
A QUADTREE-BASED ADAPTIVELY-REFINED CARTESIAN-

GRID ALGORITHM FOR SOLUTION OF THE EULER

EQUATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT BULGÖK

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

OCTOBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Kemal İder

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

_________________________ _________________________

Yüksel Ortakaya Prof. Dr. M. Haluk Aksel

Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Kahraman Albayrak (METU, ME) ____________________

Prof. Dr. M. Haluk Aksel (METU, ME) ____________________

Prof. Dr. Zafer Dursunkaya (METU, ME) ____________________

Prof. Dr. İsmail H. Tuncer (METU, AEE) ____________________

Asst. Prof. Dr. Cüneyt Sert (METU, ME) ____________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name :

Signature :

 iv

ABSTRACT

A QUADTREE-BASED ADAPTIVELY-REFINED CARTESIAN-GRID

ALGORITHM FOR SOLUTION OF THE EULER EQUATIONS

Bulgök, Murat

M. Sc., Department of Mechanical Engineering

Supervisor: Prof. Dr. M. Haluk Aksel

October 2005, 85 pages

A Cartesian method for solution of the steady two-dimensional Euler equations is

produced. Dynamic data structures are used and both geometric and solution-based

adaptations are applied. Solution adaptation is achieved through solution-based

gradient information. The finite volume method is used with cell-centered approach.

The solution is converged to a steady state by means of an approximate Riemann

solver. Local time step is used for convergence acceleration. A multistage time

stepping scheme is used to advance the solution in time. A number of internal and

external flow problems are solved in order to demonstrate the efficiency and

accuracy of the method.

Keywords: Euler equations, Cartesian method, Dynamic data structures, Finite

volume method

 v

ÖZ

EULER DENKLEMLERİNİN ÇÖZÜMÜ İÇİN ADAPTASYONA YÖNELİK

KARTEZYEN AĞ ALGORİTMASI GELİŞTİRİLMESİ

Bulgök, Murat

Yüksek Lisans, Makine Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Haluk Aksel

Ekim 2005, 85 sayfa

Bu tezde iki boyutlu Euler denklemlerinin kartezyen metodu ile çözümü

incelenmiştir. Dinamik data yapıları kullanılmış ve geometrik ve çözüme yönelik

adaptasyon uygulanmıştır. Çözüme yönelik adaptasyon için çeşitli parametrelerin

akış içindeki değişimleri kullanılmıştır. Sonlu hacimler yöntemi hücre merkezli

yaklaşımla birlikte uygulanmıştır. Çözüme ulaşmak için Riemann çözücüsü

kullanılmıştır. Çözümü hızlandırmak için lokal zaman adımı yaklaşımından

faydalanılmıştır. Metodun hassasiyetini inceleyebilmek için çeşitli iç ve dış akış

problemleri çözülmüştür.

Anahtar Sözcükler: Euler denklemleri, Kartezyen metodu, Dinamik data yapıları,

Sonlu hacimler yöntemi

 vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor and co-supervisor, Prof. Dr. Haluk Aksel and

Yüksel Ortakaya for their valuable support about Computational Fluid Dynamics.

Without them I could not achieve this thesis.

I am grateful to TUSAŞ Aerospace Industry (TAI) for their financial support. I

would also like to thank Hakan Tiftikçi for his invaluable support about C++

programming and computational geometry.

I give my biggest thanks to my parents, Ayşen and Oktay Bulgök, for their patience

and support during my education. I owe them an enormous dept of gratitude.

 vii

TABLE OF CONTENTS

PLAGIARISM... ..iii

ABSTRACT……………………………………………………………………… ...iv

ÖZ………………………………………………………………………………… …v

ACKNOWLEDGEMENTS……………………………………………………… ...vi

TABLE OF CONTENTS………………………………………………………… ..vii

CHAPTER

 1 INTRODUCTION………………………………………………………… …1

 1.1 Mesh Generation Techniques……………………………………….. …1

 1.1.1 Structured Methods…………………………………………… …1

 1.1.2 Unstructured Methods………………………………………... …2

 1.1.3 Cartesian Methods…………………………………………..... …2

 1.2 Solution Techniques…………………………………………………. …3

 1.2.1 Finite Difference Method…………………………………….. …3

 1.2.2 Finite Volume Method……………………………………….. …4

 1.2.3 Finite Element Method……………………………………….. …4

 1.2.4 Implicit Methods……………………………………………... …4

 1.2.5 Explicit Methods……………………………………………… …5

 1.3 Review of Literature…………………………………………………. …5

 1.4 Present Study………………………………………………………… …9

 2 DATA STUCTURE………………………………………………………. ..11

 2.1 Quadtree Data Structure……………………………………………... ..11

 2.2 Octree Data Structure………………………………………………... ..13

 2.3 Binary Tree Data Structure………………………………………….. ..13

 2.4 Linked List…………………………………………………………… ..13

 2.5 Memory Usage………………………………………………………. ..15

 3 MESH GENERATION…………………………………………………… ..17

 3.1 Line Clipping………………………………………………………… ..17

 3.2 Boundary Segments…………………………………………………. ..21

 3.2.1 First Step……………………………………………………… ..23

 viii

 3.2.2 Second Step... ..24

 3.2.3 Third Step…………………………………………………….. ..24

 3.3 Inside-Outside Test………………………………………………….. ..25

 3.3.1 Ray Casting Method…………………………………………. ..26

 3.3.2 Winding Number Method……………………………………. ..26

 3.4 Flow Segments………………………………………………………. ..28

 3.4.1 First Step……………………………………………………… ..28

 3.4.2 Second Step…………………………………………………... ..30

 3.4.3 Third Step……………………………………………………. ..31

 3.4.4 Fourth Step.. ..32

 3.5 Cell Centroid, Area and Type……………………………………….. ..33

 3.6 Split Cells……………………………………………………………. ..34

 3.7 Machine Zero Effect…………………………………………………. ..35

 4 ADAPTATION…………………………………………………………… ..36

 4.1 Defining the Input Geometry………………………………………… ..36

 4.2 Geometric Adaptation……………………………………………….. ..38

 4.2.1 All-Cell Adaptation……………………………………………. ..38

 4.2.2 Cut-Cell Adaptation…………………………………………… ..39

 4.2.3 Curvature Adaptation………………………………………….. ..40

 4.3 Solution Adaptation………………………………………………….. ..41

 5 SOLVER………………………………………………………………….. ..48

 5.1 Gradient Estimation………………………………………………….. ..48

 5.1.1 Path Integral Method………………………………………….. ..49

 5.1.2 Least Squares Method…………………………………………. ..51

 5.2 Limiting……………………………………………………………… ..53

 5.3 Flux Formulation……………………………………………………. ..54

 5.3.1 Euler Equations………………………………………………. ..54

 5.3.2 Roe’s Flux Difference Splitting……………………………… ..57

 5.3.3 Van Leer’s Flux Vector Splitting…………………………….. ..58

 5.4 Time Stepping……………………………………………………….. ..59

 5.4.1 Local Time Step Approach…………………………………… ..59

 ix

 5.4.2 Multi-Stage Time Stepping…………………………………... ..60

 5.4.3 Convergence Criteria…………………………………………. ..61

 5.4.4 Initial Guess and Boundary Conditions………………………. ..62

 6 POST-PROCESSING…………………………………………………….. ..64

 6.1 Contour Plots………………………………………………………… ..64

 6.2 Triangulation…………………………………………………………. ..65

 6.3 Pressure Distribution………………………………………………… ..66

 6.4 Residual History……………………………………………………... ..67

 6.5 Solution Data……………………………………………………….... ..67

 7 RESULTS…………………………………………………………………. ..68

 7.1 Comparison with an Analytical Solution……………………………. ..68

 7.2 Backward-Facing Step………………………………………………. ..72

 7.3 Wedge……………………………………………………………….. ..76

 8 CONCLUSIONS…………………………………………………….......... ..80

 8.1 Summary……………………………………………………………. ..80

 8.2 Conclusions………………………………………………….............. ..81

 8.3 Future Work…………………………………………………………. ..81

REFERENCES…………………………………………………………………… ..83

 x

LIST OF TABLES

TABLES

Table 5.1 Multi-Stage Coefficients for a First-Order Spatial Discretization…….. ..61

Table 5.2 Multi-Stage Coefficients for a Second-Order Spatial Discretization….. ..61

Table 7.1 Exact and Computed Mach Number Values at M∞ = 2……………….. ..72

 xi

LIST OF FIGURES

FIGURES

Figure 2.1 Quadtree Data Structure………………………………………………. ..12

Figure 2.2 Ordinary Linked List…………………………………………………. ..14

Figure 2.3 Circular Linked List…………………………………………………... ..14

Figure 2.4 Doubly Linked List…………………………………………………… ..15

Figure 3.1 A General Line Clipping Example……………………………………. ..18

Figure 3.2 Clipping of an Oriented Line Segment against a Rectangular Region.. ..18

