > p(x|ωk)p(ωk) k = 1, · · · , C; k 6= j (2.23)

Whenever we observe a particular x, the probability of error is

P (error|x) =





P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1

(2.24)

2.2.1.2 Support Vector Machines

The decision boundaries can be obtained directly (geometric approach). In this study,

we concentrate on decision boundary construction by optimizing certain cost func-

tions.

The relationship between Bayes decision rule and Support vector machines (SVM)

has already been explored and explained in the literature [23].

Consider we have a set of training patterns xi, i = 1, . . . , n assigned to one of two

classes, ω1 and ω2, with corresponding labels yi = ±1. A linear discriminant function

is denoted as in Equation 2.25.

g(x) = ωT x + ω0 (2.25)

with decision rule
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ωT x + ω0





> 0

< 0
⇒ x ∈





ω1 with corresponding numeric value yi = +1

ω2 with corresponding numeric value yi = −1
(2.26)

Thus, all training points correctly classified if

yi(ωT xi + ω0) > 0 for all i (2.27)

Support Vector Machines are learning machines that can perform binary classifi-

cation and regression estimation tasks. They perform the structural risk minimiza-

tion principle.

The idea behind SVM is as follows: it maps the input vectors xi ∈ < into a higher

dimensional feature space φ(xi) ∈ H and constructs Optimal Separating Hyperplane,

which maximizes the margin the distance between hyperplane and the nearest data

points of each class in the space H . The mapping φ is performed by a kernel function

K(xi, x) which defines an inner product in the space H .

Figure 2.4b shows separable set of points with separating hyperplane, A. The

margin is determined by the maximal margin classifier whose distance is largest to

two parallel hyperplanes on each side of the hyperplane A. The larger the margin,

the better the generalization error of the linear classifier defined by separating hy-

perplane.

(a) (b)

Figure 2.4: Two linearly separable sets of data with separating hyperplane. Thick line
leaves the closest points at maximum distance. (adapted from [24])

Margin b > 0, is the variant of perceptron rule, and we seek a solution so that

yi(ωT xi + ω0) ≥ b (2.28)

Without loss of generality, margin b = 1 may be taken, defining the term canonical

hyperplanes, H1 : ωT xi + ω0 ≥ +1 and H2 : ωT xi + ω0 ≥ −1, and we have
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ωT xi + ω0 ≥ +1 for yi = +1

ωT xi + ω0 ≤ −1 for yi = −1
(2.29)

The distance of two hyperplanes to the separating hyperplane is margin, 1/|ω|.
Figure 2.5shows the separating hyperplane and canonical hyperplanes for separa-

ble data sets. The points that lie on the canonical hyperplanes are called support

vectors. Therefore maximizing the margin means that we are looking for a solution

minimizing |ω|. An approach to optimization problems with equality and inequality

constraints is Lagrange formalism, that can be stated for SVM as follows.

Figure 2.5: H1 and H2 are canonical hyperplanes, a hyperplane through closest points
(marked as ring) are termed as support vectors. (adapted from [24])

Lp =
1
2
ωT ω −

n∑

i=1

αi(yi(ωT xi + ω0)− 1) (2.30)

where αi, i = 1, . . . , n; αi ≥ 0 are the Lagrange multipliers. ω and ω0 are primal

parameters and the number of parameters is p + 1, where p is the dimensionality of

feature space.

Differentiating Lp with respect to ω and ω0 and equating to zero yields

∑n
i=1 αiyi = 0

ω =
∑n

i=1 αiyixi

(2.31)

Substitute Equation 2.31 into Equation 2.30 gives the dual form of the Lagrangian

LD =
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyjxT
i xj (2.32)
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which is maximized with respect to αi subject to

αi ≥ 0
n∑

i=1

αiyi = 0 (2.33)

Once we have the Lagrange multipliers αi, the value of ω0 can be found through

αi(yi(xT
i ω + ω0)− 1) = 0 (2.34)

using any of support vectors (patterns for which αi 6= 0) or an average of all

support vectors.

nsvω0 + ωT
∑

i∈SV
xi =

∑

i∈SV
yi (2.35)

where nsv is the number of support vectors. Equation 2.31 is used for solution of

ω.

ω =
∑

i∈SV
αiyixi (2.36)

since αi = 0 for other patterns. The new pattern x is classified according to the

sign of,

ωT x + ω0 (2.37)

In many real world problems, there will be no linear boundary separating classes

so searching for optimal hyperplane is meaningless. Support vector machines may

be applied in a transformed feature space φ(x), for some nonlinear function φ.

g(x) = ωT φ(x) + ω0 (2.38)

with decision rule

ωT φx + ω0





> 0

< 0
⇒ x ∈





ω1 with corresponding numeric value yi = +1

ω2 with corresponding numeric value yi = −1
(2.39)

The transformed feature vectors can be replaced by kernel function.

K(x, y) = φT (x)φ(y) (2.40)
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The discriminant function becomes

g(x) =
∑

i∈SV
αiyiK(xi, x) + ω0 (2.41)

The kernel representation has an advantage of that we need only K for training.

There are different type of kernels can be employed. We are interested in only Radial

basis function (RBF) kernel. The first reason of better performance is that the RBF

kernel nonlinearly maps samples into a higher dimensional space, unlike the linear

kernel. The second reason is the number of hyperparameters which influences the

complexity of model selection. The polynomial kernel has more hyperparameters

than the RBF kernel. Finally, the RBF kernel has less numerical difficulties.

