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ABSTRACT 
 
 
 

COMPUTER FAULT TOLERANCE STUDY 
INSPIRED BY THE IMMUNE SYSTEM 

 
 
 

CANIBEK, Atıf De ğer 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Hasan Güran 

 

 

December 2005, 81 pages 
 
 
 

Since the advent of computers numerous approaches have been taken to create 

hardware systems that provide a high degree of reliability even in the presence of 

errors. This study seeks to address the problem from a biological perspective using 

the human immune system as a source of inspiration. The immune system uses 

many ingenious methods to provide reliable operation in the body and so may 

suggest how similar methods can be used in the design of reliable systems. 

This study provides a brief introduction into a relatively new discipline: artificial 

immune systems (AIS) and demonstrates a new application of AIS with an 

immunologically inspired approach to fault tolerance. It is shown a finite state 

machine can be provided with a hardware immune system to provide a novel form 

of fault detection giving the ability to detect faulty states during a normal operating 

cycle. It is called immunotronics. 

Keywords: Artificial immune system, binary immune system, immunotronics, fault 

tolerance, positive tolerance conditions.  
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ÖZ 
 
 
 

BAĞIŞIKLIK S İSTEMİNDEN ESİNLENİLM İŞ 
BİLGİSAYAR HATA TOLERANSI ÇALI ŞMASI 

 
 
 

CANIBEK, Atıf De ğer 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Hasan Güran 

 

 

Aralık 2005, 81 sayfa 
 
 
 

Bilgisayarların geniş bir biçimde kullanılmaya başlamasından bu yana hata 

meydana geldiğinde bile yüksek derecede güvenilirlik sağlayan donanım 

sistemlerinin yaratılmasında pek çok yaklaşım olmuştur. Bu çalışma insan 

bağışıklık sisteminden esinlenerek biyolojik bir perspektiften problemi ele 

almaktadır. Bağışıklık sistemi vücudun güvenilir bir biçimde çalışmasını sağlayan 

çeşitli akıllı yöntemler kullanır ve buna benzer yöntemlerin güvenilir sistemlerin 

tasarımında nasıl kullanılabileceğini öne sürer. 

Bu çalışma yeni bir disiplin olan yapay bağışıklık sistemine kısa bir giriş yapmakta 

ve bağışıklık sisteminden esinlenilmiş yaklaşımla hata toleransına getirilen yeni bir 

uygulama gösterilmektedir. Donanımsal bağışıklık sistemi ile birlikte sonlu durum 

makinasının nasıl normal çalışma döngüsünde hatalı durumların sezilme yeteneğini 

kazandıran hata tanımanın yeni bir biçimini sağladığı gösterilmektedir. 

Anahtar Kelimeler:  Yapay bağışıklık sistemi, “binary” bağışıklık sistemi, 

“immunotronics”, hata toleransı, pozitif tolerans durumları.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Fault-Tolerant Systems 

Electronic systems have been used widely in everyday life. Electronic systems like 

computer can be found not only in banks, at schools, and in our homes, but also in 

nuclear power plants, expensive satellites and life-supporting medical equipments. 

While the presence of a fault on one system is often just an annoyance, for safety-

critical applications, if the computer or any other electronic control system fails, the 

costs in terms of money and even human life could be incalculable. Therefore, 

many electronic systems must be fully functional under the most critical operating 

conditions, and should work satisfactorily for at least a predetermined period of 

time. There are two possible approaches to achieve this objective: to build either 

fault free or fault-tolerant  systems [1]. 

Since, with time, hardware becomes worse and software becomes ever more 

complex to test reliably, it is impossible to design and build fault free system that 

will not develop faults during its operating lifetime. Therefore the more feasible 

alternative is to implement systems, which are capable of tolerating faults. 

1.2 The Development of Fault-Tolerant Computing 

The first theoretical work in fault-tolerant computing is generally credited to John 

von Neumann. In 1956 von Neumann published an article entitled: “Probabilistic 

Logics and the Synthesis of Reliable Organisms from Unreliable Components”. In 

that study, he presented the concept of majority voting and analyzed the impact that 
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such arrangements could have on the probability of a system producing erroneous 

results [2].  

Since around 1970, the field of fault tolerant computing has been rapidly 

developing. Several Journals such as the Computer, IEEE Micro, the Proceedings of 

the IEEE etc., regularly present special issues that deal with fault-tolerant 

computing.  

Recent years has shown radically different approaches to the design of reliable 

systems with biology being a major source of inspiration. Our understanding of the 

natural or, more specifically, human immune system has increased over the last few 

decades and has provided a miraculous insight into how the body defends itself 

from intrusion and maintains reliable operation. Through the increased under-

standing, new techniques inspired by the human immune system have given rise to 

improved approaches to computer security [3], virus protection [4], [5], anomaly 

detection [6], process monitoring [7], robot control [8], and software fault tolerance 

[9]. The human immune system provides a distributed fault-tolerant architecture 

within the body and so suggests a radically different approach to current reliable 

system design. 

1.3 Purpose and Scope 

Artificial immune systems (AIS) are computer systems exploiting the natural 

immune system metaphor: protect an organism against intruders. The subject of this 

thesis is about binary AIS in which all the information is represented by the bit 

strings of fixed length. It is shown that a finite state machine can be provided with a 

hardware immune system to provide a novel form of fault detection giving the 

ability to detect every faulty state during a normal operating cycle [10]. 

The purpose of this study is to find an answer to the problem that can be stated as 

follows: given a set of self patterns representing normal behaviour of a system 

under considerations find a set of detectors (i.e, antibodies, or more precisely, 

receptors) identifying all non-self patterns corresponding to abnormal states of the 

system. 
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1.4 Layout of Thesis 

In chapter 2, the requirements for fault-tolerant hardware design are discussed. 

In chapter 3, human immune system is introduced and the feature that have inspired 

the development of a hardware immune system is discussed. 

In chapter 4, the similarities and differences between immunology and fault 

tolerance are presented and steps needed to immunize a system for providing fault 

detection are demonstrated. 

In chapter 5, binary immune system is explained and the brief overview of the 

receptors generation algorithm is presented. 

In chapter 6, the simulation that are used to construct the tolerance conditions for 

immunization of the system is explained. 

In chapter 7, implementation of the fault detection hardware, results of the 

immunization cycle and the analysis of these results are presented. 

In chapter 8, a conclusion of this study is given. 
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CHAPTER 2 

 

FAULT TOLERANCE 

 

Over thirty years ago, developments based on the challenge of designing reliable 

systems from unreliable components resulted in the notion of fault tolerance.  

2.1 The Phases of Fault Tolerance 

Fault tolerance techniques, either software or hardware, always imply the use of 

redundancy. In general, fault-tolerant systems should be able to implement the 

following phases [17]: 

1. Error detection or output deviating from the norm; 

2. Minimization  or eradication of the resulting effects of the fault; 

3. Activation of a suitable recovery procedure. There are two methods of 

recovery: a) Backward error recovery can return the system to a 

previously stored valid state and b) Forward error recovery  can make 

selective corrections to the current state until an acceptable state is 

reached. 

Biologically inspired fault tolerance must address these processes.  

2.2 Hardware Fault Tolerance 

There are several approaches to implement fault tolerance of hardware. 

1. Retry Strategy: The operation, which was detected to be erroneous is to 

be repeated. Here redundancy is only needed to detect the fault. 
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2. Backup Computers: In case of failure, until the repair personnel could 

fix the main system, all work is transferred to the backup system. 

3. Pair-and-Spare: At the component level designer uses a pair of 

identical components to built a unit that detects its own error. At the 

system level of organization, the designer builds a computer using a pair 

of error-detecting units. One pair operates as the main unit and the other 

as a spare unit. Control unit automatically switches the operation to the 

spare unit if the main unit fails. 

4. N-Modular Redundancy (NMR): It is similar with pair-and-spare 

logic, but with N identical components (N≥3). Special voting logic 

compares the outputs and accepts the majority output as being correct. 

5. Built-In Self-Test (BIST):  The task of testing a chip with several 

millions of transistors is extremely complex, expensive and often very 

time consuming. A widely accepted approach to deal with the testing 

problem at the chip level is to incorporate BIST capability within the 

chip. One way of achieving self-checking design is the use of error 

detecting codes. In this case a code checker detects the presence of faults 

when its input is not a member of the set of valid codes. Figure 2.1 

shows the block diagram of totally self-checking circuit. 

 

 

 

 

 

 

Figure 2.1 Totally self-checking circuit 

Functional 
Circuit 

Checker 

Inputs Coded 
Outputs 
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2.3 Alternative Techniques in Hardware Fault Tolerance 

Nature demonstrates radically different approaches to complex problem solving that 

are now being used within computing and electronic fields to improve the behaviour 

of the system instead of the classical techniques. Many different species possess 

defence mechanism that can be referred to as an immune system. Vertebrates have 

evolved a highly complex, multi-layered defence mechanism in the form of the 

immune system to provide protection from potentially hazardous external 

influences such as bacterial and viral infections (antigens). The similarities between 

the requirements of fault tolerance and the operation of the body’s defence 

mechanisms have highlighted the relevance of the immune system as a conceptual 

model for the design of future reliable systems [11]. 
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CHAPTER 3 

 

HUMAN IMMUNE SYSTEM 

 

The human immune system (and that of all vertebrates) is unique amongst all living 

species in that it has evolved a complex genetic level defence mechanism for 

protection from invaders. The detailed information of the human immune system is 

presented in [12] and [13]. 

3.1 Immune Architecture and Organisation 

Defence against intruders, or antigens is accomplished through four distinguishable 

layers of protection [4] [14] from physical barriers through physiological barriers in 

the forms of temperature and acidity to chemical and cellular interactions in the 

forms of innate and acquired immunity. Acquired immunity involves antibody and 

cell mediated immunity that defend against extra-cellular and intra-cellular 

infection respectively.  

The immune system cells are produced from stem cells in the bone marrow and are 

divided into three types of cell [15]: 

1. Macrophages are roaming scavenger cells that take part in both innate 

and acquired immunity. They perform a signalling role presenting 

fragments of antigens to other cells of the immune system.  

2. B cells can recognise antigens and produce a single type of antibody to 

counteract a specific antigen. 
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3. T cells are developed to form helper, suppressor and killer  T cells. 

Helper and suppressor cells act as the master switched for the immune 

system by initiating and slowing down immune responses in the pres-

ence of an antigen. Killer T cells detect and destroy virus infected cells. 

Response to an antigen occurs by the use of complementary receptors on the 

antigen and antibody known as epitopes and paratopes respectively. Both B and T 

cells have the ability to detect and counteract only one type of antigen and so huge 

diversity is a necessity. Such specificity means that at any one time there are over 

1012 B cells within the body creating over 108 different types of antibody - a number 

impossible to encode for in the human genome of 105 genes. The rearrangement of 

antibody protein segments creates the huge variation needed. The presence of such 

a wide number of different antibodies means that an exact epitope-paratope match 

rarely occurs. An immune response can be initiated by approximate matching in a 

process called affinity maturation  (Figure 3.1) [15].  

 

 

Figure 3.1 Affinity maturation of antibodies 

Activated B cells 
create antibodies 

High affinity B 
cells selected  
The others die 
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hypermutation 
creates optimised 
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Under a continuous cycle of repeated optimisation, the B cells with the highest 

affinity to the invading antigen generate minor variants by somatic hypermutation 

resulting in an over-whelming quantity of antibodies to destroy the invading antigen 

[15]. 

