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ABSTRACT 

 
 

USE OF THE AMBIGUITY FUNCTION TECHNIQUE  

FOR 

TARGET DETECTION 

IN 

PHASE CODED CONTINUOUS WAVE RADARS 

 
 
 

ÇANKAYA, Erkan 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gönül Turhan Sayan 

 

December 2005, 138 pages  

 

 

 

 

The goal of this thesis study is to investigate the Ambiguity Function Technique for 

target detection in phase-coded continuous wave radar. Also, phase shift keying 

techniques are examined in detail. 

 

Continuous Wave (CW) Radars, which are also known as Low Probability of 

Intercept (LPI) radars, emit continuous signals in time which are modulated by 

either frequency modulation or phase modulation techniques. Modulation of the 

transmitted radar signal is needed to estimate both the range and the radial velocity 

of the detected targets. In this thesis, Phase Shift Keying (PSK) techniques such as 

the Barker codes, Frank codes, P1, P2, P3, P4 codes will be employed for radar 

signal modulation. The use of Ambiguity Function, which is a non-linear Time-



v 

Frequency Representation (TFR), for target detection will be investigated in phase-

coded CW radars for different target scenarios.  

 

Keywords: Radar Target Detection, Phase Coded CW Radar, PSK Techniques, 

Ambiguity Function. 
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ÖZ 

 
 

EVRE KODLAMALI SÜREKLİ DALGALI RADARLARDA  

HEDEF TESBİTİ İÇİN BELİRSİZLİK FONKSİYONU  

TEKNİĞİNİN KULLANILMASI. 

 

 
 

ÇANKAYA, Erkan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gönül Turhan Sayan 

 

Eylül 2005, 138 sayfa  

 

 

 

 

 

Bu tez çalışmasının amacı evre kodlamalı sürekli radarlarda hedef tespiti için 

belirsizlik fonksiyonu tekniğinin kullanımının ve evre kodlama tekniklerinin 

ayrıntılarıyla incelenmesidir.  

Yakalanma Olasılığı Düşük radarlar olarak da bilinen Sürekli Dalgalı radarlar, 

sıklığı ya da evresi kiplenmiş zamanda sürekli işaretler yayarlar. Radar hedeflerinin 

uzaklık ve hız bilgilerinin kestirimi için yayılan radar işaretinin kiplenmesi 

gereklidir. Bu tezde, Barker kodu, Frank kodu, P1, P2, P3, P4 kodları gibi Evre 

Kodlama Teknikleri kullanılacaktır. Bu tür evre kodlamalı sürekli dalgalı radar 

sistemlerinde hedef tesbiti için ise, doğrusal olmayan bir zaman-frekans tekniği 

olan Belirsizlik Fonksiyonunun kullanımı incelenecektir.  
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Anahtar Kelimeler: Radarlarla Hedef Tespiti, Evre Kodlamalı Sürekli Dalgalı 

Radar, PSK teknikleri, Belirsizlik Fonksiyonu. 
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CHAPTER I 

 
 

INTRODUCTION 

 
 

The word radar is an abbreviation for RAdio Detection And Ranging. In general, 

radar systems use modulated waveforms and directive antennas to transmit 

electromagnetic energy into a specific volume in space to search for targets. It 

consists fundamentally of a transmitter, a receiver, an antenna, and an electronics 

system to process and record the data. Objects (targets) within a search volume will 

reflect portions of this energy (radar returns or echoes) back to radar. These echoes 

are then processed by the radar receiver to extract target information such as range, 

velocity, angular position, and other target identifying characteristics [1, 2]. 

The time delay between the transmitted and reflected signals determines the 

distance (or range) to the target. The speed of a target to be measured using the 

Doppler effect in radar applications. When a signal from a radar is scattered by a 

target, its frequency is changed in proportion to the speed of the target. By 

measuring this change in frequency, a Doppler radar is able to infer the target's 

radial speed. 

Radars can be classified as ground based, airborne, space borne, or ship based radar 

systems. They can also be classified into numerous categories based on the specific 

radar characteristics, such as the frequency band, antenna type, and waveforms 

utilized. Another classification is concerned with the mission and the functionally of 

the radar. This includes: weather, acquisition and search, tracking, track-while-scan, 

fire control, early warning, over the horizon, terrain following, and terrain 

avoidance radars [3]. 
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Radars are most often classified by types of waveforms they use, or by their 

operating frequency. Considering the waveforms first, radars can be Continuous 

Wave (CW) or Pulsed Radars (PR). 

Most widely used radar type is pulsed radar. Pulsed radars emit a series of quick 

signals instead of one continuous wave. Short (microsecond) high energy pulses are 

emitted, waited on for echo and the returning echoes are recorded. 

CW radars continuously emit electromagnetic energy. It must therefore receive the 

returned signal while it is transmitting. It is also necessary to employ two well-

isolated antennas, one for transmitting and one for receiving, to help further 

separate the signal transmitted from the signal reflected. Target radial velocity can 

be measured by using unmodulated CW radars. On the other hand, target range 

information can not be extracted without utilizing some form of modulation. Use of 

unmodulated CW radars is in target velocity search and track, and in missile 

guidance. 

The average power determines the detection characteristics of the radar. The CW 

radar has a low continuous power compared to the high peak power of the pulse 

radar but both can give the same detection performance. For high average power, a 

short pulse (high range resolution) transmitter must have a high peak power [4].  

Because of low peak power transmission characteristic CW radars are more difficult 

to intercept by an unprepared receiver. For this reason, CW waveforms are 

sometimes referred to as Low Probability of Intercept (LPI) waveforms. The term 

LPI is that property of a radar that, because of its low power, wide bandwidth, 

frequency variability, or other design attributes, makes it difficult for it to be 

detected by means of a passive intercept receiver.  

LPI modulation techniques include frequency modulation such as FMCW and 

frequency shift keying. Also used are phase modulation such as the polyphase codes 

Frank, P1, P2, P3, P4, and polytime codes T1, T2, T3, and T4, there are several 

trade-offs in the design of LPI emitters. The major question is how to get a 100 

percent duty factor and still get the desired range and velocity performance needed 

to perform the mission. 
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In this thesis, the phase modulated radars that include polyphase modulation 

(Polyphase Shift Keying, PSK) have been mainly investigated. Details are given in 

Chapter 3.  

The ambiguity function is a major tool for studying and analyzing radar signals. The 

ambiguity function ( )ντχ ,  describes that two-dimensional (delay τ and Doppler ν) 

response [5].  

The radar’s auto ambiguity function represents the output of the matched filter, and 

the cross auto ambiguity function describes the interference caused by range and 

Doppler of a target when compared to radar. Ambiguity analysis is important to 

understand the properties of the CW waveform and its effect on measurement 

accuracy, target resolution, ambiguities in range, and radial velocity, and its 

response to clutter. The ambiguity function and its details are given in Chapter 2 

which presents important properties of the ambiguity function.  

In FMCW radars, the received signal and the transmitted signal are multiplied by a 

mixer. The mixer output is passed through a low-pass filter to remove signal 

components centered about twice the carrier frequency. FFT processing is applied 

to output of low-pass filter then beat frequencies are obtained. Finally, range and 

velocity profile of a target can be computed from beat frequencies. Mixer-low pass 

filter implementation and Fast Fourier Transform processing is a conventional 

method for target detection in FMCW radars. Details of this conventional method 

are explained in literature.  

On the other hand, there is no conventional method for target detection in phase-

coded radars in literature. In this thesis, use of Ambiguity Function technique for 

target detection in phase-coded radars is discussed as an original problem, and the 

Ambiguity Function has been used as major tool for investigating different phase 

coding techniques. It is also used to determine the range and the Doppler 

information of the specific targets. Details of this technique are given in Chapter 4.  
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CHAPTER II 

 
 

RADAR AMBIGUITY FUNCTION ANALYSIS 

 
 

2.1 Introduction 

Radar ambiguity function, first introduced by Woodward in 1953 [6], is a basic 

mathematical tool for signal design and analysis. It can be used for characterizing 

radar performance in target resolution and clutter rejection. The periodic 

autocorrelation function (PACF) is introduced, and it is shown that CW signals can 

have a perfect PACF with zero side lobes. The periodic ambiguity function (PAF) is 

also introduced, to analyze the response of a matched filter that uses N  copies of 

the reference (transmitted) function to cross correlate the return CW signal and 

perform target detection.  

Basically, the radar ambiguity function represents the output of the matched filter, 

and it describes the interference caused by range or Doppler of a target when 

compared to a reference target equal Radar Cross Section (RCS). The ambiguity 

function evaluated at ( , ) (0,0)τ ν =  is equal to the matched filter output that is 

matched perfectly to the signal reflected from the target of interest. In other words, 

returns from the nominal target are located at the origin of the ambiguity function. 

Thus, the ambiguity function at nonzero τ  and ν  represents returns from some 

range and Doppler different from those for the nominal target. 

The ambiguity function is normally used by radar designers as a means of studying 

different waveforms. It can provide insight about how different waveforms may be 

suitable for the various radar applications. It is also used to determine the range and 
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Doppler resolutions for a specific radar waveform. The three-dimensional plot of 

the ambiguity function versus frequency and time delay is called the radar 

ambiguity diagram. The auto ambiguity function is defined as  

( ) ( ) ( ) ( )*, exp 2u t u t j t dtχ τ ν τ πν
∞

−∞

= +∫    (2.1) 

where u  is the complex envelope of the signal. A positive ν  implies a target 

moving toward to radar. Positive τ  implies a target farther from the radar than the 

reference position. 

Consequently, ambiguity analysis is important to understand the properties of the 

CW waveform and its effect on measurement accuracy, target resolution 

ambiguities in range, and radial velocity, and its response to clutter. In this thesis, 

the periodic autocorrelation function (PACF) is introduced, and it is shown that CW 

signals can have a perfect PACF with zero side lobes. The periodic ambiguity 

function is also introduced, to analyze the response of a matched receiver that uses 

N  copies of the reference (transmitted) function to cross correlate the return CW 

signal and perform target detection. The PAF is similar to the ambiguity function 

often used to represent the magnitude of the matched receiver output for a coherent 

pulse train. The cut of the PAF at zero Doppler ( 0ν = ) is the PACF, and cuts of the 

PAF along zero delay ( 0τ = ) yield the response of the correlation receiver at a 

given Doppler shift. 

In ambiguity analysis, the receiver is considered matched to a target signal at a 

given delay and transmitted frequency. The maximum of the ambiguity function 

occurs at origin ( )0, 0τ ν= = , and ( )0,0χ  is the output if the target appears at the 

delay and Doppler shift for which the filter was matched. The delay-Doppler 

response of the matched filter output is important for understanding the properties 

of the radar waveform. Ideally, the ambiguity diagram would consist of a diagonal 

ridge centered at the origin, and zero elsewhere. However, it is impossible to obtain.  

