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Assoc. Prof. Dr. Enver Bulur (METU, PHYS)



“I hereby declare that all information in this document has been obtained and pre-

sented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.”

Name Surname : Selma Şenozan
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ABSTRACT

A CONTINUUM MODEL FOR DECOHERENCE IN 1D TRANSPORT

Şenozan, Selma

M.S., Department of Physics

Supervisor: Assist. Prof. Dr. Sadi Turgut

AUGUST 2005, 48 pages

In this thesis we study the conductance of a one dimensional conductor in the pres-

ence of dephasing. Dephasing effects are modelled after generalizing Büttiker’s de-

phasing model (Phys. Rev. B 33, 3020 (1986)) to a continuous one. Infinitely many

electron reservoirs are coupled to the conductor as phase breakers and the method

for calculating the conductance is presented. We investigate how this continuum

decoherence effect the conductance of a wire, with single and double rectangular

barriers.

Keywords: Decoherence,Landauer-Büttiker Formalism, continuous decoherence model
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ÖZ

BİR BOYUTTA TRANSPORT İÇİN SÜREKLİ BİR UYUM KAYBI MODELİ

Şenozan, Selma

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Sadi Turgut

AĞUSTOS 2005, 48 sayfa

Bu yüksek lisans tezinde bir boyutta bir iletkenin uyum kaybı göz önüne alınarak

iletkenlig̃i çalışılmıştır. Büttiker’in uyum kaybı modeli (Phys. Rev. B 33, 3020 (1986))

genelleştirilerek uyum kaybı üzerine sürekli bir model oluşturulmuştur. Faz deg̃iştirici

olarak iletkenin üzerine sonsuz sayıda elektron rezervuarları bag̃lanmış ve iletkenlig̃in

hesaplanması için bir metod geliştirilmiştir. Bu sürekli uyum kaybının bir boyutta bir

telin iletkenlig̃ini nasıl etkiledig̃i tel üzerine tek ve ikili potansiyel bariyerler yerleştirilerek

incelenmiştir.

Anahtar Kelimeler: Uyum kaybı, Landauer-Büttiker Formülasyonu, sürekli decoher-

ence modeli
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CHAPTER 1

INTRODUCTION

Research in conductance properties has grown tremendously in the past two decades.

Advances in fabrication and material growth technologies have enabled researches to

fabricate devices whose dimensions are intermediate between the macroscopic and

the microscopic length scales, and hence called mesoscopic. What makes important

these mesoscopic structures is that at these scales an electron no longer behaves sim-

ply as a classical particle, but begins to exhibit quantum mechanical effects. Conse-

quently, there exists an enormous interest in the investigation of quantum transport

in mesoscopic systems.

Most of the recent work on mesoscopic conductors has largely been based on

GaAs-AlGaAs heterojunctions where a thin two-dimensional conducting layer is formed

at the interface between GaAs and AlGaAs. Because of two important properties

these semiconductor materials are very special for forming two-dimensional elec-

tron gas (2DEG). First, 2DEG in a GaAs-AlGaAs heterojunction has Fermi wave-

length which is about a hundred times larger than in a metal and second, in these

heterolayers electrons have extremely low scattering rates and high mobility at low

temperatures. Because of these properties it is possible to study a constriction with

an opening, which is comparable to the Fermi wavelength and much smaller than

the mean free path. Such constrictions are called quantum point, or ballistic con-

tact. If the width of the opening of the constriction can be varied, one can adjust the

position of the one-dimensional electron-energy subbands (modes,channels) with re-

spect to Fermi level. Such a quantum point contact of adjustable width can usually
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Figure 1.1: Schematic view of the metal gate used to define a constriction to observe
conductance quantization.

be achieved by using split-gate technique developed by Thornton T. J. [1] A typical

geometry is shown in Fig. 1.1. On top of the heterostructure two metal gates are

deposited and by the application of a negative voltage to the gate, which depletes

the electrons of the 2DEG beneath it, a narrow channel called point contact is de-

fined. Low-temperature conductance versus gate voltage data in split-gate structures

exhibits conductance steps quantized in integer multiples of conductance quantum

G0 = 2e/h2, which is reported by van Wees [2] and Wharam [3] independently in

1988. This phenomenon is usually treated with the Landauer-Büttiker formalism [4]

which explains it in a very simple way.

Interference of electron waves (both constructive and destructive) play an impor-

tant role in shaping the transport properties of mesoscopic structures. However, a

process called dephasing, which is very effective in macroscopic length scales, has

important effects in mesoscopic scales as it prevents quantum mechanical wave in-

terference. [5, 6] It arises from the interaction of electrons with other excitations in

the environment, phonons and other electrons. Consider for example the two-slit ex-

periment. If we do not try to find out which slit the particle passes through, the two

waves from both slits interfere at the screen, either constructively or destructively

depending on the position on the screen. We can try to determine which slit the par-

ticle passes through, by placing an atom in front of one of the slits. [7] The collision

of the particle with the atom change the momentum of the particle drastically in the
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course of scattering. The deflection of the electron is random since the momentum

transferred to the electron is random. In this case, the wave that comes from the atom

after hitting it and the wave that comes from the other slit loses coherence and the

interference on the screen disappears. In general, if a particle have some changes

in the course of interaction with the environment it loses its phase and interference

pattern vanishes. This is called dephasing or decoherence. [7, 8, 9, 10]

1.1 Scattering Matrix in 1D

Scattering of waves when they are passing through a region with varying potential

can be described by a single 2 × 2 matrix called the scattering matrix. Consider a

potential barrier like in Fig. 1.2 which acts like a scatterer. Here we consider only the

case where V (x) = 0 on the left and right sides of the scatterer. The Schrödinger’s

equation for this system is

−~2

2m
d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) . (1.1)

For the left incident wave with amplitude 1, as in Fig. 1.3, the wavefunction on

the left-hand and right-hand sides of the sactterer can be written as

ψL(x) =


(
eikx + re−ikx

)
,left(

teikx
)

,right

where t is called the transmission amplitude and r is called the reflection amplitude

for the left incident waves.

Same can be done for the right incident wave,as in Fig. 1.4. So the wavefunction

on the left and right-hand sides of the scatterer can be written as

ψR(x) =


(
t′e−ikx

)
,left(

e−ikx + r′eikx
)

,right

Here t′ and r′ are called as transmission and reflection amplitudes, respectively for

the right incident waves.

Any arbitrary solution of the wave equation (1.1) can be expressed as a superpo-

sition of these two particular solutions as

ψ(x) = AψL +BψR .

3



V(x)

V(x)=0 V(x)=0

A

C

D

B

Figure 1.2: Scattering problem for some potential barrier. Incoming and outgoing
wave amplitudes are shown.

ψ(x) =


(
Aeikx + Ce−ikx

)
,left(

Deikx +Be−ikx
)

,right
(1.2)

Here A and B are called incoming wave amplitudes and C and D are called outgoing

wave amplitudes.

Outgoing wave amplitudes C and D can be determined in terms of the incoming

wave amplitudes A and B as

C = rA+ t′B , (1.3)

D = tA+ r′B . (1.4)

The scattering matrix, S, is defined as the coefficient matrix in the relations be-

tween outgoing and incoming amplitudes.

S =

r t′

t r′


C
D

 =

r t′

t r′

A
B


The scattering matrix S has to be unitary, i.e., SS† = 1, due to current conserva-

tion. [4] Current conservation can be expressed as

−→
5.
−→
J = 0 . (1.5)

where
−→
J =

~
2mi

(ψ∗.
−→
5ψ −

−→
5ψ∗.ψ) ,

4



1

r

t

Figure 1.3: For the left incoming wave with amplitude 1 and reflection and transmis-
sion amplitude, r and t, respectively.

t’

1

r’

Figure 1.4: For the right incoming wave with amplitude 1 and reflection and trans-
mission amplitude, r′ and t′, respectively.

which is valid for any wave function with fixed energy.