3.2 Antibody Mediated Immunity 

Antibody mediated immunity protects the body from extra-cellular infection. B 

cells are constantly on patrol for antigens that they can bind to. If an approximate 

match occurs between a patrolling B cell and an antigen a response is initiated as in 

Figure 3.2. Proliferation of antibodies only occurs if the corresponding T cells exist 

to stimulate the manufacture of optimised antibodies. When an antigen is 

encountered for the first time it takes several days for antibody proliferation to 

occur. Through the use of memory B and T cells secondary responses can provide a 

much more rapid response to the same infection at a later date [15]. 

 

 

Figure 3.2 Antibody mediated immunity 

(1) Complementary receptors 
detected 
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3.3 Self/Non-Self Discrimination 

The process of antigen detection by random generation and complementary receptor 

matching is a very effective method of protection, but what prevents the immune 

system from binding to cell proteins that occur naturally within the body? Several 

theories have been proposed to explain how the immune system differentiates 

between self and non-self cells of the body [16]. The most widely accepted answer 

is clonal deletion which is demonstrated in Figure 3.3. In contrast to the matured 

functional immune system with distributed censoring, a centralised development 

stage occurs first and carries out a process called negative selection. Immature 

helper T cells move to the thymus where self-proteins circulate through and are 

exposed to the helper T cells. If a maturing T cell binds to one of the self proteins, it 

is destroyed. Only those T cells that are self tolerant survive to become fully 

functional activators of B cells [15]. 

 

 

Figure 3.3 Clonal deletion 
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CHAPTER 4 

 

THE IMMUNOLOGICAL TO HARDWARE TRANSITION 

 

4.1 Key Immunological Features 

Based upon the fundamental attributes of the immune system, the following five 

key analogies can be summarised [15]: 

1. The immune system functions continuously and autonomously, only 

intervening the normal operation of the body when an intruder or 

erroneous condition is detected, much like in the presence of a faulty 

state. In a mapping to hardware, the analogy is that of fault detection and 

removal without the need for software support. 

2. The cells that provide the defence mechanisms are distributed 

throughout the body through its own communications network in the 

form of lymphatic vessels to serve all the organs. The hardware 

equivalent promotes distributed detection of faults with no centralised 

fault recognition and recovery. 

3. The immune cells that provide the detection mechanisms are present in 

large quantities and exist with a huge range of diversity. Limited 

diversity is already a common solution to fault tolerant system design. 

4. The immune system can learn and remember from past experiences what 

it should attack. The hardware analogy suggests the training (and 

possibly even continued improvement during operation) of fault detec-

tion mechanisms to differentiate between fault free and faulty states. 
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5. Detection of intruding antigens by the immune system is imperfect. The 

onset of faults in hardware systems is often due to the impossibility to 

exhaustively test a system. The testing phase can never test for every 

eventuality and so the analogy of imperfect detection suggests one 

remedy. 

4.2 Hardware Representation 

Methods of self/non-self differentiation are developed through a finite state machine 

(FSM) representation of the system to be immunised. In principle, any hardware 

system can be represented by an individual or set of inter-connected finite state 

machines and is therefore a logical start point. Finite state machine define the 

acceptable states and transitions between states (Figure 4.1) [10].  

 

 

Figure 4.1 State machine under test 

 

Under normal and reliable operation (self) only transitions tqx can occur. Invalid 

transitions, tex, signify a potential problem (non-self). Concentrating on the 
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as two states may valid, but the transition not [17]. Table 4.1 demonstrates the 

advantages of monitoring state transitions. 

 

Table 4.1 The advantage of monitoring state transitions 
CS – current state, NS – next state 

 

CS NS Valid NS Transition Valid Transition 

2 3 Yes tq23 Yes 

4 5 No te45 No 

2 1 Yes te21 No 

 

4.3 Feature Mapping 

The features and operations of the immune system can be translated into the 

hardware domain. Tables 4.2 and 4.3 summarise the mappings in terms of entities, 

or physical elements and processes, or operations that the system may undergo. 

Tables 4.2 and 4.3 show that an immunologically inspired approach based upon the 

use of FSMs is feasible [17]. 

 

Table 4.2 Entity feature mapping 
 

Immune System Hardware Fault Tolerance 

Self Valid state/state transition 

Non-self (antigen, intruder) Invalid state/state transition 

Antibody Error tolerance conditions 

Gene used to create antibody Variables forming  
tolerance conditions 

Antigen presenting cell Data collection and tolerance 
condition creation component 

Paratope Invalid state/state transition  
tolerance conditions 

Epitope Valid state/state transition  
tolerance conditions  

Helper T cell Recovery procedure activator 

Memory T cells Set of tolerance conditions 
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Table 4.3 Process feature mapping 
 

Immune System Hardware Fault Tolerance 

Recognition of self Recognition of valid transition 

Recognition of non-self Recognition of invalid transition 

Learning during gestation Learning of correct transition 

Antibody mediated immunity Error detection and recovery 

Clonal deletion Isolating of self-recognising 
tolerance conditions 

Inactivation of antigen Return the normal operation 

Life of organism Operation lifetime of the hardware 

 

4.4 Data Gathering 

The immunotronic hardware initially undergoes a learning stage similar to the 

centralised maturation of T cells in the thymus. The goal of the data gathering stage 

is to create a data set S that represents a complete or substantial percentage of all 

possible valid state transitions within normal operation of the FSM. Unlike the 

human immune system which does not store a map of self conditions, storing this 

within the immunotronic hardware has its uses. The generation of invalid conditions 

can be initiated through the injection of faults and simulated errors. This only 

provides a starting point for the learning of non-self however. Approximate 

matching techniques, through the use of non-deterministic methods (random/ 

evolutionary generation) is to be used to provide a set of partial matching data [18]. 

The current approach is to immunise the state of the system by monitoring the 

inputs, current state and previous state of the system and storing each instance of 

self as a binary string [15].  

4.5 Tolerance Condition Generation 

The negative selection algorithm was developed by Forrest and Perelson [4] from 

theoretical analyses of the matching and binding properties of the immune system 

for the detection of viruses within computer systems and network intrusion. In 

contrast to the existing fault tolerant architecture, such as NMR and embryonics 
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which work by checking constantly for the presence of valid operation, the negative 

selection algorithm works by checking constantly for the presence of invalid 

operation.  

The algorithm is based upon the method of selecting a set of strings R of length ℓ 

from a randomly generated original set of data R0. Each string r∈R fails to match 

any of the self strings s∈S, also of length ℓ, in at least c contiguous positions. Any 

string that match in at least c contiguous positions are deleted. The mature set of 

tolerance conditions R are generated from an initial randomly generated set R0 

corresponding to immature tolerance conditions, which undergo a negative selection 

process [17]. Figure 4.2 adopted from [19] demonstrates the algorithm [10]. 

 

 

Figure 4.2 The negative selection algorithm 

 

4.6 Architecture of the Hardware Immune System 

With the tolerance conditions generated they must then be downloaded to the host 

hardware immune system (Figure 4.3 [10]).  

 

Self strings S 

Immature 
random 

tolerance 
conditions R0 

Match in c 
contiguous 
positions? 

Matured 
tolerance 

conditions  R 

Reject  
tolerance conditions 

Contiguous matches < c 

Single immature 
tolerance condition r0 

Contiguous matches ≥ c 
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Hardware immune system acts as a wrapper to the state machine under protection. 

Under normal operation, only self strings are present. The presence of a fault 

creates a non-self state, analogous to the presence of antigen. 

The string generation component gathers the user inputs and system state (and/or 

output) from the state machine, combining with the previous system state (and/or 

output) to create a search string for presentation to the immune system memory.  

 

 

Figure 4.3 The hardware immune system attached to the FSM 

 

The partial-matching content-addressable memory (CAM) stores the tolerance 

conditions and returns a positive result if c contiguous bits out of ℓ match the search 

string. The data are presented to the CAM and a found or not-found signal returned 

in addition to the address where the data were found [17]. 

State machine 
(Self) 

 

String generation  
(antigen presenting cell) 
and response activation 

CAM (memory) 

Tolerance conditions  
(T cells) 

User input Output 

Wait State and/or Output 

Search 
String 
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4.7 Fault Detection 

The immunized state machine is monitored at every change of state and the 

gathered data sent to the tolerance condition memory and searched [17]. If valid 

state is confirmed, then normal operation is allowed to continue. If faulty state is 

detected, number of defined responses can be activated. If the memory read clock 

driving the CAM is fast enough then the result of search to be returned to the “string 

generation and response activation” component of Figure 4.3 can be gotten before 

the current internal state of the state machine propagates to the output on the next 

clock cycle. Therefore, the internal states of the hardware should always be 

monitored, rather than just the outputs, because in this way it is possible to detect 

fault before the effects have propagated to the output. 

4.8 Fault Recovery 

The ideal way of removing any potential problems in the body is the destruction of 

a cell, which was detected as infected, due to the enormous levels of redundancy. 

Such process is not ideal, but often necessary, for hardware because of the finite 

level of redundancy. In the presence of an intermittent error, a more ideal approach 

would be recovery or repair. 

The potential methods of achieving fault removal can be summarised: 

1. Classical Architecture: Creating a form of NMR that is replicate the 

protected state machine and switch to a spare if the first is detected as 

faulty. It is not ideal to disable a large hardware component unless a 

disastrous failure occurs. Because, if a self string is detected accidentally 

as non-self through incomplete coverage of self strings or the presence 

of a fault within the tolerance condition storage, then a fault-free state 

machine may be deactivated completely. In this method, transient errors 

result in the deactivation of the state machine that operates normally to 

specification. 
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2. Immunologically Inspired Architecture: The detection of a non-self 

string may signal the user to request the next action. The possibility of 

providing two sets of tolerance conditions has been discussed in [18] so 

that a set of potential recovery states corresponding to self string can also 

be stored. It may then be possible to automatically correct the faulty 

output through an output multiplexer selecting either the normal or the 

immune-activated response. This means that transient errors do not result 

in the deactivation of the complete system [17]. 

The phenomenal cellular redundancy in the body enables normal 

operation to persist when cells are neutralized and later destroyed due to 

infection. In an FSM architecture, a similar technique could be used 

through the use of spare states or latch bits within the hardware. The 

detection of a fault would then cause the state machine to be 

reconfigured to ensure the faulty state was circumvented and a spare 

state used [17]. 

3. Total Biologically Inspired Architecture: Embryonics and EHW are 

two other biologically inspired approaches to fault detection and 

tolerance. Embryonics is based upon the development of multi-cellular 

organism. Through the development of biological multi-cellular 

organism, cells differentiate according to “instructions” stored in their 

DNA. Depending on the position of the cell within the embryo, different 

parts of the DNA are interpreted. Before differentiation, because each 

cell possesses a copy of the DNA, cells are (theoretically) able to take 

over any function within the body. Correspondingly, every electronic 

cell in an embryonic array stores not only its own configuration register, 

but also those of its neighbours [17]. To differentiate, every cell selects a 

configuration register according to its position, which is determined by a 

set of coordinates that is calculated from the coordinates of the nearest 

neighbours, within the array. 
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Figure 4.4 Mapping of lymphatic interactions to an integrated 
immunotronic-embryonic multilayered fault-tolerant architecture 

 

Every embryonic cell continuously performs self-checking. In the 

presence of fault, the faulty cell issues a status signal that eliminates the 

cell. By recalculating their coordinates and selecting a new configuration 

register, every surviving cell performs a new function. The integration of 

a cellular hardware immune system within the architecture, as shown in 

Figure 4.4, removes the need of self-checking from each embryonic cell. 

