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ABSTRACT 

 

 

 

NUMERICAL ANALYSIS OF NATURAL CONVECTIVE HEAT TRANSFER 

THROUGH POROUS MEDIUM 

 

Aylangan, Benan 

M.S., Department of Mechanical Engineering 

Supervisor:   Prof. Dr. Hafit Yüncü 

January 2006, 75 pages 

 

 In this thesis, natural convective heat transfer through an impermeable and 

fluid saturated porous medium is investigated numerically. A FORTRAN based code 

is developed and used in order to present the outputs of the applied model and the 

assumptions. 

 The solutions of flow fields and temperature fields are presented within the 

medium. Moreover, Nusselt number variations for different values of Darcy, Prandtl, 

and Rayleigh numbers, and some other thermodynamic properties are investigated 

and presented. Comparisons with previous studies are also presented. 

 Finally, the transition from convection to conduction in the heat transfer 

regime inside the porous medium is examined and an equation for estimating the heat 

transfer inside the porous medium is presented. 

 

Keywords: Numerical analysis, Natural Convective, Porous media 
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ÖZ 

 

 

 

GÖZENEKLĐ ORTAMLARDA DOĞAL TAŞINIM ĐLE ISI TRANSFERĐNĐN 

SAYISAL OLARAK ĐNCELENMESĐ 

 

Aylangan, Benan 

Yüksek Lisans Tezi, Makina Mühendisliği Anabilim Dalı 

Tez Yöneticisi :   Prof. Dr. Hafit Yüncü 

Ocak 2006, 75 sayfa 

 

 Bu tezde, geçirgen olmayan, akışkana doymuş gözenekli bir ortamda doğal 

taşınım ile ortaya çıkan ısı transferinin sayısal çözümü sunulmuştur. Uygulanan 

modelin sonuçlarının alınması için FORTRAN tabanlı bir bilgisayar programı 

kullanılmıştır. 

 Ortam içerisinde oluşan akışkan hareketi ve sıcaklık dağılımı grafiksel olarak 

sunulmuştur. Bunun yansıra Nusselt sayısının Darcy, Prandtl ve Rayleigh sayıları ve 

diğer termodinamik özelliklere dayalı olarak değişimi belirlenmiş ve sunulmuştur. 

Sonuçlar daha önce yapılmış çalışmalardan elde edilmiş sonuçlarla da 

karşılaştırılmıştır. 

 Ayrıca, gözenekli ortamdaki ısı transferinin doğal taşınımdan iletime geçiş 

noktası incelenmiş ve ortamdaki ısı transferini tanımlamak için bir bağıntı kurulmuş 

ve sunulmuştur. 

 

Anahtar Kelimeler: Sayısal çözüm, Doğal taşınım, Gözenekli ortam 
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CHAPTER 1 

 

 

INRODUCTION 

 

 

 Fluid motions due entirely to the action of a body force field such as 

gravitational field are usually called natural flows, in contrast to forced convection 

flows brought about by external agents, and the corresponding heat transfer process 

is termed natural convection or free convection. The movement of the fluid in natural 

convection, whether it is a gas or a liquid, results from the buoyancy forces imposed 

on the liquid when its density in the proximity of a heat transfer surface is decreased 

as a result of heating or increased as a result of cooling. The density difference 

resulting from concentration difference also gives rise to buoyancy forces due to 

which the flow is generated. The presence of a buoyancy force is a requirement for 

the existence of a natural convection flow. Ordinarily, the buoyancy arises from 

density differences that are the consequences of temperature or concentration 

gradients within the fluid. The buoyant flow arising from heat rejection to the 

atmosphere, heating of rooms, fire, and many other heat transfer processes, both 

natural and artificial, are examples of natural convection. 

 

The term porous medium defines a material consisting of a solid matrix with 

an interconnected void. It is assumed that the solid matrix is either rigid (the usual 

situation) or it undergoes a small deformation. The interconnectedness of the void 

(the pores) allows the flow of one or more fluids through the material. In the simplest 

situation (single-phase flow) the void is saturated by a single fluid. In a natural 

porous medium the distribution of pores with respect to shape and size is irregular. 

Examples of natural porous media are beach sand, sandstone, limestone, rye bread 

and wood. 
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The research on heat transfer inside a porous medium is said to be started 

when Colburn [1] observed that the heat transfer rate for forced convection of air 

through a packed tube was greater than that of an empty tube. Following the 

improvements in the technologies of porous insulation, heat exchangers and filters 

the research on heat transfer inside porous media has gained an inevitable 

importance. Combarnous and Bories [2] presented a review paper on the early 

studies on heat transfer in porous media.  

 

 The porous medium is mainly defined by two properties; porosity and 

permeability. The porosity φ of a porous medium is defined as the fraction of a total 

volume of the medium that is occupied by void space. Thus 1- φ is the fraction that is 

occupied by solid. In defining φ in this way its is assumed that all the void space is 

connected. If in fact some of the pore space is disconnected from the remainder, then 

an “effective porosity” is introduced, which is defined as the ratio of connected void 

to total volume. For natural media, φ does not normally exceed 0.6 for beds of solid 

spheres of uniform diameter and φ can vary between the limits 0.2545 

(rhombohedral packing) and 0.4764 (cubic packing). Nonuniformity of grain size 

tends to lead to smaller porosities than uniform grains, because smaller grains fill the 

pores formed by larger ones. For man-made materials such as metallic foams φ can 

approach the value 1. On the other hand, permeability is used for characterizing 

porous media and is defined as a length scale depending on the geometry of porous 

medium. Table 1.1 shows a compilation of porosities and permeability of common 

porous materials. 

 

The aim of this study is to obtain the temperature and velocity fields for a 

determined control volume in a porous medium through the numerical solution of 

conservation of mass equation, conservation of momentum equation and the first law 

of thermodynamics (conservation of energy), and then finally to calculate Nusselt 

number values. The control volume is rectangular, fluid saturated porous cavity 

having impermeable, constant temperature vertical, and impermeable, adiabatic 

horizontal walls where the medium is assumed to be homogeneous and the radiation 

heat transfer is neglected. In this study, low Rayleigh numbers, laminar flow regime 

is studied; changes in the streamlines and isotherms due to the variation of Rayleigh 
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number, the effect of Rayleigh number, thermal conductivity ratio, porosity and 

Darcy number on the heat transfer rate are presented.  

 

 

 

Table 1.1: Properties of common porous materials 

 

Material Porosity 

φ 

Permeability 

K (cm²) 

Black slate powder 0.57-0.66 4.9x10
-10

-1.2x10
-9
 

Brick 0.12-0.34 4.8x10
-11

-2.2x10
-9
 

Cigarette filters 0.17-0.49  

Coal 0.02-0.12  

Concrete (ordinary 

mixes) 

0.02-0.07 1x10
-9
-2.3x10

-7
 

Copper powder 0.09-0.34 3.3x10
-6
-1.5x10

-5
 

Fiberglass 0.88-0.93  

Leather 0.56-0.59 9.5x10
-10

-1.2x10
-9
 

Limestone 0.04-0.10 2x10
-11

-4.5x10
-10

 

Sand 0.37-0.50 2x10
-7
-1.8x10

-6
 

Silica powder 0.37-0.49 1.3x10
-10

-5.1x10
-10

 

Soil 0.43-0.54 2.9x10
-9
-1.4x10

-7
 

Spherical packing 0.36-0.43  
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CHAPTER 2 

 

 

LITERATURE SURVEY ON POROUS MEDIUM 

 

 

2.1 Darcy Flow Model 

 

 It was 1856 that Henry Philibert Gaspard Darcy, then the “Dean of the School 

of Bridges and Roadways” had his report on the public fountains of Dijon, a middle 

size city in the central-eastern region of France, published [3]. He worked on 

hydraulics until his death. 

 

Darcy’s major contribution is in the area of filter hydraulics with the 

discovery of an empirical law that bears his name. His report on the public fountains 

of Dijon [3] presented the principles to follow and the formulae to use in the design 

and construction of water distribution systems, water filtering and the manufacturing 

of valves.  

 

Having decided to investigate the phenomenon of water filtering, Darcy 

describes in his report a simple and ingenious apparatus. He then presents the results 

of carefully performed experiments done by himself and a fellow engineer in Dijon.  

 

 The experimental apparatus (Figure 2.1) used by Darcy and his colleagues 

was a 3.5 m high vertical column, a circular duct of interior diameter of 0.35 m, 

closed at the extremities with a screwed plate. Inside, at 0.20 m from the bottom, 

there was a horizontal separator to support the sand layer, dividing the column into 

two chambers. This separator was formed, from bottom to top, of an iron grid of 7 

mm prismatic bars spaced by 7 mm, a grid of 5 mm cylindrical bars spaced by 5mm 
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(the prisms were placed perpendicular to the cylinders), and finally a metallic screen 

of 2 mm thickness. 

 

In the experiment water was fed through a pipe extending from the hydraulic 

network of the hospital in Dijon, where his laboratory was located. The water flow 

rate was controlled by a valve placed along the feeding pipe connected to the top of 

the column.  

 

 The lower section of the column led to a one meter wide reservoir collecting 

the water for measuring the volumetric flow rate. The pressures above and below the 

sand layer were indicated via two U-shape mercury manometers equipped with 

diaphragms. Finally, the top chamber had an air bleeding valve for charging the 

column with water. 