In 1D, the relation in Eq. (1.5) can be expressed as

dJx

dx
= 0 ,

which implies that Jx is constant. Applying this to the general wave function in

Eq. (1.2) we get

| A |2 + | B |2=| D |2 + | C |2 , (1.6)

which can be interpreted as sum of incoming probabilities being equal to sum of

outgoing probabilities. This relation implies the unitarity of S matrix

SS† = S†S = 1 .

These can be summarized as the following three relations

| r |2 + | t |2= 1 ,

| r′ |2 + | t′ |2= 1 ,

rt
′∗ + tr

′∗ = 0 .

The first one is a special case of Eq. (1.6) when ψL is used. In that case, T =| t′ |2 can

be interpreted as transmission probability. Similarly, the second one is a special case
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of Eq. (1.6) when ψR is used. The transmission probability for the incoming waves

from the right-hand side is denoted by prime.

Time reversal symmetry implies that if ψ(x) is a solution of the wave equation

(1.1) then its complex conjugate, ψ(x)∗, is also a solution. In that case

ψ(x) =


(
C∗eikx +A∗e−ikx

)
,left(

B∗eikx +D∗e−ikx
)

,right

is a wave where incoming wave amplitudes are C∗ and D∗ and the outgoing ampli-

tudes are A∗ and B∗. These amplitudes also must be related by the S-matrix asA∗
B∗

 = S

C∗

D∗


By taking the complex conjugate we getA

B

 = S∗

C
D

 = S∗S

A
B


which implies that S∗S = 1 and therefore S∗ = S†. This implies that S is a symmetric

matrix, i.e. S = ST . [4] In our case, this gives one more relation t = t′.

1.2 Landauer Single Channel Formulation

Landauer has obtained a very useful relationship (called Landauer relation) between

the conductance of a one dimensional wire and the scattering matrix of the wire. [11,

12] Later on Büttiker generalized this relationship into a what is called as Landauer-

Büttiker formalism. [4, 13]

Consider a general barrier problem in a one dimensional conductor, shown in

Fig. 1.5, with an ideal lead, in which electrons travel without scattering, attached

between two perfect reservoirs with electrochemical potentials µL and µR = µL+eV ,

where V is the applied voltage. And let T and R be the transmission and reflection

probabilities respectively, of a scatterer between the ideal leads for the electrons at

the Fermi level. Then the total current flowing across the system is given by

I = (−e)υF
δn

δE
T (µL − µR) , (1.7)

where, δn/δE = 2/hυF is the density of states of the electrons, in unit length of wire

moving from left to right. The factor 2 comes from spin degeneracy, and υF is the

6



Figure 1.5: A conductor with one scatter having a transmission probability of T is
connected between two large contacts through two leads, and this system can be
reduced to the barrier problem.

Fermi velocity. Only the electrons with energies between µL and µR contribute to the

net current since below both µL and µR currents from left and from right cancel each

other. On the other hand, above both µL and µR there are no electrons and hence no

current. Since the conductance is the ratio of the current to the voltage applied across

the system and remembering that the voltage difference between L and R is

VRL =
µL − µR

−e
,

the two terminal conductance can be written as

G =
I

VRL
=

2e2

h
T . (1.8)

It is important to note that with a suitable combination of the density of states and

7



the Fermi velocity, no quantity related to the energy band of the electrons appear in

the final expression for the conductance, G.

The conductance formula G = (2e2/h)T definitely shows that scatterers give rise

to resistance by reducing the transmission probability T. Intuitively this is satisfactory

since we all perceive that the resistance of a sample ought to be related with which

electrons can transmit through it. On the other hand, it arises some questions regard-

ing the meaning of resistance on a microscopic scale. Considering the definition of

the ballistic conductor, that is a conductor with no scattering, we naturally expect

that such a mesoscopic conductor should have zero resistance. But Eq. (1.8) gives the

nonzero value h/2e2 for that case. This resistance, called as contact resistance, arises

from the interface between the conductor and the contacts.[13] The conductor and

the contacts are very dissimilar materials. The current is carried in the contacts by

infinitely many transverse modes and inside the conductor it is carried by only one

mode. This difference between the number of modes that are carrying the current

causes the resistance at the interface. If T=1 contact resistance is

G−1
c =

h

2e2
≈ 12.9kΩ.

For the case in Fig. 1.5 where the wire has one scatterer, the conductance is given

by Eq. (1.8), as we have seen above. So the total resistance of this system is Rtot =

1/G = h/(2e2T ) , which is the sum of the contact resistance, G−1
c , and the scatterer

resistance, G−1
s ;

1
G

=
h

2e2
1
T

= G−1
c +G−1

s

Hence, the scatterer conductance becomes,

Gs =
2e2

h

T

1− T
=

2e2

h

T

R

This formula is valid for single-channel case and is known as Landauer Formula.

This equation is the original equation derived by Landauer.[11] However, Eq. (1.8) is

used in applications since we are interested in the total conductance.[13, 14]

1.3 Büttiker’s Model of Dephasing

Decoherence in particle transport can be simulated in several ways. [15, 16] Among

the first was by Büttiker who considered an electron reservoir coupled by a lead to

8



a mesoscopic system as a phase breaker or inelastic scatterer (voltage probe). [17]

Landauer’s approach, which gives the conductance of an obstacle due to elastic scat-

tering at the obstacle, is improved by including localized inelastic scatterers within

the sample. The inelastic scatterers invoked include an electron reservoir coupled to

the wire.

This approach has been widely used to investigate the effect of decoherence on

conductance. This method which uses voltage probes as dephasors is interesting

because of its conceptual clarity and its close relation to experiments.[17] It provides

a useful trick to simulate lack of full coherence in transport properties. The major

advantage of this method is that the effect of inelastic scattering can be studied by

solving an elastic scattering problem.

Büttiker proposed a conceptually simple model to simulate the phase-breaking

effect in partially coherent transport trough a mesoscopic system by coupling elec-

tron reservoirs to the conductor. The reservoir does not supply or draw a net current,

but permits inelastic phase randomizing events.[17, 18, 19] He has investigated the

resistance of a series of two obstacles and studied the transition from completely co-

herent transmission through the sample to completely incoherent transmission. By

using a single reservoir to model a single dephasing scatterer he obtained that for

a sample with a small transmission probability, increasing inelastic scattering de-

creases the resistance, and at an intermediate value of inelastic scattering, the resis-

tance attains a minimum to increase again when inelastic scattering processes start

to dominate the resistance.[17]

The model of an inelastic scatterer is shown in Fig. 1.6. The wire (channel 1 to

the left and channel 2 to the right) is coupled via channels 3 and 4 to a reservoir.

Carriers, which are scattered into channels 3 and 4 and incident in the reservoir, are

absorbed regardless of their energy and phase. Moreover, the reservoir emits elec-

trons into the adjacent conductor up to its chemical potential.[11, 12] Then the carriers

are scattered inelastically in the reservoir and reemitted into channels 3 and 4 by the

reservoir. During the tunnelling process, electron waves have certain probabilities of

being scattered into the reservoir, undergoing phase randomization in it, then return-

ing into the system via the coupler. Because of dephasing, the reemitted component

does not interfere with that having not entered the reservoir.[17, 19]

9



Figure 1.6: Model of inelastic scatterer.

The chemical potential µ will be specified such that the net current flow to the

reservoir is zero. The chemical potential µ will be equal to the Fermi energy EF at

equilibrium, but when there exists current flow in the wire, µ will depend on the

unequal distribution of left and right moving carriers.[9, 17] The coupler connecting

wire to the reservoir is represented by an S matrix which determines the outgoing

wave amplitudes a′ = (a′1, a
′
2, a

′
3, a

′
4) in terms of the incoming wave amplitudes a =

(a1, a2, a3, a4). A carrier in channel 1 reaching to the coupler has a probability R11 =

|S11|2 to be reflected back into channel 1, a probability T21 = |S21|2 to be transmitted

into channel 2, and probabilities T31 = |S31|2 and T41 = |S41|2 to be scattered into

channels 3 and 4, respectively. A carrier emitted by the reservoir into channel 3 has a

probability R33 = |S33|2 to be reflected back into channel 3, a probability R43 = |S43|2

to be reflected into channel 4, and has probabilities T13 and T23 to be transmitted into

channels 1 and 2, respectively.

