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ABSTRACT

WAVEFORM DESIGN FOR PULSE DOPPLER RADAR

AGIRMAN, Handan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mete Severcan

December 2005, 100 pages

This study is committed to the investigation of optimum waveforms for a pulse
doppler radar which uses a non linear high power amplifier in the transmitter. The
optimum waveform is defined as the waveform with the lowest peak and integrated
side lobe level, the narrowest main lobe in its autocorrelation and the narrowest

bandwidth in its spectrum.

The Pulse Compression method is used in radar systems since it is more
advantageous in terms of the resolution. Among all pulse compression methods, the
main focus of this study is on Phase Coding. Two types of radar waveforms assessed
throughout this study are Discrete Phase Modulated Waveforms and Continuous
Phase Modulated Waveforms. The continuous phase modulated waveforms are
arranged under two titles: the memoryless phase modulated waveform and the

waveform modulated with memory.
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In order to form memoryless continuous phase waveforms, initially, discrete phase
codes are obtained by using Genetic Algorithm. Following this process, a new phase

shaping pulse is defined and applied on the discrete phase waveforms.

Among the applicable modulation with memory techniques, Continuous Phase
Modulation maintains to be the most appropriate. The genetic algorithm is used to
find different lengths of optimum data sequences which form the continuous phase

scheme.

Keywords: Pulse compression, Genetic Algorithm, Continuous Phase Modulation.
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DARBE DOPPLER RADAR iCiN DALGA BiCiMi TASARIMI

AGIRMAN, Handan

Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Mete Severcan

Aralik 2005, 100 sayfa

Bu c¢alisma gondermecinde dogrusal olmayan yliksek gii¢lii bir yiikselte¢ kullanan
bir darbe doppler radar i¢in en iyi dalga bigimleri arastirmasini iglemektedir. En 1yi
dalga bicimi, 6zilinti islevinde en algak tepe ve tiimlesik yanlob seviyesi ve en dar

analob, frekans etki alaninda en dar bant genisligi olan dalga bi¢imidir.

Coziiniirliik agisindan istiinliigii oldugu icin radarlarda darbe sikistirma metodu
kullanilir. Bu ¢alismanin ana ilgi odagi, darbe sikistirma metotlar1 arasindan faz
kodlamasidir. Bu ¢alisma boyunca degerlendirilen iki radar dalga bi¢imi ayrik fazlh
kiplenmis dalga bigimleri ve devamli fazli kiplenmis dalga bi¢imleridir. Devamli
fazl1 dalga bigimleri belleksiz kiplenmis dalga bicimleri ve bellekli kiplenmis dalga

bicimleri olarak iki baslik altinda toplanmustir.

Bellekli kiplenmis dalga bi¢imlerini olusturmak igin, ilk olarak, artik fazli kodlar
Genetik Algoritma kullanilarak bulunmustur. Bu islemi takiben, yeni bir faz
sekilleyici darbe tanimlanmis ve ayrik fazli dalga bigimleri iizerinde uygulanmustir.

Uygulanabilir bellekli kiplenim teknikleri arasinda, devamli fazli kiplenim en uygun
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goriinmektedir. Genetik algoritmasi, devamli fazli tasarilarin olusturulmasi igin

kullanilacak farkli uzunluklu en iyi veri sirasinin olusturmak i¢in kullanilir.

Anahtar kelimeler: Darbe Sikistirma, Genetik Algoritma, Siirekli Fazli Kiplenim.
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CHAPTER 1

INTRODUCTION

Radar is an electromagnetic system for the detection and ranging of objects. The
term radar is a contraction of the words radio detection and ranging. Its operation is
as follows: radar transmits an rf pulse, a portion of which is intercepted by a
reflecting object (target) and is reradiated in all directions and for the detection by
the same radar. The distance of the target is measured by observing the time delay
between the transmitted and the received signal and the velocity of the target can be

measured by the shift in carrier frequency of the received signal [1].

The term doppler radar refers to any radar that is capable of measuring the

frequency shift between the frequencies of the transmitted and received signals [2].

In a radar system, range resolution is proportional to pulse width. High range
resolution can be achieved by using short pulses but the pulse energy is directly
proportional to pulse width. This difficulty can be overcome by pulse compression,
which is a useful technique to send long pulses while retaining high resolution in
range. Pulse compression is achieved by phase or frequency coding the transmitted
signal and filtering the received signal through a matched filter, which is
implemented in the receiver part. The output of the matched filter is the compressed
pulse with short duration. The return signal coming from the reflecting object is
filtered in the radar receiver —mostly by using a Matched Filter (MF) to detect if a

target is present. The output of the filter reaches a peak at the target range bin and



has range sidelobes around the target due to the autocorrelation of the coded pulse.
However, these range sidelobes should be reduced since they can mask other targets

present nearby the detected target.

This thesis mainly focuses on phase coded pulse compression which is a special type
of pulse compression. Although, academic researches have mostly dealt with the
discrete phase coded pulse, in this thesis a new approach is embodied. The aim of
this approach is to alter the sharp phase transitions in discrete phase coded
waveforms and render these transitions continuous and smooth, and consequently to

decrease the levels of sidelobes in the spectrum.

In this thesis, optimum phase modulated waveforms are analyzed by using two types
of phase modulation techniques, which are Modulation with Memory (MWM) and
Memoryless Modulation (MLESSM). While the specific Continuous Phase
Modulation (CPM) is chosen as an MWM technique, biphase modulation (BPSK)
and Quadrature Modulation (QPSK) are used as MLESSM techniques.

In order to implement continuous phase modulation in MLESSM, discrete phase
codes are searched firstly calculating discrete autocorrelations. Searching MWM data
sequences is performed on continuous autocorrelations. Throughout the searching

processes, Genetic Algorithm is used.

The continuous waveforms are investigated in terms of the variations of peak
sidelobe level, integrated sidelobe level, resolution and signal-to-noise ratio at the

matched filter output under sampling mismatch.

In Chapter 2, the fundamental concepts of a radar system such as doppler frequency
and resolution stated, basic radar parameters, pulse compression theory, matched

filter and Ambiguity Function are also mentioned in detail.



Chapter 3 is devoted to the implementation of discrete phase and continuous phase
modulated waveforms. Optimum MWM and MLESSM waveforms are searched;
different lengths of discrete phase codes are investigated. Subsequently, the PSL and
the ISL values of MWM and MLESSM MF outputs are compared. Inverse Filtering,
a sidelobe reduction technique, is first analyzed in detail then applied on the
extracted codes. At the end of the chapter, bandwidths are calculated for all

waveforms formed by using optimum codes and these values are compared.

In Chapter 4, the sampling time jitter effect is analyzed. In addition, the mismatch
effects on peak sidelobe level and integrated sidelobe level, resolution and peak

signal-to-noise ratio values are demonstrated.

Finally, Chapter 5 contains a conclusion within which possible future studies are

discussed.



CHAPTER 2

FUNDAMENTAL CONCEPTS OF RADAR WAVEFORM
DESIGN

2.1. Common Basic Properties of Radars

Radars transmit electromagnetic waves and receive echoes from a reflector, target or
clutter. The elapsed time between the transmitted and reflected radar signals are

utilized to measure the distance of the target. The range R is

_cr
2

R (2.1)

where T is the time taken by the rf pulse to travel to the target and to return back to
the radar, while c is the speed of light ¢ =3x10° m/s. The velocity of the target can

be measured by the frequency shift occurring in the carrier frequency [1].

20, 2.2)

fq c

In this equation, f,is the doppler frequency shift, v, is the target velocity and f is

the carrier frequency.

The term doppler radar refers to any radar capable of measuring the Doppler

frequency, f, [2].



A doppler radar using a pulsed signal with a constant or variable Pulse Repetition
Interval (PRI) or Pulse Repetition Frequency (PRF) is named as a Pulse Doppler
Radar. A general block diagram of a Pulse Doppler Radar is given in Figure 2.1.

Duplexer
Exciter — »  Transmitier
g 4
%
F LO & Ref. Antenna
% Signals:r | -
]
]
Sianal . \ ,
Processor |* Receiver [e '™ Receiver
Contral ' Protection
A B r S ' Device
" 1 - a .
1
1
Radar Data N
» Processor Drive

Figure 2.1 Principles of Pulse Doppler Radar

2.2. Modulation Theory
2.2.1. Introduction

In this section, modulation techniques used in digital communication are discussed.
Figure 2.2 demonstrates all digital modulation schemes arranged in a tree diagram
[9]. The letter ‘D’ labels the differentially encoded schemes and the schemes that can

be noncoherently demodulated are labeled by letter "N”.
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(N) Can be noncoherently detected

Figure 2.2 Digital Modulation Tree

Modulation schemes can be grouped into two large categories: constant envelope and
non-constant envelope. The constant envelope class is generally suitable for
communication systems in which the power amplifiers are to operate in the non-

linear region of the input-output characteristic. By means, maximum amplifier



efficiency is achieved. Such an amplifier, Traveling Wave Tube Amplifier (TWTA),
is commonly used in satellite communications. Due to the low bandwidth
consideration, Frequency Shift Keying (FSK) as a constant envelope modulation is
not used in satellite communication. On the other hand, the Phase Shift Keying
(PSK) schemes contain discontinuous phase transitions between symbol phases. In
the contrary, the Continuous Phase Modulation (CPM) another constant envelope
scheme has continuous phase transitions. Therefore, they have less side lobe energy
in their spectra in comparison with PSK schemes. The CPM class includes raised
cosine response with pulse length L (LRC), spectral raised cosine with length L
(LSRC), rectangular frequency response with length L (LREC), Gaussian-shaped
MSK (GMSK), and TFM (tamed FM) whose definitions are included in Appendix A.
h stands for the modulation index in CPM schemes. SHPM in the modulation tree

refers to the single-h CPM and MHPM represents the multiple-h CPM scheme [9].

Since dealing with a pulse doppler radar with a non-linear amplifier, only constant
envelope modulations will be taken into consideration. In fact, FSK does not provide
good bandwidth efficiency compared to other constant envelope modulations
schemes, for that reason, it is out of context. Although it is not showed in the
modulation tree, the constant envelope schemes can be grouped in two categories:
Modulation with Memory (MWM) and Memoryless Modulation (MLESSM). The
modulation is said to have memory when a waveform transmitted in a symbol
interval bound to previously transmitted waveforms. Otherwise, the modulation is

considered to be Memoryless [5].



2.2.2. Memoryless Methods (MLESSM)

2.2.2.1. INTRODUCTION

MLESSM waveforms may differ in amplitude, phase and/or frequency; however, our
main concern in this study is the phase modulation with a specific focus on phase

modulated memoryless waveforms.
2.2.2.2. PHASE MODULATED SIGNALS

The carrier amplitude is constant in this type of modulation. Therefore, this
modulation method is an example of constant envelope modulation. A constant

envelope and phase varying signal is of the form
(RE/T)"? cos(a,t + (1))

where @, is the carrier frequency in radians, T is the length of the signaling interval

and E is the energy expanded during the interval. In each interval, an M-ary data

symbol appears and the phase ¢(t) follows a pattern in response to these symbols.

In PSK, the signal is in the form of

5, (t) = Re[Ae 27 (k-D/K g j27zfct:|

=Acos[2ﬂf0t+2?ﬂ(k—l)} k=12,...,K 0<t<T (2.3)



where A is the signal amplitude and 6, =27z(k-1)/K, k=12,...,K, are the M

possible phases of the carrier [5]. In binary PSK, two phases, for instance 0 and =,

are available during each symbol interval, whereas in quaternary PSK, the signal can

take on four phases, be it 0, 7/2, 7, 3 7 /2, during an interval.