 

 The experiments were performed with silica (quartz) sand from the Saone 

river, with the following composition: 58 percent of sand with grains smaller than 

0.77 mm diameter, 13 percent of sand with 1.1 mm diameter grains, 12 percent of 

sand with 2 mm grains, and 17 percent of gravel and shell fragments of various sizes. 

This sand presented an average porosity of 0.38. 

 

 

 

  

 

Figure 2.1: Simple sketch of Darcy’s experimental apparatus [3] 
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Darcy measured the flow rate by collecting a certain volume of water during 

a certain period of time from the lower section of  the column until two consecutive 

measurements were equal, thus establishing a steady flow. He related the height of 

water inside the column via the manometer height, i.e. without visual access to the 

column he could predict the height of water column above the sand layer. 

 

The experimental results were presented by Darcy in terms of volumetric 

flow rate and pressure difference across the sand layer. Defining a coefficient (k), 

now called the hydraulic conductivity, dependent on the permeability of the sand, 

and using the column cross-section area (s), the height of the sand layer (e), the 

pressure above the sand layer (P+H) (atmospheric pressure P augmented by the 

manometer H), and (P+H0)as the pressure under the sand layer, Darcy proposed the 

following equation for estimating the volumetric flow rate (Q) through the column: 

)HgeH(
e

ks
Q o−ρ+=       (2.1) 

or keeping the pressure under the sand layer equal to the atmospheric pressure 

(H0=0) Equation 2.1 can be rewritten as: 

 
P

e
Uk
∆

=         (2.2) 

Darcy’s Law, equation 2.1, is presently known to be limited in several aspects. It is 

valid, essentially, for incompressible and isothermal creeping flow (very low speed) 

of Newtonian fluid through a relatively long, uniform and isotropic porous medium 

of low hydraulic conductivity. 

 

 In his report, Darcy does not make any reference to fluid viscosity. His 

experiments were performed with a single fluid, namely water. With no apparent 

means to control the water temperature, it was impossible for Darcy to investigate 

fluid viscosity effects with his experimental apparatus. 

 

 Only years after the publication of the Darcy equation was the effect of fluid 

viscosity observed indirectly and included in Darcy’s law. Hazen [4], in 1893, seems 

to have been the first to notice the viscosity effect in connection to the original flow 

equation proposed by Darcy. 
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 )gρP)(
µ

K
(u

�

+−∇=        (2.3) 

Equation 2.3 has the hydraulic conductivity k of the original Darcy equation 

substituted by (K/µ). Here ( P∇ ) is the pressure gradient in the flow direction and 

(µ ) is the dynamic viscosity of the fluid. The coefficient (K) is independent of the 

nature of the fluid but it depends on the geometry of the medium. It has dimensions 

(length)
2 
and is called the specific permeability or intrinsic permeability of the 

medium. In the case of single-phase flow we abbreviate this to permeability. 

 

Henry Darcy’s investigations into the hydrology of the water supply of Dijon 

and his experiments on steady-state unidirectional flow in a uniform medium is the 

only reference in the area of convectional heat transfer in a porous medium. 

    

 The Darcy’s model (Hazen-Darcy model) may be generalized, as the area 

averaged fluid velocity through a porous medium is directly proportional to the 

pressure gradient in the flow direction and inversely proportional to the dynamic 

viscosity of the fluid saturating the porous medium. 

 

2.2 Deterministic Models Leading to Darcy’s Law 

 

 If K is determined by the geometry of the porous medium, then it may be 

possible to get K in terms of some geometrical parameters for simple geometry. The 

results on this subject are presented by Dullien [5]. 

 

 For example, in the case of beds of particles or fibers we can introduce a new 

variable called effective average particle or fiber diameter (Dp). The hydraulic radius 

theory of Carman-Kozeny leads to the relationship 

2

3
p2
2

)180(1

D
K

ϕ−

ϕ
=         (2.4) 

where 

∫ ∫
∞ ∞

=
0 0

ppp
2

ppp
3

p2 )dDh(DD/)dDh(DDD      (2.5) 
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and h(Dp) is the density function for the distribution of diameters Dp. The constant 

180 in Equation (2.4) was obtained from the best fit with experimental results. The 

Carman-Kozeny equation gives satisfactory results for media that consist of particles 

of approximately spherical shape and whose diameters fall within a narrow range. 

The equation is not valid in the cases of particles that deviate strongly from the 

spherical shape, broad particle-size distributions, and consolidated media. 

Nevertheless, it is widely used since it seems to be the best simple expression 

available. 

 

 Kozeny [6] seems to have been the pioneer in providing a physical 

explanation for the fluid-viscosity dependency of Darcy equation, by associating 

Poiseuille’s theory of flow through capillaries with Darcy’s empirical law of 

filtration. Kozeny demonstrated that by assuming uniform pressure drop and 

integrating Poiseuille’s partial differential equation along a certain capillary length, 

an equation similar to the Darcy equation is obtained. 

 The Hagen-Poiseuille law, written as 

 
P

e
U

8

s

∆
=

πµ
        (2.6) 

is remarkably similar to the Darcy equation: if one writes k=s/(8πµ) then equations 

(2.2) and (2.6) became identical. The analogy with Poiseuille flow allows the 

interpretation of the Darcy equation as a balance between pressure and global 

viscous stress, and it also supports the fluid viscosity effect on k as observed 

empirically by Hazen [4]. 

 

 Szekely and Carr [7] studied nonisothermal gas flow through a permeable 

medium. The pressure variation along the medium, which is in excellent agreement 

with the experimental data, is obtained with an iterative scheme following an energy 

balance equation. 

 Ling and Dybbs [8] presented a numerical-theoretical investigation of the 

influence of temperature-dependent fluid viscosity on the steady forced convection 

over an isothermal flat plate bounding an infinite porous medium. Their results 

indicate a deviation of up to forty percent in the Nusselt number when compared 

with results obtained assuming uniform fluid viscosity. 
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 Nield and Lage [9] proposed a theoretical model to account for the fluid 

temperature variation along the direction transverse to the flow direction, and effect 

of this temperature variation on the fluid viscosity, velocity, and total pressure drop. 

 

2.3 Statistical Models Leading to Darcy’s Law 

 

 Many authors have used statistical concepts in the provision of theoretical 

support for Darcy’s law. Most authors have used constitutive assumptions in order to 

obtain closure of the equations, but Whitaker [10] has derived Darcy’s law, for the 

case of incompressible fluid, without making any constitutive assumption. This 

theoretical development is not restricted to either homogeneous or spatially periodic 

porous media, but it does assume there are no abrupt changes in the structure of the 

medium. 

  

 If the medium has periodic structure, then the homogenization method can be 

used to obtain mathematically rigorous results. The method is explained in detail by 

Ene and Polisevski [11] and Mei [12]. Ene and Polisevski derive Darcy’s law 

without assuming incompressibility and they go on to prove that the permeability is a 

symmetric positive-definite tensor. 

 

2.4 Extensions of Darcy’s Law 

 

2.4.1 Solid Form Effect: Forchheimer’s Equation 

 

Darcy’s equation is linear in the velocity. It holds when the velocity is 

sufficiently small. In practice, “sufficiently small” means that the Reynolds number 

Rep of the flow, based on a typical pore or particle diameter, is of order unity or 

smaller. As velocity increases, the transition to nonlinear drag is smooth; there is no 

sudden transition as Reynolds number is increases from 1 to 10. This transition is not 
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one from laminar to turbulent since the flow in the pores is still laminar in this range 

of Reynolds number. However it is due to the fact that the form drag due to solid 

particles is now comparable with the surface drag due to friction. According to 

Joseph [13, 14] the appropriate modification to Darcy’s equation is; 

VVρKcV
K

µ
)gρP( f

1/2

F

���

� −−−=−∇       (2.7) 

where (cF) is a dimensionless form-drag constant. Equation (2.7) is a modification of 

Dupuit-Forchheiemer equation. But in fact the dependence on ( f

1/2ρK − ) is a modern 

discovery by Ward [15]. Ward thought that cF might be a universal constant, with a 

value of approximately 0.55, but later it was found that cF varies with the nature of 

the porous medium, can be as small as 0.1 in the case of foam metal fibers. 

 

2.4.2 Flow Shear Effect: Brinkman’s Equation 

 

An alternative to Darcy’s equation is what is commonly known as 

Brinkman’s equation. This equation takes the form with inertial terms neglected; 

VV
K

µ
)gρP( 2

~ ��

�

∇µ+−=−∇        (2.8) 

We know have two viscous terms. The first is the usual Darcy term and the second is 

analogous to the Laplacian term that appears in the Navier-Stokes equation. The 

coefficient 
~

µ  is an effective viscosity. Brinkman set µ  and 
~

µ  equal to each other, 

but in general that is not true.  

  

 In recent papers Equation (2.8) has been referred to as “Brinkman’s extension 

of Darcy’s law”. Brinkman [16, 17] obtained a relationship between the permeability 

K and the porosity φ for an assembly of spheres as a “self-consistent” procedure, 

which is valid only when the porosity is sufficiently large, φ>0.6 according to 

Lundgren [18]. This requirement is highly restrictive since most of the practical 

porous media have porosities less than 0.6. 

 When the Brinkman equation is employed as a general momentum equation 

the situation is more complicated. In equation (2.8) P is the intrinsic fluid pressure, 

so each term in that equation represents a force per unit volume of the fluid. A 
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detailed averaging process leads to the result that, for an isotropic porous medium, 

*
~

T1//µµ ϕ= , where T
*
 is a quantity called the tortuosity of the medium. Thus /µµ

~

 

depends on the geometry of the medium. 