Figure 3.3 Orientation of a Cell………………………………………………….. ..19

Figure 3.4 The Modification to the Original Liang-Barsky Algorithm………….. ..20

Figure 3.5 Special Cases of Line Segment-Rectangular Region Interactions…… ..21

Figure 3.6 An Example for Boundary Segments…………………………………. ..22

Figure 3.7 The First Step in Boundary Segment Determination…………………. ..23

Figure 3.8 The Second Step in Boundary Segment Determination……………… ..24

Figure 3.9 The Third Step in Boundary Segment Determination………………... ..25

Figure 3.10 Winding Number Method…………………………………………… ..27

Figure 3.11 Oriented Boundaries Representing a Simple Closed Region……….. ..27

Figure 3.12 The First Step in Flow Segment Determination…………………….. ..29

Figure 3.13 The Second Step in Flow Segment Determination………………….. ..30

Figure 3.14 The Third Step in Flow Segment Determination……………………. ..32

Figure 3.15 The Fourth Step in Flow Segment Determination…………………... ..33

Figure 3.16 Split Cells……………………………………………………………. ..34

Figure 4.1 Boundary Orientation…………………………………………………. ..37

Figure 4.2 The Input Geometry…………………………………………………... ..38

Figure 4.3 All-Cell Adaptation…………………………………………………… ..39

Figure 4.4 Cut-Cell Adaptation…………………………………………………... ..40

 xii

Figure 4.5 Curvature Adaptation…………………………………………………. ..41

Figure 4.6a Mesh without Any Solution Adaptation…………………………….. ..44

Figure 4.6b Pressure Contours without Any Solution Adaptation……………….. ..44

Figure 4.7a Mesh after 1 Level of Solution Adaptation………………………….. ..44

Figure 4.7b Pressure Contours after 1 Level of Solution Adaptation……………. ..45

Figure 4.8a Mesh after 2 Levels of Solution Adaptation………………………… ..45

Figure 4.8b Pressure Contours after 2 Levels of Solution Adaptation…………… ..45

Figure 4.9a Mesh after 3 Levels of Solution Adaptation……………………….... ..46

Figure 4.9b Pressure Contours after 3 Levels of Solution Adaptation…………… ..46

Figure 4.10a Mesh after 4 Levels of Solution Adaptation……………………….. ..46

Figure 4.10b Pressure Contours after 4 Levels of Solution Adaptation………….. ..47

Figure 5.1a Normal Path for an Uncut Cell………………………………………. ..49

Figure 5.1b Altered Path for an Uncut Cell………………………………………. ..50

Figure 5.2 Path for a Cut Cell……………………………………………………. ..51

Figure 6.1 Reconstruction to Find Nodal Values from Cell-Centered Ones…….. ..65

Figure 6.2 Cell Triangulation…………………………………………………….. ..66

Figure 6.3 Reconstruction of Pressure for Pressure Distribution………………… ..66

Figure 7.1a Final Mesh around the Forward-Facing Ramp at M∞ = 2…………… ..69

Figure 7.1b Final Mesh around the Backward-Facing Ramp at M∞ = 2…………. ..69

Figure 7.1c Residual History at M∞ = 2………………………………………….. ..70

Figure 7.1d Pressure Contours at M∞ = 2………………………………………… ..70

Figure 7.1e Mach Number Contours at M∞ = 2………………………………….. ..71

Figure 7.1f Computed and Analytical Pressure Distributions at M∞ = 2…………. ..71

Figure 7.2a Residual History for Backward-Facing Step at M∞ = 2.5…………… ..73

Figure 7.2b Pressure Contours for Backward-Facing Step at M∞ = 2.5………….. ..74

Figure 7.2c Mach Number Contours for Backward-Facing Step at M∞ = 2.5……. ..74

Figure 7.2d Pressure Contours around the Step at M∞ = 2.5…………………….. ..75

Figure 7.2e Mach Number Contours around the Step at M∞ = 2.5……………….. ..75

Figure 7.2f Computed and Experimental Pressure Distributions………………… ..76

Figure 7.3a Final Mesh for Wedge at M∞ = 2……………………………………. ..77

Figure 7.3b Residual History for Wedge at M∞ = 2…………………………….... ..77

 xiii

Figure 7.3c Pressure Contours for Wedge at M∞ = 2…………………………….. ..78

Figure 7.3d Mach Number Contours for Wedge at M∞ = 2……………………… ..78

Figure 7.3e Comparison of Pressure Distributions for Wedge at M∞ = 2………... ..79

Figure 7.3f Comparison of Mach Number Contours for Wedge at M∞ = 2……… ..79

 xiv

LIST OF SYMBOLS

A area

a speed of sound

E internal energy per unit mass

H enthalpy per unit mass

F horizontal flux component vector

G vertical flux component vector

U conserved variable vector

u horizontal velocity component

v vertical velocity component

γ specific heat ratio

ρ density

Ф flux vector

 1

CHAPTER 1

INTRODUCTION

There are a huge variety of problems that are to be solved by using computational

fluid dynamics. Despite the continuous increase in computational capabilities, more

sophisticated techniques are needed due to the diversity and complexity of flow

problems. These techniques reduce computational time and memory needed for

many problems. Hence, very complex two and three-dimensional, steady and

unsteady problems can be solved using the currently available computational

capabilities.

It is almost impossible to handle this complexity by means of a single approach.

Hence, a number of different approaches are to be used. Each one has its own

advantages and disadvantages and selection of a specific one depends on the

problem under consideration. The most commonly used techniques in computational

fluid dynamics can be classified into two main groups: mesh generation and solution

techniques.

1.1 Mesh Generation Techniques

In order to achieve spatial discretization of the governing equations, a suitable mesh

is to be produced on the solution domain of the problem. In computational fluid

dynamics there are three main mesh generation techniques: structured, unstructured

and Cartesian methods.

1.1.1 Structured Methods

The main feature of structured methods is transformation. It means mapping or

transforming from a physical domain to a computational one, which appears as a

rectangle in two dimensions. All the solution process is performed in this

 2

computational domain and the results are then remapped to the physical one for

post-processing.

One of the main disadvantages of structured methods is that their use is usually

restricted to simple shapes like a single airfoil. In case of a multi-element airfoil, for

instance, complicated approaches like overlapping grids have to be used. Structured

methods, on the other hand, require relatively simple data structures. Two or three-

dimensional arrays are usually used for storing data. Consequently, structured

methods are relatively faster than unstructured and Cartesian ones.

1.1.2 Unstructured Methods

Unlike structured ones, unstructured methods do not involve transformation between

physical and computational domains. Instead, all the computation is performed in a

physical domain only. This makes unstructured methods more suitable for complex

shapes like a multi-element airfoil.

Unstructured methods, on the other hand, usually require more complicated data

structures compared to structured ones. This results in more sophisticated computer

programs and usually increases computational time and memory usage. Hence,

unstructured methods should be preferred over structured ones in case of complex

shapes only.

1.1.3 Cartesian Methods

Cartesian methods are simply a special class of unstructured methods. However,

they require more complicated programs and data structures and are used for solving

flows over even more complex geometries.

An important advantage of Cartesian methods is that any kind of adaptation is very

easy to implement. By means of solution adaptation, for instance, a finer grid can be

 3

obtained around a shock wave. Hence, very high accuracy levels can be obtained

without increasing cell number and computational time significantly.

Structured and ordinary unstructured methods require user interfere to some extend.

Cartesian methods, on the other hand, enable automatic mesh generation. The user

has to define the problem only.

1.2 Solution Techniques

The two-dimensional Euler equations are governed by a system of four differential

equations. Since an analytical solution technique does not exist, these equations are

to be solved numerically. There are three main solution techniques in computational

fluid dynamics: finite volume, finite difference and finite element. Moreover, each

of these techniques can be implemented in two different ways: implicitly and

explicitly.

1.2.1 Finite Difference Method

In finite difference method the differential form of the governing equations are used.

The derivative terms in the equations are approximated with backward, forward or

central differences. For this purpose, the solution domain is divided into a finite

number of discrete points.

Finite difference method is widely used with structured mesh generation techniques.

It enables faster computation compared to its counterparts. The drawback, however,

is that in case of a complex geometry representation of derivative terms with finite

differences may become difficult and reduce accuracy.

 4

1.2.2 Finite Volume Method

Unlike finite difference, in finite volume method the integral forms of the governing

equations are used. The solution domain is divided into a finite number of discrete

areas. These are called cells. Finite volume method physically means to conserve

mass, momentum and energy in each of these cells.

Finite volume method is more suitable for complex geometries and is commonly

used with unstructured and Cartesian methods. In this thesis it is used for solution of

the two-dimensional Euler equations in integral form.

1.2.3 Finite Element Method

As mentioned before, in finite volume method the solution domain is divided into a

finite number of discrete areas. In finite element method, on the other hand, the

solution domain is divided into a finite number of elements and the integral form of

the governing equations is evaluated on each element by means of local and global

interpolation functions.

This results in a set of algebraic equations to be solved by using various

linearization, integration and acceleration methods. Some examples to these

methods are Newton linearization, modified Euler method, Runge-Kutta schemes,

Gauss-Seidel methods and artificial smoothing.

1.2.4 Implicit Methods

In implicit methods the system of governing differential equations are reduced to a

large system of algebraic equations using finite difference, finite volume or finite

element. These algebraic equations are then solved using a matrix solution technique

in a coupled manner.

 5

One of the main advantages of implicit methods is that convergence is guaranteed

due to the fact that conservation of mass, momentum and energy are guaranteed in

the next solution step. However, they are more complex compared to explicit

methods and require more memory for storing a large number of algebraic

equations.

1.2.5 Explicit Methods

The main feature of explicit methods is that mass, momentum and energy are

conserved using the current values of flow variables in the current solution step.

Hence, unlike implicit methods, there is no need for a large number of algebraic

equations. This reduces memory requirement but does not guarantee convergence.

Explicit methods are simpler compared to implicit ones and there are special

techniques for reducing the risk of divergence. One of these techniques is called

multi-stage time stepping and it is used in this thesis.

1.3 Review of Literature

Cartesian methods were first proposed in 1975 as an alternative to structured and

ordinary unstructured methods. The aim was to enhance automatic grid generation

and facilitate solution adaptation. However, they did not take much attention until

1980s because of the relative inefficiency of commercial computers. The reason for

this was that Cartesian methods require complicated data structures, which require

more efficient computers.

In 1986 Clarke used Cartesian methods to solve two-dimensional steady inviscid

flows over multi-element airfoils. Using structured methods to solve such problems

is much more difficult and requires complicated techniques like overlapping grid

generation [1]. This is followed by Mitchel, who developed alternative Cartesian

grid generation techniques to solve the two-dimensional Euler equations [2].

 6

In 1992 Tidd applied a Cartesian approach to solve flows over a complete aircraft

[3]. He solved three-dimensional steady inviscid flows and achieved to reduce errors

up to 1%. He also used multigrid as a convergence acceleration tool, which was

almost a must for three-dimensional applications at that time due to relative

computational inefficiency. Epstein later applied similar approaches to arbitrary

aircraft configurations [4].

Being unstructured approaches, Cartesian methods are usually used with the finite

volume method. However, Morinishi applied the finite difference method to the

two-dimensional compressible Euler equations on Cartesian grids [5]. He used

Runge-Kutta schemes for time stepping.

In 1993 De Zeeuw wrote a computer code to solve the two-dimensional Euler

equations using a Cartesian method approach [6]. He proposed and successfully

applied quadtree data structure. Linked list data structure was used in his study as

well for a number of purposes. His code was applicable to both internal and external

steady inviscid problems. Moreover, he applied a special multigrid technique called

saw-tooth cycle successfully and he proved that any Cartesian method is very

suitable for multigrid applications due to the data structures used. Hence, he

achieved an approximately two-times increase in computational efficiency without

increasing memory usage significantly. Moreover, the difficulties related with small

cut cells were first eliminated by using a special local time step technique together

with second-order spatial accuracy.