A narrowband signal can be written in the following form: 
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( ) ( )cos( ( ))cs t g t w t tφ= +     (2.2) 

Or, in terms of in-phase ( I ) and quadrature (Q ) components  

( ) ( ) cos( ) ( )sin( )I c Q cs t g t w t g t w t= −     (2.3) 

where 

( )g t  is the natural envelope of ( )s t  and ( )tφ  is the instantaneous phase, ( )Ig t  and 

( )Qg t  are the in-phase and quadrature components, respectively, given by 

( ) ( ) cos( ( ))Ig t g t tφ=      (2.4) 

( ) ( )sin( ( ))Qg t g t tφ=      (2.5) 

Define the complex envelope of the signal as 

( ) ( ) ( )I Qu t g t jg t= +      (2.6) 

Thus the narrowband signal can be expressed as a complex signal (also called 

analytic signal) 

{ }( ) Re ( ) exp( )cs t u t jw t=     (2.7) 

It is sufficient to deal with the complex envelope of a signal (to within a phase shift 

and constant factor).  

2.2 Main Properties of the Ambiguity Function 

The main properties of the ambiguity function are listed below. Note that, the first 

two properties assume that the energy E  of ( )u t  is normalized to unity [7, 8]. 

1) The maximum value for the ambiguity function occurs at ( , ) (0,0)τ ν =  and 

is equal to 1 (where it is normalized to unity by normalizing the signal energy). 
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( ) ( ), 0,0 1χ τ ν χ≤ =     (2.8) 

2) The ambiguity function is symmetric with respect to origin, 

( ) ( ), ,χ τ ν χ τ ν− − =     (2.9) 

This property suggests that it is sufficient to study and plot only two adjacent 

quadrants of the AF. The remaining two can be deduced from the symmetry 

property.  

3) The total volume under the ambiguity function is constant, if we assume that 

the energy of ( )u t  is normalized to unity, volume is 1. 

( )
2

, 1d dχ τ ν τ ν
∞ ∞

−∞ −∞

=∫ ∫     (2.10) 

Properties 1 and 3 imply that if we attempt to squeeze the ambiguity function to a 

narrow peak at the origin, the peak cannot exceed a value of 1, and the volume 

squeezed out of that peak must reappear somewhere else.  

4) If a given complex envelope ( )u t has an ambiguity function ( ),χ τ ν  that is, 

( )( ) ,u t χ τ ν⇔      (2.11) 

then adding linear frequency modulation (LFM), which is equivalent to a quadratic-

phase modulation, implies that 

( )2( )exp( ) ,u t j kt kπ χ τ ν τ⇔ −     (2.12) 
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2.3 Cuts of the Ambiguity Function along Delay and Doppler 
Axes 

If we set the Doppler shift to zero ( 0ν = ) i.e. cut along the delay axis, the 

ambiguity function becomes the autocorrelation function of the complex envelope 

( )u t  

( ) *,0 ( ) ( ) ( )u t u t dt Rχ τ τ τ
∞

−∞

= + =∫   (2.13) 

where ( )R τ  is the autocorrelation function (ACF) of ( )u t . We got that the zero-

Doppler cut of the AF, known as the range window for a matched-filter receiver, is 

the ACF. On the other hand, the ACF equals the inverse Fourier transform of the 

power spectral density. 

The second interesting cut is along the Doppler frequency axis. Setting 0τ = , the 

ambiguity function becomes the Fourier transform of the magnitude squared of the 

complex envelope ( )u t . In other words, this cut is indifferent to any phase or 

frequency modulation in ( )u t ; it is a function of the amplitude. 

( ) ( ) ( )
2

, exp 2u t j t dtχ τ υ πν
∞

−∞

= ∫    (2.14) 

The volume distribution of the ambiguity function (squared) in range and in 

Doppler is constrained by two more refined relationships [5]: 

( ) ( )
22

( , ) ,0 exp 2d j t dχ τ υ τ χ τ πν τ
∞ ∞

−∞ −∞

=∫ ∫  (2.15) 

( ) ( ) ( )
2 2

, 0, exp 2d j dχ τ ν ν χ ν πντ ν
∞ ∞

−∞ −∞

=∫ ∫  (2.16) 

Two properties at above demonstrate that if the main peak is squeezed along the 

delay axis, the volume must spread out in the Doppler domain, and when it is 

squeezed along the Doppler axis, the volume must spread in delay. Thus, close 
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target separability in one parameter is gained at the expense of spreading volume 

over a large interval of the other parameter. 

2.4 Periodic Autocorrelation Function 

CW waveforms can be called as LPI signals due to their low power characteristics. 

They are modulated by a periodic function, such as a phase code sequence or linear 

frequency ramp. CW waveforms can yield a perfect PACF when they are 

periodically modulated, this is their major advantage. As an example, if we consider 

a phase-coded CW signal with 
CN  phase codes each with subcode duration 

bt  

second. The transmitted CW signal has a code period  sc bT N t=  and a periodic 

complex envelope ( )u t  given as 

( ) ( )u t u t nT= +     (2.17) 

for 0, 1, 2, 3, 4......n = ± ± ± ± . The values of the PACF as a function of the delay τ  

(which are multiples of 
bt ) are given by 

( ) *

1

1
( ) ( )

cN

b

nc

R r t u n u n
N

τ
=

⋅ = +∑    (2.18) 

and ideally we would like a perfect PACF or  

( )
1,    0(mod )

0,    0(mod )
c

b
c

r N
R t

r N

=
= 

≠
    (2.19) 

The perfect PACF is obtained only for continuous signal. Finite duration signals, 

such as a pulse train, cannot achieve this ideal auto correlation since as the first 

sample (or last sample) enters (or leaves) the correlator, there is no sample that can 

cancel the product to yield a zero output. 
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2.5 Periodic Ambiguity Function 

The periodic ambiguity function (PAF) describes the response of a correlation 

receiver to a CW signal modulated by a periodic waveform with period T , when 

the reference signal is constructed from an integral number N  of periods of the 

transmitted signal. Thus, the reference signal is of duration NT . The response is a 

function of both delay and Doppler shift. The PAF is a two-dimensional 

generalization of the periodic autocorrelation function, by including the effect of 

Doppler shift. A major difference between the periodic autocorrelation and periodic 

ambiguity function is the significance of the number of periods N . In the 

autocorrelation case, the response of N  periods differs from the response of a 

single period, only by the factor .N  When Doppler is present, and has to be 

resolved, the ability to resolve it is a function of the duration of the reference signal, 

and the effect of N  on the response is more significant and complicated. However, 

the effect of N  is independent of the modulation waveform and of the delay [9]. 

When the reference signal is of duration NT , the response of the correlation 

receiver is the PAF for N  periods, which, after normalization, is defined by 

( ) ( ) ( ) ( )*

0

1
, exp 2

NT

NT u t u t j t dt
NT

χ τ ν τ πν= +∫  (2.20) 

where τ  is assumed to be a constant, and the delay rate of change is represented by 

the Doppler shift ν . The PAF for N  periods is related to the single – period 

ambiguity function by a universal relationship 

( )
sin( )

, ( , )
sin( )NT T

N T

N T

πν
χ τ ν χ τ ν

πν
=    (2.21) 

where  

( ) *

0

1
, ( ) ( )exp( 2 )

T

T u t u t j t dt
T

χ τ υ τ πν= +∫   (2.22) 
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is the single period ambiguity function. The single period ambiguity function is 

multiplied by a universal function of N  and T  that is independent of the complex 

envelope of the signal and does not change with τ . The PAF shows the effect of 

using a reference receiver consisting of N  code periods. From eqn. (2.21) it can be 

easily seen that for large number of code periods N , the PAF is increasingly 

attenuated for all values of ν  except at multiplies of 1
T

. It also has main lobes at 

0, 1, 2,....Tν = ± ± . Equation (2.21) also reveals that the PAF has relatively strong 

Doppler side lobes.  

Equation (2.21) suggests that it is sufficient to calculate the single-period PAF 

(2.22) and then multiply it by the function ( )sin ( sin )N T N Tπν πν  to get the N -

period PAF. The multiplying function is a function of the Doppler shift only. For 

8N =  universal function is plotted in Fig. 2.1. 

Figure 2.1 demonstrates the main reason for using a coherent train of N  pulses 

with a repetition interval T . Note that the Doppler resolution improves dramatically 

and becomes 1 NT : namely, the inverse of the coherently processed time duration, 

and it is practically independent of the original pulse waveform. The penalty is 

recurrent lobes at Doppler intervals of 1 T : namely, the inverse of the pulse 

repetition time. Because the function plotted in Fig. 2.1 multiplies an ambiguity 

function, which is two-dimensional, it may help to point out that what multiplies the 

ambiguity function is an extension of Fig. 2.1 to all delays, as demonstrated in Fig. 

2.2.  
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Figure 2.1: Function ( )sin ( sin )N T N Tπν πν  ( 8N = ) 

 

Figure 2.2: Extension of  ( )sin ( sin )N T N Tπν πν  to all delays ( 8N = ) 

1/NT 

Doppler axis = ν  

Tν  

τ  
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Note that for a large N , the PAF is compressed to zero all ν , except near 

,  0, 1, 2,....n n
T

ν = = ± ± . For infinitely large N , the PAF of a sequence exhibiting 

perfect periodic autocorrelation will strongly resemble the ambiguity function of a 

coherent pulse train. 

Now that we have the tool to analyze periodic signals, we apply it to a special 

family of CW signals, which yield perfect periodic autocorrelation, and find if and 

how this perfect response deteriorates due to Doppler shift.  

Periodic Ambiguity Function of the 16-element Frank phase-coded CW signal with 

1N =  period is given in Figure 2.1, and also Periodic Ambiguity Function of the 

16-element Frank phase coded CW signal with 16N =  periods is given in Figure 

2.2. The main difference between Figs. 2.3 and 2.4 is the improved Doppler 

resolution when 16N = .  

 

Figure 2.3: PAF of the 16-element Frank phase-coded CW signal with 1N =  
period. 
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Figure 2.4: PAF of the 16-element Frank phase-coded CW signal with 1N = 6 

periods. 

2.5.1 Periodicity of the PAF 

The cut along the delay axis is the periodic autocorrelation of the signal ( )u t : 

( ) ( )*

0

*

0

1
,0 ( ) 

1
                    ( ) ( )

NT

NT

T

u t u t dt
NT

u t u t dt
T

χ τ τ

τ

= +

= +

∫

∫

   (2.23) 

The cut along the Doppler axis (zero delay) is 

2 2

0

1
(0, ) ( )

NT
j t

NT u t e dt
NT

πνχ ν = ∫    (2.24) 
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For phase-modulated CW signals 

( )
( )sin

0,NT

NT

NT

πν
χ ν

πν
=    (2.25) 

for 0ν =  

( )0,0 1NTχ =    (2.26) 

For any integer n , the periodicity on the delay axis is  

( ) ( ), 0,NT NTnTχ ν χ ν=    (2.27) 

For the ν axis, for 0, 1, 2,...m = ± ±  

( ), ( , )NT NT
m mnT

T T
χ τ χ τ= +   (2.28) 

The symmetry cuts are a function of the three parameters: the code period T , the 

number of phase codes cN , and the number of code periods used in the correlation 

receiver N .  

2.5.2  Peak and Integrated Side Lobe Levels 

The time side lobe levels in the autocorrelation function (ACF) help quantify the 

LPI waveform in its ability to detect targets without interfering side lobe targets. 

