

COMPUTER FAULT TOLERANCE STUDY
INSPIRED BY THE IMMUNE SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ATIF DEĞER CANIBEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet Erkmen
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Hasan Güran
 Supervisor

Examining Committee Members

Asst. Prof. Dr. Cüneyt Bazlamaçcı (METU, EEE)

Prof. Dr. Hasan Güran (METU, EEE)

Dr. İlkay Ulusoy (METU, EEE)

Dr. Ece Schmidt (METU, EEE)

Gökhan Göksügür (MSc.) (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : Atıf Değer Canıbek

Signature :

 iv

ABSTRACT

COMPUTER FAULT TOLERANCE STUDY
INSPIRED BY THE IMMUNE SYSTEM

CANIBEK, Atıf De ğer

MSc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan Güran

December 2005, 81 pages

Since the advent of computers numerous approaches have been taken to create

hardware systems that provide a high degree of reliability even in the presence of

errors. This study seeks to address the problem from a biological perspective using

the human immune system as a source of inspiration. The immune system uses

many ingenious methods to provide reliable operation in the body and so may

suggest how similar methods can be used in the design of reliable systems.

This study provides a brief introduction into a relatively new discipline: artificial

immune systems (AIS) and demonstrates a new application of AIS with an

immunologically inspired approach to fault tolerance. It is shown a finite state

machine can be provided with a hardware immune system to provide a novel form

of fault detection giving the ability to detect faulty states during a normal operating

cycle. It is called immunotronics.

Keywords: Artificial immune system, binary immune system, immunotronics, fault

tolerance, positive tolerance conditions.

 v

ÖZ

BAĞIŞIKLIK S İSTEMİNDEN ESİNLENİLM İŞ
BİLGİSAYAR HATA TOLERANSI ÇALI ŞMASI

CANIBEK, Atıf De ğer

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Hasan Güran

Aralık 2005, 81 sayfa

Bilgisayarların geniş bir biçimde kullanılmaya başlamasından bu yana hata

meydana geldiğinde bile yüksek derecede güvenilirlik sağlayan donanım

sistemlerinin yaratılmasında pek çok yaklaşım olmuştur. Bu çalışma insan

bağışıklık sisteminden esinlenerek biyolojik bir perspektiften problemi ele

almaktadır. Bağışıklık sistemi vücudun güvenilir bir biçimde çalışmasını sağlayan

çeşitli akıllı yöntemler kullanır ve buna benzer yöntemlerin güvenilir sistemlerin

tasarımında nasıl kullanılabileceğini öne sürer.

Bu çalışma yeni bir disiplin olan yapay bağışıklık sistemine kısa bir giriş yapmakta

ve bağışıklık sisteminden esinlenilmiş yaklaşımla hata toleransına getirilen yeni bir

uygulama gösterilmektedir. Donanımsal bağışıklık sistemi ile birlikte sonlu durum

makinasının nasıl normal çalışma döngüsünde hatalı durumların sezilme yeteneğini

kazandıran hata tanımanın yeni bir biçimini sağladığı gösterilmektedir.

Anahtar Kelimeler: Yapay bağışıklık sistemi, “binary” bağışıklık sistemi,

“immunotronics”, hata toleransı, pozitif tolerans durumları.

 vi

To My Parents

 vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Hasan

Güran, for his guidance, advice, criticism and encouragement and insight

throughout the research.

I would also like to thank my parents, my uncle Asım Canıbek and my friends

Zeynep Ceren Nurata, Cem İpekgil, Ceren İpekgil and Tarık Parlak for their

valuable helps, unlimited patience, encouragements and suggestions during the

preparation of this thesis.

 viii

TABLE OF CONTENTS

ABSTRACT………………………………………………...…………………...... iv

ÖZ……………………………………………………………………………….… v

DEDICATION…………………………………………………………………… vi

ACKNOWLEDGMENTS……………………………………………………….. vii

TABLE OF CONTENTS……………………………… …………….………....... viii

LIST OF TABLES……………………………………………………..……..…... xi

LIST OF FIGURES……………………………………………………..…........... xiii

ABBREVIATIONS………………………………………………………………. xv

CHAPTER

1. INTRODUCTION……………………...………….........………….………... 1

1.1 Fault-Tolerant Systems………………………………………….………... 1

1.2 The Development of Fault-Tolerant Computing…………………..…….... 1

1.3 Purpose and Scope……………………………………………….……….. 2

1.4 Layout of Thesis………………………………………………..…………. 3

2. FAULT TOLERANCE………………………………..……………..………. 4

2.1 The Phases of Fault Tolerance……………………………………..……... 4

2.2 Hardware Fault Tolerance………....……………………………..……….. 4

2.3 Alternative Techniques in Hardware Fault Tolerance...………..…..….…. 6

3. HUMAN IMMUNE SYSTEM……………………………………...……….. 7

3.1 Immune Architecture and Organisation…………………………...……… 7

 ix

3.2 Antibody Mediated Immunity………………………………………..…… 9

3.3 Self/Non-Self Discrimination………………………………………...…… 10

4. THE IMMUNOLOGICAL TO HARDWARE TRANSITION………..….. 11

4.1 Key Immunological Features……………………………………...……… 11

4.2 Hardware Representations…………………………………………...…… 12

4.3 Feature Mapping…………………………………………………..……… 13

4.4 Data Gathering…………………………………………………….……… 14

4.5 Tolerance Condition Generation……………………………………..…… 14

4.6 Architecture of the Hardware Immune System…………………………… 15

4.7 Fault Detection……………………………………………………….…… 17

4.8 Fault Recovery…………………………………………………….…....… 17

5. BINARY IMMUNE SYSTEM……………………………………..……….. 20

5.1 Intrusion Selection Algorithm…………………………………………….. 20

5.2 Matching Rules…………………………………………………………… 21

5.3 Templates…………………………………………………………………. 23

5.4 Discriminative Power of a Receptor……………………………………… 23

5.4.1 The Threshold Value c≥(ℓ/2)..…………………………………….. 24

5.4.2 The Threshold Value c<(ℓ/2)…………………………………….... 26

5.4.2.1 The Threshold Value is Close to (ℓ/2)…………………..... 26

5.4.2.2 The Threshold Value is Close to 1….…………………..... 28

5.5 Reduction of the Discriminative Power…………………………………... 28

5.6 Lower Bound for the Fault Probability…………………………………… 30

5.7 Positive Tolerance Conditions……….…………………………………… 31

 x

6. SIMULATION……………………………………………………………….. 33

6.1 Application…………………………………………………...…………… 33

7. IMPLEMENTATION, RESULTS AND ANALYSIS……...………..…….. 41

7.1 Implementation…………………………………………………………… 41

7.2 Self Strings Sets………………………………………………...……........ 43

7.3 Parameters………………………………………………………………… 50

7.4 Results…………………………………………………………………….. 51

7.5 Analysis…………………………………………………………………… 65

7.5.1 Positive Tolerance Conditions……………………………………... 72

8. CONCLUSION….………………………………………...…………………. 74

REFERENCES………………………………………………………..………….. 77

APPENDIX……………………………………………………………………….. 81

 xi

 LIST OF TABLES

TABLES

4.1 The advantage of monitoring state transitions………………...…..……… 13

4.2 Entity feature mapping…………………………………………………… 13

4.3 Process feature mapping………………………………………………..… 14

5.1 Fresh (unique) schemas generated by four initial templates……………... 25

5.2 Fresh schemas induced by the receptor 00000000 with threshold c = 3..... 27

5.3 Values of αi and βi defined in equations (5a), (5b)………………………. 27

7.1 Structure and function of the BCD counter………………………………. 44

7.2 Self strings set of the counter (C/R/Previous/Current)…………………… 45

7.3 4-bit 0 to 9 Gray code counter (Excess-3 gray)…………………………... 46

7.4 State table for PLA control……………………………………………….. 48

7.5 State table of control circuit………………………………………………. 50

7.6 Description of the parameters…………………………………………….. 51

7.7 Self template matrix of BCD counter (ℓ = 10, c = 5)…………………….. 52

7.8 Positive tolerance conditions for BCD counter (ℓ = 10, c = 5)…………... 53

7.9 Modified self template matrix for BCD counter (ℓ = 10, c = 5)…………. 54

7.10 Receptor template matrix for BCD counter (ℓ = 10, c = 5)………………. 55

7.11 Receptor repertoire for BCD counter (ℓ = 10, c = 5)……………………... 56

7.12 Parameters of the 4-bit 0 to 9 BCD counter (C/R/Previous/Current)…….. 57

 xii

7.13 Parameters of the 4-bit 0 to 9 BCD counter (C/R/Current/Previous)…….. 58

7.14 Parameters of the 4-bit 0 to 9 BCD counter (R/Previous/C/Current)…….. 59

7.15 Parameters of the 4-bit 0 to 9 Gray code counter (C/R/Previous/Current).. 60

7.16 Parameters of PLA control (Present State/Inputs/Next State/Outputs….… 61

7.17 Parameters of PLA control (Present State/Outputs/Next State/Inputs)…... 62

7.18 Parameters of control circuit (Present State/Inputs/Next State/Outputs)…. 63

7.19 Parameters of control circuit (Present State/Outputs/Next State/Inputs)…. 64

7.20 Number of self strings for different strings lengths………………………. 70

 xiii

 LIST OF FIGURES

FIGURES

2.1 Totally self-checking circuit…………………………………..…..……..… 5

3.1 Affinity maturation of antibodies………………………..…………....…… 8

3.2 Antibody mediated immunity …………….…………………………..…… 9

3.3 Clonal deletion…………………………….…………………………..…… 10

4.1 State machine under test……………..…….……………………..…..……. 12

4.2 The negative selection algorithm …………………………….…….....…… 15

4.3 The hardware immune system attached to the FSM …….………..……..… 16

4.4 Mapping of lymphatic interactions to an integrated
 immunotronic-embryonic multilayered fault-tolerant architecture…..…..... 19

5.1 Matching under the c-contiguous rule…………………………………..…. 22

5.2 Reduction of the discriminative power of a single receptor……………….. 30

6.1 Flow chart of the simulation……………………………………………….. 34

7.1 Fault-detection hardware…………………………………………………... 42

7.2 Block diagram of partial matching CAM………………………………….. 43

7.3 Bit string representations of BCD counter………………………………….. 44

7.4 Data processor for binary multiplier……………………………………….. 46

7.5 ASM chart for binary multiplier…………………………………………… 47

7.6 PLA control block diagram………………………………………………... 48

7.7 ASM chart of an example……….………………………………………….. 49

 xiv

7.8 Failure probability vs. match length for 4-bit 0 to 9 BCD counter
(C/R/Previous/Current)……………………………………………………..

57

7.9 Failure probability vs. match length for 4-bit 0 to 9 BCD counter
(C/R/Current/Previous)……………………………………………………...

58

7.10 Failure probability vs. match length for 4-bit 0 to 9 BCD counter
(R/Current/C/Previous)……………………………………………………...

59

7.11 Failure probability vs. match length for 4-bit 0 to 9 Gray code counter
(C/R/Current/Previous)………………………………………………….…..

60

7.12 Failure probability vs. match length for PLA control
(Present State/S/Z/Q1/Next State/T0/T1/T2/D/T3)…………………………..

61

7.13 Failure probability vs. match length for PLA control
(Present State/T0/T1/T2/T3/Next State/S/Z/Q1)……………………………...

62

7.14 Failure probability vs. match length for control circuit
(Present State/x/y/z/w/Next State/T0/T1/T2/T3)……………………………..

63

7.15 Failure probability vs. match length for control circuit
(Present State/T0/T1/T2/T3/Next State/x/y/z/w)……………………………..

64

7.16 The number of detectable non-self strings vs.
match length self strings sets of counters…..……………………………….

65

7.17 The number of detectable non-self strings vs. match length
for PLA and control circuit………………………………………………….

66

7.18 Number of strings detected by a single receptor vs. match length…………. 67

7.19 Number of strings detected by five receptors for counters…………………. 68

7.20 Failure probability vs. match length for BCD counter and PLA control…… 69

7.21 Failure probability vs. match length for ℓ=10……………………………… 70

7.22 Failure probability vs. match length for ℓ=12……………………………… 71

7.23 Failure probability vs. match length for ℓ=15…………………………...…. 71

7.24 Failure probability vs. match length for ℓ=18…………………………...…. 72

7.25 Average number of strings recognized by a single
positive tolerance condition and a single receptor………………...………...

73

 xv

ABBREVIATIONS

AIS Artificial Immune System

ASM Algorithmic State Machine

BCD Binary Coded Decimal

BIS Binary Immune System

BIST Built-In Self-Test

CAM Content Addressable Memory

EHW Evolvable Hardware

FSM Finite State Machine

NMR N-Modular Redundancy

PLA Programmable Logic Array

 1

CHAPTER 1

INTRODUCTION

1.1 Fault-Tolerant Systems

Electronic systems have been used widely in everyday life. Electronic systems like

computer can be found not only in banks, at schools, and in our homes, but also in

nuclear power plants, expensive satellites and life-supporting medical equipments.

While the presence of a fault on one system is often just an annoyance, for safety-

critical applications, if the computer or any other electronic control system fails, the

costs in terms of money and even human life could be incalculable. Therefore,

many electronic systems must be fully functional under the most critical operating

conditions, and should work satisfactorily for at least a predetermined period of

time. There are two possible approaches to achieve this objective: to build either

fault free or fault-tolerant systems [1].