In 1994 Coirier developed a computer code to solve the two-dimensional Euler and

Navier-Stokes equations [7]. He used a special hybrid grid technique for resolving

boundary layers efficiently. Hence, his work was not truly about Cartesian methods

due to the fact that Cartesian methods are inherently non-body-fitted. However, he

applied Cartesian method techniques to hybrid grid generation for the first time.

 7

Cartesian methods are modern approaches. Hence, solution techniques used are

usually developed for more conventional approaches like structured methods. Quirk

studied applicability of several solution techniques to Cartesian methods and offered

a number of improvements [8].

In 1995 Aftosmis developed alternative techniques for three-dimensional Cartesian

grid generation [9]. The main features were inside-outside test and polygon clipping.

Afterwards, he applied Cartesian methods to three-dimensional geometries

involving component-based geometries successfully [10]. Hence, the difficulties

related with dirty surfaces were eliminated for the first time. This enables defining

input geometries in graphical environment and transferring them for analysis using

Cartesian methods, enabling flow analysis over much more complicated geometries.

Before that, dirty surfaces were eliminated manually before solution process, which

reduces the efficiency of any method significantly.

Coirier achieved an accuracy study of Cartesian mesh approaches for steady

transonic inviscid flow problems [11]. He compared the results obtained by both

uniformly and adaptively refined Cartesian mesh approaches with those by

structured methods. He used some exact solutions of the steady Euler equations as

well.

In 1995 Pember applied a Cartesian approach to solve unsteady compressible flows

in irregular regions [12]. Since Cartesian methods are especially suitable for solving

flows over complex geometries, his work was of great importance. Moreover, he

proved that Cartesian methods are very efficient in solving unsteady inviscid flows.

One of the main drawbacks of any Cartesian method is that connectivity is very

time-consuming to determine due to the complicated data structures used. In 1998

Khokhlov developed a special algorithm in order to eliminate this difficulty [13]. He

grouped special cells together forming certain boxes and connect them together by

means of extra pointers. Hence, time intervals needed for traversing the tree for

 8

connectivity information were reduced significantly without increasing memory

usage excessively.

Cartesian approaches have usually first or second-order spatial accuracy. Forrer,

however, applied a special technique in 1998 for higher-order spatial accuracies in

two-dimensional problems [14]. He also treated cut cells in a special manner. Using

a special boundary treatment, cut cells were handled as whole cells. By this way

stability problems inherent in Cartesian methods were avoided.

Wu applied an anisotrpic refinement technique to inviscid flow problems [15]. The

method was originally developed in order to capture the inherent anisotropic nature

of viscous boundary layers by the same person. It was slightly modified for

capturing oblique and normal shock waves in two-dimensional inviscid flow

problems.

Qian used a Cartesian method approach for two-fluid hydraulic flow problems [16].

He solved incompressible Euler equations for simulating compressible phenomena

using the artificial compressibility factor. The computational domain encompassed

both water and air regions and the interface in between was treated as a contact

discontinuity.

In 2004 Hunt developed a much more sophisticated computer code to solve the

three-dimensional Euler equations [17]. The data structures and main techniques

were the same as those proposed by Aftosmis [9]. His code, however, was

applicable to both steady and unsteady problems. He used a special technique called

cell merging for efficient mesh generation in case of moving boundaries. He used it

for eliminating the difficulties related with small cut cells as well due to the fact that

local time step approach cannot be used in unsteady problems [6]. Moreover, he

applied parallel programming to Cartesian methods successfully. Hence, he was able

to solve complicated three-dimensional problems within reasonable time intervals.

 9

Li used both isotropic and anisotropic refinement techniques for solving two-

dimensional inviscid flow problems especially around strong shock waves [18]. He

also applied finite difference to Cartesian grids. Hence, he proved the efficiency of

Cartesian methods in capturing critical regions in a flow field by means of solution

adaptation.

Unlike the remaining of the literature, French used a conservative cell-vertex Euler

solver on Cartesian grids [19]. He also applied Lax-Wendroff time stepping unlike

the previous studies that use multi-stage time stepping. He proved that, as modern

approaches, Cartesian methods are suitable for many conventional solution

techniques.

In 2004 Dadone introduced a new technique called the curvature-corrected

symmetry technique (CCST) in order to handle cut cells more efficiently [20]. The

method was originally used for body-fitted approaches and applied to Cartesian

meshes successfully. His work was of great importance in that cut cells are the most

critical part of any Cartesian method and more efficient techniques are needed to

handle them.

In 2004 Keats applied anisotropic refinement to the steady and unsteady two-

dimensional Euler equations [21]. The technique adapted by him was originally

developed for incompressible laminar flows. By means of anisotropic refinement an

excessive number of computational cells were prevented, resulting in significant

computational savings. He proved that the importance of anisotropic refinement is

much higher in unsteady flow problems compared to steady ones.

1.4 Present Study

In Chapter 2 a number of dynamic data structures are introduced and those that are

used in this study are emphasized. In Chapter 3 the mesh generation technique is

described in detail. A number of topics like line clipping and inside-outside test are

 10

explained as well. Chapter 4 deals with adaptation, which is the most important part

of Cartesian methods. Solution of the two-dimensional Euler equations is explained

in Chapter 5. In Chapter 6 the basics of post-processing are given together with a

number of crucial points. A number of test cases are given in Chapter 7 in order to

demonstrate the efficiency and accuracy of the method. The results are then

discussed in Chapter 8.

 11

CHAPTER 2

DATA STRUCTURE

As mentioned previously, unstructured and especially Cartesian methods require

sophisticated data structures. Since the number of cells cannot be predetermined,

simple static data structures like two or three-dimensional arrays cannot be used

efficiently. Instead, dynamic data structures like quadtree, octree, binary tree and

linked list are preferred.

2.1 Quadtree Data Structure

As the name implies, in quadtree data structure cells are stored in a tree-like

structure [6]. Each cell has a pointer to its parent and four pointers to its children.

The cell that does not have a parent is called the root cell and its related pointer is set

to zero. Similarly, some cells do not have children and their related pointers are set

to zero as well. They are called leaf cells and are very important in solution and

post-processing. Other cells have a parent and four children. An illustration of the

quadtree data structure is given in Figure 2.1.

 12

Figure 2.1 Quadtree Data Structure

Quadtree data structure is totally flexible. Any number of cells can be stored in any

configuration. In an array, however, the number has to be fixed and known in

advance. Hence, quadtree data structure is very suitable for Cartesian methods,

which enable the analysis of flows over complex geometries.

In two and three-dimensional arrays an element in the array is referred to using its

index. Hence, they are significantly faster compared to dynamic data structures. In

quadtree, on the other hand, the elements are not stored in such an order and do not

have an index. For this reason each element in the tree are referred to using recursive

functions.

In structured methods connectivity information is apparent. In other words, the

neighbors of a cell are predetermined and a special means for connectivity is not

necessary. In Cartesian methods, on the other hand, connectivity information is

extracted from the tree using the parent-children relationships between the cells

through recursive functions.

 13

2.2 Octree Data Structure

Octree data structure is very similar to quadtree. There is one root cell and there are

leaf cells in the tree. Each element in the tree has a pointer to its parent. The only

difference is that each element has eight pointers to its children [9, 17].

Octree data structure is very suitable for three-dimensional Cartesian methods

applications. Each element in the tree represents a cubic region in three dimensions.

Similar to quadtree data structure, connectivity information is to be obtained using

recursive functions.

2.3 Binary Tree Data Structure

Binary tree data structure is very similar to quadtree and octree. The only difference

is that, as the name implies, each cell has two pointers to its children. The recursive

structures are the same as quadtree and octree and the connectivity information is

obtained via parent-children relationships.

Binary tree data structure is very suitable for anisotropic refinement, which is

necessary for efficient solution of viscous problems, which are governed by the

Navier-Stokes equations. As mentioned before, quadtree and octree data structures

are usually used for solution of the two and three-dimensional Euler equations,

respectively.

2.4 Linked List

Another important dynamic data structure is linked list. Each element has a pointer

that points to the next element in the list. In an ordinary linked list the pointer of the

final element is set to zero. A special pointer is used in order to distinguish the first

element from the other ones in the list. An example is given in Figure 2.2.

 14

Figure 2.2 Ordinary Linked List

A special type of linked list is circular linked list. Unlike its ordinary counterpart,

the pointer of the final element in the list is not set to zero. Instead, it points to the

first element of the list. It can be used, for instance, for storing the points of a simple

closed curve in two dimensions. An example to circular linked list is given in Figure

2.3.

Figure 2.3 Circular Linked List

The most important drawback of an ordinary linked list is that it can be traversed in

one direction only. In order to overcome this difficulty, doubly linked lists are used.

In a doubly linked list each element in the list has two pointers: one for the next

element and the other for the previous one. Hence, a doubly linked list can be

traversed in both directions. An example to doubly linked list is given in Figure 2.4.

START

NULLSTART

 15

Figure 2.4 Doubly Linked List

2.5 Memory Usage

Every computer program needs a compromise between computational time and

memory usage. Using the memory as much as possible reduces computational time

by reducing recalculations. The limited capabilities of a computer, however, limit

the number of variables that can be stored in the memory. Hence, any decision

depends on the available computational capabilities.

In this thesis the integer variables stored per cell are

• 5 words – Pointers to one parent and four children cells

• 1 word – Cell type information

• 1 word – Cell level

while the real variables stored per cell are

• 4 words – Primitive variables, which are density, velocity components

and pressure

• 4 words – Temporary conserved variables for multistage time stepping

• 2 words – Cell centroid

• 1 word – Cell area

• 8 words – Gradients of the primitive variables

NULL
NULL

START

 16

• 4 words – Residuals for updating primitive variables

• 1 word – Local time step

• 4 words – Limiter values

 17

CHAPTER 3

MESH GENERATION

In order to achieve spatial discretization of the Euler equations in two dimensions, a

suitable mesh is required prior to the solution step. Cartesian methods are inherently

unstructured and require sophisticated mesh generation techniques. Such techniques

have to be suitable for generating efficient, robust and high-quality meshes around

arbitrarily complex input geometries.

