WATER DISTRIBUTION NETWORK DESIGN BY PARTIAL ENUMERATION

GÜLTEKİN KELEŞ

WATER DISTRIBUTION NETWORK DESIGN

 BY PARTIAL ENUMERATIONA THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜLTEKİN KELEŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CIVIL ENGINEERING

DECEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science

Prof. Dr. Erdal ÇOKCA
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science

Assoc. Prof. Dr. Nuri Merzi
Supervisor

Examining Committee Members

Prof. Dr. Doğan ALTINBILEK	(METU, CE)	\square
Prof. Dr. Uygur ŞENDİL	(METU, CE)	\square
Prof. Dr. Melih YANMAZ	(METU, CE)	\square
Assoc. Prof.Dr. Nuri MERZİ	(METU, CE)	
Metin MISIRDALI, MSc.	(YOLSU,CE)	

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: KELEŞ, GÜLTEKİN

Signature

ABSTRACT
\title{ WATER DISTRIBUTION NETWORK DESIGN BY PARTIAL ENUMERATION }
KELEŞ, Gültekin
M.S., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Nuri MERZİ

December 2005, 114 pages

Water distribution networks are being designed by traditional methods based on rules-of-thumb and personal experience of the designer. However, since there is no unique solution to any network design, namely there are various combinations of pipes, pumps, tanks all of which satisfy the same pressure and velocity restrictions, it is most probable that the design performed by traditional techniques is not the optimum one.

This study deals how an optimization technique can be a useful tool for a designer during the design to find a solution. The method used within the study is the partial enumeration technique developed by Gessler. The technique is applied by a commercially available software, i.e. WADISO SA. The study is focused on discrepancies between a network designed by traditional techniques and the same network designed by partial enumeration method. Attention is given to steps of enumeration, which are basically grouping of pipes, candidate pipe size and price function assignments, to demonstrate that the designers can control all the phases of optimization process. In this respect, special attention is given to price functions to show the effect of them on the result. The study also revealed that the cost of fitting materials cannot be included in the price function although it may have significant effect in a system composed of closely located junctions.

The results obtained from this study are useful to show that although optimization methods do not provide a definite solution; partial enumeration method can assist designers to select the optimum system combination.

Keywords: Water Distribution Networks, Optimization, Partial Enumeration Method, WADISO, Price Function.

ÖZ

KISMİ SAYIM İLE SU DAĞITIM ŞEBEKELERİ TASARIMI

KELEŞ, Gültekin
Yüksek Lisans, İnşaat Mühendisliği Bölümü
Tez Yöneticisi: Doç. Dr. Nuri MERZİ

Aralık 2005, 114 sayfa

Su dağııım şebekeleri belli ilkeler ve tasarımcının kişisel deneyimine dayanan geleneksel metotlarla tasarlanmaktadır. Ancak, su dağıtım şebekesi tasarımında tek bir çözüm olmamasından dolayı, aynı basınç ve hız limitlerini sağlayan bir çok boru, pompa, depo ve benzeri kombinasyon varlığından dolayı, geleneksel yöntemlerle yapılan tasarım büyük bir ihtimalle optimum sonuç olmayacaktır.

Bu çalışma, bir optimizasyon tekniğinin, sonuca ulaşmak isteyen tasarımcı için nasıl kullanışlı bir alet olduğunu irdelemiştir. Çalışmada kullanılan metot, Gessler tarafından geliştirilmiş kısmi sayım tekniğidir. Bu teknik, ticari olarak mevcut bir bilgisayar programı, WADISO SA, ile uygulanmıştır. Çalışma, geleneksel tekniklerle tasarlanmış bir sistem tasarımı ile aynı sistemin kısmi sayım metodu ile yapılan tasarımı arasındaki farklar üzerine eğilmiştir. Özellikle kısmi sayım metodunun temel olarak boru gruplandırma, aday boru çapları ve fiyat fonksiyonu olan kademelerine eğilinerek tasarımcısının optimizasyon sürecinin her aşamasını kontrol edebileceği gösterilmiştir. Bu bağlamda, fiyat fonksiyonu ile özel olarak ilgilenerek sonuç üzerindeki etkileri gösterilmiştir. Çalışma sonucunda, fiyat fonksiyonuna dahil edilemeyen boru bağlantı elemanlarının yoğun bağlantılara sahip bir sistemde toplam fiyat üzerinde önemli bir etkiye sahip olabilecekleri de elde edilmiştir.

Bu çalışmadan elde edilen sonuçlar, optimizasyon tekniklerinin kesin sonuç sağlamamalarına rağmen, kısmi sayım metodunun optimum sistem kombinasyonunu belirlemede tasarımcı için etkili bir yardımcı olduğunu göstermektedir.

Anahtar Kelimeler: Su Dağıtım Şebekeleri, Optimizasyon, Kısmi Sayım Metodu, WADISO, Fiyat Fonksiyonu.

To My Parents

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assoc. Prof. Dr. Nuri MERZİ for his guidance, advice, criticism and encouragements throughout the research. It was a pleasure to me to conduct this thesis under his supervision.

I thank WADISO S.A. for allowing me to conduct my thesis using their software package and Dr. Alex Sinske for his kind assistance.

I extend my sincere thanks to my employers Mr. Bülent KUYUMCU and Mr. Ö.Çağlan KUYUMCU together with all the managers of my company for their patience and understanding during my research.

With this opportunity, I would like to express my deepest love and gratitude to my family - Kadriye and Muammer Keleş, Nurgül and Aykut KABAYEL. I wish I could write better sentences to show that I owe all I have and who I am to them. I am so thankful for their endless support, encourage and deep faith in me. Last but not least, thank you my little niece Sena just for your sweet smile.

TABLE OF CONTENTS

PLAGIARISM iii
ABSTRACT iv
ÖZ. vi
ACKNOWLEGMENTS. ix
LIST OF TABLES. xii
LIST OF FIGURES. xiii
LIST OF SYMBOLS xv
CHAPTER

1. INTRODUCTION 1
2. OPTIMIZATION OF WATER DISTRIBUTION NETWORKS 3
2.1 DEFINITION 3
2.2 OPTIMIZATION METHODS 3
2.2.1. Traditional (Trial-and-Error) Approach 4
2.2.2 Linear Programming Methods 5
2.2.3 Nonlinear Programming Methods 5
2.2.4 Genetic Algorithms 5
2.2.5 Partial Enumeration Technique 6
2.3 ADVANTAGES AND DISADVANTAGES OF OPTIMIZATION 6
2.4 GRADUAL (STAGED) EXPANSION OF NETWORKS 8
3. PARTIAL ENUMARATION USING WADISO 10
3.1 HISTORY. 10
3.2 REASONS FOR AN ENUMARATION ALGORITHM 11
3.3 ALGORITHM USED IN WADISO 11
3.4. HYDRAULIC NETWORK ANALYSIS 15
3.4.1 Loop Method 17
3.4.2 Node Method 18
3.4.3 Comparison of Loop and Node Methods 18
3.4.4 Node Method Used in WADISO 18
3.5 STEPS OF PARTIAL ENUMARATION WITH WADISO 20
3.5.1 Pipe Grouping 20
3.5.2 Pipe Size Assignment 24
3.5.3 Price Functions 27
3.5.3.1 Price Functions for the Case Study 45
3.5.4 Loading Patterns and Pressure Constraints 59
3.5.5 Pump and Tank Inclusion 61
3.5.6 Pareto Optimal Solutions 62
4. CASE STUDY 64
4.1 AIM OF THE STUDY 64
4.2 WATER DISTRIBUTION SYSTEM OF ANKARA 64
4.3 STUDY AREA 66
4.3.1 N8 Pressure Zone 66
4.4. HYDRAULIC MODEL 71
4.4.1. Layout of the Pipes in N8 Pressure Zone 71
4.4.2. Nodal Demands 71
4.4.3. Analysis of Existing System. 71
4.4.4. Optimization of the Existing System. 74
4.4.4.1. Grouping of the Pipes Considering Whole System. 74
4.4.4.2 Skeletonization of the Existing System 74
4.4.4.3 Grouping of Pipes for the Skeletonized Network 79
4.4.4.4. Candidate Pipe Sizes 82
4.4.4.5. Price Functions 82
4.4.4.6. Optimization Results With August Demands 85
4.4.4.7. Optimization Results with Demands Including Pipe Leakages and Year 2020 87
5. CONCLUSION AND RECOMMENDATIONS 99
REFERENCES 102
APPENDICES
A - Pressure values of Optimum System with various price functions and under three loadings (Peak, Fire and Night Demands of Year 2020). 106

LIST OF TABLES

Table 3.1: Candidate pipe sizes for first run 25
Table 3.2: Revised Candidate Pipe Sizes for Second Run 26
Table 3.3: Final Candidate Diameters and Optimum Sizes 26
Table 3.4: Advantageous properties of GRP pipes 29
Table 3.5: Comparison of ductile iron (ANSI/AWWA C150/A21.50 and ANSI/AWWA C151/A21.51) and PE pipe (ANSI/AWWA C906) standards 37
Table 3.6: The total cost of the system (fitting with unequal tee) 43
Table 3.7: Activities / materials for HDPE Price Function 44
Table 3.8 Activities / materials for Steel or Ductile Price Function 45
Table 3.9: Trench dimensions and excavation, bedding and fill volumes for HDPE Pipes 48
Table 3.10: Price Function for HDPE Pipes 49
Table 3.11: Price Function for HDPE Pipes according to market data. 50
Table 3.12: Material unit prices for steel 51
Table 3.13: Unit prices for steel pipes 53
Table 3.14: Trench dimensions and excavation, bedding and fill volumes for Steel 55
Table 3.15: Price Function for Ductile Iron Pipes 56
Table 3.16: Price Functions given by EPA (Transformed from US Dollar/ ft into YTL/m) 57
Table 4.1: Nodes with pressure values below 30 m 72
Table 4.2: Pipe Groups of Skeletonized Network. 81
Table 4.3: Candidate Pipe Sizes to determine if the system is over-designed or under- designed. 83
Table 4.4: Candidate Pipe Sizes for the final run. 84
Table 4.5: Price Function given by Goulter and Coals 85
Table 4.6: Nodes of Optimized System with pressure values less than 30 m 88
Table 4.7: Optimum Diameters with August Demands 89
Table 4.8: Pressure Constraints for Optimization 92
Table 4.9: Total System Cost Optimized With Various Price Functions 93
Table 4.10: Optimum pipe diameters depending on price functions 94

LIST OF FIGURES

Figure 3.1: Schematic Flowchart for Partial Enumeration Technique 13
Figure 3.2: A simple looped network 17
Figure 3.3: Grouping of main lines 21
Figure 3.4: Grouping of main tributaries 22
Figure 3.5: Grouping of parallel pipes 22
Figure 3.6: Sample Network For Pipe Grouping 24
Figure 3.7 Connection of GRP Pipes 30
Figure 3.8 GRP Water Transmission Line 31
Figure 3.9 Electrofusion coupling of PE Pipes 33
Figure 3.10 Pipe jointing methods for PE Pipes 34
Figure 3.11 Ductile Iron production in the past for all sectors 35
Figure 3.12 Ductile and Cast Iron under microscope 36
Figure 3.13: Flanges 39
Figure 3.14: Bends $\left(90^{\circ}\right)$ 39
Figure 3.15: Bends (45°) 40
Figure 3.16: Equal Tee 40
Figure 3.17: Unequal tee 41
Figure 3.18: Reducer 41
Figure 3.19: Example Fitting Layout (with unequal tee) 42
Figure 3.20: The total cost of the system (fitting with unequal tee) 43
Figure 3.21: Typical trench cross-section for HDPE Pipes 47
Figure 3.22: Material unit prices for steel 52
Figure 3.23: Typical trench cross-section for steel pipes (units in cm) 54
Figure 3.24: Price Functions for various materials 58
Figure 4.1: Water Distribution System of Ankara 67
Figure 4.2: Ankara Subpressure Zones in North 68
Figure 4.3: N8 Pressure Zone 70
Figure 4.4: Pressure Distribution in Existing System 73
Figure 4.5: Pipes with diameter equal or greater than 150 mm 76
Figure 4.6: Skeletonized Layout of N8 Pressure Zone 77
Figure 4.7: Demand Transfer of a Dead End Node 78
Figure 4.8: Demand Transfer of a Node That is NOT ON THE PATH 78
Figure 4.9: Demand Transfer of a Node That is ON THE PATH 79
Figure 4.10: Pipe Groups of Skeletonized Network 80
Figure 4.11: Graphical Interpretation of Price Function 86
Figure 4.12: Daily Demand Curve of N8 Including Leakages 90
Figure 4.13: Existing System With Peak Loading 95
Figure 4.14: Existing System With Fire Loading 95
Figure 4.15: Existing System With Night Loading 95
Figure 4.16: System with Ductile (or Steel) Pipes Under Peak Loading 96
Figure 4.17: System with HDPE Pipes (DSI Prices) Under Peak Loading 96
Figure 4.18: System with HDPE Pipes (Market Prices) Under Peak Loading 96
Figure 4.19: System with Ductile (or Steel) Pipes Under Fire Loading 97
Figure 4.20: System with HDPE Pipes (DSI Prices) Under Fire Loading 97

Figure 4.21: System with HDPE Pipes (Market Prices) Under Fire Loading 97
Figure 4.22: System with Ductile (or Steel) Pipes Under Night Loading.................. 98
Figure 4.23: System with HDPE Pipes (DSI Prices) Under Night Loading 98
Figure 4.24: System with HDPE Pipes (Market Prices) Under Night Loading 98

LIST OF SYMBOLS

p : pipes (links)
n : nodes
r : reservoirs
$\Delta \mathrm{Q} \quad$: flow rate correction
$c_{i} \quad$: characteristic pipe coefficient for pipe i
$\mathrm{Q}_{\mathrm{i}} \quad$: discharge in pipe i .
L : length of pipe i.
D : diameter of pipe i
Qi0 : estimated flow rate in pipe i
$\mathrm{Q}_{\mathrm{i}} \quad$: the updated flow rate in pipe i
$\mathrm{q} \quad$: difference between updated and estimated flow rate.
Q_{di} : the amount of water withdrawn at node ,
A : a very large number, for instance 10^{5}
$\mathrm{H}_{\mathrm{ri}} \quad$: required head at node i
$\rho \quad:$ mass density of liquid
g : gravitational acceleration
Q : pumping flow rate
H : Pump head
$\mu \quad:$ Pump efficiency
$\mathrm{F}_{\mathrm{i}} \quad:$ Population at year i
k : a coefficient

CHAPTER 1

INTRODUCTION

A water distribution network is a collection of elements such as pipes, valves, pumps, reservoir, tanks (buried, elevated, etc.) whose aim is to provide adequate amount of potable water with sufficient pressure at nodes where consumer demands (residential, industrial, commercial etc.) are extracted.

A water distribution system should be designed in such a way that it should be able to meet consumer demands at all times at a certain level, even during very extreme events, throughout its lifetime. There is no unique design for any water distribution system; even two completely different designs may provide the same required demands under the same pressure constraints but may vary dramatically in cost. New York City water supply tunnels may serve as an example to illustrate how essential optimization may be (Gessler, 1985). The work of Lai and Schaak (1969) led to a system with total cost 73,3 million dollars, where the study of Quindry, Brill and Liebman (1981) reduced this figure (using the same demands and minimum pressure requirements) to 63,6 million dollars. However, Gessler (1982) designed another technically feasible solution with total cost 41,2 million dollars.

According to Environmental Protection Agency - USA, total infrastructure investment need of United States for the next following twenty years in order to supply safe water to consumers is about 150,9 billion US Dollars, of which 83,2 billion US Dollars is required for transmission and distribution investment (raw water transmission, clean water transmission, distribution mains, service lines, flushing hydrants, valves, water meters etc.) (EPA, 2001).Similarly, for the capital city of Turkey, Ankara Municipality has reserved 55,000,000.-YTL (appr. $42,000,000 .-\$$) for construction and maintenance of total of 641,181 meters of main supply lines and water distribution lines for Year 2006. These figures clearly demonstrates that water distribution system design should be handled very carefully
since huge amount of money has been invested until now and also going to be invested in the future.

Despite these facts, the designs performed by professionals for real world water distribution systems do not take optimization techniques into account. Almost all of the designs are being performed by using traditional techniques based on rules of thumb and engineering experience disregarding any optimization technique. On the other hand, most of the optimization techniques do not permit designers' interference during the design. The aim of this study is to demonstrate design of a water distribution network by using an optimization technique, which allows designer to control whole process. The optimization technique used within the study is partial enumeration method developed by Gessler (1985). In this regard, a case study is conducted on North-8 (N8) pressure zone of Ankara Municipal water supply system.

In Chapter 2, a brief information on widely known optimization techniques and fundamentals of optimization process is presented. In Chapter 3, detailed information on partial enumeration method and guidelines on essential steps that are followed during optimization with partial enumeration method are introduced. In Chapter 4, the case study itself is given. Conclusions and recommendations are presented in Chapter 5.

