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ABSTRACT

CRACKED ELASTIC ANNULUS BONDED TO
RIGID CYLINDER

Yilmaz, Engin
Ms., Department of Engineering Sciences

Supervisor: Prof. Dr. M. Rusen Gegit

December 2005, 71 pages

In this study, a long annulus bonded to a rigid cylinder containing an axisymmetric
circumferential crack of width (d-c) at the midplane is considered. The material of
the annulus is assumed to be linearly elastic and isotropic. The external surface of the
annulus is free of stress. Surfaces of the crack are subject to distributed compressive

loads.

The Fourier and Hankel transform techniques are used to solve the governing
equations which are reduced to a singular integral equation for crack surface
displacement derivative. This integral equation is converted to a system of linear
algebraic equations which are solved numerically by using Gauss-Lobatto and
Gauss-Jacobi quadrature formulas. Then, the stress intensity factors at the edges of

the crack are calculated. Results are presented in graphical form.

Keywords: annulus, rigid cylinder, crack, stress intensity factor.
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[CINDEN RIJIT SILINDIRE YAPISAN
CATLAKLI TUP

Yilmaz, Engin
Yiiksek Lisans, Miithendislik Bilimleri Bolumii

Tez Yoneticisi: Prof. Dr. M. Rusen Gegit

Aralik 2005, 71 sayfa

Bu calismada, icinden rijit silindire yapisan (d-c) genisliginde halka seklinde simetrik
catlak iceren i¢ cap1 a, dis capt b olan bir tiip problemi ele alinmistir. Tiipiin
malzemesinin lineer elastik ve izotrop oldugu varsayilmistir. Tiipiin dis ylizeyi

serbesttir. Catlak yiizeyleri yayili basing yiiklerine maruzdur.

Problemin ¢oziimii sonsuzda diizgiin yayili ¢ekmeye maruz kalmis tiip ve halka
seklinde catlak iceren tiip problemlerinden elde edilir. Elastisite denklemleri, Fourier
ve Hankel doniisiimleri kullanilarak catlak yiizii yer degistirme tiirevi cinsinden
yazilan bir tekil integral denkleme doniistiiriiliir. Gauss-Lobatto ve Gauss-Jacobi
integrasyon formiilleri kullanilarak bu tekil integral denklem bir lineer cebrik
denklem takimina doniistiiriiliir. Daha sonra catlak uglarindaki gerilme siddeti

katsayilart sayisal olarak hesaplanir. Sonuglar grafikler seklinde verilmektedir.

Anahtar Kelimeler: sonsuz uzunlukta tiip, catlak, rijit silindir, gerilme siddeti

katsayisi.
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CHAPTER I

INTRODUCTION

Despite the early works on understanding of cause of fracture, mathematical relation
between fracture stress and flaw size was studied and explained by Griffith whose
study, which was a monumental study for the beginning of an understanding of this

field, was published in 1920.

In the field of fracture mechanics, axisymmetric problems constitute a major research
area. Generally, these types of problems are simplified and formulated in the form of
boundary value problems, and solved by either analytical or numerical methods.
Obviously, solution for annular domain requires much more complicated calculations

compared to circular domain.

This problem will be investigated by studying partial differential equations derived
from 3-D elasticity theory and using singular integral equations. Since the geometry
and the loading are symmetric about the z-axis, two-dimensional axisymmetric

equations and relations will be used.



1.1 Literature review

Sneddon and Welch [1] made an analysis of the distribution of stress in a long
circular cylinder of elastic material when it is deformed by the application of
pressure to the inner surfaces of a penny-shaped crack situated symmetrically at the
center of the cylinder. It is assumed that the cylindrical surface is free from stress.
The equations of the classical theory of elasticity are solved in terms of an unknown
function which is then shown to be the solution of a Fredholm integral equation of
the second kind previously derived by Collins [2]. The solutions of this equation for
constant pressure and for various ratios of the radius of the crack to that of the
cylinder are derived using a high-speed computer are discussed and quantities of
physical interest are calculated. The calculations are repeated for the case of a

variable pressure following a parabolic law and they are also reported.

Gupta [3] analyzed a semi-infinite cylinder with fixed short end. Normal loads far
away from the fixed end are prescribed. An exact formulation of the problem in
terms of a singular integral equation is provided by using an integral transform
technique. Stresses along the rigid end and stress intensity factors are computed

numerically and are presented graphically.

Gegit [4] analyzed the elastostatic plane problem of an infinite strip containing a
transverse crack. It is assumed that one side of the strip is perfectly bonded to rigid
support whereas the other side is free of traction. The problem is formulated in terms
of a singular integral equation. Internal crack, edge crack, crack terminating at the
rigid support, and completely broken strip cases are considered in some detail. The
singular integral equation is solved numerically by employing collocation schemes
developed by Erdogan, Gupta and Cook [5]. The stress intensity factor, which may
be regarded as the most important fracture parameter, and the crack surface
displacement are calculated for various crack geometries and given in graphical

form.



Agarwall [6] states that axisymmetric end-problem for a semi-infinite elastic circular
cylinder is reduced to a system of singular integral equations, using transform
methods. The kernels of the integral equations are found to contain Cauchy as well as
generalized Cauchy-type singularities. The dominant part of the equations is
separated and analyzed to determine the index of the singularity for differing
boundary conditions at the end. An approximate method is used to obtain a system of
simultaneous algebraic equations from the system of singular integral equations. As
an application, axisymmetric solution for joined dissimilar elastic semi-infinite
cylinders under uniform tension is solved and various physical quantities of interest,

such as normal and shear stresses at the interface are obtained.