2.2.3. Modulations with Memory (MWM)

2.2.3.1. CONTINUOUS PHASE MODULATION (CPM)

Continuous Phase Modulation is a spectrally efficient method with memory. The

memory results from the continuity of the carrier phase from one signal interval to

the next.

The general CPM signal is represented as
S(t)=+/2E/T cos(at +¢(t)+4,) nT <t<(n+1)T

w=27f,, fo = carrier frequency

T = symbol duration

The phase ¢(t)in the equation is,

A(t) =2;zj i l.hg(z—KkT)dz

(2.4)

(2.5)

(2.6)



t 2.7
at) = [g(n)dr &7

The data |, are M-ary data symbols, taken from the alphabet + 1, £3...+ (M-1),M

is even. The sequences of real constants ..., h, h.; hgo h; h; ... are the modulation
indices, and the underlined subscripts mean that they appear modulo H. This means
that only H different constants are used in a cyclical fashion, i.e. ..., ho, hy, hy, ..., hg.
1, ho, hy, hy [7]. This system is called multi-h CPM. When H = 1, there is only one
modulation index hy, which can be denoted as h. This type of CPM modulation is
called fixed-h (single-h) modulation. q(t) is the phase response function. CPM
schemes are denoted by their phase responses, LRC, LSRC, LREC, TFM, and
GMSK. The detailed definitions are included in Appendix A. The prefix “L” denotes
the length of the response.

If L = 1 the modulation is called full-response CPM; since each data symbol effects

the signal for only one symbol interval. Otherwise, the scheme is partial-response.

The plot, in Figure 2.3, is called the phase tree and it demonstrates an entire set of
phase trajectories, the transitions of phase across interval boundaries, and it makes

easier to see the effect of interval-to-interval memory in¢(t).

10



Shn
4hn
3hn
2hn

-2hn
-3hn
-4hn

-5hn

Figure 2.3 Phase trajectory of binary CPM

When modulation index h is rational, h = m/p, where m and p are prime integers,

there are p phase states if m is even, 2p states otherwise. These phase states are [5]

_ 2.8

0, :{O,m”,zm”,...,(p Dm”} m is even (2-8)
p p p

_ 2.9

® ={O,m”,2m7[,...,(2p l)m”} m is odd (29)
S p P p

If L = 1, these are the only states. Otherwise there are additional phase states due to

partial characteristic of g (t), which are

o(t; 1) = 27 nilkq(t—kT)+27zhlnq(t—nT) (2.10)

k=nL+1
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The summation in this formula represents the data symbols that could not reach their
final values. These symbols combine and form the correlative state vector shows an

entire set of phase trajectories The phase of the CPM signal at t =nT is denoted as,

Sn:{Hn’In—l’ln—z""’ln—ul} (211)

IF the signal is to be a partial response signal with a pulse length LT, the number of

states equates to ,

pM " evenm
N, = (2.12)
2pM =" odd m

when h = m/p.

If the final state of the modulator at t = nT is S, , then the effect of the new symbol in

the time interval NT <t <(n+1)T is to alter the state from S, to S, [5].

As a result the incoming state turns out to be

S :{eml’In9|n+1""’|n—L+2} (2.13)

n+1

where

6,,=6 +7rh 1

+1

(2.14)

n—L+1
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2.2.3.2. CONTINUOUS PHASE FSK (CPFSK)

The most important type of CPM, used in digital communication today, is CPFSK. In
this modulation scheme, the phase shaping pulse is 0 outside the interval [0, T]
which means that L is 1. The CPFSK signal is generated by shifting the frequency by
an amount f;, the peak frequency deviation. The general CPFSK representation is

then

S(t)=+/2E/T cos(at+g(t)+¢,) KT{t{((k+DT (2.15)

where @(t) is

d(t) = 4xTf, j[ Zk:ang(f—kT) ldr

It can also be written as:

k-1

P(t) =2xTFy D 1, +24,(t—KT)I, (2.16)

=0, + 27, q(t—KT)

and
0 (t<0)
k-1
h=2fT, 6, =20 > I, q(t)= %T 0<t<T)
1
— T
5 ®©T)

In Figure 2.4, all of the possible trajectories starting from reference time (zero) for
continuous phase FSK, in which phase transitions across the boundaries are

constrained to be continuous, are shown. Within any interval, the phase slope is

13



either + hz /T or—hz /T, and the modulation can be viewed as transmitting one of

these two frequencies in each interval in response to a (binary) data sequence.

3hn
2hn
hm

-hnr
-2hn
-3hn

Figure 2.4 Phase trajectories of Continuous Phase FSK

2.2.3.3. MINIMUM SHIFT KEYING (MSK)

MSK is a special form of binary CPFSK with h = 1/2. The phase of the carrier in the
interval KT{ t ((k+DT is

1 k-1
o(t) = 572' Zlm +,q(t—=kT)
m:w (2.17)
0, +%7z1k(t_ij, KT<t<(k+1)T
and the modulated carrier is
s(t) = Acos| 27f.t+ 6, +lﬂ1n(t_nTJ
2 T
(2.18)

=Acos| 2z fC+LIrl t—lnﬂin+t9n , nT<t<(n+DT
4T 2

14



From this expression, it is clear that MSK signal can be expressed as a sinusoid

having one of two possible frequencies in the interval KT<t <(k+1)T .

If these two frequencies are defined as

2.19
fof - o @19)
aT
foof o
2 = C+E (2.20)

then the MSK signal can be written in the form

S, (1) =+/2E/T cos| 27zfmt+6?k+%k7r(—1)i‘1 | m=12 (2.21)

The frequency separation between the different symbols is Af =1/2T . It means that

si(t) and sy(t) have the required minimum frequency separation for orthogonality.

For that reason, this modulation is called Minimum Shift Keying (MSK). In MSK,

M =2 (+1) and S =4 (0 RAD, 7/2 RAD, 7RAD, 3 7/2 RAD).

Another common used type of CPM is GMSK (Gaussian —Shaped MSK). It is a
derivative of MSK with the difference that phase shaping pulse is Gaussian filtered.

And Gaussian Pulse Shape is almost 0 for |t| <1.5T

General Gaussian filtered pulse is defined as:

B 2B, T 2B T (2.22)
g(t) = {Q[ﬁ (t E)J Q(ﬁ (t+ 5))}

where the Q function is defined as:
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x2

Q)= [——e 2 dx (2.23)

t\/27Z'

2.3. Matched Filter Theory

In radar applications, generally known signals are utilized to detect the existence of
target. Since the probability of detection is closely related to signal to noise ratio, the
main concern in radar systems is to maximize SNR. A matched filter is a linear filter,
whose impulse response is determined by a specific signal in a way that will result in
the maximum attainable SNR at the output of the filter, when that particular signal
and white noise are passed through the filter [3]. A basic matched filter system is

given in Figure 2.5.

A 4

Matched >

~7 filter, h(t)

s(t) Sout(t) +nour(t)

nj(t)
Figure 2.5 Matched Filter System

The input to the matched filter is s(t) plus additive white noise nj(t). h(t) is searched
to have maximum SNR at a delay T (needed to make filter realizable) at the output. It

means that the ratio

2
(EJ e D ST ) (2.24)
N out Mout (t)

is maximized. This ratio is maximized when the frequency response of the matched

filter, H (w) is in the form of Equation 2.25.

16



H (W) = KS™ (W) exp(— jwtT) (2.25)

and in time domain, impulse response of the matched filter is given as

h(t) = Ks"(T —t) (2.26)

Therefore, the output of matched filter is given as

5., =S(t)®h(t) = Ts(r)h(t —7)dr = TS(T)KS* [T—(t-17)]

(2.27)

oo}

Sout , = Is(r)s (r—-t)dr

—00

The last equation is called autocorrelation function (ACF) of's (t).

In this equation, s (t) is the received signal from a target. If target is moving, the

received signal will be doppler-shifted and represented as

Sp (1) = s(t) exp( j2zut) (2.28)

where © is the velocity of the target. Here, matched filter output changes and

becomes as follows:

" _ ) (2.29)
Sout (1,V) = js(r) exp(j2zuvt)s (r—t)dr
reversing t and 7 we have,
2(z.0) = [s(t)s" (z —t)exp(j27ut)dt (2.30)

—0o0
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This equation is a very special kind of ambiguity function (AF). AF describes the
output of the matched filter when the input signal is delayed by 7 and doppler

shifted by v . In literature, AF itself is given as follows:
x(z.0)| =|[s(t)s" (z —t)exp(j2zut)dt (2.31)

—00

AF is a very useful property in choosing optimum waveforms in radar applications.

2.4. Pulse Compression

2.4.1. Definition

Pulse compression allows the transmission of long pulses while retaining the
advantages in high-resolution waveforms. Range resolution that is achievable in a

radar system is

dR=cT /2 (2.32)

where T is the pulse duration and c is the speed of light (3x10°m/s). The

bandwidth of the signal isB =1/T .

In a pulse compression system, the transmitted signal is modulated in phase or

frequency so thatB )) 1/T . If 7=1/B 1is chosen then the new range resolution

becomes

dR=cz/2 (2.33)

7 1s the effective pulse duration in the radar after pulse compression. The ratio

between the pulse duration and the effective pulse duration is called “compression

18



ratio” and it is equal to the time-bandwidth product of the system.

The compressed pulse in a radar system can be obtained by passing the pulse with

the duration of T, through its matched filter, but the output signal length is 2T, not 7,

then the response outside the interval |t|(z' is called range side lobes. For a given

range bin, the sidelobes of the MF responses appear as signals in adjacent range bins,

therefore they must be reduced or controlled.

There are 3 measures, PSL, ISL and LPG, to characterize the output compressed

signal which are defined as

Peak Sidelobe Level(PSL) = 10 log(max imum sidelobe power / peak power)
Integrated Sidelobe Level(ISL) = 10 log(total power in the sidelobes / peak power

Loss in Pr ogressive Gain(LPG) = 20 log(Compression Ratio / peak voltage)

Another common parameter to characterize the compressed pulse is the main lobe

width or time resolution defined by the Formula 2.34.

T\R (o) de

res [R(O)]2

(2.34)

where R (7) is the ACF of the radar signal (zero doppler).

In designing a radar system which utilizes the advantages of pulse compression, the
choice of the waveform is one of the most important issues. In order to compare the
possible waveforms, Ambiguity Function (AF) is used. The AF represents the time

response of a filter matched to a given finite energy signal when the signal is
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received with a delay z and a Doppler shift v relative to the nominal values (zeros)

expected by the filter. Therefore, the AF definition followed in this thesis is

0 4 _ (2.35)
lz(z,0)=| Ju®u (t+7)exp(j2zut)dt
—00

where U represents the complex envelope of the signal. A positive v means a target
moving toward the radar and a positive 7 means a target farther from the radar

reference position (7 =0) [3].

2.4.2. Pulse Compression Techniques

2.4.2.1. INTRODUCTION

Although the widespread applications of pulse compression in pulse-doppler radar
systems are frequency modulation and phase modulation, only phase modulation will

be dealt with in this thesis.