CHAPTER 2

OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

2.1 DEFINITION

To find the most economical solution to the water distribution systems has always been the ultimate goal of many designers and planners. Many studies have been conducted on this subject in the past (since Babbit and Doland (1931)) and many thesis studies performed in this subject (Selmanpakoğlu (1973), Soleyman (1976), Adıgüzel (1976), Tokalak (1976), İnözü (1977), Aygün (1978), Özer (1988)) in Water Resources Laboratory of Middle East Technical University with supervision of Prof. Dr. Doğan Altınbilek and Prof. Dr. Süha Sevük in addition to their published books (Sevük and Altınbilek $(1976,1977)$). The most recent thesis study belongs to Akdoğan (2005). Consequently, many techniques have been developed to assist designers. Since the optimization of water distribution systems is a multi-purpose aim (optimization of pipe diameters, tank sizing, pump selection and working time, etc.), there is not a single solution that can be gathered by using these techniques. Namely, there is always another "optimum" solution. The goal is to find the optimum that satisfies the requirements.

2.2 OPTIMIZATION METHODS

Within the optimization methods, many mathematical formulations and many problem solving techniques are utilized such as linear programming, dynamic programming, heuristic algorithms, gradient search methods, enumeration methods, genetic algorithms, simulated annealing etc. "The term optimization methods often refers to mathematical techniques used to automatically adjust the details of the system in such a way as to achieve the best possible system performance or,
alternatively, the least-cost design that achieves a specified performance level." (Walski, et al., 2003) Using these said techniques, wide range of optimization methods are developed. Since the partial enumeration technique is the one that is used in this thesis study, special emphasize will be given to it in Chapter 3. However, in this chapter, brief description of partial enumeration technique and some other widely known and accepted techniques will be given.

2.2.1. Traditional (Trial-and-Error) Approach

In fact, traditional (trial-and-error) approach is not a systematic optimization method, but the method that has been widely used during system planning by designers. In this method, experienced engineers adopt some rules-of-thumb together with their past experience to design the system, then adjust the details after running series of hydraulic analysis. Some of the rules-of-thumb are as follows (Walski, 1985):

1. Velocities less than $8 \mathrm{ft} / \mathrm{sec}(\sim 2,4 \mathrm{~m} / \mathrm{s})$ at peak flow
2. Velocities on the order of $2 \mathrm{ft} / \mathrm{sec}(\sim 0,61 \mathrm{~m} / \mathrm{s})$ at average flow
3. Pressures between 60 and 80 psi (4 and $5,4 \mathrm{~atm}$) under normal conditions
4. Pressure at least $20 \mathrm{psi}(\sim 1,4 \mathrm{~atm})$ during fire condition
5. Diameters at least 6 in $(\sim 150 \mathrm{~mm})$ for systems providing fire protection
6. Diameters at least 2 in. $(\sim 50 \mathrm{~mm})$ for systems without fire protection.
7. Adequate pumps such that design flow can be delivered with one pump out of service,
8. No dead end mains

Thus, designer needs not to try every possible solution, but only select the optimum from a few feasible solutions. Because this approach fully depends on the capabilities and experience of the designers; it may produce severely uneconomical solutions. Even if the designer is a unique engineer that has extensive knowledge on water distribution system design, some factors may also limit the possibility to find the optimum solution (Walski et al., 2003):

- Available time and financial resources would possibly limit the number of trials, that may lead to missing a more economical solution
- Due to nonlinear characteristics of the distribution networks, it is very hard to manually relate the influence of a particular change at one location on the other parts.

After all, since the designer adopts the rules-of-thumb and uses hydraulic analysis software, the design will most probably satisfy the design criteria in terms of pressure, velocity restrictions, but unfortunately, it is unlikely to be the most economical.

2.2.2 Linear Programming Methods

Linear programming approaches are used to reduce the complexity of the original nonlinear nature of the problem by solving a sequence of linear sub-problems (Alperovits and Shamir, 1977; Goulter and Morgan, 1985; Goulter and Coals (1986); and Fujiwara and Khang, 1990).

2.2.3 Nonlinear Programming Methods

These methods use partial derivatives of the objective function with respect to decision variables by assuming pipe diameters as continuous variables. This, however, leads the method to get stuck in the local optima.

2.2.4 Genetic Algorithms

The Genetic Algorithm uses a computer model of Darwinian evolution to "evolve" good designs or solutions to highly complex problems for which classical solution techniques are inadequate. The Genetic Algorithm incorporates ideas such as a population of solutions to a problem, survival of the fittest solutions within a population, birth, death, breeding, inheritance of genetic material (design parameters) by children from their parents, and occasional mutations of that material (thereby creating new design possibilities). (Walski, et al., 2003)

2.2.5 Partial Enumeration Technique

Optimization by enumeration, with the simplest description, is the trial of all the possible combinations as per the input data, and then finding the most economical one that meets the design criteria. The technique works fine for smaller systems, but as the system size increases, possible number of combinations increases exponentially, which results in huge amount of computation time, in the order of years. Due to these limitations of exhaustive enumeration, some criteria have been put by Gessler (1985) in order to reduce the number of possible combinations.

2.3 ADVANTAGES AND DISADVANTAGES OF OPTIMIZATION

The designers carry a huge responsibility towards public and decision-makers. The responsibility towards public is that people always want that when they open a tap, there will be adequate water with sufficient pressure. Fire fighters want that they will always have enough water when they attach their fire hoses to fire hydrants. Additionally, people want that in any case, for instance, during electrical shortage, main line breaks, huge fire in the town, to have water. In order to assure this, the designers have to give enough capacity to the system with enough redundancy and reliability. On the other hand, the decision makers and investors do not want to invest more than enough in the system. They oppose to unnecessary costs due to overdesign. To meet all these requirements, the designers should design such a system that the required hydraulic restrictions (pressure etc.) can be met with the most economical combination of pipes, tanks, pumps etc. The optimization techniques can be very handy in this search. Since every technique has a systematic way, a designer with a good knowledge of hydraulics can use optimization techniques as an assistant to find the best solution.

However, if optimization techniques are considered as "automatic" searches that guarantee the best solution without any interference of the designer, they may be very dangerous in the hands of individuals who do not understand water distribution design, and blindly implement the poor decisions of optimization models without
awareness of the real issues. The users should be aware of the shortcomings resulted from cost minimization. The optimization techniques try to eliminate as many pipes as they can to reduce costs. They do also try to install diameters that can barely satisfy the requirements, which means reduction of system capacity and reliability. If optimization modelers were to ask water distribution operators, they would find that capacity in a water system is a good thing not an evil to be eliminated, especially since the marginal cost of adding capacity is relatively small due to the significant economic scale in pipe capacity (Walski, 1998). Operators prefer spending money on capacity in order to compensate the uncertainty in demands and to increase the reliability of the system.

In addition to above, there are some aspects of water distribution network design, that are unfortunately cannot be included in the optimization techniques and should be performed and decided by the designers such as (Walski,1995) :

- No optimization models address the question of how to set pressure zone boundaries and optimal nominal heads.
- Optimization models do not include change of the route of a pipe in order to reduce the cost, for instance, they do not compare a main line with 500 m long crossing a heavily loaded motorway with an alternative main line with 2000 m long but laid in open land.
- Decisions about the location of tie-ins, i.e. connections of subdivisions to main lines, are generally not addressed by optimization models.
- If the required pressure at a node is insufficient, people adopt alternatives according to their needs such as fire flow with sprinkler systems, internal booster pumps and storage tanks, nonaqeous fire-suppression systems, fire walls etc. No optimization methods take these into consideration.

As the result of these, optimization techniques should be regarded as a powerful tool for designers that help to make decisions; but at the same time a tool that should not be left alone and every step of which should be pursued and interacted carefully.

2.4 GRADUAL (STAGED) EXPANSION OF NETWORKS

During system design of a new water distribution network or rehabilitation / expansion of an existing network, future demands are predicted by means of some statistical methods. The demands that are going to be used within design process are those that will occur at the end of service life. For instance, if a system is going to be designed in year 2000 considering 20 years of operating period, the design demands are the demands of year 2020. Then, according to these demands, design is finished and construction activities are done. However, because the present demands are much lower than year 2020 demands, there will occur problems within the system. As a result of this, gradual expansion of networks is a phenomenon that should be considered during design stage.

In the design phase, designer should assign the crucial elements that are required during whole service life. These can be the storage tanks, main lines etc. Then, the elements that are of secondary importance and can be installed later when the system capacity is not sufficient should be determined. These can be parallel main lines, branches to newly developed areas etc. By the aid of this concept, the initial cost of the system is reduced and distributed over the service life.

In addition to reduction of initial cost, gradual expansion of networks is also required due to uncertainty of future demands. The main problem of water distribution system design is predicting future demands. Optimization models have treated demands as a given, provided by some outside source, and known with certainty (Walski, 2001). Unfortunately, this is not true in real world. Distribution systems evolve over many decades in response to demands that the original system designers may or may not have anticipated (Walski, et al., 2003). Especially for smaller systems, change of demands may have very significant effect on the network. For example, if a large factory within a small network is closed down after 5 years of network design, the demands will fall far below design demands, and the "optimum solution" gathered in design process will not be valid.

In the design stage, designer may try to overcome uncertainty in demands by applying conservative design with large pipes. However, this will result in high capital costs as well as low quality water due to low velocity in large pipes. On the other hand, if the demands exceed the design demands, namely if the design happens to be under-design, there will be low pressure problems, inadequate fire flows and requirement to immediate system expansion which was not considered by the decision makers beforehand.

In addition, unexpected events may occur during the service life of the water distribution system, such as closure of a factory that affect the demands of pipes, which is unfortunately not considered during the design stage. It is assumed that the demands will occur as predicted regardless of the system capacity. In reality, on the contrary to this, demands are affected by the constructed pipe sizes, which is actually a form of "self-fulfilling prophecy". More simply stated, "If you build it, they will come (within reason)." (Walski, 2001). Consider a developing town in which large pipes are constructed in the southern part and relatively small pipes are in the northern part. Due to available capacity in the southern part, development will be much rapidly. Investors will select locations where distribution capacity is available. Thus, demands in the southern part will rapidly exceed the design demands due to new / unexpected developments.

To overcome the aforementioned issues, gradual expansion of networks can be a useful tool for designers.

CHAPTER 3

PARTIAL ENUMARATION USING WADISO

3.1 HISTORY

WADISO (Water Distribution Simulation and Optimization) is a software which dates back to 1980s. In early 1980s, Thomas Walski was an engineer who has recognized the value of a user-friendly program to optimally select pipe sizes and decided that the most convenient approach for optimization is the algorithm developed by Gessler in 1985. With cooperation of Gessler and Walski and additions by Sjostrom, first edition of WADISO was produced in 1980s. This first edition was applied to a number of water systems worldwide and presented to public with a manual. This first edition of WADISO was "user-friendly" for 1980s~1990s; it was working on DOS environment in the computers; it was "old-fashioned" as compared to today's hydraulic software having Graphical User Interfaces (GUI), working with databases in connection with Geographical Information Systems (GIS). In 1990s, a commercial version of WADISO was developed by GLS Software, South Africa in which the WADISO is revised in terms of "user-friendly" applications. Since then, several new versions of WADISO have been developed by GLS, the most recent one being WADISO 5. WADISO 5 is equipped with a Graphical User Interface, has connection to Geographical Information Systems and many more user-friendly applications, the algorithm is the same with the original WADISO. The network solver is based on node method, and basics of partial enumeration given in Section 3.3 remain unchanged in all versions of WADISO.

3.2 REASONS FOR AN ENUMARATION ALGORITHM

The optimization process for water networks is very hard due to discrete characteristics of pipe diameters. Some optimization techniques assume variables as continuous. However, the discrete cost function can be quite irregular and difficult to approximate by a continuous function. Additionally, most of the optimization procedures proposed so far are essentially gradient search techniques, some in a continuous variable space, some in a discrete space. Such algorithms can only guarantee local minima. Finally, a solution developed in a continuous space requires an additional space after the execution of the optimization algorithm, in which pipe sizes are "rounded" to nearest commercially available pipe sizes. Indeed, it is possible that the globally optimal discrete solution may not even be in the neighborhood of the globally optimal solution using continuous pipe sizes, but could be associated with a local minimum. Due to this, it is quite logical to perform optimization in the discrete space from the beginning.

Optimization by enumeration of all possible pipe size combinations with some user specified constraints will diminish all the said shortcomings of other optimization techniques and will guarantee that the solution is the global minimum of the discrete space. Additionally, generation of a queue of Pareto Optimal solutions can also be available, which is very handy for decision makers.

3.3 ALGORITHM USED IN WADISO

The most significant shortcoming of the enumeration technique is that it may require huge amount of processing time, some may even in the order of tens of years. To overcome this, the candidate pipe size combinations have to be reduced.

The first thing to do before running the software is the data input. Data input stage contains identification of the following:

- Pipes that are going to be optimized: The user defines which pipes are going to be included in the optimization process. In some cases, the user may not need all of the pipes be optimized.
- Assignment of groups: Each of the pipes to be sized must be assigned to a group. All pipes in the same group will be assigned the same diameter A detailed discussion is given in Section 3.5.1 regarding grouping of pipes. In brief, since it is not desirable to have pipe sizes change at every block in a network, the user groups pipes that are to be assigned same diameter. This reduces the number of combinations considerably.
- Assignment of candidate pipe sizes: For each of the groups, a list of candidate pipe sizes needs to be specified. This list may include elimination of the group as an alternative and/or cleaning of the old pipes which run parallel to the new pipes.
- Assignment of cost functions: For every group, which cost function should be used by the software is assigned. The cost functions represents various conditions related to the construction and installation of pipes. The pipes within a group can be assigned to different cost functions.
- Assignment of demands and pressure constraints at the nodes: The required output at all nodes and the pressure, which needs to be maintained, are specified.

After data input stage, WADISO follows the schematic flowchart of the procedure, which is given in Figure 3.1. First, WADISO selects a pipe size combination that meets the design criteria, i.e. pressure constraints, regardless of its cost. This is "Best Solution". For the next size combination, it first computes the total cost of the combination. If the total cost of this new combination is more than that of "Best Solution", it is omitted and another size combination is selected. If it passes, following tests are applied to the new combination:

Figure 3.1: Schematic Flowchart for Partial Enumeration Technique

Test on Size Range: The number of pipe size combinations to be tested is equal to the product of the number of candidate sizes in each group. To reduce the number of pipe combinations, it is required to test whether the candidate pipe sizes assigned for groups are appropriate or some can be eliminated. To verify this, a combination consisting of the smallest size in a group combined with the largest sizes in all other groups is built and checked if the pressure requirement is fulfilled. If not, tested smallest pipe size is eliminated which in turn eliminates many infeasible pipe combinations reducing the computation time.

Cost Test: After a size combination has been found that meets all pressure requirements, there is no need to test any other size combination that is more expensive than this functional solution (Gessler, 1985). This cost test is most effective in eliminating candidate solutions if it is possible to find a relatively inexpensive functional inexpensive solution early on. Only the combinations within Pareto optimal specifications are allowed to pass cost test. For each pipe size combination, the program will first calculate the total cost (excluding pump cost). If the construction cost is already more than the total cost of a previously found and functional solution, the program will disregard this combination and proceed with the next one.

Size Test: If a certain pipe size combination does not meet the pressure requirement, no pipe size combination with all pipes equal or smaller than the ones of this combination can meet the pressure requirement (Gessler, 1985). In order to perform the size test, WADISO maintains a queue of nonfunctional combinations. This queue is not allowed to grow too long. Otherwise, the testing of a particular size combination against all entries in the queue requires more computation time than evaluation of pressure distribution. During the enumeration process, the program maintains a file of pipe size combinations that failed to meet the pressure requirements. In brief, it will not be necessary to calculate the pressure distribution for a combination in which all sizes are equal or less than the sizes of the corresponding pipes in a combination stored in this file, because it could not meet pressure requirements either.

If a combination passes these tests, the pressure distribution within the network is calculated as per the given loading patterns. According to the results of this computation, a combination is either "non-functional" or "new best solution"

Non-functional Solution: During pressure distribution computations, if it is encountered that pressure requirement at a node cannot be satisfied, computations are terminated, then, the combination is entered into the file of non-functional combinations and the program proceeds with the next size combination.

New Best Solution: If the pressure requirement is met at all nodes, the algorithm has found a solution better than an other one previously encountered. Then, it is stored as the new best solution and the program proceeds with the next size combination. If there are pumps, present worth of pumping cost is added to construction cost.
The procedure continues until all combinations have been enumerated. By the help of this algorithm, the best solution will always be the global minimum in the cost function.