Since, with time, hardware becomes worse and software becomes ever more

complex to test reliably, it is impossible to design and build fault free system that

will not develop faults during its operating lifetime. Therefore the more feasible

alternative is to implement systems, which are capable of tolerating faults.

1.2 The Development of Fault-Tolerant Computing

The first theoretical work in fault-tolerant computing is generally credited to John

von Neumann. In 1956 von Neumann published an article entitled: “Probabilistic

Logics and the Synthesis of Reliable Organisms from Unreliable Components”. In

that study, he presented the concept of majority voting and analyzed the impact that

 2

such arrangements could have on the probability of a system producing erroneous

results [2].

Since around 1970, the field of fault tolerant computing has been rapidly

developing. Several Journals such as the Computer, IEEE Micro, the Proceedings of

the IEEE etc., regularly present special issues that deal with fault-tolerant

computing.

Recent years has shown radically different approaches to the design of reliable

systems with biology being a major source of inspiration. Our understanding of the

natural or, more specifically, human immune system has increased over the last few

decades and has provided a miraculous insight into how the body defends itself

from intrusion and maintains reliable operation. Through the increased under-

standing, new techniques inspired by the human immune system have given rise to

improved approaches to computer security [3], virus protection [4], [5], anomaly

detection [6], process monitoring [7], robot control [8], and software fault tolerance

[9]. The human immune system provides a distributed fault-tolerant architecture

within the body and so suggests a radically different approach to current reliable

system design.

1.3 Purpose and Scope

Artificial immune systems (AIS) are computer systems exploiting the natural

immune system metaphor: protect an organism against intruders. The subject of this

thesis is about binary AIS in which all the information is represented by the bit

strings of fixed length. It is shown that a finite state machine can be provided with a

hardware immune system to provide a novel form of fault detection giving the

ability to detect every faulty state during a normal operating cycle [10].

The purpose of this study is to find an answer to the problem that can be stated as

follows: given a set of self patterns representing normal behaviour of a system

under considerations find a set of detectors (i.e, antibodies, or more precisely,

receptors) identifying all non-self patterns corresponding to abnormal states of the

system.

 3

1.4 Layout of Thesis

In chapter 2, the requirements for fault-tolerant hardware design are discussed.

In chapter 3, human immune system is introduced and the feature that have inspired

the development of a hardware immune system is discussed.

In chapter 4, the similarities and differences between immunology and fault

tolerance are presented and steps needed to immunize a system for providing fault

detection are demonstrated.

In chapter 5, binary immune system is explained and the brief overview of the

receptors generation algorithm is presented.

In chapter 6, the simulation that are used to construct the tolerance conditions for

immunization of the system is explained.

In chapter 7, implementation of the fault detection hardware, results of the

immunization cycle and the analysis of these results are presented.

In chapter 8, a conclusion of this study is given.

 4

CHAPTER 2

FAULT TOLERANCE

Over thirty years ago, developments based on the challenge of designing reliable

systems from unreliable components resulted in the notion of fault tolerance.

2.1 The Phases of Fault Tolerance

Fault tolerance techniques, either software or hardware, always imply the use of

redundancy. In general, fault-tolerant systems should be able to implement the

following phases [17]:

1. Error detection or output deviating from the norm;

2. Minimization or eradication of the resulting effects of the fault;

3. Activation of a suitable recovery procedure. There are two methods of

recovery: a) Backward error recovery can return the system to a

previously stored valid state and b) Forward error recovery can make

selective corrections to the current state until an acceptable state is

reached.

Biologically inspired fault tolerance must address these processes.

2.2 Hardware Fault Tolerance

There are several approaches to implement fault tolerance of hardware.

1. Retry Strategy: The operation, which was detected to be erroneous is to

be repeated. Here redundancy is only needed to detect the fault.

 5

2. Backup Computers: In case of failure, until the repair personnel could

fix the main system, all work is transferred to the backup system.

3. Pair-and-Spare: At the component level designer uses a pair of

identical components to built a unit that detects its own error. At the

system level of organization, the designer builds a computer using a pair

of error-detecting units. One pair operates as the main unit and the other

as a spare unit. Control unit automatically switches the operation to the

spare unit if the main unit fails.

4. N-Modular Redundancy (NMR): It is similar with pair-and-spare

logic, but with N identical components (N≥3). Special voting logic

compares the outputs and accepts the majority output as being correct.

5. Built-In Self-Test (BIST): The task of testing a chip with several

millions of transistors is extremely complex, expensive and often very

time consuming. A widely accepted approach to deal with the testing

problem at the chip level is to incorporate BIST capability within the

chip. One way of achieving self-checking design is the use of error

detecting codes. In this case a code checker detects the presence of faults

when its input is not a member of the set of valid codes. Figure 2.1

shows the block diagram of totally self-checking circuit.

Figure 2.1 Totally self-checking circuit

Functional
Circuit

Checker

Inputs Coded
Outputs

 6

2.3 Alternative Techniques in Hardware Fault Tolerance

Nature demonstrates radically different approaches to complex problem solving that

are now being used within computing and electronic fields to improve the behaviour

of the system instead of the classical techniques. Many different species possess

defence mechanism that can be referred to as an immune system. Vertebrates have

evolved a highly complex, multi-layered defence mechanism in the form of the

immune system to provide protection from potentially hazardous external

influences such as bacterial and viral infections (antigens). The similarities between

the requirements of fault tolerance and the operation of the body’s defence

mechanisms have highlighted the relevance of the immune system as a conceptual

model for the design of future reliable systems [11].

 7

CHAPTER 3

HUMAN IMMUNE SYSTEM

The human immune system (and that of all vertebrates) is unique amongst all living

species in that it has evolved a complex genetic level defence mechanism for

protection from invaders. The detailed information of the human immune system is

presented in [12] and [13].

3.1 Immune Architecture and Organisation

Defence against intruders, or antigens is accomplished through four distinguishable

layers of protection [4] [14] from physical barriers through physiological barriers in

the forms of temperature and acidity to chemical and cellular interactions in the

forms of innate and acquired immunity. Acquired immunity involves antibody and

cell mediated immunity that defend against extra-cellular and intra-cellular

infection respectively.

The immune system cells are produced from stem cells in the bone marrow and are

divided into three types of cell [15]:

1. Macrophages are roaming scavenger cells that take part in both innate

and acquired immunity. They perform a signalling role presenting

fragments of antigens to other cells of the immune system.

2. B cells can recognise antigens and produce a single type of antibody to

counteract a specific antigen.

 8

3. T cells are developed to form helper, suppressor and killer T cells.

Helper and suppressor cells act as the master switched for the immune

system by initiating and slowing down immune responses in the pres-

ence of an antigen. Killer T cells detect and destroy virus infected cells.

Response to an antigen occurs by the use of complementary receptors on the

antigen and antibody known as epitopes and paratopes respectively. Both B and T

cells have the ability to detect and counteract only one type of antigen and so huge

diversity is a necessity. Such specificity means that at any one time there are over

1012 B cells within the body creating over 108 different types of antibody - a number

impossible to encode for in the human genome of 105 genes. The rearrangement of

antibody protein segments creates the huge variation needed. The presence of such

a wide number of different antibodies means that an exact epitope-paratope match

rarely occurs. An immune response can be initiated by approximate matching in a

process called affinity maturation (Figure 3.1) [15].

Figure 3.1 Affinity maturation of antibodies

Activated B cells
create antibodies

High affinity B
cells selected
The others die

Somatic
hypermutation
creates optimised
variants

Antigen

 9

Under a continuous cycle of repeated optimisation, the B cells with the highest

affinity to the invading antigen generate minor variants by somatic hypermutation

resulting in an over-whelming quantity of antibodies to destroy the invading antigen

[15].

3.2 Antibody Mediated Immunity

Antibody mediated immunity protects the body from extra-cellular infection. B

cells are constantly on patrol for antigens that they can bind to. If an approximate

match occurs between a patrolling B cell and an antigen a response is initiated as in

Figure 3.2. Proliferation of antibodies only occurs if the corresponding T cells exist

to stimulate the manufacture of optimised antibodies. When an antigen is

encountered for the first time it takes several days for antibody proliferation to

occur. Through the use of memory B and T cells secondary responses can provide a

much more rapid response to the same infection at a later date [15].

Figure 3.2 Antibody mediated immunity

(1) Complementary receptors
detected

(2) Helper T cells signalled

(3) T cells activates B cells to
create antibodies

(4) Antibody proliferation
binds to antigen and
removes intruders (4)

B cell

T cell
(1)

(2)

(3)

Antigen

 10

3.3 Self/Non-Self Discrimination

The process of antigen detection by random generation and complementary receptor

matching is a very effective method of protection, but what prevents the immune

system from binding to cell proteins that occur naturally within the body? Several

theories have been proposed to explain how the immune system differentiates

between self and non-self cells of the body [16]. The most widely accepted answer

is clonal deletion which is demonstrated in Figure 3.3. In contrast to the matured

functional immune system with distributed censoring, a centralised development

stage occurs first and carries out a process called negative selection. Immature

helper T cells move to the thymus where self-proteins circulate through and are

exposed to the helper T cells. If a maturing T cell binds to one of the self proteins, it

is destroyed. Only those T cells that are self tolerant survive to become fully

functional activators of B cells [15].

Figure 3.3 Clonal deletion

Self proteins are
presented to
maturing T cells

Those T cells that
bind to self die

T cells

 11

CHAPTER 4

THE IMMUNOLOGICAL TO HARDWARE TRANSITION

4.1 Key Immunological Features

Based upon the fundamental attributes of the immune system, the following five

key analogies can be summarised [15]:

1. The immune system functions continuously and autonomously, only

intervening the normal operation of the body when an intruder or

erroneous condition is detected, much like in the presence of a faulty

state. In a mapping to hardware, the analogy is that of fault detection and

removal without the need for software support.

2. The cells that provide the defence mechanisms are distributed

throughout the body through its own communications network in the

form of lymphatic vessels to serve all the organs. The hardware

equivalent promotes distributed detection of faults with no centralised

fault recognition and recovery.

3. The immune cells that provide the detection mechanisms are present in

large quantities and exist with a huge range of diversity. Limited

diversity is already a common solution to fault tolerant system design.

4. The immune system can learn and remember from past experiences what

it should attack. The hardware analogy suggests the training (and

possibly even continued improvement during operation) of fault detec-

tion mechanisms to differentiate between fault free and faulty states.

 12

5. Detection of intruding antigens by the immune system is imperfect. The

onset of faults in hardware systems is often due to the impossibility to

exhaustively test a system. The testing phase can never test for every

eventuality and so the analogy of imperfect detection suggests one

remedy.

4.2 Hardware Representation

Methods of self/non-self differentiation are developed through a finite state machine

(FSM) representation of the system to be immunised. In principle, any hardware

system can be represented by an individual or set of inter-connected finite state

machines and is therefore a logical start point. Finite state machine define the

acceptable states and transitions between states (Figure 4.1) [10].

Figure 4.1 State machine under test

Under normal and reliable operation (self) only transitions tqx can occur. Invalid

transitions, tex, signify a potential problem (non-self). Concentrating on the

transitions between states rather than the state themselves is a much better solution,

Valid transition

e6

e5

q0 q1

q2

q3

q4

Invalid state

Invalid transition

Valid state

te06

te45

tq01

tq10

tq20

tq30

tq34

tq32

tq23

tq12

te21 tq40

 13

as two states may valid, but the transition not [17]. Table 4.1 demonstrates the

advantages of monitoring state transitions.

Table 4.1 The advantage of monitoring state transitions
CS – current state, NS – next state

CS NS Valid NS Transition Valid Transition

2 3 Yes tq23 Yes

4 5 No te45 No

2 1 Yes te21 No

4.3 Feature Mapping

The features and operations of the immune system can be translated into the

hardware domain. Tables 4.2 and 4.3 summarise the mappings in terms of entities,

or physical elements and processes, or operations that the system may undergo.

Tables 4.2 and 4.3 show that an immunologically inspired approach based upon the

use of FSMs is feasible [17].

Table 4.2 Entity feature mapping

Immune System Hardware Fault Tolerance

Self Valid state/state transition

Non-self (antigen, intruder) Invalid state/state transition

Antibody Error tolerance conditions

Gene used to create antibody Variables forming
tolerance conditions

Antigen presenting cell Data collection and tolerance
condition creation component

Paratope Invalid state/state transition
tolerance conditions

Epitope Valid state/state transition
tolerance conditions

Helper T cell Recovery procedure activator

Memory T cells Set of tolerance conditions

 14

Table 4.3 Process feature mapping

Immune System Hardware Fault Tolerance

Recognition of self Recognition of valid transition

Recognition of non-self Recognition of invalid transition

Learning during gestation Learning of correct transition

Antibody mediated immunity Error detection and recovery

Clonal deletion Isolating of self-recognising
tolerance conditions

Inactivation of antigen Return the normal operation

Life of organism Operation lifetime of the hardware

4.4 Data Gathering

The immunotronic hardware initially undergoes a learning stage similar to the

centralised maturation of T cells in the thymus. The goal of the data gathering stage

is to create a data set S that represents a complete or substantial percentage of all

possible valid state transitions within normal operation of the FSM. Unlike the

human immune system which does not store a map of self conditions, storing this

within the immunotronic hardware has its uses. The generation of invalid conditions

can be initiated through the injection of faults and simulated errors. This only

provides a starting point for the learning of non-self however. Approximate

matching techniques, through the use of non-deterministic methods (random/

evolutionary generation) is to be used to provide a set of partial matching data [18].