The phase of a carrier which is transmitted from channel 1 to channel 2 is not

randomized since the carrier does not enter the reservoir. Consequently, the prob-

ability of a carrier incident from channel 1, i.e., from the left to traverse the sample

10



coherently is Tc,L = T21. Similarly the proceeding of direct reflection is coherent and

hence Rc,L = R11 is the probability for coherent reflection of a carrier incident from

the left. Likewise Tc,R = T12 and Rc,R = R22 are the coherent scattering probabilities

for carriers arriving in channel 2, i.e., from the right. However, carriers which are

transmitted from channel 3 or 4 into channel 1 or 2 have a phase which is not associ-

ated to that of the carriers incident in channels 1 and 2. Finally, Büttiker denoted the

total probability of carriers from channels 3 and 4 to be scattered into channel 1 by

Sb = T13 + T14,

where Sb is the probability for incoherent backward scattering. And the probability

of carriers from channel 3 and 4 to be transmitted into channel 2 by

Sf = T23 + T24,

where Sf is the probability for incoherent forward scattering. From current conserva-

tion we can say that scattering matrix S is unitary and in the absence of magnetic field

also symmetric.[4] So we haveR11 +T12 +T13 +T14 = 1 and T21 +R22 +T23 +T24 = 1,

which become

Rc,L + Tc + Sb = 1,

Tc +Rc,R + Sf = 1

by using the definitions given above. Because of the symmetry T21 = T12 the indices

R and L on Tc have been dropped in here.

At that point Büttiker applied Landauer’s concept to obtain the conductance of a

sample with a single inelastic scatterer. A current is imposed to the wire by connect-

ing it to two reservoirs, which are acting as a source and sink of carriers. Left-hand

side (LHS) reservoir feeds carriers with positive velocity into the wire up to a quasi

Fermi energy µL. And the right-hand side (RHS) reservoir feeds carriers with nega-

tive velocity into the wire up to a quasi Fermi energy µR. Lastly, the scatterer feeds

the channels up to a Fermi energy µ which remains to be determined in order to ob-

tain a zero current flow to the reservoir. It is assumed that µL > µ > µR. All channels

are full for energies smaller than µR, so we only need to consider the energy range

between µR and µL.[17, 18] Injected current into the wire by the reservoir on the LHS

11



is

Iin = eυ(
dn

dE
)(µL − µR) =

e

2Π~
(µL − µR)

Here dn
dE = 2

hυ has been used as the density of states for the particles with positive

velocity in a one-dimensional wire, the factor 2 comes from spin degeneracy. It is

assumed that the density of states is the same in all channels. The reservoir in Figure

1.6 of the scatterer emits a current,

Is = (
2e
h

)(µ− µR)

into channels 3 and 4. Now consider the net currents flows in channels 1 and 4. The

current in channel 1 is

I1 =
2e
h

[(1−R11)(µL − µR)− Sb(µ− µR)]

where R11 is the probability of carriers coming from channel 1 to be reflected back

into channel 1, and the last term shows the contribution of the carrier flux from the

carriers that are emitted by the reservoir in the backward direction. Likewise in chan-

nel 2 the current is

I2 =
2e
h

[T21(µL − µR) + Sf (µ− µR)]

where Sf is the probability for forward scattering. Finally, for the current in the lead

which is coupling the wire to the reservoir we have

I3 =
2e
h

[(1−R33 −R34)(µ− µR)− T31(µL − µR)]

and

I4 =
2e
h

[(1−R44 −R43)(µ− µR)− T41(µL − µR)]

where R34 stands for the probability of a carrier in channel 4 for reflection at the

coupler into channel 3, and vice versa. The chemical potential µ is specified by the

requirement that no net current flows into the reservoir. So we have

I3 + I4 = 0

Yielding µ as

µ = µR + χ(µL − µR)

where

χ =
Sb

Sb + Sf

12



To get χ the unitary relations T14 +T24 +R34 +R44 = 1 and T13 +T23 +R33 +R43 = 1

and the symmetry of the reflection and transmission probabilities, Tij = Tji and

Rij = Rji have been used. With use of these symmetry relations and Sb = T13 + T14,

we see that the current is indeed conserved I1 = I2 = I , with

I =
2e
h

(T21 + χSf )(µL − µR),

So the conductance G is expressed as

G =
I

V
=

2e2

h
(T21 + χSf )

since µL − µR = eV.

1.4 Our Model

We are interested in extending Büttiker’s model for decoherence in 1D transport in

a way that decoherence proceeds at every location. In Chapter 2 we introduce our

geometry of the problem. The incoherent transmission is calculated from Büttiker’s

voltage probe model, by mapping the three probe Büttiker’s method into an N probe

geometry. In Chapter 3 we reveal our results and conclusions.

Our model is more consistent with the prevalent notions of decoherence since the

placement of the single scatterer in Büttiker’s model effects the electron transmission.

In Chapter 3 we show the details about this comparison.
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CHAPTER 2

A CONTINUUM MODEL FOR DECOHERENCE

2.1 Geometry of the Model

We are interested in extending Büttiker’s model for decoherence in 1D transport in

a way that decoherence proceeds at every location. The geometry of the problem is

shown in Fig. 2.1. Here there is a “main line” along which electrons move and scatter.

Apart from that, N additional lines are also placed for modelling the decoherence

effects on the main line. It is assumed that the electrons can jump between the main

line and the additional ones. It can go to equilibrium in those lines but will eventually

return back and at the end coherence with the wavefunction in the main line will be

lost.

xx
1

ξ
1

x
2

ξ
2

x
3

ξ
3

x
N

ξ
N

Figure 2.1: The geometry of the problem.
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2.2 Hamiltonian of the System

Before writing down the Hamiltonian of the whole system, we describe the possible

states of the electrons first. The state of electron at position x on the main line is

denoted by |x〉. The state when the electron is on line-j at the position ξ will be

denoted by |ξ, j〉. All of these are distinct states. Moreover, any state |ψ〉 can be

expressed as a superposition of these as

|ψ〉 =
∫
dxψ(x) |x〉+

∑
j

∫
dξφj(ξ) |ξ, j〉 , (2.1)

where ψ(x) will be called the wavefunction on the main line and φj(x) will be called

the wavefunction on line-j. If the state |ψ〉 is normalizable, we have the following

〈ψ|ψ〉 =
∫
dx |ψ(x)|2 +

∑
j

∫
dξ |φj(ξ)|2 .

Next, we write a possible Hamiltonian for the electrons. First note that the elec-

trons should have the normal behavior on each of the lines when all other lines are

forgotten about. We will suppose that on the main line, the electron moves under

a potential V (x). On the the additional lines, it will be assumed to be free, moving

under a constant potential. We will denote those Hamiltonians of the main and ad-

ditional lines by h0 and hj respectively. We can write down the following differential

and abstract representations of these operators

h0 = − ~2

2m∗
d2

dx2 + V (x) , h0 =
∫ ∫

dxdx′h0(x;x′) |x〉
〈
x′
∣∣ ,

hj = − ~2

2m∗
d2

dξ2 + Vj , hj =
∫ ∫

dξdξ′hj(ξ; ξ′) |ξ, j〉
〈
ξ′, j

∣∣ .