By doing so, there is no need for duplication of functional units within 

each cell. This architecture allows each immune cell or antibody cell to 

continuously monitor its neighbouring embryonic cells for faults. Due to 

the repeated checking of every embryonic cell by more than one 

antibody cell, interaction between neighbouring antibody cells also 

allows for error detection within each antibody cell. If the results from 

the antibody cells that have checked the operation of the same 

embryonic cell differ, then the faulty antibody cell is deactivated and the 

array reconfigured [17]. 

 
 
 
 
 

Network interaction Antibody cell 

Embryonic cell 
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CHAPTER 5 

 

BINARY IMMUNE SYSTEM 

 

Binary immune system introduced in 1987 by Farmer, Packard and Perelson. 

Instead of a genetic alphabet with four symbols (Adenine, Cytosine, Thymine, and 

Guanine) the model uses a binary alphabet. Both receptors and intruders 

(foreign/non-self cell or molecule) are represented as binary strings of fixed length. 

5.1 Intrusion Selection Algorithm 

The principles of self/non-self discrimination in the immune system are the 

inspiration of the intrusion selection algorithm, where any intruder  should be 

distinguished from the body cells [20]. Below an abstract formulation of the 

algorithm is presented. 

Let U be the set of all binary strings of length ℓ; obviously |U|, the cardinality of U, 

equals 2ℓ. Let S ⊆ U be a proper subset of U, called self strings, which represent 

e.g. valid states of a system. The strings from the set U-S are referred to as non-self 

strings. The problem relies upon constructing a set of detectors, denoted R, such 

that each r ∈ R does not recognize any self string, and it should recognize at least 

one non-self string representing invalid state of the system. This way of detecting 

invalid states was proposed by [4] under the name of negative selection method. It 

has a number of interesting features. The most important, among them, are [20]: 

1. No prior knowledge of anomaly is requested. 
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2. Detection is probabilistic and tuneable: instead of constructing a set of 

detectors recognizing all non-self strings (complete repertoire) a smaller set 

of detectors is generated. It recognizes all but a small fraction Pf (failure 

probability) of non-self strings in exchange for a smaller set of detectors. 

3. Detection is local: only small sections of data are checked and when a 

detector does find an anomaly it can be localized to the string that the 

detector is checking.  

4. Detection is distributable: small sections of the protected system can be 

checked separately and no communication among detectors is needed until 

an anomaly is detected. 

The strings from R can be loosely treated as a concise characterization of a notion 

U-S. Denoting by R* the set of strings detected by the receptors in R, the problem 

can be stated as follows: knowing the description of S, find a subset R ⊆ U-S of 

minimal cardinality such that R* = U-S. Here, typically, the cardinality of S is 

relatively small in comparison with the cardinality of U [20].  

To implement the algorithm of identifying the set R the followings should be 

defined in general: receptors representation (binary in our case), the method of their 

activation (matching rule), and the method of receptors generation [20]. 

5.2 Matching Rules 

There is no unique receptors activation method. Probably a simpler one is Hamming 

matching: two strings x and y match (matchH(x,y)) under the rule if they have 

different bits in at least c positions, 1 ≤ c ≤ ℓ, i.e. 

 

matchH(x,y) iff dH(x,y) ≥ c    (1) 
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where dH(x,y) stands for the Hamming distance between x and y. The total number 

of strings recognized by a single receptor r ∈ R under the Hamming match with 

threshold c, DH(ℓ,c), equals 

 

 DH(ℓ,c) =      (2) 

 

Knowing this number, pH(ℓ,c) - the probability that two random strings match at 

least c bits can be easily found: pH(ℓ,c) = 2-ℓ·DH(ℓ,c) [20]. 

In this study c-contiguous bits rule [21] is used as a plausible abstraction of receptor 

binding in the immune system. Two strings, x and y match under the rule if x and y 

have the same bits in at least c contiguous positions. Suppose for instance that ℓ = 6, 

c = 3 and assume that the strings r (receptor), x1 and x2 are of the form r = 110110, 

x1 = 001100 and x2 = 010100. Then matchC(r,x1) = FALSE while matchC(r,x2) = 

TRUE, so x1 is a self pattern and x2 is an antigen (anomaly) [20].  

 

 

Figure 5.1 Matching under the c-contiguous rule 

 

Matching under c-contiguous bits rule can be imagined as moving a window of 

width c over the receptor (r) and tested (x) strings (Figure 5.1). If the two substrings 

within the window are identical, receptor activates.  

 

r     1   1  0  1   1  0 
x2    0   1  0  1   0  0 

 

ℓ 
i 

ℓ 

Σ 
i=c 



 23 

5.3 Templates 

Moving the window of width c over the self strings (Figure 5.1), we can split each 

of them into (ℓ-c+1) substrings of length c. These substrings induce templates to 

build receptors. Since each receptor does not recognize any self string, s ∈ S, it is 

obvious that it can not contain any template recognized in a self string. 

To be more precise, let w be a binary string of length c (c is the threshold value). 

Consider strings of length ℓ over the alphabet {0,1,*} where * stands for irrelevant. 

By a template ti,w of order c, a string (of length ℓ), whose substring of length c taken 

from position i equals w, and all the remaining positions of the template are filled 

by the star symbol, is expressed. For instance, when ℓ = 6, c = 3, and w = 011 then 

t1,w = 011***, t2,w = *011**, t3,w = **011*, and t4,w = ***011. A self string s = 

001101 splits into four templates:  t1,001 = 001***, t2,011 = *011**, t3,110 = **110*, 

and t4,101 = ***101. A template of order c is a schema [22] of order1 c in which all 

the significant bits are contiguous. 

The set of all possible templates, denoted T, contains (ℓ-c+1)·2c different elements. 

T can be split into two disjoint subsets: TS consisting of all the templates contained 

in at least one self string and the set of remaining templates, TN, used to construct 

receptor strings. Typically TS is a low fraction of T [20]. 

5.4 Discriminative Power of a Receptor 

Consider a single receptor r = b1b2,...,bℓ where bi ∈ {0,1} denotes bit value at i-th 

position, i = 1,...,ℓ. The problem is to find the number D(ℓ,c) of unique strings from 

U detected (by means of the c-contiguous bits rule) by the receptor r. Obviously this 

number depends on the receptor length and the threshold value only. To find D(ℓ,c) 

all the templates ti,w constituting a given receptor by the set of schemas forming a 

partition of the set of all detected strings will be represented. In other words, if       

X = {x 1,...,xm} is the set of schemas generated by the receptor and u is an antibody 

                                                 
 
1 The order of a schema is defined as the number of relevant positions in this schema. For instance if 
x1 = 0000**** and  x2 = 00000*** the order(x1) = 4 and order(x2) = 5. 
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detected by r then u is an instance2 of exactly one schema xi ∈ X. A schema derived 

from a template ti,w has first (c+i-1) positions meaningful and remaining (ℓ-c-i+1) 

positions are filled in by the star symbol. To find the number D(ℓ,c) two cases are 

considered: a simpler one when c≥(ℓ/2) and more complicated case when c<(ℓ/2) 

[20]. 

5.4.1 The Threshold Value c ≥ (ℓ/2) 

In this case the number D(ℓ,c) can be found by counting the number of schemas 

generated by the templates ti,w, i =1,...,ℓ-c+1. The template t1,u, where u = b1b2,...,bc, 

detects strings that agree with the schema b1b2...bc*...* containing (ℓ-c) star 

symbols. The template t2,v, where v = b2b3...bc+1, detects strings agreeing with the 

schema *b2b3...bc+1*...* containing (ℓ-c-1) stars. According to our convention this 

schema divides into two schemas: b1b2b3...bc+1*...* and (1-b1)b2b3...bc+1*...*, where 

(1-b1) stands for the complement of b1. The first schema is an instance of the 

schema induced by the template t1,u; hence only second schema is fresh, i.e. it 

recognizes new strings. Similarly, the template t3,w, where w = b3b4,...bcbc+1bc+2 

splits into four schemas: b1b2...bcbc+1bc+2*...*, (1-b1)b2...bcbc+1bc+2*...*, b1(1-

b2)...bcbc+1bc+2*...*, and (1-b1)(1-b2)...bcbc+1bc+2*...*. The first schema is an instance 

of the schema generated by the first template and the second schema is an instance 

of a schema generated by the second template. Thus only third and fourth schemas 

are fresh. To list all fresh schemas generated by all the templates contained in a 

receptor r, proceed as follows [23]:  

a. Put on a first position of a list the schema induced by the first template. 

b. Let current length of the list, k1, equals 1. 

c. For any template ti,w (i=2,..., ℓ-c+1) do the following. 

d. For j =1 to ki-1 copy j-th schema from the list to (k+j)-th position and 

replace (i-1)-th bit in the schema by its complement, bi-1 < 1-bi-1.  

e. Modify current length of the list: ki < ki-1 + ki-1 = 2i-1. 

 
                                                 
 
2 That is, if x = 00000*** then e.g. u = 00000101 is an instance of x. 
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Table 5.1 shows the fresh (unique) schemas generated by four initial templates. 

Table 5.1 Fresh (unique) schemas generated by four initial templates 

 

Template 

Substring 
generating 
template Fresh schemas generated by the template 

T1,u u = b1b2…bc b1 b2 b3 b4 … bc * * * *  … *  

T2,v v = b2b3…bc+1 1-b1 b2 b3 b4 … bc bc+1 * * *  … *  

T3,w w = b3b4…bc+2 b1 

1-b1 
1-b2 

1-b2 
b3 

b3 
b4 

b4 
… 
… 

bc 

bc 
bc+1 

bc+1 
bc+2 

bc+2 
* 
* 

*  
*  

… 
… 

*  
*  

T4,x x = b4b5…bc+3 b1 

1-b1 
b1 

1-b1 

b2 

b2 

1-b2 

1-b2 

1-b3 

1-b3 

1-b3 

1-b3 

b4 

b4 

b4 

b4 

… 
… 
… 
… 

bc 

bc 

bc 

bc 

bc+1 

bc+1 

bc+1 

bc+1 

bc+2 

bc+2 

bc+2 

bc+2 

bc+3 

bc+3 

bc+3 

bc+3 

*  
*  
*  
*  

… 
… 
… 
… 

*  
*  
*  
*  

 

Observe that each template ti,w, (i=2,..., ℓ-c+1), divides into 2i-1 schemas (because it 

contains i-1 leading star symbols) and only half of them is fresh. Thus i-th template 

(i≥2) generates 2i-2 new schemas and each of them covers 2ℓ-c-i+1 different strings 

(since each schema contains ℓ-c-i+1 star symbols). In summary, first template 

covers 2ℓ-c strings and any other template ti,w, i=2,...,ℓ-c+1, covers 2i-2·2ℓ-c-i+1= 2ℓ-c-1 

different strings. The total number of strings recognized by a receptor equals [23]: 

 

D(ℓ,c) = 2ℓ-c + (ℓ-c)·2ℓ-c-1 = 2ℓ-c-1·(2+ℓ-c)   (3) 

 

The reasoning presented here easily extends to the case when strings over an 

alphabet consisting of m symbols are considered. For instance when c ≥ (ℓ/2), each 

template ti,w introduces (m-1) fresh schemata. Hence the total number of strings 

recognized by a single receptor equals [23]: 

 

Dm(ℓ,c) = mℓ-c +(ℓ-c)·(m-1)·mℓ-c-1 = mℓ-c -1·[( ℓ-c)·(m-1) + m] (4) 
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Dividing Dm(ℓ,c) by mℓ (total number of strings), a formula describing the 

probability that a randomly chosen string is detected by a receptor is obtained. It is 

important however that both (3) and (4) are valid only if c ≥ (ℓ/2) [23]. 