The current approach is to immunise the state of the system by monitoring the

inputs, current state and previous state of the system and storing each instance of

self as a binary string [15].

4.5 Tolerance Condition Generation

The negative selection algorithm was developed by Forrest and Perelson [4] from

theoretical analyses of the matching and binding properties of the immune system

for the detection of viruses within computer systems and network intrusion. In

contrast to the existing fault tolerant architecture, such as NMR and embryonics

 15

which work by checking constantly for the presence of valid operation, the negative

selection algorithm works by checking constantly for the presence of invalid

operation.

The algorithm is based upon the method of selecting a set of strings R of length ℓ

from a randomly generated original set of data R0. Each string r∈R fails to match

any of the self strings s∈S, also of length ℓ, in at least c contiguous positions. Any

string that match in at least c contiguous positions are deleted. The mature set of

tolerance conditions R are generated from an initial randomly generated set R0

corresponding to immature tolerance conditions, which undergo a negative selection

process [17]. Figure 4.2 adopted from [19] demonstrates the algorithm [10].

Figure 4.2 The negative selection algorithm

4.6 Architecture of the Hardware Immune System

With the tolerance conditions generated they must then be downloaded to the host

hardware immune system (Figure 4.3 [10]).

Self strings S

Immature
random

tolerance
conditions R0

Match in c
contiguous
positions?

Matured
tolerance

conditions R

Reject
tolerance conditions

Contiguous matches < c

Single immature
tolerance condition r0

Contiguous matches ≥ c

 16

Hardware immune system acts as a wrapper to the state machine under protection.

Under normal operation, only self strings are present. The presence of a fault

creates a non-self state, analogous to the presence of antigen.

The string generation component gathers the user inputs and system state (and/or

output) from the state machine, combining with the previous system state (and/or

output) to create a search string for presentation to the immune system memory.

Figure 4.3 The hardware immune system attached to the FSM

The partial-matching content-addressable memory (CAM) stores the tolerance

conditions and returns a positive result if c contiguous bits out of ℓ match the search

string. The data are presented to the CAM and a found or not-found signal returned

in addition to the address where the data were found [17].

State machine
(Self)

String generation
(antigen presenting cell)
and response activation

CAM (memory)

Tolerance conditions
(T cells)

User input Output

Wait State and/or Output

Search
String

Found/Not-Found

 17

4.7 Fault Detection

The immunized state machine is monitored at every change of state and the

gathered data sent to the tolerance condition memory and searched [17]. If valid

state is confirmed, then normal operation is allowed to continue. If faulty state is

detected, number of defined responses can be activated. If the memory read clock

driving the CAM is fast enough then the result of search to be returned to the “string

generation and response activation” component of Figure 4.3 can be gotten before

the current internal state of the state machine propagates to the output on the next

clock cycle. Therefore, the internal states of the hardware should always be

monitored, rather than just the outputs, because in this way it is possible to detect

fault before the effects have propagated to the output.

4.8 Fault Recovery

The ideal way of removing any potential problems in the body is the destruction of

a cell, which was detected as infected, due to the enormous levels of redundancy.

Such process is not ideal, but often necessary, for hardware because of the finite

level of redundancy. In the presence of an intermittent error, a more ideal approach

would be recovery or repair.

The potential methods of achieving fault removal can be summarised:

1. Classical Architecture: Creating a form of NMR that is replicate the

protected state machine and switch to a spare if the first is detected as

faulty. It is not ideal to disable a large hardware component unless a

disastrous failure occurs. Because, if a self string is detected accidentally

as non-self through incomplete coverage of self strings or the presence

of a fault within the tolerance condition storage, then a fault-free state

machine may be deactivated completely. In this method, transient errors

result in the deactivation of the state machine that operates normally to

specification.

 18

2. Immunologically Inspired Architecture: The detection of a non-self

string may signal the user to request the next action. The possibility of

providing two sets of tolerance conditions has been discussed in [18] so

that a set of potential recovery states corresponding to self string can also

be stored. It may then be possible to automatically correct the faulty

output through an output multiplexer selecting either the normal or the

immune-activated response. This means that transient errors do not result

in the deactivation of the complete system [17].

The phenomenal cellular redundancy in the body enables normal

operation to persist when cells are neutralized and later destroyed due to

infection. In an FSM architecture, a similar technique could be used

through the use of spare states or latch bits within the hardware. The

detection of a fault would then cause the state machine to be

reconfigured to ensure the faulty state was circumvented and a spare

state used [17].

3. Total Biologically Inspired Architecture: Embryonics and EHW are

two other biologically inspired approaches to fault detection and

tolerance. Embryonics is based upon the development of multi-cellular

organism. Through the development of biological multi-cellular

organism, cells differentiate according to “instructions” stored in their

DNA. Depending on the position of the cell within the embryo, different

parts of the DNA are interpreted. Before differentiation, because each

cell possesses a copy of the DNA, cells are (theoretically) able to take

over any function within the body. Correspondingly, every electronic

cell in an embryonic array stores not only its own configuration register,

but also those of its neighbours [17]. To differentiate, every cell selects a

configuration register according to its position, which is determined by a

set of coordinates that is calculated from the coordinates of the nearest

neighbours, within the array.

 19

Figure 4.4 Mapping of lymphatic interactions to an integrated
immunotronic-embryonic multilayered fault-tolerant architecture

Every embryonic cell continuously performs self-checking. In the

presence of fault, the faulty cell issues a status signal that eliminates the

cell. By recalculating their coordinates and selecting a new configuration

register, every surviving cell performs a new function. The integration of

a cellular hardware immune system within the architecture, as shown in

Figure 4.4, removes the need of self-checking from each embryonic cell.

By doing so, there is no need for duplication of functional units within

each cell. This architecture allows each immune cell or antibody cell to

continuously monitor its neighbouring embryonic cells for faults. Due to

the repeated checking of every embryonic cell by more than one

antibody cell, interaction between neighbouring antibody cells also

allows for error detection within each antibody cell. If the results from

the antibody cells that have checked the operation of the same

embryonic cell differ, then the faulty antibody cell is deactivated and the

array reconfigured [17].

Network interaction Antibody cell

Embryonic cell

 20

CHAPTER 5

BINARY IMMUNE SYSTEM

Binary immune system introduced in 1987 by Farmer, Packard and Perelson.

Instead of a genetic alphabet with four symbols (Adenine, Cytosine, Thymine, and

Guanine) the model uses a binary alphabet. Both receptors and intruders

(foreign/non-self cell or molecule) are represented as binary strings of fixed length.

5.1 Intrusion Selection Algorithm

The principles of self/non-self discrimination in the immune system are the

inspiration of the intrusion selection algorithm, where any intruder should be

distinguished from the body cells [20]. Below an abstract formulation of the

algorithm is presented.

Let U be the set of all binary strings of length ℓ; obviously |U|, the cardinality of U,

equals 2ℓ. Let S ⊆ U be a proper subset of U, called self strings, which represent

e.g. valid states of a system. The strings from the set U-S are referred to as non-self

strings. The problem relies upon constructing a set of detectors, denoted R, such

that each r ∈ R does not recognize any self string, and it should recognize at least

one non-self string representing invalid state of the system. This way of detecting

invalid states was proposed by [4] under the name of negative selection method. It

has a number of interesting features. The most important, among them, are [20]:

1. No prior knowledge of anomaly is requested.

 21

2. Detection is probabilistic and tuneable: instead of constructing a set of

detectors recognizing all non-self strings (complete repertoire) a smaller set

of detectors is generated. It recognizes all but a small fraction Pf (failure

probability) of non-self strings in exchange for a smaller set of detectors.

3. Detection is local: only small sections of data are checked and when a

detector does find an anomaly it can be localized to the string that the

detector is checking.

4. Detection is distributable: small sections of the protected system can be

checked separately and no communication among detectors is needed until

an anomaly is detected.

The strings from R can be loosely treated as a concise characterization of a notion

U-S. Denoting by R* the set of strings detected by the receptors in R, the problem

can be stated as follows: knowing the description of S, find a subset R ⊆ U-S of

minimal cardinality such that R* = U-S. Here, typically, the cardinality of S is

relatively small in comparison with the cardinality of U [20].

To implement the algorithm of identifying the set R the followings should be

defined in general: receptors representation (binary in our case), the method of their

activation (matching rule), and the method of receptors generation [20].

5.2 Matching Rules

There is no unique receptors activation method. Probably a simpler one is Hamming

matching: two strings x and y match (matchH(x,y)) under the rule if they have

different bits in at least c positions, 1 ≤ c ≤ ℓ, i.e.

matchH(x,y) iff dH(x,y) ≥ c (1)

 22

where dH(x,y) stands for the Hamming distance between x and y. The total number

of strings recognized by a single receptor r ∈ R under the Hamming match with

threshold c, DH(ℓ,c), equals

 DH(ℓ,c) = (2)

Knowing this number, pH(ℓ,c) - the probability that two random strings match at

least c bits can be easily found: pH(ℓ,c) = 2-ℓ·DH(ℓ,c) [20].

In this study c-contiguous bits rule [21] is used as a plausible abstraction of receptor

binding in the immune system. Two strings, x and y match under the rule if x and y

have the same bits in at least c contiguous positions. Suppose for instance that ℓ = 6,

c = 3 and assume that the strings r (receptor), x1 and x2 are of the form r = 110110,

x1 = 001100 and x2 = 010100. Then matchC(r,x1) = FALSE while matchC(r,x2) =

TRUE, so x1 is a self pattern and x2 is an antigen (anomaly) [20].

Figure 5.1 Matching under the c-contiguous rule

Matching under c-contiguous bits rule can be imagined as moving a window of

width c over the receptor (r) and tested (x) strings (Figure 5.1). If the two substrings

within the window are identical, receptor activates.

r 1 1 0 1 1 0
x2 0 1 0 1 0 0

ℓ
i

ℓ

Σ
i=c

 23

5.3 Templates

Moving the window of width c over the self strings (Figure 5.1), we can split each

of them into (ℓ-c+1) substrings of length c. These substrings induce templates to

build receptors. Since each receptor does not recognize any self string, s ∈ S, it is

obvious that it can not contain any template recognized in a self string.

To be more precise, let w be a binary string of length c (c is the threshold value).

Consider strings of length ℓ over the alphabet {0,1,*} where * stands for irrelevant.

By a template ti,w of order c, a string (of length ℓ), whose substring of length c taken

from position i equals w, and all the remaining positions of the template are filled

by the star symbol, is expressed. For instance, when ℓ = 6, c = 3, and w = 011 then

t1,w = 011***, t2,w = *011**, t3,w = **011*, and t4,w = ***011. A self string s =

001101 splits into four templates: t1,001 = 001***, t2,011 = *011**, t3,110 = **110*,

and t4,101 = ***101. A template of order c is a schema [22] of order1 c in which all

the significant bits are contiguous.

The set of all possible templates, denoted T, contains (ℓ-c+1)·2c different elements.

T can be split into two disjoint subsets: TS consisting of all the templates contained

in at least one self string and the set of remaining templates, TN, used to construct

receptor strings. Typically TS is a low fraction of T [20].

5.4 Discriminative Power of a Receptor

Consider a single receptor r = b1b2,...,bℓ where bi ∈ {0,1} denotes bit value at i-th

position, i = 1,...,ℓ. The problem is to find the number D(ℓ,c) of unique strings from

U detected (by means of the c-contiguous bits rule) by the receptor r. Obviously this

number depends on the receptor length and the threshold value only. To find D(ℓ,c)

all the templates ti,w constituting a given receptor by the set of schemas forming a

partition of the set of all detected strings will be represented. In other words, if

X = {x 1,...,xm} is the set of schemas generated by the receptor and u is an antibody

1 The order of a schema is defined as the number of relevant positions in this schema. For instance if
x1 = 0000**** and x2 = 00000*** the order(x1) = 4 and order(x2) = 5.

 24

detected by r then u is an instance2 of exactly one schema xi ∈ X. A schema derived

from a template ti,w has first (c+i-1) positions meaningful and remaining (ℓ-c-i+1)

positions are filled in by the star symbol. To find the number D(ℓ,c) two cases are

considered: a simpler one when c≥(ℓ/2) and more complicated case when c<(ℓ/2)

[20].

5.4.1 The Threshold Value c ≥ (ℓ/2)

In this case the number D(ℓ,c) can be found by counting the number of schemas

generated by the templates ti,w, i =1,...,ℓ-c+1. The template t1,u, where u = b1b2,...,bc,

detects strings that agree with the schema b1b2...bc*...* containing (ℓ-c) star

symbols. The template t2,v, where v = b2b3...bc+1, detects strings agreeing with the

schema *b2b3...bc+1*...* containing (ℓ-c-1) stars. According to our convention this

schema divides into two schemas: b1b2b3...bc+1*...* and (1-b1)b2b3...bc+1*...*, where

(1-b1) stands for the complement of b1. The first schema is an instance of the

schema induced by the template t1,u; hence only second schema is fresh, i.e. it

recognizes new strings. Similarly, the template t3,w, where w = b3b4,...bcbc+1bc+2

splits into four schemas: b1b2...bcbc+1bc+2*...*, (1-b1)b2...bcbc+1bc+2*...*, b1(1-

b2)...bcbc+1bc+2*...*, and (1-b1)(1-b2)...bcbc+1bc+2*...*. The first schema is an instance

of the schema generated by the first template and the second schema is an instance

of a schema generated by the second template. Thus only third and fourth schemas

are fresh. To list all fresh schemas generated by all the templates contained in a

receptor r, proceed as follows [23]:

a. Put on a first position of a list the schema induced by the first template.

b. Let current length of the list, k1, equals 1.

c. For any template ti,w (i=2,..., ℓ-c+1) do the following.

d. For j =1 to ki-1 copy j-th schema from the list to (k+j)-th position and

replace (i-1)-th bit in the schema by its complement, bi-1 < 1-bi-1.

e. Modify current length of the list: ki < ki-1 + ki-1 = 2i-1.