Note that these operators act on their respective spaces. As a result, we have h0 |ξ, j〉 =

hj |x〉 = 0. Also hj |ξ, i〉 = 0 if i 6= j. As a result, for the state given in Eq. (2.1) we

have

h0 |ψ〉 =
∫
dx

(
− ~2

2m∗
d2ψ(x)
dx2

+ V (x)ψ(x)
)
|x〉 ,

hj |ψ〉 =
∫
dξ

(
− ~2

2m∗
d2φj(ξ)
dξ2

+ Vjφj(ξ)
)
|ξ, j〉 .

Next, we add a term for the transfer of electrons between lines. We will assume

that when the electron is at position xj on the main line, it can jump to the origin,

ξ = 0, of line-j. A term in the Hamiltonian of the form |ξ = 0, j〉 〈xj | handles this.
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The hermitian conjugate handles the opposite process, namely jumping from line-j

to the main line. We will write the Hamiltonian as

H = h0 +
∑

j

hj +
∑

j

gj (|ξ = 0, j〉 〈xj |+ |xj〉 〈ξ = 0, j|) .

Here gj is a real number representing the coupling strength to line-j. It could have

been chosen complex valued, but this is unnecessary since it does not introduce any

new effects. Moreover, the reality implies a simple time-reversal operation (complex

conjugation of wavefunction) and the symmetry implies that the scattering matrix is

symmetric.

2.3 The Schrödinger’s Equation and The Solution of the Wavefunction

The Schrödinger’s equation, H |ψ〉 = E |ψ〉 can be expressed in terms of wavefunc-

tions as (
− ~2

2m∗
d2ψ(x)
dx2

+ V (x)ψ(x)
)

+
∑

j

gjφj(0)δ(x− xj) = Eψ(x) , (2.2)

(
− ~2

2m∗
d2φj(ξ)
dξ2

+ Vjφj(ξ)
)

+ gjψ(xj)δ(ξ) = Eφj(ξ) . (2.3)

We will write down the solutions of this equation below.

Obviously we will be interested only in extended solutions. And for these, we are

going to be interested in the behavior of the wavefunctions far from the scattering

region. We will assume that the potential on the main line, V (x), is constant outside

a certain interval.

V (x) =

 VL for x < x
(b)
L

VR for x > x
(b)
R

where between the points x(b)
L and x

(b)
R , V (x) varies. The scattering region and the

points xj are contained in this interval. For any energyE, the left and right wavenum-

bers will be defined as

kL =

√
2m∗(E − VL)

~2
, kR =

√
2m∗(E − VR)

~2
.

For the line-j, the electrons move freely with wavenumbers

kj =

√
2m∗(E − Vj)

~2
.
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The corresponding velocities are defined accordingly, vL = ~kL/m
∗ etc.

We will define the incoming wave amplitudes aj , a′j and the outgoing wave am-

plitudes bj , b′j (j = 0, 1, . . . , N ) for any solution at energy E by

ψ(x) =


1√
vL

(
a0e

ikLx + b0e
−ikLx

)
for x < x

(b)
L

1√
vR

(
a′0e

−ikRx + b′0e
ikRx

)
for x > x

(b)
R

φj(ξ) =
1
√
vj

 aje
ikjξ + bje

−ikjξ for ξ < 0

a′je
−ikjξ + b′je

ikjξ for ξ > 0

There are 2N+2 independent solutions of the wave equation. Any particular solution

can be obtained by choosing arbitrary values for the incoming wave amplitudes aj

and a′j . From these values alone, the outgoing wave amplitudes bj and b′j can be

determined. The relation between the outgoing and incoming amplitudes involves

the scattering matrix

bj =
N∑

i=0

Sjiai + Sji′a
′
i ,

b′j =
N∑

i=0

Sj′iai + Sj′i′a
′
i .

Our purpose is to obtain the scattering matrix. Through this we can calculate the

transport properties of the system.

2.3.1 Solution for line-j

First we write down the solution of the Schrödinger’s equation for line-j. The wave-

function φj(ξ) is continuous at the origin ξ = 0,

φj(0+) = φj(0−),

aj + bj = a′j + b′j . (2.4)

But its derivative has a discontinuity

∆φ′j(0) = φ′j(0+)− φ′j(0−) =
2m∗gj

~2
ψ(xj) .

b′j + bj = aj + a′j − 2i
gj

~√υj
ψ(xj). (2.5)
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Then by adding and subtracting Eq. (2.4) and Eq. (2.5) we get the outgoing ampli-

tudes as

b′j = aj − iγjψ(xj) , (2.6)

bj = a′j − iγjψ(xj) , (2.7)

where

γj =
gj

~√vj
. (2.8)

Since gj has dimensions Energy×Length, γj has the dimensions of square root of

velocity. We will need the following expression below.

φj(0) =
aj + bj√

υj
=
a′j + b′j√

υj

by putting b′j from Eq. (2.6) we get

φj(0) =
a′j + aj − iγjψ(xj)

√
υj

Then

φj(0) = − i
√
vj

(
γjψ(xj) + i(aj + a′j)

)
= − i

√
vj
θj . (2.9)

2.3.2 Solution for the main line

Schrödinger’s equation for the main line, from Eq. (2.2), can be expressed as

[E − h0]ψ(x) =
∑

j

gjφj(0)δ(x− xj) = −i~
∑

j

γjθjδ(x− xj) .

Equations of this form can be solved easily by using the Green function as

ψ(x) = ψ0(x) +
∫
dyG(x; y)

−i~∑
j

γjθjδ(x− xj)

 , (2.10)

where ψ0 is a particular solution of the homogeneous equation, [E − h0]ψ0 = 0, and

G(x; y) is the Green function satisfying

[E − h0(x)]G(x; y) = δ(x− y) .

First, the general solution of the homogeneous equation can be expressed as a

superposition of two scattering solutions, ϕL(x,E) and ϕR(x,E), of the main line.
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These solutions satisfy

ϕL(x,E) =


1√
vL

(
eikLx + r0e

−ikLx
)

for x < x
(b)
L

1√
vR
t0e

ikRx for x > x
(b)
R

ϕR(x,E) =


1√
vL
t′0e

−ikLx for x < x
(b)
L

1√
vR

(
e−ikRx + r′0e

ikRx
)

for x > x
(b)
R

These are the solutions of [h0 − E]ϕL,R = 0 obtained when there are no additional

lines. Here r0, r′0, t0 and t′0 are reflection and transmission amplitudes and we have

t0 = t′0 due to the symmetry of the scattering matrix.

Green functions can be expressed in terms of these solutions, ϕL,R. We will be

interested only in G(+), the retarded Green function (due to the reason explained

below). The function is symmetric in its arguments, G(+)(x; y) = G(+)(y;x). When

x 6= y, the wave equation is satisfied for both arguments. Using this, we can write

the following general solution (say for x < y),

G(+)(x; y) = (αϕL(x) + βϕR(x))(µϕL(y) + νϕR(y)) .

For the retarded Green function G(+), we want the expressions involving only out-

going waves at their respective regions. For this reason we set α = ν = 0. (The

normal definition is this: When energy E is moved off from the real axis to the upper

complex plane, E → E + iε, the Green function should remain finite at infinities.) In

any case, using the symmetry we get the following for any x and y

G(+)(x; y) = AϕR(x<)ϕL(x>) =

 AϕR(x)ϕL(y) for x < y

AϕR(y)ϕL(x) for x > y

The constant A in front can be calculated by using the discontinuity of x-derivative

at x = y.

~2

2m∗

 ∂G(+)(x; y)
∂x

]
x=y+0

− ∂G(+)(x; y)
∂x

]
x=y−0

 = 1

This gives

A(ϕ′L(y)ϕR(y)− ϕ′R(y)ϕL(y)) =
2m∗

~2
,

where the terms inside the parentheses is the constant Wronskian. Calculation of this

at the left x = y < x
(b)
L gives A = −i/~t0.

G(+)(x; y) = − i

~t0
ϕR(x<)ϕL(x>) . (2.11)
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The solution of the wavefunction on the main line can now be written down.