K(xi, x) = exp(−γ||xi − x||2), γ > 0 (2.42)

2.2.2 Visualization by Multidimensional Scaling

Multidimensional scaling (MDS) is used as a visualization tool to present multivari-

ate data in a human accessible form, and as a preliminary transformation applied to

the data prior to the use of other analysis tools like clustering and classification.

Almost always, multivariate data are supplied in one of two basic forms: linear

methods and nonlinear ones. In the second case, we use the term weights for the

pairwise relationships between the data elements. Weight-based methods attempt to

assign coordinates to the data elements in the low dimensional space such that their

embedding reflects in some sense their pairwise relationships. Distances, similari-

ties, and dissimilarities are the most commonly used types of weights. MDS is the

customary notion for these methods that use distances or dissimilarities as weights.

MDS is a method for visualizing proximity data, that is, data where objects are

characterized by dissimilarity values for all pairs of objects. MDS constructs maps of

these objects in <k by interpreting the dissimilarities as distances [25].

Set of n points in p-dimensional space, x1, · · · , xn, we can easily calculate the

Euclidean distance between each pair of points. The coordinates of set of points in

a dimension e can be achieved by a decomposition of n × n matrix T, the between-

individual sums of squares and products matrix.

T = XXT (2.43)
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where X = [x1, · · · , xn]T is the n × p matrix of coordinates. The distance between

two individuals i and j is

d2
ij = Tii + Tjj − 2Tij (2.44)

where

Tij =
p∑

k=1

xikxjk (2.45)

If we think that the centroid of the points xi, i = 1, . . . , p, is at the origin. Then the

elements of the matrix T can be expressed in terms of dissimilarity matrix inverting

Equation 2.44, giving

Tij = −1
2
[d2

ij − d2
i· − d2

·j + d2
··] (2.46)

where

d2
i· =

1
n

n∑

j=1

d2
ij ; d2

·j =
1
n

n∑

i=1

d2
ij ; d2

·· =
1
n2

n∑

i=1

n∑

j=1

d2
ij ; (2.47)

Equation 2.47 allows us to construct T from n× n dissimilarity matrix D. As it is

a real symmetric, T can be written in the form

T = UΛUT (2.48)

where Λ is the diagonal matrix of eigenvalues λ1, . . . , λn, U is the eigenvectors of

T. Therefore

X = UΛ
1
2 (2.49)

as our matrix of coordinates.
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CHAPTER 3

INTERACTIVE CLASSIFICATION OF SATELLITE IMAGES

The basic idea is to do an initial query with some example regions indicated by the

user, get feedback from user at each step as to what regions are relevant and then

add some more examples or remove some from known regions to the query. Posi-

tive results are example image regions containing sought geographical object, while

negative classified results may contain any object.

3.1 Description of The System

We propose here a system of two serially working steps. The positive results of first

step are passed into the second step for further analysis. The context diagram shown

in Figure 3.1 shows the data flow of the system.

The first step starts initially by forming the positive set. This set is constructed

by the user through our interface in an interactive manner. The negative set is au-

tomatically generated by our system. In the first step, the spectral or linear features

of examples are analyzed to eliminate most of true negatives. For visualization pur-

poses, multidimensional scaling (MDS) is used to show the 2D plot of feature set that

we created for linear analysis. The simple data flow diagram for first pass is shown

in Figure 3.2

The example set constructed in the first step is kept to be used during second step.

The negative set again generated automatically from the positive labeled results of

the first pass. Multidimensional scaling is used in order to visualize sets. The simple

data flow diagram for second pass is shown in Figure 3.3

However the resultant regions are not the final results, they are input to the sec-

ond phase; structural feature analysis phase.
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Figure 3.1: System flow diagram.

Figure 3.2: Flow diagram of the first step.
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Figure 3.3: Flow diagram of the second step.

3.2 Overview of Software

We designed and implemented a basic software for the purposes of this study. A

screen shot from the user interface of this software is shown in Figure 3.4. The soft-

ware is implemented in C++ programming language while the user interface is de-

veloped using Qt. Qt is a comprehensive C++ application development framework.

User can perform the following operations on an image through our interface;

• Desired image can be opened.

• The whole image and its reference image are shown to the user. The reference

image has a lower resolution copy of the original image of size 120×120 pixels.

The reference image gives user the option of navigating through the original

image, by clicking a corresponding area on reference image instead of searching

in the original one. By clicking on a segment in reference image will show you

the associated image region in the original image at the same time with the

original resolution.

• Regions and labels can be saved as a project file for further operations. The
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project will enable the user to work on previously created datasets in addition

s/he can update these sets accordingly.

• The positive set can be formed by the user through our interface by visually

looking regions both in 2D plot and their place in the whole image. The se-

lection is made by dragging the selection window to the desired region on the

original image, the positive set formed by this way is shown on the right hand

side of our interface.

• positive set can be updated by adding new regions or removing existing ones.

• User is able to see a 2D plot the feature sets of labeled positive regions and of

all regions. User is able to observe the corresponding image region by selecting

a point on the plot. This option gives user the opportunity to observe visually

and accordingly modify the members of positive and negative sets.

Figure 3.4: Interface of developed software.
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The functions of each object on interface is briefly explained as follows:

• Open Image : This button is used to open an high-resolution image in any

format e.g .jpeg, .bmp, etc. Reference image shown in Figure 3.4 is a down-

sampled(120 x 120) copy of original image.

• Save Project : Used for saving the project for further operations.

• Open Project : User can continue working on previously saved projects by

using this button.

• Window Size : This is required when the size of the cartographic object e.g

bridge, road is not fit into the selection window. User can increase or decrease

the size of window to fit the object into. As a result the size of each element in

positive example set can vary accordingly.