2 That is, if x = 00000*** then e.g. u = 00000101 is an instance of x.

 25

Table 5.1 shows the fresh (unique) schemas generated by four initial templates.

Table 5.1 Fresh (unique) schemas generated by four initial templates

Template

Substring
generating
template Fresh schemas generated by the template

T1,u u = b1b2…bc b1 b2 b3 b4 … bc * * * * … *

T2,v v = b2b3…bc+1 1-b1 b2 b3 b4 … bc bc+1 * * * … *

T3,w w = b3b4…bc+2 b1

1-b1
1-b2

1-b2
b3

b3
b4

b4
…
…

bc

bc
bc+1

bc+1
bc+2

bc+2
*
*

*
*

…
…

*
*

T4,x x = b4b5…bc+3 b1

1-b1
b1

1-b1

b2

b2

1-b2

1-b2

1-b3

1-b3

1-b3

1-b3

b4

b4

b4

b4

…
…
…
…

bc

bc

bc

bc

bc+1

bc+1

bc+1

bc+1

bc+2

bc+2

bc+2

bc+2

bc+3

bc+3

bc+3

bc+3

*
*
*
*

…
…
…
…

*
*
*
*

Observe that each template ti,w, (i=2,..., ℓ-c+1), divides into 2i-1 schemas (because it

contains i-1 leading star symbols) and only half of them is fresh. Thus i-th template

(i≥2) generates 2i-2 new schemas and each of them covers 2ℓ-c-i+1 different strings

(since each schema contains ℓ-c-i+1 star symbols). In summary, first template

covers 2ℓ-c strings and any other template ti,w, i=2,...,ℓ-c+1, covers 2i-2·2ℓ-c-i+1= 2ℓ-c-1

different strings. The total number of strings recognized by a receptor equals [23]:

D(ℓ,c) = 2ℓ-c + (ℓ-c)·2ℓ-c-1 = 2ℓ-c-1·(2+ℓ-c) (3)

The reasoning presented here easily extends to the case when strings over an

alphabet consisting of m symbols are considered. For instance when c ≥ (ℓ/2), each

template ti,w introduces (m-1) fresh schemata. Hence the total number of strings

recognized by a single receptor equals [23]:

Dm(ℓ,c) = mℓ-c +(ℓ-c)·(m-1)·mℓ-c-1 = mℓ-c -1·[(ℓ-c)·(m-1) + m] (4)

 26

Dividing Dm(ℓ,c) by mℓ (total number of strings), a formula describing the

probability that a randomly chosen string is detected by a receptor is obtained. It is

important however that both (3) and (4) are valid only if c ≥ (ℓ/2) [23].

5.4.2 The Threshold Value c < (ℓ/2)

This case is more complicated and considered in two cases: (a) c is close to (ℓ/2),

and (b) c is close to 1.

5.4.2.1 The Threshold Value is Close to (ℓ/2)

The procedure described to list all fresh schemas generated by all the templates

contained in a receptor r for threshold value c≥(ℓ/2) pretty works for i = 1,...,c+1.

Suppose now i = c+2 and c < ℓ/2. Then by step (d) of the procedure (c+1)-th bit

must be changed in all schemas belonging to the current list. But the first schema

from the list has star symbol on this position. It means that an empty string must be

inserted on (k+1)-th position since this schema has been exhausted by the first

template (see Table 5.2, first row in the block corresponding to the template t5,000).

Now if i = c+3, both the first and second schema from the list has star symbol on

(c+2)-th position. Further, current list contains empty string already introduced

when the template tc+2,w was converted into fresh schemas. Thus, when developing

the template tc+3,w we must insert 2+1 empty strings to the list. In general, the

number of empty strings introduced by i-th template, αi, equals [23]:

αi = 2i-c-2 + βi , i = c + 2, …, ℓ-c+1 (5a)

where

βj = αc+2 + … + αj-1 (5b)

is the number of empty strings already introduced when previous templates have

been developed. Table 5.3 shows the values of αi and βi for i = c+2,…,c+10 [23].

 27

Table 5.2 Fresh schemas induced by the receptor 00000000 with threshold c = 3

Template Schema Template Schema

t1,000 000***** t 6,000 empty

t2,000 1000**** empty

t3,000 01000*** 01001000
 11000*** 11001000

t4,000 001000** 00101000
 101000** 10101000
 011000** 01101000
 111000** 11101000

t5,000 empty empty
 1001000* 10011000
 0101000* 01011000
 1101000* 11011000
 0011000* 00111000
 1011000* 10111000
 0111000* 01111000
 1111000* 11111000

Table 5.3 Values of αi and βi defined in equations (5a), (5b)

 αi βi

c+2 1 0

c+3 3 1

c+4 8 4

c+5 20 12

c+6 48 32

c+7 112 80

c+8 256 192

c+9 576 448

c+10 1280 1024

 28

5.4.2.2 The Threshold Value is Close to 1

When c is relatively small, the number of reduced strings must be slightly modified.

When ℓ ≥ 2(c+1)+c+1 then for the i ≥ 2(c+1)+1, equation (5b) starts to count some

empty strings which are already introduced when previous templates have been

converted into schemata. The number of already counted empty strings is αj-k+1 and

the modified form of equation (5b) is:

βj = (5c)

5.5 Reduction of the Discriminative Power

Although a single receptor can distinguish D(ℓ,c) unique strings from the universe

U, its discriminative power radically changes when it cooperates with another

receptors. To be more illustrative consider two receptors 000000 and 001100, and

assume that the threshold c = 3. Using the method described in previous section it is

easily stated that both the receptors recognize 38 unique strings and not 2·D(6,3) =

40 strings. On the other hand, the ensemble consisting of two receptors 000000 and

100001 recognizes only 28 receptors [20].

Knowing D(ℓ,c), p(ℓ,c), the probability that a randomly chosen string u∈U matches

with a receptor (i.e. that u is an antigen) can be computed: p(ℓ,c) = D(ℓ,c)/2ℓ. When

c ≥ (ℓ/2) then [23],

p(ℓ,c) = 2ℓ-c-1·(ℓ-c+ 2)/2ℓ = 2-c·[((ℓ-c)/2) + 1] (6)

0 j ≤ c+2
αc+2 j = c+3
αc+2 + … + αj-1 c+3 < j < 2(c+1)+1
αc+2 + … + αj-1 - βj-c j ≥ 2(c+1)+1

 29

This formula was derived by Perelson [4] using binomial distribution and with

additional requirement that 2-c << 1.

In general, to estimate the average number of strings recognized by a set of n

receptors statistical approach should be used. Assuming that the receptors are

chosen independently pf(ℓ,c,n), the failure probability can be defined as [20]:

pf(ℓ,c,n) = (1- p(ℓ,c))n ≈ e-n.p(ℓ,c) (7)

This last approximation is valid for large values of n and small values of p(ℓ,c). The

average number of strings detected by n receptors is determined by the formula

[20]:

 d(ℓ,c,n) = (1 - pf(ℓ,c,n))·2ℓ (8)

and the average number strings detected by a single receptor among the ensemble of

cardinality n equals davg(ℓ,c,n) = d(ℓ,c,n)/n. Figure 5.2 shows how this number

varies for different values of ℓ, c and n [23]. The parameter ℓ and c were chosen

such D(ℓ,c) is fixed and equals 48.

To achieve maximal discrimination power of the receptors, they should be chosen

in such a way that each receptor enters maximal number of different schemas. To

achieve this, receptors must be build from diverse templates.

 30

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Number of receptors in the ensemble

N
um

be
r

of
 s

tr
in

gs
 d

et
ec

te
d

by

a
si

ng
le

 r
ec

ep
to

r

L=8, c=4 L=10, c=6 L=12, c=8

L=14, c=10 L=16, c=12

Figure 5.2 Reduction of the discriminative power of a single receptor

5.6 Lower Bound for The Fault Probability

The fault probability pf(ℓ,c,n) defined in formula (7) is applied to the case when S =

∅. When S ≠ ∅ it is not possible, in general, to construct detectors recognizing all

the strings from the set U-S. It is hard to define the lower bound analytically, but it

is relatively easy to treat the problem numerically. There are two sources of non-

detectability, which will be discussed below [23].

The first source are holes defined by D’haeseleer [25]. Intuitively by hole, any

string u ∈ U-S build up from the templates belonging to the set TS only, should be

understood.

Before introducing the second source of non-detectability, some useful notions are

introduced.

 31

Let w be a substring of length c. Denote by (→w) the substring obtained by deleting

the first bit from w, and by (w←) the substring resulted from deletion of last bit

from w. The symbol (→w)+b denotes the string (→w) appended with b, where b ∈

{0,1}, and similarly b+(w←) denotes b appended with (w←); obviously in both

cases the length of new strings is again c [23].

Wierzchoń [24] observed that the self strings can be represented as binary trees

whose nodes correspond to the templates: a template t1,w is said to be the root of a

tree. In general, given a template ti,w ∈ TS, 1 ≤ i ≤ (ℓ-c), template ti+1,(→w)+0 ∈ TS is

called as the left child of ti,w, and the template ti+1,(→w)+1 ∈ TS is called as the right

child of ti,w. Surely, if i+1 = ℓ-c+1 then the corresponding child is just a leaf of the

binary tree. By analogy, given a template ti,w ∈ TS, 2 ≤ i ≤ (ℓ-c+1), we call the

template ti-1,0+(w←) ∈ TS the left parent of ti,w, and the template ti-1,1+(w←)∈ TS the

right parent of ti,w [20].

The second source of non-detectability comes from the templates that can not be

used to construct receptors. Roughly speaking for each template ti,w ∈ TS parents

has to be checked: if a parent, say ti-1,v is not a member of TS, but both its children

are members of TS, ti-1,v is moved to the set TS, because it can not possible to

construct valid receptor which contains the template ti-1,v. Similarly, the children of

ti,w ∈ TS are checked: if a child, say ti+1,r is not a member of TS, but both its parents

are member of TS, ti+1,r is moved to the set TS [20].

Counting the number of strings induced by the modified set TS, whole number of

non-detectable strings which consists of the number of self strings, the number of

holes, and the number of additional non-detectable strings is determined.

5.7 Positive Tolerance Conditions

A new set of tolerance condition which is called positive tolerance conditions and

new method that these tolerance conditions use for self/non-self discrimination are

presented in this study.

 32

Receptors recognize non-self strings if there is at least one match between search

string and any receptor in the repertoire for c contiguous bits because all receptors

are constructed from only non-self templates and the string that has at least one non-

self template can not be self.

Positive tolerance conditions are constructed only from the self templates in other

words positive tolerance conditions are subset of self strings set, that is, they

include all the self templates but has less strings than self strings set. It is obvious

that maximum number of strings in the positive tolerance conditions set is equal to

the number of strings in the self strings set.

Discrimination method of the self/non-self strings or recognition of the non-self

strings are different from receptors for positive tolerance conditions. Unlike the

receptors a match between any positive tolerance condition and search string for c

contiguous position does not mean the search string is self or non-self. Positive

tolerance conditions recognize self strings if there are matches between search

string and positive tolerance conditions for every c contiguous bits.

 33

CHAPTER 6

SIMULATION

The software is written and compiled on Visual C++ 6.0. The simulator program is

given in the Appendix.

The purpose of the simulation is to find the receptor repertoires of the finite state

machines with the intrusion selection algorithm and to compute the failure

probabilities for the different combinations of receptors from repertoire.

6.1 Application

The flow chart of the simulation is presented in Figure 6.1. Each box represents one

step of the simulation. The boxes with grey background emphasizes the places

where the input is asked.

There are 7 different self strings sets and for every set, self strings are written to the

text documents by hand except last set.

Last self strings set is constructed by a function that is executed at the beginning of

the simulation. This function asks user the length of the strings and the number of

strings that will be generated. Then generates random numbers and computes the

binary equivalents of these numbers. By executing the simulator, user is confronted

with the small menu that asks user if he/she wants to generate random self strings

set. Generated self strings set is not erased when the simulation ends. This set is

kept in the text document until the random self string generator function is used and

new self strings set is written on the previous one.

 34

Figure 6.1 Flow chart of the simulation.

Greedy Method

Choosing Self Strings Set

Reading self strings sets from text document

Entering match length “c”

Constructing self template matrix

Parent/Child Check

Computing the # detectable non-self
strings &

Lower bound of the fault probability

Constructing receptor template matrix

Constructing receptor repertoire with
minimum number of receptors

Computing the # strings that can be
recognized

&
Fault probability for chosen method

Exhaustive Method Manually picking
receptors

Constructing positive tolerance conditions

 35

Then, the below menu that is used to choose self strings sets is displayed.