5.4.2 The Threshold Value c < (ℓ/2) 

This case is more complicated and considered in two cases: (a) c is close to (ℓ/2), 

and (b) c is close to 1. 

5.4.2.1 The Threshold Value is Close to (ℓ/2) 

The procedure described to list all fresh schemas generated by all the templates 

contained in a receptor r for threshold value c≥(ℓ/2) pretty works for i = 1,...,c+1. 

Suppose now i = c+2 and c < ℓ/2. Then by step (d) of the procedure (c+1)-th bit 

must be changed in all schemas belonging to the current list. But the first schema 

from the list has star symbol on this position. It means that an empty string must be 

inserted on (k+1)-th position since this schema has been exhausted by the first 

template (see Table 5.2, first row in the block corresponding to the template t5,000). 

Now if i = c+3, both the first and second schema from the list has star symbol on 

(c+2)-th position. Further, current list contains empty string already introduced 

when the template tc+2,w was converted into fresh schemas. Thus, when developing 

the template tc+3,w we must insert 2+1 empty strings to the list. In general, the 

number of empty strings introduced by i-th template, αi, equals [23]: 

 

αi = 2i-c-2 + βi     ,    i = c + 2, …, ℓ-c+1   (5a) 

where 

βj = αc+2 + … + αj-1                 (5b) 

is the number of empty strings already introduced when previous templates have 

been developed. Table 5.3 shows the values of αi and βi for i = c+2,…,c+10 [23]. 
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Table 5.2 Fresh schemas induced by the receptor 00000000 with threshold c = 3 

 

Template Schema Template Schema 

t1,000 000***** t 6,000 empty 

t2,000 1000****  empty 

t3,000 01000***  01001000 
 11000***  11001000 

t4,000 001000**  00101000 
 101000**  10101000 
 011000**  01101000 
 111000**  11101000 

t5,000 empty  empty 
 1001000*  10011000 
 0101000*  01011000 
 1101000*  11011000 
 0011000*  00111000 
 1011000*  10111000 
 0111000*  01111000 
 1111000*  11111000 

 

Table 5.3 Values of  αi and βi defined in equations (5a), (5b) 

 

 αi βi 

c+2 1 0 

c+3 3 1 

c+4 8 4 

c+5 20 12 

c+6 48 32 

c+7 112 80 

c+8 256 192 

c+9 576 448 

c+10 1280 1024 
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5.4.2.2 The Threshold Value is Close to 1 

When c is relatively small, the number of reduced strings must be slightly modified. 

When ℓ ≥ 2(c+1)+c+1 then for the i ≥ 2(c+1)+1, equation (5b) starts to count some 

empty strings which are already introduced when previous templates have been 

converted into schemata. The number of already counted empty strings is αj-k+1 and 

the modified form of equation (5b) is: 

 

 

βj =                      (5c) 

 

 

5.5 Reduction of the Discriminative Power 

Although a single receptor can distinguish D(ℓ,c) unique strings from the universe 

U, its discriminative power radically changes when it cooperates with another 

receptors. To be more illustrative consider two receptors 000000 and 001100, and 

assume that the threshold c = 3. Using the method described in previous section it is 

easily stated that both the receptors recognize 38 unique strings and not 2·D(6,3) = 

40 strings. On the other hand, the ensemble consisting of two receptors 000000 and 

100001 recognizes only 28 receptors [20]. 

Knowing D(ℓ,c), p(ℓ,c), the probability that a randomly chosen string u∈U matches 

with a receptor (i.e. that u is an antigen) can be computed: p(ℓ,c) = D(ℓ,c)/2ℓ. When 

c ≥ (ℓ/2) then [23], 

 

p(ℓ,c) = 2ℓ-c-1·(ℓ-c+ 2)/2ℓ = 2-c·[((ℓ-c)/2) + 1]  (6) 

0    j ≤ c+2 
αc+2    j = c+3 
αc+2 + … + αj-1  c+3 < j < 2(c+1)+1 
αc+2 + … + αj-1 - βj-c   j ≥ 2(c+1)+1 
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This formula was derived by Perelson [4] using binomial distribution and with 

additional requirement that 2-c << 1. 

In general, to estimate the average number of strings recognized by a set of n 

receptors statistical approach should be used. Assuming that the receptors are 

chosen independently pf(ℓ,c,n), the failure probability can be defined as [20]: 

 

pf(ℓ,c,n) = (1- p(ℓ,c))n ≈ e-n.p(ℓ,c)    (7) 

 

This last approximation is valid for large values of n and small values of p(ℓ,c). The 

average number of strings detected by n receptors is determined by the formula 

[20]: 

 

    d(ℓ,c,n) = (1 - pf(ℓ,c,n))·2ℓ    (8) 

 

and the average number strings detected by a single receptor among the ensemble of 

cardinality n equals davg(ℓ,c,n) = d(ℓ,c,n)/n. Figure 5.2 shows how this number 

varies for different values of ℓ, c and n [23]. The parameter ℓ and c were chosen 

such D(ℓ,c) is fixed and equals 48. 

To achieve maximal discrimination power of the receptors, they should be chosen 

in such a way that each receptor enters maximal number of different schemas. To 

achieve this, receptors must be build from diverse templates.  
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Figure 5.2 Reduction of the discriminative power of a single receptor 

 

5.6 Lower Bound for The Fault Probability 

The fault probability pf(ℓ,c,n) defined in formula (7) is applied to the case when S = 

∅. When S ≠ ∅ it is not possible, in general, to construct detectors recognizing all 

the strings from the set U-S. It is hard to define the lower bound analytically, but it 

is relatively easy to treat the problem numerically. There are two sources of non-

detectability, which will be discussed below [23].  

The first source are holes defined by D’haeseleer [25]. Intuitively by hole, any 

string u ∈ U-S build up from the templates belonging to the set TS only, should be 

understood.  

Before introducing the second source of non-detectability, some useful notions are 

introduced. 
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Let w be a substring of length c. Denote by (→w) the substring obtained by deleting 

the first bit from w, and by (w←) the substring resulted from deletion of last bit 

from w. The symbol (→w)+b denotes the string (→w) appended with b, where b ∈ 

{0,1}, and similarly b+(w←) denotes b appended with (w←); obviously in both 

cases the length of new strings is again c [23]. 

Wierzchoń [24] observed that the self strings can be represented as binary trees 

whose nodes correspond to the templates: a template t1,w is said to be the root of a 

tree. In general, given a template ti,w ∈ TS, 1 ≤ i ≤ (ℓ-c), template ti+1,(→w)+0 ∈ TS is 

called as the left child of ti,w, and the template ti+1,(→w)+1 ∈ TS is called as the right 

child of ti,w. Surely, if i+1 = ℓ-c+1 then the corresponding child is just a leaf of the 

binary tree. By analogy, given a template ti,w ∈ TS, 2 ≤ i ≤ (ℓ-c+1), we call the 

template ti-1,0+(w←) ∈ TS the left parent of ti,w, and the template  ti-1,1+(w←)∈ TS the 

right parent of ti,w [20].  

The second source of non-detectability comes from the templates that can not be 

used to construct receptors. Roughly speaking for each template ti,w ∈ TS parents 

has to be checked: if a parent, say ti-1,v is not a member of TS, but both its children 

are members of TS, ti-1,v is moved to the set TS, because it can not possible to 

construct valid receptor which contains the template ti-1,v. Similarly, the children of 

ti,w ∈ TS are checked: if a child, say ti+1,r is not a member of TS, but both its parents 

are member of TS, ti+1,r is moved to the set TS [20]. 

Counting the number of strings induced by the modified set TS, whole number of 

non-detectable strings which consists of the number of self strings, the number of 

holes, and the number of additional non-detectable strings is determined. 

5.7 Positive Tolerance Conditions 

A new set of tolerance condition which is called positive tolerance conditions and 

new method that these tolerance conditions use for self/non-self discrimination are 

presented in this study.  
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Receptors recognize non-self strings if there is at least one match between search 

string and any receptor in the repertoire for c contiguous bits because all receptors 

are constructed from only non-self templates and the string that has at least one non-

self template can not be self.  

Positive tolerance conditions are constructed only from the self templates in other 

words positive tolerance conditions are subset of self strings set, that is, they 

include all the self templates but has less strings than self strings set. It is obvious 

that maximum number of strings in the positive tolerance conditions set is equal to 

the number of strings in the self strings set.  

Discrimination method of the self/non-self strings or recognition of the non-self 

strings are different from receptors for positive tolerance conditions. Unlike the 

receptors a match between any positive tolerance condition and search string for c 

contiguous position does not mean the search string is self or non-self. Positive 

tolerance conditions recognize self strings if there are matches between search 

string and positive tolerance conditions for every c contiguous bits. 
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CHAPTER 6 

 

SIMULATION 

 

The software is written and compiled on Visual C++ 6.0. The simulator program is 

given in the Appendix.  

The purpose of the simulation is to find the receptor repertoires of the finite state 

machines with the intrusion selection algorithm and to compute the failure 

probabilities for the different combinations of receptors from repertoire. 

6.1 Application 

The flow chart of the simulation is presented in Figure 6.1. Each box represents one 

step of the simulation. The boxes with grey background emphasizes the places 

where the input is asked. 

There are 7 different self strings sets and for every set, self strings are written to the 

text documents by hand except last set.  

Last self strings set is constructed by a function that is executed at the beginning of 

the simulation. This function asks user the length of the strings and the number of 

strings that will be generated. Then generates random numbers and computes the 

binary equivalents of these numbers. By executing the simulator, user is confronted 

with the small menu that asks user if he/she wants to generate random self strings 

set. Generated self strings set is not erased when the simulation ends. This set is 

kept in the text document until the random self string generator function is used and 

new self strings set is written on the previous one. 
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Figure 6.1 Flow chart of the simulation. 
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Then, the below menu that is used to choose self strings sets is displayed. 

(1)    4-bit 0 to 9 BCD counter. 

(2)    4-bit 0 to 9 BCD counter (with different bit-string representation). 

(3)    4-bit 0 to 9 BCD counter (with different bit-string representation). 

(4)    4-bit 0 to 9 Gray code counter (Excess-3 gray). 

(5)    PLA for unsigned binary multiplier. 

(6)    Example ASM. 

(7)    Randomly generated self strings set. 

After choosing the one of the self strings set, simulation reads the data from the text 

document. Simulation reads first character from the text document and writes it to 

the first column of the first row of the matrix which is called self strings matrix. 

Then it reads next symbol and writes it to the next column of the first row. When 

simulation comes to the end of line, next character is written to the first column of 

the next row of the self strings matrix. Simulation reads character until it reaches to 

the end of document. Each string in the text document is a row in the self strings 

matrix. Then self strings set of the FSM is displayed and the match length c to 

compute the self templates is asked. Here the match length should be between 1 to 

the length of the strings of the FSM. With entering the match length, self templates 

are constructed and simulation displays the self template matrix, the number of self 

templates and the number of holes generated by these templates. Self template 

matrix has ℓ-c+1 columns and 2c rows.  

By knowing self strings and match length, positive tolerance conditions can be 

constructed.  