 

 For many practical purposes there is no need to include the Laplacian term. If 

it is important that a no-slip boundary condition be satisfied, then the Laplacian term 

is required, but its effect is significant only in a thin boundary layer whose thickness 

is of order 

2/1
~

K/µµ 







, the layer being thin since the continuum hypothesis requires 

that K
1/2 
<<L where L is a characteristic macroscopic length scale of the problem 

being considered. When the Brinkman equation is employed it will usually be 

necessary to also account for the effects of porosity variation near the wall. 

 

 There are situations in which some authors have found it convenient to use 

the Brinkman equation. One such situation is to compare flows in porous media with 

those in clear fluids. The Brinkman equation has a parameter K (the permeability) 

such that the equation reduces to a form of the Navier-Stokes equation as 

∞→2/ LK and to the Darcy equation as 0/ 2 →LK . 

 

 Several recent authors have added a Laplacian term to Eqn. (2.7) to form a 

“Brinkman-Forchheimer” equation. The validity of this is not completely clear. As 

we have just seen, in order for Brinkman’s equation to be valid the porosity must be 

large, and there is some uncertainty about the validity of the Forchheimer law at such 

large porosity.  

 

2.4.3 Inertia Effect: General Equation 

 

Vafai and Tien [19] used the volume averaging technique to solve the 

modified equation formed by adding the inertia, viscosity terms and the total 

derivative of the velocity vector to the original Darcy equation. 
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 Vafai and Tien model is usually valid for highly permeable, high Prandtl 

number fluids, large pressure gradients and in the regions close to the leading edge of 

the boundary layer. The momentum equation of Vafai and Tien [19] is as follows: 

J)VVγ(ρcV
K

µ
VµPV)V(ρ 3/2

fF
f2

ff

�������

⋅ϕ−
ϕ

−∇+−∇=∇⋅  (2.9) 

where V
�

 and P  are the local volume averaged velocity and pressure respectively. 

Also γ  is the porous media shape parameter. 

  

 Vafai and Tien concluded that the boundary effect is important for a very thin 

momentum boundary layer and it is insignificant for the overall flow consideration. 

But in high Prandtl number fluids and high pressure gradients, the effect of boundary 

is very significant as heat transfer is concerned. 

 

 Clarifying earlier work by Vafai and Tien, Hsu and Cheng [20] obtained an 

equation that can be written as follows: 

VV
K

ρc
V

K

µ
V

ρ

µ
P)(

1VV1

t

V1
ρ

1/2

fF2

f

f −−∇
ϕ

+ϕ∇
ϕ

−=
















ϕ
⋅∇

ϕ
+

∂
∂

ϕ
 (2.10) 

For an incompressible fluid, 0V =⋅∇  and so VV)( 11 −− ϕ⋅∇ϕ  reduces to 










ϕ
∇⋅ϕ− V

V1 , and then Equation (2.10) becomes an easily recognizable combination 

of Brinkman and Forchheimer equations.  
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CHAPTER 3 

 

 

MODELING 

 

 

The main difficulty in defining a mathematical model for a porous medium is 

mainly due to generating a model for the conservation of momentum including all 

the effects. As discussed in Chapter 2, research in the porous media were limited to 

the Darcy equation and its extensions with the addition of the Brinkman and 

Forchhemier terms.  

 

In this chapter, the most extensive and general porous media model will be 

presented, analyzed, and modified to a suitable form for a numerical model. 

 

3.1 The Control Volume 

 

 As discussed earlier, in this study a numerical analysis of the flow and 

temperature fields of  natural convection inside a porous medium is presented. Prior 

to examining the equations of the flow, a control volume shall be defined for which 

these equations will be examined. 
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In s u la t e d  W a l l  

In s u la t e d  W a l l  

P O R O U S  
M E D IU M  

u  

v  H  

L  

g  
T h  T c  

T h > T c  

0  

 

 Figure 3.1: The Control Volume 

 

 

 

Enclosures heated from the side are most representative of porous systems 

that function while oriented vertically, as in the insulations for buildings, industrial 

cold-storage installations, and cryogenics. The model of this study to be examined is 

a rectangular, two-dimensional fluid saturated porous medium with length L and 

height H. The four walls surrounding the porous medium are impermeable and 

initially the fluid saturated porous layer and the four walls are isothermal and fluid 

inside is motionless. After a while, the left hand side and the right hand side vertical 

wall temperatures are changed as Th>Tc. The two horizontal walls are insulated. And 

the third dimension is assumed to be infinitely large.  

 

 The assumptions for the control volume are that the solid matrix and fluid are 

locally in thermal equilibrium, and the properties are isotropic and homogeneous. 

Furthermore, the radiation effect of environment and internal heat generation is 

neglected.  
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3.2 The Conservation Equations 

 

 There are three conservation equations for a fluid in the presence of 

temperature gradients; the conservation of mass, the conservation of momentum and 

the conservation of energy. For a steady and incompressible flow these equations are 

as follows: 

0V =⋅∇
�

           (3.1) 

[ ] g)TcT(
K

V
VV

K

c
VPVV ff

fFf2

f

f �

�

�����

−ϕβρ−
ϕµ

−
ϕρ

−∇µ+−∇=∇⋅
ϕ

ρ
    (3.2) 

[ ] TkTV)c( 2

mm ∇=∇⋅ρ
�

         (3.3) 

where Ffmfff c,c,K,k,,,, βϕµρ  are the fluid density, fluid dynamic viscosity, 

porosity of the medium, thermal expansion coefficient of the fluid, overall thermal 

conductivity of the medium, permeability of the medium, specific heat of the fluid 

and the inertial coefficient respectively. In the conservation of energy equation km 

(overall thermal conductivity of the medium), m)c(ρ  (overall heat capacity per unit 

volume of the medium) are used. These properties are defined as: 

fsm kk)1(k ϕ+ϕ−=          (3.4) 

fPsm )c()c)(1()c( ρϕ+ρϕ−=ρ        (3.5) 

where the subscript f denotes the fluid property whereas subscript s denoting the 

solid matrix property. 

 

 The coefficient cF in Equation (3.2) is related to porosity by the following 

equation [21]. 

2/32/1

Fc
−− ϕαβ=         (3.6) 

Where α =1.75 and β =150. 

 

3.3 Derivation of Equations 

 

 The conservation equations are revised for the Cartesian coordinate system 

for two-dimensional space as follows: 
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The conservation of mass equation: 

0
y

v

x

u
=

∂
∂

+
∂
∂

         (3.7) 

The conservation of momentum in x-direction: 

� �

2 2
2 2f f f F

f 2 2 1/ 2

42 5
1 3

aa aa a

cu u P u u
u v u u u v

x y x x y K K

ρ µ ϕ ρ ϕ
µ

ϕ
  ∂ ∂ ∂ ∂ ∂

+ = − + + − − +  ∂ ∂ ∂ ∂ ∂    �������
������� �������

 (3.8) 

The conservation of momentum in y-direction: 

�
�

2 2
2 2f f f F

f 2 2 1/ 2

9 1076 8
a aaa a

cv v P v v
u v v v u v

x y y x y K K

ρ µ ϕ ρ ϕ
µ

ϕ
  ∂ ∂ ∂ ∂ ∂

+ = − + + − − +  ∂ ∂ ∂ ∂ ∂    �������
������� �������

f f (T Tc)gρ β ϕ+ −         (3.9) 

The conservation of energy equation: 










∂

∂
+

∂

∂
=









∂
∂

+
∂
∂

ρ
2

2

2

2

mmm
y

T

x

T
k

y

T
v

x

T
uc      (3.10) 

 In order to reduce the number of unknowns, the pressure term in momentum 

equations can be eliminated by taking the derivatives of the momentum equation in 

x-direction with respect to y, and subtracting it from the derivative of the momentum 

equation in y-direction with respect to x. Then the equations are nondimensionalized 

and rewritten in terms of the stream function and vorticity which are defined as 

follows: 

y
u

∂
ψ∂

=          (3.11.a) 

x
v

∂
ψ∂

−=          (3.11.b) 










∂

ψ∂
+

∂

ψ∂
−=

∂
∂

−
∂
∂

=ω
2

2

2

2

yxy

u

x

v
      (3.11.c) 

Where ψ andω  are stream function and vorticity respectively. 