The technique described here is based on line clipping. No restricting assumption is

made for the input geometry and it is valid for both internal and external flow

problems. The mesh generation procedure is composed of three steps: determination

of boundary segments, flow segments and area, centroid and type of each cell. Since

line clipping and inside-outside test are used in determining boundary and flow

segments, respectively, they are explained in detail as well.

3.1 Line Clipping

Given an oriented line segment and a simple closed region is space, line clipping

means finding the part of the line segment residing in the given region [22, 23]. The

important point is that the original orientation of the line segment is to be conserved.

A general case is illustrated in Figure 3.1.

 18

Figure 3.1 A General Line Clipping Example

In general, the simple closed region against which a line segment is clipped may be

totally arbitrary in shape as illustrated in Figure 3.1. Hence, very complex

configurations may result due to very complex interactions between the two objects.

In Cartesian methods, however, only rectangular regions are considered as shown in

Figure 3.2. This restriction enables the use of simpler algorithms and improves

computational efficiency.

Figure 3.2 Clipping of an Oriented Line Segment against a Rectangular Region

 19

There are a number of different methods, algorithms, in the literature for clipping

arbitrary oriented line segments against rectangular regions. Some examples are

Liang Barsky, Sutherland Cohen and Blinn’s algorithm. Each one has its own

advantages and disadvantages considering computational efficiency, simplicity and

robustness. In this thesis Liang Barsky is used due to its simplicity compared to the

other methods.

In the original Liang Barsky algorithm the line segments which are coincident with

one of the faces of the rectangular region are considered to be inside the region. The

orientation of the line segment is not taken into account in such a case. In Cartesian

methods, on the other hand, each cell has a counterclockwise orientation. In other

words, the faces of a cell are oriented in a counterclockwise direction with respect to

the cell itself as shown in Figure 3.3.

Figure 3.3 Orientation of a Cell

Hence, in this thesis a line segment which is coincident with one of the faces of a

cell is considered to be inside if its orientation is the same as the orientation of the

face under consideration. Otherwise it is considered to be outside and discarded.

This is the only modification to the original Liang Barsky algorithm and illustrated

in Figure 3.4.

 20

Figure 3.4 The Modification to the Original Liang-Barsky Algorithm

In some problems special interactions between rectangular regions and line

segments may occur. Although such occurrences are very rare, for the sake of

robustness, they are to be handled correctly. A number of them are given in Figure

3.5 together with the resulting configurations obtained by Liang Barsky. The empty

boxes mean that there is not a line segment inside the cell.

 21

Figure 3.5 Special Cases of Line Segment-Rectangular Region Interactions

3.2 Boundary Segments

In almost all applications input geometries are defined as a combination of oriented

line segments. (In three-dimensional space line segments are replaced by oriented

triangles.) In Cartesian methods these line segments are allowed to intersect the cells

arbitrarily. As a result, some cells contain line segments that are part of the input

geometry. These oriented line segments are called boundary segments.

There are four boundary segment types: wall, far-field, inlet and outlet. Boundary

segments of each cell are kept in a four-element array of pointers. Each pointer

points to boundary segments of one type and it is set to zero if the cell does not have

any boundary segments of that type.

The cell given in Figure 3.6, for instance, has three wall boundary segments and no

far-field, inlet and outlet boundary segments. Hence, the second, third and fourth

elements of the array are set to zero. The first element, on the other hand, points to a

 22

linked list containing the three wall boundary segments of the cell. If the cell were

an uncut cell, then all of the elements of the array would be set to zero.

Figure 3.6 An Example for Boundary Segments

Wall boundary segments are boundary segments through which there is no fluid

flow. This means that there is no mass flow rate. There is no energy flow rate as

well. Considering momentum flow rate, only the pressure term is present. Far-field,

inlet and outlet boundary segments, on the other hand, are boundary segments

through which fluid flow is possible.

Boundary segments of a cell are determined by a four-step procedure. The procedure

results in zero pointers in case of an uncut cell. Each step is explained below.

0 0

0

0

 23

3.2.1 First Step

The first step in determining boundary segments of a cell is to copy the boundary

segments of the parent cell into a separate linked list. This is a typical linked list

creation process. A new linked list is created containing the same boundary

segments with the original one. This is illustrated in Figure 3.7.

Figure 3.7 The First Step in Boundary Segment Determination

Considering only the boundary segments of the parent cell saves computational

time. The input geometry is composed of much more oriented line segments. Since

the boundary segments of a cell are to be the boundary segments of the parent cell at

the same time, there is no need to consider all the line segments comprising the input

geometry.

0

0

 24

3.2.2 Second Step

In the second step all the line segments in the copy created in the first step are

clipped against the cell itself using Liang Barsky algorithm explained previously. In

other words, the parts of these line segments residing in the cell under consideration

are determined. The line segments that are outside are flagged as well as shown in

Figure 3.8.

Figure 3.8 The Second Step in Boundary Segment Determination

3.2.3 Third Step

In this step the line segments that are outside and flagged in the second step are

deleted from the linked list. This is a typical linked list deletion process. An

illustration is given in Figure 3.9.

0

0

 25

Figure 3.9 The Third Step in Boundary Segment Determination

The important point is that the line segments in the final linked list do not have to be

in a specific order like clockwise or counterclockwise. Instead of this, they are

stored in a totally arbitrary manner. The orientation of each line segment, on the

other hand, is important and each one is to be oriented in a counterclockwise

direction with respect to the cell itself.

3.3 Inside-Outside Test

Inside-outside test means determining whether a point is inside or outside a simple

closed region. In general, a combination of such regions may be under consideration

as well. Inside-outside test is almost a must in Cartesian methods and an efficient

method is to be used for an efficient and robust mesh generator.

There are several methods in the literature used for inside-outside test. The most

well-known and widely used ones are ray casting and winding number methods. The

latter is used for all cases in this thesis. Since all methods may cause problems while

0

0

 26

dealing with points that are exactly on or very close to the boundary of the region, a

check should by applied for such cases in advance for the sake of robustness.

3.3.1 Ray Casting Method

One of the most commonly used methods for inside-outside test is ray casting. The

main idea is to send a ray from the point under consideration and count the number

of intersection points with the boundary of the region. If the number of intersection

points is odd then the point is inside the region. Otherwise it is outside.

Ray casting method is considered to be more efficient compared to winding number

due to the fact that it does not include complex mathematical operations like square

root and inverse trigonometric functions. Moreover, it is readily extendable to three-

dimensional applications. In ray casting method, however, there are some special

cases which are to be taken into account for the sake of robustness. The ray, for

instance, may be tangent to or coincident with the boundary of the region.

3.3.2 Winding Number Method

A less efficient but more robust way of inside-outside test is winding number or

solid angle method. It involves a number of angle calculations and then summing

them up in an arbitrary manner. If the summation is zero then the point is outside the

region. If it is 2π then the point is inside. Round-off effects, however, are to be taken

into account for the sake of robustness. An illustration is given in Figure 3.10.

 27

Figure 3.10 Winding Number Method

Like ray casting, winding number can be used for combinations of simple closed

regions and in three-dimensional applications as well. Unlike ray casting, however,

winding number requires the line segments comprising the boundary or boundaries

of the region to be in a counterclockwise orientation. If there are holes in the region

then the boundaries of these holes have to be in a clockwise orientation. An example

is given in Figure 3.11.

Figure 3.11 Oriented Boundaries Representing a Simple Closed Region

The point is inside. The point is outside.

 28

3.4 Flow Segments

Flow segments are line segments through which both mass and energy flows are

possible together with momentum flows in each main direction. All computational

cells have at least two flow segments and cells that do not have any flow segments

are classified as unused cells.

Although boundary segments of a cell may be totally arbitrary in orientation, flow

segments are to be either horizontal or vertical. No cell may have a flow segment

that is inclined with respect to main directions. This is one of the basic properties of

Cartesian methods that make them easier and more efficient compared to their

counterparts.

Flow segments of each cell are kept in a four-element array of pointers. Each pointer

points to flow segments associated with one of the faces of the cell. A pointer is set

to zero if there are not any flow segments in the linked list.

In order to determine flow segments of a cell its boundary segments are to be

determined in advance using the procedure explained previously. Flow segments are

then determined using a four-step procedure.

3.4.1 First Step

The first step in determining the flow segments of a cell associated with one of its

faces is to produce a linked list containing the two endpoints of the face and all the

endpoints of the boundary segments of the cell that are on this face. This is a typical

linked list creation process. An illustration is given in Figure 3.12.

 29

Figure 3.12 The First Step in Flow Segment Determination

Note that, since the boundary segments of a cell do not have to be in a specific order,

the points in the linked list do not have to be in a specific order as well. This is

obvious in Figure 3.12.

E0

E1

P0

P1

P2

P4

P3

E0 P2 P4

P3P0E1 P1

0

 30

3.4.2 Second Step

In the second step the linked list created in the first step is sorted in order to obtain a

linked list that is suitable for the third step. The sorting criterion depends on which

face of the cell is under consideration. For the first face, for instance, the points are

sorted with respect to increasing apses value. An illustration is given in Figure 3.13.

Figure 3.13 The Second Step in Flow Segment Determination

E0

E1

P0

P1

P2

P4

P3

E0 P0 P1

P2 P3E1 P4

0

 31

3.4.3 Third Step

Sorting produces a linked list containing point elements that are in a specific order.

The next step is to create a linked list of line segments whose end points are the

elements of the previous linked list. An ordinary linked list creation algorithm is

used for this purpose together with the fact that there must be at least two points in

the previous list. This means that there is to be at least one line segment in the new

linked list. This step is illustrated in Figure 3.14.

 32

Figure 3.14 The Third Step in Flow Segment Determination

3.4.4 Fourth Step

The linked list created in the third step involves line segments. In the fourth and

final step each of these line segments are checked for whether they are inside or

outside the flow field. For this task, first, the midpoint of each line segment is

determined. If the point is outside the flow field then the line segment is deleted

E0

E1

P0

P1

P2

P4

P3

E0-P0

0

P0-P1 P1-P2

P2-P3 P3-P4 P4-E1

 33

from the list. This test is performed by winding number method and is illustrated in

Figure 3.15.