• Help : This button provides a help document of software to make sure the user

of efficient use.

• Show Examples in 2D : The features of examples in 2D plot located on the

bottom of interface are shown to the user by clicking to this button.

• Spectral or Linear Analysis : This area is used to work on elements of both pos-

itive and negative example sets by changing their labels or adding new regions

to these sets.

• Textural Analysis : This area is used to work on elements of both positive and

negative example sets by changing their labels or adding new regions to these

sets.

3.3 Employed Algorithms

This section is going to present the algorithm employed for both steps of system. The

notations that we used in the algorithms are as follows;

• Λ : whole set,

• ρ : positive set,

• η : negative set
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• f̄ : a feature set,

• L : boundary curve set,

• d() : distance function,

• h : histogram,

• µ : mean,

• σ : standard deviation,

3.3.1 Spectral Feature Analysis

In the first step, our aim is the application of linear classification methods such as

support vector machines (SVM) in order to reduce the number of candidate regions.

User indicates some m reliable example regions that form the positive set ρ. Pos-

itive feature set is created by calculating gray level mean µ and standard deviation σ

of each element in ρ using equations in Section 2.1. The feature set for ρ becomes

[µ1, σ1, . . . , µm, σm] (3.1)

For classification purposes, we need sample negative images. Negative set η is

generated by labeling the farthest t regions of Λ to the mean of set ρ in terms of

Euclidean distance shown in Equation 3.2.

d(i) =
√

(µi − µρ)2 + (σi − σρ)2 i = 1, . . . , ||Λ|| (3.2)

where µρ and σρ is an average µ and σ of set ρ.

The complete steps of algorithm for graylevel feature extraction are shown in 2.

We have used SVM as a linear classifier [26].

3.3.2 Linear Feature Analysis

We implemented another technique which is linear segment extraction for the first

step of our analysis. Linear segment extraction is a 3-stage approaches defined below.

User indicates some m reliable example regions that form the positive set ρ. The

Canny edge detector is applied to each element of set ρ. Stage 2 is to form a boundary

curve, the gradient or strength measure is a typical approach for marking each pixel
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Algorithm 2 Spectral Analysis
1: for each i ∈ ρ do

2: calculate µi and σi in equation 2.1

3: µρ = 1
m

m∑

i=1

µi and σρ = 1
m

m∑

i=1

σi

4: for each i ∈ Λ do

5: calculate µi and σi

6: calculate Euclidean distance d(i) to [µρ, σρ]

7: generate negative set η by t candidate regions that have largest d()

8: visualize ρ and η in 2D plot using µ and σ

9: modify ρ and η by user interaction

10: for final positive set ρ apply lines 1-2

11: for each i ∈ η do

12: calculate µi and σi

13: apply a linear classifier on Λ using ρ, η and corresponding gray level features.

as a result of edge detection method. Canny’s hysteresis thresholding is used for this

purpose.

The last stage is to approximate the segments by polygonal approximation, it is

used to obtain a more compact description from the linked representation of edge

pixels. Given a curve sequence C = < x1, y1 >, · · · , < xn, yn >, iterative end-point

fit algorithm is applied to segment C into subsequences until the error condition is

satisfied.

The feature set for positives is the histogram of lengths of segments. The his-

togram is nonuniformly quantized according to length of linear segments. The in-

tervals of histogram are defined by taking into account various parameters such as

the size of regions, the distance threshold and the Canny edge detector parameters.

By defining the interval of histogram, the linear segments with small changes are

mapped into the same interval instead of using different interval values.

The mean interval values µρhk
of histogram is calculated as in Equation 3.3. It is

used to generate a negative set where h and k correspond to histogram and the num-

ber of intervals, respectively. The Euclidean distance is calculated for each interval

using an Equation 3.4.
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µhρk
=

1
||ρ||

||ρ||∑

i=1

hρki (3.3)

where k = 1, · · · ,K.

d(µhρ , hΛi) =
√

(µhρ1
− hΛ1i)2 + · · ·+ (µhρK

− hΛK
i)2 (3.4)

The steps of algorithm for linear feature analysis is shown in Algorithm 3.

3.3.3 Textural Feature Analysis

The objective of second step is to apply texture as an image feature for classification.

Therefore, a texture feature representation based on Gabor filters 2.1.3 is applied. Af-

ter having applied linear classification in first step, the resultant positive regions are

showed through our interface and the boundary between the two sets is also drawn

in 2D shown in Figure. The positive and negative results are marked in different

colors for discrimination purpose on our plot.

For this step, image regions that are labeled as negative are ignored since these

regions are irrelevant. We start studying on positive results of the first pass. The

positive set ρ formed in the first pass is kept. Filter responses of images to the Gabor

filter dictionary are computed by taking Fourier transform of the images and mul-

tiplying with the filters in this domain. A feature vector is formed using the means

and standard deviations of the responses to the filters at the selected scale and orien-

tations. In our experiments, different scales m and orientations n are used forming a

feature vector of size m× n.

We use the distance measure in Equation 3.5 to calculate the distance d(i, j) be-

tween set ρ and the whole set Λ.

d(i, j) =
∑
m

∑
n

dmn(i, j)

where

dmn(i, j) =

∣∣∣∣∣
µ

(i)
mn − µ

(j)
mn

α(µmn)

∣∣∣∣∣ +

∣∣∣∣∣
σ

(i)
mn − σ

(j)
mn

α(σmn)

∣∣∣∣∣

(3.5)

where α(µmn) and α(σmn) are the standard deviations of the respective features

over entire set, and are used to normalize the individual feature components. The

negative set η is formed by taking the farthest t images to ρ.
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Algorithm 3 Linear Feature Analysis
1: K is the number of interval

2: for each i ∈ ρ do

3: apply Canny edge detection algorithm 1 to image i which results an image Cρi

4: apply hysteresis thresholding to Cρi to form boundary curve set Lρi.