A simple procedure, which is proposed in this study, gathers and organizes self 

templates to construct the positive tolerance conditions set. First, the first column 

(left most column) and the last column (right most column) of the self template 

matrix are compared to choose the start point. The column that contains more 

template is chosen as a start point. If both columns contain an equal number of 
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templates than any column can be chosen (at these circumstances simulation 

chooses last column). It is obvious that the column that contains the maximum 

number of templates identifies the minimum number of strings in the positive 

tolerance conditions set, because templates in the same column can not be used in 

the same string. Consider that the first column contains more templates, then 

positive tolerance conditions are constructed from first template to last, in other 

words, parent to child or left to right (in self template matrix). First template of the 

first column of the self template matrix, the template which has the minimal row 

number, say t1,w, is chosen as a first template of the first positive tolerance condition 

and the content of this node is increased by one. After that, children of this node are 

checked. If child t2,(→w)+0 is a member of self template set, this template is used as a 

second template and the value of the corresponding node is increased by one. 

Otherwise other child t2,(→w)+1 is used and the value of this template is increased by 

one. Continuing this reasoning first positive tolerance condition is created. After 

construction of each positive tolerance condition the number of fresh templates (not 

used in the previous positive tolerance conditions) are counted. Any template that 

corresponding node in the self template matrix contains 1 is called fresh. If no fresh 

template used in the positive tolerance condition then this is deleted from the 

positive tolerance conditions set. Of course each template is considered as fresh for 

only one receptor. It is obvious that the number of fresh templates added by the first 

positive tolerance condition is ℓ-c+1. To construct the second positive tolerance 

condition next template in the first column of the self templates matrix is used. 

Then the children of this template are checked but in this case the least used child is 

preferred. It means, if both children of this template are member of the self template 

set then the contents of these children are compared and the one that contains lower 

value (less used) is chosen. By using this procedure all the templates of the first 

column of the self template matrix are used. After constructing each valid positive 

tolerance condition (adds at least one fresh template) the number of fresh templates 

added by the positive tolerance condition set and the total number of templates in 

the self template matrix is compared. If there are templates which are not used in 

the positive tolerance conditions, the same procedure is repeated. When the number 

of fresh templates added by the positive tolerance conditions set reaches the total 
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number of templates in the self template matrix, the procedure ends and positive 

tolerance conditions and  the number of non-self strings that they recognize are 

displayed. 

Although the number of non-self strings that positive tolerance conditions recognize 

is simply the total number of strings minus number of self strings and number of 

holes, simulation computes this number by computing the number of non-self 

strings that each positive tolerance condition recognizes. 

Then parents and children of all self templates are checked. After these 

computations are performed, self template matrix, number of additional templates 

(comes from checking parents and children of self templates) and the total number 

of templates (self templates and additional templates) are displayed.  

At this point, simple procedure counts the total number of non-detectable strings 

(the strings that can not be detected even complete receptor repertoire used). 

Suppose moving from the leaves toward the root of the tree (moving from right to 

left in the modified self template matrix). A node tℓ-c,w in the matrix has at most two 

children: tℓ-c+1,(→w)+0 and tℓ-c+1,(→w)+1. If both children are the member of the self 

template set (contains 1), it means that two self strings can be constructed: one ends 

with 0 and the second ends with 1. Hence the values of the self template matrix 

should be updated according to the rule: 

 

If   T[w,i] =1   then   T[w,i] = T[(→w)+0,i+1] + T[(→w)+1,i+1] , i = (ℓ-c,…,1) 

 

Modification of the self template matrix may result with updating some nodes with 

0 which were member of self template set (previously contains 1). This can only 

happen when both children of the node are not member of self template set (both 

contains 0) and this is only possible for additional templates. Because self template 

matrix will also be used to create receptor template matrix, update procedure should 

be carried out on the replica of the self template set. After updating procedure, 
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summing up all the entries (nodes) in the first column of the replica matrix will give 

the total number of non-detectable strings. 

The updated copy of the self template matrix, total number of non-detectable 

strings, the number of detectable non-self strings (when complete receptor 

repertoire is used) and the percentage of the number of detectable non-self strings to 

the number of all non-self strings are displayed. Because the number of detectable 

non-self strings is known, lower bound of the fault probability can be calculated and 

displayed. Lower bound of the fault probability means that the failure probability of 

of the system when complete receptor repertoire is used. 

After the computation of the number of detectable non-self strings simulation starts 

to construct the receptor repertoire. The 0’s in the self template matrix are identifies 

the templates that can be used to construct receptor repertoire. New matrix which is 

called receptor template matrix is created. This new matrix is replica of the self 

template matrix. Because 0’s in the self template matrix are identifies the receptor 

templates, each node in the receptor templates matrix has to be changed such that 

T[w,i] = 1 - T[w,i].  

After constructing the receptor template matrix total number of templates to 

construct receptors and maximum number of receptor that can be constructed by 

these templates are displayed. The procedure of computing the maximum number of 

receptors is the same procedure that was used to compute the total number of non-

detectable strings. At this point, the copy of the receptor template matrix has to be 

used to avoid loss of data as explained in computation of the number of non-

detectable strings. 

Now the problem is to find the minimal number of receptors that recognizes all 

detectable non-self strings which includes all the templates in the receptor template 

matrix. Receptors are constructed with the same procedure which is used in the 

positive tolerance conditions construction.  
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After the procedure, complete receptor repertoire and the number of non-self strings 

recognized by the repertoire is displayed. 

This simple menu is displayed under the complete receptor repertoire. 

(0) – EXIT. 

(1) – Select Receptors one by one. 

(2) – Exhaustive Method to select receptors. 

(3) – Greedy Algorithm to select receptors. 

With using this menu receptor ensembles from the receptor repertoire can be 

chosen. To compute the number of strings that one receptor recognizes or receptor 

ensemble recognize, two new matrix is created. First matrix which contains all 

possible strings that can be created for the strings length is called AllString. It has 2ℓ 

rows and ℓ columns. The other is called Flag which is used as a flag matrix for 

AllString matrix. It has 2ℓ rows and 1 column. When receptor recognizes a string 

from the AllString matrix, the corresponding row in the Flag matrix is set to 1. 

By choosing “Select Receptors one by one”, the number of strings that can be 

recognized by each receptor in the receptor repertoire can be computed. Simulation 

asks to enter the row number of receptor in the receptor matrix. Counting the 

number of strings that the chosen receptor recognizes is done in this way: first 

templates of the receptor and first string in the AllString matrix are compared, if 

there is a match, the corresponding row (first row) in the Flag matrix is set and next 

string in the AllString matrix and receptor are compared. If not the other templates 

are compared. If there are no matches between receptor and the first string for ℓ-c+1 

templates then the chosen receptor does not recognize the first string. It is important 

to note that if there is a match between templates of the receptor and the 

corresponding template of the compared string there is no need to check other 

templates because one match is sufficient enough to identify string as a non-self. 

Therefore match between first templates lets next string be compared without 

comparing other templates. When all strings in the AllString matrix and the receptor 

are compared, the number of strings that chosen receptor recognizes is computed by 
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counting the number of 1’s in Flag matrix. The number of strings recognized and 

the failure probability are displayed. Entering the row number of other receptor is 

resulted with displaying the total number of strings recognized by these two recep-

tors. Entering “-1” clears the Flag matrix and entering “0” turns back to the menu. 

By choosing “Exhaustive Method to select receptors”, simulation asks user to enter 

the number of receptor. For the entered value k, all k combinations of the receptor 

repertoire are computed and the best result is displayed. Here the best result means 

the highest number of strings recognized (lowest failure probability) by k strings. 

For the receptor repertoire which has a lot of receptors, this computation takes very 

long time. For large receptor repertoires, other method that makes computation 

more simple is needed. 

By choosing “Greedy Algorithm to select receptors”, simulation asks user to enter 

the number of receptor. For the entered value k (2 ≤ k ≤ receptor repertoire), greedy 

algorithm chooses receptors as follows: first the number of strings recognized by 

every couple in the receptor repertoire are computed and the couple that recognizes 

largest number of strings is chosen. After that if the k is bigger than 2, at least one 

new receptor has to be added to this couple. Next receptor is chosen in this way: 

first receptor of the receptor repertoire (chosen receptors are not included) is chosen 

and the number of strings which these three receptor recognize is computed. Then 

every other receptors in the repertoire are added to the couple one by one and the 

receptor that recognize maximum number of strings with the couple is chosen. This 

procedure is repeated until the number of receptors in the ensemble reaches to k. 
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CHAPTER 7 

 

IMPLEMENTATION, RESULTS AND ANALYSIS 

 

In this chapter, different self strings sets of the FSMs will be used to analyze the 

behaviour of the binary immune system. A number of parameters, computed by 

simulation, will be presented and the reasons of the variation in these parameters 

will be investigated. 

7.1 Implementation 

In this study the immunization of the small systems are demonstrated. Fault-

detection hardware is relatively simple to extract the data from the system under 

test, and a memory device with simple control logic. Generic model of hardware 

immune system was demonstrated in Figure 4.3. The detailed form of that model is 

presented in Figure 7.1.  

In this detailed implementation, 0 to 9 BCD counter is protected or immunized. 

Under normal operation, only self strings are present. The presence of a fault 

creates a non-self (invalid) state.  

The string generation component of this implementation gathers the user inputs 

(Count and Reset) and system state (or output) from the state machine, combining 

with the previous system state to create a search string for presentation to the 

immune system memory. The generated string is sent to the argument register of the 

memory unit.  
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Figure 7.1 Fault-detection hardware 

 

The partial-matching content-addressable memory (CAM) stores the tolerance 

conditions (receptor repertoire) and returns a positive result if c contiguous bits out 

of ℓ match the search string.  

The key register provides a mask for choosing c contiguous bits in the argument 

register. Only the bits in the argument that have 1’s in their corresponding position 

of the key register are compared. The block diagram of CAM is shown in Figure 

7.2. 
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Figure 7.2 Block diagram of partial matching CAM  

 

The immunized state machine is monitored at every change of state and the 

gathered data sent to the tolerance condition memory and searched. A string is 

deemed non-self if any tolerance condition matches the generated string in c 

contiguous position. 

7.2 Self Strings Sets 

5 different sources are used to generate self strings sets and these are: 

• 4-bit 0 to 9 binary coded decimal (BCD) counter.  

• 4-bit 0 to 9 Gray code counter (Excess-3 gray). 

• PLA for binary multiplier. 

• Control system of the example ASM. 

• Randomly generated self strings set. 

The structure and function of the 4-bit 0 to 9 BCD counter is presented in Table 7.1. 
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Table 7.1 Structure and function of the BCD counter 

Function 0 to 9 counter 
States 10 
Size (bits) 4 
Inputs Count (C) 

Reset (R) 
Operation Incremental count (C=1, R=0) 

Hold (C=0, R=0) 
Reset (C=X, R=1) 

 

Three different self strings sets are generated from BCD counter according to the 

bit-string representation of the strings. Self strings sets of both BCD and Gray code 

counters are generated by combining the two inputs, count and reset, previous and 

current states. Each string in these sets is 10 bit in length. Figure 7.3 shows the 3 

different bit-string representation for BCD counter. 

 

 

Figure 7.3 Bit-string representations of BCD counter 

 

Because 10 valid states and 22 valid inputs to determine the forthcoming state, there 

are 40 strings that define self and hence valid operation in the self strings sets of the 

both BCD and Gray code counters. For the BCD counter defined in Table 7.1, all 

self strings with bit-string representation of Count/Reset/Previous State/Current 

State is given in Table 7.2. Number of self strings and total number of non-self 

strings for 4-bit 0 to 9 BCD counter and Gray code counter are 40 and 984 

respectively. 