2.4.2.2. PHASE MODULATION TECHNIQUES

Pulse compression by using phase modulation is realized simply by dividing the

pulse length T into N subpulses, each of duration 7, and coding these subpulses with

different phases. The complex envelope is given as

s(t) = ZS rect{t ("~ DT}

s, =exp(j¢,, 7=T/N

(2.36)

Binary (biphase) codes can be represented by pluses and minuses, where a plus

means 0° phase shift and a minus means 180° phase changes. The biphase coding of a

20



pulse is shown in Figure 2.9 [4].

Figure 2.6 Binary phase coding of a transmitted pulse, [+ + -]

In polyphase codes, there are M different phases possible where M is the order of the

code and possible phases can be written as

¢ =Qx/M)i, for i=1...,M (2.37)

The most famous biphase codes with low PSL values are Barker Codes. They have
the property that peak side lobes of the all types are equal to 1/N in magnitude, N is
the code length. Barker Codes are the most important codes of biphase codes,
because they have the minimum sidelobe power values that are possible
theoretically. Because of this property, Barker Codes are called perfect codes. Some

known barker codes and their PSL and ISL values are given in Table 2.1.
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Table 2.1 Known Barker Codes

Code Length Code PSL(dB) ISL(dB)
2 + -, ++ -6.0 -3.0
3 ++-,+-+ -9,5 -6.5
4 ++-+ +++- -12.0 -6.0
5 +4++-+ -14.0 -8.0
7 +++--+- -16.9 -9.1
11 +++---+--+- -20.8 -10.8
13 R L A -22.3 -11.5

The ambiguity function of 13-length Barker Code is shown in Figure 2.9 [3]

frizv)

Figure 2.7 Ambiguity Function of 13-length Barker Codes

Generating optimum codes longer than 13 in length can be achieved by combining
shorter Barker Codes. These codes are called Combined Barker Codes or Nested

Codes. For example if a system with 35:1 pulse compression ratio is needed, 7x5 or

5x7 Barker codes can be used. 7x5 Barker code consists of the 7-bit Barker code and
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5 bit Barker code. And for 13( N ( 45 there are polyphase codes that are carried out

by optimization methods. Other important derivatives of Barker Codes are

Pseudorandom Codes and Golay Side-lobe Canceling Codes.

Other phase modulation codes are chirp like Phase Codes. Special forms of these
modulation techniques are Frank Codes, P1, P2 and Px Codes, Zadoff-Chu Codes,
P3, P4 and Golomb Polyphase Codes, the codes based on a Nonlinear FM Pulse.

2.5. Bandwidth Consideration in Phase Coded-Signals

The sharp phase transition and amplitude rise time in phase coded signals causes
high spectral side lobes. In a practical receiver, the matched filter is implemented
digitally in a correlator, that follows an analog-digital (A/D) converter. To limit the
noise power reaching the A/D converter, an analog narrowband filter is likely to
precede it. This filter will cut off the spectrum tail. Rather than allow the band pass
filter to influence the delay response, the spectrum tail can be narrowed in the
transmitter [3]. This can be achieved by smoothing the phase transitions in the
transmitted pulse. Figure 2.11 shows the ACFs of sharp transition and smooth
transition 13-length Barker waveforms. In the continuous phase version, the phase of
a chip is shaped by a shaping pulse with the transition duration of T/5 which will be

defined in the next chapter.
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CHAPTER 33

PHASE CODED PULSE IN PULSE DOPPLER RADAR

3.1. Introduction

Radar can be thought as a digital communication system with a completely known
signal in the receiver just as the pulse compression technique can be considered as a
digital modulation technique. In digital communication, the data are transmitted in
terms of bit or symbol whereas in radar applications with pulse compression, the

medium for transmission is the chip.

The reason of the usage of pulse compression in radar was stated in the previous
sections. The next step is to search several phase coded pulses having optimum
aperiodic autocorrelation functions for a pulse doppler radar with the operating
frequency of 9.5 GHz, a chip width of 100ns (T,), and an Intermediate Frequency of
70 MHz. The digital receiver implemented in this radar maximizes the advantages of
using matched filters. The modulated or coded pulse is generated initially at 70 MHz,
up converted to 9500 MHz and later amplified in a traveling wave tube amplifier
(TWTA) before transmission. TWTA determines the type of the modulation because
of its destructive effect on the radar amplitude or phase; therefore, it is an integral
element of radar. This effect should be taken into consideration if one tries to find the

optimum waveform.

Throughout the general searching process, initially the theory of Genetic Algorithm
(GA) is provided, and later applied. It is not only the MLESSM modulations, BPSK
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and QPSK optimum codes that are searched, but also a spectrally efficient MWM
modulation, full-response CPM is investigated. At the end of this chapter, the
spectrums of MLESSM and MWM waveforms are compared briefly.

3.2. Genetic Algorithm

Genetic algorithms are inspired by Darwin's theory of evolution since a process very
similar to the process of evolution is used in problem solving via genetic algorithms.
The genetic algorithm starts with a set of solutions (chromosomes) called
population. Chromosomes are typically represented as simple strings of data and
instructions. Initially several individuals are randomly generated to form the first
population. During the evaluation of each individual, a value of fitness is returned by
a fitness function. Fitness function is a type of objective function that quantifies the
optimality of individuals or solutions. The individuals are later kept in a pool in
which they are ranked from top to bottom according to their fitness values. The next
step is to create a second generation of population based on the selection processes
and reproduction of solutions through mutation and crossover. There are several
selection algorithms to be used in selection process. An example is the roulette wheel
selection. In this algorithm, normalized fitness value of each individual is computed,
a random number that must be between 0 and 1 is defined, and the individuals with
the fitness values greater than the defined random number are selected. Following
this procedure, a crossover is performed with the selected individuals. Every genetic
algorithm has a crossover probability typically between 0.6 and 1. In accordance
with this probability, individuals are recombined. This process is repeated until the
sufficient number of individuals for the next generation is reached. Subsequently, a
new generation is mutated. The probability of mutation in genetic algorithms is 0.01
or less. Based on this probability, chromosomes of new individuals are mutated.
Compared to the previous generation, the next generation, in general has a better
average fitness value. The creation of generations is repeated until a termination

condition is reached. The termination conditions reached are specific to each and
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every particular application. In example, reaching a minimum fitness value can be
the termination condition of one application whereas, reaching a maximum value can

be the termination condition of another.

In the searching processes, different numbers of population are used according to the
code length. 10000 and 50000 are used for the minimum number and maximum
number of populations respectively. For the selection method, a constant number of
top ranked solutions (10% in our algorithm) are chosen. Probabilities of crossover

and mutation are defined as 0.9 and 0.01.

3.3. Optimum CPM Codes

In order to find the optimum CPM data sequences, a program should be coded in
MATLAB. In this program each chip is designed by 100 samples, rendering the
sampling period of the searching system Ins. The CPM modulation has such a
flexible structure that by changing any of the parameters forming the waveform, one
can produce many CPM schemes. However, the particular focus of this study is on
single-h and full response CPM schemes. In order to shape the phase of each chip
implemented in CPM pulse, 1REC scheme given in Appendix A, is used. The single
modulation index is considered to be 0.5 which is the most widely used value. From

this point and on, the CPM code is referred to M-ary data sequence, |, , which is used

to generate CPM waveforms. Instead of “data sequence for CPM scheme”, simply

“CPM code” is used.

Regarding a genetic algorithm with a population number of 10000, the probabilities
of crossover and mutation are defined as 0.9 and 0.01 respectively. These values are
used to get the optimum |, data sequences of the lengths 20, 32, 45 and 64 for

different values of M (2, 4, and 8). The sequences where the searching process

reaches a minimum PSL value are considered to be the optimum sequences. PSL,
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ISL and Main Lobe Width (MLW) values of these codes are tabulated in Table 3.1

Table 3.1 Optimum CPM Codes, h=0.5, IREC

Code PSL(dB) ISL(dB) MLW]|chips]

Length _ _ _ _ _ _ _ _ _
M=2 |M=4 |M=8 M=2 | M=4 | M=8 | M=2 |M=4 | M=8

20 -18.1 | -19.02 | -18.56 |-527 |-48 |-3.89 |140 |0.70 |0.40

32 -17.63 | -18.95 | -20.05 | -6.40 | -3.98 | -2.5 1.34 1 0.74 |0.44

45 -17.13 |-20.05 |-20.19 |-3.50 | -3.66 | -2.45 | 1.60 |0.75 |0.40

64 -17.81 |-20.50 |-20.62 |[-3.3 |-2.58|-1.56 |1.69 |0.80 |0.45

PSL values improve as the alphabet size increases generally except that of the code

of length 20. As an example, the PSL value of the CPM code of length 32 with M =

4 is 1.32 dB lower than the code with M = 2. In addition, ISL values get worse as the

size of the alphabet and the length of the code increases. In fact, the main lobe width

is very sensitive to the alphabet size, the code of length 64 has 1.69 chips of width

for M =2 and 0.45 chips of width for M = 8.

In order to demonstrate the phase structure in the CPM waveforms, the 20-length

data sequence is selected from the other sequences found as and the phase structure

for this waveform is given in Figure 3.1.
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Figure 3.1 Phase variation of the CPM pulse N=20,M =2, h=0.5

3.4. Optimum Memoryless Pulse

3.4.1. Optimum BPSK Codes

In fact, the output of the matched filter is simply the autocorrelation of the
transmitted code in noise-free environments. Therefore, the discrete autocorrelation
function is used in the optimization process. This optimization process uses the
genetic algorithm with the parameters given in Section 3.2. The PSL value of each
individual represents the fitness value in the genetic algorithm. The optimization is
terminated when the process converges to a minimum PSL value. In Table 3.2,

optimum biphase codes of lengths 20, 32, 45 and 64 are provided.
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Although there is more than one code for some lengths, all are not given here. These

codes can be found in [3].

Table 3.2 Optimum biphase codes

Length | PSL(dB) | ISL(dB) | Binary code

20 -20.00 -7.49 01010001100000011011

32 -20.56 -8.95 00000001111001011010101011001100

45 -23.5 -8.62 000101010111100001100110001101101101111
110110

64 -24.08 -7.41 010000001001000010100010111010011110011
0001100100011011111000010

It can be inferred from the table that if the length of the code increases, the PSL
value of its ACF lowers. The ACF of the BPSK code of length 64 has 4.08 dB lower
PSL value than that of the BPSK code of length 20. If PSL value is critical in any
radar waveform design, it is recommended to increase the code length to any value
which provides the required PSL value. The autocorrelation functions of these codes

are computed in MATLAB and shown in the Figure 3.2.
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Figure 3.2 ACFs of optimum BPSK codes of lengths of 20(a), 32(b), 45(c) and
64(d)

In a phase coded pulse, the phase has a discrete value in each chip interval and this
value sharply changes from one chip to another. These sharp changes are clearly

observable in Figure 3.3 which shows the phase variation of the biphase code of

length 20 with respect to time.
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Figure 3.3 Phase variation of the biphase code of length 20
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3.4.2. Optimum QPSK Codes

The commonly used QPSK constellations are given in Figure 3.4. In this study, the
constellation in Figure 3.4 (a) is employed to represent QPSK chips. The arrows

indicate the paths along which the QPSK modulator can change its state.