Figure 3.15 The Fourth Step in Flow Segment Determination

3.5 Cell Centroid, Area and Type

As mentioned before, boundary and flow segments of a cell do not have to be in a

specific order. However, they are bound to form a simple closed curve or a

combination of such curves in two dimensions. Hence, once the boundary and flow

segments of a cell are determined, its centroid and area can be calculated using

E0

E1

P0

P1

P2

P4

P3

E0-P0

0

P1-P2 P3-P4

 34

simple geometric identities. In addition, cell type can be given considering the

existence and type of flow and boundary segments.

Cell centroid is used in case of second-order spatial accuracy. Cell area is necessary

for residual calculation and cell type is mainly used for increasing the efficiency of

recursive functions.

3.6 Split Cells

One of the most important problems associated with Cartesian methods is split cells.

Unlike the usual case, flow and boundary segments of a split cell form at least two

simple closed curves as shown in Figure 3.16.

Figure 3.16 Split Cells

The most logical, robust and accurate way of handling split cells is to consider these

curves being totally independent from each other. This approach is, however,

inefficient in terms of computational time and requires much more complicated data

structures.

For this reason, as an alternative approach, these curves are considered as a whole

with only one set of primitive variables, gradients, frozen limiters and so on. The

 35

inaccuracy introduced with this approach is assumed to be negligible due to the fact

that split cells are cut cells and very small in size compared to the remaining of the

grid.

In order to reduce the number and size of split cells, a special recursive function is

used. Following the generation of an initial mesh, the whole tree is traversed and the

split cells are divided until the remaining ones are sufficiently small. By this way the

effect of split cells to the overall accuracy of the solution is minimized.

3.7 Machine Zero Effect

Computers work with a finite number of digits. Some use a very high number but no

one uses infinitely many digits. For the sake of robustness this should be taken into

account as well.

The usual way of taking machine zero effect into account is to define a global

variable representing the minimum real value that the program can handle. All the

values whose absolute values are less than this value are taken as zero. Hence, this

global variable represents the maximum resolution of the program. In this thesis a

value between 1010− and 1410− is used.

 36

CHAPTER 4

ADAPTATION

In computational fluid dynamics high accuracy levels are usually required. One way

of acquiring this is to use a fine mesh. By this way, the solution domain is divided

into smaller regions, namely cells, and more accurate results can be obtained.

Using a fine mesh, however, increases computational time and memory usage

significantly. Hence, the time required for the solution of a problem may increase to

unacceptable values. An alternative is to use a finer mesh wherever necessary. For

this purpose critical regions in the domain are identified where a finer mesh is

required. This technique is known as adaptation.

One of the most important features of Cartesian methods is that any kind of

adaptation can easily be applied to any input geometry. Hence, relatively high

accuracy levels can be obtained with a relatively low number of cells. This saves

computational time and memory significantly.

There are two kinds of adaptation: geometric and solution. After defining the input

geometry, they are applied for obtaining a suitable mesh, or successive meshes, for

the solution of a problem. Each of these steps is explained below.

4.1 Defining the Input Geometry

In Cartesian methods the whole procedure begins with defining the input geometry

or flow domain. A suitable mesh is then produced on this domain and the problem is

solved on this mesh. Finally, the results are post-processed using some means.

The flow domain is defined by specifying the boundaries. Four different boundary

types are used in this thesis: wall, far-field, inlet and outlet. Wall and far-field

 37

boundaries are used for external flows. Wall, inlet and outlet boundaries are used for

internal flows.

Boundaries are specified as a combination of line segments. All boundaries are

oriented in counterclockwise direction. The holes, on the other hand, are given in

clockwise orientation. An illustration is given in Figure 4.1.

Figure 4.1 Boundary Orientation

The line segments comprising the boundaries of the flow domain are read from the

input files and are given as the boundary segments to the root cell. In other words,

the boundary segments of the root cell are given explicitly. For other cells, on the

other hand, the boundary segments are determined using the procedure explained in

Chapter 3. An illustration is given in Figure 4.2.

 38

Figure 4.2 The Input Geometry

The flow segments of the root cell are set to zero by default. The reason for this is

that the root cell has no neighbor and it can not have any flow segment. This

completes defining the input geometry. The next step is producing a suitable initial

mesh on this flow domain by means of geometric adaptation.

4.2 Geometric Adaptation

After defining the input geometry, geometric adaptation is applied in order to obtain

a suitable initial mesh for the solution of a given problem. There are three types of

geometric adaptation: all-cell, cut-cell and curvature. The amount of each type of

adaptation is determined by the user.

4.2.1 All-Cell Adaptation

In all-cell adaptation all the leaf cells are divided without using any specific

criterion. The aim is to obtain sufficiently small cells before applying other types of

adaptation. If all-cell adaptation is not applied, the root cell itself is used as the

initial mesh. In Figure 4.3 two levels of all-cell adaptation applied to the simple

input geometry given in Figure 4.2 is shown.

 39

Figure 4.3 All-Cell Adaptation

During all cell adaptation the overall cell number increases exponentially. Hence, it

is considered to be very costly compared to other types of geometric adaptation and

excessive use of it should be avoided. For most cases two or three steps are found to

give superior results.

4.2.2 Cut-Cell Adaptation

After all-cell adaptation cut-cell adaptation is applied in order to obtain smaller cells

at solid boundaries. For this purpose, cells that are cut by the input geometry are

determined and divided until a sufficiently fine mesh is obtained. Cut-cell adaptation

is illustrated in Figure 4.4.

 40

Figure 4.4 Cut-Cell Adaptation

4.2.3 Curvature Adaptation

There may be some regions of the input geometry with a high curvature such as the

tip or tail of an airfoil. Such regions are expected to be more critical and require

careful attention compared to those with a low curvature. Hence, high curvature

regions are determined and resolved better by using smaller cells. This is achieved

by curvature adaptation. In Figure 4.5, 3 levels of curvature adaptation are applied to

the mesh given in Figure 4.4.

 41

Figure 4.5 Curvature Adaptation

Curvature adaptation is implemented in two steps. In the first step the angles

between the successive wall boundary segments of each cut cell are calculated. The

cell has to contain at least two wall boundary segments. Uncut cells and cut cells

which have just one wall boundary segment are discarded.

The maximum of these angles is then compared with a user-specified threshold

value. If it is higher than this value then the cell is divided. In this thesis the

threshold value of 20ο is used for all cases.

In some cases one of the endpoints of the line segments comprising the input

geometry may coincide with one of the faces of a cut cell. For the sake of robustness

these special cases are to be taken into account as well. For this purpose, the same

threshold value is used and if the angle is higher than this value then both cells are

divided.

4.3 Solution adaptation

By defining the input geometry and applying geometric adaptation, namely all-cell,

cut-cell and curvature adaptations, a suitable initial mesh is produced for the

 42

solution of the problem as given in Figure 4.5. The first solution is then obtained

using this initial mesh.

In each problem, however, there may be critical regions where the flow variables

undergo abrupt changes. Shock waves, contact layers and shear layers are examples

of such features frequently encountered in inviscid and viscous problems. In order to

obtain higher accuracy levels these features have to be resolved sufficiently.

One way of obtaining enough resolution is to use a much finer mesh. Such an

approach, however, resolves unnecessary regions as well and increases the total

number of computational cells significantly and unnecessarily. Hence,

computational time and memory usage may increase to intolerable levels.

Hence, techniques for resolving the critical regions without increasing the total

number of cells significantly are needed in order to find a compromise between

accuracy and computational capabilities. Such techniques are generally called

solution adaptation.

In conventional approaches solution adaptation is performed manually by the user at

the beginning. The critical regions are estimated and a finer mesh is used in these

regions. This method is, however, not efficient due to the fact that the critical

regions in a flow field cannot be predetermined.

Hence, solution adaptation is most efficiently applied in an automated manner. The

problem is solved on an initial mesh in order to determine the critical regions in the

domain. The mesh is then refined in order to obtain a finer mesh in these critical

regions.

There are several ways to distinguish such critical regions in a flow field. In this

thesis the curl and divergence of velocity are used together. Curl of velocity is used

for resolving shear layers while divergence of velocity is used for resolving shock

 43

waves. Using two different criteria at the same time gives superior results compared

to using a single one.

For each cell the curl cτ and divergence dτ of velocity are computed in weighted form

as

r
r

c lU
1+→

×∇=τ r
r

d lU
1+→

⋅∇=τ (4.1)

where l is the length scale for the cell. In this thesis r is always taken as 2. Once the

curl and divergence of velocity are computed for all cells, the standard deviations

about zero are computed as

n

n

i
c

c

∑
== 1

2τ
σ

n

n

i
d

d

∑
== 1

2τ
σ (4.2)

where n is the total number of cells. Hence, the conditions for refinement and

coarsening may be written as

i. If cc τσ < or dd τσ < the cell is flagged for refinement.

ii. If 10cc στ < and 10dd στ < the cell is flagged for coarsening.

In order to demonstrate the effect of solution adaptation on the accuracy of the

results, a supersonic flow over a wedge is solved. The free-stream Mach number is

2. The initial mesh is produced by means of 2 levels of all-cell, 7 levels of cut-cell

and 3 levels of curvature adaptation. 4 levels of solution adaptation are then applied

successively on this initial mesh. The results are given in Figure 4.6, 4.7, 4.8, 4.9

and 4.10. It is apparent from the figures that critical features like the double-

reflecting shock and the expansion fan are resolved better increasing the level of

solution adaptation.

 44

Figure 4.6a Mesh without Any Solution Adaptation

Figure 4.6b Pressure Contours without Any Solution Adaptation

Figure 4.7a Mesh after 1 Level of Solution Adaptation

 45

Figure 4.7b Pressure Contours after 1 Level of Solution Adaptation

Figure 4.8a Mesh after 2 Levels of Solution Adaptation

Figure 4.8b Pressure Contours after 2 Levels of Solution Adaptation

 46

Figure 4.9a Mesh after 3 Levels of Solution Adaptation

Figure 4.9b Pressure Contours after 3 Levels of Solution Adaptation

Figure 4.10a Mesh after 4 Levels of Solution Adaptation

 47

Figure 4.10b Pressure Contours after 4 Levels of Solution Adaptation

 48

CHAPTER 5

SOLVER

As mentioned before, the first step in Cartesian methods is to define the input

geometry. A suitable initial mesh is then produced by means of all-cell, cut-cell and

curvature adaptations. The next step is to solve the governing equations on this

mesh.