Effectiveness of Tests: The effectiveness of these tests is illustrated by the following numbers (Gessler, 1982). The percentage of combinations passing the cost test may be around 20% for a relatively small number of combinations and may drop to around 10% when the number of combinations reaches 100,000 . The percentage of combinations for which the pressure distribution needs to be evaluated may be as high as 10% for small number of combinations and drops to less than 1% for large numbers. Obviously, these numbers will vary from network to network. They are provided here as a guideline only.

3.4. HYDRAULIC NETWORK ANALYSIS

In the optimization algorithm of WADISO, the hydraulic constraints are defined as the minimum pressures that should be satisfied at every node. After size and cost tests, the software calculates the pressure distribution within the network. For network analysis, two methods are available suggested by Hardy Cross (1936): loop
and node methods. In WADISO, node method is applied. The terminology that will be used hereafter is as follows:

Links : Pipes, pumps, pressure reducing valves
Nodes: Junctions between links

In a system with p links and n nodes, among which are r reservoirs, the problem has the following unknowns:

p	links (flow rates)
n-r	heads
Total of $\mathrm{p}+\mathrm{n}-\mathrm{r}$ unknowns.	

To find these unknowns, following equations are built:

- The energy equation between any two directly connected nodes (friction loss equation for pipes, or characteristics curve of pumps)
- The continuity equation at all nodes, excluding the constant head nodes.

Therefore, the total number of available equations is $\mathrm{p}+\mathrm{n}-\mathrm{r}$.

The uniqueness of the solution will not be discussed in detail herein, but simply, a network that consists of only pipes and nodes has a single solution. In case of pumps and valve inclusion, as long as the first derivative of the characteristic pump curve is negative for all discharges, the uniqueness is also guaranteed.

3.4.1 Loop Method

Figure 3.2: A simple looped network
In the loop method, procedure is initiated by assuming flow rates and directions for each pipe so that the continuity is satisfied at all nodes, i.e. inflow into the nodes are equal to the outflows, as given in Figure 3.2. Then, for every loop, friction loss is calculated in the selected direction, clockwise in Figure 3.2. For the first trial, it is most likely that the total headloss calculated will not be equal to zero. The key concept in loop method is to superimpose a flowrate correction $\Delta \mathrm{Q}$ in all pipes of a loop either with the sense of the loop or against it. In other words, for pipes with a positive friction loss the flow correction is added to the discharge, and in pipes with a negative friction loss the flow correction is subtracted, or vice versa. After application of flow rate correction to the estimated flow rates, the continuity equations at all nodes still will be met.

Hardy Cross (1936) solved these equations for $\Delta \mathrm{Q}$ one at a time using a Taylor expansion of hydraulic loss equation, keeping the first two terms only. However, convergence is very slow and gets worse with the increasing system size with this application.

3.4.2 Node Method

The node method requires solving as many equations as there are nodes with unknown heads. In the node method, the heads at the nodes are estimated, and flow rate in each link is calculated based on these estimates. Then, the continuity at the nodes is checked. Nevertheless, based on the head estimates, the sum will be a residual flow rate. Cross then proceeded by assuming the heads at adjacent nodes to be correct. One can then adjust the head at the node under consideration such that the flow rates will balance. The resulting non-linear equations are solved by linearization.

3.4.3 Comparison of Loop and Node Methods

- The node method has a simpler topology. This may be of particular importance when it is necessary to temporarily eliminate a link. This may be required if the status of a valve is changed from open to closed. In loop method, this requires re-establishing of loops.
- In the node method, one directly solves the equations for the unknown pressures. In the loop method, pressures are calculated at the end of whole processes with extra calculations.
- Inclusion of pumps, pressure reducing or check valves are much easier in node method since the devices are pressure controlled. The status of these devices can be checked after each iteration.

3.4.4 Node Method Used in WADISO

WADISO uses the Hazen Williams friction loss equation to calculate the losses in the pipes (Walski et al, 1990).
$h_{i}=c_{i} * Q_{i}^{1,85}$
$c_{i}=\frac{10.68 * L_{i}}{C_{i}^{1.85} * D_{i}{ }^{4.87}}$
where h_{i} is the friction loss in pipe i in m .
C_{i} is the characteristic pipe coefficient for pipe i
Q_{i} is discharge in pipe i in $\mathrm{m}^{3} / \mathrm{s}$.
L is the length of pipe i in m .
D is the diameter of pipe i in m

Equation 3.1 can be linearized in regard to correction on the discharge to read
$H_{j}-H_{k}=c_{i}\left(Q_{i 0}^{1.85}+1.85 Q_{i 0}{ }^{0.85} q\right)$
where H_{j} and H_{k} are total heads at the beginning and ending node of pipe i with

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{j}}>\mathrm{H}_{\mathrm{i}} \\
& \mathrm{Q}_{\mathrm{i} 0}=\text { estimated flow rate in pipe i }
\end{aligned}
$$

And $\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{i} 0}+\mathrm{q}$
where Q_{i} is the updated flow rate in pipe i
q is the difference between updated and estimated flow rate.

Combining equations 3.3 and 3.4 to eliminate q ,
$Q_{i}=0.46 Q_{i 0}+0.54 \frac{H_{j}-H_{k}}{c_{i} Q_{i 0}{ }^{0.85}}$

Then the continuity equation is written, e.g. for node 2 in Figure 3.2,
$-0.46 Q_{10}-0.54 \frac{H 1-H 2}{c_{1} Q_{10}{ }^{0.85}}+0.46 Q_{20}+0.54 \frac{H_{2}-H_{3}}{c_{2} Q_{20}{ }^{0.85}}+0.46 Q_{50}+0.54 \frac{H_{2}-H_{5}}{c_{5} Q_{50}{ }_{50}{ }^{0.55}}+Q_{d 2}=0$
where $\mathrm{Q}_{\mathrm{d} 2}$ is the amount of water withdrawn at node 2. If the estimated flow rates are close to the correct flow rates then

$$
\begin{equation*}
-0.46 Q_{1 o}+0.46 Q_{2 o}+0.46 Q_{5 o}+Q_{d 2} \cong 0 \tag{3.7}
\end{equation*}
$$

which allows us to simplify Equation 3.7 as

$$
\begin{equation*}
-\frac{1}{c_{1} Q_{10}^{0.85}} H_{1}+\left(\frac{1}{c_{1} Q_{10}{ }^{0.85}}+\frac{1}{c 2 Q_{20}{ }^{0.85}}+\frac{1}{c_{5} Q_{50}{ }^{0.85}}\right) H_{2}-\frac{1}{c 2 Q_{20}{ }^{0.85}} H_{3}-\frac{1}{c_{5} Q_{5 o}{ }^{0.85}} H_{5}=-Q_{d 2} \tag{3.8}
\end{equation*}
$$

This is the linearized continuity equation, i.e. an equation with exponents of 1 on unknown heads H , in terms of the unknown heads at the adjacent nodes and at node 2, as well as in terms of estimated flow rates leading to node 2 .

For the nodes with constant heads, e.g. for node 1, the equation is revised as:

$$
\begin{equation*}
A^{*} H_{1}-\frac{1}{c_{1} Q_{1 o}^{0.85}} H_{2}-\frac{1}{c_{4} Q_{4}{ }^{0.85}} H_{4}=A^{*} H_{r 1} \tag{3.9}
\end{equation*}
$$

where A is a very large number, for instance 10^{5}
$\mathrm{H}_{\mathrm{r} 1}=$ required head at node 1.

When all continuity equations are formulated and the proper equations at the constant head nodes are inserted, the resulting coefficient matrix is always symmetrical and for large networks extremely sparse. Gessler (1985) showed that the symmetry is also preserved when pump and/or Pressure Reducing Valves are present. The algorithm of WADISO takes advantage of both the symmetry and sparseness when solving the continuity equations simultaneously.

3.5 STEPS OF PARTIAL ENUMARATION WITH WADISO

3.5.1 Pipe Grouping

Pipe grouping is the most useful and at the same time most critical step of the system setup with WADISO. It is useful because by the aid of pipe grouping concept, amount of candidate pipe combinations are reduced which in turn reduces the computation time significantly. It is critical at the same time, because if the groups
are built in hands of people that have little knowledge on hydraulics, it may lead to very unrealistic "optimum" solutions.

Generally, optimization of every pipe within a system is not required; on the contrary, it is sometimes not desirable. For example, it is not desirable to have a main line whose diameter changes at every junction. Similarly, a designer would not prefer a loop with one leg's diameter is 200 mm while the parallel leg is optimized as 80 mm . Consequently, designers have some common rules such as the mains and tributaries are easily observed, having same diameters in the parallel legs of loops in order to increase reliability of the system, etc. Thus, some pipes should have the same diameters. With pipe grouping concept in WADISO, this can be achieved. By this way, not only the above concepts are fulfilled, but also the computation time is reduced.

In WADISO, grouping of pipes is accomplished by the user before the optimization procedure starts. The user specifies which pipes should have the same diameter. For this purpose, following concepts are useful:

- The main lines feeding whole system, i.e. taking water directly from tank, reservoir, pump and end at another source, are grouped individually (Figure 3.3).

Figure 3.3: Grouping of main lines

- Main tributaries feeding sub-zones form individual groups (Figure 3.4).

Figure 3.4: Grouping of main tributaries

- Parallel legs of a loop form one group (Figure 3.5).

Figure 3.5: Grouping of parallel pipes

The groups may include any number of pipes, even if a single pipe can form a group if it is desired to be optimized. However, number of groups within WADISO is limited to 15 , i.e. maximum number of groups that can be formed is equal to 15 . This is again to reduce computation time. Due to this limitation, pipe groups should be selected very carefully, only those pipes that have significant effect on the global cost of the system should be included in groups. In other words, the smaller branches need not be included in the procedure. The change of a pipe's diameter from 125 mm to 100 mm will not be very significant on the global cost. However, the reduction of a 3000 m -long main line's diameter from 1000 mm to 800 mm will produce great cost savings.

Pipe grouping concept reduces computation time and provides a clear conveyance layout to the system. However, pipe grouping should be handled carefully with hydraulic principles kept in mind. As stated before, all the pipes in a group will have the same diameter at the end of optimization. As an example, Figure 3.6 is given. Region 1 is an industrial zone where demands are higher requiring larger diameters. On the other hand, Region 3 is a commercial zone with moderate demands and Region 2 is composed of residential dwellings, which requires relatively low demands as compared to Region 1, which results in smaller diameters. If all the pipes in the three main lines are assigned to the same group, they will have the same diameter at the end of optimization. Since the demands are higher at Region 1, larger diameter main line will be assigned by WADISO due to pressure requirements. Although the demands are smaller for Region 2 and 3, because they are in the same group with Main Line 1, they will be assigned the same diameter of main line 1. In this case, the diameter of Main Line 1 will be governing one; main lines 2 and 3 will be unnecessarily assigned larger diameters. However, if all main lines are assigned to individual groups, they will have different diameters as per demands of the corresponding regions, Main Line 1 having the largest diameter where Main Line 2 has the smallest.

Figure 3.6: Sample Network For Pipe Grouping

3.5.2 Pipe Size Assignment

In the pipe size assignment step, the candidate pipe sizes for each group are listed. Although it is possible, the list for a group does not need to include all commercially available pipe sizes, since having too many candidate pipe sizes for groups will increase computation time. Thus, the candidate pipe sizes should be "reasonable". To find the reasonable candidate pipe sizes, following procedure can be followed:

- Using rules-of-thumb and experience and trial-and-error method, assign preliminary pipe sizes for every pipe in the system. This is also a prerequisite for WADISO. Before running optimization module, program tries to balance the system, thus in the very beginning, preliminary diameters of all pipes should be assigned.
- Assign one lower and one upper commercially available pipe diameter together with the preliminary diameter for every group and run the first optimization trial (Table 3.1). This will last for $4 \sim 12$ hours depending on the system size and number of groups.

Table 3.1: Candidate pipe sizes for first run

PRELIMINARY					
DIAMETERS	200,00	110,00	500,00	250,00	200,00
	GROUP1	GROUP2	GROUP3	GROUP4	GROUP5
CANDIDATE DIAMETERS (mm)	180,00	90,00	450,00	225,00	180,00
	00,00	110,00	500,00	250,00	200,00
	225,00	125,00	560,00	280,00	225,00
OPTIMUM DIAMETERS (mm)	180,00	110,00	450,00	225,00	180,00

- Check the results of the optimization. Identify the groups in which program assigns the lowest available candidate size. This may mean that if there were lower diameters, the program may assign it (lower) to the group. To ensure the results and to give relaxation for the program, assign two more lower diameters. Similarly, if the program assigns the upper diameter for a group, assign two more upper diameters. (Table 3.2.)

Table 3.2: Revised Candidate Pipe Sizes for Second Run

PREVIOUS OPTIMUM DIAMETERS (mm)	$180,00$	110,00	$450,00 \sim 225,00$		(180,00)
CANDIDATE DIAMETERS (mm)	GROUP1	GROUP2	GROUP3	GROUP4	GROUP5
	140,00	90,00	355,00	180,00	140,00
	160,00	110,00	400,00	200,00	160,00
	80,00	125,00	450,00	225,00	80,00
	200,00		500,00	250,00	200,00
OPTIMUM DIAMETERS (mm)	160,00	110,00	400,00	250,00	160,00

- Perform the optimization and repeat the previous step until the program assigns diameters to group that are neither the available upper nor the lower ones (Table 3.3).

Table 3.3: Final Candidate Diameters and Optimum Sizes

PREVIOUS OPTIMUM DIAMETERS (mm)	160,00	110,00	400,00	250,00	160,00
CANDIDATE DIAMETERS (mm)	GROUP1	GROUP2	GROUP3	GROUP4	GROUP5
	140,00	90,00	355,00	180,00	140,00
	160,00	110,00	400,00	200,00	160,00
	180,00	125,00	450,00	225,00	180,00
				250,00	
				280,00	
OPTIMUM DIAMETERS (mm)	160,00	110,00	400,00	250,00	160,00

As can be seen from Table 3.1, for the first run, due to available candidate pipe sizes, WADISO assigned 180 mm for Group 1 and 225 mm for Group 4, which are the main lines of the system. Then in the second run program assigns 160 mm for Group 1 and 250 mm for Group 4 since there are more available diameters. Finally, to check if more changes would have occurred when 280 mm were in the candidate sizes, it is included in the candidate sizes list. At the same time, to reduce computation time,
candidate sizes from Groups 3 and 5 are reduced to three, and according the results, WADISO assigned all the diameters for the groups that were neither the lowest nor the highest available ones.

As discussed previously, cleaning / rehabilitation is also an alternative for new pipe installation. One can assign this option during optimization with WADISO. In this case, the preliminary diameters should be the real world diameter of the group. Then, assumed Hazen Williams coefficient of pipes after cleaning is given to program together with its associated price function. In this option, WADISO determines if it will be more economical when the constructed system is cleaned and rehabilitated or the existing pipes should be replaced by new ones.

One of the drawbacks of optimization methods is to reduce the reliability of the system to save costs. If the designer decides that, some groups formed in the previous steps can be eliminated, then this option can also be introduced into WADISO. Then, the program will test all the combinations including elimination of the said groups. As the result, it may produce results including elimination provided that the specified pressure restraints at nodes are all satisfied. However, it should be kept in mind that these pressure constraints are satisfied with the given steady state loading pattern(s). The reliability of the system should be checked with Extended Period Simulation Analysis and with other critical Steady State Loading Patterns.

3.5.3 Price Functions

Within the optimization process with enumeration, number of combinations of pipes are built, and then compared with each other to find the most economical combination that meets the restrictions. Within this process, pipes are valued by multiplication of their lengths times the assigned price function, - price function of a pipe is the cost per meter of the pipe - and finally all the costs of pipes are added resulting in the cost of the whole system. Thus, the only cost related part of optimization with WADISO is the price function. This obviously requires that the price functions should not only be considered as the pipe material costs, but should also include construction costs (excavation, fill, bedding transportation etc.), special
crossing costs (crossing under a heavily loaded motorway, river etc.), pipe fittings' costs (elbows, collars, branching fittings, dead-end fittings etc.) and all the other costs specific to the projects.

In the past, various attempts have been made to find the price functions of the pipes to assist planners and developers such as Clark, et al. (2002), or the outcome of the survey performed by American Environmental Protection Agency (2001). Although all these gives rough estimates that can be used for master planning stage, detailed cost analysis should be performed for each project considering the latest market conditions (e.g. rise of steel prices, advances in pipe material chemistry, new construction technologies etc.).

In the recent years, there have been advances in pipe chemistry that enables designers to use different kinds of pipes within their designs, such as GRP (glass fiber reinforced polyester), HDPE (high density polyethylene), ductile iron etc. All of these pipe materials have advantages depending on the point of view. One material may have very well hydraulic properties (such as low friction loss), but another one may have dramatically low prices. Thus, there is not a universal law that rules the use of material in water distribution networks.