(Dz (DZ
@1 q)l
(a) (b)

Figure 3.4 Commonly used signal constellations for QPSK

The searching algorithm is processed for the codes of lengths 20, 32, 45 and 64. In
GA, the fitness values are the PSL values, therefore minimum ISL codes are not
guaranteed to be found. This is the reason why the ISL values given in Table 3.3 get
higher when the code length increases. In the contrary, PSL values lower as the

length increases.
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Table 3.3 Optimum quadriphase codes

Length | PSL(dB) | ISL(dB) Code

20 -20.00 -7.1181 7/2[2210-10210110120-10122]

32 -20.10 -7.1213 7/2[12222-102122-120-11200120
45 -20.76 -5.2380 /2222 0-120022-1222-10-1-102
64 -21.5 -4.2583 7/2[22-1-1-1220000-11-1102-1-1

In general, the PSL values of quadriphase codes are higher compared to that of

biphase codes.
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ACFs of the optimum quadriphase codes are sketched in MATLAB and given in
Figure 3.5

ACF ACF
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Figure 3.5 ACFs of QPSK codes of lengths 20(a), 32(b), 45(c), 64(d)

The phase variation of the quadriphase code of length 20 with respect to time is shown
in Figure 3.6. This phase variation can be compared to that of BPSK (20-length BPSK)
in Figure 3.3. The phase jumps sharply from one chip to another.
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Phase versus time
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Figure 3.6 Phase variation of QPSK code of length 20

We have extracted the general QPSK codes until now. However, related researches
refer to the concept offset QPSK which is used to limit phase changes to 90 degrees.
Alternatively, in this study, a modulation similar to Offset-QPSK which is
abbreviated as Limited Phase Transition QPSK (LPT-QPSK) is used. The LPT-
QPSK can be considered as a version of Offset QPSK which is suitable for radar
applications. The constellation diagram shown in Figure 3.7 is utilized for LPT-

QPSK codes.
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D,

Figure 3.7 Signal constellation of LPT-QPSK

GA results in the optimum LPT-QPSK codes tabulated in Table 3.4. The main
advantages of these codes will be well understood when the bandwidth efficiency and
the sampling mismatch effect are analyzed throughout this chapter and the next chapter
respectively. This modulation has low sidelobes in the spectrum due to the limited

transition of the change in phase (90 degrees).

Table 3.4 Optimum LPT-QPSK codes

Length | PSL(dB) | ISL (dB) | LPT-QPSK code

20 -17.00 | -5.38 Z/2[210-1-10-10121210012101]

32 -18.96 | -5.51 Z/2[-1010-101210-1011210-10101
45 -19.08 | -4.21 7/2[1012100-1012101210-10-101
64 20.10 | -3.20 Z7/200101001212210-101210-1-101

The data acquired from Table 3.4 shows that as length increases, PSL values get lower.
In general, PSL values of LPT-QPSK codes are higher than those of QPSK codes. The
PSL value of the QPSK code of length 20 is 3 dB lower than that of the LPT-QPSK

code of the same length. Autocorrelations of these codes are computed in MATLAB,
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given in Figure 3.8.
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Figure 3.8 ACFs of LPT-QPSK code of lengths 20(a), 32(b), 45(c), 64(d).

In order to see the limited phase transitions, the phase variation of LPT-QPSK code of
length 20 with respect to time is drawn in Figure 3.9. The phase transitions are limited

to 90 degrees. As a result, the sharpness is reduced and consequently the spectrum is

improved.
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Phase versus time
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Figure 3.9 Phase variation of LPT-QPSK code of length 20

Up until now, all MLESSM codes have been searched and reported. They are all
arranged in a graph seen in Figure 3.10. This graph is useful to decide on optimum
discrete phase codes. As the code gets closer to the left-down corner, optimality
increases. It is obvious that the BPSK code of length 45 is very close to optimality
due to its low PSL and ISL values.
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Figure 3.10 PSL versus ISL

3.4.3. Sidelobe Suppression Techniques

3.4.3.1. INTRODUCTION

In multiple-target environments, where there are large point reflectors, it is often
desirable that the time sidelobes of ACF of the phase coded pulses be reduced to the
lowest level possible. Otherwise, the integrated sidelobes can appear as smaller
targets at other ranges or as extended targets [8]. Basically, there are two widely used
sidelobe reduction techniques namely Weighting and Inverse Filtering. Weighting is
applied to the optimum codes obtained in the previous sections and it is observed that
this technique does not work on these codes. The weighting technique instead of
reducing the sidelobe levels either increases the sidelobe levels or has no effect on

them. For that reason, the inverse filtering technique is currently the only applicable
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method. In the next section, the theory of inverse filtering is accessed; and applied to

the optimum codes obtained in the previous sections.

3.4.3.2. INVERSE FILTERING

Pulse compression allows a radar system to transmit long duration signal and achieve
the range resolution of short duration pulses. The compression is achieved by
correlating the receive signal with the code sent. This is called matched filtering. In
this system there is not only compressed signal but also range sidelobes, causing
false alarms in the receiver. This problem can be overcome by the intelligent choice
of the codes. In the previous sections we have tried to obtain these codes with
smallest range sidelobes. However, the results are limited by the length of the codes
and the number of phases used. Better results can be reached by using mismatch
filtering. This method tries to minimize the total energy in sidelobes in other words;

it tries to minimize ISL. Due to this property it can be called as optimal ISL filtering.

Assume the output of the correlator is given by Yy, , input code sequence of length N

by a, and the filter of length M by h, . The output sequence can be expressed as

Y, = Zajhk_j k=-p,..p (2.39)

Here, p is an integer representing the greater of the code and filter lengths, and the

code is zero-padded to the same length as filter length.

In calculating total power in side lobes, main peak must be subtracted out. The total

power in sidelobes is given by the formula

E=> v -V (2.40)
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In minimizing E, the solution h, =0 must be disallowed. Then a constraint equation

that the peak is a constant must be used.
P
®=>ah -C (2.41)
i=0

Lagrange Multiplier method can be used to find coefficientsh,. Now, E(h) is

minimized by considering the constraint equation given in Equation 2.41 as @ =0.

%(E—ﬂ@)zo K=1,..,p (2.42)

A is the Lagrange Multiplier. Substituting Eq.2.40 and Eq. 2.41 into Eq. 2.42, we
get:

p P
—ai {(Zykz—yoz)—z(z}ajhj—C)}o m=0,.,p (2.43)
m j=0

k=-p

By taking the partial derivatives, Eq. 2.43 becomes

p p P
2. [Zajhjk)am -2> aa,h,-C=2a, m=0,.,p (2.44)
=0

k=—p \ k=0

There are p+1 linear equation, and they can be written in matrix notation as

YH = %A (2.45)

Y is p+1 by p+1 matrix, H is p+1 by 1 column vector, A is the p+1 by 1 column

vector consisting of @, ’s. So, Eq.2.45 can be written as

H= %Y‘IA (2.46)

A . . . .
5 is only a scaling factor and it does not change the structure of the filter. But it can

be chosen to have the equal amplitude as matched filter peak.
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3.4.3.3. INVERSE FILTERING ON DISCRETE PHASE QPSK CODES

Initially, the QPSK code of length 20 is selected to observe the sidelobe reduction
when the inverse filtering technique is applied. The ACF of this code was given in
Figure 3.5(a). Figure 3.11 depicts the response of the IF filter of length 20 obtained
with the solution of Equation 2.46.

IF output of QPSK code of length 20
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Figure 3.11 QPSK code of length 20 filtered with IF of length 20

When the inverse filter of length 20 is applied to the QPSK code of length 20, the
output has an ISL value of -9.68 dB which is 2.58 dB lower than the matched filter
output. In ISL minimization process, inverse filtering also lowers the PSL. The
inverse filtered QPSK code has a PSL value of -20.84 dB which is 0.84 dB lower
than that of the matched filter output. In the inverse filtered output, the sidelobes
close to the main peak have lower values in comparison to the side lobes which are

distant to the mean peak. If two close targets are tried to be detected, this result turns
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out to be an advantage. On the other hand, the drawback of inverse filtering is the
necessity of mismatch filtering which results with SNR loss. The related inverse

filtered code has a mismatch loss of 0.21 dB for the case considered.

In the previous section, it is stated that IF length can be greater than the code length.
Figure 3.12 shows the response of the IF filter of length 60 applied to the QPSK code
of length 20. In this case, the ISL value is lowered to -16.95 dB which is 9.85 dB
lower than the ISL of the matched filter output while the PSL of the response is -
25.67 dB, which is 5.67 dB lower than that of the matched filter output. Finally, the
SNR loss amounts approximately to 1.14 dB. In addition, inverse filtering has one
more advantage with respect to matched filtering which is the main lobe getting

narrower.
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Figure 3.12 QPSK code of length 20 filtered with the IF of length 60

In the Figures 3.13, 3.14, 3.15 and 3.16, the variations of SNR loss, MLW, PSL and
ISL are sketched with respect to the IF filter length for the QPSK code of length 20.
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The filter length varies between 20 and 100.

In the inverse filtering method, the total power in side lobes is attempted to be
minimized, however, PSL values also improve. The 20-length IF output has a PSL
value, which is 0.84 dB lower than the PSL of the matched filter output. Besides, the
IF output of length 100 has a 20 dB lower PSL value compared to that of the
matched filter output. The variation of the PSL with respect to the filter length is

given in Figure 3.13.
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Figure 3.13 PSL versus IF filter length
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Figure 3.14 ISL versus IF length

ISL versus the filter length is given in Figure 3.14. Inverse filtering overcomes the
problem of obtaining codes with low ISL. According to Figure 3.14, if the IF filter of
length 100 is used, the ISL value of the inverse filter output is 14 dB lower than that

of the matched filter output.
As stated before, in comparison to the matched filter case, the main lobe gets

narrower when inverse filtering is applied. An increment of the filter length from 20

to 100 causes a decrement in the MLW from 1.11 chips to 1.01 chips.
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Figure 3.15 MLW versus IF length

Figure 3.16 shows the effect of the filter length on SNR loss. As the filter length
increases, SNR loss also increases. The IF of length 20 has 0.4 dB of SNR loss. This

value increases to 1.15 dB when the length of IF increases to 100.
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Figure 3.16 SNR loss versus IF length

The results show that, one can choose the filter length depending on requirements
and priorities. Assume that a QPSK code of length 20 is used in a radar system. This
radar system contains an optimum filter which has a PSL value on the order of -30
dB, an ISL value on the order of -19 dB, an SNR loss not greater than 1 dB and a

minimum main lobe width. In this case, the length of IF should be selected within the

interval [70, 80].
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In the previous sections, each chip in a pulse is assumed to have a discrete phase
value. In continuous time, it can be thought that the phase of each chip is shaped by a

3.5. Optimum Continuous Phase Memoryless Waveforms

3.5.1. Phase Shaping Pulse
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Figure 3.17 Phase Shaping Pulse for T = T/5, T=100

0.2 -0.1
the total duration of the transition in each chips phase is never greater than T/2 where

In the pulse, each of the transition regions has a half-cosine shape. It is assumed that

T is equal to the chip width, T..



3.6. Continuous Phase Waveforms

3.6.1. Continuous Phase BPSK Waveforms

If the phase shaping pulse given in the previous section is used to form the phase of
the BPSK pulse with N=20, the phase variation becomes as in Figure 3.18. The
initial phase is assumed to be equal to the constant phase of the first chip. And also
the tail of the last chip phase is not allowed and it is equalized to the constant phase

of last chip.
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Figure 3.18 Phase variation of the continuous phase 20-length BPSK signal, T =T/5
In Figure 3.18, the continuous ACF of the continuous phase BPSK waveform formed

by the code of length 20 is given where the duration of the transition is taken as T/5.