That is, if the ACF has high side lobes, a second nearby target might be able to hide 

in a side lobe and go undetected. To quantify the LPI waveform characteristics, the 

peak side lobe level (PSL) of the ACF can be defined as  

( )

2

10 102 2

Max side lobe power max ( )
10 log 10 log

(0)Peak response

R k
PSL

R

   
 = =  
     

  (2.29) 

where k  is the index for the points in the ACF, ( )R k  is ACF for all of the output 

range side lobes except that at 0k = , and (0)R  is the peak of the ACF at 0k = .  
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The integrated side lobe level is  

2

10 2 2

Total power in side lobes ( )
10log 10log

(Peak response) (0)

M

k M

R k
ISL

R=−

 
= = 

 
∑   (2.30) 

and is a measure of the total power in the side lobes as compared with the 

compressed peak. The PSL  is a useful measure when a single point target response 

is of concern. Values for the PSL  depend on the number of subcodes in the code 

sequences cN  as well as the number of code periods N  within the receiver. The 

ISL  is considered a more useful measure than the PSL  when distributed targets are 

often concern.  

2.6 Doppler Sidelobe Reduction Using Weight Windows 

In a finite-length signal the weight window could have been split between the 

transmitter and receiver. In a continuous periodic signal only the finite reference 

signal can be modified by a weight function ( )w t . That converts the receiver from a 

matched receiver to a mismatched receiver (with a corresponding degradation in 

SNR and decrease in Doppler resolution) [10]. The analysis of the effect of a weight 

window on the delay – Doppler response was introduced at 1995 by Getz and 

Levanon. The reference signal ( )*
u t  is divided into a product of three functions: 

( )r t  [periodic with the same period as ( )u t ], ( )w t  (an aperiodic weight function), 

and ( )p t  (a rectangular window of duration NT ), 

( )
1,    0

0,    elsewhere

t NT
p t

≤ ≤ 
=  
 

    (2.31) 

The delay-Doppler response of the mismatched receiver becomes 

( ), ( ) ( ) ( ) ( )exp( 2 )u t r t p t w t j t dtψ τ ν τ πν
∞

−∞

= −∫   (2.32) 
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Since (2.32) is the Fourier transform of two products (except for the missing 

negative sign in the exponential), it can be described by the convolution (denoted 

⊗ ) of two Fourier transforms, 

( ), ( ) ( )exp( 2 )

                 ( ) ( )exp( 2 )

u t r t j t dt

p t w t j t dt

τ ν τ πν

πν

∞

−∞

∞

−∞

Ψ = −

⊗

∫

∫

   (2.33) 

With the first transform, since both ( )u t  and ( )r t  are infinitely long and periodic 

with period T , the Fourier transform of their product (for any τ ) can be shown to 

be a series of delta functions at 0, 1, 2,...ν = ± ± : 

( ) ( )exp( 2 ) ( )n

n
u t r t j t dt g

T
τ πν δ ν τ

∞ ∞

−∞−∞

 
− = − 

 
∑∫   (2.34) 

where 

0

1
( ) ( ) ( )exp( 2 )

T

n

t
g u t r t j n dt

T T
τ τ π= −∫    (2.35) 

The second integral in (2.33) is the Fourier transform of the product of the 

rectangular window and the weight function:  

0

( ) ( ) ( ) exp( 2 ) ( )exp( 2 )
NT

W p t w t j t dt w t j t dtν πν πν
∞

−∞

= =∫ ∫   (2.36) 

Finally, the delay Doppler response of the weighted correlation receiver is obtained 

from the convolution between (2.34) and (2.36), yielding 

( ), ( ) ( )n
n

n
g W

T
τ ν τ ν

∞

=−∞

Ψ = −∑    (2.37) 
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The significance of this equation is that at any give coordinate ( ,τ ν ), the delay-

Doppler receiver response is determined by contributions from ( )ng τ  and the 

weight function. The set of functions ( )ng τ  is determined by (2.35) and depend on 

the transmitted signal modulation that is used.  

Three important amplitude weighting windows have been described in [6] and can 

be defined by selecting the parameter c  in the following expression  

1 1 2
( ) ( ) 1 cos

c t
p t w t

NT c NT

π− 
= − 

 
   (2.38) 

where 0 t NT≤ ≤  and zero elsewhere. For uniform, Hann, and Hamming weight 

windows, c  is selected as 1,  0.5,  and 0.53836 respectively.c =  Using (2.36) to 

transform ( ) ( )p t w t  yields 

( ) ( )( )

( )

2

2

sin 1
( ) 1 exp( )

1

NT c NT
W j NT

NT c NT

πν ν
ν πν

πν ν

 
− 

= +  −    

 (2.39) 

With the exponent indicating that the weight function is not centered at 0t = . Still 

to be determined is the modulation function ( )ng τ . Note that a smooth weight, 

covering N  periods of the signal, affects only the Doppler behavior. It has no 

influence on the PACF (the zero Doppler cut of the PAF).  

2.7 Ambiguity Function Computation in Phase Coded - Radars 

Transmitted signal is given as: 

{ }( ) ( ) exp (2 ( ))cs t x t A j f t tπ φ= = +    (2.40) 

and received signal is given as: 

{ }( ) ( ) exp 2 ( )( ) ( )r c d ds t y t B j f f t t t tdπ φ= = + − + −    (2.41) 

where 
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df : Doppler shift frequency 

dt : range delay 

( )tφ : real phase modulation  

And auto-ambiguity function can be defined as below [7]; 

( ) *, ( ) ( ) exp( 2 )
2 2u

t

u t u t j t dt
τ τ

χ τ ν πν= + −∫    (2.42) 

Assuming transmitted and received signals are defined as (2.40) and (2.41) 

( ) *, ( ) ( )exp( 2 )
2 2x

t

x t x t j t dt
τ τ

χ τ ν πν= + −∫    (2.43) 

exp 2 ( ) ( ) exp 2 ( ) ( )
2 2 2 2

                                                               exp( 2 )

c c

t

AB j f t t j f t t

j t dt

τ τ τ τ
π φ π φ

πν

      
= + + + ⋅ − − + −            

× ⋅

∫  

(2.44) 

exp( 2 ) exp( . ( )) exp( . ( )) exp( 2 )
2 2c

t

AB j f j t j t j t dt
τ τ

π τ φ φ πν= + ⋅ − − ×∫  

exp( 2 ) exp exp( 2 )
2 2c

t

AB j f j t t j t dt
τ τ

π τ φ φ πν
     

= + − − ×     
     

∫  

*

exp( 2 ) exp ( ) exp exp( 2 )
2 2c

t

AB j f j t j t j t dt
τ τ

π τ φ φ πν
     

= + ⋅ − ×     
     

∫  

let ( ) exp( ( ))u t j tφ=  

( ) *exp 2 ( ) exp( 2 )
2 2c c

t

AB j f t u t u t j f t
τ τ

π π
 

= + − × 
 ∫  (2.45) 
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( ) ( ), exp( 2 ) ,x c uj fχ τ ν π τ χ τ ν=    (2.46) 

( ) ( ), ,x uχ τ ν χ τ ν=     (2.47) 

As a result of eqn. (2.47) in computing the ambiguity surface ( )
2

,xχ τ ν  or simply 

( ),xχ τ ν , we can directly use the complex envelope { }( ) exp ( )u t j tφ=  instead of 

( )x t . That is, for ambiguity diagram calculation using base-band signal is adequate. 

There is no necessity of using transmitted or received signal with its carrier 

frequency. 

Cross-ambiguity function can be defined as below [11]; 

( ) *
, , ( ) ( )exp( 2 )

2 2u w

t

u t w t j t dt
τ τ

χ τ ν πν= + −∫   (2.48) 

Assuming transmitted and received signals are defined as (2.40) and (2.41) 

( )

( ) { }

            , ( ) ( ) exp( 2 )
2 2

          exp 2
2 2

             exp 2 exp 2
2 2

xy

t

c

t

c d d d

AB x t y t j t dt

AB j f t t

j f f t t t t j t dt

τ τ
χ τ ν πν

τ τ
π φ

τ τ
π φ πν

= + −

     
= + + +     

     

     
⋅ + − − + − − ×     

     

∫

∫ (2.49) 

( ) ( ){ }, exp 2

                    exp exp
2 2

                         exp 2 ( ) exp( 2 )
2

xy c d

d

t

d d

AB j f t

j t j t t

j f t t j t dt

χ τ ν π τ

τ τ
φ φ

τ
π πν

= −

      
⋅ + − − −      

      

 
⋅ − − − × 

 

∫   (2.50) 

At eqn. (2.50) let  

( ) exp
2 2

u t j t
τ τ

φ
  

+ = +  
  

    (2.51) 
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and then 

*

( ) exp 2
2 2

     exp ( ) exp 2 ( )
2 2

d d d

d d

u t t j f t t

t td j f t t

τ τ
π

τ τ
φ π

   
− − − −   

   

   
= − − − − − −   

   

 (2.52) 

Finally; 

{ } ( )( ) ( )exp( 2 ( ))( , ) exp 2 ( ) ,
d d d

xy d d u t u t t j f t tj f t vπχ τ ν π τ χ τ− −= −  (2.53) 

( ){ }( ) ( )exp 2
( , ) ( , )

d d d
xy u t u t t j f t tπ

χ τ ν χ τ ν
− −

=   (2.54) 

From eqn. (2.54) we can see easily see that, instead of computing absolute 

ambiguity function for original transmitted and received signals, we can use the 

absolute value of ambiguity function computed between the phase functions. So, we 

do not have to use carrier frequency for computing absolute value of the ambiguity 

function [12]. 

Auto-ambiguity function for ( ){ }( ) expu t j tφ=  for a polyphase code; 

{ }*( , ) exp 2
2 2u

t

u t u t j t dt
τ τ

χ τ ν πν
   

= + − −   
   ∫   (2.55) 

where  

{ } ( ) ( )

{ } { }

( ) exp ( ) cos sin

                            Re ( ) Im ( )

u t j t t j t

u t j u t

φ φ φ= = +

= +
   (2.56) 

( )

( )

, cos sin cos sin
2 2 2 2

                  exp j2

u

t

t j t t j t

dt

τ τ τ τ
χ τ ν φ φ φ φ

πντ

          
= + + + − − −          

          

×

∫
 

(2.57) 
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( )Re( ) Im( ) Im( )Re( ) Re( ) Im( )( , ) ( , ) ( , ) ( , ) ,u u u u u u ujχ τ ν χ τ ν χ τ ν χ τ ν χ τ ν   = + + −     

(2.58) 

Special Case: For binary-phase codes ( ){ }( ) exp cos ( )u t j t tφ φ= = , 

{ } { }Re ( ) ( ),   Im ( ) 0u t u t u t= = . 