In this thesis, cell-centered approach is used in order to discretize the finite volume

form of the two-dimensional Euler equations. Flux difference splitting and flux

vector splitting methods are used for calculating mass, momentum and energy flow

rates through the cell faces.

For first-order spatial accuracy, the cell-centered values of the primitive variables

are used directly in flux calculation. For second-order spatial accuracy, on the other

hand, these values are reconstructed at the midpoints of the cell faces. For this

purpose, the gradients of the primitive variables and limiting are used.

In this thesis, steady solutions of the two-dimensional Euler equations are sought.

Hence, high convergence rates are usually required. In order to achieve this, local

time step technique is used.

5.1 Gradient Estimation

Gradients of the primitive variables are used for two main purposes: second-order

spatial accuracy and solution adaptation. For second-order spatial accuracy,

primitive variables at cell centroids are reconstructed at the midpoints of the cell

faces using gradients and limiting. For solution adaptation, cells are flagged for

refinement or coarsening with respect to a criterion or some criteria involving

gradients of the primitive variables.

 49

There are two methods that are widely used for gradient estimation: least squares

and path integral. Although the least squares method has some advantages, the path

integral method is used for all cases in this thesis due to its computational efficiency.

5.1.1 Path Integral Method

One of the methods that are used for estimating gradients of the primitive variables

in a cell is the path integral method. As the name implies, the main idea is to

construct a suitable path around the cell under consideration. Divergence theorem is

then applied on this path.

In order to construct such a path, the neighboring cells are to be collected in a

counterclockwise order. For an uncut cell, which is the most common case in

Cartesian methods, the procedure is relatively simple. In Figure 5.1a a normal path

is illustrated, which is the simplest case. In Figure 5.1b, on the other hand, a path

that is altered due to the differences between the length scales of the neighboring

cells is given.

Figure 5.1a Normal Path for an Uncut Cell

 50

Figure 5.1b Altered Path for an Uncut Cell

In case of a cut cell the procedure is more complicated. The main difficulty is that,

for a cut cell, at least one of neighboring cells is bound to not exist. In such a case,

the cell itself is to be used instead of the missing cells. This is illustrated in Figure

5.2. In the figure the dotted cells are the missing neighbors.

 51

Figure 5.2 Path for a Cut Cell

As mentioned before, once a suitable path is constructed, divergence theorem is

applied on this path [24]. This gives the gradient of a quantity kW∇ in a cell as

∫ Ω∂
→

Ω

=∇ ldnW
A

W kk
1 (5.1)

where ΩA represents the area enclosed by the path of integration Ω∂ . It can be

calculated by triangulating the area and summing the areas of these triangles.

5.1.2 Least Squares Method

Another way of estimating gradients of the primitive variables is the least squares

method [6]. It relies on the solution of a weighted least squares system. Such a

system being solved for the gradient of u is

 52

fuL =∇

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆∆

∆∆

=

NNNN yωxω

yωxω

L
..
..
..

1111

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆

∆

=

NN uω

uω

f
.
.
.

11

 (5.2)

where

0xxx ii −=∆

0yyy ii −=∆ (5.3)

0uuu ii −=∆

where the subscript i represents a neighboring cell and the subscript 0 represents the

cell in which the gradient of u is to be calculated. x and y represents the coordinates

of the cell centroids. N is the total number of cells that are used for gradient

estimation. The result may be written as

() i

N

i
iix uycxc

ccc
u ∆∆−∆

−
=∇ ∑

=1
232

231

1

() i

N

i
iiy uxcyc

ccc
u ∆∆−∆

−
=∇ ∑

=1
212

231

1 (5.4)

where c1, c2 and c3 are defined as

∑
=

∆=
N

i
ixc

1

2
1 ∑

=

∆∆=
N

i
ii yxc

1
2 ∑

=

∆=
N

i
iyc

1

2
3 (5.5)

Similar to the path integral method, the least squares method require collecting the

neighboring cells. The same procedure explained for the path integral method may

be used for the least squares method as well. However, the latter does not require the

neighboring cells to be collected in a counterclockwise order.

 53

5.2 Limiting

Gradient estimation is based on the fact that flow variables change continuously in

the region of estimation. Near solid boundaries or shock waves, however, flow

variables may change discontinuously and gradient estimation may give results that

are totally inaccurate.

In order to eliminate this drawback and obtain accurate, bounded values of the

primitive variables, the estimated gradient values are limited before being used in

calculations [6]. The limiter used is a diffusive limiter and is given as

()
()
()
()⎪

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

k
c
k

k
c
k

k

k
c
k

k
c
k

k

WW

WW

WW

WW

cell

path

cell

path

min

min
min

max

max
min

1

minφ (5.6)

In this thesis four limiters are used: one for each primitive variable. This gives more

accurate results due to the fact that each primitive variable has its own limiter and

excessive limiting of the gradients is eliminated. The drawback, however, is that it

requires four real variables and expensive in terms of memory.

Alternatively, only the minimum of these limiters can be stored and used for all

primitive variables. This method is less expensive in terms of memory and more

conservative compared to the previous one. The drawback, however, is that the

effect of second-order spatial accuracy decreases. It may be more suitable for three-

dimensional applications.

 54

5.3 Flux Formulation

As mentioned before, flow segments are line segments through which mass,

momentum and energy flow are possible. Estimation of these flow rates requires a

suitable flux formulation. Flux formulation described here corresponds to solution of

the Euler equations. In this thesis two well-known flux formulation methods are

examined: Roe’s flux difference splitting and Van Leer’s flux vector splitting.

5.3.1 Euler Equations

The governing equations for two-dimensional inviscid flows in the absence of body

forces may be written in differential form as

0=
∂
∂

+
∂
∂

+
∂
∂

→→→

y
G

x
F

t
U (5.7)

where

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

ρE
ρv
ρu
ρ

U

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+

=

ρuH
ρuv

pρu
ρu
2

F

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
=

ρvH
pρv

ρvu
ρv

2G (5.8)

where ρ is the density, p is the thermodynamic pressure, u and v are the velocity

components in the x and y directions, E is the total energy per unit mass and H is the

total enthalpy per unit mass [24, 25, 26, 27, 28]. Taking the integral of Equation

(5.7) over a cell with an area of A leads to

0=
∂
∂

+
∂
∂

+
∂
∂

∫∫∫ dA
y

dA
x

dA
t AAA

GFU (5.9)

 55

which may be written as

0=
∂
∂

+
∂
∂

+
∂
∂

∫∫∫ dxdy
y

dxdy
x

dA
t AAA

GFU (5.10)

due to the fact that the area of the cell is constant. Using the divergence theorem for

the second and third terms of the left hand side of Equation (5.10) leads to

0=−+
∂
∂

∫ ∫ dxdyA
t S S

GFU . (5.11)

where S represents the circumference of the cell. With a second-order accuracy, the

second and third terms of Equation (5.11) may be combined and written as

() 0
faces

=∆⋅−∆⋅+
∂
∂ ∑ xyA
t

GFU (5.12)

which may be arranged as

()∑ ∆⋅−∆⋅−=
∂
∂

faces

1 xy
At

GFU (5.13)

where x∆ and y∆ are the changes in the x and y coordinates along a face of the cell.

Defining the face length and the normal and tangential velocity components as

() ()22 yxs ∆+∆=∆ (5.14)

and

 56

s
xvyuun ∆

∆−∆
=

s
yvxuut ∆

∆+∆
= (5.15)

the flow rates through a face may be written as

ss

Hu
s
xpvu
s
ypuu

u

xGyF

n

n

n

n

∆=∆

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆
∆

−

∆
∆

+
=∆−∆

→→

Φ

ρ

ρ

ρ

ρ

 (5.16)

where Φ represents the fluxes through a face. Hence, Equation (5.13) may be

written as

s
At faces

∆−=
∂
∂ ∑ΦU 1 . (5.17)

Defining the residuals of a cell as

s
faces

∆−= ∑ΦURes)((5.18)

Equation (5.17) may be written as

)(1 UResU
At

−=
∂
∂ . (5.19)

Calculating the flux vector Φ is the most critical part of the solution process. In this

thesis it is performed by means of flux splitting. The residuals are then calculated for

each cell and integrated in time. These are explained below.

 57

5.3.2 Roe’s Flux Difference Splitting

Roe’s flux difference splitting is one of the most accurate methods for flux

calculation. The flux vector Φ is defined as

[] ∑
=

∗
∆−+=

4

12
1)()(

2
1),(

k
kkkRLRL Va RUΦUΦUUΦ (5.20)

with

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−

=

cu
u
u
cu

n

n

n

n

a

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆+∆

∆
−∆

∆

∆−∆

=∆

2

2

2

2

c

ucρp
c
pρ

c
uρ
c

ucρp

n

t

n

V

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+

−

∆
∆

−
∆
∆

∆
∆

+

∆
∆

+
∆
∆

∆
∆

−

=

cuHvucucuH

s
xcvv

s
yc

s
xcv

s
ycuu

s
xc

s
ycu

ntn 2

1101

22

R (5.21)

where

RL ρρρ =
RL

RRLL

ρρ
uρuρ

u
+

+
=

RL

RRLL

ρρ
vρvρ

v
+

+
=

RL

RRLL

ρρ
HρHρ

H
+

+
= (5.22)

and

s
xvyuun ∆

∆−∆
=

s
yvxuut ∆

∆+∆
= ()

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
−−=

2
1

22
vuHc γ (5.23)

 58

where γ is the specific heat ratio. The summation term in Equation (5.20) provides

the upwind character and stabilizes the scheme [25].

In order to prevent expansion shocks, which may occur computationally but are

totally unphysical, an entropy fix is imposed [11]. Hence, the entropy controlling

term ka is replaced by a smoothed value
∗

ka when k takes the values of 1 and 4.

This leads to

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤+

≥
=

∗

kkk
k

k

kkk

k

aaa
a
a

aaa
a

δδ
δ

δ

2
1

4
1

2
1

2 ()0,4max kk aa ∆=δ kLkRk aaa −=∆ . (5.24)

5.3.3 Van Leer’s Flux Vector Splitting

Van Leer’s flux vector splitting is one of the alternatives to Roe’s flux difference

splitting. Although proved to be more dissipative, it is faster and more robust [25].