(1) 4-bit 0 to 9 BCD counter.

(2) 4-bit 0 to 9 BCD counter (with different bit-string representation).

(3) 4-bit 0 to 9 BCD counter (with different bit-string representation).

(4) 4-bit 0 to 9 Gray code counter (Excess-3 gray).

(5) PLA for unsigned binary multiplier.

(6) Example ASM.

(7) Randomly generated self strings set.

After choosing the one of the self strings set, simulation reads the data from the text

document. Simulation reads first character from the text document and writes it to

the first column of the first row of the matrix which is called self strings matrix.

Then it reads next symbol and writes it to the next column of the first row. When

simulation comes to the end of line, next character is written to the first column of

the next row of the self strings matrix. Simulation reads character until it reaches to

the end of document. Each string in the text document is a row in the self strings

matrix. Then self strings set of the FSM is displayed and the match length c to

compute the self templates is asked. Here the match length should be between 1 to

the length of the strings of the FSM. With entering the match length, self templates

are constructed and simulation displays the self template matrix, the number of self

templates and the number of holes generated by these templates. Self template

matrix has ℓ-c+1 columns and 2c rows.

By knowing self strings and match length, positive tolerance conditions can be

constructed.

A simple procedure, which is proposed in this study, gathers and organizes self

templates to construct the positive tolerance conditions set. First, the first column

(left most column) and the last column (right most column) of the self template

matrix are compared to choose the start point. The column that contains more

template is chosen as a start point. If both columns contain an equal number of

 36

templates than any column can be chosen (at these circumstances simulation

chooses last column). It is obvious that the column that contains the maximum

number of templates identifies the minimum number of strings in the positive

tolerance conditions set, because templates in the same column can not be used in

the same string. Consider that the first column contains more templates, then

positive tolerance conditions are constructed from first template to last, in other

words, parent to child or left to right (in self template matrix). First template of the

first column of the self template matrix, the template which has the minimal row

number, say t1,w, is chosen as a first template of the first positive tolerance condition

and the content of this node is increased by one. After that, children of this node are

checked. If child t2,(→w)+0 is a member of self template set, this template is used as a

second template and the value of the corresponding node is increased by one.

Otherwise other child t2,(→w)+1 is used and the value of this template is increased by

one. Continuing this reasoning first positive tolerance condition is created. After

construction of each positive tolerance condition the number of fresh templates (not

used in the previous positive tolerance conditions) are counted. Any template that

corresponding node in the self template matrix contains 1 is called fresh. If no fresh

template used in the positive tolerance condition then this is deleted from the

positive tolerance conditions set. Of course each template is considered as fresh for

only one receptor. It is obvious that the number of fresh templates added by the first

positive tolerance condition is ℓ-c+1. To construct the second positive tolerance

condition next template in the first column of the self templates matrix is used.

Then the children of this template are checked but in this case the least used child is

preferred. It means, if both children of this template are member of the self template

set then the contents of these children are compared and the one that contains lower

value (less used) is chosen. By using this procedure all the templates of the first

column of the self template matrix are used. After constructing each valid positive

tolerance condition (adds at least one fresh template) the number of fresh templates

added by the positive tolerance condition set and the total number of templates in

the self template matrix is compared. If there are templates which are not used in

the positive tolerance conditions, the same procedure is repeated. When the number

of fresh templates added by the positive tolerance conditions set reaches the total

 37

number of templates in the self template matrix, the procedure ends and positive

tolerance conditions and the number of non-self strings that they recognize are

displayed.

Although the number of non-self strings that positive tolerance conditions recognize

is simply the total number of strings minus number of self strings and number of

holes, simulation computes this number by computing the number of non-self

strings that each positive tolerance condition recognizes.

Then parents and children of all self templates are checked. After these

computations are performed, self template matrix, number of additional templates

(comes from checking parents and children of self templates) and the total number

of templates (self templates and additional templates) are displayed.

At this point, simple procedure counts the total number of non-detectable strings

(the strings that can not be detected even complete receptor repertoire used).

Suppose moving from the leaves toward the root of the tree (moving from right to

left in the modified self template matrix). A node tℓ-c,w in the matrix has at most two

children: tℓ-c+1,(→w)+0 and tℓ-c+1,(→w)+1. If both children are the member of the self

template set (contains 1), it means that two self strings can be constructed: one ends

with 0 and the second ends with 1. Hence the values of the self template matrix

should be updated according to the rule:

If T[w,i] =1 then T[w,i] = T[(→w)+0,i+1] + T[(→w)+1,i+1] , i = (ℓ-c,…,1)

Modification of the self template matrix may result with updating some nodes with

0 which were member of self template set (previously contains 1). This can only

happen when both children of the node are not member of self template set (both

contains 0) and this is only possible for additional templates. Because self template

matrix will also be used to create receptor template matrix, update procedure should

be carried out on the replica of the self template set. After updating procedure,

 38

summing up all the entries (nodes) in the first column of the replica matrix will give

the total number of non-detectable strings.

The updated copy of the self template matrix, total number of non-detectable

strings, the number of detectable non-self strings (when complete receptor

repertoire is used) and the percentage of the number of detectable non-self strings to

the number of all non-self strings are displayed. Because the number of detectable

non-self strings is known, lower bound of the fault probability can be calculated and

displayed. Lower bound of the fault probability means that the failure probability of

of the system when complete receptor repertoire is used.

After the computation of the number of detectable non-self strings simulation starts

to construct the receptor repertoire. The 0’s in the self template matrix are identifies

the templates that can be used to construct receptor repertoire. New matrix which is

called receptor template matrix is created. This new matrix is replica of the self

template matrix. Because 0’s in the self template matrix are identifies the receptor

templates, each node in the receptor templates matrix has to be changed such that

T[w,i] = 1 - T[w,i].

After constructing the receptor template matrix total number of templates to

construct receptors and maximum number of receptor that can be constructed by

these templates are displayed. The procedure of computing the maximum number of

receptors is the same procedure that was used to compute the total number of non-

detectable strings. At this point, the copy of the receptor template matrix has to be

used to avoid loss of data as explained in computation of the number of non-

detectable strings.

Now the problem is to find the minimal number of receptors that recognizes all

detectable non-self strings which includes all the templates in the receptor template

matrix. Receptors are constructed with the same procedure which is used in the

positive tolerance conditions construction.

 39

After the procedure, complete receptor repertoire and the number of non-self strings

recognized by the repertoire is displayed.

This simple menu is displayed under the complete receptor repertoire.

(0) – EXIT.

(1) – Select Receptors one by one.

(2) – Exhaustive Method to select receptors.

(3) – Greedy Algorithm to select receptors.

With using this menu receptor ensembles from the receptor repertoire can be

chosen. To compute the number of strings that one receptor recognizes or receptor

ensemble recognize, two new matrix is created. First matrix which contains all

possible strings that can be created for the strings length is called AllString. It has 2ℓ

rows and ℓ columns. The other is called Flag which is used as a flag matrix for

AllString matrix. It has 2ℓ rows and 1 column. When receptor recognizes a string

from the AllString matrix, the corresponding row in the Flag matrix is set to 1.

By choosing “Select Receptors one by one”, the number of strings that can be

recognized by each receptor in the receptor repertoire can be computed. Simulation

asks to enter the row number of receptor in the receptor matrix. Counting the

number of strings that the chosen receptor recognizes is done in this way: first

templates of the receptor and first string in the AllString matrix are compared, if

there is a match, the corresponding row (first row) in the Flag matrix is set and next

string in the AllString matrix and receptor are compared. If not the other templates

are compared. If there are no matches between receptor and the first string for ℓ-c+1

templates then the chosen receptor does not recognize the first string. It is important

to note that if there is a match between templates of the receptor and the

corresponding template of the compared string there is no need to check other

templates because one match is sufficient enough to identify string as a non-self.

Therefore match between first templates lets next string be compared without

comparing other templates. When all strings in the AllString matrix and the receptor

are compared, the number of strings that chosen receptor recognizes is computed by

 40

counting the number of 1’s in Flag matrix. The number of strings recognized and

the failure probability are displayed. Entering the row number of other receptor is

resulted with displaying the total number of strings recognized by these two recep-

tors. Entering “-1” clears the Flag matrix and entering “0” turns back to the menu.

By choosing “Exhaustive Method to select receptors”, simulation asks user to enter

the number of receptor. For the entered value k, all k combinations of the receptor

repertoire are computed and the best result is displayed. Here the best result means

the highest number of strings recognized (lowest failure probability) by k strings.

For the receptor repertoire which has a lot of receptors, this computation takes very

long time. For large receptor repertoires, other method that makes computation

more simple is needed.

By choosing “Greedy Algorithm to select receptors”, simulation asks user to enter

the number of receptor. For the entered value k (2 ≤ k ≤ receptor repertoire), greedy

algorithm chooses receptors as follows: first the number of strings recognized by

every couple in the receptor repertoire are computed and the couple that recognizes

largest number of strings is chosen. After that if the k is bigger than 2, at least one

new receptor has to be added to this couple. Next receptor is chosen in this way:

first receptor of the receptor repertoire (chosen receptors are not included) is chosen

and the number of strings which these three receptor recognize is computed. Then

every other receptors in the repertoire are added to the couple one by one and the

receptor that recognize maximum number of strings with the couple is chosen. This

procedure is repeated until the number of receptors in the ensemble reaches to k.

 41

CHAPTER 7

IMPLEMENTATION, RESULTS AND ANALYSIS

In this chapter, different self strings sets of the FSMs will be used to analyze the

behaviour of the binary immune system. A number of parameters, computed by

simulation, will be presented and the reasons of the variation in these parameters

will be investigated.

7.1 Implementation

In this study the immunization of the small systems are demonstrated. Fault-

detection hardware is relatively simple to extract the data from the system under

test, and a memory device with simple control logic. Generic model of hardware

immune system was demonstrated in Figure 4.3. The detailed form of that model is

presented in Figure 7.1.

In this detailed implementation, 0 to 9 BCD counter is protected or immunized.

Under normal operation, only self strings are present. The presence of a fault

creates a non-self (invalid) state.

The string generation component of this implementation gathers the user inputs

(Count and Reset) and system state (or output) from the state machine, combining

with the previous system state to create a search string for presentation to the

immune system memory. The generated string is sent to the argument register of the

memory unit.

 42

Figure 7.1 Fault-detection hardware

The partial-matching content-addressable memory (CAM) stores the tolerance

conditions (receptor repertoire) and returns a positive result if c contiguous bits out

of ℓ match the search string.

The key register provides a mask for choosing c contiguous bits in the argument

register. Only the bits in the argument that have 1’s in their corresponding position

of the key register are compared. The block diagram of CAM is shown in Figure

7.2.

Counter C

R

DELAY

PREVIOUS CURRENT C R

KEY REGISTER

CAM
Tolerance Conditions
(Receptor Repertoire)

Wait

String
Generation

Module

State

4

Shift Right

Output

Inputs

Argument
Register

 43

Figure 7.2 Block diagram of partial matching CAM

The immunized state machine is monitored at every change of state and the

gathered data sent to the tolerance condition memory and searched. A string is

deemed non-self if any tolerance condition matches the generated string in c

contiguous position.

7.2 Self Strings Sets

5 different sources are used to generate self strings sets and these are:

• 4-bit 0 to 9 binary coded decimal (BCD) counter.

• 4-bit 0 to 9 Gray code counter (Excess-3 gray).

• PLA for binary multiplier.

• Control system of the example ASM.

• Randomly generated self strings set.

The structure and function of the 4-bit 0 to 9 BCD counter is presented in Table 7.1.

Argument Register (A)

Key Register (K)

CAM

n words
ℓ bits per word

ℓ

ℓ Data in

Match

 44

Table 7.1 Structure and function of the BCD counter

Function 0 to 9 counter
States 10
Size (bits) 4
Inputs Count (C)

Reset (R)
Operation Incremental count (C=1, R=0)

Hold (C=0, R=0)
Reset (C=X, R=1)

Three different self strings sets are generated from BCD counter according to the

bit-string representation of the strings. Self strings sets of both BCD and Gray code

counters are generated by combining the two inputs, count and reset, previous and

current states. Each string in these sets is 10 bit in length. Figure 7.3 shows the 3

different bit-string representation for BCD counter.

Figure 7.3 Bit-string representations of BCD counter

Because 10 valid states and 22 valid inputs to determine the forthcoming state, there

are 40 strings that define self and hence valid operation in the self strings sets of the

both BCD and Gray code counters. For the BCD counter defined in Table 7.1, all

self strings with bit-string representation of Count/Reset/Previous State/Current

State is given in Table 7.2. Number of self strings and total number of non-self

strings for 4-bit 0 to 9 BCD counter and Gray code counter are 40 and 984

respectively.

Count (C) / Reset (R) / Previous State / Current State

Count (C) / Reset (R) / Current State / Previous State

Reset (R) / Current State / Count (C) / Previous State

 45

Table 7.2 Self strings set of the counter (C/R/Previous/Current)

Inputs
C R

Previous State Current State

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0 1
0 0 0 1 1 0 0 1 1 0
0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1 1
1 0 0 0 1 1 0 1 0 0
1 0 0 1 0 0 0 1 0 1
1 0 0 1 0 1 0 1 1 0
1 0 0 1 1 0 0 1 1 1
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 0 1 0 0 1
1 0 1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0

 46

4-bit 0 to 9 Gray code counter is a counter whose flip-flops go through a sequence

of states as specified in Table 7.3.