The nondimensional variables are: 

*

f

u
uL

=
ν

         (3.12.a) 

*

f

v
vL

=
ν

         (3.12.b) 
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*x
L

x
=          (3.12.c) 

*y
H

y
=          (3.12.d) 

*

f

ψ=
ν
ψ

         (3.12.e) 

*

ch

c T
TT

TT
=

−

−
         (3.12.f) 

*

f

HL
ω=

ν
ω

         (3.12.g) 

 

3.3.1 The Momentum Equation 

 

Taking the derivative of a1 of Equation (3.8) with respect to y, 










∂

∂
+

∂
∂

⋅
∂
∂

+
∂∂

∂
+

∂
∂

⋅
∂
∂

ϕ

ρ
2

22

f

y

u
v

y

u

y

v

xy

u
u

x

u

y

u
 

and inserting the equality from the conservation of mass equation Equation (3.7) the 

first degree derivatives can be easily eliminated: 










∂

∂
+

∂
∂

⋅
∂
∂

+
∂∂

∂
+

∂
∂

⋅
∂
∂

−
ϕ

ρ
2

22

f

y

u
v

y

u

y

v

xy

u
u

y

v

y

u
 

and the final form of the equation is: 

2 2 3 3

f f

2 2 3

11a

u u
u v

y x y y y x x y

ρ ρ ψ ψ ψ ψ
ϕ ϕ

   ∂ ∂ ∂ ∂ ∂ ∂
+ = ⋅ − ⋅   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

�������������

    (3.13) 

Similarly taking the derivative of a6 of Equation (3.9) with respect to x, 










∂

∂
+

∂
∂

⋅
∂
∂

+
∂∂

∂
+

∂
∂

⋅
∂
∂

ϕ

ρ
2

22

f

x

v
u

y

v

x

v

xy

v
v

x

v

x

u
 

and inserting Equation (3.7) and eliminating the first degree derivatives: 










∂

∂
+

∂
∂

⋅
∂
∂

+
∂∂

∂
+

∂
∂

⋅
∂
∂

−
ϕ

ρ
2

22

f

x

v
u

y

v

x

v

xy

v
v

x

v

y

v
 

resulting in the final form of the equation: 
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2 2 3 3

f f

2 2 3

12a

v v
v u

y x x x x y y x

ρ ρ ψ ψ ψ ψ
ϕ ϕ

   ∂ ∂ ∂ ∂ ∂ ∂
+ = ⋅ − ⋅   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

�������������

    (3.14) 

After the derivation procedure now subtracting a12 of Equation (3.14) from Equation 

(3.13), 
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

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




∂
ω∂

⋅
∂
ψ∂

−
∂
ω∂

⋅
∂
ψ∂

ϕ
ρ

yxxy

f        (3.15) 

The next step is nondimensionalizing Equation (3.15) using the nondimensional 

variables given in Equations 3.12.a-3.12.g: 
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ω∂

⋅
∂
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⋅
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⋅
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∂
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2 * * * *
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2 2 * * * *

* *
1 1

C F

L H y x x y

ρ ν ψ ω ψ ω
ϕ

 ∂ ∂ ∂ ∂
⋅ − ⋅ ∂ ∂ ∂ ∂ 

��������������

 

Now the early equations will take a form consisting of a constant part and a 

functional part in terms of the variables. The nondimensional form of Equation 

(3.15) has a constant part C1
* 
and a function part F1

* 
which is a function of *ω and *ψ . 

 

 By using the same procedure for a1-a5 of Equation (3.8) and a6-a10 of 

Equation (3.9) the final form of momentum equation in terms of stream function and 

vorticity can be easily obtained. And the final form will be consisting of again 

constants and functional parts: 

  

)T(FC)(FC)(FC)(FC),(FC **

5

*

5

**

4

*

4

**

3

*

3

**

2

*

2

***

1

*

1 ⋅+ψ⋅+ω⋅+ω⋅=ψω⋅    (3.16) 
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where the constant *

1C , *

2C , *

3C , *

4C  and *

5C  are: 
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HKL
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C ff*
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∆ϕβρ
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The remaining are the functions, which can be defined as follows: 
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∂
∂

=          (3.18.e) 

where A is the aspect ratio which is defined by 
H

L
A = . 

Dividing both sides of the final momentum equation with *

1C  the new momentum 

equation takes the following form: 

 

* * * * * * * * * * * * * * * *

1n 1 2n 2 3n 3 4n 4 5n 5C F ( , ) C F ( ) C F ( ) C F ( ) C F (T )ω ψ ω ω ψ⋅ = ⋅ + ⋅ + ⋅ + ⋅   (3.19) 

where the constants are defined as: 
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As seen from the above equations in defining the constants nondimensional numbers 

are introduced. These are defined as follows: 

Fluid Rayleigh Number: 

ff

3

f
f

TLg
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∆β

=         (3.21) 

Rayleigh Number Based on Height: 

f
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Fluid Prandtl Number: 
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Medium Prandtl Number: 
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k
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3.3.2 The Vorticity-Streamfunction Equation 

 

 Through the usage of streamfunctions, the conservation of mass equation is 

automatically satisfied and replaced by vorticity-streamfunction equation, which is 

defined by Equation (3.11.c) as: 
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which can be nondimensionalized by using Equations (3.12.a-g) as: 
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3.3.3 The Energy Equation 

 

Again using the nondimensional numbers and starting from Equation (3.10) the 

energy equation becomes: 
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3.4 Boundary Conditions 

 

 After the nondimensionalizing procedure of the equations now the boundary 

conditions of the control volume must be presented. 

For x=0: 

0* =x , 0* =u , 0* =v , 1* == HTT       (3.27.a) 
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For x=L: 

1* =x , 0* =u , 0* =v , 0* == CTT       (3.27.b) 

For y=H: 

1* =y , 0* =u , 0* =v , 0
*

*

=
∂

∂

y

T
      (3.27.c) 

For y=0: 

0* =y , 0* =u , 0* =v , 0
*

*

=
∂

∂

y

T
      (3.27.d) 

As seen from the above equations, the vertical walls have constant temperature and 

the horizontal upper and lower walls are adiabatic and derivative of the temperature 

of these boundaries are set to be zero. The no-slip and impermeability conditions are 

satisfied by equating the horizontal and vertical components of velocity to zero. The 

boundary conditions of streamfunction and vorticity will be presented later. 

 

3.5 Overview of Numerical Methods to be Used 

 

 Presently, the finite difference method (FDM) and the finite element method 

(FEM) are widely used for the solution of partial differential equations of heat, mass 

and momentum transfer. Extensive amount of literature exist on the application of 

these methods for the solution of such problems.  

 

 Each method has its advantages depending on the nature of the physical 

problem to be solved; but there is no best method for all problems. 

  

 The accuracy of the FDM can readily be examined by the order of the 

truncation error in the Taylor’s series expansion; but, in the case of FEM no Taylor’s 

series expansion is involved in the formulation to make such assessments. The 

dimension of the problem is another factor that deserves some consideration. For 

example, an efficient method for one dimensional problems may not be so efficient 

for two or three dimensional problems.  

 



 23 

 Finite difference methods are simple to formulate and can readily be extended 

to two or three dimensional problems and require less computational work than the 

FEMs. Furthermore, FDM is very easy to learn and apply for the solution of partial 

differential equations encountered in the modeling of engineering problems for 

simple geometries (i.e., not very irregular).  

 

 In FDM, the solution domain is divided into a grid of discrete points or 

nodes. The partial differential equation is then written for each node and its 

derivatives replaced by finite divided differences.  

 

 In finite-element method (FEM) the underlying principle is its ability to 

easily solve problems described by complex boundary shapes. The FEM was initially 

developed to calculate stress in irregularly shaped objects and analyze structural 

problems in aircraft. Since its inception, the FEM has been found to be equally 

effective in nonstructural problems, particularly those in heat transfer and fluid 

dynamics. A detailed comparison of FDM and FEM was examined by D.W. Pepper 

and A.J. Baker, [22]. 

 

 For the case being examined in this study (regular rectangular simple 

geometry), it is acceptable to use a finite difference method to solve the equations for 

computation. Followings are some of the FDM that may be used for the case: 

 

3.5.1 Gauss-Seidel Iteration 

 

 The vorticity-stream function equation is in the form of Poisson’s equation. 

The problem involves unknown internal node stream functions and finite difference 

equations provide algebraic equations for the determination of these unknown 

parameters. To solve this system of equations by the Gauss-Seidel iteration the 

second-order accurate standard finite-differencing scheme is solved for the main 

diagonal element ji,ψ  and arranged in the form: 
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21p
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ω∆+ψ+ψβ+ψ+ψ
=ψ

+
−+

+
−++     (3.28) 
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where y/x ∆∆=β , superscript p denotes the level of iteration, and the subscripts i 

and j denote column and row, respectively. After an initial guess is made for the 

unknown internal nodes, the iteration is considered to proceed by rows starting with 

the row next to the lower boundary and increasing j after each iteration. Therefore, 

the values of 1p

j,1i

+
−ψ  and 1p

1j,i

+
−ψ  at the iteration level p+1 appearing on the right-hand 

side of Equation 3.28 are actually known values, since the most recent values of ψ  

are used on the right-hand side of the equation.  

3.5.2 Successive Over Relaxation (SOR) 

 

 The convergence rate is improved if successive over relaxation (SOR) is 

used. The application of the relaxation formula to the Gauss-Seidel iteration formula 

(Equation 3.28) gives 
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−+
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+   (3.29) 

where κ=1 corresponds to original Gauss-Seidel iteration, 0<κ<1 to under-relaxation 

and 1<κ<2 to successive over-relaxation (SOR). 

 

 The reduction in the computer time by the use of SOR depends on the proper 

choice of the value of the parameter κ. There is no general rule for the optimum 

value κopt. However, for the solution of Laplace’s equation in a rectangular domain 

subject to boundary condition of the first kind at all boundaries, based on the work of 

Frankel and Young [23,24], the following optimum value κopt is suggested by Roache 

[25]. 
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=
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∆

=β
y

x
Grid aspect ratio       (3.32) 

m and n are the number of constant ∆x and ∆y subdivisions of the rectangular 

domain in the x- and y-directions, respectively. 
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 The above results are for a rectangular region subject to boundary conditions 

of the first kind at all boundaries. For other geometries and boundary conditions, κopt 

can be estimated by examining the rate of convergence of the solution for several 

different values of κ over the region 1<κ<2. 

 

 The stream function values at each node of the finite difference mesh 

covering the control volume are successively calculated from the finite difference 

form of the Poisson equation. The results are used to calculate the new values of the 

stream function each node, using the finite difference form of the momentum and 

energy equation. This iterations will continue until the desired accuracy is achieved. 