Delale and Erdogan [7] formulated the plane elasticity problem for a hollow cylinder
or a disk containing a radial crack is given. The crack may be an external edge crack,
internal edge crack, or and embedded crack. It is assumed that on the crack surfaces
the shear traction is zero and the normal traction is an arbitrary function of r. For
various crack geometries and radius ratios, the numerical results are obtained for a
uniform crack surface pressure, for a uniform pressure acting on the inside wall of

the cylinder, and for a rotating disk.

Nied and Erdogan [8] analyzed the elasticity problem for a long hollow circular
cylinder containing an axisymmetric circumferential crack subject to general
nonaxisymmetric external loads. The problem is formulated in terms of a system of
singular integral equations with the Fourier coefficients for the derivative of the
crack surface displacement as density functions. The stress intensity factors and the
crack opening displacement are calculated for a cylinder under uniform tension,

bending by end couples, end self-equilibrating residual stresses.

Altundag Artem and Gegit [9] analyzed the fracture of an axisymmetric hollow
cylindrical bar containing rigid inclusions. The cylinder is under the action of
uniformly distributed axial tension applied at infinity. The bar contains a ring-shaped
crack at the symmetry plane whose surface are free of tractions and two ring-shaped
rigid inclusions with negligible thickness symmetrically located on both sides of the

crack. It is assumed that the material of the cylinder is linearly elastic and isotropic.
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The mixed boundary conditions of the problem lead the analysis to a system of three
singular integral equations for crack surface displacement derivative and normal and
shearing stress jumps on rigid inclusions. These integral equations are solved

numerically and stress intensity factors are calculated.

Toygar and Gegit [10] analyzed the problem of an axisymmetric infinite cylinder
with a ring shaped crack at z = 0 and two ring-shaped rigid inclusions with negligible
thickness at z = = L. The cylinder is under the action of uniformly distributed axial
tension applied at infinity and its lateral surface is free of traction. It is assumed that
the material of the cylinder is linearly elastic and isotropic. Crack surfaces are free
and the constant displacements are continuous along the rigid inclusions while the
stresses have jumps. Formulation of the mixed boundary value problem under
consideration is reduced to three singular integral equations in terms of the derivative
of the crack surface displacement and the stress jumps on the rigid inclusions. These
equations, together with the single-valuedness condition for the displacements
around the crack and the equilibrium equations along the inclusions are converted to
a system of linear algebraic equations, which is solved numerically. Stress intensity

factors are calculated and presented in graphical form.

Birinci [11] analyzed the elastostatic axisymmetric problem for a long-thick walled
cylinder containing an axisymmetric circumferential internal or edge crack with
cladding. The cladding is assumed to be bonded to inner wall of the hollow cylinder.
Using the standard transform technique, the problem is formulated in terms of an
integral equation of the first kind which has a generalized Cauchy kernel as the
dominant part. The integral equation is solved numerically by using appropriate
quadrature formulas. The related stress intensity factors are calculated for the hollow

cylinder with the cladding under axial load.



1.2 A Short Introduction and Method of Solution of the Problem

The aim of this study is to investigate the stress intensity factors for an infinite
annulus containing circumferential internal or edge crack bonded to rigid cylinder
and with traction free external surface. The material of the annulus is assumed to be
linearly elastic and isotropic. The solution of this problem can be obtained by
superposition of solutions for; (i) an infinite annulus bonded to rigid cylinder
containing an axisymmetric circumferential crack of width (d-c) at the midplane, (ii)
an infinite annulus bonded to rigid cylinder subjected to arbitrary axisymmetric

loads.

Displacement and stress components for this perturbation problem are obtained by

using Fourier and Hankel transform techniques in the solution of field equations.

Formulation will be reduced to a singular integral equation in terms of the crack
surface displacements derivative by applying the boundary conditions. This singular
integral equation will be converted to a system of linear algebraic equations to be

solved numerically by using Gauss-Lobatto and Gauss-Jacobi integration formulas.



CHAPTER 1
FORMULATION OF THE PROBLEM
2.1 The Cracked Infinite Elastic Annulus Bonded to Rigid Cylinder Problem

A long cracked elastic annulus bonded to rigid cylinder subject to distributed
compressive load on the crack surfaces (See Figure 1) is considered. The material of
the annulus is assumed to be linearly elastic and isotropic. The external surface of the
annulus is free of stress. The annulus of inner and outer radii a and b contains a ring-
shaped plane crack of inner and outer radii ¢ and d at z=0 plane. The surfaces of the

crack is under the action of distributed compressive loads p(r).

For linearly elastic, isotropic and axisymmetric elasticity problems, the field

equations can be listed in the form:

Stress-displacement relations:

a:L(m)a_h(s_K)(ha_W ,
or r 0z

Y7 u du ow
= 2 kD) 4 B-x) | LY
0y =—— (K'+)r+(3 K)(ar+az :

o :L_(/c+1)a—w+(3—/c)[au +4

. oz o r _’
7. = [a—“+a—wj (2.1 a-d)
= =H oz or) S



where u, w are displacements in r and z directions in cylindrical coordinate system, u

is the shear modulus, kx = 3 — 4v, v being the Poisson’s ratio, ¢ and t denote the

normal and shearing stresses.