 

Count (C) / Reset (R) / Previous State / Current State 

Count (C) / Reset (R) / Current State / Previous State  

Reset (R) / Current State / Count (C) / Previous State  



 45 

 

Table 7.2 Self strings set of the counter (C/R/Previous/Current) 

Inputs 
C R 

Previous State Current State 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 
0 0 0 0 1 0 0 0 1 0 
0 0 0 0 1 1 0 0 1 1 
0 0 0 1 0 0 0 1 0 0 
0 0 0 1 0 1 0 1 0 1 
0 0 0 1 1 0 0 1 1 0 
0 0 0 1 1 1 0 1 1 1 
0 0 1 0 0 0 1 0 0 0 
0 0 1 0 0 1 1 0 0 1 
0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 0 0 
0 1 0 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 
0 1 0 1 0 1 0 0 0 0 
0 1 0 1 1 0 0 0 0 0 
0 1 0 1 1 1 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 
0 1 1 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 1 0 0 1 0 
1 0 0 0 1 0 0 0 1 1 
1 0 0 0 1 1 0 1 0 0 
1 0 0 1 0 0 0 1 0 1 
1 0 0 1 0 1 0 1 1 0 
1 0 0 1 1 0 0 1 1 1 
1 0 0 1 1 1 1 0 0 0 
1 0 1 0 0 0 1 0 0 1 
1 0 1 0 0 1 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 0 
1 1 0 0 1 1 0 0 0 0 
1 1 0 1 0 0 0 0 0 0 
1 1 0 1 0 1 0 0 0 0 
1 1 0 1 1 0 0 0 0 0 
1 1 0 1 1 1 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 0 0 0 
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4-bit 0 to 9 Gray code counter is a counter whose flip-flops go through a sequence 

of states as specified in Table 7.3. 

Table 7.3 4-bit 0 to 9 Gray code counter (Excess-3 gray) 

Binary code Decimal equivalent 

0010 0 

0110 1 

0111 2 

0101 3 

0100 4 

1100 5 

1101 6 

1111 7 

1110 8 

1010 9 

 

The third system that will be protected is the programmable logic array (PLA) for 

binary multiplier. In this example PLA controls the arithmetic circuit that multiplies 

two unsigned binary numbers and produces their binary products. Data processor 

for binary multiplier is presented in Figure 7.4 [23].  
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ASM chart of binary multiplier and PLA control block diagram are given in Figure 

7.5 and Figure 7.6 respectively [23].  

 

 

Figure 7.5  ASM chart for binary multiplier 
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Figure 7.6 PLA control block diagram 

 

Two self strings sets are constructed from the PLA control according to their bit-

string representations. Bit-string representation of the first set is Present 

State/Inputs/Next State/Outputs and the second set is State/Outputs/Next State/In-

puts. In contrast to previous systems, combining 2-bit present state, 3 input, 2-bit 

next state and 5 output data together creates 12-bit-strings that need to be protected. 

The number of self strings for PLA control is 32 and the state table for the control 

subsystem of the binary multiplier is shown in Table 7.4 [23]. 

 

Table 7.4 State table for PLA control  
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The next self strings set is constructed from the control system of the ASM chart in 

Figure 7.7 [23].  

 

 

Figure 7.7 ASM chart of an example 

 

Control system has 4 inputs, w, x, y and z, and 4 outputs, T0, T1, T2 and T3. The 

decision boxes specify the state transitions as a function of the four control inputs. 

The state table of the control circuit is presented in Table 7.5 [23]. 
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Table 7.5 State table of control circuit 

Present State Inputs Next State Outputs 
G1 G2 w x y z G1 G2 T0 T1 T2 T3 

0 0 0 X X X 0 0 1 0 0 0 

0 0 1 X X X 0 1 1 0 0 0 

0 1 X 1 X X 1 0 0 1 0 0 

0 1 X 0 X X 1 1 0 1 0 0 

1 0 X X 0 X 0 0 0 0 1 0 

1 0 X X 1 0 1 0 0 0 1 0 

1 0 X X 1 1 1 1 0 0 1 0 

1 1 X X 0 1 0 1 0 0 0 1 

1 1 X X 1 X 1 0 0 0 0 1 

1 1 X X 0 0 1 1 0 0 0 1 

 

From control circuit two self strings sets are constructed. Bit-string representations 

of these sets are Present State/Inputs/Next State/Outputs and Present State/Outputs/ 

Next State/Inputs. Combining 2-bit present state, 4 input, 2-bit next state and 4 

output data together creates 12-bit strings that need to be protected. The number of 

self strings for the control circuit is 64. 

Last self strings set is not constructed from the FSM. Small program fragment 

constructs these strings. Strings are constructed by the random number generator of 

the C++. Length of the strings and the number of strings in the self strings set are 

given to the program and program randomly generates the numbers and computes 

the binary equivalents (strings) and writes these into the text document.  

7.3 Parameters 

Simulation evaluates a number of parameters and these parameters are used to 

analyze the behaviour of the binary immune system for different examples. The 

explanation of these parameters are presented in Table 7.6. For each self strings set 

these parameters are evaluated and presented.  
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Table 7.6 Description of the parameters 

Parameter Description 

Self templates Templates that are constructed by self strings 
set for chosen match length 

Holes Strings that are constructed from only self 
templates (self strings are not included) 

Positive tolerance conditions The strings set that includes all and only self 
templates with minimum number of strings 

Additional templates Templates that can not be used to construct 
receptor 

Detectable non-self strings Strings that can be recognized by the complete 
receptor repertoire 

Failure probability (Pf) The probability that the system fails when it is 
confronted with the invalid operation (non-self 
string) 

Lower bound for the failure 
probability 

The failure probability of the system when 
complete receptor repertoire is used 

Receptor templates Templates that can be used to construct 
receptors 

Complete receptor repertoire The set of receptors that covers all the receptor 
templates 

Minimum repertoire size The minimum number of receptors in the 
complete receptor repertoire 

  

7.4 Results 

Self template matrix of the first self strings set which is generated from 4-bit 0 to 9 

BCD counter is presented in Table 7.7. For this set, the length of the strings (ℓ) is 

10 and for this particular example match length (c) is 5. Table 7.7 consists of 6     

(ℓ-c+1) column and 32 (2c) rows. Nodes that contain “1” represent self templates. 
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Table 7.7 Self template matrix of BCD counter (ℓ = 10, c = 5) 

w T[w,1] T[w,2] T[w,3] T[w,4] T[w,5] T[w,6] 
00000 1 1 1 1 1 1 
00001 1 1 0 0 0 1 
00010 1 1 1 1 1 1 
00011 1 1 0 0 0 1 
00100 1 1 1 1 1 1 
00101 0 1 0 0 0 1 
00110 0 1 1 1 0 1 
00111 0 1 0 0 0 1 
01000 1 1 1 1 1 1 
01001 1 1 0 0 1 1 
01010 1 0 1 0 1 0 
01011 1 0 0 0 1 0 
01100 1 0 1 1 1 0 
01101 0 0 0 1 0 0 
01110 0 0 1 0 0 0 
01111 0 0 1 0 0 0 
10000 1 1 1 1 1 1 
10001 1 1 1 1 1 1 
10010 1 1 1 0 0 1 
10011 1 1 1 0 1 1 
10100 1 1 0 1 0 1 
10101 0 1 0 1 0 1 
10110 0 1 0 0 0 1 
10111 0 1 0 0 0 1 
11000 1 1 0 1 1 1 
11001 1 1 0 1 1 1 
11010 1 0 0 0 1 0 
11011 1 0 0 0 1 0 
11100 1 0 0 1 0 0 
11101 0 0 0 1 0 0 
11110 0 0 0 1 0 0 
11111 0 0 0 0 0 0 

 

There are 105 self templates and 87 non-self templates. This self template set causes 

184 holes, non-self strings that build up from the self template set. 
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Positive tolerance conditions which are constructed from the self templates pres-

ented in Table 7.7 are shown in Table 7.8. 

 

Table 7.8 Positive tolerance conditions for BCD counter (ℓ = 10, c = 5) 

 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 1 0 0 0 0 1 
3 0 0 0 1 1 0 0 0 1 0 
4 0 1 0 0 1 0 0 0 1 1 
5 0 0 0 1 0 0 0 1 0 0 
6 0 1 0 1 0 0 0 1 0 1 
7 0 1 0 1 1 0 0 1 1 0 
8 1 0 0 1 1 0 0 1 1 1 
9 0 0 1 0 0 0 1 0 0 0 
10 0 1 1 0 0 0 1 0 0 1 
11 1 0 0 0 0 1 0 0 0 0 
12 1 0 0 0 1 1 0 0 0 1 
13 1 0 0 1 0 1 0 0 1 0 
14 0 0 0 1 1 1 0 0 1 1 
15 1 1 0 1 0 1 0 1 0 0 
16 1 1 0 0 1 1 0 1 0 1 
17 0 0 0 1 0 1 0 1 1 0 
18 1 1 0 1 1 1 0 1 1 1 
19 1 0 1 0 0 1 1 0 0 0 
20 1 0 0 1 1 1 1 0 0 1 
21 1 0 0 1 0 0 0 0 0 0 
22 1 1 1 0 0 0 1 0 0 1 
23 0 1 1 0 0 1 0 0 0 0 
24 0 0 1 0 0 0 0 0 0 0 
25 0 1 0 0 0 1 0 0 0 0 
26 1 1 0 0 0 0 0 0 0 0 

 

As it is seen from Table 7.8 there are 26 positive tolerance conditions and these 

positive tolerance conditions recognize 800 (81%) non-self strings. It means the 

failure probability when all 26 positive tolerance conditions are used, is 0,813. 
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Table 7.9 shows the modified self template matrix (added templates from parents 

and children check). Added templates, which are bold in Table 7.9, are the non-self 

templates but can not be used to construct receptors. 

 

Table 7.9  Modified self template matrix for BCD counter (ℓ = 10, c = 5) 

w T[w,1] T[w,2] T[w,3] T[w,4] T[w,5] T[w,6] 
00000 1 1 1 1 1 1 
00001 1 1 1 1 1 1 
00010 1 1 1 1 1 1 
00011 1 1 1 1 1 1 
00100 1 1 1 1 1 1 
00101 0 1 1 1 0 1 
00110 0 1 1 1 0 1 
00111 0 1 1 1 0 1 
01000 1 1 1 1 1 1 
01001 1 1 1 1 1 1 
01010 1 0 1 0 1 0 
01011 1 0 1 0 1 0 
01100 1 0 1 1 1 0 
01101 0 0 1 1 0 0 
01110 0 0 1 0 0 0 
01111 0 0 1 0 0 0 
10000 1 1 1 1 1 1 
10001 1 1 1 1 1 1 
10010 1 1 1 0 1 1 
10011 1 1 1 0 1 1 
10100 1 1 1 1 1 1 
10101 0 1 0 1 0 1 
10110 0 1 1 0 0 1 
10111 0 1 0 0 0 1 
11000 1 1 1 1 1 1 
11001 1 1 0 1 1 1 
11010 1 0 1 0 1 0 
11011 1 0 0 0 1 0 
11100 1 0 1 1 0 0 
11101 0 0 0 1 0 0 
11110 0 0 1 1 0 0 
11111 0 0 0 0 0 0 
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The “0”s in the modified template matrix represent the templates that can be used to 

construct receptors. There are 65 templates in the receptor template matrix which is 

illustrated in Table 7.10.  