 

 The main handicap of this method is that it only facilitates the convergence of 

the Poisson equation, for some nonlinear equations of natural convection, the 

optimum value of κ does not accelerate the convergence of the momentum and 

energy equations simultaneously. 
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CHAPTER 4 

 

 

FINITE DIFFERENCE FORMULATIONS  

AND SOLUTIONS 

 

 

 The first step for solving a system of partial differential equations is to 

convert them to algebraic difference equations and simplified to a form that is 

suitable for computer programming. Secondly, the mesh size shall be chosen to get 

accurate results. The important point in choosing the structure is to get Nusselt 

number values that are close to experimental results. This can be reached by 

choosing fine grid structures. The disadvantage is that, the convergence is harder to 

achieve.  

 

 The method that will be presented here is as follows. The stream function 

values obtained from the solution of the nondimensional finite difference form of the 

stream function-vorticity equation are used to calculate the vorticity values from the 

momentum equation. Then the energy equation is solved in order to obtain the 

improved values of the temperature. These improved values are used in energy 

equation to obtain the new values of the stream function. Finally new values of 

stream function are used to get the improved values of vorticity. This continues until 

the convergence criterion is reached. Finite difference equations to be used in the 

FORTRAN code will be presented in the later sections.  
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4.1 Finite Difference Formulations 

 

 In this study the central difference approximation is used for the equations 

that will be used in computer programming. The advantage is that the error emerged 

by the central difference approximations (2
nd
 order accurate) is less than that of 

forward and backward difference approximations. The approximation is as follows: 
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     (4.1.e) 

where, η is any variable (ω, ψ, T) whose derivatives will be calculated as finite 

difference form. 

 

4.2 Boundary Conditions 

 

 The finite difference form of the boundary conditions that will be used in the 

model are presented below: (There are n x m nodes in the medium.) 

 

 1. For the boundary nodes at the bottom of the medium with impermeable, 

no-slip boundary condition (i.e. the fluid velocity matches the velocity of the solid 

boundary) and insulated boundary condition: 

0j,i =ψ  
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2
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1j,ij,i TT +=  

For j=1 and 2≤i≤n-1 

 

 2. For the boundary nodes at the top of the medium with impermeable, no-slip 

boundary and insulated wall boundary condition: 

0j,i =ψ  

2
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)y(

2
∆
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For j=m and 2≤i≤n-1 

 

 3. For the boundary nodes at the left side of the medium with impermeable, 

no-slip boundary and constant temperature wall boundary condition 

0j,i =ψ  

2
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1T j,i =  

For i=1 and 2≤j≤m-1 

 

4. For the boundary nodes at the right side of the medium with impermeable, 

no-slip boundary and constant temperature wall boundary condition: 

0j,i =ψ  

2

j,1i

j,i
)x(

2
∆

ψ
−=ω

−
        (4.2.d) 

0T j,i =  

For i=n and 2≤j≤m-1 

 For the corner boundary nodes the average of the two neighboring nodes are 

used.  
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4.3 Formulation of the Finite Difference Equations for Computer 

Programming 

 

4.3.1 Finite Difference Form of the Vorticity-Stream Function Equation 

 

 The nondimensionalized vorticity-stream function equation is as in the 

Chapter 3: 
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 Using the central difference approximations for the derivatives the finite 

difference form of the vorticity-stream function is: 
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where, 

 

1n

L
x

−
=∆          (4.4.a) 

1m

H
y

−
=∆          (4.4.b) 

∆x is the distance between nodes in x-direction and ∆y is the distance between nodes 

in y-direction, n and m are, as stated before, the number of nodes in x-direction and 

number of nodes in y-direction respectively. Finally, by simplifying the vorticity-

stream function equation the resulting equation is as follows: 
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where the constants are: 
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222
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4.3.2 Finite Difference Form of the Energy Equation 

 

 The nondimensionalized form of the energy equation from Chapter 3 is; 
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By applying the central difference to the partial derivatives the finite difference form 

of the energy equation is obtained as: 
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By simplifying the energy equation the resultant equation is as follows: 
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4.3.3 Finite Difference Form of the Momentum Equation 

 

 The nondimensional form of the momentum equation is as follows: 
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and by applying finite difference form and leaving j,iω  alone, the equation becomes: 
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and the final form of momentum equation is: 
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where the constants are as follows: 
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and the functions ( )*4F ψ  and ( )*5F T  are as follows; 
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4.4 Numerical Computing Strategy 

 

For the rectangular control volume in our case, a grid structure should be 

formed in order to solve the problem easily with a computer program based solution 

technique. The values of the variables are calculated at the nodes which are the 

intersection points of the formed grid structure. 
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Initial values for the streamfunction and the vorticity are set to zero for the 

simplicity, the values for the temperature are taken as pure conduction situation in 

order to get a linear temperature variation inside the porous medium. 

 

 

 

 

 

Figure 4.1: The flow-chart for the iteration procedure 

 

 

 

The flow chart in Figure 4.1 shows the  main iteration process of the program. 

For each internal node of the grid structure, values of streamfunction are calculated 

from the vorticity-streamfunction equation (Eqn. 4.5), using the previously 

calculated values of vorticity and streamfunction. Then the next step is to find new 

values of vorticity by using the final form of momentum equation (Eqn. 4.11). And 

as a final step for calculation process, the obtained values are substituted into the 

energy equation (Eqn. 4.8) to obtain the temperature for each node. 

 

After applying the above mentioned procedures, now is the time for 

convergence criteria which is the final process for obtaining practical results. In order 

to reach the final converged values, we need to initiate the cycle for each node at 

first. Then as a secondary step the convergence criteria takes place which is the 

criteria to stop iteration process for streamfunction, vorticity and temperature values 
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of each node. When applying an iterative process, there is a need for a convergence 

criterion to check whether the process converges or not. If the convergence check 

fails, the secondary cycle is initiated repeating the same procedures (iterations) for 

each internal node. The chosen convergence criterion is as follows: 

j n j ni m i m
p 1 p

i 1 j 1 i 1 j 1

j ni m
p 1

i 1 j 1

0.00001

η η

η

= == =
+

= = = =
==

+

= =

−

<
∑∑ ∑∑

∑∑
     (4.13) 

where, η is any variable (ω,ψ or T) used in the equations and p is the number of 

iterative cycles achieved. 

 For the selection of convergence criteria four different values of criterion are 

used to obtain the results and finally the criterion value of 0.00001 is chosen for the 

optimum process time and accuracy. The effects of convergence criterion to the 

program results will be presented in the later sections. 

 

4.5 Computer Program 

 

 The computer program used in this study is a Compaq Visual FORTRAN 6.1 

code which is a version of Fortran 90 free format source program. The objective of 

the code is mainly to determine the streamfunction, vorticity, temperature and 

Nusselt number for the defined rectangular control volume. The sequence and the 

main steps of the code are as follows; 

 The code does not contain any subroutine or sub functions. All functions are 

done in a main program. First of all, in the very early parts of the program, the 

general constants that are used in the entire program are set to their values such as, 

porosity of the medium, fluid Rayleigh number, Prandtl number, etc. Then the 

constants for the vorticity-streamfunction equation are set. After these steps the 

boundary and initial conditions are defined in accordance with the sections (4.2) and 

(4.4). Following the above mentioned steps, the main and the most important part of 

the program, the iteration cycle for evaluating the streamfunction, vorticity and 

temperature is compiled with the finite difference forms of equations as in section 

(4.3). Following the iteration procedure, in order to reach the converged values of the 
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variables, the termination process takes place with the convergence criteria of 1x10
-5
. 

The iteration procedure and the termination process for the iteration work together to 

get the final values. After reaching the convergence the final calculation process is 

for the Nusselt number. In order to get these values in to an Excel worksheet the 

program writes all the calculated values to a text file an also an Excel worksheet.  

 After completing the above mentioned issues on the computer programming 

code, then the outputs of the program are examined and the necessary graphs, tables 

and etc. are plotted with respect to the variables in the equations such as, Da (Darcy 

number), RaH (Rayleigh number based on height), Pr (Prandtl number), φ (porosity). 

In the later sections these graphs and the tables are presented.  
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CHAPTER 5 

 

 

RESULTS AND DISCUSSION 

 

 

 In this chapter of the study, the results of the computer program will be 

presented. The outputs of the code are collected using the Microsoft Excel software 

and plotted versus thermodynamic properties of the medium and the fluid. Previously 

done research and studies are also included in the graphical demonstration of the 

results of FORTRAN code. As stated in Chapter 4 the computer program lets the 

user view the effects of the below mentioned variables on the Nusselt number. 
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Moreover the program was run for different values within the below stated ranges to 

have convection dominant situations. 
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5.1 Convergence Analysis of the Study 

 

 As stated in the previous sections the iterative solution method is used in 

order to achieve a converged value in the finite difference method solving system. In 

the iterative nature solution systems the convergence criteria is the most significant 

item. While keeping the convergence criteria to a minimum value you have to 

examine the process time and the relative change in final values. So the most 

applicable way is to find an optimum of these three parameters. In the following 

sections a detailed convergence analysis is presented to show the effect of these 

parameters on the results. 

 

5.1.1 Convergence of the Temperature Values  

 

 In Figures 5.1 and 5.2 the behavior of the nondimensional temperature values 

are plotted against the convergence criteria defined in the Fortran code. 