Navier equations:

(m)(a

1

0%u

+
0roz

0%u

0%u 2w

—+2 =0,

32"~ aroz
1w 2w
_ow N2Y -0
r arj ( " )azz

(2.2a,b)

(23 a-g)

General expressions for the displacement and stress components for this perturbation

problem may be obtained by adding the general expressions for (i) an infinite

annulus bonded to rigid cylinder containing an axisymmetric circumferential crack of

width (d-c) at the midplane, (ii) an infinite annulus bonded to rigid cylinder subjected

to arbitrary axisymmetric loads. The informal superposition scheme is given in

Figure 2. This is necessary in order to obtain general expressions containing

sufficient number of unknown quantities so that all of the boundary conditions in Eq.

(2.3) can be satisfied.



2.1.1 Cracked Infinite Elastic Annulus Bonded to Rigid Cylinder

Considering an axisymmetric half space (z =0) and taking H; Hankel transform [9]
of Eq. (2.2a) and Hy Hankel transform of Eq.(2.2b) in r-direction, and combining the

resulting equations, one obtains

a'v_, »d’U

= ot a'U =0, 2.4)

where o is the Hankel transform variable, U(a, z) is H; Hankel transform of u(r, z):
U(a,2) = [u(r,2)r] (ar)dr, 2.5)
0

where J; denotes the Bessel function of the first kind of order one.

The general solution of Eq. (2.4) is:
U(e,z) =(c, +c,2)e ™ +(c, +c,z) e”, (2.6)

where ¢y, ¢y, ¢3 and ¢4 are arbitrary constants. In order to have finite displacements at

7=, ¢z and ¢4 must be zero. Therefore, for the upper half space,
U(a,z2)=(c, +c,z) e ™, (2.7a)

and similarly
K —az
W(a,2)=|(c, +c,2)+ Ecz e ™, (2.7b)

where the subscript 1 indicates the upper half-space.



Taking the inverse transform of Egs.(2.7), displacement components are found to be

u,(r,z)= j(cl +c,2) e ol (ar)da,
0

=

wy(r,z) = j|:(cl +6,2) +£C2} e “al(ar)de, (2.8a, b)

0

where Jo and J; are the Bessel functions of the first kind of order zero and one,
respectively. Substituting Eqgs. (2.8) in Egs. (2.1), one obtains the following

expressions for the stress components:
G (r,2) = ﬂT(—z) (€, +c,2) € %Jl(ar)da
0
+ ,uT 2a(c, + ¢,2) - B - K)c,| e “ad (ar)da,
0
c.,(r,z)= ﬂT [-2a(c, +¢,2) - (K + ey e @ ad ) (ar)dex
0

7.(r,2) = [ [ 2a(e, + c,2) = (k=D)e, | e “ad (ar)dar. (2.9, ¢)

By a similar procedure the expressions for the displacements and stresses for the

lower half space are obtained in the form:

u,(r,z) = J-(C3 +c,2)e”al (ar)da,
0

w,(r,z) = J-[_ (c; +¢42) +§C4:| e“al(aryda. (2.10a, b)



T o
0,5 (r,2) = [ =2c; +¢,2) e —J\(anda
0

+ ,UT [2a(c, +c,2) + B-K)c,|e“al ,(ar)de,
0, (r,2)= yT[— 20(c; +c,2) + (K +1De, ] e ad y(ar)da,

7.,(r,2) = uf 20(c, +¢,2) = (k= De, | e“al (ar)da, 2.11a,¢)

where the subscript 2 denotes the lower half space. These expressions may be

matched on the z=0 plane by the following continuity and symmetry conditions:

0., (r0)=0_,(r0), (0<r<o),
7.,(r,0)=7,_,(r0), (0<r<o),
u, (r,0) = u, (r,0), (0<r <o),
w, (r,0) =w, (r,0), (OSr<c, d<r<oo),
o.(r,0)=—p(r). (c<r<d). (2.12a-e)

In order to have conditions of the same type, conditions (2.12c,d) may be replaced by

ai[ul(r,O)—uz(r,O)]zo, (0<r <o),
r

%[w1 (r,0)—w,(r,0)] =27, (0<r<e). (2.13a,b)

where f(r) is an unknown function such that f(r)=0 when (O <r<a, d<r< oo).

10



Now substituting Eqs.(2.8) through (2.10) in Egs.(2.12a-b) and (2.13) one obtains the

unknown constants

(k—1) F(a)
€, =C=—"T"——,
(k+1) «
i@ 2.14a,b
2 4 (K+1) ’ (2.14a, b)
where
F(a)= j (] (ar)dr . (2.15)

Note that the cracked elastic annulus is symmetric about z-axis and also z=0 plane.
Therefore, it is sufficient to consider the axisymmetric problem in the upper half z>0

only. The displacements and the stresses for the problem will then be

u(r,z) = LI(K'— 1- 2az)F(a) e “J(ar)de,
K+1y

w(r,z) = ﬁ j (—x—14+20)F (@) e (ar)da . (2.16a, b)

j K+1+20)F(a) e—“ZlJ (ar)da
2u %

o,(r,z)=——-
K+1

b

+ Tz(l —~)F (@) e “ad (ar)do

o.(r,2)= Au j I+ )F(a) e “al (ar)de,
K+17

=

4
7,.(rn0) = (@ eF (@) e = (arda (2.17a-c)
K+1

0

11



2.1.2 Infinite Elastic Annulus Bonded to Rigid Cylinder without Crack

Consider an infinite medium without crack loaded axisymmetrically. Medium is
symmetric about both z-axis and z=0 plane. Now taking the Fourier cosine transform
of Eq.(2.2a) and sine transform of Eq.(2.2b) in z-direction and combining again the

resulting equations, one obtains

x4d—4+2x3d—3—(2x4 +3x2)d—2—(2x3 +3x)i+(x4 +2x*-3)[U. =0
dx* dx® dx? dx ¢ ’