The PSL value is higher compared to the discrete case.
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Continuous ACF
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Figure 3.19 Aperiodic ACF of BPSK pulse, N =20, t=T/5

The PSL value of the continuous phase systems matched filter output is -18.76 dB
which is 1.24 dB higher than the discrete phase case. Table 3.5 gives the variation of
PSL and ISL values with respect to duration of transition in the phase shaping pulse.
The case, T = 0 refers to the discrete phase case. In this case, the PSL value of the MF
output is -20 dB. The output of the matched filter in the continuous phase case with

T = T/4, has 1.56 dB higher PSL than the discrete phase case. As the duration of the
transition increases, the PSL and the ISL values get higher. In contrary to the
discrete case, all of the ISL values are lower in the continuous phase case. This may
be due to the definition of the main lobe and the characteristic of the code. The worst
case where T = T/4 has -7.72 dB of ISL which is 0.23 dB lower than the discrete

phase case.
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Table 3.5 PSL and ISL of the continuous phase BPSK pulse, N =20, t = T/5

Duration of Transition PSL(dB) ISL(dB)
0 -20.000 -7.490

T/50 -19.9255 -8.1327
T/25 -19.8024 -8.1239
2T/25 -19,5397 -8.0892
4T/25 -19.0213 -7.9557
T/5 -18.7587 -7.8604
T/4 -18.4352 -7.7193

Continuous ACFs of the other lengths of codes are given in Figures 3.20 through
Figure 3.22.
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Figure 3.20 Aperiodic ACF of the BPSK pulse, N =32, t=T/5

The matched filter output of the continuous phase system has a PSL value of -18.96
dB which is 1.6 dB higher than the discrete case.
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Figure 3.21 Aperiodic ACF of the BPSK pulse, N
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Figure 3.22 Aperiodic ACF of the BPSK pulse, N
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Figure 3.21 and 3.22 show the continuous ACFs of the BPSK codes of lengths 45

and 64. The PSL values are again higher than the PSL values of the discrete phase
MF outputs. Table 3.6 shows the variation of the PSL and the ISL of the BPSK codes

of length 32, 45, 64 with respect to the duration of transition.

Table 3.6 PSL and ISL of the BPSK pulse with N = 32, 45, 64

Duration PSL(dB) ISL(dB)

of N=32 N =45 N=64 N=32 N =45 N =64
Transition

0 -20.56 -23.5 -24.08 -8.95 -8.62 -7.41
T/50 -20.4001 -23.1988 | -23.7235 | -8.3732 | -8.3160 -7.5926
T/25 -20.2304 -22.8728 | -23.3693 | -8.3652 | -8.2781 -7.5662
2T/25 -19.8959 -22.2206 | -22.6661 | -8.3292 | -8.1266 -7.4566
4T/25 -19.2562 -20.9565 | -21.3605 | -8.1585 | -7.5526 -7.0111
T/5 -18.9505 -20.3559 | -20.7536 | -8.0172 | -7.1611 -6.6870
T/4 -18.5809 -19.6391 | -20.0376 | -7.7878 | -6.6105 -6.2093

The results demonstrate that as the duration increases, PSL and ISL of the matched

filter output get higher. The PSL value of the MF output for the BPSK waveform
with N = 64, 1="T/50 is -23.72 dB, occurs to be 3.7 dB lower than the case where the

duration of transition is T/4.
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3.6.2. Continuous Phase QPSK Waveforms

If the phase of each chip in the 20-length QPSK code is shaped with the phase

shaping pulse in Figure 3.17, the phase variation of the pulse with respect to time

becomes as in Figure 3.23. N refers to the number of chips in a pulse.
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Figure 3.23 Phase variation of the continuous phase QPSK pulse, N

The QPSK code of length 20 is a phase symmetric code and this symmetry is
observable in Figure 3.23. In Figure 3.24, aperiodic ACF of the QPSK pulse with

N

20 is shown for the transition duration of T/5.
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Continuous ACF
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Figure 3.24 Aperiodic ACF of the QPSK pulse, N =20, t=T/5

The PSL value of the continuous phase system is -17.84 dB, which is 2.16 dB higher
than the discrete case. The decrement in PSL values of this pulse is more dramatic
than the BPSK pulse of the same length. In Figure 3.25, the aperiodic ACFs of the
QPSK pulse are drawn for different values of 1. The sidelobes close to the main lobe

become higher than the sidelobes which are distant from the main lobe.
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Continuous ACF
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Figure 3.25 Aperiodic ACFs of the QPSK pulse, N=20

If a continuous phase pulse is to be used in a radar system, Table 3.7 may help any
designer to decide on t values. The variations of PSL and ISL with respect to the
duration of transition are put into a table for the QPSK pulse with N = 20. The results
again prove that the PSL and the ISL values depend on the value of 1. The PSL of the
matched filter output in the continuous phase scheme with T = T/50 is -19.75 dB
which is 2.4 dB lower than the scheme with T = T/4.

Table 3.7 Effect of Duration on PSL and ISL

Duration of Transition PSL(dB) ISL(dB)
0 -20.0000 -7.1181
T/50 -19.7512 -7.0553
T/25 -19.5137 -7.0578
2T/25 -19.0668 -7.0502
4T/25 -18.2307 -6.9896
T/5 -17.8426 -6.9395
T/4 -17.3789 -6.8611
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In order to see the effect of the phase shaping pulse, the aperiodic ACFs of the QPSK
pulses with N= 20, 32, 45 and 64 for t = T/5 are given in Figure 3.26.
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Figure 3.26 Aperiodic ACFs of QPSK pulses, N=20(a), 32(b), 45(c), 64(d)

In Table 3.8, the PSL and the ISL variations of the MF outputs of the QPSK pulses
with N = 20, 32, 45, and 64 are summarized. The PSL of the matched filter output of
the continuous phase scheme for the QPSK pulse with N =32 and t = T/50 is -20.19
dB, which is 3.38 dB lower than that of the output of the scheme with the duration of
T/4. The same comparison is made for the QPSK pulse with N = 45, and the
difference is only 2.48 dB. For the QPSK pulse with N = 64, the difference becomes
1.1 dB. Consequently, as the code length increases, the effect of the duration on the

PSL values decrease.
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On the other hand and quite unexpectedly, for the QPSK pulse with N = 64, as the
duration increases the ISL values of the MF outputs do not follow a pattern. The

reason of this result may be the definition of the main lobe region and the specialty

of the code.
Table 3.8 Effect of Duration on PSL and ISL
Duration PSL(dB) ISL(dB)

of
Transition | N=32 | N=45 | N=64 | N=32 | N=45 N = 64
0 -20.10 -20.76 -21.50 -7.1213 -5.238 -4.2583
T/50 -20.1877 | -20,5178 | -20.7910 | -6.9717 | -5,3053 -3.9736
T/25 -19.8430 | -20,2811 | -20.7705 | -6.9050 | -5,3010 -3.9990

2T/25 -19.1747 | -19,8188 | -20.7246 | -6.7158 | -5,2776 -4.0416

4T/25 -17.9854 | -18,9401 | -20.4256 | -6.1532 | -5,1830 -4.0892

T/5 -17.4441 | -18,5279 | -20.0671 | -5.8074 | -5,1190 -4.0923

T/4 -16.8122 | -18,0350 | -19.6361 | -5.3427 | -5,0306 -4.0757

The previously defined LPT-QPSK codes are used to form the continuous phase

pulses and aperiodic ACFs of the continuous phase pulses are computed.

The phase variation and the aperiodic ACF of the LPT-QPSK pulse (N = 20) with

respect to time is given Figure 3.27 and in Figure 3.28 respectively.
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Phase versus time
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Figure 3.27 Phase variation of the LPT-QPSK pulse with N
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Figure 3.28 Aperiodic ACF of the LPT-QPSK pulse, N
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The PSL value of the continuous phase LPT-QPSK scheme with t = T/5 is -16.5 dB,
which is 0.5 dB higher than that of the discrete case. In the previous section, the
same decrement was calculated as 2.16 dB for the QPSK case. Table 3.9 summarizes
the PSL and ISL variations of the MF output of the LPT-QPSK pulse with N = 20
with respect to the transition duration parameter (t). The PSL of the matched filter
output of the LPT- QPSK pulse with N = 20, T =T/50 is -16.93 dB, which is 0.55 dB
lower than that of the output of the scheme with t = T/4. In general, any change in 1

slightly affects the PSL and ISL values.

Table 3.9 Effect of Duration on PSL and ISL

Duration of Transition PSL(dB) ISL(dB)
0 -17.000 -5.3800

T/50 -16.9219 -6.3505

T/25 -16.8750 -6.3686

2T/25 -16.7792 -6.4065

4T/25 -16.5906 -6.4883

T/5 -16.4976 -6.5316

T/4 -16.3820 -6.5873

Aperiodic autocorrelations of codes of other lengths are given in Figure 3.29.

Continuous ACF Continuous ACF
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Figure 3.29 Aperiodic ACFs of LPT-QPSK pulses, N = 20(a), 32(b)
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Figure 3.29 (cont)Aperiodic ACFs of LPT-QPSK pulses, N = 45(c), 64(d).

Table 3.10 shows the variations of PSL, ISL and MLW values for different lengths
of codes with respect to the duration of transition. The only considerable change
occurs in the PSL value of the MF output of the LPT-QPSK pulse with N = 64. This
pulse with the duration of T/50 has a PSL of —19.97dB, which is 1.4 dB lower than
the PSL value for the same pulse with the duration of T/4. In general, all of the
pulses with different lengths of codes are very resistant to the change of duration.

This makes LPT-QPSK codes superior to other types of codes.

In the table below, the MLW values are also summarized for different values of the
transition durations. The LPT-QPSK pulse with N=32, t=T/50 has a main lobe width
0f 0.9377 chips, which is 0.17 chips wider than that of the LPT-QPSK pulse with

N = 64. As the duration increases, the main lobe slightly widens. The LPT-QPSK
pulse with N=32 has only a width of 1.24 chips when the duration reaches T/4.
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Table 3.10 Effect of Duration on PSL and ISL
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3.6.3. Spectral Improvement of Continuous Phase Modulation

The bandwidth that a signal occupies is an important aspect of its total performance.
The radio frequency spectrum is a limited and valuable resource and its use is
controlled by international standards. It is important to consume as little of it as

possible.

In digital communication, in order to define bandwidth efficiency, the Nyquist
Bandwidth, Null-to-Null Bandwidth or Percentage Bandwidths of a waveform are to
be calculated. In the comparisons provided, percentage bandwidth is utilized because
of the characteristics of waveform spectrums, i.e., null-to-null bandwidth no longer
exists for continuous phase modulations. Commonly used percentage bandwidths are
the 90% and 99% bandwidths. The 90% bandwidth is defined as the frequency band

in which the 90% of the total power is occupied.

In fact, all the radar waveforms mentioned in this study are pulsed waveforms and
they are periodic with PRI. However, instead of using these waveforms, it is
preferable to choose one pulse consisting of chips. In addition, the Fourier Transform

is performed on a finite length waveform not a continuous periodic waveform.

In order to compare the bandwidth efficiencies, the power spectral densities of the
baseband waveforms are computed in MATLAB. Using these densities, 90% and
99% bandwidths are computed for all waveforms which are formed with the 20-

length codes obtained in the previous sections.