Table 7.3 4-bit 0 to 9 Gray code counter (Excess-3 gray)

Binary code Decimal equivalent

0010 0

0110 1

0111 2

0101 3

0100 4

1100 5

1101 6

1111 7

1110 8

1010 9

The third system that will be protected is the programmable logic array (PLA) for

binary multiplier. In this example PLA controls the arithmetic circuit that multiplies

two unsigned binary numbers and produces their binary products. Data processor

for binary multiplier is presented in Figure 7.4 [23].

Figure 7.4 Data processor for binary multiplier

Register B

Parallel adder

Register A Register Q

Q1

E

Cout
Counter P

Check for zero

Sum

Z = 1 if P = 0

0

 47

ASM chart of binary multiplier and PLA control block diagram are given in Figure

7.5 and Figure 7.6 respectively [23].

Figure 7.5 ASM chart for binary multiplier

PLA control has 3 inputs, S, Q1 and Z, and 5 outputs, T0, T1, T2, D and T3. Output D

represents the conditional operation Q1T2.

Initial state

S

A ← 0
E ← 0
P ← n

P ← P - 1

Q1

Shift right EAQ

A ← A + B, E ← Cout

Z
S

0 1

0

0 1

1

T0 00

T1 01

T2 10

T3 11

 48

Figure 7.6 PLA control block diagram

Two self strings sets are constructed from the PLA control according to their bit-

string representations. Bit-string representation of the first set is Present

State/Inputs/Next State/Outputs and the second set is State/Outputs/Next State/In-

puts. In contrast to previous systems, combining 2-bit present state, 3 input, 2-bit

next state and 5 output data together creates 12-bit-strings that need to be protected.

The number of self strings for PLA control is 32 and the state table for the control

subsystem of the binary multiplier is shown in Table 7.4 [23].

Table 7.4 State table for PLA control

Present State Inputs Next State Outputs
G1 G2 S Z Q1 G1 G2 T0 T1 T2 D T3

0 0 0 X X 0 0 1 0 0 0 0

0 0 1 X X 0 1 1 0 0 0 0

0 1 X X X 1 0 0 1 0 0 0

1 0 X X 0 1 1 0 0 1 0 0

1 0 X X 1 1 1 0 0 1 1 0

1 1 X 0 X 1 0 0 0 0 0 1

1 1 X 1 X 0 0 0 0 0 0 1

T3

D = Q1T2

T2

T1

T0

 7

5 6

4 5

3 4

2 3

1 2

 1

G2

G1

Q1

Z

S

 49

The next self strings set is constructed from the control system of the ASM chart in

Figure 7.7 [23].

Figure 7.7 ASM chart of an example

Control system has 4 inputs, w, x, y and z, and 4 outputs, T0, T1, T2 and T3. The

decision boxes specify the state transitions as a function of the four control inputs.

The state table of the control circuit is presented in Table 7.5 [23].

T2 10

w

x

y y

z z

T0 00

T1 01

T3 11

0

0

0 0

0

0

1

1 1

1

1

1

 50

Table 7.5 State table of control circuit

Present State Inputs Next State Outputs
G1 G2 w x y z G1 G2 T0 T1 T2 T3

0 0 0 X X X 0 0 1 0 0 0

0 0 1 X X X 0 1 1 0 0 0

0 1 X 1 X X 1 0 0 1 0 0

0 1 X 0 X X 1 1 0 1 0 0

1 0 X X 0 X 0 0 0 0 1 0

1 0 X X 1 0 1 0 0 0 1 0

1 0 X X 1 1 1 1 0 0 1 0

1 1 X X 0 1 0 1 0 0 0 1

1 1 X X 1 X 1 0 0 0 0 1

1 1 X X 0 0 1 1 0 0 0 1

From control circuit two self strings sets are constructed. Bit-string representations

of these sets are Present State/Inputs/Next State/Outputs and Present State/Outputs/

Next State/Inputs. Combining 2-bit present state, 4 input, 2-bit next state and 4

output data together creates 12-bit strings that need to be protected. The number of

self strings for the control circuit is 64.

Last self strings set is not constructed from the FSM. Small program fragment

constructs these strings. Strings are constructed by the random number generator of

the C++. Length of the strings and the number of strings in the self strings set are

given to the program and program randomly generates the numbers and computes

the binary equivalents (strings) and writes these into the text document.

7.3 Parameters

Simulation evaluates a number of parameters and these parameters are used to

analyze the behaviour of the binary immune system for different examples. The

explanation of these parameters are presented in Table 7.6. For each self strings set

these parameters are evaluated and presented.

 51

Table 7.6 Description of the parameters

Parameter Description

Self templates Templates that are constructed by self strings
set for chosen match length

Holes Strings that are constructed from only self
templates (self strings are not included)

Positive tolerance conditions The strings set that includes all and only self
templates with minimum number of strings

Additional templates Templates that can not be used to construct
receptor

Detectable non-self strings Strings that can be recognized by the complete
receptor repertoire

Failure probability (Pf) The probability that the system fails when it is
confronted with the invalid operation (non-self
string)

Lower bound for the failure
probability

The failure probability of the system when
complete receptor repertoire is used

Receptor templates Templates that can be used to construct
receptors

Complete receptor repertoire The set of receptors that covers all the receptor
templates

Minimum repertoire size The minimum number of receptors in the
complete receptor repertoire

7.4 Results

Self template matrix of the first self strings set which is generated from 4-bit 0 to 9

BCD counter is presented in Table 7.7. For this set, the length of the strings (ℓ) is

10 and for this particular example match length (c) is 5. Table 7.7 consists of 6

(ℓ-c+1) column and 32 (2c) rows. Nodes that contain “1” represent self templates.

 52

Table 7.7 Self template matrix of BCD counter (ℓ = 10, c = 5)

w T[w,1] T[w,2] T[w,3] T[w,4] T[w,5] T[w,6]
00000 1 1 1 1 1 1
00001 1 1 0 0 0 1
00010 1 1 1 1 1 1
00011 1 1 0 0 0 1
00100 1 1 1 1 1 1
00101 0 1 0 0 0 1
00110 0 1 1 1 0 1
00111 0 1 0 0 0 1
01000 1 1 1 1 1 1
01001 1 1 0 0 1 1
01010 1 0 1 0 1 0
01011 1 0 0 0 1 0
01100 1 0 1 1 1 0
01101 0 0 0 1 0 0
01110 0 0 1 0 0 0
01111 0 0 1 0 0 0
10000 1 1 1 1 1 1
10001 1 1 1 1 1 1
10010 1 1 1 0 0 1
10011 1 1 1 0 1 1
10100 1 1 0 1 0 1
10101 0 1 0 1 0 1
10110 0 1 0 0 0 1
10111 0 1 0 0 0 1
11000 1 1 0 1 1 1
11001 1 1 0 1 1 1
11010 1 0 0 0 1 0
11011 1 0 0 0 1 0
11100 1 0 0 1 0 0
11101 0 0 0 1 0 0
11110 0 0 0 1 0 0
11111 0 0 0 0 0 0

There are 105 self templates and 87 non-self templates. This self template set causes

184 holes, non-self strings that build up from the self template set.

 53

Positive tolerance conditions which are constructed from the self templates pres-

ented in Table 7.7 are shown in Table 7.8.

Table 7.8 Positive tolerance conditions for BCD counter (ℓ = 10, c = 5)

 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0 1
3 0 0 0 1 1 0 0 0 1 0
4 0 1 0 0 1 0 0 0 1 1
5 0 0 0 1 0 0 0 1 0 0
6 0 1 0 1 0 0 0 1 0 1
7 0 1 0 1 1 0 0 1 1 0
8 1 0 0 1 1 0 0 1 1 1
9 0 0 1 0 0 0 1 0 0 0
10 0 1 1 0 0 0 1 0 0 1
11 1 0 0 0 0 1 0 0 0 0
12 1 0 0 0 1 1 0 0 0 1
13 1 0 0 1 0 1 0 0 1 0
14 0 0 0 1 1 1 0 0 1 1
15 1 1 0 1 0 1 0 1 0 0
16 1 1 0 0 1 1 0 1 0 1
17 0 0 0 1 0 1 0 1 1 0
18 1 1 0 1 1 1 0 1 1 1
19 1 0 1 0 0 1 1 0 0 0
20 1 0 0 1 1 1 1 0 0 1
21 1 0 0 1 0 0 0 0 0 0
22 1 1 1 0 0 0 1 0 0 1
23 0 1 1 0 0 1 0 0 0 0
24 0 0 1 0 0 0 0 0 0 0
25 0 1 0 0 0 1 0 0 0 0
26 1 1 0 0 0 0 0 0 0 0

As it is seen from Table 7.8 there are 26 positive tolerance conditions and these

positive tolerance conditions recognize 800 (81%) non-self strings. It means the

failure probability when all 26 positive tolerance conditions are used, is 0,813.

 54

Table 7.9 shows the modified self template matrix (added templates from parents

and children check). Added templates, which are bold in Table 7.9, are the non-self

templates but can not be used to construct receptors.

Table 7.9 Modified self template matrix for BCD counter (ℓ = 10, c = 5)

w T[w,1] T[w,2] T[w,3] T[w,4] T[w,5] T[w,6]
00000 1 1 1 1 1 1
00001 1 1 1 1 1 1
00010 1 1 1 1 1 1
00011 1 1 1 1 1 1
00100 1 1 1 1 1 1
00101 0 1 1 1 0 1
00110 0 1 1 1 0 1
00111 0 1 1 1 0 1
01000 1 1 1 1 1 1
01001 1 1 1 1 1 1
01010 1 0 1 0 1 0
01011 1 0 1 0 1 0
01100 1 0 1 1 1 0
01101 0 0 1 1 0 0
01110 0 0 1 0 0 0
01111 0 0 1 0 0 0
10000 1 1 1 1 1 1
10001 1 1 1 1 1 1
10010 1 1 1 0 1 1
10011 1 1 1 0 1 1
10100 1 1 1 1 1 1
10101 0 1 0 1 0 1
10110 0 1 1 0 0 1
10111 0 1 0 0 0 1
11000 1 1 1 1 1 1
11001 1 1 0 1 1 1
11010 1 0 1 0 1 0
11011 1 0 0 0 1 0
11100 1 0 1 1 0 0
11101 0 0 0 1 0 0
11110 0 0 1 1 0 0
11111 0 0 0 0 0 0

 55

The “0”s in the modified template matrix represent the templates that can be used to

construct receptors. There are 65 templates in the receptor template matrix which is

illustrated in Table 7.10.

Table 7.10 Receptor template matrix for BCD counter (ℓ = 10, c = 5)

w T[w,1] T[w,2] T[w,3] T[w,4] T[w,5] T[w,6]
00000 0 0 0 0 0 0
00001 0 0 0 0 0 0
00010 0 0 0 0 0 0
00011 0 0 0 0 0 0

00100 0 0 0 0 0 0
00101 1 0 0 0 1 0
00110 1 0 0 0 1 0
00111 1 0 0 0 1 0
01000 0 0 0 0 0 0
01001 0 0 0 0 0 0
01010 0 1 0 1 0 1
01011 0 1 0 1 0 1
01100 0 1 0 0 0 1
01101 1 1 0 0 1 1
01110 1 1 0 1 1 1
01111 1 1 0 1 1 1
10000 0 0 0 0 0 0
10001 0 0 0 0 0 0
10010 0 0 0 1 0 0
10011 0 0 0 1 0 0

10100 0 0 0 0 0 0
10101 1 0 1 0 1 0
10110 1 0 0 1 1 0
10111 1 0 1 1 1 0
11000 0 0 0 0 0 0
11001 0 0 1 0 0 0
11010 0 1 0 1 0 1
11011 0 1 1 1 0 1
11100 0 1 0 0 1 1
11101 1 1 1 0 1 1
11110 1 1 0 0 1 1
11111 1 1 1 1 1 1

 56

One possible receptor repertoire that contains minimum number of receptors is

presented in Table 7.11.

Table 7.11 Receptor repertoire for BCD counter (ℓ = 10, c = 5)

 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 1 0 1 0
2 0 0 1 0 1 0 1 0 1 1
3 0 1 1 1 0 0 1 1 0 0
4 0 1 1 0 1 0 1 1 0 1
5 1 0 1 1 0 0 1 1 1 0
6 0 0 1 1 1 0 1 1 1 1
7 0 0 1 1 0 1 1 0 1 0
8 1 0 1 0 1 1 1 0 1 1
9 1 1 1 1 0 1 1 1 0 0
10 1 1 1 0 1 1 1 1 0 1
11 1 0 1 1 0 1 1 1 1 0
12 1 0 1 1 1 1 1 1 1 1
13 0 1 1 1 1 0 1 0 1 1
14 1 1 1 1 1 1 1 1 1 1

Detectable non-self strings that these 14 receptors recognize is 664 (67%) and lower

bound for the failure probability is 0.3252.

In Table 7.12, parameters of the 4-bit 0 to 9 BCD counter with bit-string representa-

tion of C/R/Previous/Current for match length 2 ≤ c ≤ 10 are presented. For match

length c < 4 no unique receptors (tolerance conditions) are possible as a match

occurs between at least one self string and any receptor. Also for c = 10 every

receptor matches a unique single non-self string. This self strings set is chosen as a

verification of the simulation. Same results at Table 7.12 were presented in [17] and

[10].