(2.18)

where U, is the Fourier cosine transform of the displacement component u(r, z) in

which x = Ar, A being the Fourier transform variable.
Solution of Eq. (2.18) is [13, 14]:
U, =c1,(Ar)+c,K,(Ar)+c, Arl j(Ar) + ¢, ArK , (Ar), (2.19)

where Iy, Ko, I; and K are the modified Bessel functions of the first and the second

kinds of order zero and one, respectively and c;, ¢, c3 and c4 are arbitrary constants.
Similarly, from Fourier transform of Egs.(2.2)

W, =—c,1,(Ar) + c, K (Ar) — c;[(k + DI, (Ar) + Al (Ar)]

—c,[(x+ DK (Ar) = ArK  (Ar)] (2.20)

where the subscript s implies the sine transform.

12



Taking the inverse transforms of Egs.(2.19) and (2.20), expressions for the

displacement components are found to be

u(r,z)= gj-{clll (Ar) + ¢, K (Ar) + ¢, Arl (Ar) + ¢, ArK , (Ar) }cos(Az)d A,
7 0

wro=2]

0

{— cl,(Ar)+c,K (Ar)—c, [(I(+ I)IO (Ar)+ Arl, (Ar)

e, [(x+ 1)K, (Ar) — Ak, (Ar)] ‘}sin(/lz)dz.

(2.21a, b)

Substituting Egs. (2.21) in Egs. (2.1) one obtains the following expressions for the

stress components:

¢ {— % I,(Ar)+21, (lr)l} +c, {— % K,(Ar)-2K, (/11*)/1}

o (r,2)= ZAT + e, [A1, () =1)+ 21, (A 2] cos(Az)dA’
V4
° |+ ¢, [AKk, (Ar)(x -1) - 2K, (Ar) 227 ]

=20 (A A+ 2¢, K (Ar)A
o,(r,z)= .[ -, [IO (ﬂr)(l(+ 5)1 +21, (/1r)/12r] cos(Az)dA »
=, [k, (A (K +5)A - 2K, (Ar) A2r]

—2¢,1,(Ar)A —2¢,K,(Ar)A

—o,[1 N+ DA+ 21, (A A2r] Lsin(Az)dA-
+ e, [K, (e + )4 = 2K, (A 22

(2.22a-¢c)

13



2.1.3 General Solution

General expressions for displacement and stress components obtained in previous

sections will be added together for the solution of the perturbation problem:

I/l(r, Z) = ucmck + ufourier ’

W(r’ Z) = Wcrack + Wfourier .

O-z (r’ Z) = Gz crack + Gz fourier
Trz (r’ Z) = Trz crack + Trz fourier °
O-r (r’ Z) = O-rcrack + O-r fourier *

(2.23a,b)

(2.24a-c)

Four unknown constants cj-c4 appearing in Fourier transform solution can be

expressed in terms of the unknown function F(a) using the following conditions at

inner and outer lateral surfaces of the annulus:

w(a,z) =0,
7,.(b,2)=0,
u(a,z)=0,

o (b,2)=0.

14
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Therefore, substituting Eqgs. (2.17), (2.22) in Egs. (2.25) and using the integral
formulas given by (A.1) in Appendix A, the following algebraic equations for cj-c4

are obtained:

LTF(a)JO (A) 4“—’12 +(x+ 1)% dar=—c,1,(AA) +c,K,(AX)
K+19 (2 +a?) P +a
—c,[(x+ D1, (AL) + AM L (AD)] - c,[(k + 1)K, (AA) — AAK (AD)]

20" =261, (BA)+2 A
m o= CIII(B )+ CZKI(B )

+c,[1,(BA)(x+1)+21,(BA)AB] - ¢, [K,(BA)(x +1)- 2K ,(BA)AB] ,

4o
— | F(x)J,(B
K'+1'([ @), (Bo)

LTF(a)Jl(Aa)a{z(“z—_ﬂ?—(x—l) 21 z}da:
K+14 (2 +a?) A +a

1, (AA) + ¢, K, (AA) + ;AL (AA) + ¢, JAK ,(AD)

17 A0 -a?) K-l | =R 1
—[F){J,B 2J,(Ba)B - da =
K‘+1‘([ (a){ : a)a[(/12+a2)2+/12+a2 + (Baba B +a?) A+’ g

¢,[-1,(BA)+ BI ,(BA)A)+c,[- K, (BA)— BK ,(BA)A]

+c{ﬂ§[0 (BA)(x—1)+1, (Bﬂ)ﬂsz}—c{ﬂgKo (BA)(x-1)-K, (3/1)/1232}

(2.26a-d)
These equations are solved and following expressions are obtained:
G = [CllFl tepF, e Fy +C14F4]/D’
6 = [021Fl tepF, toyFy +c24F4]/D )
6 = [031F1 tenF) oyl +c34F4]/D’
€4 = [C41Fl tepk, +es ks +C44F4]/D' (2.27a-d)

where F;-F, are given by (B.1), ¢i;-c44 and D are given by (B.3) in Appendix B.