In addition to cost perspective, other factors limit the use of a material in every aspect of design. For example, GRP pipes can be very well applied in water transmission lines. However, due to their brittle characteristics, they are not advised for distribution lines. In short, there are factors that cannot be represented in mathematical cost functions but which dictates the use of a material.

All pipe materials have different material characteristics and they do also have different construction methodologies, fittings installation etc. A brief summary for three basic types of pipe materials is as follows:

GRP (Glass fiber reinforced polyester):

Commercially available GRP pipes are produced within range of $300 \mathrm{~mm} \sim 2400 \mathrm{~mm}$. GRP Pipes and Fittings are designed to be used in underground and above ground piping systems to transport sewage, sea water, aggressive chemicals, and potable water under pressure and gravity flow. GRP pipes are used in the following fields:

- Main pipes and branch lines for potable water systems
- Pipes for sewage systems. Main and subsidiary sewage collectors to pressure and gravity flow
- Pipes for waste water systems
- Pipes for cooling systems of power stations (also sea water)
- Pipes for submarine systems
- Pipes for systems in chemical plants

The followings are the advantageous properties GRP pipes that are given by the manufacturers (Table 3.4).

Table 3.4: Advantageous properties of GRP pipes (www.superlit.com)

Non-metalic material, inert chemically resistant	Long effective service life.
	No need for cathodic protection systems.
	No need for internal and external coatings.
	Particularly low maintenance costs.
Smooth inner surface provides good hydraulic properties, unchanged throughout its working life.	
Couplings are chemically resistant and watertight	Easy to assemble, saves time.
	Effective sealing under pressure and vacuum.
Coupling enabling angular deflection, allowing change of direction without requiring additional fittings.	

Table 3.4 Continued

Low weight (about $\mathbf{1 / 1 0}$ of a concrete pipe, $1 / 4$ of steel pipe)	Quick and easy installation. There is no need for heavy equipment to transport pipes.
Long pipe sections	Cheap transportation.
Excellent inner smoothness	High Hazen-Williams factor, significant energy savings.
	The energy savings in time may be equivalent to the purchase cost of the pipe.

Figure 3.7 Connection of GRP Pipes (www.superlit.com)

Figure 3.8 GRP Water Transmission Line (www.superlit.com)

HDPE (High density polyethylene pipes): HDPE pipe diameters vary between 75 mm up to 1600 mm depending on the pressure class. HDPE pipes are applied in the following fields:

- Surface and Underground Drinking Water Networks
- Natural Gas Systems and Networks
- Irrigation Systems
- Drainage and Sewerage Systems
- Sea Discharging Systems
- Waste Water Systems
- Solid Waste Drainage Systems
- Fire Water and Cooling Water Systems
- Geothermal Systems
- Pharmaceutical and Chemical Industry / Sanitary Appliances
- Aggressive Fluid Systems

Basic properties of HDPE pipes, which make them advantageous among others, given by manufacturers are as follows (www.superlit.com):

- 50 years of service life guarantee
- Perfect corrosion resistance
- High resistance to chemical agents
- Good flexibility
- Light weight, easy transport, loading, unloading and installation
- Various jointing methods
- Capability of assembling in and/or out of channel during installation
- High elasticity (18-20 times of its diameter), minimum fittings usage
- Perfect adaptation to the field conditions, suitable for seismic area
- Perfect welding and leak-proof characteristic
- Resistance to UV rays and low temperature conductivity
- High resistance to cracking and impact
- Production of all pressure classes between 2,5 bars and 32 bars ,
- and also optional production according to the clients' requirements
- Resistant to the sudden pressure increases known as " Water Hammer "
- Low operating cost
- Easy repairs by strangle technique
- Mobile production facility for huge projects

HDPE pipes are classified according to pressure class as SDR value. SDR value stands for the "Standard Diameter Ratio" which is the outside diameter divided by the wall thickness. A $2^{\prime \prime}$ SDR 7 product would have the outside diameter of 2.375" and a wall thickness of $0.339^{\prime \prime}(2.375 / 0.339=7)$.

Pipe jointing methods used for HDPE pipes are butt-welding method, electrofusion welding, electrofusion coupling, edge welding and flanged (Figure 3.10).

Butt-welding can be performed for PE Pipes with wall thickness greater than 4 mm . The two pipes that are going to be welded should have the same wall thickness.

Welding can be performed inside or outside the trench. However, considering the width of welding machine, trench should be excavated larger than required to perform welding inside. General application is giving a reasonable radius (approximately $18 \times$ pipe diameter) to the PE pipe inside of the trench to take the edge out of the trench, and then perform welding outside of the trench. No extra fittings are required for butt-welding.

Electrofusion welding can be used for pipes up to $\varnothing 110 \mathrm{~mm}$ for pipes having different wall thickness.

When butt-welding cannot be carried out, the electrofusion-coupler is the ideal for big diameters and long pipe lengths. The electrofusion coupler is a joint with an incorporated heating element that (connected to the automatic welding machine) absorbs the necessary heat for welding (Figure 3.9). Inside the coupler, there are notches for the insertion of the pieces to be welded, which will join up in the middle to make the surface more sliding. (These notches can be removed by a knife) The welding pressure is given by the coupler which shrinks because of the temperature. During welding, in order to avoid the softening of material that causes contractions on the pipe, the external and central areas of the coupler do not melt. The contraction is uniformly distributed during welding.

Figure 3.9 Electrofusion coupling of PE Pipes (www.superlit.com)

Edge welding and flanged jointing are applied for gravity pipelines.

BUTT WELDING

EDGE WELDING (EXTRUDER WELDING)

FLANGED

Figure 3.10 Pipe jointing methods for PE Pipes (www.superlit.com)

Ductile Iron Pipes: Since its first introduction into the market in 1955, ductile iron has been extensively used in wide range of sectors including water and waste water systems (Figure 3.11).

Figure 3.11 Ductile Iron production in the past for all sectors (www.ductile.org)

Ductile Iron not only retains all of Cast Iron's attractive qualities, such as machinability and corrosion resistance, but also provides additional strength, toughness, and ductility. It is lighter, stronger, more durable and more cost effective than Cast Iron. Although its chemical properties are similar to those of Cast Iron, Ductile Iron incorporates significant casting refinements, additional metallurgical processes, and superior quality control. Ductile Iron's improved qualities are derived from an improved manufacturing process that changes the character of the graphite content of the iron. Ductile Iron's graphite form is spheroidal, or nodular, instead of the flake form found in Cast Iron (Figure 3.12). This change in graphite form is accomplished by adding an inoculant, usually magnesium, to molten iron of appropriate composition during manufacture.

Figure 3.12 Ductile and Cast Iron under microscope (www.ductile.org)

Due to its spheroidal graphite form, Ductile Iron has approximately twice the strength of Cast Iron as determined by tensile, beam, ring bending, and bursting tests. Its impact strength and elongation are many times greater than Cast Iron's. Ductile's high degree of dependability is primarily due to its high strength, durability, and impact and corrosion resistance.

The first cast iron water lines were installed without lining. However, in time it was observed that inner side of pipe could be affected by the water. Thus, researches were conducted on inner lining of cast irons and linings such as cement-mortar lining have been developed. Cement-mortar-lined Ductile Iron pipe provides a HazenWilliams flow coefficient, or "C" value, of 140 - a realistic value that is maintained over the life of the pipe. This standard lining, which is furnished in accordance with ANSI/AWWA C104/A21.4, continues its tradition of dependable, trouble-free service (BONDS, 1989). Comparison of ductile iron (ANSI/AWWA C150/A21.50 and ANSI/AWWA C151/A21.51) and PE pipe (ANSI/AWWA C906) standards is as follows (Bonds, 2000):

Table 3.5: Comparison of ductile iron (ANSI/AWWA C150/A21.50 and ANSI/AWWA C151/A21.51) and PE pipe (ANSI/AWWA C906) standards

TOPIC	Ductile Iron Pipe ANSI/AWWA C150/A21.50 ANSI/AWWA C151/A21.51	HDPE Pipe ANSI/AWWA C906
Sizes	3"-64"	4"-63"
Laying Lengths	18', 20 '	40^{\prime}
Pressure Class $/$ Ratings	Rated up to 350 psi. Pressure Class 150, 200, 250, 300, \& 350 . Higher pressures may be designed.	$\begin{array}{\|l\|} \hline \text { Dependent on material code: } 40 \text { to } 198 \text { psi } \\ \text { for PE } 2406 \text { or PE } 3406 ; 51 \text { to } 254 \text { psi for } \\ \text { PE } 308 . \text { Rated up to } 254 \text { psi for } 20 \text {-inch } \\ \text { diameter and smaller. Due to manufacturers } \\ \text { limited extrusion capabilities for wall } \\ \text { thicknesses }>3 \text {-inches, ratings may be } \\ \text { progressively reduced with increasing sizes } \\ \text { greater than 20-inches in diameter. } \\ \hline \end{array}$
Method of Design	Designed as a flexible conduit. Separate design for internal pressure (hoop stress equation) and external load (bending stress and deflection). Casting tolerance and service allowance added to net thickness.	Flexible material; internal pressure design only. External load design is not covered by a standard.
Internal Pressure Design	Pressure Class: stress due to working pressure plus surge pressure cannot exceed the minimum yield strength of 42,000 psi $\div 2.0$ safety factor.	Pressure Rating: Stress due to working pressure cannot exceed the Hydrostatic Design Basis ($1,600 \mathrm{psi}$) $\div 2.0$ safety factor $($ Hydrostatic Design Stress $=800 \mathrm{psi})$ for PE 3408. Any surge pressure compromises the safety factor.
Surge Allowance	Nominal surge allowance is 100 psi (based on an instantaneous velocity change of approximately 2 fps), however, actual anticipated surge pressures should be used.	Not Included. Surge pressures are allowed to compromise the "design factor" which results in a reduction in the safety factor below 2.0.
External Load Design	Prism load + truck load. Ring bending stress limited to 48,000 psi, which is $1 / 2$ the minimum ultimate bending strength. Deflection is limited to 3% of the outside diameter of the pipe, which is $1 / 2$ of the deflection that might damage the cement-mortar lining. The larger of these two thicknesses governs and is taken as the net thickness.	None discussed in standard.
Live Load	AASHTO H20, assuming a single $16,000 \mathrm{lb}$. concentrated wheel load. Impact factor is 1.5 for all depths.	None discussed in standard.

Table 3.5 Continued

| Factor of |
| :--- | :--- | :--- |
| Safety | | Pressure Design: 2.0 (including |
| :--- | :--- |
| surge) based on minimum tensile |
| yield strength of 42,000 psi. |\quad| A "Design Factor" is used in the internal |
| :--- |
| pressure design formula. This factor is |
| simply the inverse of the more common |
| "Safety Factor." This "Design Factor," in |
| reality, is not a constant number. The |
| design formula for hdpe pipe ignores surge |
| pressures by merely increasing the "Design |
| Factor," thereby, reducing the "Safety |
| Factor," to compensate for them. | \left\lvert\, | | |
| :--- | :--- |
| | External Load Design: 2.0 for
 bending based on minimum
 ultimate ring bending strength of
 96,000 psi, or 1.5 for bending
 based on minimum ring yield
 bending strength of 72,000 psi. 2.0
 for deflection for cement-mortar-
 lined pipe. Note: Actual safety
 factors are greater than the
 nominal safety factors due to the
 addition of the service allowance
 and casting tolerance in the design
 procedure. | | Factor" is 0.5 ("Safety Factor" is 2.0). |
| :--- |
| Acknowledging surge pressures, the |
| "Design Factor" is >0.5 ("Safety Factor" is < |
| $2.0)$. |\right.

Pipe Fittings: In the most simplest form, pipe fittings are the materials that are used to join pipes or used to provide junctions for branching pipes. There are numerous kinds of pipe fittings, the common ones being (www.superlit.com):

- Flanges (Figure 3.13)

Figure 3.13: Flanges

- Bends $\left(45^{\circ}, 90^{\circ}\right)$, to provide deflection from alignment (Figures 3.14, 3.15)

[$90^{\circ} \mathrm{BEND}$]
Figure 3.14: Bends $\mathbf{(9 0}^{\circ}$)

[$45^{\circ} \mathrm{BEND}$]

Figure 3.15: Bends ($\mathbf{4 5}^{\circ}$)

- Tees, to provide 90° junction (Figures 3.16, 3.17)

[EQUAL TEE]

Figure 3.16: Equal Tee

[UNEQUAL TEE]

Figure 3.17: Unequal tee

- Reducers, to connect a larger diameter with a smaller one in series (Figure3.18)

Figure 3.18: Reducer

Depending on the need, there are also other fittings such as:

- Flange Tees
- Blind Flanges
- Saddle service tees
- Hydrant Connections
- Adapters

The prices of fittings depends on the following:

- Material types of connecting pipes
- Required pressure strength
- Diameters of connecting pipes
- Methodology to connect pipes and fittings (e.g. for HDPE pipes connection with electrofusion or welding)

As an example, a simple junction is given in Figure 3.19.

Figure 3.19: Example Fitting Layout (with unequal tee)

According to Unit Prices announced by Bank of Provinces (iller Bankasi) and State Hydraulic Works (DSI) for year 2004, the total cost of the system with various diameters are given in Table 3.6 and Figure 3.20

Table 3.6: The total cost of the system (fitting with unequal tee)

D1	D2	COST OF PIPES	COST WITH TEE
$\mathbf{1 1 0}$	$\mathbf{9 0}$	414.35 YTL	484.57 YTL
$\mathbf{1 2 5}$	$\mathbf{9 0}$	494.20 YTL	579.33 YTL
$\mathbf{1 4 0}$	$\mathbf{9 0}$	588.08 YTL	708.45 YTL
$\mathbf{1 6 0}$	$\mathbf{9 0}$	713.23 YTL	863.48 YTL
$\mathbf{1 8 0}$	$\mathbf{9 0}$	864.33 YTL	$1,055.44 \mathrm{YTL}$
$\mathbf{2 0 0}$	$\mathbf{9 0}$	$1,015.43 \mathrm{YTL}$	$1,272.45 \mathrm{YTL}$
$\mathbf{2 2 5}$	$\mathbf{9 0}$	$1,248.43 \mathrm{YTL}$	$1,578.78 \mathrm{YTL}$
$\mathbf{2 5 0}$	$\mathbf{9 0}$	$1,481.45 \mathrm{YTL}$	$1,922.06 \mathrm{YTL}$
$\mathbf{2 8 0}$	$\mathbf{9 0}$	$1,837.70 \mathrm{YTL}$	$2,429.93 \mathrm{YTL}$
$\mathbf{3 1 5}$	$\mathbf{9 0}$	$\mathbf{2 , 2 5 3 . 3 8} \mathrm{YTL}$	$\mathbf{2 , 9 1 0 . 8 1 \mathrm { YTL }}$

Figure 3.20: The total cost of the system (fitting with unequal tee)

As it is observed from Figure 3.20, the total cost may increase up to 30% with inclusion of the cost of tee.

In order to include the effect of fittings in the optimization procedure with any software below steps has to followed:

- Every fitting has to be selected as per the pressure class individually; there should be no over-design such as installing a SDR 7,4 and PN25 atm fitting
for PE pipes where SDR 17 and PN10 atm is sufficient. Similarly, no underdesign should be allowed to prevent damages.
- While selecting pipe sizes for the system, price of fittings should also be considered.

In WADISO, the price functions are input to the software as the price per length. However, as given above, the price of fittings are dependent on pressure classes and the diameters of pipes connected to them. This creates a vicious circle: in order to include the price of fitting, diameters have to be known, but the optimization, i.e. inclusion of fitting prices in price function, is performed to determine the diameters. As the result, since there is no mathematical relationship between the fittings and the pipes, it is almost impossible to consider effect of fittings during optimization with WADISO.

As the conclusion, in order to have a reasonable optimum solution with WADISO, designer should have a good knowledge on available pipe materials, their conformity to his project area, recent market prices, construction and installation technologies and their corresponding prices. For a general design of a water distribution system with WADISO, the following items can be included in price functions for the design of a system:

Table 3.7: Activities / materials for HDPE Price Function

EXCAVATION WORKS

Trench excavation (without explosives)
Fill
Bedding \& Compaction
PIPE RELATED
Pressure Test Before Laying
Connection of HDPE Pipes with Butt Welding
Laying of HDPE Pipes
HDPE Pipe material

Table 3.8 Activities / materials for Steel or Ductile Price Function

EXCAVATION WORKS

Trench excavation (with/without explosives)
Fill
Bedding \& Compaction
PIPE WORKS
Pressure Test Before Laying
Welding
Inner insulation of welded ends
Outer insulation of welded ends
Laying
Price of pipe material
Cathodic protection ($\sim 2 \%$ of pipe price)

However, it should be kept in mind that the effects that cannot be included in price functions should be checked by the designer manually.

3.5.3.1 Price Functions for the Case Study

To use in the Case Study presented in Chapter 4, three types of materials are selected as suitable for the network and their corresponding price functions are built.