Im( ) Im( )Re( ) Re( ) Im( )0,   0,   0u u u u uχ χ χ⇒ = = =  

( ) { } ( ) ( ) ( )Re cos, , ,u u tφχ τ ν χ τ ν χ τ ν⇒ = =    (2.59) 

Cross-ambiguity function for ( ){ }( ) expu t j tφ=  for a polyphase code; 

Let, 

{ }( ) ( ) exp 2 ( )d d dw t u t t j f t tπ= − −     (2.60) 

*
, ( , ) ( ) ( ) exp( 2 )

2 2u w

t

u t w t j t dt
τ τ

χ τ ν πν= + −∫   (2.61) 

, ( , ) cos sin cos 2
2 2 2 2

                                                                       sin 2
2 2

   

u w d d d

t

d d d

t j t t t f t t

j t t f t t

τ τ τ τ
χ τ ν φ φ φ π

τ τ
φ π

         
= + + + − − + − −        

         

   
− − − + − −    

   

∫

                                                                       exp( 2 )j t dtπν×

(2.62) 

, Re( ),Re( ) Im( ),Im( )

Im( ),Re( ) Re( ),Im( )

( , )

                    

u w u w u w

u w u wj

χ τ ν χ χ

χ χ

 = + + 

 − 
   (2.63) 
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Special Case: For binary-phase codes ( ){ }( ) exp cos ( )u t j t tφ φ= = ,  

{ } { }Re ( ) ( ),   Im ( ) 0u t u t u t= = . 

Im( ) Im( )Re( ) Re( ) Im( )0,   0,   0u u u u uχ χ χ⇒ = = =  

, Re( ),Re( ) Re( ),Im( )( , )u w u w u wjχ τ ν χ χ   = −      (2.64) 
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CHAPTER III 

 
 

PHASE CODING CW RADARS 

 
 

3.1  Introduction 

This chapter is about the phase shift keying (PSK) techniques which are useful for 

LPI radar waveform design. First, Barker binary PSK is discussed, since it is the 

first PSK technique to be investigated and is still widely used today. This is 

followed by discussion of polyphase shift keying techniques. These techniques 

contain Frank code, P1, P2, P3, and P4 codes. All of these polyphase codes are 

useful for LPI CW radars due to its broadband characteristics. For each code that 

mentioned above, the phase characteristics are examined. 

While Linear FMCW has established itself as one of the most popular LPI 

waveforms, PSK CW waveforms have recently been a topic of active investigation, 

due to the their wide bandwidth and inherently low Periodic Ambiguity Function 

(PAF) sidelobe levels achievable. For the LPI radar, it is important to have a low 

sidelobe level to avoid the sidelobes of large targets from masking the main peak of 

smaller targets. The choice of PSK code affects the radar performance and the 

implementation [4]. 

Barker code has high sidelobes and poor Doppler tolerance. Doppler tolerance is 

measured by how well the code compresses in the matched receiver when the 

received signal is Doppler shifted with respect to the reference code. In polyphase 

codes, phase shift value can take many values within on subcode duration. And also 

code period is extremely long for polyphase codes. These codes have lower 

sidelobes and better Doppler resolution than Binary phase codes (BPSK-Barker 
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codes). For this reason many LPI radar designers select polyphase coding 

techniques for their implementation. 

Using PSK techniques high range resolution radar waveform can be obtained. PSK 

signals are also suitable for new digital signal processing hardware.  

For PSK radars the transmitted complex signal can be written as 

{ }( ) exp (2 )c ks t A j f tπ φ= +     (3.1) 

where φ k is the phase modulation function that is shifted in time, according to the 

type of PSK code being used, and fc is the angular frequency of the carrier. The 

inphase (I) and the quadrature (Q) representation of the complex signal from the 

transmitter can be represented as 

cos(2 )c kI A f tπ φ= +     (3.2) 

and 

sin(2 )c kQ A f tπ φ= +     (3.3) 

During a code period, phase of the CW signal is shifted cN  times, every subcode 

period with phase kφ , according to specific code sequence. The code period T is 

defined as; 

c bT N t=  second     (3.4) 

where tb is subcode period. 

The transmitted signal can be expressed as  

( )
1

1
c

N

T k b

k

u u t k t

=

 = − − ∑     (3.5) 

for 0 t T≤ ≤  and zero elsewhere. 
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The complex envelope ku  is  

k
j

ku e
φ

=       (3.6) 

For 0 bt t≤ ≤  and zero otherwise. The range resolution of the phase coding CW 

radar is  

2
bct

R∆ =      (3.7) 

and the unambiguous range is  

2 2
c b

u

cN tcT
R = =      (3.8) 

If cpp is the number of cycles of the carrier frequency per subcode, the bandwidth 

of the transmitted signal is 

1cfB
cpp tb

= =  Hz     (3.9) 

 

 

... ... a x y b c a x y b c a x y b c ... ... 

 

Figure 3.1: Representation of Phase coding CW radar transmitted waveform. 
 

The received waveform from the target is digitized and correlated in the receiver 

using a matched (unweighted) or mismatched (weighted) filter that contains a 

cascade of N sets of Nc reference coefficients. The results from each correlation are 

combined to concentrate the target’s energy and produce a compressed pulse having 

a time resolution equal to the subcode duration bt  and a height of cN . For this 

bt  
c bT N t=  

NT  
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reason, the number of phase code elements cN  is also called the compression ratio. 

Recall that the PAF describes the range-Doppler performance of this type of 

receiver, and depends on the number of reference sets used [4]. 

3.2  Binary Phase Codes 

In biphase (binary) phase codes, code period T  is divided into cN  subcodes. 

Duration of the each subcode is represented as bt and equal to 
c

T
N

. Then, the 

phase of each subpulse is randomly chosen as 0 or π  radians relative to some CW 

reference signal. It is customary to characterize a subpulse that has 0 phase 

(amplitude of +1 Volt) as either “1” or “+.” Alternatively, a subpulse with a phase 

equal to π  (amplitude of -1 Volt) is characterized by either “0” or “-.”the 

compression ratio associated with binary phase codes is equal to cN , and the peak 

value is cN  times larger than that of the long pulse. The goodness of a compressed 

binary phase code waveform depends heavily on the random sequence of the phase 

for the individual subpulses.  

Probably the most famous family of phase codes is named Barker, after its inventor 

(Barker, 1953) [5, 13]. Originally, the Barker codes were designed as the sets of cN  

binary phases yielding a peak to peak sidelobe ratio of cN . The binary Barker 

sequences are finite length, discrete time complex sequences with constant 

magnitude, and a phase of either kφ  = 0 or kφ  = π [14]. 

Consequently, a binary Barker sequence has elements }{ 1, 1− +  which are only 

known for lengths cN  = 2, 3, 4, 5, 7, 11, and 13. Figure 3.2 illustrates concept for a 

Barker code of length thirteen. A Barker code of length n is denoted as nB . Table 

3.1 shows some known Barker codes with their peak side lobe level (PSL). PSL can 

be defined as 
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( )
10 2

Max side lobe power
PSL=10log

Peak response 

 
 
  

   (3.10) 

For Binary case; 

( )

2

10 102

( )
10log 20 log

1

c
c

N
PSL N

 
 = =
  

   (3.11) 

 

 

 

 

Figure 3.2: Binary phase code of length 7. 

+ + + + - - - 
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Table 3.1. Barker Codes with Corresponding PSL 

Code 
length 

Code elements PSL (dB) 

2 + −, − +  6.0 

3 + + −  9.5 

4 ,+ + − + + + + −  12.0 

5 + + + − +  14.0 

7 + + + − − + −  16.9 

11 + + + − − − + − − + −  20.8 

13 + + + + + − − + + − + − +  22.3 

 

 

The Barker codes are the most frequently used binary code since they result in an 

ambiguity function with side lobe levels, at zero Doppler, not higher than 

1
cN

relative to a main lobe level of 1. 

The most side lobe reduction offered by a Barker code is -22.3 dB, which may not 

be sufficient for desired radar application. However, Barker codes can be combined 

to generate much longer codes. In this case, a Bm code can be used within a Bn code 

(m within n) to generate a code of length mn. The compression ratio for the 

combined Bmn code is equal to mn. These Barker codes called as Compound Barker 

codes (Barker code within a Barker code). Although a larger compression gain is 

achieved, a larger compression gain is achieved; the peak side lobes are not 

proportionally decreased.  

Some side lobes of a Barker code autocorrelation function can be reduced to zero if 

the matched filter is followed by a linear transversal filter. Assuming that, filter’s 
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order is N  and subcode duration is bt . The filter of order N  produces N  zero side 

lobes on either side of the main lobe. The main lobe amplitude and width do not 

change. 

In addition to having a limited code length, Barker codes are very sensitive to 

Doppler shifts. The Doppler shift of the return waveform (due to motion of the 

target) can compress the waveform within the filter such that the matched filter 

gives incorrect results. That is, these codes are only perfect in time domain 

(unknown range, zero Doppler shift). This characteristic restricts binary Barker 

code applications. As results, Barker codes are not considered LPI since they are 

easily detected by an intercept receiver that uses frequency doubling. Frequency 

doubling is a simple technique involves multiplying the receiver signal by itself and 

processing the result with an envelope detector [4]. 

The aperiodic autocorrelation function of the 13 – element Barker code is shown in 

Fig. 3.3. Fig. 3.4(a) shows the ACF of a CW signal phase coded with 13cN =  - bit 

Barker sequence, and reveals the side lobe structure of the code. For the 13cN = - 

bit code shown 1020log ( ) 22.3 dBcPSL N= = − . Figure 3.4(b) reveals the fact that 

the Barker codes do not have a perfect PACF side lobe level that equals to PSL  

shown for the ACF (-22.3 dB). In figure 3.5, a plot of the PAF is shown for 1N = . 

The delay axis is normalized by the bit period bt . Note the presence of the large 

Doppler side lobes.  
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Figure 3.3: Autocorrelation function of a pulse coded using the 13-element Barker 
code. 

 

Figure 3.4: (a) ACF and (b) PACF for the 13cN = -bit Barker binary PSK signal. 
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Figure 3.5: PAF for the 13-bit Barker binary PSK signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



33 

3.3  Polyphase Codes 

Codes that use any harmonically related phases based on a certain fundamental 

phase increment are called polyphase codes. Polyphase codes exhibit better Doppler 

tolerance for broad range-Doppler coverage than do the biphase codes, and they 

exhibit relatively good side lobe characteristics.  

Polyphase sequences are discrete time complex sequences with constant magnitude 

but with a variable phase kφ . Polyphase coding refers to phase modulation of the 

CW carrier, with a polyphase sequence consisting of a number of discrete phases. 

The number of the sequence elements is greater than 2. Increasing the number of 

elements or phase values in the sequence allows the construction of longer 

sequences, resulting in a high range resolution waveform with greater processing 

gain in the receiver or equivalently a larger compression ratio. The trade-off is that 

a more complex matched filter is required compared to a Barker code filter. Note 

that a greater sequence length cN  does not affect the signal bandwidth at the 

antenna or change the transmitted signal bandwidth. Because, transmitted signal 

bandwidth depends on subcode period. ( 1
b

B
t

= ) 

Polyphase compression codes have also been derived from step approximation to 

linear frequency modulation waveforms (Frank, P1, P2) and linear frequency 

modulation waveforms (P3, P4). These codes are derived by dividing the waveform 

into subcodes of equal duration, and using phase value for each subcode that best 

matches the overall phase trajectory of the underlying waveform. An alternate 

approach to approximating these waveforms is to quantize the underlying waveform 

into a user-selected number of phase states, where the time spent at each phase state 

changes (in time) throughout the duration of the waveform. These codes are 

referred to as polytime codes. Other codes, such as P(n,k) polyphase codes, have 

been derived using a step approximation of the phase function from a nonlinear 

frequency modulation waveform with favorable energy density.  