 

 

 

Table 5.1: Nondimensional temperature values of selected nodes for different 

convergence criteria. 

 

Nondimensional Temperature Value (T*) Convergence 

Criteria T*[4,5] T*[14,5] T*[20,5] T*[39,5] 

0.01 0.941176 0.705882 0.529412 0.014706 

0.001 0.968357 0.845272 0.748485 0.141144 

0.0001 0.969355 0.852997 0.766568 0.160887 

0.00001 0.969911 0.855344 0.769821 0.162532 

0.000001 0.969973 0.855629 0.770255 0.162783 

0.0000001 0.969979 0.855652 0.770298 0.162808 

0.00000001 0.969980 0.855661 0.770303 0.162810 

0.000000001 0.969980 0.855661 0.770303 0.162811 
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Figure 5.1: Nondimensional temperature values of selected nodes versus 

convergence criteria 

 

 

 

Table 5.2: % Difference of nondimensional temperature values from the final value 

for different convergence criteria 

 

% Difference in Nondimensional Temperature Value (T*) Convergence 

Criteria T*[4,5] T*[14,5] T*[20,5] T*[39,5] 

0.01 2.969491 17.50446 31.272288 90.967538 

0.001 0.167294 1.214223 2.832481 13.307923 

0.0001 0.064417 0.311314 0.484912 1.181453 

0.00001 0.007101 0.037087 0.062558 0.171156 

0.000001 0.000714 0.003711 0.006239 0.016971 

0.0000001 0.000070 0.000367 0.000615 0.001670 

0.00000001 0.000006 0.000034 0.000056 0.000154 

0.000000001 0.000000 0.000000 0.000000 0.000000 
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Figure 5.2: % Difference of nondimensional temperature values from the final value 

versus convergence criteria 

 

 

 

5.1.2 Convergence of the Streamfunction Values  

 

 In the Figures 5.3 and 5.4 the behavior of the nondimensional streamfunction 

values are plotted against the convergence criteria defined in the Fortran code. 
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Table 5.3: Nondimensional streamfunction values of selected nodes for different 

convergence criteria. 

 

Nondimensional Streamfunction Value (ψ *) Convergence 

Criteria ψ*[4,5] ψ *[14,5] ψ *[20,5] ψ *[39,5] 

0.001 0.426727 1.623231 1.997789 0.843549 

0.0001 0.400440 1.494066 1.832465 0.890755 

0.00001 0.394024 1.474766 1.816056 0.895587 

0.000001 0.393492 1.473351 1.815032 0.896434 

0.0000001 0.393438 1.473208 1.814929 0.896518 

0.00000001 0.393433 1.473194 1.814919 0.896526 

0.000000001 0.393432 1.473193 1.814918 0.896527 
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Figure 5.3: Nondimensional streamfunction values of selected nodes versus 

convergence criteria 
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Table 5.4: % Difference of nondimensional streamfunction values from the final 

value for different convergence criteria 

 

% Difference in Nondimensional Streamfunction Value (ψ *) Convergence 

Criteria ψ*[4,5] ψ *[14,5] ψ *[20,5] ψ *[39,5] 

0.001 -8.46250 -10.184535 -10.076008 5.909242 

0.0001 -1.781134 -1.416874 -0.966824 0.643830 

0.00001 -0.150291 -0.106780 -0.062680 0.104773 

0.000001 -0.015113 -0.010707 -0.006358 0.010391 

0.0000001 -0.001489 -0.001055 -0.000616 0.001027 

0.00000001 -0.000134 -0.000096 -0.000054 0.000094 

0.000000001 0.000000 0.000000 0.000000 0.000000 
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Figure 5.4: % Difference of nondimensional streamfunction values from the final 

value versus convergence criteria 
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5.1.3 Convergence of the Vorticity Values  

 

 In the Figures 5.5 and 5.6 the behavior of the nondimensional vorticity values 

are plotted against the convergence criteria defined in the Fortran code. 

 

 

 

Table 5.5: Nondimensional vorticity values of selected nodes for different 

convergence criteria. 

 

Nondimensional Vorticity Value (ω*) Convergence 

Criteria ω*[4,5] ω *[14,5] ω *[20,5] ω *[39,5] 

0.01 131.302461 132.336337 132.336337 66.685096 

0.001 57.722439 53.643476 53.643476 398.2759970 

0.0001 57.545847 52.027357 49.783828 420.803220 

0.00001 56.453203 51.417849 49.467577 423.210225 

0.000001 56.361820 51.347788 49.403048 423.607089 

0.0000001 56.352662 51.340679 49.396459 423.647141 

0.00000001 56.351737 51.340679 49.395797 423.651169 
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Figure 5.5: Nondimensional vorticity values of selected nodes versus convergence 

criteria 

 

 

 

Table 5.6: % Difference of nondimensional vorticity values from the final value for 

different convergence criteria 

 

% Difference in Nondimensional Vorticity Value (ω *) Convergence 

Criteria ω*[4,5]  ω *[14,5] ω *[20,5] ω *[39,5] 

0.01 -133.005549 -157.765124 -167.910474 84.259448 

0.001 -2.433571 -4.486927 -7.439551 5.989733 

0.0001 -2.119196 -1.339045 -0.785689 0.672333 

0.00001 -0.180221 -0.151844 -0.145449 0.104176 

0.000001 -0.018056 -0.015380 -0.014813 0.010499 

0.0000001 -0.001804 -0.001532 -0.001474 0.001045 

0.00000001 -0.000163 -0.000138 -0.000134 0.000094 

0.000000001 0.000000 0.000000 0.000000 0.000000 
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Figure 5.6: % Difference of nondimensional vorticity values from the final value 

versus convergence criteria 

 

 

 

5.1.4 Convergence Behavior for Different Number of Iterations  

In this section of convergence analysis, the number of iterations required to 

get the converged value of temperature, streamfunction and vorticity values are 

examined to have an idea for the convergence time and rate. 
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Figure 5.7: Nondimensional temperature values for different number of iterations 
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Figure 5.8: Nondimensional streamfunction values for different number of iterations 
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Figure 5.9: Nondimensional vorticity values for different number of iterations 

 

 

 

5.1.5 Convergence Behavior for Different Grid Structures 

 

While deciding on the grid structure consisting of nodal points to be used in 

the finite difference equations a convergence analysis is made. The change in the 

final converged result has a significant importance as well as the computing time 

required. Figures 5.10 and 5.11 show the change in the Nusselt number and the 

temperature values for different grid structures, different node numbers. 
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Table 5.7: Comparison of Nusselt number values for different grid sizes 

(Da=0.00001, RaH=80, Pr=0.7, A=1, φ=0.5) 

 

Grid Structure Convergence 

Criteria 15x15 21x21 25x25 31x31 41x41 45x45 

0.01 2.297941 0.676471 3.970588 5.992950 5.337036 5.319148 

0.001 3.247451 2.967594 2.985676 3.126098 3.208922 3.280692 

0.0001 3.181661 3.056494 3.028348 2.986219 2.997942 2.994086 

0.00001 3.181397 3.044904 3.011398 2.988179 2.997748 2.992283 

0.000001 3.181354 3.044919 3.011451 2.988256 2.997820 2.992341 

0.0000001 3.181350 3.044926 3.011459 2.988260 2.997832 2.992354 

0.00000001 3.181349 3.044927 3.011460 2.988266 2.997833 2.992355 

0.000000001 3.181349 3.044927 3.011460 2.988266 2.997833 2.992355 
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Figure 5.10: Comparison of Nusselt number values for different grid sizes 

(Da=0.00001, RaH=80, Pr=0.7, A=1, φ=0.5) 
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Table 5.8: Comparison of Nondimensional temperature values T*(3,3) for different 

grid sizes (Da=0.00001, RaH=80, Pr=0.7, A=1, φ=0.5) 

 

Grid Structure Convergence 

Criteria 15x15 21x21 25x25 31x31 41x41 45x45 

0.01 0.941783 0.941176 0.954656 0.932312 0.941373 0.941176 

0.001 0.969111 0.980016 0.986575 0.979344 0.988016 0.988764 

0.0001 0.966491 0.979837 0.984535 0.985232 0.991203 0.992022 

0.00001 0.966262 0.980192 0.984234 0.988232 0.991711 0.992564 

0.000001 0.966239 0.980221 0.984142 0.988232 0.991767 0.992625 

0.0000001 0.966237 0.980224 0.984152 0.988123 0.991773 0.992631 

0.00000001 0.966237 0.980225 0.984150 0.988167 0.991774 0.992630 

0.000000001 0.966237 0.980225 0.984150 0.988166 0.991774 0.992630 
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Figure 5.11: Comparison of Nondimensional temperature values T*(3,3) for 

different grid sizes (Da=0.00001, RaH=80, Pr=0.7, A=1, φ=0.5) 
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 Several grid sizes are used in order to find the optimum grid structure. As 

seen from Figure 5.10 and 5.11 after 41x41 grid size there occurs a negligible 

difference in the final converged values. Hence, 41x41 grid size is chosen for this 

case. 

 

 5.2 Error Analysis for the Finite Difference Method 

 

 Throughout the study first degree central difference approximations are used 

as the finite difference approximation except the calculations of Nusselt number 

values. For Nusselt number approximation three point approximation finite 

difference method is used for more accurate results. Due to this situation for 

temperature, stream function and vorticity values, some round off errors occur. 