In digital communication, many CPM schemes -especially MSK and GMSK- are
widely used due to their spectral efficiencies. In order to observe this efficiency on
the radar waveforms, firstly, the MSK waveform with 20-length CPM code, h=0.5,
M=2 and IREC is selected and the 90% and the 99% bandwidths are calculated as
4.27 MHz and 10 MHz respectively.
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Then M is increased to 4 and the bandwidths become 8.85 MHz and 14 MHZ
respectively. In the case of M = §, the bandwidths are 15.87 MHz and 22.9 MHz. In
conclusion, in CPM waveforms, the 90% and the 99% bandwidths widen as M
increases. The percentage bandwidths of the BPSK, the QPSK and the LPT-QPSK

waveforms are also computed and given in Tables 3.11, Table 3.12, and Table 3.13.

Table 3.11 By, and Bogy, of the QPSK waveform, N=20

T By, (MHz) Bogo, (MHz)
T/100 7.94 74.77
T/50 7.94 63.78
T/5 7.62 4791
2T/25 7.02 34.79
AT/25 6.41 23.80
T/5 6.10 21.97
T/a 6.10 16.79

The effect of phase continuity is observable in Table 3.11, showing the percentage
bandwidths of the QPSK waveform with different values of 1. The 90% bandwidth is
7.94 MHz for the QPSK waveform with the transition duration of T/100, which is
1.84 MHz wider than that of the same waveform with t = T/4. A 1.84 MHz
increment of the 90% bandwidth occurs. However, the 99% bandwidth narrows by
58 MHz. This means only 1% of the total power is carried in the spectral sidelobes

outside the band of 16.8 MHz.
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If a waveform is to be filtered through a bandpass filter with a narrower bandwidth
than that of the waveform, a narrow bandwidth becomes a significant advantage.
This filter cuts the tails of the waveform frequency response causing an amplitude
variation on the filtered output. In order to observe these amplitude variations, a
simulation setup is prepared in Advanced Design System (ADS) software. The
regarding waveforms are generated at intermediate frequency of 70 MHz.
Subsequently, these waveforms are filtered by a band pass filter centered at 70MHz
with 20MHz bandwidth. Finally, the amplitude variations of continuous and discrete

phase waveforms, which have occurred on the output waveforms, are compared.

Table 3.12 Byge, and Boge, of BPSK waveform, N =20

T Boov, (MHz) Bogo, (MHz)

T/100 8.39 96.44
T/50 8.39 87.59
T/25 8.39 70.19
2T/25 8.24 48.83
AT/25 7.78 30.51

T/5 7.63 26.56

T/4 7.32 22.28

In Table 3.12, the 90% and 99% bandwidths for BPSK waveforms formed by the
code of length 20 are summarized. The 90% bandwidth of the continuous phase
BPSK waveform with the transition duration of T/100 is 8.39 MHz, which is 1.07
MHz higher than the scheme with the transition duration of T/4.
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The 99% bandwidth of the continuous phase scheme with the duration of T/4 is
22.28 MHz, which is 5.49 MHz higher than that of the continuous phase QPSK
scheme with the same duration In addition, the 99% bandwidth for the duration of
T/100 is 96.44 MHz, which is 21.67 MHz higher than the continuous phase QPSK
scheme with the same duration. As a conclusion, QPSK waveforms are spectrally

more efficient in comparison to BPSK waveforms.

Table 3.13 By, and Bogo, of the LPT-QPSK waveform, N =20

T Boo, (MHz) Bogo, (MHZz)

T/100 7.63 67.139
T/50 7.63 56.152
T/25 7.32 43.945
2T/25 6.71 31.738
4T/25 6.10 21.362
T/5 6.10 16.479
T/4 5.80 14.954

In fact, the LPT-QPSK pulses are discovered to be resistant to the duration changes
in terms of PSL and ISL. The spectral superiority of these waveforms are observable
in Table 3.13, which shows the By, and the Boggy, of the LPT-QPSK pulse for
different values of 1. Compared to the other MLESSM waveforms, LPT-QPSK

waveforms have the lowest Boge, and Boggs, for all transition durations.
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In example, for the transition duration of T/4, the LPT-QPSK waveform has a 5.80
MHz %90 bandwidth, which is 0.3 MHz narrower than that of the QPSK waveform.
It is also 1.52 MHz narrower than that of the BPSK waveform. To sum up, the results
of the simulations demonstrate that spectrally the most efficient modulation among
all the MLESSM waveforms is the LPT-QPSK waveform with t = T/4. Table 3.14
arranges the bandwidths of all MLESSM waveforms.

Table 3.14 Byg, and Boge, of MLESSM waveforms, N = 20

T By, (MHz) Bogo, (MHz)

BPSK [QPSK [LPT- [BPSK |QPSK [LPT-

|QPSK |QPSK

T/100 8.39 7.94 7.63 96.44 | 74.77 | 67.139
T/50 8.39 7.94 7.63 87.59 | 63.78 | 56.152
/25 8.39 7.62 7.32 70.19 | 47.91 | 43.945
2T/25 8.24 7.02 6.71 48.83 | 34.79 | 31.738
4T)25 7.78 6.41 6.10 30.51 | 23.80 | 21.362
T/5 7.63 6.10 6.10 | 26.56 | 21.97 | 16.479

T/4 732 | 6.10 | 580 | 2228 | 16.79 | 14.954

In the table above, the bandwidths of the CPM waveforms are not included but it
should be remembered that the MSK waveform has a 4.27 MHz Bgy, and a 10 MHz
B99.,. being the narrowest among all modulation types. Adding this result to the
results given in the table above, one can agree that among MWM modulation
techniques spectrally the most efficient modulation is MSK and the LPT-QPSK with
T = T/4 is the most efficient technique among all continuous phase MLESSM
modulation techniques. To sum up, MSK is the most efficient modulation technique

in all modulations with a 4.27 MHz Byg,.
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3.6.4. Continuous Phase Modulations and System Imperfections

The main concern in this study is to find the optimum waveform which when filtered
has the lowest possible amplitude variation. In order to compare waveform
optimality, a simulation setup is prepared using ADS software. Figure 3.30 shows
how this simulation is realized. The simulation sampling rate is hundred times the
inverse of the chipwidth. In order to represent discrete phase waveforms, the
waveform with the rectangular phase shaping pulse is used. The phase shaping pulse

in Figure 3.17 is applied to shape the phase of each continuous phase waveform chip.

SETUP:
T.=100ns
F.=70MHz
Ts=1ns
N=20

M =4 for CPM

h (t) = a bandpass filter centered at 70 MHz with 20MHz bandwidth

e0('() e(@(t)+mct)
Baseband h(t)
——»V(t
Waveform y(®)
Generator
70 MHz

Figure 3.30 Simple Radar Transmitter
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In the simulations, a band pass filter centered at 70MHz with a 20MHz bandwidth is
used. This filter is designed on PC using GENESYS software and the result layout is
printed on an FR-4 substrate. The filter characteristic is measured using HP8753ES
Network Analyzer and it is plotted in Figure 3.31.
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Figure 3.31 Bandpass filter

The QPSK waveforms before and after filtering through the bandpass filter are given
in Figure 3.32 and Figure 3.33 respectively. In the previous section, the bandwidth
efficiencies of MLESSM and MWM waveforms were compared. It is proved that
among all modulated waveforms, the discrete phase QPSK waveform has the highest
sidelobe levels and the widest 90% and 99% bandwidths in comparison to those of
continuous phase and CPM waveforms. In the simulations, a discrete phase QPSK, a
continuous phase QPSK and a CPM waveform are generated and the filtered outputs
are observed. It is expected that the filtered discrete phase QPSK waveforms have

the highest amplitude variation.
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Figure 3.32 Discrete Phase QPSK Waveform before Filtering
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Figure 3.33 Discrete Phase QPSK Waveform after Filtering
A frequent amplitude variation occurs on the discrete phase QPSK waveform. The

amplitude variation is higher especially on phase transition regions due to the sharp

transitions.
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When the new phase shaping pulse with T = T/4 is used to form the continuous phase
waveform, the output waveform after filtering through the bandpass filter occurs to

be as in Figure 3.34.
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Figure 3.34 Continuous Phase QPSK Waveform after Filtering, T = T/4

Finally, in order to see the superiority of CPM waveforms, the same simulation setup
is used to observe the filtered CPM waveform. The resulting waveform is shown in

Figure 3.35.
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Figure 3.35 CPM Waveform after Filtering, M =4, h=0.5, IREC
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CHAPTER 4

SAMPLING MISMATCH IN RADAR WAVEFORMS

4.1. Introduction

The return signal from a target is received by the radar receiver and sampled in the
A/D devices. In the following sections, effects of the system Nyquist rate sampling
and half the system Nyquist rate sampling on PSL, ISL, peak SNR and MLW are
assessed. Half Nyquist rate is the rate of one sample per chip and nyquist rate is 2
samples per chip since the chipwidth is 100ns. Throughout this analysis, the SNR
loss corresponds to the decrease in the peak value of the receiver filter output. This
decrement occurs in a mismatch condition. When correct samples are taken at
constant phase points outside the transition regions of each chip, the sampling is
considered to be ideal. If non-constant phase points are applied, the condition is

defined as a sampling mismatch condition.
4.2. Half Nyquist Rate Sampling

4.2.1. Sampling Mismatch on QPSK Codes

In the previous chapter, the optimum discrete phase and the continuous phase
waveforms were analyzed regarding the continuous aperiodic autocorrelation
functions and the bandwidths of these waveforms. In the following studies, the
QPSK waveform with N = 20 is provided as an example. Initially, the half Nyquist
rate is used. In this case, the A/D device samples the waveform with the rate of 1

sample/chip. The matched filter coefficients are formed by the correct samples taken
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at ideal constant phase points. The ideal case occurs when the A/D samples the chips
at midpoints. This condition guaranties the highest peak value at the MF output. In
any other case, a mismatch occurs between the obtained samples and the MF
coefficients causing a mismatch loss at the MF output. In a mismatch case, not only
SNR loss occurs but also PSL, ISL and MLW values decrease. For each and every
sampling point, PSL, ISL and MLW values are computed and plotted with respect to
the sampling time shift. Exactly the same sampling points are obtained for the shift
of T/2. Due to this fact, the figures showing PSL, ISL and MLW variations for the
code of length 20 are plotted for the mismatch time interval of [-T/2, T/2] where T is
equal to the chip width, T In addition, in order to see the periodicity of the

variations, the figures for all waveforms are drawn for the interval of [-T, T].

The mismatch effects of half the Nyquist rate sampling on PSL, ISL, SNR loss and
MLW are presented in the following figures. The maximum main lobe width for the
worst case is never greater than +3T.. For that reason, the main lobe region is
supposed to be £3T. in the simulations. The letter, “S” represents the number

samples in a chip

PSL versus sampling time mismacth

I I I I I I I
| continuous phase QPSK /
777777777 . discrete phase QPSK ||

sampling time mismatch(normalized to Tc)

Figure 4.1 PSL versus sampling time shift for discrete and continuous phase QPSK
waveforms, t=T/5,S=1,
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The PSL value of -11 dB, which is 9 dB higher than that of the discrete phase QPSK
waveform, is obtained for the shift of T/2. In the interval of [-0.3T, 0.3T.], which is
out of the transition regions, the PSL value is the same with the discrete phase

waveform.