The importance of polyphase coding to the LPI community is that by increasing the 

alphabet size cN , the autocorrelation side lobes can be decreases significantly while 
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providing a larger processing gain. By narrowing the subcode bt  (so there are fewer 

cycles per phase), the transmitted signal can also be spread over a larger bandwidth, 

forcing the receiver to integrate over a larger band of frequencies.  

3.4  Frank Code 

The Frank code is a classical choice for the polyphase code which needs minimal 

phase quantization bits. The Frank code is derived from a step approximation to a 

linear frequency modulation waveform using M frequency steps and M samples per 

frequency [15]. The Frank code has a length 2
cN M= . In the case of a single side 

band detection, the result is the Frank code. As an example, consider that a local 

oscillator is at the start of the sweep of the step approximation to the linear 

frequency waveform. The first M  samples of the polyphase codes are 0 phase. The 

second M  samples start with 0 phase, and increase with phase increments of 

( )2
M

π  from sample to sample. The third group of M  samples start with 0 phase 

and increase with ( )( )23 1
M

π−  increments from sample to sample and so on.  

If i  is the number of the sample in a given frequency and j  is the number of the 

frequency, the phase of the ith  sample of the jth  frequency is 

( )( ),
2

1 1i j i j
M

π
φ = − −    (3.12) 

where 1,2,......,i M=  and 1,2,......,j M= . 

The Frank polyphase code can also be written as an M M×  matrix; 

( )
( )

( ) ( ) ( )
2

0 0 0 0

0 1 2 1

0 2 4 2 1

0 1 2 1 1

M

M

M M M

 
 − 
 −
 
 
 
 
 − − − 

� �

� �

� �

� � � � � �

� � � � � �

� �

 (3.13) 
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where the numbers represent multiplying coefficients of the basic phase angle 

( )2
M

π .The construction method is demonstrated for 4 phase Frank code, that is 

16cN =  ( 4M = ). To calculate the phase values of the 16-element Frank code, we 

first write the 4 4×  Frank matrix given by 

0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9

 
 
 
 
 
 

 

The phase increments within each row represent a stepwise approximation of an up-

chirp LFM waveform. The phase increments for subsequent rows increase linearly 

versus time. Thus, the corresponding LFM chirp slopes also increase linearly for 

subsequent rows. This is illustrated in Fig. 3.6.  

The 16-element Frank code is formed by concatenating the rows of the Frank 

matrix and multiplying by fundamental phase increment 2 2
4 2M

π π πφ∆ = = = , 

resulting in the 16-element phase code given by 

3 3 9
0 0 0 0 0 0 2 3 0 3

2 2 2 2

π π π π
π π π π π

 
  

 

Taking the phase value modulo 2π  gives 

3 3
0 0 0 0 0 0 0 0

2 2 2 2

π π π π
π π π π

 
  

 

The connection between the Frank code and a frequency stepped pulse is 

demonstrated in Fig. 3.7, showing the history of a 16-element Frank code. Note that 

the code is made from four equal segments of linear phase dependence (constant 

frequency). The segments’ phase slope changes linearly from segment to segment 

implying linear frequency stepping between segments. Note also that the first phase 

in each section is obtained by a linear prediction based on the phase values of the 

previous section.  
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Figure 3.6: Stepwise approximation of an up-chirp waveform, using a Frank code of 
16 elements. 

 

Figure 3.7 : Phase history of a 16 – element Frank code. 
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For the Frank Code PSL given as below [16]; 

10
1

20logPSL
Mπ

 
=  

 
   (3.14) 

For 8M = , 64Nc = , the 
( ) ( )10

1 120log 20log10 288PSL dB
M ππ

 
= = = − 

 
.  

Let’s consider the signal with the polyphase Frank coded sequences that is 

determined in the basic band. In this case the signal analytic formula is as follows 

[17]: 

 

{ }
1

0

( ) exp
( )

0

N
b

k
bk

t k t
S t rect j

s t t
φ

−

=

  − ⋅
⋅  

=   



∑     (3.15) 

where: 

( )S t :  envelope of the ( )s t  signal, 

k :  subpulse number, 0,1, 2,......, 1k N= − , 

cN :  code sequence length (number of signal subpulses), 

kφ :  phase argument of Frank code, 

[ ]rect i : unit pulse which is defined as: 

 
1

0
b

b

t t
rect

t

  −
=  
 

 

The k th phase element of the Frank code { }kφ  in linear transformation can be 

written: 

( )
( )

mod2
modk

k k M
k M

M M

π
φ

 −   =      (3.16) 

where: 

:M   any positive integer which defines code sequence length 2
cN M= , 

( ) modk M : means that index k  is reduced modulo M . 

for 0 c subt N t≤ < ⋅  

for other values of t  

for ( ). 1 .b bk t t k t≤ ≤ +  

for other values of t  
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If the signal given by (3.15) is converted into digital form with sample rate bt t∆ = , 

and assuming that ( ) 1S t = , then k th signal sample with the polyphase Frank code 

sequence can be described as follows: 

( ) ( )
( )

mod2
exp . . mod , 0,1,...., 1.k

k k M
s j k M k N

M m

π  −  = = − 
  

  (3.17) 

In the radar application needed the sampling rate is higher than bt t∆ = . On the 

contrary the sampled signal may have distortioned spectrum and the range 

resolution of radar targets may be not sufficient. Assuming that the sampling period 

equals btt
s

∆ = , where s  is number of the samples per subpulse, finally k th 

sample of ks  signal can be written as follows: 

( ) ( ) ( ) ( ) ( ) ( )( )mod mod mod mod2
expk

k k M s k m s k m s s
s j

M M s s

π  − ⋅ ⋅ − ⋅  = ⋅ ⋅ ⋅ 
⋅  

 

for 0,1,....., 1k N s= ⋅ −    (3.18) 

The influence of the Doppler effect was not taken into consideration in the model 

described by equation (3.18).  

Figure 3.8 shows the discrete phase values that result for the Frank code for 8M = , 

( 64cN = ). Figure 3.9 shows the signal phase modulo 2π , and demonstrates that 

the Frank code has the largest phase increments from sample to sample in the center 

of the code. Consequently, when the Frank code is passed through a bandpass 

amplifier in a radar receiver, the code is attenuated most heavily in the center of the 

waveform. This attenuation tends to increase the side lobes of the Frank code ACF. 

The aperiodic autocorrelation function of the 16 – element Frank code is shown in 

Fig. 3.10. The aperiodic autocorrelation exhibits relatively low sidelobes. 
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Figure 3.8: Frank code Discrete phase values for 8M = , 64cN = . 

 

Figure 3.9: Frank code signal phase modulo 2π for 8M = , 64cN = . 
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Figure 3.10: Autocorrelation function of a pulse coded using the 16 - element Frank 
code. 

 

Figure 3.11(a) shows the ACF and the PACF for the 64cN =  and 1.N =  The ACF 

reveals the peak side lobe level 28 PSL dB= − . Figure 3.11(b) shows the PACF, 

and the fact that the Frank code has a perfect PACF. Figure 3.12 shows the PAF for 

the Frank code for 64cN =  and 1N = . Note the delay and the Doppler side lobe 

levels are much lower than the BPSK code.  
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Figure 3.11: Frank code (a) ACF, and (b) PACF for 64,  1.cN N= =  

 

Figure 3.12: Frank code PAF for 64,  1.cN N= =  
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3.5  P1 Code 

The P1, P2, P3, and P4 codes are all modified versions of the Frank code, with the 

dc frequency term in the middle of the pulse instead of at the beginning. In the case 

of step approximation to linear frequency modulation with M  frequency steps, M  

samples per frequency are obtained and M x M  samples result. In the case of 

single sideband detection, the polyphase code that results is the Frank code and in 

the case of double sideband the code results is the P1 code [18]. 

If the detection is double sideband, i.e., if the local oscillator is at band center, the 

code will be the P1 code. The P1 code also consist of M x M  elements and the 

phase of the i th element of the j th group may be expressed as  

( ) ( ) ( ), 2 1 1 1i j M j j M i
M

π
φ

−     = − − − + −      
 (3.19) 

where 1, 2,...., ,i M=  and 1, 2,....,j M= . For the P1 code the 

( ) ( )10 10
1 120log 20log 288PSL dB

M ππ
 

= = = − 
 

 (the same as the frank code). 

The difference between the frank and The P1 codes is that the Frank code has the 

highest phase increments from sample to sample in the center of the code and the 

P1 code has the highest phase increments from sample to sample at the two ends of 

the code. Thus, when waveforms phase coded with these codes are passed through 

band pass amplifiers in a radar receiver, the Frank code is attenuated most heavily 

in the center of the waveform while the P1 code is attenuated most heavily at the 

two ends of the waveform. This difference in attenuation over the waveform 

reduces the sidelobes of the P1 code autocorrelation function and increases those of 

the Frank code autocorrelation.  

Figure 3.15(a) shows the ACF and the corresponding side lobe structure for the 

1cN =  and 1.N =  Here, 28PSL = −  dB down from the peak as predicted. Figure 

3.15(b) shows the PACF. Note that the P1 code has a perfect PACF with zero side 

lobes. Figure 3.16 shows the corresponding PAF for the P1 code.  
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Figure 3.13: P1 code phase increment for 8M =  ( 64)cN = . 

 
Figure 3.14 : P1 code signal phase modulo 2π for 8M =  ( 64)cN =  



44 

 
Figure 3.15: P1 code (a) ACF, and (b) PACF for 64,  1.cN N= =  

 
 

Figure 3.16: P1 code for 64,  1.cN N= =  
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The aperiodic autocorrelation function of the 16 – element P1 code is shown in Fig. 

3.17. The aperiodic autocorrelation exhibits relatively low sidelobes. Also note that 

autocorrelation function is same as the autocorrelation of the Frank code. 

 
 

Figure 3.17: Autocorrelation function of a pulse coded using the 16 - element P1 
code. 

3.6  P2 Code 

The phase increment within each phase group is the same as the P1 code, except 

that the starting phases are different. The P2 code also has a length or compression 

ratio of 2
cN M= . The P2 code is give by [19] 

[ ] [ ], 2 1 2 1
2i j i M j M

M

π
φ

− 
= ⋅ − − ⋅ − − 
 

  (3.20) 

where 1, 2,.....,i M= , and 1,2,.....,j M= . The requirement for M to be even in this 

code stems from the desire for low autocorrelation side lobes. For the P2 code,  
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the 
( )10

120logPSL
Mπ

 
=  

 
 and is the same as the Frank code and P1 code. The 

phase changes are largest toward the end of the code.  

Figure 3.21(a) and (b) shows the corresponding ACF and PACF, respectively. Note 

that the P2 code does have not a perfect PACF. In fact, the PACF is identical to the 

ACF. Figure 3.22 shows the PAF for the P2 code for the P2 code for 

64,  1.cN N= =   

 

 
Figure 3.18: P2 code phase increment for 8M =  ( 64)cN =  
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 Figure 3.19 : P2 code signal phase modulo 2π for 8M =  ( 64)cN =  

  

Figure 3.20: Autocorrelation function of a pulse coded using the 16 - element  P2 

code. 
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Figure 3.21: P2 code (a) ACF, and (b) PACF for 64,  1.cN N= =  

 

Figure 3.22: P2 code PAF for 64,  1.cN N= =  
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3.7  P3 Code 

The P3 code, suggested by Lewis and Kretschmer [20], are basically phase samples 

of a linear-FM signal. The phase sequence of the P3 signal is given by 

( )
2

1i
c

i
N

π
φ = −    (3.21) 

where 1, 2,...., ci N= , and cN is the compression ratio.  