- HDPE (High density polyethylene)
- Steel Pipe
- Ductile Iron Pipe

To calculate the price function of each material in $\mathrm{YTL} / \mathrm{m}$, unit prices announced by Devlet Su İşleri (DSİ-State Hydraulic Works) and İller Bankası (Bank of Provinces) are used. Additionally, a market search has been performed including major pipe manufacturers and approximate market prices of pipe materials are gathered. Further to above, unit prices given by United States Environmental Agency as the result of a broad survey performed within USA are also used.

HDPE Pipes Price Function: Standard diameters available for HDPE Pipes vary between 16 mm up to 1600 mm depending on the pressure class. Because the pressures are less than 100 m , pipes with PN10 - SDR11 are selected for the study. Price analyses are performed for pipe diameters $90,110,125,140,160,180,200$, $225,250,280,315,355,400,450,500,560$ and 630 mm .

According to information gathered from hydraulic designers, typical trench crosssection for HDPE Pipes is given in Figure 3.21. From Figure 3.21, calculated excavation, bedding and fill volumes are given in Table 3.9, for the mentioned diameters.

To calculate the corresponding construction related works, unit prices of State Hydraulic Works are used for the following items:

- Trench excavation (without explosives)
- Fill
- Bedding \& Compaction

Regarding pipe related works, the following items are taken from both State Hydraulic Works and Bank of Provinces Unit Price Books:

- Pressure Test before Laying
- Connection of HDPE Pipes with Butt Welding
- Laying of HDPE Pipes
- HDPE Pipe resistant to 10 atm

As discussed in Section 3.5.3, there are various methods for joining pipes. In this study, because all the pipes are of the same material and assuming that all pipes have the same wall thickness, jointing method is assumed as butt welding. Unfortunately, due to reasons g iven in the same section, price of fittings and jointing costs at fittings cannot be included in the optimization.

Table 3.9: Trench dimensions and excavation, bedding and fill volumes for HDPE Pipes

DIMENSIONS							VOLUME (for 1 meter length)		
Diameter	B	H1	H2	H3	H4	H5	EXCAVATION	BEDDING	FILL
mm	cm	cm	cm	cm	cm	cm	m3	m3	m3
90	39	100	20	7	2	11	0,54	0,04	0,49
110	41	100	20	9	2	12	0,58	0,05	0,52
125	43	100	20	10	3	12	0,61	0,05	0,55
140	44	100	20	12	2	12	0,63	0,05	0,57
160	46	100	20	14	2	12	0,67	0,06	0,60
180	48	100	20	15	3	13	0,71	0,06	0,62
200	50	100	20	17	3	13	0,75	0,07	0,65
225	53	100	20	19	4	13	0,81	0,07	0,70
250	55	100	20	21	4	14	0,85	0,08	0,73
280	58	100	20	24	4	14	0,92	0,08	0,77
315	62	100	20	27	5	15	1,00	0,09	0,83
355	66	100	20	30	6	15	1,09	0,10	0,89
400	70	100	20	34	6	16	1,19	0,11	0,95
450	75	100	20	38	7	17	1,31	0,13	1,03
500	80	100	20	42	8	18	1,44	0,14	1,10
560	86	100	20	48	8	18	1,60	0,15	1,20
630	103	100	20	54	9	19	1,99	0,20	1,48

As a summary, HDPE pipe price functions for diameters between $90 \sim 630 \mathrm{~mm}$ are calculated as given in Table 3.10. These prices include the cost of pipe material, laying, excavation, bedding, fill and connection of pipes. Hazen-Williams C coefficient for friction loss calculation is taken as 150 .

Table 3.10: Price Function for HDPE Pipes (according to State Institutes Unit Price Books)

Diameter	Price
$\mathbf{(m m)}$	(YTL/m)
90	11,64
110	14,76
125	18,26
140	22,51
160	28,12
180	34,48
200	40,88
225	51,08
250	61,19
280	76,08
315	94,01
355	118,75
400	146,52
450	185,84
500	223,27
560	281,31
630	351,83

As an alternative to unit prices announced by State Institutes, price functions are recalculated considering data gathered from manufacturers. However, it should be noted that the used material prices are listing prices, which means that they may further decrease depending on the extent of the project, transportation distance etc. Although the material prices are taken from the market, no price analysis could be done for either for construction or other pipe related items. The cost of each item changes from project to project depending on many factors such as geological formations encountered, traffic and public density, available time scope, available machinery of the contractor etc. Thus, remaining unit prices, i.e. unit prices except the pipe material price, are kept unchanged. Price functions calculated according to
market data are given in Table 3.11. It is observed that these unit prices are lower than the ones obtained from state unit price books.

Table 3.11: Price Function for HDPE Pipes according to market data

Dia	Price
$\mathbf{m m}$	YTL/m
90	9,87
110	12,75
125	15,27
140	18,08
160	22,47
180	26,98
200	32,08
225	39,63
250	47,53
280	61,40
315	76,54
355	95,27
400	118,41
450	148,12
500	179,26
560	222,33
630	282,06

Steel Pipes Price Function: An alternative to HDPE pipes given in the aforementioned unit price books is steel pipes. However, there were two difficulties: available unit prices for steel pipes in State Hydraulic Works unit price book starts from pipes with diameter equal to 500 mm . and secondly the minimum pressure class is 16 atm . To find the unit prices for the diameters used in the previous optimizations, a polyline is fitted to available data and extrapolation is done for lower diameters. The pressure class is kept as 16 atm since there is no data available regarding the relationship of 10 atm pressure class and 16 atm pressure class prices of same diameters. Material unit prices obtained by this method are given in Table 3.12 and Figure 3.22.

Table 3.12: Material unit prices for steel

Dia	Price
$\mathbf{m m}$	YTL/m
80	8,52
100	11,05
125	14,4375
150	18,075
200	26,1
225	30,4875
250	35,125
300	45,15
350	56,175
400	68,2
450	81,225
500	95,25
600	126,3
650	143,325
700	161,35
750	180,375
800	200,4
850	221,425
900	243,45
1000	290,5

Figure 3.22: Material unit prices for steel

Similar to HDPE, pipes, typical trench cross-section for steel pipes is gathered from professions and given in Figure 3.23. From Figure 3.23 calculated excavation, bedding and fill volumes are given in Table 3.14 for diameters between $100 \sim 600 \mathrm{~mm}$. Construction related works for steel pipes are taken same as those for HDPE pipe, but pipe related items are changed / added as follows:

- Pressure Test Before Laying
- Welding
- Inner insulation of welded ends
- Outer insulation of welded ends
- Laying
- Steel Pipe resistant to 16 Atm
- Cathodic protection ($\sim 2 \%$ of pipe price)

Unit price of inner and outer insulation items are calculated by extrapolation similar to material pipe prices. Cathodic protection item is taken as app. $\sim 2 \%$ of pipe price after discussions with experienced engineers. No fitting or collar cost is included in the price functions. Hazen-Williams C coefficient for friction loss calculation is taken as 130. Resulting unit prices are given in Table 3.13.

Table 3.13: Unit prices for steel pipes

Diameter	Price
$\mathbf{m m}$	YTL/m
100	15,84
125	20,10
150	24,82
200	34,56
250	45,29
300	57,34
350	70,59
400	82,57
450	98,27
500	114,54
600	151,39

Figure 3.23: Typical trench cross-section for steel pipes (units in cm)
Table 3.14: Trench dimensions and excavation, bedding and fill volumes for Steel

DIMENSIONS						VOLUME (for 1 meter length)		
Diameter	B	H1	H2	H3	H4	EXCAVATION	BEDDING	FILL
mm	cm	cm	cm	cm	cm	m3	m3	m3
80	68	100	30	8	25	1,11	0,43	0,68
100	70	100	30	10	25	1,16	0,45	0,70
125	72,5	100	30	12,5	25	1,21	0,49	0,73
150	75	100	30	15	25	1,28	0,52	0,75
200	80	100	30	20	25	1,40	0,59	0,80
225	82,5	100	30	22,5	25	1,46	0,63	0,83
250	85	100	30	25	25	1,53	0,66	0,85
300	90	100	30	30	25	1,67	0,74	0,90
350	95	100	30	35	25	1,81	0,82	0,95
400	100	100	30	40	25	1,95	0,91	1,00
450	105	100	30	45	25	2,10	1,00	1,05
500	110	100	30	50	25	2,26	1,09	1,10
600	120	100	30	60	25	2,58	1,29	1,20

Price Functions for Ductile Iron Pipes: Ductile iron pipes has always been a primary choice of designers for water distribution networks. To perform the optimization with ductile iron pipes, price function analysis are performed using same items with the steel pipes. Unfortunately, no material unit price for ductile iron pipes is announced by either State Hydraulic Works or Bank of Provinces. Thus, a market search is conducted and material unit prices are gathered. For the pipes, using the same price items given for steel pipes, price functions for ductile iron pipes are obtained as given in Table 3.15. The unit prices include internal lining of cement (ISO4179) by centrifugal process and external coating by metallic Zinc (ISO8179), and then coverage by bituminous (asphalt) paint (BS 3416). Similar to steel pipes, Hazen-Williams C coefficient for friction loss calculation is taken as 130 also for ductile iron pipes. No fitting or collar cost is included in the price functions.

Table 3.15: Price Function for Ductile Iron Pipes

Dia	Price
$\mathbf{m m}$	YTL/m
100	16,19
125	17,51
150	19,04
200	24,98
250	31,43
300	37,86
350	45,96
400	51,78
450	65,88
500	71,27
600	93,57

Price Functions of EPA (Environmental Protection Agency - USA): In 1999, the U.S. Environmental Protection Agency (EPA) conducted the second Drinking Water Infrastructure Needs Survey. The purpose of the survey is to estimate the documented 20 -year capital investment needs of public water systems. The survey used questionnaires to collect infrastructure needs from medium and large water systems. EPA mailed questionnaires to all 1,111 of the nation's largest water systems serving more than 40,000 people, and to a random sample of 2,556 of the 7,759 medium systems serving over 3,300 people. As part of the survey, EPA developed
cost models to assign costs to projects for which systems lacked adequate cost documentation. The data used to develop the cost models generally include materials, construction, design, administrative and legal fees, and contingencies. In addition, it was important to obtain cost data for systems of all sizes in order to minimize the extent to which costs had to be extrapolated beyond the range of the data points. (EPA, 2001). As the result of this, price functions are gathered as given in Table 3.16.

Table 3.16: Price Functions given by EPA (Transformed from US Dollar/ ft into YTL/m)

Diameter	FROST	NON-FROST
$\mathbf{m m}$	YTL/m	YTL/m
150	159,43	101,80
200	156,80	107,45
250	170,25	123,59
300	183,73	139,76
350	233,46	177,49
400	283,16	215,25
450	316,30	252,74
500	349,46	290,26
600	355,74	331,62

Comparison of Price Functions: The resultant price functions based on various materials are given in Figure 3.24. As observed from Figure 3.24, for small diameters, price functions are very close to each other. However, as diameter increases, steel and ductile iron pipes are more advantageous to HDPE pipes. Thus, in this range, i.e. for diameters larger than $\sim 250 \mathrm{~mm}$, the designers has to make a choice: they can install HDPE pipes with higher prices to get benefit from its advantageous properties such as low friction loss, easy installation due to low weight etc, or they can prefer ductile iron pipes which is both cheaper and has other advantages as given in Section 3.5.3. The price function announced by EPA includes transportation, contingencies, design, administrative and legal fees and many other costs that are not directly dependent on pipe diameter, but indirectly affect the project cost. These should also be included in the price function analyses performed within the context of this study, however, because very few detail information is available, it was not possible.

Figure 3.24: Price Functions for various materials

Thus, only items that directly affect the cost of pipe laying are included and price function of EPA is not used in optimization studies.

3.5.4 Loading Patterns and Pressure Constraints

A set of flow outputs or inputs at the nodes is defined as the loading pattern. The loading pattern that should govern the design of a water distribution system is not a definite phenomenon. Whether the system should be designed considering the most critical instant which occurs rarely during its service time or it should be designed considering average day conditions which frequently occurs is questionable. The system can be designed considering the peak hour demands. Alternatively, it can be designed considering a huge fire within the network. A system designed with these loadings will have large diameters. However, normal day demands of a system are much lower than these loadings. Having lower demands in large pipes will cause reduction of velocity, which in turns results in low quality water. As the velocity decreases, the microscopic particles within the water tend to settle and ruin the quality of water. On the other hand, if a system is designed considering average day demands, the system capacity will not be sufficient against extreme events such as fires. No one can take the responsibility of human loss due to insufficient pressures at fire hydrants during a huge fire. Consequently, a system should be designed in such a way that it should be capable of meeting all of the above criteria.

A guideline for this problem has been given by Walski (1995). He suggested using the following demand patterns in accordance with the aim of design:

Master Planning: Master planning is done to determine the size and installation date of major capital projects for a water distribution system. In this type, pipe sizing is almost completely controlled by the magnitude and location of future municipal and industrial water use. Because the sizes of larger pipes ($>400 \mathrm{~mm}$) are generally controlled by daily demands, not fireflows, sizing has to be checked against peakhour or peak day usage. The minimum pressure that must be met needs to be set
higher than 140 kpa (20psi). The sizes selected in master planning shall not be regarded as final decisions, but rather as rough estimates of the best size if all of the assumptions made in the master planning prove to be true.

Preliminary Engineering for Transmission Mains: During master planning, routes are approximate, which should be studied in detail during preliminary design. Laying pipe in cleared land is much less expensive than in congested urban centers with many buried utilities. Piping decisions are often based on such cost differences. Additionally, during master planning, the area corresponding to a model node can be fairly large. In preliminary design, this changes because the location of water users can be refined further. More importantly, the locations of connections between large transmission lines and smaller neighborhood distribution pipes must now be precisely determined. For small distribution components, the probability of an outage occurring concurrently with the design fire demand is very low, so the system can be modeled as if all the pipes are in service. In case of large transmission mains, the probability of the peak demand occurring concurrently with the outage of a system component is much larger, and the effect of such an outage must be considered in pipe sizing.

Subdivision development: When land is subdivided for residential development, industrial parks, shopping malls, the problem is significantly different from master planning and preliminary design. The sizing is almost completely controlled by fire flow requirements and most pipes will be of minimum diameter.

In WADISO, the system design is performed considering steady state analysis. The designer can assign up to five different loading patterns. Different loading patterns can include variations in

1. Outputs at one or more nodes
2. Minimum pressure requirements at one or more nodes
3. Different specifications for pump operation, including efficiency and the percentage of time it may run under certain loading patterns.

Among the specified patterns, one may be the peak flow expected during a normal day, while another may represent the necessary flows necessary to fight a fire at specific node(s). The program will consider all specified loading patterns and will determine the pipe sizes that are capable of handling flows and minimum pressures for all patterns. In addition to flow outputs, different minimum pressure patterns can be specified for different loading patterns.

Pressure constraints are the minimum pressures defined by the designer to be met or exceeded in the final solution at as many nodes as desired, for each of the loading patterns under investigation. Pressure constraints are dependant on the aim of the loading pattern. For example, minimum pressure of $25 \sim 30 \mathrm{~m}$ head at all nodes, which corresponds to feeding approximately to a 3 -storey building without extra pumping, is the general design criteria for peak hour and maximum day demand while 30 m is required at a specific node at which fire fighting takes place and only 10 m head is sufficient at the remaining nodes.

3.5.5 Pump and Tank Inclusion

Optimization algorithm within WADISO allows designer to include pumping costs. As the result of the pressure distribution, the flow rates through the pump and the pump head are obtained. This permits the computation of pumping cost if the percentage of time the pump is running at this operation point is specified. As discussed, it is possible to specify several loading patterns, each with its own percentage of time. The program will then calculate and accumulate the present value of the pumping cost and add it to the pipe cost.

The pumping cost is calculated from the following equations:
$\operatorname{Power}(k W)=\frac{\rho g Q H}{\mu}$
where $\rho=$ mass density of liquid
$\mathrm{g}=$ gravitational acceleration $\left(9,81 \mathrm{~m} / \mathrm{s}^{2}\right)$

```
\(\mathrm{Q}=\) pumping flow rate \(\left(\mathrm{m}^{3} / \mathrm{s}\right)\)
\(\mathrm{H}=\) Pump head (m)
\(\mu=\) Pump efficiency
```

The user defines the cost per kW and the program calculates the overall pumping cost considering the percentage time of running in the design life.

In the optimization routine of employed by WADISO, the cost of water storage (i.e. tanks and reservoirs) can be included in the optimization, in addition to pipe cost and energy cost. Similar to pumping cost, there exists a trade-off between pipe cost and storage cost. In general, smaller, less expensive pipe size combinations will require larger, more expensive storage tanks for balancing peaks in the water demand whereas larger diameters will increase the pipe cost and also results in low quality water.