First note that in Eq. (2.10), the term containing the Green function can have only

outgoing waves ifG(+) is used. In that case, all incoming waves should appear in ψ0.

As a result we have ψ0 = a0ϕL + a′0ϕR. The wavefunction ψ(x) is

ψ(x) = a0ϕL(x) + a′0ϕR(x)− i~
∑

j

G(+)(x;xj)γjθj .

Since θj depends on ψ(xj) (Eq. (2.9)), we need to solve this equation. To simplify the

notation we first define θ0j as

θ0j = γjψ0(xj) + i(aj + a′j) ,

and note that θ0j depends only on incoming wave amplitudes. Using this, we get the

following set of N equations,

θ` = θ0` − i~
∑

j

γ`G
(+)(x`, xj)γjθj .

Let us now define an N ×N matrix Γ`j as

Γ`j = δ`j + i~γ`G
(+)(x`, xj)γj = δ`j +

γ`γj

t0
ϕR(xj<)ϕL(xj>)

= δ`j +
1
t0
fRj<fLj> ,

where fRj = γjϕR(xj) , fLj = γjϕL(xj)

The final solution is θj =
∑

`

(
Γ−1

)
j`
θ0` from which we will obtain all scattering

amplitudes. The inverse of Γ, has a very simple form (this is shown in Appendix A)

which is

(
Γ−1

)
`j

= δ`j −
1
td
qRj< qLj> ,

where

qL = Γ−1fL , qR = Γ−1fR , td = t0 − fT
RΓ−1fL .
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2.4 The scattering matrix of the system

First look at the behavior of ψ(x) for x < x
(b)
L .

ψ(x) = ψ0(x)− i~
∑
j`

G(+)(x;xj)γj

(
Γ−1

)
j`
θ0`

= a0ϕL(x) + a′0ϕR(x)− 1
t0
ϕR(x)

∑
j`

fLj

(
Γ−1

)
j`
θ0`

= a0ϕL(x) +

(
a′0 −

1
t0

∑
`

qL`θ0`

)
ϕR(x)

=
1

√
vL
a0e

ikLx +
1

√
vL

(
r0a0 + t0a

′
0 −

∑
`

qL`θ0`

)
e−ikLx

Therefore we have

b0 = r0a0 + t0a
′
0 −

∑
`

qL`
θ0` .

We do the same thing for x > x
(b)
R and in this case we get

b′0 = t0a0 + r′0a
′
0 −

∑
`

qR`
θ0` .

The equations (2.6,2.7) give us the outgoing amplitudes at the additional lines as

follows

bj = −aj − i
(
Γ−1

)
j`
θ0` , b′j = −a′j − i

(
Γ−1

)
j`
θ0`

Finally, θ0` depends only on the incoming wave amplitudes through

θ0` = a0fL` + a′0fR` + i(a` + a′`) .

From these expressions we can read off the scattering matrix elements as follows.

First scattering amplitudes for the main line

td = SLR = SRL = t0 − fT
L Γ−1fR = t0 − qT

LfR = t0 − qT
RfL , (2.12)

SLL = r0 − fT
L Γ−1fL = r0 − qT

LfL , (2.13)

SRR = r′0 − fT
RΓ−1fR = r′0 − qT

RfR . (2.14)

We will use the symbol td for the amplitude SLR and call it the direct transmission
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amplitude. For the scattering into and between the additional lines we have

SLj = SLj′ = SjL = Sj′L = −iqLj , (2.15)

SRj = SRj′ = SjR = Sj′R = −iqRj , (2.16)

Sj` = Sj′`′ = −δj` +
(
Γ−1

)
j`

, (2.17)

Sj`′ = Sj′` =
(
Γ−1

)
j`

. (2.18)

Note that j and j′ denote the negative and positive axes respectively on line-j. These

two directions are entirely equivalent for scattering. Therefore if an inversion is taken

on line-j (i.e., j is switch with j′) then the scattering matrix should remain invariant.

This symmetry can be seen in the expressions above.

For example, for the scattering between two different additional lines j and `

(j 6= `), the scattering amplitude is

− 1
td
qRj< qLj>

independent of the directions the wave comes and goes. If a wave coming from line-j

is scattered back into the same line (perhaps through passing to the main line) then

the transmission amplitude is

(Γ−1)jj = 1− 1
td
qLjqRj

and the reflection amplitude is

−1 + (Γ−1)jj = − 1
td
qLjqRj

Note also that the S-matrix has to be unitary. [4] An interesting question is this:

Which properties should the Γ matrix satisfy so that the resultant S-matrix is unitary?

It appears that the following equations

ϕL(x)∗ = r∗0ϕL(x) + t∗0ϕR(x) ,

ϕR(x)∗ = t∗0ϕL(x) + r′∗0 ϕR(x) ,

which are also satisfied by fL and fR, are the only ones we need. From here, it can be

shown that Γ-matrix and its inverse satisfy

Γ + Γ† − 2I = fLf
†
L + fRf

†
R ,

Γ−1 + (Γ†)−1 − 2Γ−1(Γ†)−1 = qLq
†
L + qRq

†
R .

Unitarity of S-matrix follows from these.
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2.5 Probabilities of the system

We will be using mostly the transmission probabilities. The direct transmission prob-

ability is Td = |td|2. The transmission probability from left lead to a direction in line-j

and the corresponding quantity for the right lead are

TLj = |qLj |2 ,

TRj = |qRj |2 .

The transmission probabilities between two different lines j and ` can be expressed

in terms of the quantities above

Tj` =
∣∣∣∣ 1td qRj< qLj>

∣∣∣∣2 =
TRj< TLj>

Td
.

In other words, knowing the transmission probabilities for the main line, we can

determine these probabilities between the additional lines.

2.6 Conductance of the system

Suppose that the leads of the main line have electrostatic potentials WL and WR.

We are going to assume that both directions on the additional lines are at the same

potential Wj . The differences in chemical potentials are related to these potentials by

µL − µR = (−e)(WL −WR) etc.

The current that enters from the lead α and go to the lead β can be expressed as

Iα→β = 2
(−e)
h

(µα − µβ) =
2e2

h
(Wα −Wβ) = G0(Wα −Wβ) ,

where G0 is the conductance quantum. Form these we can get expressions for the

total current going into a lead.

IL = G0

Td(WL −WR) +
∑

j

2TLj(WL −Wj)

 ,

IR = G0

Td(WR −WL) +
∑

j

2TRj(WR −Wj)

 ,

Ij = Ij′ = G0

[
TLj(Wj −WL) + TRj(Wj −WR) + Tjj′(Wj −Wj)

+
∑
` 6=j

2T`j(Wj −W`)

 ,
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The total current going in has to be zero: IL +IR +
∑

j 2Ij = 0. Also, all the potentials

Wα can be shifted by a constant amount, Wα → Wα + δW , and this does not change

the value of currents. Due to this we can choose one of the potentials (such as WR) to

be 0 (grounding).

Since additional lines are only imaginary, we require them to carry no current,

Ij = 0. In this way, if electrons go into one of these lines, same number of electrons

come back. In that case we have IL = −IR = I , the current passing from the device.

We will suppose that WR = 0 and express all other potentials in terms of WL.

The equation that expresses that the current entering into line-j being zero is

TLjWL =

TLj + TRj + 2
∑
` 6=j

T`j

Wj − 2
∑
` 6=j

Tj`W` .

The terms inside the parentheses is equal to (by the unitarity of S-matrix)

1− |Sjj |2 −
∣∣Sjj′

∣∣2 =
(
qLjqRj

td

)
+
(
qLjqRj

td

)∗
− 2

TLjTRj

Td
= mj − 2

TLjTRj

Td
.

We are going to define a new N ×N matrix, P , with

Pj` = mjδj` − 2
TRj<TLj>

Td
.

It is a symmetric matrix with real elements which also satisfies (because of the way

the diagonal elements are defined)

∑
`

Pj` = TLj + TRj .