5: apply iterative end-point fit algorithm on set Lρi using distance threshold

6: for each j ∈ Lρi do

7: calculate the length of fragment j

8: update histogram hρi of image i using j

9: feature vector f̄ρ becomes [hρ1 · · ·hρ||ρ||]t

10: for each j ∈ K do

11: µhρj
= 1

||ρ||

||ρ||∑

i=1

hρj i

12: for each i ∈ Λ do

13: apply Canny edge detection algorithm to image i shown in 1 to have a resul-

tant image CΛi

14: apply hysteresis thresholding to CΛi to form boundary curve set LΛi.

15: apply iterative end-point fit algorithm on set LΛi using distance threshold

16: for each j ∈ LΛi do

17: calculate the length of fragment j

18: update histogram hΛi of image i using j

19: feature vector f̄Λ becomes [hΛ1 · · ·hΛ||Λ||]
t

20: for each j ∈ K do

21: µhΛj
= 1

||Λ||

||Λ||∑

i=1

hΛj i

22: for i ∈ Λ do

23: Calculate distance d(µhρ , hΛi) using Equation 3.4

24: Construct negative set η by labeling farthest t candidate regions that have largest

distance d() in line 23

25: Apply Multi Dimensional Scaling to feature sets of both η and ρ and visualize the

projections in 2D

26: Modify ρ and η by user interaction

27: Apply lines 1-9 for redefined positive set ρ

28: Apply lines 1-9 for redefined negative set η

29: Apply Support Vector Classifier onto Λ using f̄ρ and f̄η
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For visualization purposes, the feature sets of ρ and η are mapped into 2 dimen-

sional space using Multidimensional scaling. User can modify both sets by clicking

on a point in plot and examining visually the corresponding image region. When the

user is satisfied, Support vector classifier finds the boundary between two sets and

apply the classification on the whole image regions.

The complete steps of algorithm for second pass is shown in Algorithm 4.

3.3.4 Structural Feature Analysis

There are two modules in structural feature analysis system [3]. The preprocessing

module performs the decomposition of an object in positive image regions into basic

shapes. The topology and spatial information can be preserved while obtaining a de-

composed image. Two different decomposition in parallel is proposed one for circles

and rectangles and the other for circles and segments. In the second module, de-

composed images created in the first module is transformed into ARGs (Attributed

Relational Graphs). The ARGs are preferred to represent structural features of im-

age regions. The representation rules are specified as the characteristics of geomet-

ric shapes are stored in the vertices, the characteristics of connections are stored in

edges. The model is generated using ARGs, the generated model is mesh bounded

by the MaxCSg (Maximal Common Subgraph) and MinCSg (Minimal Common Su-

pergraph) that is the set of all graphs G such that G ⊆ MinCSg and G ⊇ MaxCSg.

The ARG of image regions in whole set Λ is generated. The ARG of an image region

is in between MinCSg and MaxCSg then corresponding image region is classified

as positive.
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Algorithm 4 Texture Analysis using Gabor Filter
1: for each i ∈ ρ do

2: for a = 1 to m do

3: for b = 1 to n do

4: Calculate gρ(i, a, b) which is the Gabor filter output at scale a and orienta-

tion b

5: for a = 1 to m do

6: for b = 1 to n do

7: for each i ∈ ρ do

8: Calculate µρ(i, a, b) and σρ(i, a, b)

9: A feature vector f̄ρ of ρ is constructed using µρ(i, a, b) and σρ(i, a, b).

10: µρ is an average of mean features in f̄ρ for each scale m and orientation n.

11: σρ is an average of standard deviation features in f̄ρ for each scale m and orien-

tation n.

12: for each i ∈ Λ do

13: for a = 1 to m do

14: for b = 1 to n do

15: Calculate gΛ(i, a, b) which is the Gabor filter output at scale a and orienta-

tion b

16: for a = 1 to m do

17: for b = 1 to n do

18: for i ∈ Λ do

19: Calculate µΛ(i, a, b) and σΛ(i, a, b)

20: A feature vector f̄Λ of Λ is constructed using µΛ(i, a, b) and σΛ(i, a, b).

21: for i ∈ Λ do

22: Calculate distance d((µρ, σρ), f̄Λ(i)).

23: Construct negative set η by labeling the farthest t candidate regions as negative

according to distance d() in line 22

24: Apply Multi Dimensional Scaling to feature sets of both η and ρ and visualize the

projections in 2D

25: Modify ρ and η by user interaction

26: Apply lines 1-4 for redefined positive set ρ

27: Apply lines 1-4 for redefined negative set η

28: Apply Support Vector Classifier onto Λ using f̄ρ and f̄η
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CHAPTER 4

EXPERIMENTS AND RESULTS

The proposed man-made cartographic object extraction process is composed of two

steps;

• First step : spectral or linear feature analysis.

• Second step : textural feature analysis.

We tested different parameter values for each image feature analysis technique.

The overall process parameters for image analysis steps which affects the results is

explained below.

• The spectral feature extraction technique parameters:

– the mean of pixel values µ ,

– the standard deviation of pixels σ.

• The line segment extraction process parameters;

1. Canny edge detector and edge linking parameters:

– the size of Gaussian filter σ,

– high hysteresis threshold HTresh,

– low hysteresis threshold LTresh.