The boundary conditions on the inner and outer lateral surfaces of the elastic annulus
have already been used in finding expressions for cj-c4. The remaining boundary
condition Eq. (2.3c) is used to determine the unknown function f(r).

15



CHAPTER III

INTEGRAL EQUATIONS

3.1 Derivation of Integral Equations

The expression for 6, u and w in terms of unknown function f(#) when substituted
in Egs. (2.3c) give the following singular integral equation with kernel having

Cauchy-type singularity [12]:

—diﬁl)!f(t)[:zr+2M(r,t)+tN(r,t)}dt=—P(V), c<r<d (3.1
where
M(r’t):M"(r,t)—l ’ (3.2)
t—r
and
270 ke gly  sp)
M=l " ro (@+r) r ,
2t t
= EE
) r<n (33)

in which K and E are the complete elliptic integrals of the firs and the second kinds,

respectively.
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The kernel N is defined as follows:

N(r,t)= T L(r,t,A) dA
0 3.4)

where L(r,t,A) may be obtained in the form:

where ¢y, ¢;, ¢3 and ¢4 are given in Eqgs. (2.27 a-d).

The integral equation, Eq. (3.1), must be solved by using single valuedness condition

for crack:
[rwdr=o. (3.6)

The integral equation have 1) a simple Cauchy type singularity at t=r, ii) the kernel M
have logarithmic singularity, ii1) the Fredholm kernel N has singular terms when
t=a,b and r=a, b due to the behavior of integrand of the integral giving N as A—o0.

Therefore, N(r, t) can be written in the following form
N(r,t) = j L(r,t,A) dA. (3.7)
0
Then, the singular part of the kernel may be separated as

N (r.1) =TLm(r,t,/1) dA, (3.8)
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where
L.(rt,A)= %El(r, t,A). 3.9)

Integrand of integral given by Eq. (3.7) contains modified Bessel functions. By using
asymptotic expansions for modified Bessel functions, the expression for Lu(r, t, A)

may be obtained in the form

| 044 8b—2r —60A—Ab—r)(b—1) )
Lx(r,t,/l)=— 1 2
Jrt |+— &0 3+ ) = 8a—2r -6 A~ Aa—r)a—1)2]
K (3.10)

The singular part of the kernel Ny can be obtained by integrating L, with the
formulas given in Appendix A by (A.1):

_ 0l g d |
| { 2+120b r)dr 4(b-r) df}—2b+r+t
Ns(r’t):_ 5
ey 12aend sa4@orrd | L
+K{(3 ©)=12Aa-1)4 +4a-1) dlﬂ}—%ﬂﬂ -
and the bounded part of the kernel will be
N, (r,0)= j [L(r,t, H)—L_(r,1, D) dA (3.12)
0
Then, the kernel N(r, t) may be written as
N(r,t)=N,(r,t)+ N, (1,?). (3.13)
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Therefore, Eq. (3.1) may be written in the form

2u 2
Eeeni “){ -

+IN, (r,t)} di=B(r) c<r<d (3.14)

where B(r) contains all bounded terms in Eq. (3.1).

Singular behavior of the unknown function f(t) may be determined by writing
fo=Golt-o@d-n]” 0<Re(y)<l  (3.15)

where G(t) is Holder-continuous function in the interval [c, d]. y is unknown

constant.

Evaluating the integrals containing the term 1/(t-r) and using the technique given in

[15] near the end points r=c, d

F'(r) (3.16)

jf(t) Flocoty) _ Fld)cotwp
t-r |@d-or-of [d-o@-nf

is obtained where F'(r) is bounded everywhere except at the end points c, d.
Substituting Eq. (3.16) in Eq. (3.14), following complex function technique outlined
in Muskhelishvili [15] and using the procedure described in [16] one may obtain the
following characteristic equation for y

cot@y) =0 (3.17)

Therefore y=1/2 satisfies the equation above at the tips of the crack (r — c,d).
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3.2 Solution of Integral Equation

Defining non-dimensional variables 1, & for crack by

(c<t<d, -l<7<1)

9

d

f=———T+——

2 2
d+

r:%gar (c<r<d, —1<&<1) (3.18a.b)

—

singular integral equation, Eq. (3.1), takes the following form

71[ [ f(r){?zfﬂl?l(f,rﬂﬁ(f,r)}d r=— p@(zﬁl) (~1<&<1) (3.19)
where

p&)= p(—f ﬁ)

f(r)=f(% ﬂ) (3.20a, b)

Substituting singular behavior of the dimensionless unknown function

fo=F@(-2)]", (~1<z<1) (3.21)

in Eq. (3.19), one may obtain the following integral equation

1 Fo L—§+M(§r)+N(§f)}df——pz(i)(fﬁl) Fi1<g<) G

71-7)
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where F (7), 1s Holder-continuous function. This equation, Eq. (3.22), can be reduced

to the following system of algebraic equation by using the Gauss-Lobatto integration

formula given in [14]:

icf(q){fff +M(§j,2'i)+]§7(§j,fi):l:—%(I{'+l) (j=12,...n-1) (3.23)

J

where

¢ :cos(zz(i j) nj (j=1,2. n-1) (3.24a, b)

are the roots and

0
Il

_ 1 (=23 —1) (3.25a, b)
n—1

are the weighting constants of related Lobatto polynomials. The equation, Eq. (3.22)
contains (n-1) equation for n unknowns, F () (i =12,...... n) To complete the

system of n equation for n unknowns, the single valuedness and equilibrium

conditions, Eq. (3.6), must be taken into consideration. Therefore, Eq. (3.6) become
Y CF(z)=0 (-1<z<1) (3.26)
=l

Infinite integrals with Fredholm kernels, N appearing in Eq. (3.23) can be calculated

numerically by using Laguerre [14] and Filon [14] integration methods for each 1;

21



value. After determining unknowns F(z,) (i=12,......... n) at discrete collocation

points the field quantities can be computed numerically. Behavior of these unknown
functions at the tips of the crack, t=#1 is characterized by the so-called ‘‘stress
intensity factor’” which is particularly important from the viewpoint of fracture

mechanics.