To calculate tank cost, similar to pipe price function, user defines price function that describes the cost per unit storage with up to 25 volumes sizes. The program enumerates all of the possible combinations of tank sizes in connection with pipe combinations.

3.5.6 Pareto Optimal Solutions

The optimal solution proposed by any algorithm may be unfeasible for a number of reasons, due to political decisions, reduced reliability etc. In addition, non-optimal (but near-optimal) solutions may display attributes that make these solutions attractive. For instance, a solution may display a slightly higher than optimal cost, but it may provide significantly better pressure characteristics than the optimal solution, though both solutions meet the pressure requirement. Another solution may violate the pressure requirement by a small amount, yet it may provide for substantial cost savings. It may then be of interest to invest in a slightly more expensive solution or sacrifice somewhat on the required pressure (Walski et al., 1990)

WADISO uses partial enumeration technique, namely it tries all of the possible combinations under certain restrictions explained above. During these trials, user can give such parameters to the program that it can keep some more combinations that are not optimum, but near optimum. With the aid of this, WADISO allows one to generate such a set of alternative non-inferior solutions that have the property of being Pareto Optimal.

A Pareto optimal solution is one in which one of the measures of optimality cannot be improved without making another measure worse. For the problem of pipe network optimization specifically, there are two cases:

1. For solutions that meet pressure constraints and are within the cost tolerance, a solution is Pareto optimal (non-inferior) if there is no other solution that can give equal or greater pressure at lower cost.
2. For solutions that do not meet the pressure constraints but are within the pressure tolerance, a solution is Pareto optimal (non-inferior) if there is no other solution that can give equal or greater pressure at lower cost.

There can be many Pareto optimal solutions for a specific network problem.

CHAPTER 4

CASE STUDY

4.1 AIM OF THE STUDY

The aim of this study is to illustrate use of an optimization technique, i.e. WADISO, on an already constructed real world network and show the discrepancies between the traditional network design and design using an optimization software. The case study area is North 8 (N8) pressure zone of Ankara Municipality Water Distribution System (Merzi et al. 1998a, 1998b). Optimization software is WADISO (Water Distribution Network Analysis), which uses partial enumeration technique developed by Gessler (1985).

4.2 WATER DISTRIBUTION SYSTEM OF ANKARA

Ankara being the capital and second largest city of Turkey has a population of 3.203.362 according to year 2000 census (DİE - State Statistical Institute). Considering that its population was 2.583 .963 in year 1990, there has been $21,48 \%$ increase in the last 10 years. This great development indicates that there is a migration from rural areas to Ankara city center and in the future, this will continue. According to ASKİ (Ankara Water and Sewage Management), water consumption per capita is approximately $250 \mathrm{lt} / \mathrm{day} /$ capita as per year 2000 data. As water supply is one of the primary missions of the state institutions, Ankara has a relatively large water supply and distribution system.

Ankara water supply and distribution system is taking raw water from the following dams:

- Kurtboğazı Dam
- Çamlıdere Dam
- Akyar Dam
- Eğrekkaya Dam
- Bayındır Dam (via pumping)
- Çubuk-2 Dam

The main Water Treatment Plant is located in İvedik, which is composed of four units each having a capacity of $564.000 \mathrm{~m}^{3} /$ day. With this capacity, İvedik treatment plant is within the top ten treatment plants among European countries. Pre-stressed concrete main lines with diameters equal to 2000 mm coming from Kurtboğazı Dam and Çamlidere Dam are carrying raw water to this plant. Two other treatment plants are Bayındır Treatment Plant for Bayındır main line with 30.000-m3/day capacity and Pursaklar Treatment Plant for Çubuk main line with $75.000 \mathrm{~m}^{3} /$ day.

Water distribution system of Ankara is divided into five main pressure zones:

- Central and Western Supply Zone (e.g. Sincan, Etimesgut, Eryaman)
- Northern Supply Zone (e.g. Keçiören)
- Eastern and Southeastern Supply Zone (e.g.Mamak)
- Southern Supply Zone (e.g. Çankaya)
- Southwestern Supply Zone (e.g. Çayyolu, Ümitköy)

Each main pressure zone is composed of several pressure zones by approximately $40-50 \mathrm{~m}$ elevation intervals. Central and Western Zone is divided into two pressure zones as C2 and W2. Northern Supply Zone is divided into eight pressure zones named N3-N10. Eastern and Southeastern Zone has seven pressure zones at east named E3-E9 and four at southeast named SE3-SE7. Southern Supply Zone has ten
pressure zones named S3-S12 and South Western Supply Zone has four zones named SW3-SW6 (Figure 4.1) (YILDIZ, 2002).

The Northern Zone, the study area is located, takes water from P1 Main Pumping Station. P1 is the main pumping station that takes water directly from İvedik Treatment Station and distributes to other sub-zones. Water from P1 main station is carried to P2, which is the main pumping station of Northern Zone. (Figure 4.2, 4.3).

4.3 STUDY AREA

4.3.1 N8 Pressure Zone

The study area, N8 Pressure Zone (Figure 4.3) is located at the end of north line of Ankara Municipal Water Supply System. In administrative terms, it is located in Yenimahalle and Keçiören counties. There are four districts fed from N8 subpressure zone, which are Yayla, Sancaktepe, Şehit Kubilay districts of Keçiören and Çiğdemtepe district of Yenimahalle. There are approximately 25.000 people living in these districts.

N8 pressure zone is selected for case study due to its simple network system as well as its relatively homogenous residents. The pressure zone is composed of one pumping station P23, one main line going from pump to tank, T53, and another main line feeding northern zone. This configuration is the ideal one for any research purposes. The water consumption within the zone is mostly residential type. There are almost no significant industrial or commercial activities located within the boundaries of N8. The socioeconomic level of the residents can be accepted as low income; they are distributed uniformly in the pressure zone (Eker, 1998). Additionally, with the aid of SCADA system installed in the pump station and the tank, real water consumption values are readily available. With the help of homogeneity of the system and the data from SCADA, it is possible to determine nodal demands with negligible error.

Figure 4.1: Water Distribution System of Ankara

Figure 4.2: Ankara Subpressure Zones in North

Figure 4.3: N8 Pressure Zone

4.4. HYDRAULIC MODEL

4.4.1. Layout of the Pipes in N8 Pressure Zone

The layout of the existing system of N8 Pressure Zone is gathered from ASKİ, including all characteristics of the pipes, nodes, tank and the pump such as diameters, elevations, tank dimensions, pump curves etc.

4.4.2. Nodal Demands

In order to determine nodal demands to assign at the nodes of the study area, namely N8 Pressure Zone, previous studies on this area are searched and nodal demands of August 16, 2001, which is one of the critical months of the year due to high temperature and consequently high water usage, are selected, and nodal demands are assigned. Design load is $\mathrm{Q}_{\text {peak }}=115,75 \mathrm{lt} / \mathrm{s}$.

4.4.3. Analysis of Existing System

All the system data are entered into WATERCAD 6.0 and the existing system is analyzed. As seen from Table 4.1 and Figure 4.4, there are some nodes (25 out of 337) with pressure values below 30 m , which is the minimum design criteria as stated in Chapter 2. However, because they are not too low, i.e. around 20, it can be concluded that in the design stage, these nodes might have been sacrificed for the good of the area from cost point of view and no further improvements to increase the pressure values at the said locations were taken.

Further to above, it is observed that the main problem of existing system is not only the low pressure at specific locations, but also the low velocity in the pipes around almost the whole system. The minimum flow velocity in the pipes should not be less than $0,5 \mathrm{~m} / \mathrm{s}$ to avoid poor water quality. Unfortunately, analysis revealed that the velocity in the pipes within N 8 Zone is too low, where $0,07 \mathrm{~m} / \mathrm{s}$ is the average velocity.

Table 4.1: Nodes with pressure values below 30 m .

Label	Elevation (m)	Base Flow (I/s)	Pressure (m H2O)
$J-296$	$1,142.08$	0.0699	12.339
$J-289$	$1,136.56$	0.174	17.131
$J-270$	$1,133.79$	0.5172	19.842
$J-295$	$1,133.40$	0.6408	21.001
$J-271$	$1,132.42$	0.3225	21.199
$J-274$	$1,130.71$	0.452	22.915
$J-249$	$1,130.26$	0.3675	23.357
$J-250$	$1,129.48$	0.2914	24.13
$J-319$	$1,128.55$	0.2259	25.082
$J-269$	$1,128.46$	0.3448	25.164
$J-314$	$1,127.59$	0.3537	26.018
$J-315$	$1,127.38$	0.3032	26.244
$J-251$	$1,126.41$	0.2925	27.192
$J-198$	$1,126.76$	0.2532	27.559
$J-207$	$1,125.73$	0.2155	28.645
$J-291$	$1,125.02$	0.0563	28.687
$J-272$	$1,124.63$	0.3963	28.969
$J-294$	$1,125.31$	0.0721	29.075
$J-252$	$1,124.43$	0.2913	29.166
$J-256$	$1,124.17$	0.1925	29.425
$J-199$	$1,124.87$	0.4785	29.488
$J-206$	$1,124.78$	0.2026	29.586
$J-204$	$1,124.58$	0.1991	29.781
$J-205$	$1,124.58$	0.1346	29.783
$J-208$	$1,124.55$	0.1274	29.829

Figure 4.4: Pressure Distribution in Existing System

4.4.4. Optimization of the Existing System

4.4.4.1. Grouping of the Pipes Considering Whole System

The very first step of optimization of the system by use of WADISO is the grouping of pipes, namely, selecting similar pipes and assigning one pipe size to them. Considering the principals of grouping given in Chapter 3.5.1 (serial pipes, parallel pipes, pipes feeding same node etc), existing N8 pressure zone is analyzed. Obviously, the main line going from pump P23 to tank T53 forms Group 1 and while the other main line feeding northern area forms Group 2. Similarly, main lines within sub-pressure zones forms separate groups. After grouping of the main lines, branching lines are studied and pipes going in parallel in the same sub-pressure zone form separate groups. In short, 72 No. groups are obtained for use in the optimization.

As stated in Chapter 2, the aim of grouping pipes is to reduce computation time. However, with the aid of researchers from WADISO S.A., it is concluded that if the system would be run with 72 groups with each having 3 or more candidate pipe sizes, it would take almost 10^{30} years, almost infinity, to finish the computations with today's desktop computers. Consequently, the system has to be skeletonized in order to decrease pipe groups.

4.4.4.2 Skeletonization of the Existing System

To skeletonize a system, such as equivalent parallel pipes by changing the remaining diameters and/or friction coefficients will result in pipe diameters having values other than commercially available ones such as 113 mm . Because the aim of the skeletonization in this thesis study is only to reduce number of pipe groups to allow further computations of optimization, starting computations with diameters 113 mm will be not feasible.

Then, the main lines of the existing system having diameter equal to or greater than 150 mm are identified and kept in the system. The resulting layout is given in Figure
4.5, yellow pipes being the pipes that should be removed (i.e. not included in optimization).

As seen from Figure 4.5, the system is not a looped network which threatens the results of optimization. In order to provide loops, some pipes with smaller diameters are also introduced (Green pipes in Figure 4.6) and finally the layout of skeletonized system is obtained as shown in Figure 4.6.

After obtaining the layout of the skeletonized system, it is time to distribute nodal demands of collapsing pipes. To perform this operation following steps are applied:
. Dead end pipes are identified and the nodal demands at the dead ends are carried to the other ends. (Figure 4.7)
. If a node is not on a path that is directly branching from the skeletonized system, it is transferred into the in reverse proportion of the connecting pipes. (Figure 4.8)
. If a node is on a path that is directly branching from the skeletonized system, it is transferred into the branching node. (Figure 4.9)

Completing all these steps for the entire network, skeletonized system with transferred nodal demands at each node is obtained, by which the total demand of the main system is equal to that of skeletonized system.

Pump
(P23)

Figure 4.5: Pipes with diameter equal or greater than 150 mm .

Figure 4.6: Skeletonized Layout of N8 Pressure Zone

Figure 4.7: Demand Transfer of a Dead End Node

Figure 4.8: Demand Transfer of a Node That is NOT ON THE PATH

Figure 4.9: Demand Transfer of a Node That is ON THE PATH

4.4.4.3 Grouping of Pipes for the Skeletonized Network

The grouping of pipes within skeletonized network is initiated by grouping of the main lines forming individual groups. The result is seven groups. As discussed previously, in order to reduce computation time, number of pipe groups should not exceed 15 , which is a constraint resulting from WADISO. Thus, remaining pipes, i.e. pipes with diameters equal to either 125 mm or 100 mm , are studied very carefully in order to find the most critical ones. After this, remaining eight Groups are formed and first step of optimization is completed (Figure 4.10, Table 4.2). As can be noted from Figure 4.10, there are some pipes that are not introduced in the optimization process (yellow ones, mostly with diameter equal to 125 mm or 100 mm); they are not contained in any group and their diameters remain unchanged. However, since those remaining pipes have already smaller diameters, this does not have a significant effect on the results.

Figure 4.10: Pipe Groups of Skeletonized Network
Table 4．2：Pipe Groups of Skeletonized Network

	$\underset{\sim}{\mathcal{F}}$	$\underset{寸}{q}$	$\stackrel{17}{7}$	$\underset{\substack{4 \\ \underset{y y}{c} \\ \hline}}{ }$	$\stackrel{\ominus}{\mathrm{o}}$	ó	\bar{q}											
$\begin{array}{\|l\|} \hline \frac{0}{2} \\ \underset{\sim}{0} \\ \underset{\sim}{\top} \end{array}$	$\underset{\sim}{2}$	$\begin{aligned} & 0 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{+}{+} \\ & \stackrel{+}{2} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 8 \end{aligned}$	¢	＋	\％											
	$\stackrel{\sim}{\circ}$	O	\％	요	\bigcirc		$\stackrel{\sim}{\mathrm{N}} \mid \underset{\sim}{\circ}$											
	$\stackrel{\bar{\sim}}{ }$	$\underset{\sim}{\sim}$	$\stackrel{N}{\mathrm{~N}}$	$\frac{1}{N}$	$\frac{0}{N}$	$\frac{0}{\mathrm{~N}} \stackrel{\bar{c}}{\underset{\sim}{c}}$	$\begin{array}{c\|c} \overline{\mathrm{N}} & \underset{\sim}{\mathrm{~N}} \\ \hline \end{array}$	$\begin{array}{\|c} \stackrel{\sim}{0} \\ \underset{N}{2} \end{array}$										
	$\stackrel{N}{N}$	$\stackrel{O}{\text { o }}$	$\stackrel{\substack{9 \\ \sim}}{ }$	గ্ণ	$\begin{gathered} 0 \\ \stackrel{N}{N} \end{gathered}$	○○												
	으	응	ㅇ	$\stackrel{\circ}{\circ}$	\cdots	\bigcirc	\bigcirc											
	$\stackrel{F}{\square}$	守	$\stackrel{N}{N}$	$\stackrel{n}{2}$	$\stackrel{4}{6}$	－	$\stackrel{\circ}{\circ}$	$\begin{array}{l\|l} \circ \\ & 0 \\ \hline \end{array}$	$\stackrel{\square}{6}$	$\stackrel{\cong}{\mathrm{O}}$	$\stackrel{ }{\wedge} \stackrel{M}{\sim}$	$\stackrel{N}{\wedge}$						
$\begin{array}{\|l\|} \hline \mathbf{Q} \\ \underset{\sim}{\mathrm{O}} \\ \underset{\mathrm{O}}{\mathrm{O}} \end{array}$	ন্লি	$\underset{\sim}{N}$	Mo	ষ্লি	Lio		è											
$\begin{array}{\|l} \hline \mathbf{O} \\ \underset{\sim}{\mathrm{O}} \\ \mathrm{r} \\ \mathrm{~V} \end{array}$	$\stackrel{N}{\mathrm{~m}}$	满	$\underset{\text { ণ }}{\underset{\sim}{2}}$	$\underset{ণ}{\underset{\gamma}{\prime}}$	$\underset{f}{\underset{f}{\sim}}$		$\underset{\sim}{M} \mid \underset{\sim}{\sim}$	\bar{F}										
$\begin{array}{\|l} \hline \mathbf{O} \\ \underset{\sim}{\mathrm{O}} \\ \underset{\sim}{\mathrm{O}} \end{array}$	$\underset{M}{N}$	N		$\stackrel{\sim}{\sim}$	ִ		$\underset{\sim}{\underset{\sim}{c}} \mid \underset{寸}{\prime}$											
	京	$\stackrel{\circ}{\mathrm{g}}$	¢	$\stackrel{\infty}{\infty}$	\hat{e}	$\begin{array}{l\|l\|l\|l\|l\|l\|} \substack{0 \\ 0} \end{array}$	$\begin{array}{l\|l\|} \infty \\ 0 & \bar{e} \\ \hline \end{array}$	$\begin{array}{c\|l} N & \underset{\sim}{N} \\ \underset{M}{c} \\ \hline \end{array}$	$\begin{array}{l\|l} \infty \\ \stackrel{N}{M} & \underset{M}{\infty} \\ \hline \end{array}$	$\begin{array}{l\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|l} \underset{\sim}{N} \\ \hline ্ ল ী \end{array}$	প্ল্লি	$\frac{\varphi}{q} \left\lvert\, \frac{\infty}{\gamma}\right.$	$\frac{\infty}{\dot{\sigma}} \frac{\sigma}{\dot{\gamma}}$	$\stackrel{\Im}{\sigma} \stackrel{\sim}{\mathcal{F}}$	$\underset{\sim}{N}$	¢	
	$\stackrel{\sim}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{ \pm}{N}$		$\stackrel{\rightharpoonup}{\mathrm{N}} \underset{\sim}{\circ}$	$\stackrel{\underset{N}{N}}{ }$	$\begin{array}{cc} \underset{N}{\underset{N}{c}} \underset{\sim}{c} \\ \hline \end{array}$		$\left\lvert\, \begin{array}{\|c\|} \hat{O} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & 9 \\ & \mathbf{o} \\ & \mathbf{9} \end{aligned}\right.$							
	－	$\stackrel{\sim}{\sim}$	$\stackrel{\ominus}{\sim}$	$\underset{\mathrm{N}}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$		$\begin{array}{l\|l} \infty \\ \hline 0 & \text { O- } \\ \hline \mathbf{N} \end{array}$	$\stackrel{\circ}{\mathrm{O}} \mathbf{~}$	\mathfrak{o}	$\underset{\sim}{-\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$				
	N	$\stackrel{10}{2}$	N	¢	¢	－	ソ	$\stackrel{+}{+}$	용	\bigcirc	$\stackrel{8}{10}$	$\overline{6}$ ¢ 0	\bigcirc	ォ	\bigcirc	∞	N	ু
	\sim	ल	\checkmark	은	F	－												
								O\％	¢勺 ヨ	ヨH1	N S	Sヨ						

4.4.4.4. Candidate Pipe Sizes

After grouping of pipes, it is time to assign candidate pipe sizes for every individual group. Similar to number of groups, number of candidate pipe size for a group has also significant effect on the computation time, the more the candidate sizes the more computation time. Thus, every group has to be studied very carefully and unnecessary candidate sizes should be eliminated at the beginning.