ISL versus sampling time mismacth
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Figure 4.2 ISL versus sampling point shift for discrete and continuous phase QPSK

waveforms, t = T/5, S=1

In Figure 4.2, the ISL variation with respect to the sampling point shift is given.
When the shift reaches T/2, the highest ISL occurs. This value is nearly 2.5 dB
higher than the ISL for the discrete phase scheme.
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MLW versus sampling time mismacth
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Figure 4.3 Main lobe width versus sampling point shift for discrete and continuous

phase QPSK waveforms, t=T/5, S=1.
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Figure 4.4 SNR loss versus sampling point shift for discrete and continuous phase
QPSK waveforms, T = T/5, S=1.
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These figures show that the SNR loss and MLW increase, the PSL and ISL get
higher as the sampling point moves away from the ideal sampling point which is the
midpoint at half the Nyquist rate. In addition, main lobe width is normalized to the

main lobe width of ideal MF output.

When the same calculations are repeated for the QPSK waveforms with N = 32, 45
and 64, the results given through Figure 4.5 to 4.8 are accomplished. In Figure 4.5,
the PSL variation is provided for different lengths of the codes. The waveforms with
N =32, 45, 64 have lower PSL values for the ideal sampling condition in comparison
to the PSL value of the waveform with N = 20. However, these waveforms are
observed to be very sensitive to the mismatch effect. Figure 4.6 shows the ISL
variations of all waveforms. Unexpectedly, the obtained ISL values at maximum
shift of T/2 are positive. In other words, the total power in the sidelobes is higher
than the power in the main lobe. This situation is not acceptable for two-target or

clutter dominant systems due to excessive power in the sidelobes.

PSL versus sampling point mismatch

-0.2 0 0.2
time normalized to Tc

Figure 4.5 PSL versus sampling point shift for QPSK waveforms with N = 20, 32,
45 and 64,S=1,1=T/5.

71



ISL versus sampling point mismatch
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Figure 4.6 ISL versus sampling point shift for QPSK waveforms with N

=T/5.
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Figure 4.7 MLW versus sampling point shift for QPSK waveforms with N
45,64,S=1,t="T/5.
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SNR Loss versus sampling point mismatch
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Figure 4.8 SNR loss versus sampling point shift for QPSK waveforms with N = 20,
32,45and 64,S=1,t="T/5.

MLW and SNR loss also increase as the shift from ideal sampling points and the
length of the code increase. The worst case would be the shift of T/2 from the ideal
sampling point. In this case, an 8 dB SNR loss occurs for the waveform with N = 64

where it is 6.89 dB for the waveform with N = 45.

The results provided in the figures above are summarized in Table 4.1. Minimum
values are obtained at the ideal sampling condition and maximum values at the worst
sampling condition. The MLW values are normalized to the MLW value of matched

filter output in ideal case.
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Table 4.1 Max and Min values of PSL and ISL under sampling mismatch, S = 1

Code PSL(dB) ISL(dB)

Length Min Max Min Max
20 -20 -11.15 -7.12 -5.15
32 -20.56 -4.7763 -7.12 2.80
45 -20.76 -3.39 -5.29 1.02
64 -21.6 -6.47 -4.28 2.76

Table 4.2 Max and Min values of SNR Loss and MLW under sampling mismatch,

S=1
Code MLW(chips] Loss(dB)
Length Min Max Min Max
20 1.000 2.0879 0 3.16
32 1.000 5.6447 0 8.12
45 1.000 4.1422 0 6.89
64 1.000 5.2191 0 8.00

4.3. Nyquist Rate Sampling

4.3.1. Sampling Mismatch on QPSK Codes

In Nyquist rate sampling, two samples are taken during each chip interval. In
addition, the MF coefficients are formed by using the ideal constant phase samples
taken on the transmitted waveforms. In any sampling mismatch condition, due to the
fact that the duration of transition is never greater than T/4, at least one ideal constant

phase sample is obtained in the sampling process. As a result, PSL, ISL, MLW and
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SNR loss values occur to be better than those of half the Nyquist rate sampling for
the worst case. The variations of PSL, ISL, SNR loss and MLW with respect to the
sampling point shift under nyquist rate sampling are given in Figure 4.9, Figure 4.10,
Figure 4.11, and Figure 4.12. The SNR loss values are given with respect to the
matched filter output of the ideal sampling case. The MLW values are normalized to

the MLW value of ideal MF output.

PSL versus sampling point mismatch

[dB]

time normalized to Tc

Figure 4.9 PSL versus sampling point shift for QPSK waveforms with N = 20, 32,
45,and 64,S=2,t=T/5
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ISL versus sampling point mismatch

time normalized to Tc

=20, 32,

2,1="T/5

45,64, S

MLW wversus sampling point mismatch

oTc

time normalized t

,1=T/5

=2

N =20, 32,45 and 64, S
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Figure 4.10 ISL versus sampling point shift for QPSK waveforms with N

Figure 4.11 MLW versus sampling point mismatch for QPSK waveforms with



SNRoss versus sampling point mismatch

[dB]

05 04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
time normalized to Tc

Figure 4.12 SNR Loss versus sampling point mismatch for QPSK waveforms with
N=20,32,45and 64,S=2,t="T/5

These results are summarized in Table 4.3 and Table 4.4.

Table 4.3 Max and Min PSL and ISL values for QPSK waveforms under sampling
mismatch, S =2

Code PSL(dB) ISL(dB)
Length
Min Max Min Max
20 -20.00 -15.27 -6.52 -5.81
32 -20.10 -13.59 -6.43 -2.26
45 -20.76 -11.62 -5.12 -2.42
64 -21.58 -15.69 -4.10 -1.57
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Table 4.4 Max and Min MLW and Loss values for QPSK waveforms under
sampling mismatch, S =2

Code MLW/chips] Loss[dB]

Length Min Max Min Max
20 1.0000 1.5315 0 1.4373
32 1.0000 1.7800 0 3.1484
45 1.0000 1.7226 0 2.7800
64 1.0000 1.7574 0 3.1091

All of the results are observed to be better than those of half the Nyquist rate
sampling. Minimum PSL value for QPSK waveforms with N=20 sampled at the
Nyquist rate is 4.1 dB lower than that of the waveforms sampled at half the Nyquist
rate. The corresponding differences in the PSL value for other waveforms with

N = 32, 45 and 64 are 8.6 dB, 8.2 dB and 9.2 dB respectively. These differences
show that the waveforms with longer codes improve more than those with short
codes for Nyquist rate sampling. A similar result is obtained for the ISL values.
While the ISL of the waveform with N = 20 increases 0.7 dB, the waveform with

N =32 improves 5.0 dB.

In comparison to the ideal sampling case, in general, ISL and PSL values get higher
even at nyquist rate sampling under sampling mismatch due to the usage of the
system Nyquist rate. The QPSK waveform with N = 20 has a 0.71 dB higher ISL for
the worst case. The PSL value of the MF output for this waveform increases by 4.73
dB while the increment for the waveform with N = 32 and 9.1367 dB for the
waveform with N = 45, 5.90 dB of PSL improvement is achieved for the waveform
with N = 64. Maximum PSL difference at the worst case occurs for the waveform
with N = 45.

It can be inferred from Table 4.2 and Table 4.4 that SNR Loss and MLW values also
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improve in the Nyquist rate sampling case.

In the following parts, the effect of sampling point mismatch on MF output is studied
for the spectrally efficient LPT-QPSK waveforms. PSL versus sampling point shift is
demonstrated in Figure 4.13. In the calculations, the transition duration of T/5 and

Nyquist rate sampling are used.

PSL versus sampling point mismatch

[dB]

time normalized to Tc

Figure 4.13 PSL versus sampling point mismatch for LPT-QPSK waveform with
N=32,45,64,S=2,t=T/5

The graphs of sampling point mismatch effect have nearly the same shape for all
waveforms. Therefore, tables may be sufficient to describe the effect. In the
following sections, minimum values in the tables are obtained for the ideal sampling
points, and maximum values are obtained at the worst sampling points. In contrary to
half the Nyquist rate sampling, the figures are drawn for the sampling point shift
interval of [-T/2, T/2].

Maximum PSL decrement due to the sampling mismatch is only 2.46 dB for the
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QPSK waveform with N = 20 while it is 1.254 dB for the waveform with N = 32.
The maximum PSL decrement is 1.43 dB for the waveform with N = 45 and 3.0697
dB for the waveform with N = 64. On the other hand, the sampling mismatch has
little effect on the ISL values for the worst case. Maximum ISL difference of 0.30 dB
occurs for the waveform with N = 20. As stated before, LPT-QPSK waveforms have
the narrowest bandwidths in all MLESSM waveforms.

Table 4.5 Min and Max values of PSL and ISL for LPT-QPSK waveforms under
sampling mismatch, S =2, t="T/5

Code PSL(dB) ISL(dB)

Length Min Max Min Max
20 -16.99 -14.53 -6.45 -6.15
32 -19.10 -17.94 -6.24 -6.16
45 -19.09 -17.81 -4.91 -4.70
64 -20.10 -17.19 -3.44 -3.35

Table 4.6 Min and Max of MLW and Loss values for LPT-QPSK waveforms under
sampling mismatch, S =2, t=T/5

Code MLW]|chips] Loss[dB]

Length Min Max Min Max
20 1.0000 1.4588 0 1.1529
32 1.0000 1.4990 0 1.1911
45 1.0000 1.4953 0 1.2114
64 1.0000 1.5240 0 1.2137

86




It can be inferred from Table 4.5 and Table 4.6 that LPT-QPSK waveforms have less
SNR loss values in comparison to QPSK waveforms. For the worst case, maximum
SNR loss of 1.2137 dB occurs for LPT-QPSK waveform with N = 64 while this loss
amounts to 3.11 dB for the QPSK waveform with the same length. The amount of
loss is even smaller in other LPT-QPSK waveforms. In conclusion, LPT-QPSK
waveforms are discovered to be more resistant to the sampling mismatch effect at the

system Nyquist rate.

4.3.2. Sampling mismatch on BPSK codes

The same simulations are repeated for BPSK waveforms to examine the sampling

mismatch effect. The results are summarized in Table 4.7 and Table 4.8.

Table 4.7 Min and Max values of PSL and ISL under sampling mismatch, S =2,

t=T/5
Code PSL(dB) ISL(dB)
Length Min Max Min Max
20 -20.0000 -14.5170 -7.8165 -4.7550
32 -20.5606 -16.4648 -8.3372 -4.7712
45 -23.5218 -15.2830 -8.1524 -4.8396
64 -24.0824 -18.1219 -7.4916 -4.4353
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Table 4.8 Min and Max values of MLW and SNR Loss under sampling mismatch,

S=2,t=T/5
Code MLW]|chips] Loss[dB]
Length Min Max Min Max
20 1.000 1.6357 0 2.2094
32 1.000 1.6996 0 2.4988
45 1.000 1.7193 0 2.4347
64 1.000 1.6934 0 2.3197

The simulation results show that there is not a certain relationship between the PSL
decrement and the code length. For example, in the worst case, the BPSK waveform
with N = 20 has a maximum PSL value of -14.52 dB which is 5.48 dB higher than
that of the ideal sampling case. The PSL decrement at the MF output of the
waveform with N =32 is 4.1 dB and it is 8.46 dB for the waveform with N = 45.

PSL versus ISL values of the MLESSM waveforms for the worst sampling condition
are arranged in Figure 4.14. This graph is a useful tool to decide on optimum
waveforms under sampling mismatch. As the waveform get closer to the left-down
corner of the graph, optimality under sampling mismatch increases. It is observable
from the graph that the optimum waveform under sampling mismatch is 32-LPT-

QPSK waveform.
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Figure 4.14 Maximum ISL versus maximum PSL under sampling mismatch

4.3.3. Sampling mismatch on CPM codes

For CPM waveforms, Table 4.9 and Table 4.10 summarize the results. In the

simulations, the system Nyquist rate (2 samples per chip) is used.