3.3 Stress Intensity Factors

3.3.1 Stress Intensity Factors for the Case of Internal Crack (a < ¢ <d <b)

Mode I stress intensity factor at the tips of the crack may be defined as [15]

k. =lim\2(c—r)o (r,0)

k, =lim|2r—d)a.(0) (327, b)
where 6,(r,0) is given by Eq. (3.1):

4u jf()
alic+1)?

0. (r0)= di+0.,(r0) (3.28)

where 6, is the bounded part of the cleavage stress.

d
o, = il [rolemen+ive.o)ar (3.29)

P e+
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Considering

[ ®/d-1)
fo=t O VOO
JE=od—-1 | ®/{t-0)
LA DS near d
N(E—d) (3.30)

near c

The integral of the sectionally holomorphic function in Eq. (3.28) can be evaluated
by the method given in Muskhelishvili [12, Chapter4]

jf(t) o 1 e f@ 1
i—r" sin@/2) Jd—c)Jr—0) sinw/2) Jd—c)Jd—r)

+F (r) (3.31)

where F (r) is bounded for (c<r<d).

When r approaches ¢, second part of Eq.(3.31) will be bounded and hence Eq. (3.31)

becomes
© f(t) f (e
dt— +F (r) 3.32
'[ J({d—=c)(c—r) ( )

where F**(r) contains all the bounded terms. Now with Egs. (3.28) and (3.32), the
stress intensity factor given by Eq. (3.26a) can be expressed in terms of the unknown

function f*(r) as

,U f© _4u f©
ey ) T e d—c (3.33)

2
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Comparing Egs. (3.21) and (3.30) one can relate f*(t) and F(7) by

f*(T)=%F(T) (-1<7<1) (3.34)

Now substituting Eq. (3.34) into (3.33), the normalized stress intensity factor k™(c)

can be obtained

k(c)= . F(-1)

ld—c  p,(k+1) (3.35)
Py

and similarly

k, 4u Fl)

ld—c  p(k+]) (3.36)
Py o

where po is the mean pressure on the crack surfaces.

k(d)=

3.3.2 Stress Intensity Factor for the Case of Crack Terminating at the Rigid Cylinder
(a=c<d<b).

In this special case Eq. (3.1) is still valid. However, the kernel is no longer bounded

for all values of t and r, and contains point singularities at t=r=a.

Let us assume that f(7) has the following form

F@O=F@o(l-7"(1+7)7”, (1>Re(y,5)>0) (3.37)

and the characteristic equations giving v, P are,
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cot(zy)=0: y=1/2,

2kcos(f) +H B—1)° —(x° +1)=0. (3.38)

The weights C; in Egs. (3.23) and (3.26) are the weight of Jacobi polynomials. 1; and

& are the roots of

PP (1)=0 (=l...n) ,

PP (E)=0 (j=Ll..n=1 . (3.39)

Following the procedure described in [4] and a similar procedure followed in the

previous section, k’(c) and k’(d) can be computed as,

, k 4lu _
K=t = Fe)
© [d_cjﬁ aTe

Po 2
K== _erE)

ld—c  py(x+1) (3.40)
Py

where

k, =limy/2 (a—rY’ 6.,(r0),

g=(x+)[1-28)/x+2B-3|/2sin(p). (3.41a, b)

3.3.3 Stress Intensity Factor for the Case of External Edge Crack (a<c<d=Db).

Following a similar procedure as in section 3.3.1, one can obtain

k. =limy2(c —r)o,(r,0),

: 4u  —
R F(-1
odd—e e Y (3.42)

k(c)=
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CHAPTER 1V

NUMERICAL RESULTS AND CONCLUSIONS

In this study, Poisson’s ratio is used as the material parameter and the ratios of the
inner radius of the annulus, outer and inner radii of the crack to the outer radius of
the annulus are used as the geometric parameters. The numerical results are
presented in graphical form. These results are obtained for three different loading

conditions on crack surfaces.

R(r):po’

3 (d2 —cz)(r—a)
2 —3ad —20 +3a ¥

K=

6 (d*—c*)(r—ay
P(r)= ,
) 8ad +6a 3¢ +8ac 62 @1

where py 1s the mean compressive load on the crack surfaces.

Introducing the dimensionless geometrical parameters

a C d
rn=—, nr=— and r,=—,
’ ’ ’ 4.2)
R()=p,
B3 =) =) =]
2 2(2’53 —31’11”32 _2’53 +3l’1r22) 05
=30 =) [0 —r)r 4 -2}
T 20 -8 +6n" =3 48 —6r"R) 43)

are obtained.
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Together with the results of this study, results of Birinci [11] in Figure 3 and Gegit
[4] in Figure 4 are presented for comparison purposes. As can be observed from
Figure 3, results of the present study and results of Birinci are coinciding. In the
study of Gecit, a cracked elastic strip bonded to rigid support is considered. When
the rigid cylinder approaches the external surface of the annulus (i.e., when a/(b-a)=
100), present study turns out to be the problem studied by Gegit. Figure 4 indicates a
similar results when a/(b-a)= 100. Another observation from this figure is that when

(b-a) is fixed and a, c— 0, k™ (c) approaches infinity for an external edge crack.