By converting a linear frequency modulation waveform to baseband, by using 

synchronous oscillator on one end of the frequency sweep (single sideband 

detection), and sampling the I  and Q  video at the Nyquist rate, the P3 code is 

derived.  

In the P3 code, the largest phase increments occur at the center of the code. The P3 

shares the intolerance to precompression band limiting associated with the Frank 

code.  

The peak side lobe ratio for P3 code is a bit larger than the Frank, P1, P2 codes. For 

the P3 code ( )2
1020log 2 cPSL N π 

=  
 

dB, down from the peak. With 64cN = , 

25PSL dB= − . This is revealed in Figure 3.26(a) which shows the corresponding 

ACF. Figure 3.26(b) shows the PACF for the P3 code and indicates that the P3 code 

has a perfect PACF. The PAF for the P3 code is shown in Fig. 3.27. Here 

64,  1.cN N= =  
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Figure 3.23: P3 code phase increment for ( 64)cN =  

 
Figure 3.24 : P3 code signal phase modulo 2π for ( 64)cN =  
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Figure 3.25: Autocorrelation function of a pulse coded using the 16 - element P3 
code. 

 

Figure 3.26: P3 code (a) ACF, and (b) PACF, for 64,  1.cN N= =  
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Figure 3.27: P3 code for 64,  1.cN N= =  

3.8  P4 Code 

Conceptual coherent double sideband detection of a linear frequency modulation 

waveform and sampling at the Nyquist rate yields a polyphase code named the P4 

code [18]. This code is similar to the P1 code in having the smallest phase 

increments from sample to sample on the center of the waveform instead of on the 

two ends like the P3 code. Here again, the P4 code is more tolerant of radar band 

limiting than the P3 code.  

The phase of the i th sample of P4 code is given by 

( ) ( )
2

1 1i
c

i i
N

π
φ π

 
= ⋅ − − ⋅ − 
 

  (3.22) 

where 1,2,....,i Nc=  and cN  is the pulse compression ratio. The Doppler tolerance 

of the P3 and P4 codes are much greater than the Frank and P1 codes. They do not 
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have grating lobes that appear in the Frank and P1 waveform autocorrelation 

functions with increasing Doppler shift. 

The P4 code consists of the discrete phases of the linear chirp waveform taken at 

specific time intervals, and exhibits the same range Doppler coupling associated 

with the chirp waveform. However, the peak side lobe levels are lower than those of 

the unweighted chirp waveform. Various weighting techniques can be applied to 

reduce the side lobe levels further [4]. 

The P4 code has its largest phase increments from sample to sample on the ends of 

the code, similar to the P1 code. For the P4 code ( )2
1020log 2 cPSL N π 

=  
 

 

(same as the P3 code). Fig. 3.31(a) shows the ACF and its corresponding side lobe 

structure for the 64cN =  and 1N = . Figure 3.31(b) shows the PACF. The P4 is a 

Doppler tolerant perfect code in that exhibits a perfect PACF-namely zero PACF 

side-lobes.  

Figure 3.32 shows the PAF for the P4 code for 64,  1.cN N= =  Note that the side 

lobe levels are smaller compared to nonperfect PACF codes, such as the BPSK and 

P2 code. 
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Figure 3.28: P4 code phase increment for ( 64)cN =  

 

 
Figure 3.29 : P4 code signal phase modulo 2π for ( 64)cN = . 
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Figure 3.30: Autocorrelation function of a pulse coded using the 16 - element  P4 

code. 

 

Figure 3.31: P4 code (a) ACF, and (b) PACF, for 64,  1.cN N= =  
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Figure 3.32: P4 code PAF for 64,  1.cN N= =  
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CHAPTER IV 

 
 

APPLICATIONS OF TARGET DETECTION  

 
 

4.1  Introduction 

In this chapter, Frank, P1, P2, P3, and P4-polyphase codes are examined for target 

detection by using ambiguity function. Details of the simulation study are presented 

and various target detection scenarios are tested. All simulations are performed by 

using MATLAB Programming Language.  

At these scenarios, following parameters are commonly used: 

35 cf GHz= , max 300 / secV m= , 1N = , 1024cN = , 0,1067bt =  µs. 

where cf : carrier frequency, maxV : maximum target velocity, N : number of the 

code period, cN : number of subcodes, bt : subcode period. 

6(code period) 1024 0,10667.10 0,10923c bT N t −= = ⋅ =  ms.  (4.1) 

8 63.10 0,1067.10
(range resolution) 16

2 2
bct

R
−×

∆ = = =  m.  (4.2) 

8 6

max
3.10 1024 0,10667.10

(unambiguous range) 16384
2 2 2

c bcN tcT
R

−× ×
= = = =  m.

   (4.3) 

1
(Doppler resolution) 9155f

NT
∆ = =  Hz.   (4.4) 
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8

9

9155 3.10
39,24

2 2 35.10
d

c

f c

f
ν

∆ ⋅ ×
∆ = = =

×
 m/s.   (4.5) 

 

4.2  Single Target Scenarios 

In this section, all simulations are performed by using 1024-element codes of Frank, 

P1, P2, P3 and P4 coding types. 

4.2.1  Scenario 1: Target at a Close Range 

At this simulation there is one target which is 2500 meter far from the radar, having 

250 m/sec. radial velocity with respect to the radar, i.e. 2500R =  m. and 250rν =  

m/sec.  

The transmitted CW signal is first coded by using the Frank code with 

32M = ( 1024cN = ). The resulting cross-contour plot for the ambiguity function of 

the transmitted and received radar signal is given in Figure 4.1. The portion of the 

plot around the peak point is enlarged in Figure 4.2 to examine the details for range 

resolution and Doppler resolution. The three-dimensional AF (Ambiguity Function) 

plot is also given in Figure 4.3 to see the levels of side lobes. Side lobe level and 

resolution information are further displayed in 4.4 and 4.5 where the cross-sections 

of the 3D AF plots are given along range axis and velocity axis, respectively.  

It is observed on these figures that the target is detected at about 2501,05R =  m. 

with 250,91rν =  m/sec. The percentage errors in range and radial velocity are 

calculated by eqn. 4.6. 

|measured value-actual value|
100

actual value
ε = ×    (4.6) 

| 2501,05 2500 |
100 0,0420

2500rangeε
−

= × = % 
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| 250,91 250 |
100 0,364

250velocityε
−

= × = % 

As seen in Figure 4.4 and 4.5, the side lobes of the AF plot are lower than 50% of 

the normalized peak magnitude of one at the largest point. It is also observed that, 

the side lobe magnitudes quickly decay along the range axis as we move farther 

away from the target location but the decay in the side lobe levels along the velocity 

axis is negligible. 

After the Frank code, the P1 code is applied to the transmitted CW radar signal with 

the results presented in Figures 4.6 through 4.10. The accuracy levels in range and 

radial velocity of the target are about same as those found for Frank code case. 

Next, the codes P2, P3, and P4 with the same length of 1024Nc =  are utilized in 

signal coding for the same target detection problem. Based upon the simulation 

results displayed in Figures 4.11 through 4.25 it is concluded that the values of the 

detected range and radial velocity remain the same. The side lobe behaviors of the 

P1 and P2 codes are same as the side lobe behavior of Frank code. On the other 

hand, at the ramp time, the side lobe levels both along range and velocity axes tend 

to increase slightly in P3 and P4 coding simulations.  

For all coding types, the accuracy levels in range and radial velocity of the target 

are the same. Also, for all coding types, the measurement precision in range and 

radial velocity of the target are the same which is an expected result. This is 

because, range resolution is related to c (light velocity) and bt (subcode period), 

Doppler resolution is related to N (number of the code period), cN (number of 

subcodes), and bt (subcode period). All of these variables are selected to be the 

same for all the code types for easy comparison purposes. 

If figures (Figure 4.1- Figure 4.25) are investigated, it can be seen easily that the 

target is detected successfully. The target is seen at expected range and radial 

velocity for all coding types. The simplicity in the computation of the Frank code 

can be considered as an advantage. 
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Figure 4.1: 2D Cross - Ambiguity Function of the transmitted and received signal 
for 32 ( 1024)cM N= =  Frank code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.2: Close-up illustration of Figure 4.1 
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Figure 4.3: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.4: Cut along the range axis of Figure 4-3. 
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Figure 4.5: Cut along the velocity axis of Figure 4.3. 
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Figure 4.6: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.7: Close-up illustration of Figure 4.6 
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Figure 4.8: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.9: Cut along the range axis of Figure 4.8. 
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Figure 4.10: Cut along the velocity axis of Figure 4.8. 
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Figure 4.11: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.12: Close-up illustration of Figure 4.11 
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Figure 4.13: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.14: Cut along the range axis of Figure 4.13. 
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Figure 4.15: Cut along the velocity axis of Figure 4.13. 
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Figure 4.16: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.17: Close-up illustration of Figure 4.16. 
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Figure 4.18: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.19: Cut along the range axis of Figure 4.18. 
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Figure 4.20: Cut along the velocity axis of Figure 4.18. 
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Figure 4.21: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.22: Close-up illustration of Figure 4.21. 
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Figure 4.23: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code. ( 2,5km, 250 / sec.R mν= = ) 

 
 

 
Figure 4.24: Cut along the range axis of Figure 4.23. 
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Figure 4.25: Cut along the velocity axis of Figure 4.23. 
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4.2.2  Scenario 2: Target at a longer range. 

At this scenario there is one target which is 14000 meter away from the radar 

having 50 m/sec. radial velocity with respect to the radar, i.e. 14000R =  m and 

50rν =  m/sec. 

The transmitted CW signal is coded by using the Frank, P1, P2, P3, and P4 coding 

types with 1024cN = . The resulting cross-contour plots for the ambiguity function 

of the transmitted and received radar signal are given in Figure 4.26, Figure 4.28, 

Figure 4.30, Figure 4.32, and Figure 4.34. The portion of the plot around the peak 

point for all coding types is enlarged in Figure 4.27, Figure 4.29, Figure 4.31, 

Figure 4.33, and Figure 4.35 to examine the details for range resolution and Doppler 

resolution. It is observed on these figures that the target is detected at about 

14001R =  m. with 46rν =  m/sec. The percentage errors in range and radial 

velocity are calculated at below.  

|14001 14000 |
100 0,0071

14000rangeε
−

= × = % 

| 46 50 |
100 8

50velocityε
−

= × = % 

Note that, velocity error is increase dramatically, when target range is increased 

from 2500 meters to 14000 meters. On the other hand, range error is decrease when 

target range is increased.  

Based upon the simulation results displayed in Fig. 4.26 through 4.35 it is 

concluded that the values of the detected range and radial velocity remain the same. 