 57

Table 7.12 Parameters of the 4-bit 0 to 9 BCD counter (C/R/Previous/Current)

Match Length 2 3 4 5 6 7 8 9 10

Self Templates 34 53 74 105 122 111 93 70 40

Holes 536 344 320 184 80 39 20 10 0

Positive Tol.
Conditions

7

45%

13

65%

13

67%

26

81%

40

91%

40

96%

40

97%

40

98%

40

100%

Additional
Templates

2 11 9 22 62 37 24 10 0

Detectable
Non-Self Strings

0 0
584

59%

664

67%

784

80%

913

93%

932

95%

954

97%

984

100%

Pf (Lower Bound) - - 0.406 0.325 0.203 0.072 0.052 0.030 0

Receptor Temp. - - 29 65 136 364 651 944 984

Minimum
Repertoire Size

- - 6 14 42 103 222 472 984

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.8 Failure probability vs. match length
for 4-bit 0 to 9 BCD counter (C/R/Previous/Current)

The failure probability versus match length, when complete receptor repertoire is

used, is given in Figure 7.8. Lower bound for the failure probability is computed as

the ratio of unrecognized non-self strings to all non-self strings.

 58

In Table 7.13, again the parameters of the 4-bit 0 to 9 BCD counter is presented. In

this example, bit-string representation of the strings is C/R/Current/ Previous. In

Figure 7.9, the lower bound for failure probability versus match length is shown.

Table 7.13 Parameters of the 4-bit 0 to 9 BCD counter (C/R/Current/Previous)

Match Length 2 3 4 5 6 7 8 9 10

Self Templates 33 48 64 81 90 84 74 60 40

Holes 440 216 176 72 48 22 16 10 0

Positive Tol.
Conditions

6

55%

10

78%

11

82%

21

92%

25

95%

28

97%

29

98%

30

98%

40

100%

Additional
Templates

3 16 7 27 27 27 17 0 0

Detectable
Non-Self Strings

0 0
712

72%

768

78%

920

93%

920

93%

954

97%

974

99%

984

100%

Pf (Lower Bound) - - 0.276 0.219 0.065 0.065 0.030 0.010 0

Receptor Temp. - - 41 84 203 401 677 964 984

Minimum
Repertoire Size

- - 6 20 49 109 228 482 984

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.9 Failure probability vs. match length
for 4-bit 0 to 9 BCD counter (C/R/Current/Previous)

 59

The parameters in Table 7.14 are again computed from 4-bit 0 to 9 BCD counter but

bit-string representation is R/Previous/C/Current. For c ≤ 4, it is not possible to

construct any receptor.

Table 7.14 Parameters of the 4-bit 0 to 9 BCD counter (R/Previous/C/Current)

Match Length 2 3 4 5 6 7 8 9 10

Self Templates 34 54 80 120 138 130 110 78 40

Holes 536 360 324 308 62 36 14 4 0

Positive Tol.
Conditions

6

45%

13

63%

18

67%

22

68%

40

93%

40

96%

40

98%

40

99%

40

100%

Additional
Templates

2 10 32 2 51 23 7 2 0

Detectable
Non-Self Strings

0 0 0
676

68%

762

77%

912

93%

957

97%

976

99%

984

100%

Pf (Lower Bound) - - - 0.313 0.225 0.073 0.027 0.008 0

Receptor Temp. - - - 70 131 359 651 944 984

Minimum
Repertoire Size

- - - 13 32 95 219 472 984

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.10 Failure probability vs. match length
for 4-bit 0 to 9 BCD counter (R/Current/C/Previous)

 60

In Table 7.15, the parameters of the 4-bit 0 to 9 Gray code counter (Excess-3 gray)

are indicated. In Figure 7.11, lower bounds for failure probabilities of the Gray code

counter against match length illustrated.

Table 7.15 Parameters of the 4-bit 0 to 9 Gray code counter (C/R/Previous/Current)

Match Length 2 3 4 5 6 7 8 9 10

Self Templates 34 53 82 106 121 110 94 70 40

Holes 536 344 336 128 50 17 12 8 0

Positive Tol.
Conditions

6

45%

12

65%

20

65%

27

86%

40

94%

40

98%

40

98%

40

99%

40

100%

Additional
Templates

2 11 30 35 72 36 20 10 0

Detectable
Non-Self Strings

0 0 0
592

60%

656

67%

894

91%

966

98%

956

97%

984

100%

Pf (Lower Bound) - - - 0.398 0.333 0.091 0.018 0.028 0

Receptor Temp. - - - 51 127 366 654 944 984

Minimum
Repertoire Size

- - - 13 34 101 226 472 984

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.11 Failure probability vs. match length
for 4-bit 0 to 9 Gray code counter (C/R/Current/Previous)

 61

Next system is PLA control for the binary multiplier. Bit-string representation of

the strings is Preset State/Inputs/Next State/Outputs. The parameters of the PLA

control and the lower bounds of the failure probability of the PLA control for

various match lengths are listed in Table 7.16 and Figure 7.12 respectively.

Table 7.16 Parameters of PLA control (Present State/Inputs/Next State/Outputs)

Match Length 2 3 4 5 6 7 8 9 10 11 12

Self Temp. 40 62 95 133 133 131 128 116 96 64 32

Holes 1504 608 320 144 20 8 8 0 0 0 0

Positive Tol.
Conditions

5

62%

8

85%

16

92%

32

96%

32

99%

32

99%

32

99%

32

100%

32

100%

32

100%

32

100%

Additional
Templates

4 18 49 123 56 57 28 12 0 0 0

Detectable
Non-Self
Strings

0 0 0 0
3970

98%

3880

95%

3988

98%

4040

99%

4064

100%

4064

100%

4064

100%

Pf - - - - 0.023 0.045 0.018 0.005 0 0 0

Receptor
Templates

- - - - 259 580 1124 1920 2976 4032 4064

Minimum
Repert Size

- - - - 55 100 228 480 992 2016 4064

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.12 Failure probability vs. match length
for PLA control (Present State/S/Z/Q1/Next State/T0/T1/T2/D/T3)

 62

Parameters and lower bound for failure probability versus match length graphic are

presented in Table 7.17 and Figure 7.13 for bit-string representation of Present

State/Outputs/Next State/Inputs.

Table 7.17 Parameters of PLA control (Present State/Outputs/Next State/Inputs)

Match Length 2 3 4 5 6 7 8 9 10 11 12

Self Temp. 42 54 91 105 111 107 103 94 79 58 32

Holes 2272 908 412 122 48 18 13 3 0 0 0

Positive Tol.
Conditions

7

44%

9

77%

19

89%

25

96%

27

98%

29

99%

31

99%

31

%99

32

%100

32

100%

32

100%

Additional
Templates

2 15 53 36 34 41 29 22 13 6 0

Detectable
Non-Self
Strings

- - -
3677

90%

3938

97%

3988

98%

4037

99%

4013

99%

4044

99%

4052

99%

4064

100%

Pf (Lower
Bound)

- - - 0.095 0.031 0.018 0.006 0.012 0.004 0.002 0

Receptor
Templates

- - - 115 303 620 1148 1932 2980 4032 4064

Minimum
Rep. Size

- - - 19 52 113 241 486 996 2016 4064

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.13 Failure probability vs. match length
for PLA control (Present State/T0/T1/T2/D/T3/Next State/S/Z/Q1)

 63

The next example is the control circuit of the ASM which is presented in Figure 7.7.

In Table 7.18, the parameters of this control circuit are given. In Figure 7.14, the

lower bound for failure probability vs. match length is illustrated for control circuit.

Table 7.18 Parameters of control circuit (Present State/Inputs/Next State/Outputs)

Match Length 2 3 4 5 6 7 8 9 10 11 12

Self Temp. 41 67 109 174 230 243 244 232 192 128 64

Holes 1984 960 576 408 152 68 40 26 0 0 0

Positive Tol.
Conditions

4

50%

8

76%

16

85%

32

89%

64

96%

64

98%

64

99%

64

%99

64

100%

64

100%

64

100%

Additional
Templates

3 13 35 82 218 96 69 24 0 0 0

Detectable
Non-Self
Strings

0 0 0 0 0
3724

92%

3810

94%

3932

98%

4032

100%

4032

100%

4032

100%

Pf - - - - - 0.076 0.055 0.024 0 0 0

Receptor
Templates

- - - - - 429 967 1792 2880 3968 4032

Minimum
Rep. Size

- - - - - 92 201 448 960 1984 4032

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.14 Failure probability vs. match length
for control circuit (Present State/x/y/z/w/Next State/T0/T1/T2/T3)

 64

The parameters and the same figure are presented in Table 7.19 and Figure 7.15

when bit-string representation is Present State/Outputs/Next State/Inputs.

Table 7.19 Parameters of control circuit (Present State/Outputs/Next State/Inputs)

Match Length 2 3 4 5 6 7 8 9 10 11 12

Self Temp. 39 58 83 116 142 154 157 148 132 104 64

Holes 1280 568 72 54 22 4 0 0 0 0 0

Positive Tol.
Conditions

5

68%

8

85%

16

98%

30

98%

46

99%

56

99%

64

100%

64

100%

64

100%

64

100%

64

100%

Additional
Templates

5 22 61 59 94 103 101 80 52 24 0

Detectable
Non-Self
Strings

- - -
3798

94%

3972

99%

3700

92%

3872

96%

3864

96%

3924

97%

3984

99%

4032

100%

Pf - - - 0.058 0.014 0.082 0.039 0.041 0.026 0.011 0

Receptor
Templates

- - - 81 212 511 1022 1820 2888 3968 4032

Minimum
Rep. Size

- - - 27 59 105 226 468 968 1984 4032

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

Figure 7.15 Failure probability vs. match length
for control circuit (Present State/T0/T1/T2/T3/Next State/x/y/z/w)

 65

7.5 Analysis

First three self strings sets in the simulation are constructed from 0 to 9 BCD

counter and the length of the strings is 10. The only difference between these sets is

the bit-string representations of the strings. The next example is 0 to 9 Gray code

(Excess-3) counter and length of the strings is 10 as well. The bit-string

representation of the self strings set of the Gray code counter is the same as the first

self strings set of the BCD counter. Both 0 to 9 BCD counter and Gray code counter

has 40 self strings therefore 984 non-self strings to be recognized. In Figure 7.16,

the number of detectable non-self strings versus match length is presented for these

four self strings sets.

400

500

600

700

800

900

1000

3 4 5 6 7 8 9 10

Match Length (c)

D
et

ec
ta

bl
e

N
on

-s
el

f
S

tr
in

gs

0 to 9 BCD counter (C/R/Previous/Current)

0 to 9 BCD counter (C/R/Current/Previous)

0 to 9 BCD counter (R/Previous/C/Current)

0 to 9 Gray code counter (C/R/Previous/Current)

Figure 7.16 The number of detectable non-self strings vs. match length
for self strings sets of counters

 66

It can be seen from the figure that for 0 to 9 BCD counter for the bit-string

representation of R/Previous/C/Current, unlike other bit-string representations of

the same counter, for c = 4, no unique receptors are possible as a match occurs

between at least one self string and any receptor. Because only difference between

these sets are the bit-string representations, it can be said that the number of

detectable non-self strings and also lower bound for failure probability strongly

depends on the structure of the self strings set.

The length of the self strings for the PLA control and control circuit of example

ASM is 12. Therefore 4096 different strings can be constructed for these systems.

The number of self strings are 32 and 64 for PLA control and control circuit of the

last example respectively. Number of detectable non-self strings against match

length figure, Figure 7.17, shows that the behaviour of these systems for different

match lengths are very close to each other, but the important difference between

these two systems is, for c = 6, no unique receptors are possible as a match occurs

between at least one self string and any receptor for the last example.

3500

3600

3700

3800

3900

4000

4100

6 7 8 9 10 11 12

Match Length (c)

D
et

ec
ta

bl
e

N
on

-S
el

f
S

tr
in

gs

PLA

Control Circuit

Figure 7.17 The number of detectable non-self strings vs. match length
for PLA and control circuit

 67

It is also interesting to state that, commonly when match length increases number of

detectable non-self strings increases, in other words, failure probability decreases

but there are some exceptions. For example, number of detectable non-self strings

for match length 6 is bigger than that of 7 for PLA. Also the same exception is

occurred in between match lengths 8 and 9 for Gray code counter.

When match length increases the number of non-self strings detected by the whole

repertoire increases. The number of strings recognized by a single receptor

decreases approximately twice if the match length increases by one, that is when k

increases, the number of receptors increases approximately as the power of two.

Figure 7.18 shows how the number of strings detected by a single receptor varies

against match lengths. Because this number is only related with the match length

and the length of the strings, results shown in Figure 7.18 are the same for all the

string sets in these lengths. The values presented in Figure 7.18 can be computed by

the equation (3).

0

100

200

300

400

500

600

4 5 6 7 8 9 10 11 12

Match Length (c)

N
um

be
r

of
 s

tr
in

gs
 d

et
ec

te
d

.

L=12

L=10

Figure 7.18 Number of strings detected by a single receptor vs. match length

 68

Although for the same match length and the same string length, the number of

strings recognized by the single receptor is the same and not related with the self

strings set, the number of strings recognized by more than one receptor (receptor

ensemble) is related to the self strings set and chosen receptors. Figure 7.19 presents

the number of strings detected by five receptors for different match lengths. Greedy

algorithm is used to choose the receptors from repertoire.