Figures 5-18 show the variation of normalized stress intensity factors k’(c) and k’(d)
at the edges of the embedded crack. As may be observed from these figures, k’(c)
and k’(d) increase when v increases or a/b decreases. As can be seen from Figure 9
and 16, as the crack width is fixed and d—b, k'(c) first increases rapidly, then
continues to increase slightly, finally increases rapidly again as d increases further.
On the other hand, under the same conditions k’(d) first increases slightly, then
increases rapidly as crack d increases further. Since crack gets further from the rigid
cylinder. As expected, when c¢—d, k’(c) and k’(d) approach unity. Another
observation from Figure 5 and 6 is that when c¢/b=0.35, a/b=0.25 and crack width
gets wider, initially k’(c) and k’(d) reduce slightly, then both of them increase
rapidly. k’(c) and k“(d) seem to be slightly effected when crack length has relatively
small values. On the other hand, when a/b=0.75 and c¢/b=0.80 and d/b increases,
initially k’(c) reduces considerably more than k’(d), then both of them increase.
Further more, as d—b, k' (d) is unbounded whereas k' (c) has finite value. When d/b
is fixed and c/b decrease, both k’(c) and k’(d) initially increase, then decrease. This
is expected, when crack tip gets closer to rigid cylinder, the rigid cylinder is more
effective parameter on k’(c) and k’(d) than the crack length. At this point, one can
say that normalized stress intensity factors reduce when crack gets closer to rigid

cylinder or crack length gets closer or v decrease.

From Figures 19-21, it may be seen that when v decreases or crack length increases
k’(c) increases for an external edge crack. When crack length is very small, k' (c) is

1.586. This is expected, since in this case, the stress intensity factors for thick-walled
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cylinder and for a strip are the same. This value is calculated for a strip problem in

[4] and for a thick-walled cylinder in [8].

Figures 22-27 show the variation of the normalized stress intensity factors k(c) and
k’(d) at the edges of the crack terminating at the rigid cylinder. When v increases,
k’(c) reduces, whereas k’(d) increases. There is a rapid change in k’(d) when crack
length increases. On the other hand, k’(c) increases slightly. This may occur because

of the rigid cylinder.

Three different loading conditions are compared in Figures 28-32. For all
conditions A (r), P,(r), and P,(r) show similar behaviors. One can observe from these
figures that when P(d)/P(c) gets greater, k’(c) decreases whereas k’(d) increases for

an embedded crack and a crack terminating at the rigid cylinder. Figure 30 shows

that when P(d)/P(c) gets greater, k’(c) increases for an external edge crack.

This problem can be solved by using finite element methods, ANSYS, MARC and

experimentally as a further studies.
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Figure 1. Geometry of the infinite annulus bonded to rigid cylinder.
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Figure 2. The informal superposition scheme ( Perturbation problem ).
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Figure 20. Variation of stress intensity factor k’(c) with ¢/b and v for an external edge crack (a/b=0.25, d/b=1.0).
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Figure 24. Variation of stress intensity factor k’(c) with ¢/b and v for a crack terminating at the rigid cylinder (a/b=c/b=0.75).
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APPENDIX A

Evaluation of some integrals [19]:

o A
}[6 Sln(ﬂZ)dem ,

T 20l

ize sm@z)dz—m
T2 . _2AGa’ =)
J e st == 5

Ie‘“ cost)dz=/12 fof ,
. o -r
_([ze cos(ﬂz)dz=m ,
I 200’ -34)
}[Z e COSQZ)dZ—W

(A.1)
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Using the following formulas [20], Egs. (2.26) can be obtained.

Iﬁ Jy(aa)](to)da=1,aDK,(th) | (c<1)

J,(aa)J (ta)da=—Al,(aD)K,(tA)

[

j [ J (aa)J, (tyda=1I,(ahK, (tA)

j az J J(aa)J, (taydac= A, (aHK,(tA)

J, (a0 (ta)dor= %1 [~al, (@)K, (tA)+tl,(a)K, (1A)]

T o
0 (0{2 +/12)2

T ~J,(aa)J, (ta)da—— [~ Aal, (a)K, (tA) - Al (ad)K, (tA)]
0 CZ +/12 24

—— @) (toydo

T(az +2)

:%{—alo (@K, (M)—%Il (@K, (A) +1l, (DK, (“)}

TLJ (aa)J, (ta)da=——|-Aal (@h)K, (D) + A, @K, D) .
0 (0{2 +A ) 24
(A.2)
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Iﬁ J,(ba)d,(taddar=K, (bW, (tD) (d>1)

Iﬁ J,(ba)J ,(ta)da=—K, (bA),(tA)

Iﬁ J,(bo)J, (te)da=K, (b, (D)

Iﬁ Jo (o) (teyda=—K (DA (tA)

TLQ J,(ba)J ,(ta)do= 1 [bK, (b, (tA) K, (b, (tD)]
0 (0(2 +/12) 24

T e, (ta)da=2il[ﬂbl<o O, (D)~ AK, O, EA)]