For all coding types, the measurement precision in range and radial velocity of the 

target are the same which is an expected result. This is because, range resolution is 

related to c (light velocity) and bt (subcode period), Doppler resolution is related to 

N (number of the code period), cN (number of subcodes), and bt . All of these 

variables are selected to be the same for all the code types for easy comparison. 
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Figure 4.26: 2D Cross - Ambiguity Function plot of the transmitted and received 
signal for 32 ( 1024)cM N= =  Frank code. ( 14km, 50 / sec.R mν= = ) 

 
 

 
Figure 4.27: Close-up illustration of Figure 4.26. 
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Figure 4.28: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code. ( 14km, 50 / sec.R mν= = ) 

 
 

 
Figure 4.29: Close-up illustration of Figure 4.28. 
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Figure 4.30: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code. ( 14km, 50 / sec.R mν= = ) 

 
 

 
Figure 4.31: Close-up illustration of Figure 4.30. 
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Figure 4.32: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code. ( 14km, 50 / sec.R mν= = ) 

 
 

 
Figure 4.33: Close-up illustration of Figure 4.32. 
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Figure 4.34: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code. ( 14km, 50 / sec.R mν= = ) 

 
 

 
Figure 4.35: Close-up illustration of Figure 4.34. 
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4.3  A Multiple Target Scenario 

At this target scenario, there are three targets which are 1000, 1500, 2000 meter 

away from the radar, respectively. Targets have 200, 150, 250 m/sec. radial velocity 

with respect to the radar. In other words, 1 2 31 km, 2 km, 2.5 kmR R R= = =  with 

1 2 3200 m/sec, 150 m/sec, and 250 m/secν ν ν= = = . in this target detection 

scenario.  

The transmitted CW signal is coded by using the Frank, P1, P2, P3, and P4 coding 

types with 1024cN =  respectively. The resulting cross-contour plots for the 

ambiguity function of the transmitted and received radar signal are given in Figure 

4.36, Figure 4.38, Figure 4.40, Figure 4.42, and Figure 4.44. The portion of the plot 

around the peak point for all coding types is enlarged in Figure 4.37, Figure 4.39, 

Figure 4.41, Figure 4.43, and Figure 4.45 to examine the details for range resolution 

and Doppler resolution. It is observed on these figures that the targets are detected 

at about 1 1000.1R =  m. with 1 200ν =  m/sec., 2 1500.95R =  m, 2 149.1ν =  m/sec. 

2 2000.2R =  m, 3 250.9ν =  m/sec. Targets are detected same positions for all 

coding types. The percentage errors in range and radial velocity are calculated at 

below.  

1
|1000,1 1000 |

100 0,01
1000rangeε

−
= × = % 

2
|1500,95 1500 |

100 0,0633
1500rangeε

−
= × = % 

3
| 2000,2 2000 |

100 0,01
2000rangeε

−
= × = % 

1
| 200 200 |

100 0
200velocityε
−

= × = % 

2
|149,1 150 |

100 0,6
150velocityε

−
= × = % 
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3
| 250.9 250 |

100 0,36
250velocityε

−
= × = % 

Based upon the simulation results displayed in Figures 4.36 through 4.45 it is 

concluded that the values of the detected range and radial velocity remain the same. 

For all coding types, the measurement precision in range and radial velocity of the 

target are the same which is an expected result. This is because, range resolution is 

related to c (light velocity) and bt (subcode period), Doppler resolution is related to 

N (number of the code period), cN (number of subcodes), and bt (subcode period). 

All of these variables are selected to be the same for all the code types for easy 

comparison purposes.  

The three-dimensional AF (Ambiguity Function) plot for Frank code is also given 

in Figure 4.46 to see the levels of side lobes. Side lobe level and resolution 

information are further displayed in 4.47 and 4.48 where the cross-sections of the 

3D AF plots are given along range axis and velocity axis, respectively. As seen in 

Figure 4.47 and 4.48, the side lobes of the AF plot are lower than 45% of the 

normalized peak magnitude of one at the largest point. That is, the side lobe levels 

increase 5% for multiple targets (three targets) scenarios with respect to single 

target scenario.  
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Figure 4.36: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code 

( )1 2 3 1 1 11 , 1.5 , 2 , 200 / sec, 150 / sec, 250 / secR km R km R km m m mν ν ν= = = = = = . 

 
 

 
Figure 4.37: Close-up illustration of Figure 4.36. 
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Figure 4.38: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code 

( )1 2 3 1 1 11 , 1.5 , 2 , 200 / sec, 150 / sec, 250 / secR km R km R km m m mν ν ν= = = = = =  

 

 

Figure 4.39: Close-up illustration of Figure 4.38. 
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Figure 4.40: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code 

( )1 2 3 1 1 11 , 1.5 , 2 , 200 / sec, 150 / sec, 250 / secR km R km R km m m mν ν ν= = = = = = . 

 

 
Figure 4.41: Close-up illustration of Figure 4.40. 
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Figure 4.42: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code 

( )1 2 3 1 1 11 , 1.5 , 2 , 200 / sec, 150 / sec, 250 / secR km R km R km m m mν ν ν= = = = = = . 

 

 
Figure 4.43: Close-up illustration of Figure 4.42. 
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Figure 4.44: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code 

( )1 2 3 1 1 11 , 1.5 , 2 , 200 / sec, 150 / sec, 250 / secR km R km R km m m mν ν ν= = = = = = . 

 

 
Figure 4.45: Close-up illustration of Figure 4.44. 
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Figure 4.46: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code 

( )1 2 3 1 1 11 , 1.5 , 2 , 200 / sec, 150 / sec, 250 / secR km R km R km m m mν ν ν= = = = = = . 

 

 
Figure 4.47: Cut along the range axis of Figure 4.46. 
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Figure 4.48: Cut along the range axis of Figure 4.4.46. 
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4.4 Noise Effect on Detection 

At this scenario, as in the scenario presented in section 4.2.1, there is one target 

2500 m. away from the radar with 250 m/sec. radial velocity with respect to the 

radar. Also, effect of the noise on detection and behavior of the code types are 

investigated. For sufficiently high SNR levels, the detection power of the proposed 

AF approach is not affected much. Even at 0 dB SNR level, the detection of the 

target is accomplished successfully. For that reason, a particularly low level of SNR 

at -20 dB is chosen to examine an almost worst case scenario where the noise power 

is 100 times of the signal power.  

The contour plots of the AF output matrices together with their enlarged versions 

are given in Figure 4.49, Figure 4.50, Figure 4.54, Figure 4.55, Figure 4.59, Figure 

4.60, Figure 4.64, Figure 4.65, Figure 4.69, Figures 4.70. 3D AF plots and their cuts 

along range axis and velocity axis plots are given in Figures 4.51 - 4.53, Figures 

4.56 - 4.58, Figures 4.61 - 4.63, Figures 4.66 - 4.68, and Figures 4.71 - 4.73. 

When 3D AF plots and their cuts along the range axis and the velocity axis are 

examined, it can be seen that Frank and P2 coding types have lower side lobe levels 

than the side lobe levels of other coding types. For these aspects, Frank and P2 

coding types give better results than the other coding types.  
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Figure 4.49: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code with SNR = -20 dB. 

( 2,5km, 250 / sec.R mν= = ) 
 

 
Figure 4.50: Close-up illustration of Figure 4.49. 
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Figure 4.51: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ). 
 

 
Figure 4.52: Cut along the range axis of Figure 4.51. 
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Figure 4.53: Cut along the velocity axis of Figure 4.51. 
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Figure 4.54: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ). 
 
 

 
Figure 4.55: Close-up illustration of Figure 4.54. 
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Figure 4.56: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ) 

 

 
Figure 4.57: Cut along the range axis of Figure 4.56. 
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Figure 4.58: Cut along the velocity axis of Figure 4.56. 
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Figure 4.59: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ). 
 
 

 
Figure 4.60: Close-up illustration of Figure 4.59. 
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Figure 4.61: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ) 
 

 
Figure 4.62: Cut along the range axis of Figure 4.61. 
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Figure 4.63: Cut along the Doppler axis of Figure 4.61. 
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Figure 4.64: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ) 
 
 

 
Figure 4.65: Close-up illustration of Figure 4.64. 
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Figure 4.66: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ). 
 

 
Figure 4.67: Cut along the range axis of Figure 4.66. 
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Figure 4.68: Cut along the Doppler axis of Figure 4.66. 
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Figure 4.69: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ). 
 
 

 
Figure 4.70: Close-up illustration of Figure 4.69. 
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Figure 4.71: 3D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code with SNR = -20 dB 

( 2,5km, 250 / sec.R mν= = ). 
 

 

Figure 4.72: Cut along the range axis of Figure 4.71. 
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Figure 4.73: Cut along the Doppler axis of Figure 4.71. 
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4.5  Range Resolution 

For phase-coded radars range resolution is given by eqn. 4.1. Along this thesis, 

codes are designed for 16R∆ =  m. For this choice, various target detection are 

carried on observing range resolution effects. The results of these simulations are 

presented in Figures 4.74 through 4.93. 

In Figures 4.74, 4.76, 4.78, 4.80, 4.82, 4.84, 4.86, 4.88, 4.90, and 4.92 one red point 

is observed. That is, at first glance to these figures, one target is observed. For 

detailed examination, these figures are enlarged. Close-up illustrations are given at 

Figures 4.75, 4.77, 4.79, 4.81, 4.83, 4.85, 4.87, 4.89, 4.91, and 4.93. 

In the first target detection scenario of this section, we have two targets at 1000 

meters and 1015 meters range values with both of them having the same radial 

velocity which is 200 m/sec. As the distance between these two targets is smaller 

than range resolution value of 16 meters, the targets are detected with incorrect 

velocities as seen in Figures 4.75, 4.79, 4.83, 4.87, and 4.91 for the Frank, P1, P2, 

P3, and P4 codes, respectively. The center of the target locations in these AF 

contour plots must be at 200 m/sec but the center of the target locations are not 

observed at these expected points. That is to say the range resolution limits also 

affect the extracted velocity values and eventually the targets can not be 

distinguished correctly. 

In the next target detection scenario, we still have two targets with the same 

velocity of 200 m/sec., at the ranges are 1000 meters and 1017 meters. This time, 

the distance between targets is longer than the range resolution value so that targets 

are detected at correct velocities as seen Figures 4.77, 4.81, 4.85, 4.89, 4.93 for 

Frank, P1, P2, P3, and P4 codes, respectively. The center of target locations in these 

AF contour plots must be at 200 m/sec and also the centers of the target locations 

are roughly at the expected points.  
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Figure 4.74: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code 

( )1 2 1,21000 , 1015 , 200 / sec., 16 .R m R m m R mν= = = ∆ =  

 
 

 
Figure 4.75: Close-up illustration of Figure 4.74. 
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Figure 4.76: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code 

( )1 2 1,21000 , 1017 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.77: Close-up illustration of Figure 4.76.  
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Figure 4.78: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code 

( )1 2 1,21000 , 1015 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.79: Close-up illustration of Figure 4.78. 