Table 4.9 Min and Max values of PSL and ISL under sampling mismatch, M = 2,

h=0.5, IREC
Code PSL(dB) ISL(dB)
Length Min Max Min Max
20 -17.8394 -16.5371 -5.7749 -5.4653
32 -17.5503 -16.8747 -6.8932 -6.6631
45 -17.2510 -16.2295 -3.7337 -3.7241
64 -17.7848 -16.9330 -3.0038 -2.9028
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The MF outputs of the CPM waveforms with M = 2, like those of the continuous
phase LPT-QPSK waveforms, have higher PSL values compared to those of BPSK
and QPSK waveforms. It is obvious in Table 4.9 that sampling mismatch has little
effect on the CPM waveforms. The PSL difference between the ideal sampling
condition and the worst sampling condition for the CPM waveform with N = 20,

M =2, is only 1.3 dB. This difference is 5.48 dB for the BPSK waveform with N =
20 and 4.73 dB for the QPSK waveform of the same length.

In addition, sampling mismatch has little effects on ISL values. The maximum ISL
variation of 0.31 dB occurs for the CPM waveform with N = 20, M = 2. The ISL
variations for the other CPM waveforms may be taken as negligible. These result are

expected because of the narrowest bandwidth of the MSK waveform.

Table 4.10 Max MLW and SNR Loss values of CPM waveforms, M =2, h=0.5,

IREC
Code MLW/chips] Loss[dB]
Length Min Max Min Max
20 1.000 1.1077 0.6877
32 1.000 1.1065 0.6877
45 1.000 1.0976 0.6873
64 1.000 1.1057 0.6877

The SNR losses of all waveforms are very close to each other and it is approximately
0.69 dB. In general, the MLW values for the worst case increase as the code length

increases. But the highest one is even 1.11 chips for the CPM waveform with N = 64.

When M is increased to 4, the results in Table 4.11 and Table 4.12 are obtained. In

general, the PSL variations for the waveform with M = 4 increase compared to the
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waveform with M = 2. The PSL difference between the worst and the ideal case for
CPM waveform with N =20, M =2 is 1.3 dB while it is 3dB for the waveform of the
same length with M = 4. As a consequence, the PSL and ISL variations increase as

M increases.

Table 4.11 Min and Max values of PSL and ISL under sampling mismatch, M = 4,

h=0.5, IREC
Code PSL(dB) ISL(dB)
Length - -
Min Max Min Max
20 -16.9897 -13.9192 -5.0724 -4.0293
32 18.7997 -14.1360 -4.4591 -3.3259
45 -19.7399 -16.0038 -3.7651 -2.8779
64 -19.8383 -16.2165 -2.6747 -1.9702

Minimum MLW values are smaller than those of the waveforms with M = 2. On the
other hand, SNR losses which are on the order of 3.5 dB are higher in these

waveforms.

Table 4.12 Max and Min values of MLW and Loss under sampling mismatch, M=4

h=0.5, IREC
Code MLW]|chips] Loss[dB]
Length - -
Min Max Min Max
20 1.000 1.7075 0 3.3056
32 1.000 1.6666 0 3.4769
45 1.000 1.7960 0 3.2844
64 1.000 1.8002 0 3.4558

When M is increased to 8, the PSL and ISL values get higher and MLW and SNR

loss values increase. The PSL values even reach 0 dB which means that the main
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lobe peak no longer exits. The ISL values also increase to a positive value. As stated
before, the MSK waveforms have the narrowest bandwidths (4.27 MHz of 90%
bandwidth and 10 MHz of 99% of bandwidth). Therefore, the system nyquist rate

works on these waveforms successfully.

Table 4.13 Min and Max values of PSL and ISL under sampling mismatch, M = 8

h=0.5, IREC
Code PSL(dB) ISL(dB)
Length
Min Max Min Max
20 -12.1383 -0.3308 -1.9907 7.9399
32 -16.0132 -0.2572 -2.3507 8.7269
45 -14.0415 -0.0030 -1.0980 11.2166
64 -16.8039 -0.5448 -0.8388 10.1755

Table 4.14 Max and Min values of MLW and SNR Loss under sampling mismatch,
M=8h=0.5 1REC

Code MLW]|chips] Loss[dB]
Length
Min Max Min Max
20 1.000 7.8886 0 12.2612
32 1.000 9.6459 0 12.3766
45 1.000 17.4569 0 16.5845
64 1.000 19.4709 0 16.2854

The MLW and SNR loss values show that the MF output in this case can not be used
in target detection. The SNR loss for the waveform with N = 64 is reaches up to

16.29 dB. In other words the target is lost. This loss is due to the sampling the signal
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at lower rate than its own nyquist rate. The CPM waveform with M=8 has a 22.9
MHz By, and 15.87 MHz Bygo,.which is very high compared to other MLESSM and
MWM waveforms. In the following section, higher sampling rates are used to

observe MF outputs.

4.4. Higher Rate Sampling

As mentioned previously, CPM waveforms with M = 8 can not be used with the
system Nyquist rate because of the SNR loss that occurs at the MF output. If the
sampling frequency higher than the system Nyquist rate is used together with the
increased size of matched filter there is an improvement in PSL values. The number
of samples in a chip is altered and the PSL, ISL and SNR loss values are recorded.
These results are presented in Table 4.15. In the previous section, it has been
observed that the CPM waveform with N = 64, M = §, provides the highest values.

Therefore, this waveform is used in the following simulations.

Table 4.15 Effect of Number of Samples on CPM waveform with N = 64, M =8

PSL ISL MLW SNR loss
#of

samples Min Max Min | Max Min Max Min | Max

2 -16.80 | -0.55 | -1.03 | 10.00 | 1.00 | 1947 | 0 | 1629
5 2050 | -18.92 | -1.84 | -1.78 | 1.00 | 1.48 0 | 1.91
10 2072 | -20.56 | -1.85 | -1.81 | 1.00 | 1.10 0 | 046

Results show that optimality increases when the sampling frequency is increased to a

value which is five times the inverse of the chipwidth. In this case, the PSL value
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increases to -18.92 dB while it is -0.55 dB in the case which two samples are used.
The ISL value increased to -1.78 dB when five samples are used while it is 10 dB
when two are used. The most important improvement occurs in the SNR value. If the
number of samples in a chip is increased to 10, the minimum SNR loss decreases to
0.46 dB. These values prove an improvement of 15.8 dB in comparison to the case

which 2 samples are used per chip.

With regard to the CPM waveform with N = 64 with M = 4, when the number of

samples in a chip increase the results in Table 4.17 are obtained.

Table 4.16 Effect of Number of Samples on CPM waveform, N = 64 M =4

PSL ISL MLW SNR loss
#of

samples Min Max Min | Max Min Max Min | Max

2 -17.79 | -16.93 | -3.24 | -3.12 1.00 1.8 0 0.69
5 -17.81 | -17.61 | -3.31 | -3.26 1.00 1.10 0 0.11
10 -17.82 | -17.73 | -3.29 | -3.26 1.00 1.02 0 0.027

The results show that the waveforms which require much higher sampling rate than
the system Nyquist rate can not be used in this radar system. In order to get optimum
results, the system sampling rate should be increased or the waveforms with narrow

bandwidths should be used.

94



CHAPTER 5

SUMMARY AND CONCLUSIONS

In this thesis, optimum waveforms for a pulse doppler radar with an X-band high
power traveling tube amplifier in the transmitter were investigated. The waveform
optimality was defined regarding the PSL and ISL values of the matched filter output

and the bandwidth efficiency in the spectrum.

In this radar system, pulse compression was used to compress the waveform in the
receiver. Phase coding, one of the most important pulse compression methods, was

mainly focused on throughout this study.

In the first part of this study, different kinds of phase modulated waveforms were
analyzed. As a starting point, the discrete phase MLESSM waveforms were studied.
Genetic Algorithm is used to search minimum PSL codes. In order to decrease the
sidelobe levels of the obtained codes, inverse filtering, a sidelobe reduction technique
was applied on these codes. The improved sidelobe levels were reported and
consequently it was observed that as the inverse filter length increase the sidelobe

levels get lower.

Discrete phase jumps cause spectral high sidelobes in the spectrum. This problem is
overcome with continuous phase modulated waveforms. When the discrete phase
codes were obtained successfully by means of applying genetic algorithm, a new
phase shaping pulse with a parameter of the duration of transition was defined. This

pulse was applied on these codes to form continuous phase waveforms. The effect of
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this shaping pulse on ACF was investigated for all waveforms modulated with
different codes of different lengths. The PSL, ISL and MLW values of the

continuous and discrete phase MF outputs were compared.

Following these comparisons, the spectrally efficient MWM modulation, the CPM
was focused on. Optimum data sequences were searched using genetic algorithm.
ACFs of the CPM waveforms were calculated for codes of different lengths and the

PSL and ISL values of the waveforms were compared with each other.

In order to observe the spectral efficiency of the continuous phase waveforms, the
bandwidths of the MLESSM and MWM waveforms were computed in MATLAB. It
was discovered that as the transition duration increases the bandwidths of MLESSM
waveforms get narrower. MSK with its narrowest bandwidth was concluded to be the
spectrally most efficient method among MWM techniques while the LPT-QPSK
with © = T/4 occurred to be the most efficient MLESSM technique. However, MSK
waveforms were observed to provide the narrowest bandwidths among all

modulation methods.

The last part of this thesis dealt with the sampling time mismatch effect on the
matched filter outputs of each and every continuous phase system. It was concluded
that the CPM schemes with M = 2 in MWM waveforms and LPT-QPSK in
MLESSM waveforms are the most resistant to the sampling mismatch effect under

the system Nyquist rate due to their narrowest bandwidths.

In this thesis, a specific pulse doppler radar with specified code lengths has been
considered. Results may be expanded for general pulsed doppler radars as a future
work. In addition, CPM waveforms with parameters other than those used in this
study can be investigated with a particular focus on lowest sidelobe levels and
bandwidth efficiency and optimum phase shaping pulses other than that defined in

Section 3.5.1 can be searched.
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APPENDIX A

MODULATING PULSE SHAPES FOR CPM

LREC is a rectangular pulse with a length of L. LRECs g(t) (frequency shaping
pulse) is defined by

—, 0<
g()=42LT (A1)

0 otherwise

phase shaping pulse q(t) is given by the formula,

dt, 0<t<T L O0<t<T

8-

vt[
-~ dt t>T| |5 t>T

S =
5|

LRC is a raised cosine with a length of L. g(t) in LRC is defined in Formula A.2.

L{l - cos(z—mﬂ, 0<t<LT
g(t)=42LT LT (A2)

0 otherwise

LSRC is the spectrally raised cosine pulse with length L. LSRC’s frequency shaping

pulse is
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.2t 2t
o) - 1 sm(ﬁ) cos(ﬁﬁ)
LT 2 apY’

o)

0<p<1 (A3)

Frequency shaping pulse g(t) in tamed frequency modulation (TMF) is defined as

8(0) = [agy (1= T) +be, (D +agy ¢+ T} a=1b=2

2
el
t) = sin(—)| ——
go(t) (T) p” e
T2

Finally, GMSK is the Gaussian minimum shift keying and g(t) for GMSK is given by

1 2
=—| Q| 2B, —= |-Q| 2
g(l)=5p] Q 278y 7= | =Q

(A.5)

Q(t) :OJE\/E
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