 

Table 7.10  Receptor template matrix for BCD counter (ℓ = 10, c = 5) 

w T[w,1] T[w,2] T[w,3] T[w,4] T[w,5] T[w,6] 
00000 0 0 0 0 0 0 
00001 0 0 0 0 0 0 
00010 0 0 0 0 0 0 
00011 0 0 0 0 0 0 

00100 0 0 0 0 0 0 
00101 1 0 0 0 1 0 
00110 1 0 0 0 1 0 
00111 1 0 0 0 1 0 
01000 0 0 0 0 0 0 
01001 0 0 0 0 0 0 
01010 0 1 0 1 0 1 
01011 0 1 0 1 0 1 
01100 0 1 0 0 0 1 
01101 1 1 0 0 1 1 
01110 1 1 0 1 1 1 
01111 1 1 0 1 1 1 
10000 0 0 0 0 0 0 
10001 0 0 0 0 0 0 
10010 0 0 0 1 0 0 
10011 0 0 0 1 0 0 

10100 0 0 0 0 0 0 
10101 1 0 1 0 1 0 
10110 1 0 0 1 1 0 
10111 1 0 1 1 1 0 
11000 0 0 0 0 0 0 
11001 0 0 1 0 0 0 
11010 0 1 0 1 0 1 
11011 0 1 1 1 0 1 
11100 0 1 0 0 1 1 
11101 1 1 1 0 1 1 
11110 1 1 0 0 1 1 
11111 1 1 1 1 1 1 
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One possible receptor repertoire that contains minimum number of receptors is 

presented in Table 7.11. 

 

Table 7.11 Receptor repertoire for BCD counter (ℓ = 10, c = 5) 

 9 8 7 6 5 4 3 2 1 0 
1 0 0 1 1 0 0 1 0 1 0 
2 0 0 1 0 1 0 1 0 1 1 
3 0 1 1 1 0 0 1 1 0 0 
4 0 1 1 0 1 0 1 1 0 1 
5 1 0 1 1 0 0 1 1 1 0 
6 0 0 1 1 1 0 1 1 1 1 
7 0 0 1 1 0 1 1 0 1 0 
8 1 0 1 0 1 1 1 0 1 1 
9 1 1 1 1 0 1 1 1 0 0 
10 1 1 1 0 1 1 1 1 0 1 
11 1 0 1 1 0 1 1 1 1 0 
12 1 0 1 1 1 1 1 1 1 1 
13 0 1 1 1 1 0 1 0 1 1 
14 1 1 1 1 1 1 1 1 1 1 

 

Detectable non-self strings that these 14 receptors recognize is 664 (67%) and lower 

bound for the failure probability is 0.3252. 

In Table 7.12, parameters of the 4-bit 0 to 9 BCD counter with bit-string representa-

tion of C/R/Previous/Current for match length 2 ≤ c ≤ 10 are presented. For match 

length c < 4 no unique receptors (tolerance conditions) are possible as a match 

occurs between at least one self string and any receptor. Also for c = 10 every 

receptor matches a unique single non-self string. This self strings set is chosen as a 

verification of the simulation. Same results at Table 7.12 were presented in [17] and 

[10]. 
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Table 7.12 Parameters of the 4-bit 0 to 9 BCD counter (C/R/Previous/Current) 

Match Length 2 3 4 5 6 7 8 9 10 

Self Templates 34 53 74 105 122 111 93 70 40 

Holes 536 344 320 184 80 39 20 10 0 

Positive Tol. 
Conditions  

7 

45% 

13 

65% 

13 

67% 

26 

81% 

40 

91% 

40 

96% 

40 

97% 

40 

98% 

40 

100% 

Additional 
Templates 

2 11 9 22 62 37 24 10 0 

Detectable  
Non-Self Strings 

0 0 
584 

59% 

664 

67% 

784 

80% 

913 

93% 

932 

95% 

954 

97% 

984 

100% 

Pf (Lower Bound) - - 0.406 0.325 0.203 0.072 0.052 0.030 0 

Receptor Temp. - - 29 65 136 364 651 944 984 

Minimum 
Repertoire Size 

- - 6 14 42 103 222 472 984 
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Figure 7.8 Failure probability vs. match length  
for 4-bit 0 to 9 BCD counter (C/R/Previous/Current) 

 

The failure probability versus match length, when complete receptor repertoire is 

used, is given in Figure 7.8. Lower bound for the failure probability is computed as 

the ratio of unrecognized non-self strings to all non-self strings. 
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In Table 7.13, again the parameters of the 4-bit 0 to 9 BCD counter is presented. In 

this example, bit-string representation of the strings is C/R/Current/ Previous. In 

Figure 7.9, the lower bound for failure probability versus match length is shown. 

 

Table 7.13 Parameters of the 4-bit 0 to 9 BCD counter (C/R/Current/Previous) 

Match Length 2 3 4 5 6 7 8 9 10 

Self Templates 33 48 64 81 90 84 74 60 40 

Holes 440 216 176 72 48 22 16 10 0 

Positive Tol. 
Conditions  

6 

55% 

10 

78% 

11 

82% 

21 

92% 

25 

95% 

28 

97% 

29 

98% 

30 

98% 

40 

100% 

Additional 
Templates 

3 16 7 27 27 27 17 0 0 

Detectable  
Non-Self Strings 

0 0 
712 

72% 

768 

78% 

920 

93% 

920 

93% 

954 

97% 

974 

99% 

984 

100% 

Pf (Lower Bound) - - 0.276 0.219 0.065 0.065 0.030 0.010 0 

Receptor Temp. - - 41 84 203 401 677 964 984 

Minimum 
Repertoire Size 

- - 6 20 49 109 228 482 984 
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Figure 7.9 Failure probability vs. match length  
for 4-bit 0 to 9 BCD counter (C/R/Current/Previous) 
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The parameters in Table 7.14 are again computed from 4-bit 0 to 9 BCD counter but 

bit-string representation is R/Previous/C/Current. For c ≤ 4, it is not possible to 

construct any receptor. 

 

Table 7.14 Parameters of the 4-bit 0 to 9 BCD counter (R/Previous/C/Current) 

Match Length 2 3 4 5 6 7 8 9 10 

Self Templates 34 54 80 120 138 130 110 78 40 

Holes 536 360 324 308 62 36 14 4 0 

Positive Tol. 
Conditions  

6 

45% 

13 

63% 

18 

67% 

22 

68% 

40 

93% 

40 

96% 

40 

98% 

40 

99% 

40 

100% 

Additional 
Templates 

2 10 32 2 51 23 7 2 0 

Detectable  
Non-Self Strings 

0 0 0 
676 

68% 

762 

77% 

912 

93% 

957 

97% 

976 

99% 

984 

100% 

Pf (Lower Bound) - - - 0.313 0.225 0.073 0.027 0.008 0 

Receptor Temp. - - - 70 131 359 651 944 984 

Minimum 
Repertoire Size 

- - - 13 32 95 219 472 984 
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Figure 7.10 Failure probability vs. match length  
for 4-bit 0 to 9 BCD counter (R/Current/C/Previous) 
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In Table 7.15, the parameters of the 4-bit 0 to 9 Gray code counter (Excess-3 gray) 

are indicated. In Figure 7.11, lower bounds for failure probabilities of the Gray code 

counter against match length illustrated.  

 

Table 7.15 Parameters of the 4-bit 0 to 9 Gray code counter (C/R/Previous/Current) 

Match Length 2 3 4 5 6 7 8 9 10 

Self Templates 34 53 82 106 121 110 94 70 40 

Holes 536 344 336 128 50 17 12 8 0 

Positive Tol. 
Conditions  

6 

45% 

12 

65% 

20 

65% 

27 

86% 

40 

94% 

40 

98% 

40 

98% 

40 

99% 

40 

100% 

Additional 
Templates 

2 11 30 35 72 36 20 10 0 

Detectable  
Non-Self Strings 

0 0 0 
592 

60% 

656 

67% 

894 

91% 

966 

98% 

956 

97% 

984 

100% 

Pf (Lower Bound) - - - 0.398 0.333 0.091 0.018 0.028 0 

Receptor Temp. - - - 51 127 366 654 944 984 

Minimum 
Repertoire Size 

- - - 13 34 101 226 472 984 
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Figure 7.11 Failure probability vs. match length  
for 4-bit 0 to 9 Gray code counter (C/R/Current/Previous) 
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Next system is PLA control for the binary multiplier. Bit-string representation of 

the strings is Preset State/Inputs/Next State/Outputs. The parameters of the PLA 

control and the lower bounds of the failure probability of the PLA control for 

various match lengths are listed in Table 7.16 and Figure 7.12 respectively.  

Table 7.16 Parameters of PLA control (Present State/Inputs/Next State/Outputs) 

Match Length 2 3 4 5 6 7 8 9 10 11 12 

Self Temp. 40 62 95 133 133 131 128 116 96 64 32 

Holes 1504 608 320 144 20 8 8 0 0 0 0 

Positive Tol. 
Conditions  

5 

62% 

8 

85% 

16 

92% 

32 

96% 

32 

99% 

32 

99% 

32 

99% 

32 

100% 

32 

100% 

32 

100% 

32 

100% 

Additional 
Templates 

4 18 49 123 56 57 28 12 0 0 0 

Detectable  
Non-Self 
Strings 

0 0 0 0 
3970 

98% 

3880 

95% 

3988 

98% 

4040 

99% 

4064 

100% 

4064 

100% 

4064 

100% 

Pf  - - - - 0.023 0.045 0.018 0.005 0 0 0 

Receptor 
Templates 

- - - - 259 580 1124 1920 2976 4032 4064 

Minimum 
Repert Size 

- - - - 55 100 228 480 992 2016 4064 
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Figure 7.12 Failure probability vs. match length  
for PLA control (Present State/S/Z/Q1/Next State/T0/T1/T2/D/T3) 
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Parameters and lower bound for failure probability versus match length graphic are 

presented in Table 7.17 and Figure 7.13 for bit-string representation of Present 

State/Outputs/Next State/Inputs. 

 

Table 7.17 Parameters of PLA control (Present State/Outputs/Next State/Inputs) 

Match Length 2 3 4 5 6 7 8 9 10 11 12 

Self Temp. 42 54 91 105 111 107 103 94 79 58 32 

Holes 2272 908 412 122 48 18 13 3 0 0 0 

Positive Tol. 
Conditions 

7 

44% 

9 

77% 

19 

89% 

25 

96% 

27 

98% 

29 

99% 

31 

99% 

31 

%99 

32 

%100 

32 

100% 

32 

100% 

Additional 
Templates 

2 15 53 36 34 41 29 22 13 6 0 

Detectable  
Non-Self 
Strings 

- - - 
3677 

90% 

3938 

97% 

3988 

98% 

4037 

99% 

4013 

99% 

4044 

99% 

4052 

99% 

4064 

100% 

Pf (Lower 
Bound) 

- - - 0.095 0.031 0.018 0.006 0.012 0.004 0.002 0 

Receptor 
Templates 

- - - 115 303 620 1148 1932 2980 4032 4064 

Minimum 
Rep. Size 

- - - 19 52 113 241 486 996 2016 4064 
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Figure 7.13 Failure probability vs. match length  
for PLA control (Present State/T0/T1/T2/D/T3/Next State/S/Z/Q1) 
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The next example is the control circuit of the ASM which is presented in Figure 7.7. 

In Table 7.18, the parameters of this control circuit are given. In Figure 7.14, the 

lower bound for failure probability vs. match length is illustrated for control circuit. 