2. polygonal approximation parameters:

– the line length threshold of line segments h,

– the distance threshold of point to line distance d.

• The textural feature extraction process parameters:

– the frequency components of filter m,
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– the directional components of filter n,

– filter mask dimension size side,

– high center frequency Uh

– low center frequency Ul.

For our experiments, we have used satellite images of size 4000 × 2400 pixels

and 4800× 3600 pixels shown in Figure 4.1 and Figure 4.2 which are a single band,

grayscale SPOT Pan image. The images are divided into nonoverlapping subimages

of size 80× 80 pixels, thus creating a set of 1500 and 2700 image regions respectively.

We have subjectively labeled each image region into one of the two classes, positive

and negative. Therefore, we assume that we have the groundtruth information to

assess the accuracy. The number of positive labeled is 16 for road set, 231 for urban

area set and 581 for home set.

We created two test sets from the whole set Λ; image regions containing roads,

image regions containing urban areas and image regions containing homes. There

are two forms of experiments performed on these sets: test A; spectral followed by

textural feature analysis, test B; linear followed by textural feature analysis.

For the classification, LIBSVM is used as a computational tool. The quality of

SVM models depends on a proper setting of SVM meta-parameters. Therefore, the

main issue in this study is how to set these parameter values for a given dataset.

Experiments yield that RBF kernel gives better results than linear and polynomial

kernels. There are two parameters while using RBF kernels: C and γ. It is not known

beforehand which C and γ are the best for our problem. Consequently some kind

of model selection must be done. Therefore we employed a code written in Python

which is a model selection tool. It uses cross validation (CV) technique to estimate

the accuracy of each parameter combination in the specified range and helps us to

decide the best parameters for our problem.

The explanations of terms that we used mostly in our experiments are as follows;

True Positives : The positive instances that were reported as positive.

False Positives : The negative instances that were erroneously reported as positive.

True Negatives : The negative instances that were reported as negative.

False Negatives : The positive instances that were erroneously reported as negative.

Local Accuracy : The local accuracy is the proportion of number of positives to the
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Figure 4.1: Single band, grayscale Image (SPOT Pan) of size (4000 x 2400) with spatial
resolution 10m.
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Figure 4.2: Single band, grayscale Image (SPOT Pan) of size (4800 x 3600) with spatial
resolution 10m.
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number of input set. It is calculated using an Equation 4.1.

local accuracy =
# of true positives + #of true negatives

# of elements in input
× 100 (4.1)

Overall Accuracy : The total accuracy is the proportion of number of positives for

each set to the number of whole set. It is calculated using an Equation 4.2.

total accuracy = local accuracy×
(

1 +
# of true positives + #of true negatives

# of elements in input

)

(4.2)

Local accuracy gives the accuracy at an individual step in terms of its input.

MDS is used to visualize our high dimensional data e.g. linear features of size

n× 10 and textural features of size n× 24 where n is the number of regions.

4.1 Test A : Spectral and Textural Feature Analysis Results

Test A is performed on images in Figure 4.3, Figure 4.4 and Figure 4.5. Algorithm 2

is followed step by step. The positive set is formed by the user through our interface.

The number of positives used in our test sets is 10. We generate a negative set by

labeling the farthest 10 regions, these may be irrelevant to positive set but the user can

update elements of negative set. The negative set is formed using spectral analysis

distance metric written in Equation 3.2.

(a)

(b)

Figure 4.3: Spectral Feature Analysis : Some example regions regions in road set. (a)
Positive regions, (b) generated negative regions.

All test set’s 2-dimensional mean standard deviation plot in Figure 4.6,Figure 4.7

and Figure 4.8 are shown to the user for relabeling the elements of positive and neg-
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(a)

(b)

Figure 4.4: Spectral Feature Analysis : Some example regions regions in urban area
set. (a) positive regions, (b) generated negative regions.

(a)

(b)

Figure 4.5: Spectral Feature Analysis : Some example regions regions in home set. (a)
positive regions, (b) generated negative regions.
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ative sets. It shows the distribution of whole set Λ including positive ρ and negative

η sets.

Figure 4.6: Spectral Feature Analysis : The 2-dimensional plot of whole road set
including positives and negatives.

Figure 4.7: Spectral Feature Analysis : The 2-dimensional plot of whole urban area
set including positives and negatives.

Test A is performed on our test sets which are road set, urban area set and home

set. The positive set is formed by the user. Figure 4.3, Figure 4.4 and Figure 4.5

show negative and positive sets.

For our all three sets, Table 4.1, Table 4.2 and Table 4.3 show generated model

parameters for a classifier respectively. It shows the parameters that maximizes true
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Figure 4.8: Spectral Feature Analysis : The 2-dimensional plot of whole home set
including positives and negatives.

retrieval performance of classifier.

Table 4.1: Spectral Feature Analysis : The model parameters of road set.

RBF Parameters
Type of SVM C-SVC

Gamma 0.0078125
C 0.03125

# of Class 2
# of SVs 20

ρ -0.00046177
label 1 -1

Table 4.2: Spectral Feature Analysis : The model parameters of urban area set.

RBF Parameters
Type of SVM C-SVC

Gamma 0.0078125
C 0.03125

# of Class 2
# of SVs 20

ρ 0.000998657
label 1 -1

The predicted labels with local classifier accuracy for all three test sets is shown

in Table 4.4, Table 4.5 and Table 4.6.

The first step results show that positive labeled regions are classified correctly
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Table 4.3: Spectral Feature Analysis : The model parameters of home set.