It can be seen from the figure that when match length is exceed ℓ/2 (ℓ = 10), the

number of strings detected by receptors are equal for each set. The reason of this is

explained in section 5.4.1. For c ≤ ℓ/2, the number of strings detected by the

receptors is directly related with the structure of the self strings sets. The decrease

of the number of detected strings by the receptors is related with the number of

strings detected by a single receptor when match length increases.

0

100

200

300

400

500

600

700

800

4 5 6 7 8 9 10

Match Length (c)

N
um

be
r

of
 s

tr
in

gs
 d

et
ec

te
d

0 t0 9 BCD Counter (C/R/Previous/Current)

0 to 9 BCD Counter (C/R/Current/Previous)

0 to 9 BCD Counter (R/Previous/C/Current)

0 to 9 Gray code counter (C/R/Previous/Current)

Figure 7.19 Number of strings detected by five receptors for counters

 69

In first four self strings sets, 4% of the strings are self. This number for the PLA

control is 0,7 % and 1,5 % for the control circuit. The results show that when the

number of strings in the self strings set is high, the failure probability of the system

decreases slowly when match length increases. On the other hand, if the number of

strings in the self strings set is low, the failure probability of the system decreases

rapidly when match length increases. Figure 7.20 shows the behaviour of the failure

probabilities of first self strings set of the BCD counter and PLA control. It is

important to remember that the length of the strings for BCD counter and the PLA

control is different (10 and 12 respectively).

0

0,2

0,4

0,6

0,8

1

1,2

3 4 5 6 7 8 9 10 11 12

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

0 to 9 BCD counter

PLA control

Figure 7.20 Failure probability vs. match length
for BCD counter and PLA control

To understand the behaviour of the BIS for different number of strings in the self

strings sets, randomly generated strings are used. Four different strings lengths

which are 10, 12, 15 and 18 are employed. For each string length, the number of

strings in the self strings sets are listed in Table 7.20.

 70

Table 7.20 Number of self strings for different strings lengths

Length 1% 2% 5% 10% 20%

210 10 20 51 102 205

212 41 82 205 410 819

215 328 655 1638 3277 6554

218 1621 5243 13107 26214 52429

In Figure 7.21, 7.22, 7.23 and 7.24, the lower bounds of the failure probabilities vs.

match lengths are presented for each number of self strings and string lengths

presented in Table 7.20.

0

0,2

0,4

0,6

0,8

1

1,2

2 3 4 5 6 7 8 9 10

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

1% 2% 5% 10% 20%

Figure 7.21 Failure probability vs. match length for ℓ=10

 71

0

0,2

0,4

0,6

0,8

1

1,2

4 5 6 7 8 9 10 11 12

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

1% 2% 5% 10% 20%

Figure 7.22 Failure probability vs. match length for ℓ=12

0

0,2

0,4

0,6

0,8

1

1,2

7 8 9 10 11 12 13 14 15

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

1% 2% 5% 10% 20%

Figure 7.23 Failure probability vs. match length for ℓ=15

 72

0

0,2

0,4

0,6

0,8

1

1,2

10 11 12 13 14 15 16 17 18

Match Length (c)

F
ai

lu
re

 P
ro

ba
bi

lit
y

1% 2% 5% 10% 20%

Figure 7.24 Failure probability vs. match length for ℓ=18

From the figures of the randomly generated self strings sets, it can be said that, the

failure probability of the system approaches to “0” rapidly if the number of strings

in the self strings set is low.

7.5.1 Positive Tolerance Conditions

Positive tolerance conditions generally give better solutions than receptors. Only

exceptions are the average number of strings recognized by a single receptor is

usually higher than that of positive tolerance condition when c is close to ℓ/2. It is

important to state that even in the conditions that previous statement is valid, when

complete repertoire is used, positive tolerance conditions recognize more non-self

strings than receptors that is because the number of strings in the positive tolerance

conditions is more than that of receptor repertoire. Figure 7.21 displays difference

between the average number of strings recognized by the single receptor in the

receptor repertoire and the average number of strings recognized by the single

positive tolerance condition. The results of 0 to 9 BCD counter with bit-string

representation of C/R/Previous/Current are used.

 73

0

20

40

60

80

100

120

2 3 4 5 6 7 8 9 10

Match Length (c)

A
ve

ra
ge

 N
um

be
r

of
 S

tr
in

gs

Positive Tolerance Conditions

Receptors

Figure 7.25 Average number of strings recognized by a single
positive tolerance condition and a single receptor

Especially for small values of match length, c << ℓ/2 or c close to 1, receptors can

not be constructed due to the excessive number of holes and the additional

templates. In these cases positive tolerance conditions are the only solution.

 74

CHAPTER 8

CONCLUSION

This study has demonstrated a immunologically inspired approach to hardware fault

detection and discussed the architecture for a hardware immune system to detect

faults in systems. The acquired immune response in the human immune system is

learned through a process of centralized maturation to create a collection of

antibodies able to detect the invasion of non-self into the body. This analogy has

been applied to the field of electronic hardware error detection to provide FSMs

using a generic immunization procedure.

An immunization cycle has been developed that integrates with a typical hardware

development cycle to permit any finite-state-based system to be immunized in a

methodical way. The system is analyzed, self strings are gathered and tolerance

conditions are generated. The match length is chosen to make optimum use of the

available tolerance condition storage space. This is carried out currently by hand,

although future automation would be straightforward. The architecture also permits

a trade-off between the storage space and failure probability, ensuring that the most

effective tolerance conditions are always stored first.

The hardware immune system currently goes some way to achieving three of the

five original analogies between the human immune system and hardware fault

tolerance discussed in Chapter 4.

1. The operational hardware immune system functions continuously and

autonomously and is designed to allow full implementation in hardware.

 75

This is facilitated by the simple (compared to tolerance condition

generation) search and detection process created through the use of a CAM.

2. The immunotronic error detection mechanisms are trained to differentiate

between faulty and fault free transitions. The hardware immune system

possesses memory to store the set of tolerance conditions that perform this

operation.

3. Detection of invalid conditions is imperfect.

In this study, a new set of tolerance conditions which are called positive tolerance

conditions are proposed. Positive tolerance conditions gives better results than

receptors if storage requirements to not impose any restriction. As stated in Chapter

7, average number of strings recognized by a single receptor is usually higher than

that of positive tolerance condition when match length, c, is close to ℓ/2.

For c close to ℓ, the complete receptor repertoire constructed by the simulation

contains large number of receptors. It is important to note that, there is no meaning

to create receptor ensemble that contains more strings than the self strings set.

Because, when the number of receptors exceeds the number of self strings set,

simply storing all self strings in the memory and using these as a look up table

which is actually constructing positive tolerance conditions when match length is

equal the length of the strings, guarantees 100% reliable operation.

Complexity of the construction of both positive tolerance conditions and receptors

are of order O(ℓ•(ℓ-c)•2c), where ℓ is the length of the strings and c is the match

length (threshold value). Because both positive tolerance conditions and receptors

are constructed with same algorithm. Only difference between these two is positive

tolerance conditions are constructed from self template matrix but the receptors are

constructed from receptor template matrix. Receptor template matrix is modified

(child and parent check, explained in Section 5.6) form of the self template matrix

and the modification (child and parent check) algorithm is of order O((ℓ-c)•2c).

 76

Current work has not investigated the possibility of further learning while the

system is in operation. Such operation would be more truly representative of a real

immune system.

 77

REFERENCES

[1] P. Lee and T. Anderson, “Fault-Tolerance: Principle and Practice”, Springer-

Verlag, Wien-New York, 1990.

[2] J. Von Neumann, “Probabilistic Logic and The Synthesis of Reliable

Organisms from Unreliable Components”, Automata Studies, C. Shannon and

J. McCarthy Eds. Annals of Math Studies, Num 34, Princeton Univ. Press,

pp. 43-98. 1956.

[3] S. Forrest, S. A. Hofmeyr, A. Somayaji and T. A. Longstaff, “A Sense of Self

for Unix Processes”, in Proceedings of the 1996 IEEE Symposium on

Computer Security and Privacy, pp. 120-128, May 1996.

[4] S. Forrest, A. S. Perelson, L. Allen and R. Cherukuri, “Self-Nonself

Discrimination in a Computer”, in Proceedings of the 1994 IEEE Symposium

on Research in Security and Privacy, Los Alamitos, CA, IEEE Computer

Society Press, pp. 202-212, 1994.

[5] J. O. Kephart, “A Biologically Inspired Immune System for Computers”, in

Artificial Life IV, Proceedings of the Fourth International Workshop on the

Synthesis and Simulation of Living Systems, R. A. Brooks and P. Maes Eds.

Cambridge, MA: MIT Press, pp. 130-139, 1994.

[6] D. Dasgupta and S. Forrest, “An Anomaly Detection Algorithm Inspired By

The Immune System”, in Artificial Immune Systems and Their Applications,

D. Dasgupta Eds. Berlin, Germany, Springer-Verlag, pp. 262-277, 1998.

 78

[7] A. Ishiguro, Y. Watanabe and Y. Uchikawa, “Fault Diagnosis of Plant

Systems Using Immune Networks”, in Proceedings of the 1994 IEEE

International Conference on Multisensor Fusion and Integration for Intelligent

Systems, pp. 34-42, Oct. 1994.

[8] A. Ishiguro, T. Kondo, Y. Watanabe and Y. Uchikawa, “Immunoid: An

Immunological Approach to Decentralized Behavior Arbitration of

Autonomous Mobile Robots”, in Parallel Problem Solving from Nature IV, H.

M.Voight Eds. Springer-Verlag, Vol. 1141, Lecture Notes in Computer

Science, pp. 666-675, 1996.

[9] S. Xanthakis, S. Karapoulios, R. Pajot and A. Rozz, “Immune System and

Fault Tolerant Computing”, in Artificial Evolution, J. M. Alliot Eds. Springer-

Verlag, Vol. 1063, Lecture Notes in Computer Science, pp. 181-197, 1996.

[10] D. W. Bradley and A. M. Tyrell, “The Architecture for a Hardware Immune

System”, Proceedings of the 3rd NASA/DoD Workshop on Evolvable

Hardware, Long Beach, California, USA, pp. 193-200, 2001.

[11] A. Avizienis, “Towards systematic Design of Fault-Tolerant Systems”, IEEE

Computer, 30(4):51-58, April 1997.

[12] G. C. Kassianos, “Immunization, Childhood and Tarvel Health”, 4th Edition,

Blackwell Science, USA, 2001.

[13] T. G. Parslow, D.P.Stites, A. I. Terr and J. B. Imboden, “Medical

Immunology”, 10th Edition, Lange Medical Books, McGraw-Hill, USA,

2001.

[14] S. Hofmeyr, “An Overview of the Immune System”

http://www.cs.umn.edu/˜immsec/html-imm/introduction.html, 2004.

 79

[15] D.W.Bradley and A. M. Tyrell, “Immunotronics: Hardware Fault Tolerance

Inspired By The Immune System”, Proceedings of the 3rd International

Conference on Evolvable Systems: From Biology to Hardware (ICES2000),

Vol. 1801, Lecture Notes in Computer Science, Springer-Verlag, pp. 11-20,

April 2000.

[16] P. Marrack and J.W. Kappler, “How The Immune System Recognises The

Body”, Scientific American, pp. 49-55, September 1993.

[17] D. W. Bradley and A. M. Tyrell, “Immunotronics-Novel Finite-State-Machine

Architectures with Built-In Self-Test Using Self-Nonself Differentiation”,

IEEE Transactions on Evolutionary Computation, Vol. 6, pp. 227-238, June

2002.

[18] D. W. Bradley and A. M. Tyrell, “Hardware Fault Tolerance: An

Immunological Solution”, Proceedings of IEEE International Conference on

Systems, Man, and Cybernetic, Vol. 1, pp. 107-112, 2000.

[19] P. D’haeseleer, “An Immunological Approach to Change Detection:

Theoretical Results”, Proceedings of the 9th IEEE Computer Security

Foundations Work-shop, County Kerry, Ireland, June 1996.

[20] S. T. Wierzchoń, “Discriminative Power of The Receptors Activated by k-

Contiguous Bits Rule”, Technical Report, Institute of Computer Science,

Polish Academy of Sciences, 2000.

[21] J. K. Percus, O. E. Percus, and A. S. Perelson, “Predicting the Size of The T-

Cell Receptor and Antibody Combining Region from Consideration of

Efficient Self-Non-Self discrimination”, Proc. Natl. Acad. Sci. USA, 1993.

[22] J. H. Holland, “Adaptation in Natural and Artificial Systems”, University of

Michigan Press, ANN Arbour, 1975.

 80

[23] S. T. Wierzchoń, “Deriving a Concise Description of Non-Self Patterns in an

Artificial Immune System”, Technical Report, Institute of Computer Science,

Polish Academy of Sciences, 2001.

[24] S. T. Wierzchoń, “Generating Antibody String in an Artificial Immune

System”, ICS PAS Report No. 892, Institute of Computer Science, Polish

Academy of Sciences, 1999.

[25] P. D’haeseleer, “Further Efficient Algorithm for Generating Antibody

Strings”, Technical Report CS-95-03, The University of New Mexico,

Albuquerque, NM, 1995.

[26] M. Morris Mano, “Digital Design”, 2nd Edition, Prentice Hall International

Editions, USA, 1984.

 81

APPENDIX

SIMULATOR

PROGRAM