The flux vector Φ is defined as

() ()[]RL UHUHTΦ −+− += 1 (5.25)

where

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∆∆∆∆
∆∆−∆∆

=

1000
00
00
0001

sysx
sxsy

T

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅
⋅⋅
+⋅

⋅

=

Huρ
uuρ
Puρ

uρ

n

tn

n

n
2

H . (5.26)

The split fluxes +H and −H are defined for various Mach numbers as

 59

01
01

==−≤
==+≥

+−

−+

HHH
HHH

n

n

M
M

()
()[]

()[] ()[]()⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−±−

±−
±±

=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=≤

±

±

±

±

±

±

±

±

21221

21
41

1

2222
1

1

1

2

3

3

2

1

tn

t

n

n

n

MMch
cMh
Mch

Mc

h

h

h

h

M

γγ

γγ
ρ

H (5.27)

where nM and tM are the Mach numbers calculated using the normal and tangential

velocity components, respectively. Unlike Roe’s flux difference splitting, Van

Leer’s flux vector splitting does not have an entropy controlling term. Hence, in

some cases expansion shocks may not be eliminated. This is one of the reasons why

it is less accurate compared to Roe’s flux difference splitting.

5.4 Time Stepping

The residuals for each computational cell are calculated as described above. These

residual values are then used to update the primitive variables by means of multi-

stage time stepping. Local time step is used in order to increase convergence rate.

Since the Euler equations include a time derivative and a number of spatial

derivatives, a suitable initial guess and a number of boundary conditions are

necessary as well.

5.4.1 Local Time Step

For steady problems, local time step concept can be used in order to increase

convergence rate. The main idea is that each cell has its own time step depending on

the size and flow properties. Hence, using higher time step values increases

convergence rate.

There are different local time step definitions. In this thesis it is defined as

 60

22

/
vuc

SAt
++

=∆ (5.28)

where A is the area of the cell, S is the circumference of the cell, u and v are the

velocity components and c is the speed of sound. In order to prevent divergence and

for the sake of robustness, in some problems local time step values should be

multiplied with a suitable safety factor as well.

Note that local time step concept cannot be used for unsteady problems. In unsteady

problems all the cells are to have the same time step value. It can be found by

calculating the local time step value for each cell and then using the minimum of

them.

5.4.2 Multistage Time Stepping

The general m-stage time stepping scheme is defined as

() nUU =0

() () ()()10 −∆
+= kkk

A
t

UResUU
α

υ (5.29)

()mn UU =+1

where ν and kα are chosen for optimal smoothing [6]. A number of different choices

are given for first and second-order spatial accuracies in Table 5.1 and 5.2.

 61

Table 5.1 Multi-Stage Coefficients for a First-Order Spatial Discretization

Stages

2 3 4 5 6

ν 1.0 1.5 2.0 2.5 3.0

α1 0.3333 0.1481 0.0833 0.0533 0.0370

α2 1.0000 0.4000 0.2069 0.1263 0.0851

α3 1.0000 0.4265 0.2375 0.1521

α4 1.0000 0.4414 0.2562

α5 1.0000 0.4512

α6 1.0000

Table 5.2 Multi-Stage Coefficients for a Second-Order Spatial Discretization

Stages

2 3 4 5 6

ν 0.4693 0.6936 0.9214 1.1508 1.3805

α1 0.4242 0.1918 0.1084 0.0695 0.0482

α2 1.0000 0.4929 0.2602 0.1602 0.1085

α3 1.0000 0.5052 0.2898 0.1885

α4 1.0000 0.5060 0.3050

α5 1.0000 0.5063

α6 1.0000

5.4.3 Convergence Criteria

In order to stop the solution process a suitable convergence criterion is needed.

Although there are several choices for this purpose, in this thesis the residual of the

 62

first primitive variable, which is density, is used. The solution process is stopped

when the residual of density is reduced to a user-specified value.

In most cases the average value of the residuals is used. Since it is bound to be

smaller compared to the maximum one, the number of iterations and computational

time needed is reduced. Another approach is to use the maximum residual value in

the domain. Although this approach takes considerably longer computational time, it

is more conservative and gives more accurate results.

5.4.4 Initial Guess and Boundary Conditions

Due to the time derivative term in the two-dimensional Euler equations, a proper

initial guess is needed. For external flow problems the far-field boundary conditions

are given to the computational cells as the initial guess. The solution is then

converged to steady state. For internal flow problems the inlet boundary conditions

are used as the initial guess.

The user, however, does not have to give these initial guesses. The program enables

other choices as well. For an internal flow problem, for instance, the average of the

inlet and outlet boundary conditions may be used as the initial guess. This may

increase the convergence rate due to the fact that the Euler equations are a system of

non-linear partial differential equations and highly sensitive to the initial guess.

Due to the spatial derivatives, in addition to a proper initial guess, proper boundary

conditions are needed as well. For flow-through boundaries, which are inlet, outlet

and far-field boundaries, the boundary conditions are specified in the ghost cells just

outside the computational domain and the Riemann problem is then solved yielding

the boundary fluxes and flow rates. As mentioned before, Roe’s flux difference

splitting is used for this purpose in this thesis.

 63

Since the Euler equations represent inviscid flows, the flow velocity is not

necessarily zero on the wall. Instead, only the normal component of the velocity is

set to zero. The tangential component does not need to be zero. The physical

meaning of this is that mass and energy flow rates through the wall are set to zero.

Considering the momentum flow rate, only the pressure term is kept. One alternative

to this approach is to use ghost cells just outside the walls. Density, pressure and the

tangential component of the velocity are taken to be the same. The normal

component of the velocity is taken just to be the opposite.

 64

CHAPTER 6

POST-PROCESSING

Mesh generator and solver are two important parts of Cartesian methods. However,

an efficient mesh generator and an accurate solver are not enough for an efficient

and high-quality solution of a given problem. The process of presenting the final

results, which is known as post-processing, is very important as well.

For presenting the final results as accurately as possible, gradients of the primitive

variables are used. This means that the primitive variables at the desired positions

are obtained by reconstructing the cell-centered values using the gradients. In order

to obtain accurate, bounded values limiting is applied as well.

6.1 Contour Drawing

As mentioned before, the primitive variables are stored at cell centers. However,

contour drawing requires nodal values of the primitive variables. Hence, cell-

centered values of the primitive variables are reconstructed in order to find nodal

values. This is illustrated in Figure 6.1. Other variables like Mach number and total

pressure are then calculated from nodal values of the primitive variables.

 65

Figure 6.1 Reconstruction to Find Nodal Values from Cell-Centered Ones

6.2 Triangulation

As mentioned before, in Cartesian methods, cells do not have a unique shape. This

may cause difficulties in post-processing. Hence, after the mesh generation and

solution steps, cells are triangulated. This means that each cell is represented as a

combination of triangles. An illustration is given in Figure 6.2.

 66

Figure 6.2 Cell Triangulation

6.3 Pressure Distribution

Another step of post-processing is presenting pressure distribution on the input

geometry. For this purpose, cell-centered values are reconstructed in order to find

the values on the input geometry. This is illustrated in Figure 6.3.

Figure 6.3 Reconstruction of Pressure for Pressure Distribution

 67

6.4 Residual History

Another step of post-processing is to represent the convergence history of the

solution. For this purpose, a residual graph is also supplied. It gives residual values

at each iteration. The residual values are usually given in logarithmic scale.

In this thesis the average value of the residuals of the first primitive variable, namely

density, is presented. Hence, residual graphs give these values at each iteration.

Other values like the maximum of the residuals of the fourth primitive variable,

namely pressure, may also be presented.

6.5 Solution Data

For each problem a data file is produced that contains information about the problem

itself and the solution process. Such a file is important in that it specifies which

problem is solved under which conditions for later reference. Moreover, it helps

specifying the performance of the solution process. A typical data file may contain

the information given below.

• The number of all-cell, cut-cell, curvature and solution adaptations

• The order of the solution and whether limiting is used or not

• Computational time and the total number of iterations

• The number of unused, computational and boundary cells

• The maximum and minimum cell levels

• The maximum and minimum residual values

 68

CHAPTER 7

RESULTS

In order to verify the accuracy and efficiency of the method, a number of test cases

are solved. The results are compared with analytical and experimental ones as well

as the results obtained by other solvers.

7.1 Comparison with an Analytical Solution

The geometry is composed of a forward-facing and a backward-facing ramp. The

angles are 15 degrees and the height is 0.134 units. The distance between the two

ramps is 2 units. The free-stream Mach number and the free-stream total pressure

values are 2 and 101325 Pa, respectively. The total temperature value is 300 K.

The initial mesh is produced by 2 levels of all-cell, 7 levels of cut-cell and 3 levels

of curvature adaptation. 5 levels of solution adaptation are then applied successively.

There are 15648 computational cells in the final mesh. The minimum cell level is 2

and the maximum one is 15. The final mesh around the forward-facing and

backward-facing ramps is given in Figure 7.1a and 7.1b, respectively. The problem

is solved in 13 minutes and the total number of iterations is 1547. The residual

history is given in Figure 7.1c. The peaks are due to the 5 levels of solution

adaptation applied.

 69

Figure 7.1a Final Mesh around the Forward-Facing Ramp at M∞ = 2

Figure 7.1b Final Mesh around the Backward-Facing Ramp at M∞ = 2

 70

Figure 7.1c Residual History at M∞ = 2

The pressure and Mach number contours are given in Figure 7.1d and 7.1e,

respectively. There are two oblique shock waves attached to the two compression

corners. In addition to this, there are two expansion fans attached to the two

expansion corners.

Figure 7.1d Pressure Contours at M∞ = 2

 71

Figure 7.1e Mach Number Contours at M∞ = 2

The computed and analytically calculated pressure distributions are compared in

Figure 7.1f. The computed values are very close to the analytically calculated ones.

The Mach number distributions are compared in Table 7.1.

Figure 7.1f Computed and Analytical Pressure Distributions at M∞ = 2

 72

Table 7.1 Exact and Computed Mach Number Values at M∞ = 2

 Exact Computed Error (%)

Between the First Shock Wave and

the First Expansion Fan
1.445 1.443 0.114

Between the Two Expansion Fans 1.961 1.953 0.390

Between the Second Expansion Fan

and the Second Shock Wave
2.551 2.536 0.613

After the Second Shock Wave 1.914 1.911 0.146

7.2 Backward-Facing Step

The geometry is composed of a backward-facing step. The step height is 0.443 units.