110 

 
Figure 4.80: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code 

( )1 2 1,21000 , 1017 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.81: Close-up illustration of Figure 4.80. 
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Figure 4.82: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code 

( )1 2 1,21000 , 1015 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.83: Close-up illustration of Figure 4.82. 
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Figure 4.84: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code 

( )1 2 1,21000 , 1017 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.85: Close-up illustration of Figure 4.84. 
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Figure 4.86: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code 

( )1 2 1,21000 , 1015 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.87: Close-up illustration of Figure 4.86. 
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Figure 4.88: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code 

( )1 2 1,21000 , 1017 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.89: Close-up illustration of Figure 4.88. 
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Figure 4.90: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code 

( )1 2 1,21000 , 1015 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.91: Close-up illustration of Figure 4.90. 
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Figure 4.92: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code 

( )1 2 1,21000 , 1017 , 200 / sec., 16 .R m R m m R mν= = = ∆ = . 

 
 

 
Figure 4.93: Close-up illustration of Figure 4.92. 



117 

4.6  Doppler Resolution Scenarios 

In the first scenario there are two targets at 200 m/sec and 238 m/sec. Note that, the 

radial velocity difference between two targets is 38 m/sec. while the Doppler 

resolution is about 40 m/sec. That is to say, the radial velocity difference between 

two targets is smaller than Doppler resolution value. For better comparisons, ranges 

of the targets are chosen as the same value of 1000 m. The target detection results 

for this scenario are given in Figure 4.94, 4.95, 4.98, 4.99, 4.102, 4.103, 4.106, 

4.107, 4.110, and 4.111. The targets can not be distinguished from each others. The 

individual velocity values can not be observed at expected values as seen in figures 

4.95, 4.99, 4.103, 4.107, 4.111 for Frank, P1, P2, P3, and P4 codes respectively.  

In the second scenario there are also two targets at a range of 1000m but with radial 

velocities of 200m/sec and 245 m/sec. Note that, the radial velocity difference 

between two targets is 45 m/sec. that is longer than the Doppler resolution value. 

The target detection results for this scenario are given in Figure 4.96, 4.97, 4.100, 

4.101, 4.104, 4.105, 4.108, 4.109, 4.112, and 4.113. In this scenario case, the 

deviations from velocity values are much smaller than the deviation in the first 

scenario case. There is an improvement in velocity values with respect to velocity 

values in the first scenario. 
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Figure 4.94: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code 

( )1,2 1 21000 , 200 , 238 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.95: Close-up illustration of Figure 4.94. 
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Figure 4.96: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  Frank code 

( )1,2 1 21000 , 200 , 245 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.97: Close-up illustration of Figure 4.96. 
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Figure 4.98: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code 

( )1,2 1 21000 , 200 , 238 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.99: Close-up illustration of Figure 4.98. 
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Figure 4.100: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P1 code 

( )1,2 1 21000 , 200 , 245 / sec., 40 .R m m m mν ν ν= = = ∆ ≈  

 
 

 
Figure 4.101: Close-up illustration of Figure 4.100. 
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Figure 4.102: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code 

( )1,2 1 21000 , 200 , 238 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.103: Close-up illustration of Figure 4.102. 
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Figure 4.104: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 32 ( 1024)cM N= =  P2 code 

( )1,2 1 21000 , 200 , 245 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.105: Close-up illustration of Figure 4.104. 
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Figure 4.106: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code 

( )1,2 1 21000 , 200 , 238 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.107 Close-up illustration of Figure 4.106. 
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Figure 4.108: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P3 code 

( )1,2 1 21000 , 200 , 245 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.109 Close-up illustration of Figure 4.108. 
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Figure 4.110: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code 

( )1,2 1 21000 , 200 , 238 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.111 Close-up illustration of Figure 4.110. 
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Figure 4.112: 2D Cross - Ambiguity Function plot of the transmitted and received 

signal for 1024 ( 1024)cM N= =  P4 code 

( )1,2 1 21000 , 200 , 245 / sec., 40 .R m m m mν ν ν= = = ∆ ≈ . 

 
 

 
Figure 4.113 Close-up illustration of Figure 4.112. 
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4.7. Choosing Number of Subcodes Nc 

In this section, the effect of code length on coding parameters is examined by the 

help of Frank code based simulations where the M parameter of the Frank code is 

chosen to be 16, 32 and 64, corresponding to code lengths of cN = 256, 512 and 

1024, and the simulation results for a single moving target detection for these cases 

are displaced at Figures 4.114 through 4.119. 

Along this section, carrier frequency, subcode period, and number of code period 

are chosen as below, respectively:  

35cf =  GHz, 0,10667bt =  µsec., 1N = .  

Using equations 4.1 through 4.5, Frank code parameters are obtained. These 

parameters are given at Table 4.1. 

 

Table 4.1. Frank Code parameters for different M parameters 

M  cN   ( sec.)T µ  R unambiguous (m)  ( / sec.)mν∆   (m.)R∆  

16 256 27,307 4096 156.9475 16 

32 1024 109,23 16384 39.2369 16 

64 4096 436,91 65536 9.8092 16 
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Theoretically, if code length is increased R unambiguous is increased, ν∆  is decreased 

that is, Doppler resolution is improved, R∆  is not changed as seen in Table 4.1 

Finally, the quality of the code is increased when code length is increased.  

It can be extracted from figures 4.114, 4.116, and 4.118 that unambiguous range is 

increased when the code length is increased ( 3 2 1u u uR R R〉 〉 = 65536 16384 4096〉 〉 ). It 

is clearly observed in figures 4.115, 4.117 and 4.119 that as the code length is 

increased further, the velocity resolution is improved. Note that, 1ν∆ , 2ν∆ , and 

3ν∆  are not absolute Doppler resolution. Doppler resolutions are only proportional 

with 1ν∆ , 2ν∆  and 3ν∆ . If figures 4.115, 4.117, 4.119 are examined carefully, it 

can be seen that the accuracy level in range and velocity of the target are improved 

when the code length is increased.  

It should be remembered that besides the unambiguous range and velocity 

resolution figures; the computational complexity brought by larger code lengths 

should also be considered as an important factor in choosing the cN  value. The 

optimum case seems to be the 32M =  case, corresponding to 1024cN =  code 

length.  
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Figure 4.114: 2D Cross - Ambiguity Surface of the transmitted and received signal 

for 16 ( 256)cM N= =  Frank code. 

 
 

 
Figure 4.115 Close-up illustration of Figure 4.114. 
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Figure 4.116: 2D Cross - Ambiguity Surface of the transmitted and received signal 

for 32 ( 1024)cM N= =  Frank code. 

 
 

 
Figure 4.117 Close-up illustration of Figure 4.116. 
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Figure 4.118: 2D Cross - Ambiguity Surface of the transmitted and received signal 

for 64 ( 4096)cM N= =  Frank code. 

 
 

 
Figure 4.119 Close-up illustration of Figure 4.118. 
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CHAPTER V  

 

 

CONCLUSION 

 
 

In this thesis, phase coding techniques and use of ambiguity function for target 

detection in CW radars are investigated and also simulation results are presented. In 

order to carry out simulations, a MATLAB code is developed. Using this code 

several Phase Shift Keying techniques (PSK), which are the Frank, P1, P2, P3, and 

P4 coding techniques, are tested under different radar design parameters and target 

scenarios.  

Phase Shift Keying (PSK) techniques are introduced with many aspects. Using 

MATLAB Programming Language these techniques are implemented and 

compared to each other. Advantages and disadvantages of the codes are discussed 

and explained.  

Polyphase Shift Keying method is being studied as a modern concept in radar 

technology. However, satisfactory information about PSK techniques for target 

detection is not found in the literature. In general, spread spectrum signals carry 

mass amount of information due to their wide band nature. The more information 

carried by the signal the more detail the radar signal processor obtains. This means 

that more accurate range and velocity information can be gathered by the wide band 

signals in radar systems. Digital techniques are utilized to generate and decode 

polyphase signals so the code structure and corresponding matched filter can be 

altered easily and rapidly. Former versions of spread spectrum radars have been 

utilizing FMCW technique which is an analog approach to pulse compression 

applications. Polyphase codes are usually generated by the approach of 
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approximating the phase progression to the quadratic phase of FMCW waveform, in 

a digital manner. Also, coded radar waveforms which are wideband-long duration 

signals, introduce a high processing gain due to their high time-bandwidth product. 

Therefore such signals can be transmitted with a very low peak power and become 

less vulnerable to interception and jamming. Such radars are called Low Probability 

of Intercept (LPI) radars. 

In the simulations of this thesis, range and Doppler information of the targets can be 

extracted successfully for various scenarios. Due to the simulation results, targets 

are localized precisely on the range-radial velocity plane through cross ambiguity 

analysis for all used polyphase codes (Frank, P1, P2, P3, and P4 codes). No 

significant performance difference is observed between these codes from conducted 

simulations except that the side lobe levels of the Frank, P1 and P2 codes are 

smaller than the side lobe levels of the P3 and P4 codes.  

Auto ambiguity function is useful for analyzing a designed code structure in the 

range versus radial velocity plane in terms of side lobe levels, range resolution and 

Doppler resolution. In other words, auto ambiguity analysis quantizes the quality of 

the designed code. On the other hand, cross ambiguity function is utilized for target 

detection purposes. Cross ambiguity function is calculated by cross correlating the 

received signal by a collection of frequency and time shifted versions of the 

transmitted waveform. The result is a surface, lying above the range-radial velocity 

plane. This surface has peak values at the points which characterize the targets’ 

range and Doppler profile. 

In this thesis, target detection simulations are carried out in MATLAB platform for 

single and multiple target scenarios for different ranges and radial velocities. It is 

observed that the targets can be indeed located precisely on the range-radial velocity 

plane. Then, the range and velocity resolutions obtained as simulation outputs 

compared with theoretically expected values. Very good agreement is achieved in 

that respect also. These simulations are then repeated for noisy received signals to 

be more realistic. Our target detection simulations have shown that even at very low 

SNR values, such as SNR = -20 dB, the detection performance is still satisfactory. 

Since the noise energy is spread all over the range-radial velocity plane and 
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received signal energy is concentrated in a narrow region, the detection of the 

targets was quite successful.  

Finally, the effect of a critical design parameter, the code length on the range and 

velocity resolutions, is investigated through simulations. The results are valid for all 

polyphase codes, so only the Frank code is examined for the sake of brevity. Any 

increase in the code length leads to improvement in the maximum unambiguous 

range, Doppler resolution and processing gain. In other word, 
unambiguousR  increases, 

ν∆  decreases and the processing gain increases by increasing code length. Since 

the reciprocal of the signal duration is equal to Doppler resolution, longer codes can 

resolve the velocity better. Since the processing gain is increased, the robustness of 

the code against receiver noise is improved. However, increasing the code length, 

the computational complexity dramatically increases. In this thesis a code length of 

1024 bits is selected to be the best choice. This is due to the limitations on the 

computational capacity of the computer used.  

The cross ambiguity method is very demanding for computational power. 

Operations on large signal matrices make the cross ambiguity function hard to 

compute and require very large memory. For this technique to be practically 

applicable in tactical electronic warfare arena, very powerful digital signal 

processing hardware should be available. Cross ambiguity function is a rather raw 

representation of target range and velocity information. As a future work for 

autonomous target detection and tracking issues, the cross ambiguity diagram can 

be analyzed through pattern recognition and other feature extraction techniques.  
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