RBF Parameters
Type of SVM C-SVC

Gamma 0.0078125
C 0.03125

# of Class 2
# of SVs 20

ρ 0.000436745
label 1 -1

Table 4.4: Spectral Feature Analysis : The classification results of road set.

RBF
True Positives 16
False Positives 879
True Negatives 605
False Negatives 0
Local Accuracy : 41.4%

Table 4.5: Spectral Feature Analysis : The classification results of urban area set.

RBF
True Positives 231

False Positives 136
True Negatives 1133

False Negatives 0
Local Accuracy : 90.7%

Table 4.6: Spectral Feature Analysis : The classification results of home set.

RBF
True Positives 581

False Positives 447
True Negatives 1672

False Negatives 0
Local Accuracy : 83.4%
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while most of the negatives are eliminated. The image regions classified as positive

in the first is fed to the second step that is textural analysis.

For Gabor filters ,since there is no best parameter set which gives best results, we

tried different combination of parameters that can affect the performance of classifier

considerably. Table 4.7 shows the parameters that we used for analysis. For low and

high frequency parameters, Ul = 0.1 and Uh = 0.6 values are used. Same textural

feature analysis process is followed for urban area set and home set. Table 4.8 and

Table 4.9 shows the predicted labels for with classification accuracy.

Table 4.7: Textural Feature Analysis : The classification results for road set. RBF
kernel is employed. Gabor filter parameters S : scale, K : orientation, Side : mask
size.

Exp. # True (+)’s False (+)’s True (-)’s False (-)’s Local Overall
Accuracy Accuracy

S = 3;
K = 4; 16 281 598 0 68.6% 81.2%

Side = 20
S = 3;
K = 4; 16 302 577 0 66.2% 79.8%

Side = 80
S = 3;
K = 6; 16 348 531 0 61.1% 76.8%

Side = 20
S = 3;
K = 6; 16 472 407 0 47.2% 68.5%

Side = 80
S = 4;
K = 4; 16 302 577 0 66.2% 79.8%

Side = 20
S = 4;
K = 4; 16 413 466 0 53.8% 72.4%

Side = 80
S = 4;
K = 6; 16 378 501 0 57.7% 74.8%

Side = 20
S = 4;
K = 6; 16 378 501 0 57.7% 74.8%

Side = 80

We have used multidimensional scaling to visualize higher dimensional results.

Figure 4.9 and Figure 4.10 shows Gabor filtered outputs of the positives set; results

of first step. Originally the dimension of Gabor output was n × 24 where n is the
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Table 4.8: Textural Feature Analysis : The classification results for urban area set. RBF
kernel is employed. Gabor filter parameters S : scale, K : orientation, Side : mask size.

True (+)’s False (+)’s True (-)’s False (-)’s Local Overall
Accuracy Accuracy

S = 3;
K = 4; 231 52 84 0 89.2% 96.5%

Side = 20
S = 3;
K = 4; 225 68 68 6 84.9% 95.0%

Side = 80
S = 3;
K = 6; 210 90 46 21 76.8% 92.6%

Side = 20
S = 3;
K = 6; 192 101 35 39 70.9% 90.6%

Side = 80
S = 4;
K = 4; 221 73 63 11 82.7% 94.4%

Side = 20
S = 4;
K = 4; 218 90 46 13 78.6% 93.1%

Side = 80
S = 4;
K = 6; 203 87 49 28 76.1% 92.3%

Side = 20
S = 4;
K = 6; 189 109 27 42 69.6% 89.9%

Side = 80
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Table 4.9: Textural Feature Analysis : The classification results for home set. RBF
kernel is employed. Gabor filter parameters S : scale, K : orientation, Side : mask
size.

True (+)’s False (+)’s True (-)’s False (-)’s Local Overall
Accuracy Accuracy

S = 3;
K = 4; 581 223 224 0 78.3% 91.8%

Side = 20
S = 3;
K = 4; 564 287 160 17 70.4% 88.7%

Side = 80
S = 3;
K = 6; 566 262 185 15 73.0% 89.7%

Side = 20
S = 3;
K = 6; 558 287 160 23 69.8% 88.5%

Side = 80
S = 4;
K = 4; 566 245 202 15 74.7% 89.7%

Side = 20
S = 4;
K = 4; 560 234 213 21 75.1% 90.5%

Side = 80
S = 4;
K = 6; 566 226 221 25 76.5% 90.7%

Side = 20
S = 4;
K = 6; 543 212 235 38 75.6% 90.7%

Side = 80
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number of positives.

Figure 4.9: Multidimensional Scaling : The 2-dimensional plot of Gabor filtered out-
puts of road area set including positives.

Figure 4.10: Multidimensional Scaling : The 2-dimensional plot of Gabor filtered
outputs of urban area set including positives.

Table 4.10: Statistical measures for Test A.

Sensitivity % Recall % F-score % Specificity %
Test A

Set 1 53 100 69 81
Set 2 81 100 89 89
Set 3 72 100 83 89
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Figure 4.11: Multidimensional Scaling : The 2-dimensional plot of Gabor filtered
outputs of home set including positives.

4.2 Test B : Linear and Textural Feature Analysis Results

Test B is performed on the same images that we worked on test A shown in Figure

4.3, Figure 4.4 and Figure 4.5. The approach is to use linear features for the first

step of analysis instead of spectral analysis. It is influenced by the structure of the

man-made cartographic objects. The aim is to eliminate most of the true negatives.

The main idea and the applied algorithm are explained in Section 3.3.2.

We have employed different parameters for testing. The list of parameters that

we used for road, urban area and home sets are shown in Table 4.11, Table 4.12 and

Table 4.13.

Table 4.11: Linear Feature Analysis : The linear feature parameters for road set.