 

5.3 Temperature and Flow Fields within the Medium 

 

 In this section the obtained flow and temperature field graphs are presented 

for different cases as used in the previous sections in order to investigate the effects 

of some variables on Nusselt number. Furthermore, the obtained graphs and values 

are compared with previously done studies of some researchers. At first the 

temperature fields, in other words the isotherms will be presented. 

 

5.3.1 Temperature Fields (Isotherms) 

 

 In order to observe the behavior of temperature distribution within the control 

volume, corresponding Figures 5.12 to 5.17 are examined in detail. The examinations 

are done in two ways: first Darcy number is kept constant and Rayleigh number 

based on height is changed; and after that Rayleigh number is kept constant and 

Darcy number is changed.  

 As it can be seen from the graphs, for constant Darcy number the hotter 

regions of the control volume are formed at the top side, whereas the colder ones at 
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the bottom. As a general effect of the buoyancy forces hotter regions begin to 

penetrate to the top portion of the control volume. When Figures 5.12, 5.13 and 5.14 

(Da=0,001) and Figures 5.15, 5.16 and 5.17 (Da=0,000001) are examined, it is 

obvious that through an increase in Rayleigh number, hotter regions will begin to 

penetrate to the right hand side of the control volume. Another important issue to 

examine is when the Rayleigh number is kept constant and Darcy number is 

changing. For the same Rayleigh number regimes, through a decrease in Darcy 

number results in an increase in the amount of hotter regions in the upper half of the 

control volume. This situation can easily be examined as Figures 5.12 and 5.15, 5.13 

and 5.16, 5.14 and 5.17 are observed together.  
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Figure 5.12: Temperature fields for Da=0.001, RaH=20, Pr=0.7, A=1, φ=0.5 
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 Figure 5.13: Temperature fields for Da=0.001, RaH=40, Pr=0.7, A=1, φ=0.5 
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Figure 5.14: Temperature fields for Da=0.001, RaH=80, Pr=0.7, A=1, φ=0.5 
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Figure 5.15: Temperature fields for Da=0.000001, RaH=20, Pr=0.7, A=1, φ=0.5 
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Figure 5.16: Temperature fields for Da=0.000001, RaH=40, Pr=0.7, A=1, φ=0.5 
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Figure 5.17: Temperature fields for Da=0.000001, RaH=80, Pr=0.7, A=1, φ=0.5 

 

 

 

5.3.2 Flow Fields (Streamlines) 

 

As mentioned in the previous section 5.3.1 the streamlines of the control 

volume are plotted for two cases with three sub cases; these are keeping Rayleigh 

number constant while decreasing Darcy number, and for the next case, keeping 

Darcy number constant while changing Rayleigh number.  

When Figures 5.18 through 5.23 are examined, it may be concluded that for a 

constant Darcy number regime in a control volume the shape of the streamlines 

transform from circular to elliptical due to an increase in the Rayleigh number based 

on height. And also the elliptical shape rotates as Reyleigh number increases towards 

the right top side. This is due to the accumulation of the hot nodes at the right top 

side as Reyleigh number increases. This phenomenon is mainly due to the density 

gradients formed due to the temperature differences in the control volume, and it can 

be observed much easier in Figures 5.22 and 5.23. The opposite condition is also 
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valid for the below regions that causes the deviation in the streamlines. The code 

does not give applicable results for higher Rayleigh numbers that results a non-

unicellular patterns. 
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Figure 5.18: Streamlines for Da=0.001, RaH=20, Pr=0.7, A=1, φ=0.5 
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Figure 5.19: Streamlines for Da=0.001, RaH=40, Pr=0.7, A=1, φ=0.5 

 

 

 

0.00-0.75 0.75-1.50 1.50-2.25 2.25-3.00 3.00-3.75 3.75-4.50

 

Figure 5.20: Streamlines for Da=0.001, RaH=80, Pr=0.7, A=1, φ=0.5 
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Figure 5.21: Streamlines for Da=0.000001, RaH=20, Pr=0.7, A=1, φ=0.5 
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Figure 5.22: Streamlines for Da=0.000001, RaH=40, Pr=0.7, A=1, φ=0.5 
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0.00-1.00 1.00-2.00 2.00-3.00 3.00-4.00 4.00-5.00 5.00-6.00

 

Figure 5.23: Streamlines for Da=0.000001, RaH=80, Pr=0.7, A=1, φ=0.5 

 

 

 

5.4 Nusselt Number Values 

 

 Nusselt number is the ratio of convective heat transfer rate to that for pure 

conduction. In the absence of convection Nusselt number value approaches to unity, 

which will be explained in the upcoming sections. Using no-slip boundary conditions 

it is applicable to use the conduction heat transfer between nodes adjacent to the 

boundary where the natural convective heat transfer occurs from the boundary to the 

fluid. By applying the three point approximation for the finite difference method the 

Nusselt number values, the Nusselt numbers for the constant temperature side walls 

are as follows: 
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For the left hand side wall; 

heat flux

H

m
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   (5.1.a) 

and similarly the Nusselt number for the right hand side wall; 

heat flux

H
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   (5.1.b) 

  

 There occurs small round off errors for the separate walls due to the iterative 

type of convergence in the program. To eliminate the effect of these minor errors the 

arithmetic average of these two Nusselt number values is used in the later sections 

which is: 

m m
1, j 2, j 3, j n, j n 1, j n 2, j

j 1 j 1

3T 4T T 3T 4T TA
Nu

4 T x x

− −

= =

− + − − + − 
= + ∆ ∆ ∆ 

∑ ∑   (5.2) 

 

5.4.1 The Effect of Darcy Number 

 

 While examining the effect of a specific constraint, all variables except the 

one whose sole effect will be under investigation are kept constant. For the Darcy 

number which is in the range of 10
-8
<Da<10

-1
 the Rayleigh number based on height 

is also changing to have the effect of Rayleigh number on Nusselt number. Here the 

program is run for 6 different values of Rayleigh number and five different values of 

Darcy number. The results of these total runs are plotted in Figure 5.24. For all of 

these results the variables kept constant are Prf=Prm=0.7, φ=0.5, A=1. 
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Figure 5.24: Variation of Nusselt number with Rayleigh number based on height 

for different values of Darcy number (where Prf=Prm=0.7, φ=0.5, A=1) 

 

 

 

It can be seen from the figure that the Nusselt number is inversely 

proportional to the Darcy number. In other words, a decrease in the permeability will 

be followed by an increase in the total convective heat transfer through the medium. 

The effect of the Rayleigh number is more significant in the region 

0.000001<Da<0.0001. In the studies of Colburn with the packed tubes versus empty 

tubes, it was also stated that with higher Darcy numbers the sensitivity to change in 

Rayleigh number is negligible.  
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5.4.2 The Effect of Prandtl Number 

 

 The effect of Prandtl number on the Nusselt number (on the convective heat 

transfer) is investigated and examined for the equal Prandtl numbers of fluid and the 

medium. 
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Figure 5.25: Variation of Nusselt number with Prandtl number (Da=0.00001, 

φ=0.5, A=1) 

 

 

 

 As seen from the figure in the range of 0.7<Pr<3.7 an increase in Prandtl 

number value results an increase in Nusselt number, whereas in the range of 

approximately 3.7<Pr<6.7 the relative change in Nusselt number with respect to the 

increase in the Prandtl number is very small. After Pr=7 the change in Nusselt 

number with the increase in Prandtl number is negligible.  
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5.4.3 The Effect of Conductivity Ratio 

 

 In this section the effect of conductivity ratio which is the ratio of Prandtl 

number of medium to the fluid is examined against the Nusselt number, while 

changing the Prandtl number of the fluid. This situation is demonstrated in Figure 

5.26. 
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Figure 5.26: Variation of Nusselt number with the conductivity ratio for different 

Prandtl numbers (Da=0.00001, φ=0.5, A=1) 

 

 

 

 As seen from the Figure 5.26, Nusselt number is much more sensitive to the 

change in conductivity ratio, the ratio of Prandtl number of medium to that of the 

fluid, than to the change in Prandtl number of the fluid. There is a significant change 
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in the magnitude of the Nusselt number due to the change in the conductivity ratio. 

On the other hand, for Prf=0.7 and for Prf=7.0 Nusselt number values are very close 

for the same conductivity ratio.  

 

5.4.4 The Effect of Porosity 

 

 When examining the effect of porosity on the Nusselt number, a wide range 

of porosity is used, 0.1<φ<0.99. Moreover, two different conductivity ratios are used 

with the porosity. The above mentioned situation is shown in Figure 5.27. 
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Figure 5.27: Variation of Nusselt number with Porosity for two different 

Conductivity Ratio Values (Da=0.00001, A=1) 
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 The above demonstration shows that the effect of porosity becomes more 

significant when the conductivity ratio is relatively high. For λ=2 increase in Nusselt 

number is higher than the one with λ=1. Besides this result, it can be seen that the 

effect of porosity for both case is more obvious in the range of 0.1<φ<0.6. Beyond 

this Nusselt number is nearly unresponsive to any change in porosity.  

 

5.5 Comparison of Results with Previously done Studies 

 

 In this section, the numerical results of the study will be compared and 

examined with respect to the previously done studies by various researchers.  

 The studies used here for the comparisons are; Weber’s analytical solution 

and Bejan-Tien analytical solution. 

 Weber [26] developed an analytical solution for the boundary layer regime by 

applying the Oseen linearization method. As a result the total heat transfer rate 

between the two side walls can be expressed as the conduction referenced Nusselt 

number defined as the conductive heat transfer ratio and given by; 

1/ 2

1/ 2

L

L
Nu 0.577 Ra

H

 =  
 

       (5.3) 

This situation then studied widely later by Bejan [27].  