For the first run, it is decided to give three candidate pipe sizes for each group, one being the existing diameter, one size higher and one size smaller. As an example, the main line going from pump to tank with existing diameter equal to 500 mm that also forms Group No 3, is assigned candidate pipes sizes of 400 mm , 500 mm , and 600 mm . The aim of this procedure is to determine whether the system is overdesigned or under-designed. After determination of this, more pipe sizes are assigned in order to find the optimum pipe size for each group (Refer to Section 3.5.2).

Table 4.3 shows candidate pipe sizes for each group for the first run to determine if the system is over-designed or under-designed. Table 4.4 shows the candidate pipe sizes for the final run.

4.4.4.5. Price Functions

The main objective of optimization is being to assign the most economical diameters for every pipe; one of the crucial points of the whole process is to assign correct price functions to each diameter. A small error on this step may ruin the whole result. As an example, if the price function of 200 mm pipe is assigned very close to 100 mm pipe, the software will assign 200 mm . Then, the result will be most probably an over-designed system with pipes having 200 mm diameter where 100 mm would be sufficient. As a summary, the price functions should reflect the real world situation as much as possible.

		윤	읏	윳	읏	－
	\pm $\stackrel{ \pm}{\square}$ ¢	$\stackrel{\text { N }}{\sim}$	윤	－	은	\％
	$\xrightarrow{\substack { \text { m } \\ \begin{subarray}{c}{\text { c }{ \text { m } \\ \begin{subarray} { c } { \text { c } } } \\{\hline}\end{subarray}}$	윤	－	유N	－	N
	N ¢ ¢	$\stackrel{\text { N }}{\sim}$	윤	웃	운	8
B	Г ¢ ¢	윤	－	$\stackrel{\sim}{\sim}$	－	－
	$\begin{aligned} & \text { 음 } \\ & \text { r } \end{aligned}$	은	O－	～ٌ	－	－
Z	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sigma}{r} \end{aligned}$	$\stackrel{\text { N }}{\sim}$	유ํ	－	ก	\％
	$\begin{aligned} & \infty \\ & \stackrel{r}{5} \\ & \hline \end{aligned}$	$\stackrel{\text { Ñ }}{\sim}$	요	$\stackrel{\text { N }}{ }$	$\stackrel{\circ}{\sim}$	\％
	$\begin{aligned} & \text { N } \\ & \text { r్v } \end{aligned}$	$\stackrel{\text { Ñ }}{ }$	요	$\stackrel{\text { N }}{ }$	$\stackrel{\circ}{1}$	\bigcirc
	$\begin{aligned} & 0 \\ & \underset{\tilde{O}}{\substack{2}} \end{aligned}$	은	N్N	윤	$\stackrel{\text { N／}}{\sim}$	ヘู
	$\begin{aligned} & \text { n } \\ & \text { ヘ } \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	읏	윳	$\stackrel{\circ}{\text { ® }}$	N
	$\begin{aligned} & \underset{\substack{0}}{\stackrel{\rightharpoonup}{2}} \end{aligned}$	웃	$\stackrel{\circ}{\sim}$	\％	$\stackrel{\circ}{\sim}$	－
	$\begin{aligned} & \infty \\ & \underset{ভ}{0} \end{aligned}$	¢	\bigcirc	8	\％	\％
	N $\stackrel{\sim}{0}$	$\stackrel{\circ}{\circ}$	－	유N	－	N
	－	윳	－	$\stackrel{\circ}{\circ}$	\％	－
		SヨZIS ヨdld ヨıVaIaNVO				

Table 4．4：Candidate Pipe Sizes for the final run

¢	$\stackrel{\circ}{\circ}$	안	앙		－
$\begin{aligned} & \underset{\sim}{\underset{N}{N}} \\ & \hline \end{aligned}$	$\stackrel{\text { N }}{\sim}$	욘	앙		욤
$\begin{aligned} & \stackrel{m}{\square} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\circ}{18}$	$\stackrel{\sim}{\sim}$	앙		－
$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \underset{\mathrm{O}}{ } \end{aligned}$	응	$\stackrel{\sim}{\sim}$	윤		운
$\stackrel{\Gamma}{\square}$	요ํ	$\stackrel{\circ}{\text { ® }}$	앙		－
	욘	$\stackrel{\sim}{\sim}$	앙		－
$\begin{aligned} & \infty \\ & \text { ๗ } \end{aligned}$	$\stackrel{\text { N／}}{\sim}$	욛	앙		$\stackrel{\circ}{18}$
$\begin{aligned} & \infty \\ & \text { 皆 } \end{aligned}$	$\stackrel{\text { N／}}{\sim}$	윤	응		$\stackrel{\circ}{\circ}$
$\begin{aligned} & \text { n } \\ & \text { r्ల } \end{aligned}$	$\stackrel{\sim}{\sim}$	운	안		운
	응	$\stackrel{\sim}{\sim}$			$\stackrel{\text { N }}{ }$
$\begin{aligned} & \text { n } \\ & \text { ヘ্ত } \end{aligned}$	앙	$\stackrel{\text { N }}{\sim}$	$\stackrel{\circ}{\sim}$		$\stackrel{\circ}{\text { ® }}$
$\stackrel{+}{\stackrel{+}{0}}$	$\stackrel{\text { N }}{\sim}$	\％	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$
$\begin{aligned} & \hline \text { m } \\ & \text { 先 } \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ¢ }}{0}$	$\stackrel{8}{7}$	8
$\begin{aligned} & \sim \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\sim}{\sim}$	응			$\stackrel{\text { ® }}{ }$
$\overline{\overline{\mathrm{N}}}$	$\stackrel{\text { ® }}{ }$	운	$\stackrel{\text { N }}{\sim}$	안	\％
	SヨZIS ヨdid ヨıValanvo				S 3 IIS \exists dld

In this section of case study, price functions determined by Goulter and Coals (1986) has been used. The price functions that are not given are obtained by simple interpolation (Table 4.5 and Figure 4.11)

Table 4.5: Price Function given by Goulter and Coals

Diameter $\mathbf{(m m})$	80	100	125	150	200	250	300	350
Price Function $\mathbf{(\$ / m})$	11,44	14,30	15,60	16,90	24,10	43,20	69,20	98,60

Diameter $(\mathbf{m m})$	400	450	500	600
Price Function $(\$ / m)$	139,00	185,96	240,39	371,66

4.4.4.6. Optimization Results With August Demands

Following the completion of the previous steps, optimization process by use of WADISO has been done. Minimum pressure constraint as 30 m at every node are assigned with 1 m tolerance to find pareto optimal results, except the nodes which are located significantly at higher elevations than the tank. The first run is made by using the demands of August given in Section 4.4.2, i.e. peak demand of day August 16, 2001 and the price function given by Goulter and Coals (1986).

After getting the optimization results from WADISO for the skeletonized network, found diameters are assigned to the whole network and hydraulic analysis performed. As can be noted from previous tables, there are pipes that has diameters greater than 100 mm in the system that are also not included in the optimization process, because they are dead or due to the 15 available group limitation. Thus, after having optimization results, the system is analyzed and those remaining pipes are assigned smaller diameters manually in order to complete the optimization process. After all,

Figure 4.11: Graphical Interpretation of Price Function
optimized system is obtained with the pressure values below 30 m as tabulated in Table 4.6. As can be observed, there are some nodes that have pressure values above 30 m in the existing system but have less than 30 m in the optimized system. The reason for this is that, in order to obtain the most economical system, pressure constraint is relaxed for this small number of nodes. Nodes designated as "N/A" in Table 4.6 are the ones that are not included in optimization process.

The results show that the system is over-designed with the demands of August. The cost of existing system is $\mathbf{9 3 9 . 6 3 0 , 1 3}$ YTL (with ductile price function) while the pressure constraints can be satisfied with a system having total cost of $\mathbf{5 4 2} \mathbf{2 9 7}, \mathbf{5 2 Y T L}$ (with price function given by Goulter and Coals). The diameters of main lines are reduced to almost half of the existing ones. Most of the diameters of pipes are assigned as 100 mm , which is the smallest diameter pipe that is allowed by the Municipality. Optimum pipe diameters for every group is given is Table 4.7.

Because the pipe diameters are decreased, some improvement on velocity also gained. The result found by optimization is not a surprise since the demands are very low due to the socio-economical nature of the pressure zone.

4.4.4.7. Optimization Results with Demands Including Pipe Leakages and Year 2020

Today's N8 pressure zone design was completed and implemented in 1990s. However, in 1998, thesis study of İlker EKER (1998) showed that there were leakages in N8 zone and further studies done with cooperation of METU and ASKİ revealed the leakage causes (Merzi et al 1998a, 1998b). Consequently, it was revealed that the real demands of N8 zone are lower than the ones used in the previous design stage. Daily demand curve of N8 before the said studies is given in Figure 4.12.

Furthermore, as discussed in Chapter 2, the system designs are made considering future demands, normally considering 20~25 years later. Considering this situation, the demands are further increased according to forecasted total demand of year 2020.

Table 4.6: Nodes of Optimized System with pressure values less than 30m

Label	Pressure Head (m)		Assigned minimum pressure
	Existing System	Optimized System	
J-296	12.339	11.791	N/A
J-289	17.131	14.806	N/A
J-270	19.842	17.097	20
J-295	21.001	20.454	N/A
J-271	21.199	18.424	N/A
J-274	22.915	20.143	20
J-249	23.357	20.581	20
J-250	24.13	21.333	20
J-319	25.082	22.468	N/A
J-269	25.164	22.437	20
J-314	26.018	23.208	25
J-315	26.244	23.599	25
J-251	27.192	24.378	25
J-198	27.559	26.703	N/A
J-207	28.645	28.086	30
J-291	28.687	28.322	N/A
J-272	28.969	26.179	25
J-294	29.075	28.527	N/A
J-252	29.166	26.342	25
J-256	29.425	26.602	25
J-199	29.488	28.897	30
J-206	29.586	29.009	30
J-204	29.781	29.193	30
J-205	29.783	29.199	30
J-208	29.829	29.29	30
J-318	30.157	27.56	30
J-275	30.445	27.842	30
J-197	30.913	30.329	30
J-211	30.926	30.376	30
J-209	31.329	30.799	30
J-317	31.432	28.865	30
J-276	32.051	29.506	30
J-273	32.452	29.662	30
J-313	32.727	29.9	30

Table 4.7: Optimum Diameters with August Demands

	GR 1	GR 2	GR 3	GR 4	GR 5	GR 6	GR 7	GR 8	GR 9	GR 10	GR 11	GR 12	GR 13	GR 14	GR 15
EXISTING DIAMETERS	300,00	200,00	500,00	250,00	200,00	125,00	150,00	150,00	150,00	200,00	200,00	150,00	200,00	150,00	200,00
CANDIDATE DIAMETERS (mm)	200	125	200	125	100	100	125	125	125	150	150	100	150	125	150
	150	100	250	150	125	125	150	150	150	200	200	125	200	150	200
	125	100	300	200	150		100	100	100	100	100	150	100	100	100
	400	250													

Figure 4.12: Daily Demand Curve of N8 Including Leakages

From Figure 4.12, peak loading is read as $\mathrm{Q}_{\text {peak }}=330,4 \mathrm{~m}^{3} / \mathrm{h}(91,77 \mathrm{lt} / \mathrm{s})$ and night loading as $64,6 \mathrm{~m}^{3} / \mathrm{h}(17,94 \mathrm{lt} / \mathrm{s})$.

Demand Forecast for Year 2020

Demand projection for year 2020 is performed by use of the following formula (Iller Bankası, 1998):

$$
\begin{equation*}
F_{2020}=F_{\text {know }} * \sqrt{1+k / 100}^{2020-\text { Year }_{\text {hoown }}} \tag{4.1}
\end{equation*}
$$

where F is the total demand, k is a coefficient.

In this equation, maximum value of k can only be 3 .
In order to find the maximum available design in year 2020, it is decided to take k as maximum, i.e. $\mathrm{k}=3$.

Consequently for peak loading, $\mathrm{Q}_{\text {peak }}$,

$$
F_{2020}=91,77 * \sqrt{1+3 / 100}^{2020-1997} \Rightarrow Q_{\text {peak }}=181,13 l t / s
$$

Similarly for night loading, $\mathrm{Q}_{\text {night }}$,

$$
F_{2020}=17,94 * \sqrt{1+3 / 100}^{2020-1997} \Rightarrow Q_{n i g h t}=35,417 l t / \mathrm{s}
$$

For fire loading, , $\mathrm{Q}_{\text {fire }}, 151 \mathrm{t} / \mathrm{s}$ fire flow need is assigned to two neighboring critical nodes, i.e. nodes with pressure values below 30 m , during $\mathrm{Q}_{\text {peak }}$. These nodes are selected as Node 270 and Node 271.

Additionally, as discussed in Section 3.5.3, the price function can also be very significant. To demonstrate this in this section, the same system is optimized using various price functions with three loading cases of Year 2020, but keeping all the other variables unchanged, i.e. groups. At every optimization trial, Peak Loading $\left(\mathrm{Q}_{\text {peak }}\right)$, Fire Loading $\left(\mathrm{Q}_{\text {fire }}\right)$ and Night Loading $\left(\mathrm{Q}_{\text {night }}\right)$ are assigned simultaneously to
the software so that it can decide the critical one. As pressure constraints, following are assigned for every loading case as given in Table 4.8.

Table 4.8: Pressure Constraints for Optimization

Loading	Pressure Constraint
Peak loading	30m minimum head at every node, except the ones located at significantly higher elevations than the tank
Fire Loading	15 m minimum head at every node
Night Loading	30m minimum head at every node, except the ones located at significantly higher elevations than the tank

Optimization With Various Price Functions: Using built price functions in Section 3.5.3.1 and Hazen-Williams coefficient based on material type; series of optimization studies are performed for three loading cases (Peak, fire and night loading). Total cost of N8 pressure zone with the optimum diameters, which are found based on various price functions, are given in Table 4.9. As it is observed from Table 4.9, the cost of the same system varies based on the material used. As the result of these studies, optimum pipe diameters depending on price functions are tabulated in Table 4.10. However, on the contrary to expectations, there are no significant development in pressures regardless of the pipe material used and the cost of total system, namely, pressures almost remain same whatever material is used and the problematic nodes remain almost same with all the system configurations (Figures 4.13~4.27, APPENDIX A).