Using this matrix, we can find the potentials Wj ,

Wj

WL
=
∑

`

P−1
j` TL` .

Using these, the dimensionless conductance can be expressed as

g =
I

G0WL

= Td + 2
∑

j

TLj − 2
∑
j`

TLjP
−1
j` TL`

= Td + 2
∑
j`

TRjP
−1
j` TL`
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2.7 The continuum version

We are now going to pass from the discrete model solved above to a continuum

model where the additional lines are infinite in number and they are distributed uni-

formly to every position. Still, we may want to keep a finite range for the positions

where these lines are in contact with the main line. For this reason, we will suppose

that the region where decoherence occurs is on the interval between positions xD
L and

xD
R .

Second, we are going to make a connection with the previous discrete problem.

So, we are going to select N points uniformly within the decoherence interval.

xD
L ≤ x1 < x2 < · · · < xN ≤ xD

R .

We are not going to specify how these points are chosen, but in N → ∞ limit, they

should fill out the whole interval. Let ∆xj be the length of interval where the point

xj corresponds to. A possible choice might be ∆xj = xj+1 − xj and ∆xN = xD
R − xN

if x1 = xD
L . Another possibility is choosing xj in the middle of each subinterval of

length ∆xj . In all cases, we should have
∑

∆xj = (xD
R − xD

L ).

We are going to define gj , the coupling strength to line-j, by

gj = g(xj)
√

∆xj , (2.19)

where g(x) is a real function defined on the decoherence interval. It has dimensions

of Energy×Length1/2. Similarly, the potential of line-j, Vj , has to be chosen as a

continuous function of position of contact, xj . Let V̂ (x) denote this function, i.e.,

Vj = V̂ (xj). The velocity at line-j, vj , will then be

vj = v(xj) =
√

2(E − V̂ (xj))/m∗ .

Then we will define γ(x) function as

γ(x) =
g(x)

~
√
v(x)

,

and the coefficients γj becomes γ(xj)
√

∆xj . For this reason, the function γ(x) has

the dimensions of Time−1/2.

It is natural to define the two functions fL(x) and fR(x) as

fL(x) =
g(x)ϕL(x)
~
√
v(x)

, fR(x) =
g(x)ϕR(x)
~
√
v(x)

.
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In that case we have fLj = fL(xj)
√

∆xj and fRj = fR(xj)
√

∆xj . The functions

fL,R(x) have the dimensions Length−1/2, but fL,Rj are dimensionless.

The Γ matrix is defined in the usual way as

Γj` = δj` +
1
t0
fRj<fLj> = δj` +

1
t0
fR(xj<)fL(xj>)

√
∆xj∆x`

We are interested in obtaining a functional form for the Γ matrix. Note that in dis-

crete form, Γ−1 is applied to the vectors which have
√

∆x factors in all of their el-

ements. For this reason, let us investigate the general relation aj = Γj` b` where

aj = a(xj)
√

∆xj and bj = b(xj)
√

∆xj .

a(xj)
√

∆xj = b(xj)
√

∆xj +

√
∆xj

t0

∑
`

fR(x<)f(x>) b(x`)∆x` .

Eliminating the common factors in square roots we get a functional equation

a(x) =
∫

Γ(x; y)b(y)dy ,

where

Γ(x; y) = δ(x− y) +
1
t0
fR(x<)fL(x>) . (2.20)

Therefore we are going to define functions qL(x) and qR(x) (defined only on the

decoherence interval) by

fL,R(x) =
∫

Γ(x; y)qL,R(y)dy . (2.21)

Using these we have qLj = qL(xj)
√

∆xj etc. Similarly the inverse of Γ function can

be expressed as

Γ−1(x; y) = δ(x− y)− 1
td
qR(x<)qL(x>) ,

where

td = t0 −
∑

j

qRjfLj = t0 −
∫
qR(x)fL(x)dx .

The reflection amplitudes can also be expressed in the same form.

The transmission probabilities are

TLj = |qL(xj)|2 ∆xj = TL(xj)∆xj , TRj = |qR(xj)|2 ∆xj = TR(xj)∆xj .

It is good that the probabilities turn out to be proportional to the interval length.

Note that the line-j takes care of the decoherence on that interval. The transmission

between two different intervals

Tj` =
|qR(x<)|2 |qR(x>)|2

Td
∆xj∆x` =

TR(x<) TL(x>)
Td

∆xj∆x`
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is also proportional to both of the lengths of the corresponding intervals.

Next, note that

mj = 2Re
qR(xj)qL(xj)

td
∆xj = M(xj)∆xj .

The matrix elements of P becomes

Pj` = δj`M(xj)∆xj − 2
TR(x<)TL(x>)

Td
∆xj∆x` .

This matrix looks different from Γ in the way it contains interval lengths. But still we

can define a function form

P (x; y) = M(x)δ(x− y)− 2
TR(x<)TL(x>)

Td
.

So, if W (xj) denotes the electrostatic potential on line-j, we have

TL(x) =
∫
P (x; y)

W (y)
WL

dy .

P (x; y) also satisfies the equation∫
P (x; y)dy = TL(x) + TR(x) .

Finally, it can be shown that the dimensionless conductance g can be expressed

as

g =
I

G0WL

= Td + 2
∫
TL(x)dx− 2

∫ ∫
TL(x)P−1(x; y)TL(y)dxdy

= Td + 2
∫ ∫

TR(x)P−1(x; y)TL(y)dxdy

where P−1(x; y) is the inverse of P (x; y)∫
P−1(x; y)P (y; z)dy = δ(x− z) .

2.8 Small decoherence rate

In here we will assume that the coupling strength expression g(x) is small, so that we

can expand all relevant quantities in g(x). Mostly we will be interested in the lowest

order term. The functions fL and fR are of first order in g. The Γ function-matrix is

Γ(x; y) = δ(x−y)+ 1
t0
fR(x<)fL(x>) , Γ−1(x; y) ≈ δ(x−y)− 1

t0
fR(x<)fL(x>) .

27



From here we get qL ≈ fL and qR ≈ fR where the omitted terms are of third order.

The direct transmission amplitude is

td ≈ t0 −
∫
fL(x)fR(x)dx .

The direct transmission probability becomes

Td ≈ |t0|2
(

1−
∫
fL(x)fR(x)

t0
dx−

∫
f∗L(x)f∗R(x)

t∗0
dx

)
.

Note that

M(x) = 2 Re
qR(x)qL(x)

td
≈ 2 Re

fR(x)fL(x)
t0

,

which is of second order, as a result we can express Td as

Td ≈ |t0|2
(

1−
∫
M(x)dx

)
.

The transmission probability densities to the additional lines are

TL(x) ≈ |fL(x)|2 , TR(x) ≈ |fR(x)|2 ,

which are of second order. Therefore, the P matrix-function

P (x; y) = M(x)δ(x− y)− 2
Td
TR(x<)TL(x>) ,

has at least a second order term as the first term and a fourth order term in the last

term. For this reason, we might need to calculate M(x) to fourth order as well. Let

us consider the problem in the following way. Write the matrix as P = P1 +P2 where

P1 = M(x)δ(x− y) and P2 is the remaining term. Inverse of P is

P−1 = P−1
1 − P−1

1 P2P
−1
1 + P−1

1 P2P
−1
1 P2P

−1
1 − · · ·

Since P−1
1 = M(x)−1δ(x− y), we have∫ ∫

TR(x)P−1(x; y)TL(y)dxdy =
∫
TR(x)TL(x)

M(x)
dx−

∫ ∫
TR(x)P2(x; y)TL(y)

M(x)M(y)
dxdy+· · · ,

where the first term is of second order and the second one is of fourth order. We keep

the first term only. For this reason, we don’t need to calculate the higher order terms

in M(x). The result for the dimensionless conductance is

g = |t0|2
(

1−
∫
M(x)dx

)
+ 2

∫
TR(x)TL(x)

M(x)
dx .
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2.9 Summary

Here we summarize the steps of a numerical computation.