 After Weber’s study, Bejan and Tien reached an equation which is adequate 

for heat transfer calculations in tall layers at low and high Rayleigh numbers, and 

nearly identical to Weber’s solution for high Rayleigh number regime.  

1/ 2

1/ 2

L

L
Nu 0.508 Ra

H

 =  
 

       (5.4) 

 Both Weber’s and Bejan’s studies are applicable for mediums of L/H<1 (tall 

mediums), and can not be applied for shallow mediums. On the other hand, the 

numerical solution presented in this study is applied for all aspect ratios i.e. A 1≤  

and A 1≥ . 

The comparison table and graph are presented in Table 5.9 and Figure 5.28. It 

can be seen that the outcomes of the Fortran code comply with the other studies. 
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Table 5.9: Comparison of the Results with Previous Studies 

 

RaH Numerical Solution Weber’s Solution 
Bejan-Tien 

Solution 

20 1.4185 2.5804 2.2718 

30 1.6575 3.1604 2.7824 

40 1.9232 3.6493 3.2129 

50 2.2007 4.0800 3.5921 

60 2.4826 4.4694 3.9350 

70 2.7648 4.8275 4.2502 
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Figure 5.28: Comparison of the Results with Previous Studies, A=1 
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The numerical solution for A=1 is an acceptable match with Bejan’s [27] and 

Weber’s [26] solution. As a result the function that represents the curves should be 

similar. Thus, the function that represents the Nusselt number inside the porous 

medium will be as follows; 

m n

LNu A Raα=         (5.5) 

 In order to find constants α, m and n, the Fortran code should be run for 

different cases. In order to find α and n Nusselt number values for aspect ratio of 

unity are plotted against Rayleigh number based on height. 
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Figure 5.29: Nusselt number for different Rayleigh numbers, A=1 

 

 

 

In Figure 5.29, A is the aspect ratio and RaL is the Rayleigh number based on 

horizontal distance from the origin of the porous medium. As can be seen from the 

graph, α and are determined through a curve fit tothe numerical solution for an aspect 

ratio of unity. For the remaining unknown quantity, m of Equation (5.5) different 

aspect ratios were used i.e. A=0.2-0.5-1-2-5. 
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 The code as well as Equation (5.5) is applicable for 0.2<A<5. However, the 

resulting equations in the form of Equation 5.5 are different for aspect ratios greater 

than unity and for aspect ratios smaller than unity, which are as follows: 

0.225 0.5355

LNu 0.253A Ra=  for 0.2<A<1     (5.6.a) 

0.213 0.5355

LNu 0.253A Ra−=  for 1<A<5     (5.6.b) 

 Figure 5.30 is the demonstration of comparison of the study with previously 

done studies for A=0.5, i.e. a tall cavity. For shallow cavities Walker and Homsy 

[28] studied an asymptotically analysis and found the Nusselt number approximation 

as follows; 

4

2

L

1 1
Nu 1 Ra

120 A

 = +  
 

       (5.7) 

 Figure 5.31 is the comparison of the numerical solution with this mentioned 

equation for A=2, i.e. a shallow cavity. However Walker and Homsy [28] approach 

is mainly applicable for A>10 which is out of range of this study. 
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Figure 5.30: Comparison of the Results with Previous Studies, A=0.5 
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Figure 5.31: Comparison of the Results with Previous Studies, A=2 

 

 

 

5.6 Analysis of Heat Transfer Modes throughout the Medium for 

Different Aspect Ratios 

 

 As mentioned in the previous sections of the study, an aspect ratio is used for 

solving the finite difference equations. In the main program, where the results are 

shown an aspect ratio of one is used. In order to observe the change of the mode of 

heat transfer in the porous medium with saturated fluid inside, various aspect ratios 

are used. It can be seen from Figure 5.32, that for H/L values of order of magnitude 

of 0.1 and smaller or 10 or higher, Nusselt number value reaches almost unity and 

the mode of heat transfer is similar to conduction. So from the figure the heat transfer 

rate reaches a maximum when rectangular domain is nearly square when the 

Rayleigh number based on the height is fixed.  
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Figure 5.32: The effect of the height of the enclosure on the heat transfer rate 

(Nusselt number) (Da=0.00001, Pr=0.7, φ=0.5) 

 

 

 

In Figure 5.32, RaL is the Rayleigh number based on the horizontal dimension of the 

porous medium. For aspect ratio of unity RaL is same with RaH. 

The above stressed condition is well fit with the study of Bejan [29], in which 

he studied the optimization of heat transfer through a porous layer with saturated 

fluid inside and heated from the side. As stated previously, the numerical solution 

and the corresponding equations are applicable to both shallow and tall models 

within the pre-fixed regions. 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

The studies on heat transfer through porous medium have recently increased 

because of worldwide concern with issues such as energy self-sufficiency and 

pollution of the environment. Insulation of buildings and equipments, energy storage 

and recovery, geothermal reservoir, nuclear waste disposal, chemical reactor 

engineering, the storage of heat-generating materials, and geothermal applications 

such as the flow of groundwater around hot intrusions are the main areas of 

applications of heat transfer through porous medium. Moreover, enclosures heated 

from the side are most representative of porous medium systems that function while 

oriented vertically, as in the insulations for buildings, industrial cold-storage 

installations and cryogenics. 

  

Several studies have been done on the heat transfer through a porous medium 

up to now to predict the effect of the thermodynamics and environmental properties 

on the heat transfer rate. Some of them neglect the inertial forces some of them 

neglect the viscosity terms while deriving the basic equations of the control volume. 

In this study both terms are taken in to account for the rectangular control volume 

having the condition of heated from one side steady state steady flow through a 

porous medium. A FORTRAN based computer program is used to pick up the results 

for simulating the situation inside the porous medium.  

 

The data collected from the simulation of the program is used to calculate the 

Nusselt number for the medium, as well as to examine the effects of most of the 

thermodynamic properties on the Nusselt number. For different values of Rayleigh, 

Prandtl and Darcy numbers Nusselt number graphs were plotted and followings 
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results were reached. The plotted graphs show that an increase in the Rayleigh 

number, will result an increase in the Nusselt number regardless of any change in 

Darcy number. However, the rate of this increase in the Nusselt number is dependent 

on the order of magnitude of Darcy number. As Darcy number decreases the Nusselt 

number values become more sensitive to the changes in Rayleigh number. The effect 

of Darcy number on isotherms and streamlines are presented in Chapter 5. 

 

 Other variables that affect Nusselt number are porosity and conductivity. 

Nusselt number is more sensitive on the change in conductivity ratio than the change 

in porosity, while it has a weak dependence on the porosity. On the other hand the 

change in the thermal conductivity values while keeping the conductivity ratio 

constant results almost no change in Nusselt number.  

 

 In Section 5.5 of the study, the results obtained from the generated Fortran 

code are compared with the previously done studies on heat transfer through porous 

medium. As stated in Chapter 5, there are several studies on calculating the total heat 

transfer through a fluid saturated porous medium subjected to end to end temperature 

difference. As a result of the numerical solution presented in this study a set of 

equations is presented to predict the heat transfer through the porous medium. For 

the tall systems (A<1) Weber’s [26] and Bejan’s [27] studies are presented and 

compared with the numerical solution presented in Chapter 5. The equation for tall 

layers generated from the numerical solution is appropriately fit with the previously 

done studies. For the shallow systems (A>1) the study of Walker and Homsy [28] is 

presented and compared with the numerical solution. The behavior of both equations 

are similar but there occurs slight difference in the order of magnitude of Nusselt 

number calculated from these equations. This difference is mainly due to the fact that 

Walker and Homsy’s solution is widely applicable for higher aspect ratios. 

 

 As a last step for the study an analysis of aspect ratio versus Nusselt number 

is done. It is observed that Nusselt number that is the heat transfer through porous 

medium is maximum when the aspect ratio is unity for which the control volume is 

perfect square. Furthermore, from the plotted graph it is examined that the Nusselt 

number is sensitive to aspect ratio of 0.2<A<5. Beyond this range the change in 
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aspect ratio does not result any change in Nusselt number which becomes unity for 

aspect ratios of higher than 10 and also smaller than 0.1. So the Fortran code is said 

to be applicable in this aspect ratio. The range in which the code gives applicable 

results is as follows: 

L

2 8

8 1

10 Ra 600

10 Ra 10

10 Da 10

0.2 A 5

− −

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 

 

 As the concluding remarks, the correlations mentioned in Chapter 5 are the 

main outcomes of the study. These equations well predicts the convective heat 

transfer behavior of the saturated porous medium. As stressed previously the 

previous studies [26, 27, 28] are limited to aspect ratios for A 1≤  orA 1≥ . Whereas 

the below correlations that fits the numerical solution are well predicts the Nusselt 

number for both A 1≤  orA 1≥ , but for a limited range of aspect ratio. 

 

0.225 0.5355

LNu 0.253A Ra=  for 0.2 A 1≤ ≤      (5.6.a) 

0.213 0.5355

LNu 0.253A Ra−
=  for 1 A 5≤ ≤      (5.6.b) 

 

The present study is for laminar flow regimes and a limited aspect ratio for 

the control volume. In future, the study may be improved in order to cover turbulent 

flow regimes and an increased range of aspect ratio. Different control volumes with 

different boundary conditions may also be studied for porous medium. 
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