Experiment # Sigma Low Threshold High Threshold Distance
1 1.2 0.2 0.9 10
2 2.0 0.2 0.5 10
3 1.0 0.5 0.9 5
4 1.5 0.3 0.6 2

We have formed our training set by labeling 10 images as positive and accord-

ingly generating 10 negative images. The images for all test sets are shown in Figure

4.12, Figure 4.13 and Figure 4.14.

Before classifying our test set, we look for best RBF kernel parameters to have
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.12: Linear Feature Analysis : Regions used for road set. (a) positive regions,
(b) edge detection result regions hysteresis thresholded , (c) line fitted edge image, (d)
generated negative regions, (e) edge detection result regions hysteresis thresholded ,
(f) line fitted edge image.

48



(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.13: Linear Feature Analysis : Regions used for urban area set. (a) positive
regions, (b) edge detection result regions hysteresis thresholded , (c) line fitted edge
image, (d) generated negative regions, (e) edge detection result regions hysteresis
thresholded , (f) line fitted edge image.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.14: Linear Feature Analysis : Regions used for home set. (a) positive regions,
(b) edge detection result regions hysteresis thresholded , (c) line fitted edge image, (d)
generated negative regions, (e) edge detection result regions hysteresis thresholded ,
(f) line fitted edge image.
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Table 4.12: Linear Feature Analysis : The linear feature parameters for urban area set.

Exp. # Sigma Low Threshold High Threshold Distance
1 1.2 0.2 0.6 5
2 2.0 0.5 0.9 3
3 2.0 0.2 0.5 3
4 1.0 0.2 0.9 10

Table 4.13: Linear Feature Analysis : The linear feature parameters for home set.

Exp. # Sigma Low Threshold High Threshold Distance
1 1.2 0.2 0.6 10
2 2.0 0.5 0.9 5
3 1.5 0.2 0.9 5
4 1.0 0.5 0.9 10

good classification accuracy. Table 4.14, Table 4.15 and Table 4.16 show the model

files that we used during linear feature analysis step for both test sets.

Table 4.14: Linear Feature Analysis : The model file used for road set.

Exp. # Kernel Gamma C # of Classes # of SVs ρ

1
RBF 0.78125 0.03125 2 33 -1.00052

2
RBF 0.125 2.0 2 11 0.182485

3
RBF 0.0078125 0.03125 2 20 -0.00099

4
RBF 0.5 0.03125 2 20 0.000657

Table 4.15: Linear Feature Analysis : The model file used for urban area set.

Exp. # Kernel Gamma C # of Classes # of SVs ρ

1
RBF 0.0078125 0.03125 2 20 00205572

2
RBF 0.5 0.03125 2 20 0.03347

3
RBF 0.0078125 0.03125 2 20 0.00231229

4
RBF 0.5 2.0 2 20 0.411611

The linear classification results for all test sets are shown in Table 4.17, Table 4.18
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Table 4.16: Linear Feature Analysis : The model file used for home set.

Exp. # Kernel Gamma C # of Classes # of SVs ρ

1
RBF 0.225 0.03125 2 27 -0.08352

2
RBF 0.125 1.2 2 10 -0.82485

3
RBF 0.0078125 0.03125 2 20 -0.00099

4
RBF 0.5 0.03125 2 15 0.011657

and Table 4.19.

Table 4.17: Linear Feature Analysis : Classification accuracy for road set.

Exp. # Kernel True (+)’s s False (+)’s True (-)’s False (-)’s Local
Accuracy

1
RBF 16 69 1412 0 95.5%

2
RBF 16 283 1202 0 81.1%

3
RBF 16 283 1202 0 81.1%

4
RBF 16 316 1168 0 78.9%

Table 4.18: Linear Feature Analysis : Classification accuracy for urban area set.

Exp. # Kernel True (+)’s s False (+)’s True (-)’s False (-)’s Local
Accuracy

1
RBF 173 251 1018 58 79.4%

2
RBF 141 522 747 90 59.2%

3
RBF 206 490 779 25 65.6%

4
RBF 195 593 676 36 58.0%

Positive labeled regions of linear analysis are kept for textural analysis. The clas-

sification results and the predicted number of labels using different Gabor filters

shown in Table 4.20, Table 4.21 and Table 4.22.
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Table 4.19: Linear Feature Analysis : Classification accuracy for home set.

Exp. # Kernel True (+)’s s False (+)’s True (-)’s False (-)’s Local
Accuracy

1
RBF 581 247 1872 0 90.8%

2
RBF 581 421 1698 0 85.1%

3
RBF 581 543 1576 0 79.8%

4
RBF 581 316 1803 0 88.2%

Table 4.20: Textural Feature Analysis : The classification results for road set. RBF
kernel is employed. Gabor filter parameters S : scale, K : orientation, Side : mask
size.

True (+)’s False (+)’s True (-)’s False (-)’s Local Overall
Accuracy Accuracy

S = 3;
K = 4; 16 28 44 0 69.7% 98.1%

Side = 20
S = 3;
K = 4; 16 32 40 0 65.1% 97.8%

Side = 80
S = 3;
K = 6; 13 42 30 3 61.7% 97%

Side = 20
S = 3;
K = 6; 12 44 28 4 46.5% 96.8%

Side = 80
S = 4;
K = 4; 12 44 28 4 46.5% 96.8%

Side = 20
S = 4;
K = 4; 12 50 22 4 39.5% 96.4%

Side = 80
S = 4;
K = 6; 9 50 22 7 36.0% 96.2%

Side = 20
S = 4;
K = 6; 9 50 22 7 36.0% 96.2%

Side = 80
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Table 4.21: Textural Feature Analysis : The classification results for urban area set.
RBF kernel is employed. Gabor filter parameters S : scale, K : orientation, Side : mask
size.