• A potential V (x) has to be chosen and the solutions ϕL,R of the Schrödinger

equation at a selected energy E have to be obtained. We will use ϕ̃L,R =
√
vLϕL,R which are dimensionless. Through the solutions, we will also obtain

the scattering matrix of the “bare” main line, the amplitudes r0, r′0 and t0; but

we will need only the transmission amplitude t0.

• A decoherence interval (from xD
L to xD

R ) has to be chosen and a function γ̃(x)

has to be defined on this interval. γ̃(x) has the dimensions of Length−1/2. It is

related to g(x) through the relation γ̃(x) = g(x)/~
√
v(x)vL. We will ignore the

energy dependence of γ̃ and for all energies, E, use the same function.

• For the calculation, we will divide the interval [xD
L , x

D
R ] intoN subintervals each

with length ∆xj and positioned at xj . We will choose N to be large enough so

that each subinterval is smaller than the wavelength of solutions (or smallest

length scales associated with the wavefunctions ϕ̃L,R).

• We are going to define N × 1 column matrices fLj and fRj by

fLj = γ̃(xj)ϕ̃L(xj)
√

∆xj , fRj = γ̃(xj)ϕ̃R(xj)
√

∆xj ,

• We will construct the Γ matrix by

Γj` = δj` +
1
t0
fRj<fLj> .

• We will obtain N × 1 column matrices qLj and qRj by qL = Γ−1fL and qR =

Γ−1fR.

• The direct transmission amplitude will be calculated by using td = t0 − qT
RfL

and the associated probability by Td = |td|2.

• The transmission probabilities from the left and right leads to the additional

lines will be obtained by TLj = |qLj |2 and TRj = |qRj |2. Also, we will find mj

by

mj = 2Re
qRjqLj

td
.
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• We will define a matrix P by

Pj` = mjδj` −
2
Td
TRj<TLj> .

• Finally, the dimensionless conductance will be calculated by

g = Td + 2T T
RP

−1TL . (2.22)
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CHAPTER 3

RESULTS AND CONCLUSIONS

In this work we apply our model of continuum decoherence for the free particle, the

single rectangular barrier, and the double barrier case in a one dimensional wire at

mesoscopic scales. Incident electrons are described by plane waves. By appropriately

defining length and energy scales, the Schrödinger equation can be written as

−d
2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) .

We are going to work with this equation in this chapter. We consider potentials with

V (x → −∞) = V (x → +∞) so that kL = kR and υL = υR. In this case 1√
υL

for ϕL

and ϕR can be absorbed into γ, i.e.,

ϕ̃L =
√
υLϕL =


(
eikx + r0e

−ikx
)

for x→ −∞(
t0e

ikx
)

for x→ +∞

ϕ̃R =
√
υLϕR =


(
t0e

−ikx
)

for x→ −∞(
e−ikx + r′0e

ikx
)

for x→ +∞

γ̃j = γj√
υL

so fR,j = γ̃jϕ̃R(xj). In this case ϕ̃L,R and γ̃ are dimensionless. Calculating

fR,j and fL,j we will get

Γj` = δj` +
1
t0
fRj<fLj> .

Then we will calculate

qL = Γ−1fL

and

qR = Γ−1fR.
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Next step is calculating

TLj = |qLj |2

and

TRj = |qRj |2

and from here

td = t0 − qT
RfL.

Then we will find

Td = |td|2

and

mj = 2Re
qRjqLj

td

to construct the matrix P

Pj` = mjδj` −
2
Td
TRj<TLj> .

Finally we will get conductance as

g = Td + 2T T
RP

−1TL .

All the details about these calculations are shown in Chapter 2.

3.1 Free particle case

First, we apply the decoherence model to free particles where there is no scatterer. A

decoherence interval with length L is chosen and γ̃(x) is defined on this interval for

the chosen N points. By taking N large enough we guarantee that each subinterval is

smaller than the wavelength of the solutions. γ̃(x) is related to g(x), which shows the

coupling strength to the additional lines, through the relation γ̃(x) = g(x)/~
√
v(x)vL.

Decoherence interval from xD
L to xD

R shown in Fig. 3.1. For simplicity, we take γ̃(x)

to have the constant value D/L over the decoherence interval of length L. Here D is

D =
∫
γ̃dx.

In Fig. 3.2 conductance versus kFL graph for D=1 is shown. Because of wave

nature we see oscillations at the right part of the graph. In Fig. 3.3 conductance
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Figure 3.1: V=0 everywhere. A decoherence interval is chosen and γ̃(x) is defined on
this interval.
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Figure 3.2: Conductance versus kF L for D=1.
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Figure 3.3: Conductance versus kF L for different D values. D gets values 0.1, 0.2, 0.4,
0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3 from top to bottom.
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Figure 3.4: Conductance versus D for kF L smaller than 1. kF L gets values 0.1, 0.2,
0.3, 0.5 from bottom to top.
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Figure 3.5: Conductance versus D for kF L bigger than 1. kF L gets values 1, 2, 4, 10
from top to bottom.

versus kFL graph for different D values is shown. It can be seen that although the

conductance depends on kFL, this dependence is very weak. For that reason, the

value of D determines the value of the conductance in a rough way.

In Fig. 3.4 conductance versus D graph for different kFL values are shown. In

this graph kFL values are smaller than 0.5 and the conductance is increasing as kFL

is approaches to approximately 0.5. But the situation is reversed when kFL is bigger

than 0.5. We see in Fig. 3.5 that the conductance is decreasing as kFL is increasing in

that case.

3.2 Single rectangular barrier case

Next, we investigate the case where the scatterer is a single rectangular barrier. The

potential felt by the electrons is shown in Fig. 3.6. Electron waves tunnel through

the single rectangular barrier. Wave amplitudes are calculated by just matching the

wave functions and their derivatives at the barrier’s boundaries. Once we get the

wavefunctions ϕL and ϕR, we again apply the same procedure to obtain conductance

g.
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Figure 3.6: Single rectangular barrier case.
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Figure 3.7: Conductance vs EF graph for different D values. D gets values 0, 1, 1.5,
2, 2.5 from top right to bottom right.
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Figure 3.8: Conductance vs kFw graph for different D values and for some fixed
E(< V0). D gets values 0.1, 0.5, 1, 1.5, 2 from top left to bottom left.
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Figure 3.9: Conductance vs D graph for E = 0.25, 1, 2(< V0 = 2.5) from top left to
bottom left.
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In Fig. 3.7 conductance versusEF graph is depicted for different D values. Fig. 3.7

shows that after the tunnelling region and including some parts of the tunnelling re-

gion, as decoherence increasing the conductance g decreases. But in low energy part

of the tunnelling region as decoherence increasing the conductance g also increases.

As we see decoherence also effects the tunnelling transmission.

Fig. 3.8 shows how the width of the barrier effects the conductance for some fixed

E(< V0). In Fig. 3.8 conductance versus kFw graph is shown for different D values

and E = 2(< V0 = 2.5). We see that as decoherence is increasing the conductance

g is decreasing and also the conductance g is getting smaller as the width of the

barrier is getting bigger. Finally, Fig. 3.9 shows conductance versus D graph for E =

0.25, 1, 2(< V0 = 2.5).

3.3 Double barrier case

Finally, we investigate a scatterer formed by two rectangular barriers. Electron waves

tunnel through the left and right barriers via a well-like region with length L. The

potential felt by the electrons is depicted in Fig. 3.10. In the well, the electron wave

experiences multiple reflections due to the barriers and then the wave tunnels out the

right barrier. Transfer matrix method is used to calculate the reflection and transmis-

sion coefficients. The barriers’ transfer matrices are obtained by matching the wave

functions and their derivatives at the boundaries. From here we get the transmission

and reflection amplitudes. Once we get the transmission probability we apply our

procedure mentioned in Chapter 2 to get the conductance g.