Table 4.9: Total System Cost Optimized With Various Price Functions

PRICE FUNCTION	TOTAL COST (YTL)
HDPE Price Function with DSI Prices	$920.425,91$
HDPE Price Function with Market Prices	$758.148,59$
Steel Price Function with DSI Prices	$935.841,50$
Ductile Price Function with Market Prices	$832.375,39$
COST OF EXISTING SYSTEM (with ductile price function)	$939.630,13$

Table 4.10: Optimum pipe diameters depending on price functions

OPTIMUM DIAMETERS (mm)	GR 1	GR 2	GR 3	GR 4	GR 5	GR 6	GR 7	GR 8	GR 9	GR 10	GR 11	GR 12	GR 13	GR 14	GR 15
STEEL	200	100	400	300	200	100	125	100	100	100	100	100	100	100	100
DUCTILE	200	100	400	300	200	100	125	100	100	100	100	100	100	100	100
HDPE_MARKET	160	110	400	250	160	90	110	90	90	90	90	90	90	125	180
HDPE_DSI	160	110	400	250	160	90	110	90	90	90	90	90	90	125	180

$\stackrel{\text { ® }}{ }$
음
-
음
-
-
$\stackrel{\circ}{\circ}$
윤
욛
$\stackrel{\text { Nิ }}{\sim}$
O-\%
คัก
8
-
\%

EXISTING SYSTEM ANALYSIS

RESULTS WITH FIRE DEMANDS

RESULTS WITH NIGHT DEMANDS

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

The design of water distribution networks is generally being performed with traditional (trial-and-error) techniques. This is because most of the techniques are automatic techniques which do not allow designer to control the steps of process. However, partial enumeration technique developed by Gessler (1985) is a useful tool to the designers in which they can control all the steps of the process.

In this study, in order to demonstrate this, a water distribution network is designed by using Gessler's (1985) partial enumeration technique with software, WADISO. As the result of this study, the following conclusions are drawn:

- Partial enumeration technique is a powerful tool that assists designers. With this technique, designers can select the pipes that should be optimized, the pipes that should have the same diameters, and the pipes that can be eliminated or should not be eliminated to secure reliability. Moreover, the technique provides pareto optimal solutions that offers a different design which is close to the optimal. The only disadvantage of it is the required computation time depending on the scale of the design.
- Since partial enumeration technique is based on trial of all possible combinations one by one considering some rules defined by user, it is guaranteed that the solution is close to the global minimum, if not itself.
- The price function is very significant in any of the optimization technique. Correct price functions have to be formed considering special characteristics of the subject area and the selected pipe materials. There are various pipe
materials that can be used in distribution networks such as ductile iron, HDPE or steel, each having different price functions. However, since each of these materials has advantageous properties over the others, not only the price function should be considered, but also factors other than price function should also be considered.
- It is shown that the cost of pipe fittings can have a significant effect on the global cost, especially if the system is composed of densely located junctions. However, no guideline is available to include the cost of pipe fittings in the price functions.
- Water distribution network of N8 pressure zone is over-designed. Either smaller diameter pipes should have been installed or staged development should have been planned.
- Velocities within N8 zone is far below desired values. Because low velocities in the pipes cause low quality water, aging of pipes occur. In order to satisfy water quality objective, periodical flushing (extracting water from pipe hydrants to increase velocities and clean the pipes) should be performed. Another solution for increasing water quality is to divide N8 pressure zone further sub-pressure zones.

Furthermore, during the study, conventional pipe laying techniques are considered. More detailed study can be performed considering other construction techniques such as pipe jacking, trenchless construction etc.

Although the network designed by use of partial enumeration technique satisfies the minimum pressure constraints, there is no possibility to control maximum pressures. Thus, pipe material has to be selected considering pressures. Additionally, there is no way to satisfy both velocity constraints and pressure constraints with WADISO. The software does not take velocities into consideration. Future studies on these subjects
will definitely improve the capacities of the technique. Finally, with the advances in the computer technology and development of much more rapid processors in the future, there will not be any need to follow the steps, which are explained in this study to reduce computation time, and the software will be capable of enumerating all possible combinations resulting in the global minimum.

REFERENCES

Adıgüzel, R.İ., " The Optimum Transmission Line Capacity and the Optimum Operation of Selahattin Saygı Dam", M.S. Thesis, Middle East Technical University, March 1976

Akdoğan, T., "Design Of Water Distribution System By Optimization Using Reliability Considerations", M.S. Thesis, Middle East Technical University, April 2005

Alperovits, E. and Shamir, U. "Design of Optimal Water Distribution Systems" Water Resources Research, 13(6), 885, 1977

Aygün, E., "Optimization of Hydoelectric Power Production of Sarıyar and Gökçekaya Reservoirs by Dynamic Programming", M.S. Thesis, Middle East Technical University, October 1978

Babbit, H.E. and Doland, J.J., "Water Supply Engineering", McGraw Hill, New York, 1931

Bonds, W.R, "Ductile Iron Pipe versus HDPE Pipe", Ductile Iron Pipe Research Association, 2000

Clark, R.M., Sivaganesan, M., Selvakumar, A. Sethi, V., "Cost Models for Water Supply Distribution Systems", Journal of Water Resources Planning and Management, September - October, pp.312-321, 2002

Cross, H., "Analysis of Flow in Networks of Conduits or Conductors", University of Illinois Engineering Experiment Station Bulletin, 286, 1936

Ductile Iron Society, www.ductile.org, last visited on 02.12.2005

Ductile Iron Pipe Research Association, www.dipra.org, last visited on 02.12.2005

İnözü, D., "Optimum Design of Water Distribution Networks", M.S. Thesis, Middle East Technical University, October 1977
Eker, İ., "Analysis of Water Distribution Networks Using Information Systems", M.S. Thesis, Middle East Technical University, November 1998

Gessler, J. "Optimization of Pipe Networks", International Symposium on Urban Hydrology, Hydraulics and Sediment Control, University of Kentucky, Lexington, 1982

Gessler, J., "Pipe Network Optimization by Enumeration", Proceedings of Specialty Conference on Computer Applications in Water Resources, American Society of Civil Engineers, New York, New York pp. 572-581, 1985

Goulter, I. C., Coals, A. V., "Quantitative Approaches to Reliability Assessment in Pipe Networks", J. Transp. Engrg., ASCE, Vol. 112, No. 3 287-301, 1986.

Goulter, I. C., and Morgan, D.R. "An Integrated Approach to the Layout and Design of Water Distribution Networks" Civil Engineering Systems, 1985

Fujiwara, O. and Khang, D.B., "A Two-Phase Decomposition Method for Optimal Design of Looped Water Distribution Networks", Water Resources Research, 26(4), 539, 1990

İller Bankası, "Regulation for Preparation of Water Distribution Designs for Cities and Towns" (in Turkish), 1998

Lai, D. and Schaake, J.C., "Linear Programming and Dynamic Programming Applications to Water Distribution Network Design", Report 116, Department of Civil Engineering, MIT, Cambridge, 1969

Merzi, N., Şendil, U., Yağız, E., Eker, İ., Poyraz, S., " Hydraulic Modeling Process of N8 Pressure Zone of Ankara Water Distribution Network" (in Turkish), ASKI/METU Joint Education and Training Program, 1st Progress Report, Middle East Technical University, Ankara, May 1998a

Merzi, N., Șendil, U., Yağız, E., Eker, İ., Poyraz, S., " Hydraulic Modeling Process of N8 Pressure Zone of Ankara Water Distribution Network" (in Turkish), ASKI/METU Joint Education and Training Program, 2nd Progress Report, Middle East Technical University, Ankara, October 1998b

Özer, S., "Computer Aided Pipeline Design", M.S. Thesis, Middle East Technical University, November 1988

Quindry, G.E., Brill, E.D., and Liebman, J.C., "Optimization of Looped Water Distribution Systems", J.Environmental Engineering Division ASCE, Vol.107, No.EE4, 1981

Selmanpakoğlu, M., "Analysis of Water Consumption and Loss and Distribution System Costs in Turkey", M.S. Thesis, Middle East Technical University, January 1973,

Sevük, S., Altınbilek, D., "Pipe Network Computations with Computer" (in Turkish), Ankara, 1976

Sevük, S., Altınbilek, D., "Principles of Design and Solution of Water Distribution Networks with Computers" (in Turkish), Middle East Technical University Faculty of Engineering Publications, Ankara, 1977

Soleyman, C., "Optimum Design of Water Distribution Networks", M.S. Thesis, Middle East Technical University, May 1976

Superlit, www.superlit.com, last visited on 02.12.2005

Tokalak, A.O., " Road and Pipeline Route Optimization by Discrete Differential Dynamic Programming", M.S. Thesis, Middle East Technical University, June 1976

United States Environmental Protection Agency, "Drinking Water Infrastructure Needs Survey - Second Report to Congress", Drinking Water Protection Division, 2001

Walski, T.M. "Pipe Network Optimization by Enumeration", Proceedings of Specialty Conference on Computer Applications in Water Resources, American Society of Civil Engineers, New York, New York pp. 558-567, 1985

Walski, T.M. Gessler, J., Sjostrom, J.W., "Water Distribution Simulation and Sizing", Lewis Publishers, Michigan, 1990

Walski, T.M., "Optimization and Pipe Sizing Decisions", Journal of Water Resources Planning and Management, July - August, pp.340-343, 1995

Walski, T.M., "Relating Design Flow, Pipe Size and Cost", Essential hydraulics and hydrology, Haestad Methods, Inc., Waterbury, Conn., 1998

Walski, T., "The Wrong Paradigm - Why Water Distribution Optimization Doesn't Work" Journal of Water Resources Planning and Management, July - August, pp.203-205, 2001

Walski, T.M., Chase, D.V., Savic, D., Gravman, W. M., Beckwith, S., Koelle,E., "Advanced Water Distribution Modeling and Management", Haestad Methods, Waterburg, 2003

Yıldız, E., "Reliability of Water Distribution Systems", Middle East Technical University, 2002

APPENDIX - A

Pressure values of Optimum System with various price functions and under three loadings (Peak, Fire and Night Demands of Year 2020)
Table A-Pressure values of Optimum System with various price functions and under three loadings (Peak, Fire and Night Demands of Year 2020)

Table A－CONTINUED

\sum_{Ψ}					$\mathfrak{l l l}$		Norn	Sl｜l		－	N	＋	的	－	${ }^{\circ}$	\square°	O	べ	－	－	c	$\stackrel{+}{\circ}$	－	N		\cdots	N	$\stackrel{\sim}{\sim}$	¢	－	－	－	N	\％	7	
$\begin{aligned} & i \\ & 0 \\ & 0 \\ & \underline{Z} \end{aligned}$	0			b_{i}^{b}	0	N			$\begin{array}{ll} 0 \\ 0 & N \\ 0 \\ 0 \\ 0 \end{array}$	寺	চ	2		＋	So	N	－	$\begin{gathered} \underset{\sim}{N} \\ \underset{寸}{\prime} \end{gathered}$	Oos ol	$\begin{array}{cl} \infty \\ 0 \\ \infty \\ \infty \\ \hline \end{array}$	$\stackrel{\square}{\circ}$	－	blol	N		N_{i}^{N}	W	－		－	－	O	$\begin{array}{\|c} \substack{0 \\ \underset{\sim}{i} \\ \underset{\sim}{2} \\ \hline} \end{array}$	O	－	No
\bar{x}	$\left\|\begin{array}{l} \frac{2}{0} \\ 0 \\ 0 \\ 0 \end{array}\right\|$										$\begin{aligned} & \hat{n} \\ & 0 \\ & 0 \\ & 0 \\ & n_{1} \end{aligned}$				\mathfrak{c}		N					So		$\begin{gathered} n \\ N \\ N \end{gathered}$	通通		$\mathfrak{y y}$	$\|\stackrel{\circ}{\wedge}\|$		U	$\|\vec{q}\|$	No	N／	N		

							$\stackrel{N}{n}$			Mo					$\begin{array}{l\|l\|l} \hline 8 \\ \hline \end{array}$		Bin	令				$\underset{N}{\sim}$		O－				$\begin{gathered} \bar{N} \\ n_{2} \\ \sim \end{gathered}$		$\overline{p o \infty}$	$\stackrel{1}{2}$			－2	－m	N：	｜	，			
		융웅		Nol	0	$\begin{array}{ll} \infty \\ \hline \end{array}\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{0} .0 \\ & 0.0 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$		0	$\begin{array}{ll} \hline 0 & 0 \\ 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$	Bin	Clvo	$\begin{aligned} & \bar{n} \\ & 0 \\ & 0 \end{aligned}$	Aro	$\begin{gathered} 0 \\ \hline \\ 0 \end{gathered}$	Co	$\hat{\infty}$		$0_{0}^{2} 0_{0}^{-}$	0		$\overline{\bar{\delta}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$		$5 c_{2}^{2}$	\％		答		No		0^{2} 잉	잉	N	ait		－		$\begin{array}{ll} \infty \\ \hline & \sim \\ 0 \\ 0 & 0 \\ 0 \end{array}$	
$\\| \frac{\boldsymbol{\sigma}}{\boldsymbol{\omega}}$		$\stackrel{8}{8}$ $\stackrel{8}{6}$ $\stackrel{1}{6}$	0						Nos	Noll			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		0					No			$\begin{aligned} & \infty \\ & \hline \\ & \text { on } \\ & \hline \end{aligned}$			$\begin{gathered} 0 \\ -1 \\ \\ \hline \end{gathered}$		$\begin{array}{\|c} \stackrel{N}{N} \\ \stackrel{N}{n} \end{array}$	Non	$\underset{\sim}{N}$	$\begin{array}{\|c} \hline \begin{array}{l} 0 \\ 0 \\ \tilde{c} \end{array} \end{array}$		$\begin{aligned} & 6 \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\left\|\begin{array}{l} \mathbf{o} \\ \hline \\ \substack{e \\ \hline} \end{array}\right\|$		$\bar{\omega}$	－			
\|l					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\left.\begin{array}{\|c\|c\|} \hline \frac{0}{2} \\ \hline 0 & 0 \\ 0 & 0 \\ 0 \end{array} \right\rvert\,$	$\begin{gathered} 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \mathbf{N}_{0}^{2}$	0	Al\|l			$?_{2}^{2} \frac{0}{7}$	$\begin{aligned} & 0 \\ & n_{1}^{2} \\ & 0 \end{aligned}$	\mathfrak{c}	$$	$$	$\begin{gathered} 9 \\ 0 \\ 0 \\ \hline \end{gathered}$					$\begin{array}{ll} 1 \hat{N}_{1}^{4} \\ 0 \\ 0 \end{array}$	$\stackrel{\rightharpoonup}{2}$		$\begin{aligned} & 2 \\ & \hline 20 \\ & \hline \\ & \hline \end{aligned}$			O		op		Bin	－	O-M		0	$0 \mid$		N	
						$$								No													50	$\begin{array}{\|c} \hline{ }_{N}^{2} \\ 0 \\ \end{array}$	P?		$\begin{array}{\|c} n \\ N \\ 0 \\ m \end{array}$			bo	$\left\|\begin{array}{l} o \\ n \\ n \\ m \end{array}\right\|$	$\left\|\begin{array}{\|c} \hline 0 \\ 7 \\ 5 \\ 1 \end{array}\right\|$	Nix	8	Nom		
					$\begin{array}{l\|l} \substack{0 \\ 6 \\ 0 \\ 0 \\ \hline} \\ \hline 0 \end{array}$		$\begin{array}{ll} \hline 0 \\ \hline 0 & 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{ll} 0 \\ 0 & \infty \\ 0 \\ 0 & 0 \\ 0 \end{array}$		$\begin{array}{l\|l} 10 \\ \hline 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{ll} 0 \\ 0 & 1 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} 2 \\ \hline \end{aligned}$			0			$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & \hline-3 \\ & \hline \end{aligned}$			$\begin{gathered} 5 \times \\ 0 \\ 0 \\ 0 \end{gathered}$		$\stackrel{1}{2}$					0	2				0			5	$\begin{aligned} & 1 \\ & \vdots \\ & 0 \end{aligned}$		
																													－					－							
	$\begin{array}{\|l\|} \hline \mathbf{0} \\ \stackrel{0}{\mathrm{I}} \\ \hline \end{array}$		$\underline{\underline{s}}$				$\underset{\sim}{7}$			0			$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \\ \hline \end{array}$			$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \\ \hline 10 \end{array}$	$\begin{array}{r} 0 \\ \hline 1 \\ \hline \end{array}$			$\begin{gathered} 0 \\ \hline 1010 \\ \hline 10 \\ \hline \end{gathered}$	3n	$\begin{aligned} & 0 \\ & i+1 \\ & \hline 1 \\ & \hline 1 \end{aligned}$	$\begin{array}{l\|c\|c\|c\|c\|} \hline 1 \\ \hline 10 \end{array}$		$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$								Non	$\stackrel{\sim}{2}$		－		¢	？	）	

Table A-CONTINUED

Table A-CONTINUED

\footnotetext{
Table A-CONTINUED

Table A - CONTINUED

\footnotetext{
Table A-CONTINUED

Table A-CONTINUED