True (+)’s False (+)’s True (-)’s False (-)’s Local Overall
Accuracy Accuracy

S = 3;
K = 4; 194 162 328 12 75.0% 86.7%

Side = 20
S = 3;
K = 4; 194 198 292 12 69.8% 84.3%

Side = 80
S = 3;
K = 6; 176 246 244 20 60.3% 79.9%

Side = 20
S = 3;
K = 6; 164 246 244 42 58.6% 79.1%

Side = 80
S = 4;
K = 4; 188 230 260 18 64.3% 81.2%

Side = 20
S = 4;
K = 4; 178 230 260 28 62.9% 81.1%

Side = 80
S = 4;
K = 6; 178 281 209 28 55.6% 77.7%

Side = 20
S = 4;
K = 6; 168 302 188 38 51.1% 75.6%

Side = 80
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Table 4.22: Textural Feature Analysis : The classification results for home set. RBF
kernel is employed. Gabor filter parameters S : scale, K : orientation, Side : mask
size.

True (+)’s False (+)’s True (-)’s False (-)’s Local Overall
Accuracy Accuracy

S = 3;
K = 4; 581 95 152 0 88.5% 96.4%

Side = 20
S = 3;
K = 4; 581 183 64 0 77.8% 93.2%

Side = 80
S = 3;
K = 6; 573 165 82 8 79.1% 93.5%

Side = 20
S = 3;
K = 6; 547 197 50 34 72.1% 91.4%

Side = 80
S = 4;
K = 4; 564 182 65 17 68.7% 92.6%

Side = 20
S = 4;
K = 4; 524 182 65 57 71.1% 91.1%

Side = 80
S = 4;
K = 6; 539 178 69 42 73.4% 91.8%

Side = 20
S = 4;
K = 6; 539 178 69 42 73.4% 91.8%

Side = 80

Table 4.23: Statistical measures for Test B.

Sensitivity % Recall % F-score % Specificity %
Test B

Set 1 36 100 52 98
Set 2 54 94 68 88
Set 3 88 100 93 95
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4.3 Comments on Results

Table 4.10 and Table 4.23 shows some statistical measures of our approach. Speci-

ficity measures the ability to detect false positives, our specificity results indicate that

most of false positives are rejected. Another statistic sensitivity is used to measure

the ability to detect true positives. The sensitivity results show that we keep all true

positives with less number of false positives.

If we compare the results of first step for road test set, the linear analysis works

significantly better than spectral analysis because of shape and structure of roads.

For urban areas, spectral features seems to be relatively more discriminative than

linear features. All of true positives are predicted as positive while most of the true

negatives are eliminated. Image regions predicted as positive are then fed to the sec-

ond step in which textural analysis is performed. In this step, accuracy is improved

that true positives are still kept but the number of false positives is reduced for both

sets.
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CHAPTER 5

CONCLUSION

In our attempt to construct a semantic filter for satellite image content, the presented

system provides a basic framework that combines

• user interactivity,

• low level feature extraction techniques including spectral,linear and textural

features,

• a linear classifier,

• and tools to visualize the results.

We have built a software that allows user interaction and visual observation of

the results to guide the classification procedure. This software can be used to filter

the number of candidate image regions when a user indicates on the same image a

few number of examples of an object. User can decide which specific object s/he

wants to retrieve by creating dynamic training sets containing a specific object using

the interface.

During the classification, the major aim was to keep true positives while reducing

the number of false positives. We employed different image features for a possible

query object. The generic class of objects that we aimed in this study was man-made

structures, such as roads, buildings and bridges where linear features are impor-

tant attributes. On the other hand, previous studies have shown the discrimination

power of textural features. Therefore, we have included Gabor filter features to ex-

tract textural properties. However, their extraction requires a high computational

complexity. Nevertheless, we have applied a two step algorithm in which only the

image regions labeled as positive by the spectral or linear feature analysis step are

fed to the classifier that employs textural features.
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Guiding classification by interaction improves considerably the retrieval perfor-

mance. A 2-dimensional plot of feature vectors may give user an intuition of the

distribution of sets. For spectral analysis, it is relatively straightforward to give a

plot of image regions in terms of the values of their mean and standard deviation.

If the dimension of feature vector is higher than 2, then visualization by linear or

non-linear mapping can be applied. In this study, we used multidimensional scaling

(MDS) for this purpose. For linear and textural feature analysis, MDS is performed

and all data set is plotted in 2-dimensions. By this way, user can update training set

by visually looking at each datum as an image region in the original image and 2D

mapping of its feature vector as a point on the 2D plot as well. We think that accuracy

may be improved by updating the elements of training set by seeing them as image

regions and their features visually with respect to the other ones.

In order to assess the performance of the system, we have used a satellite image

whose regions are labeled as positive and negative depending on the condition that

they contain road or building. During the conducted experiments, only a few num-

ber of positive instances, for example 10 image regions containing the sought object

are indicated by the user. The rest of the procedure is applied without the user in-

tervention. Although, accuracy depends on the parameter values, the use of linear

features for road object query was very promising. Overall accuracy for both of the

objects were higher than 80%. We believe that this can be improved if there were user

intervention at the intermediate steps.

As future work, we plan to include other types of image features which will also

allow to perform feature selection for a specific query object. Furthermore, since user

indicates only positive instances, we intend to use one class classifiers [27] in an

iterative and interactive manner.
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