Fig. 3.11 shows conductance versusEF graph for different D values for the double

barrier case. As can be seen in the figure, the conductance decreases with the increase

in decoherence. D=0 case is shown at the top. The peaks seen in the tunnelling region,

where the energies are smaller than V0 = 2.5, are due to resonant transmission. In this

region we see that decoherence makes the constructive interference of electron waves

disappear. As a result, we see that the conductance, i.e., the electron transmission,

is suppressed by dephasing. Similarly, after that region we see that conductance is

suppressed by dephasing.

Fig. 3.12 shows conductance versus D graph for EF = E1 = 0.96 and for EF =

E2 = 1.41 which is the second maximum and second minimum at Conductance vs
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Figure 3.10: Double barrier case.
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Figure 3.11: Conductance vs EF graph for different D values. D gets values 0, 0.3,
0.5, 0.7, 0.9 from top right to bottom right.
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Figure 3.12: Conductance vs D graph for EF = E1 = 0.96 which is the second
maximum at Conductance vs EF graph for different D values(Fig. 3.11) and for
EF = E2 = 1.41 which is the second minimum in the same Fig. 3.11.

EF graph for different D values (Fig. 3.11).

3.4 Discussions and Conclusions

In this work we have numerically investigated our continuum model for decoher-

ence in 1D transport through a mesoscopic wire. The dephasing effects in 1D trans-

port had been investigated by extending Büttiker dephasing model, which is a con-

ceptually simple model to simulate the dephasing effect in 1D transport through a

mesoscopic system by coupling an electron reservoir to the conductor. In our model

decoherence proceeds at every location. To achieve that we coupled 2N electron

reservoirs to the conductor by 2N channels and we took N −→ ∞ limit to obtain

the continuum case. In the reservoirs, inelastic events and phase randomization take

place. Electrons can go to equilibrium in those channels but will eventually return

back into the conductor. However, they will have lost phase coherence with the elec-

trons in the conductor.

Decoherence mainly prevents wave interference. Depending on whether the in-
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terference increase or decrease the transmission probability, decoherence may de-

crease or increase the conductance. So, if constructive interference is present in the

forward direction, decoherence will prevent that and decrease the conductance. Oth-

erwise, if destructive interference is effective in the forward direction, then decoher-

ence increases the conductance. But as a rough guide we can give the following rule:

When the transmission probability is roughly below 0.1, decoherence increases the

conductance. Otherwise, if the transmission probability is above 0.1, then decoher-

ence decreases the conductance.

Our model is more consistent with the prevalent notions of decoherence since

the placement of the single scatterer in Büttiker’s model effects the electron trans-

mission. In Büttiker’s model, voltage probe is placed at a single chosen point. This

corresponds to a small decoherence interval, for example in the middle of a double

barrier as shown in Fig. 3.13.[17] Consider the conductance versus energy graph of

this sytem for D=0, which is shown in Fig. 3.14. Let us consider the two possible

Fermi energies, EF = 0.2501 and EF = 0.9700 which corresponds to the first two

resonant transmission maxima. Conductance versus D graphs for these energies are

plotted in Fig. 3.15. It can be seen that for EF = 0.2501, the decoherence is very ef-

fective and the conductance decreases quite rapidly with increasing D. On the other

hand, for EF = 0.9700, although the conductance depends on D, it decreases much

more slowly.

The main reason for such a different behavior is shown in Fig. 3.16 and Fig. 3.17

where the left incident wavefunctions are plotted. For EF = 0.2501, the wavefunc-

tion shown in Fig. 3.16 has a peak at the location of the voltage probe. Therefore,

the electrons at the Fermi level couple strongly to the probe. On the other hand, for

EF = 0.9700, the wavefunction shown in Fig. 3.17 has almost a node at the middle.

Therefore, it couples weakly to the probe. As a result, decoherence appears to be very

effective for the first and ineffective for the second.

In general, the detailed behavior of the wavefunctions at the point the voltage

probe is placed is very important. And, usually it is possible to obtain conductance

features that depends on the placement of the probe, which might appear contrary

to intuition. If decoherence proceeds in a wide region, such artificial features will

disappear. For example, in our model, the conductance versus D graph for EF =
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Figure 3.13: Büttiker’s model for decoherence.
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Figure 3.14: Conductance vs EF graph for D=0 in Büttiker’s model.

0.9700 is shown in Fig. 3.12 where it is seen that, g indeed decreases quite rapidly

with increasing D.

In summary, we have proposed a model to address the significant dephasing ef-

fects in 1D transport. And we have observed that dephasing can dramatically change

the conductance of a conductor since it effects the transmission probability of the

electron waves.
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Figure 3.15: Conductance vs D graph for E=0.25 and 0.97 the first and the second
maximum in Fig. 3.14.
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Figure 3.16: Position vs real and imaginary parts of the wavefunction for E=0.25
first maximum in Fig. 3.14. Solid line, real part of the wavefunction; dotted line,
imaginary part of the wavefunction.
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Figure 3.17: Position vs real and imaginary parts of the wavefunction for E=0.97
second maximum in Fig. 3.14. Solid line, real part of the wavefunction; dotted line,
imaginary part of the wavefunction.
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APPENDIX A

INVERSE OF MATRICES OF A SPECIAL TYPE

Consider an N ×N matrix of the form

Fnm = δnm + λsn<bn> ,

where sn and bn are arrays of size N . We will consider s and b as N dimensional

column vectors. The matrix F looks like,

F =


1 + λs1b1 λs1b2 λs1b3 · · ·

λs1b2 1 + λs2b2 λs2b3 · · ·

λs1b3 λs2b3 1 + λs3b3 · · ·
...

...
...

. . .


Note that F is symmetric: F T = F . We will show below that the inverse of F , if it

exists, is of the same form.

First, consider the matrix F ′ = F − λsbT . Its matrix elements and its matrix are

F ′
nm =

 δnm if n ≤ m ,

λ(smbn − snbm) if n > m ,

F ′ =


1 0 0 · · ·

λ(s1b2 − s2b1) 1 0 · · ·

λ(s1b3 − s3b1) λ(s2b3 − s3b2) 1 · · ·
...

...
...

. . .


In other words, F ′ is lower triangular and all of its diagonal elements is 1. In that

case the inverse (F ′)−1 exists, is lower triangular and all of its diagonal elements are
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one. If F is invertible, (F ′)−1 can be written as

(F ′)−1 = (F − λsbT )−1 =
(
F (I − λF−1sbT )

)−1
= (I − λF−1sbT )−1F−1

= F−1 + λF−1sbTF−1 + λ2F−1sbTF−1sbTF−1 + · · ·

= F−1 + λ(1 + λα+ λ2α2 + · · · )F−1sbTF−1

= F−1 +
λ

1− λα
F−1sbTF−1

= F−1 − λ′s′b′T

where

α = bTF−1s , s′ = F−1s , b′ = F−1b , λ′ = −λ/(1− λα) . (A.1)

Finally we use the fact that ((F ′)−1)nm = δnm for n ≤ m to find (F−1)nm = δnm +

λ′s′nb
′
m. Using the symmetry of F we get

(F−1)nm = δnm + λ′s′n<
b′n>

. (A.2)

Note that if the dimension N is large, the lower triangular matrix F ′ can be used

for faster numerical calculations of s′ and b′ by

s′ = (1− λα)(F ′)−1s ,

b′T = (1− λα)bT (F ′)−1 ,

(1− λα) =
(
1 + λbT (F ′)−1s

)−1
.

Second, if another diagonal matrix is contained in F instead of identity, the same

results can be obtained. For

Fnm = fnδnm + λsn<bn> ,

the inverse is given by

F−1
nm =

1
fn
δnm + λ′s′n<

b′n>
,

where λ′, s′, b′ and α can be calculated by using the expressions in Eq. (A.1). They

can also be calculated by using the triangular matrix as shown above.
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