(o2 +2)

oS —3

J,ba)J, ta)da

T a
0 (0{2 +/12)2

= i[bl(o (b, (1A) + %K (BT (tA) =K, (A, (M)} ;

TLQ J,(ba)J, (ta)dor= € [~ AbK, (bDI, (tA) + 2K, (bDI,(tA)] .
0 (0(2 +/12) 24
(A3)
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APPENDIX B

Using the integral formulas given by (A.2) and (A.3) in Appendix A, F;- Fy4
appearing in Egs. (2.27) become

K T[——I (aDK, (t/1)+—/11 (DK, (D +— —Io(aﬂ)Kl(t/i)} tf(t)de,
F, = 4 ]i/i[—blg) BDI, D) +1K, (DA, (t/i)] tf (t)dt,
K+1y

F, =ﬁ?[2aﬂo (@K, () ~2, @AK, (D) ~(K+DI, @K, @A) if 0,

1 TMKO (bI,(tD) - 2K, (bA)  (tA) } -

o tf (t)dt,
K+15 | +(k+1+20° K, (b, (tA) —2btA K, (bA)] , (tA)

(B.1)
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The expression for the coefficients cj;-ca4 appearing in Eq. (2.27) are as follows:

¢, =—(k+)aiK,(ak)— (% -2° 2 jK (ad)-2ab’ A K, (b/l)HOO

—alK,(bA)H ,(k+1+2b° 1)

=—b/u< (@) H (K =1)+= ab/?(zc—l)(K (aA)H,,— K, (a)H,,)

—aﬂKK (bA)+b* LK, (aﬂ)Hm)+ab2/13 (K,(a)H,, —K,(aA)H,,)—abX K, (b/i)

c,;=—K,(bHH,, —% K, (ad)(dx—4b° X —3—Kk*)+alK, (aA)(k+1)— 24K, (bA)H,,,

+2b° X (K,(b)H, + K, (bAH ) - K K, (bA)H ), +2ab’ X (K, (bA)H,, + K, (bAH,,),
+al(k+1)K,(bAH,,—2b> X k(K (bA)H,, + K, (bDH,,)

=—(k+1)’ K, (aH)H,,, 267K, (aA)H (kK +1)—2abZ (K, (aA)H,, — K (@DH,)
—Qa/?K b +aA(k+1)(K, (@)H, —K,(aDH,,)

Cy, =—% A+4b° X =)’ 1, (ad)+all,(bAH,, (k+1)—2ab’ A (I ,(bAD)H ,, — 1, (bDH,,)
—al(x+1)1(al)

Cyy = —% bA(—x)I,(aA)H ,, —abX I ,(bA) +% abZ’ (k1) ,(a)H , +1,(ad)H,,)

+all, (b)) —b* X (k+)I,(a)H,, +ab’ X (1,(aV)H,, +1,(a)H,,)
s =(K+1)° 1, (PAH,, —% (4x+4b* X +3+ 7)1 (ad)—al(xk+1I, (ak)

+2b° X (k+1)I, (b H,, — 1 ,(bA)H ) —aMk+ DI, (bAH,, +2ab’ X (1,(bA)H,,—1,(bA)H,,)

¢,y =2bAK+VI, (@) H , —2abZ (I, (ad)Hyy +1, (@A) H, ;) +2al, (bA)
+(k+D)* 1, (aHH,, —alk+ )T, (aD)H, +1,(aHH,,)

=—(1+20° 2 + K, (bAH,, +2aK,(ad)+(k+1)K, (ad)—2b° L K, (bA)H,,
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1 1
¢y, =—AUK (a)H,, +m K, (b/i))—a bAKK,(aV)H,,+K, (aD)H )

2
+ab® (K,(aW)H,,—K,(a)H ) +(k+DK, (aDH,, —%1 K,(bA)

+al(K,(aV)H, — K, (aV)H,))

3y =(1+Kk+20° B)K, (bAHH , +(k+1)K (ad)—2aK (al)+2b* £ K,(bA)H,,

csy __2 K,(bD) +(k+1)(K,(aDH,, +K, (aA)H,,)+2a 4K, (aDH,, - K, (aA)H,,)
a

ey =—(1+20° 2 + I, (bAHH,, —2al ,(aA)+(k+ DI, (al)+2b* X1 ,(bA)H,,

1 1 b’
€= bAk(I,(aD)H,,—1,(aD)H,,) +bﬂ(ﬁ 1,(b)—1,(ad)H,,) — 1,(b)

+abX’ (1,(a)H,+1,(aA)H, ) —(k+ DI (aA)H,, —all,(a)H,, +1,(a)H,,)

s ==K+ (ad)—2aAl, (al)+(1+2b* X + 1)1, (bA)H,, —2b* X 1,(bA)H,,

co =221 A +Ger )T (@DH,, ~I,GAH, )~2aA, (ahH,, ~I GHH, )

a

2K WA 3 K
D=(x+1)’H,H,, M—2a,1 P! Qa/1+2b2/12(K+1)(H01H11—HOOHH))
+2ab* B (~HZy + HE, + H2, —H2) +aA(x+1)(H2, —H?) (B.3)
where
H,;(aAd,b) =K (aM)] ,(bA)+(-D""I,(a)K ;(bA) @, j=0,1)
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APPENDIX C

Integrals of Bessel functions are given in terms of the complete elliptic integrals K,E
[19, 13, 21]

]ie"’“J Y, (rayda= 2 2t
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Te"’“a]o (ta)J,(ra)da= 2p 2r J
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