 

Table 7.18 Parameters of control circuit (Present State/Inputs/Next State/Outputs) 

Match Length 2 3 4 5 6 7 8 9 10 11 12 

Self Temp. 41 67 109 174 230 243 244 232 192 128 64 

Holes 1984 960 576 408 152 68 40 26 0 0 0 

Positive Tol. 
Conditions 

4 

50% 

8 

76% 

16 

85% 

32 

89% 

64 

96% 

64 

98% 

64 

99% 

64 

%99 

64 

100% 

64 

100% 

64 

100% 

Additional 
Templates 

3 13 35 82 218 96 69 24 0 0 0 

Detectable  
Non-Self 
Strings 

0 0 0 0 0 
3724 

92% 

3810 

94% 

3932 

98% 

4032 

100% 

4032 

100% 

4032 

100% 

Pf  - - - - - 0.076 0.055 0.024 0 0 0 

Receptor 
Templates 

- - - - - 429 967 1792 2880 3968 4032 

Minimum 
Rep. Size 

- - - - - 92 201 448 960 1984 4032 
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Figure 7.14 Failure probability vs. match length  
for control circuit (Present State/x/y/z/w/Next State/T0/T1/T2/T3) 
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The parameters and the same figure are presented in Table 7.19 and Figure 7.15 

when bit-string representation is Present State/Outputs/Next State/Inputs. 

 

Table 7.19 Parameters of control circuit (Present State/Outputs/Next State/Inputs) 

 

Match Length 2 3 4 5 6 7 8 9 10 11 12 

Self Temp. 39 58 83 116 142 154 157 148 132 104 64 

Holes 1280 568 72 54 22 4 0 0 0 0 0 

Positive Tol. 
Conditions 

5 

68% 

8 

85% 

16 

98% 

30 

98% 

46 

99% 

56 

99% 

64 

100% 

64 

100% 

64 

100% 

64 

100% 

64 

100% 

Additional 
Templates 

5 22 61 59 94 103 101 80 52 24 0 

Detectable  
Non-Self 
Strings 

- - - 
3798 

94% 

3972 

99% 

3700 

92% 

3872 

96% 

3864 

96% 

3924 

97% 

3984 

99% 

4032 

100% 

Pf  - - - 0.058 0.014 0.082 0.039 0.041 0.026 0.011 0 

Receptor 
Templates 

- - - 81 212 511 1022 1820 2888 3968 4032 

Minimum 
Rep. Size 

- - - 27 59 105 226 468 968 1984 4032 
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Figure 7.15 Failure probability vs. match length  
for control circuit (Present State/T0/T1/T2/T3/Next State/x/y/z/w) 
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7.5 Analysis 

First three self strings sets in the simulation are constructed from 0 to 9 BCD 

counter and the length of the strings is 10. The only difference between these sets is 

the bit-string representations of the strings. The next example is 0 to 9 Gray code 

(Excess-3) counter and length of the strings is 10 as well. The bit-string 

representation of the self strings set of the Gray code counter is the same as the first 

self strings set of the BCD counter. Both 0 to 9 BCD counter and Gray code counter 

has 40 self strings therefore 984 non-self strings to be recognized. In Figure 7.16, 

the number of detectable non-self strings versus match length is presented for these 

four self strings sets. 
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Figure 7.16 The number of detectable non-self strings vs. match length  
for self strings sets of counters 
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It can be seen from the figure that for 0 to 9 BCD counter for the bit-string 

representation of R/Previous/C/Current, unlike other bit-string representations of 

the same counter, for c = 4, no unique receptors are possible as a match occurs 

between at least one self string and any receptor. Because only difference between 

these sets are the bit-string representations, it can be said that the number of 

detectable non-self strings and also lower bound for failure probability strongly 

depends on the structure of the self strings set.  

The length of the self strings for the PLA control and control circuit of example 

ASM is 12. Therefore 4096 different strings can be constructed for these systems. 

The number of self strings are 32 and 64 for PLA control and control circuit of the 

last example respectively. Number of detectable non-self strings against match 

length figure, Figure 7.17, shows that the behaviour of these systems for different 

match lengths are very close to each other, but the important difference between 

these two systems is, for c = 6, no unique receptors are possible as a match occurs 

between at least one self string and any receptor for the last example. 
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Figure 7.17 The number of detectable non-self strings vs. match length 
for PLA and control circuit 
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It is also interesting to state that, commonly when match length increases number of 

detectable non-self strings increases, in other words, failure probability decreases 

but there are some exceptions. For example, number of detectable non-self strings 

for match length 6 is bigger than that of 7 for PLA. Also the same exception is 

occurred in between match lengths 8 and 9 for Gray code counter. 

When match length increases the number of non-self strings detected by the whole 

repertoire increases. The number of strings recognized by a single receptor 

decreases approximately twice if the match length increases by one, that is when k 

increases, the number of receptors increases approximately as the power of two. 

Figure 7.18 shows how the number of strings detected by a single receptor varies 

against match lengths. Because this number is only related with the match length 

and the length of the strings, results shown in Figure 7.18 are the same for all the 

string sets in these lengths. The values presented in Figure 7.18 can be computed by 

the equation (3). 
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Figure 7.18 Number of strings detected by a single receptor vs. match length 
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Although for the same match length and the same string length, the number of 

strings recognized by the single receptor is the same and not related with the self 

strings set, the number of strings recognized by more than one receptor (receptor 

ensemble) is related to the self strings set and chosen receptors. Figure 7.19 presents 

the number of strings detected by five receptors for different match lengths. Greedy 

algorithm is used to choose the receptors from repertoire. 

It can be seen from the figure that when match length is exceed ℓ/2 (ℓ = 10), the 

number of strings detected by receptors are equal for each set. The reason of this is 

explained in section 5.4.1. For c ≤ ℓ/2, the number of strings detected by the 

receptors is directly related with the structure of the self strings sets. The decrease 

of the number of detected strings by the receptors is related with the number of 

strings detected by a single receptor when match length increases. 
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Figure 7.19 Number of strings detected by five receptors for counters 
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In first four self strings sets, 4% of the strings are self. This number for the PLA 

control is 0,7 % and 1,5 % for the control circuit. The results show that when the 

number of strings in the self strings set is high, the failure probability of the system 

decreases slowly when match length increases. On the other hand, if the number of 

strings in the self strings set is low, the failure probability of the system decreases 

rapidly when match length increases. Figure 7.20 shows the behaviour of the failure 

probabilities of first self strings set of the BCD counter and PLA control. It is 

important to remember that the length of the strings for BCD counter and the PLA 

control is different (10 and 12 respectively). 
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Figure 7.20 Failure probability vs. match length  
for BCD counter and PLA control 

 

To understand the behaviour of the BIS for different number of strings in the self 

strings sets, randomly generated strings are used. Four different strings lengths 

which are 10, 12, 15 and 18 are employed. For each string length, the number of 

strings in the self strings sets are listed in Table 7.20. 
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Table 7.20 Number of self strings for different strings lengths 

Length 1% 2% 5% 10% 20% 

210 10 20 51 102 205 

212 41 82 205 410 819 

215 328 655 1638 3277 6554 

218 1621 5243 13107 26214 52429 

 

In Figure 7.21, 7.22, 7.23 and 7.24, the lower bounds of the failure probabilities vs. 

match lengths are presented for each number of self strings and string lengths 

presented in Table 7.20.  
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Figure 7.21 Failure probability vs. match length for ℓ=10 
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Figure 7.22 Failure probability vs. match length for ℓ=12 
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Figure 7.23 Failure probability vs. match length for ℓ=15 
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Figure 7.24 Failure probability vs. match length for ℓ=18 

 

From the figures of the randomly generated self strings sets, it can be said that, the 

failure probability of the system approaches to “0” rapidly if the number of strings 

in the self strings set is low. 

7.5.1 Positive Tolerance Conditions 

Positive tolerance conditions generally give better solutions than receptors. Only 

exceptions are the average number of strings recognized by a single receptor is 

usually higher than that of positive tolerance condition when c is close to ℓ/2. It is 

important to state that even in the conditions that previous statement is valid, when 

complete repertoire is used, positive tolerance conditions recognize more non-self 

strings than receptors that is because the number of strings in the positive tolerance 

conditions is more than that of receptor repertoire. Figure 7.21 displays difference 

between the average number of strings recognized by the single receptor in the 

receptor repertoire and the average number of strings recognized by the single 

positive tolerance condition. The results of 0 to 9 BCD counter with bit-string 

representation of C/R/Previous/Current are used. 
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Figure 7.25 Average number of strings recognized by a single   
positive tolerance condition and a single receptor 

Especially for small values of match length, c << ℓ/2 or c close to 1, receptors can 

not be constructed due to the excessive number of holes and the additional 

templates. In these cases positive tolerance conditions are the only solution. 
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CHAPTER 8 

 

CONCLUSION 

 

This study has demonstrated a immunologically inspired approach to hardware fault 

detection and discussed the architecture for a hardware immune system to detect 

faults in systems. The acquired immune response in the human immune system is 

learned through a process of centralized maturation to create a collection of 

antibodies able to detect the invasion of non-self into the body. This analogy has 

been applied to the field of electronic hardware error detection to provide FSMs 

using a generic immunization procedure. 

An immunization cycle has been developed that integrates with a typical hardware 

development cycle to permit any finite-state-based system to be immunized in a 

methodical way. The system is analyzed, self strings are gathered and tolerance 

conditions are generated. The match length is chosen to make optimum use of the 

available tolerance condition storage space. This is carried out currently by hand, 

although future automation would be straightforward. The architecture also permits 

a trade-off between the storage space and failure probability, ensuring that the most 

effective tolerance conditions are always stored first.  

The hardware immune system currently goes some way to achieving three of the 

five original analogies between the human immune system and hardware fault 

tolerance discussed in Chapter 4. 

1. The operational hardware immune system functions continuously and 

autonomously and is designed to allow full implementation in hardware. 
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This is facilitated by the simple (compared to tolerance condition 

generation) search and detection process created through the use of a CAM. 

2. The immunotronic error detection mechanisms are trained to differentiate 

between faulty and fault free transitions. The hardware immune system 

possesses memory to store the set of tolerance conditions that perform this 

operation. 

3. Detection of invalid conditions is imperfect.  

In this study, a new set of tolerance conditions which are called positive tolerance 

conditions are proposed. Positive tolerance conditions gives better results than 

receptors if storage requirements to not impose any restriction. As stated in Chapter 

7, average number of strings recognized by a single receptor is usually higher than 

that of positive tolerance condition when match length, c, is close to ℓ/2. 

For c close to ℓ, the complete receptor repertoire constructed by the simulation 

contains large number of receptors. It is important to note that, there is no meaning 

to create receptor ensemble that contains more strings than the self strings set. 

Because, when the number of receptors exceeds the number of self strings set, 

simply storing all self strings in the memory and using these as a look up table 

which is actually constructing positive tolerance conditions when match length is 

equal the length of the strings, guarantees 100% reliable operation.  

Complexity of the construction of both positive tolerance conditions and receptors 

are of order O(ℓ•(ℓ-c)•2c), where ℓ is the length of the strings and c is the match 

length (threshold value). Because both positive tolerance conditions and receptors 

are constructed with same algorithm. Only difference between these two is positive 

tolerance conditions are constructed from self template matrix but the receptors are 

constructed from receptor template matrix. Receptor template matrix is modified 

(child and parent check, explained in Section 5.6) form of the self template matrix 

and the modification (child and parent check) algorithm is of order O((ℓ-c)•2c). 
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Current work has not investigated the possibility of further learning while the 

system is in operation. Such operation would be more truly representative of a real 

immune system.  
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