The domain extends 4 units upstream of the step, 12 units downstream of the step

and 6.25 units above the step. The free-stream Mach number and the free-stream

total pressure values are 2.5 and 101325 Pa, respectively. The total temperature

value is 300 K.

The initial mesh is produced by 2 levels of all-cell, 7 levels of cut-cell and 3 levels

of curvature adaptation. 4 levels of solution adaptation are then applied successively.

There are 46145 computational cells in the final mesh. The minimum cell level is 2

and the maximum one is 16. The problem is solved in 42 minutes and the total

number of iterations is 6286. The residual history is given in Figure 7.2a.

 73

Figure 7.2a Residual History for Backward-Facing Step at M∞ = 2.5

The pressure and Mach number contours are given in Figure 7.2b and 7.2c,

respectively. The details are given in Figure 7.2d and 7.2e. The flow expands over

the corner of the step. There is an oblique shock wave above the lower surface of the

duct downstream the step. The computed pressure distribution on the lower surface

of the duct downstream the step is compared with experimental data [29] in Figure

7.2f.

 74

Figure 7.2b Pressure Contours for Backward-Facing Step at M∞ = 2.5

Figure 7.2c Mach Number Contours for Backward-Facing Step at M∞ = 2.5

 75

Figure 7.2d Pressure Contours around the Step at M∞ = 2.5

Figure 7.2e Mach Number Contours around the Step at M∞ = 2.5

 76

Figure 7.2f Computed and Experimental Pressure Distributions

7.3 Wedge

The geometry is composed of a forward-facing ramp. The angle is 15 degrees and

the height of the ramp is 0.134 units. The domain extends 0.5 units upstream of the

ramp, 2.5 units downstream of the ramp and 0.866 units above the ramp. The free-

stream Mach number and the free-stream total pressure values are 2 and 101325 Pa,

respectively. The total temperature value is 300 K.

The initial mesh is produced by 2 levels of all-cell, 7 levels of cut-cell and 3 levels

of curvature adaptation. 4 levels of solution adaptation are then applied successively.

There are 8910 computational cells in the final mesh. The final mesh is given in

Figure 7.3a. The minimum cell level is 2 and the maximum one is 14. The problem

is solved in 35 minutes and the total number of iterations is 4258. The residual

history is given in Figure 7.3b.

 77

Figure 7.3a Final Mesh for Wedge at M∞ = 2

Figure 7.3b Residual History for Wedge at M∞ = 2

The pressure and Mach number contours are given in Figure 7.3c and 7.3d,

respectively. There is an oblique shock wave attached to the compression corner. It

reflects from the upper and lower walls of the duct and leaves the computational

domain. In addition to this, there is an expansion fan around the expansion corner. It

 78

acts to weaken the reflected shock wave. Another expansion region exists between

the reflected shock wave and the upper wall of the duct.

The computed pressure distributions on the upper and lower walls of the duct are

compared with those obtained by another Cartesian code written by De Zeeuw [6] in

Figure 7.3e. The results are almost the same. The Mach contours are also compared

with those obtained by the same Cartesian code in Figure 7.3f. The solid lines are

from De Zeeuw. Similarly, the two codes give almost the same results.

Figure 7.3c Pressure Contours for Wedge at M∞ = 2

Figure 7.3d Mach Number Contours for Wedge at M∞ = 2

 79

Figure 7.3e Comparison of Pressure Distributions for Wedge at M∞ = 2

Figure 7.3f Comparison of Mach Number Contours for Wedge at M∞ = 2

 80

CHAPTER 8

CONCLUSIONS

8.1 Summary

A method is developed by which steady solution of the two-dimensional Euler

equations can be obtained using geometry and solution-based adaptations for flows

around arbitrarily complex input geometries.

A quadtree data structure is applied successfully. The cells are connected to each

other by means of pointers in a parent-child relationship. Connectivity information is

extracted from the tree by using these relationships. Ordinary linked list is used with

static data structures like one or two-dimensional arrays as well.

The mesh is generated with a minimum number of inputs for arbitrarily complex

bodies. The user specifies a set of points defining the input geometry, boundary

conditions and the amount of geometry and solution-based adaptations. The mesh is

then generated in a totally automatic manner.

The problem is then solved by using a multi-stage time stepping scheme with Roe’s

flux difference splitting method. Local time step approach is applied in order to

increase convergence rate.

Finally, the results are post-processed. Residual graphs and pressure distributions are

determined together with contours of several variables including the primitive

variables. Comparisons with experimental data, analytical solutions and results of

some other computer codes are performed in order to demonstrate the efficiency and

accuracy of the code.

 81

8.2 Conclusions

One of the most important needs for computational fluid dynamics is to generate

automatic and robust meshes around arbitrarily complex input geometries and

compute accurate solutions on these meshes. Cartesian methods are proved to

overcome this problem successfully.

Accurate results usually require fine meshes. However, computational time and

memory usage increase with increasing cell number. In order to obtain satisfactorily

accurate results without increasing cell numbers unnecessarily, geometry and

solution-based adaptations are usually needed. Cartesian methods are proved to be

more suitable for both types of adaptation compared to its counterparts like

structured and ordinary unstructured methods.

The technique of using local time step is applied successfully. Since in Cartesian

methods there are significant differences in length scales due to geometry and

solution-based adaptations, local time step is highly effective.

8.3 Future Work

In this thesis the two-dimensional Euler equations are solved. Extension to three

dimensions is straightforward. In two dimensions input geometries are composed of

oriented line segments. Hence, mesh generation relies on line clipping. In three

dimensions input geometries are composed of oriented triangles. Consequently, line

clipping is replaced by polygon clipping in three dimensions. Sutherland

Hodgemann algorithm, which is used for clipping convex polygons against convex

regions in three dimensions, seems to be very suitable for Cartesian methods.

Extension to the Navier-Stokes equations is less straightforward. The reason for this

is that with the current data structure only isotropic refinement is possible. For

resolving boundary layers with a minimum number of cells, however, anisotropic

 82

refinement is necessary. Hence, extension to the Navier-Stokes equations requires a

significant improvement in data structure.

In this thesis steady solutions of the Euler equations are sought. Hence, local time

step approach is used in order to increase convergence rate. For unsteady solutions,

however, the same time step is to be used for all cells. Moreover, unsteady problems

require more sophisticated mesh generation techniques like cell merging.

As mentioned before, different regions of a split cell are considered as a whole and

are given the same set of primitive variables. Although the effect of this approach to

the overall accuracy of the solution is negligible, more accurate results can be

obtained by considering each region being totally independent from each other. This

approach, however, requires a more complicated mesh generation process and an

advanced data structure.

In Cartesian methods a significant portion of computational time is spent for

obtaining connectivity information. One way of reducing this is to determine

connectivity once at the beginning and then store it for each cell. This approach,

however, increases memory need unreasonably. A compromise in between may be

realized by changing the data structure slightly. Grouping the cells into a number of

boxes and combining these boxes to each other by pointers may reduce

computational time without increasing memory usage significantly.

 83

REFERENCES

[1] D. K. Clarke, D. Salas, H. A. Hassan, “Euler Calculations for Multielement

Airfoils Using Cartesian Grids”, AIAA Journal, 24, 353-358, (1986).

[2] R. A. Mitchel Tree, M. D. Salas, H. A. Hassan, “Grid Embedding Technique

Using Cartesian Grids for Euler Solutions”, AIAA Journal, 26, 754-756, (1988).

[3] D. M. Tidd, D. J. Strash, B. Epstein, A. Luntz, A. Nachshon, T. Rubin,

“Multigrid Euler Calculations over Complete Aircraft”, Journal of Aircraft, 29,

1080-1085, (1992).

[4] B. Epstein, A. Luntz, A. Nachshon, “Cartesian Euler Method For Arbitrary

Aircraft Configurations”, AIAA Journal, 30, 679-687, (1992).

[5] K. Morinishi, “A Finite-Difference Solution of the Euler Equations on Non-

Body-Fitted Cartesian Grids”, Computers & Fluids, 21, 331-344, (1992).

[6] D. L. De Zeeuw, “A Quadtree-Based Adaptively-Refined Cartesian-Grid

Algorithm for Solution of the Euler Equations”, PhD thesis, University of Michigan,

(1993).

[7] W. J. Coirier, “An Adaptively-Refined, Cartesian, Cell-Based Scheme for the

Euler and Navier-Stokes Equations”, PhD Thesis, University of Michigan, (1994).

[8] J. J. Quirk, “An Alternative to Unstructured Grids for Computing Gas-

Dynamic Flows Around Arbitrarily Complex 2-Dimensional Bodies”, Computers &

Fluids, 23, 125-142, (1994).

[9] M. J. Aftosmis, “3D Applications of a Cartesian Grid Euler Method”, AIAA

Paper 95-0853, (1995).

 84

[10] M. J. Aftosmis, “Robust and Efficient Cartesian Mesh Generation for

Component-Based Geometry”, AIAA Paper 97-0196, (1997).

[11] W. J. Coirier, K. G. Powell, “An Accuracy Assessment of Cartesian-Mesh

Approaches for the Euler Equations”, Journal of Computational Physics, 117, 121-

131, (1995).

[12] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, M. L. Welcome, “An

Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular

Regions”, Journal of Computational Physics, 120, 278-304, (1995).

[13] A. M. Khokhlov, “Fully-Threaded Tree Algorithms for Adaptive Refinement

Fluid Dynamics Simulations”, (1998).

[14] H. Forrer, R. Jeltsch, “A Higher-Order Boundary Treatment for Cartesian-

Grid Methods”, Journal of Computational Physics, 140, 259-277, (1998).

[15] Z. N. Wu, K. Li, “Anisotropic Cartesian Grid Method for Steady Inviscid

Shocked Flow Computation”, International Journal for Numerical Methods in

Fluids, 41, 1053-1084, (2003).

[16] L. Qian, D. M. Causon, D. M. Ingram, C. G. Mingham, “Cartesian Cut Cell

Two-Fluid Solver for Hydraulic Flow Problems”, Journal of Hydraulic Engineering,

129, 688-696, (2003).

[17] J. Hunt, “An Adaptive 3D Cartesian Approach for the Parallel Computation

of Inviscid Flow about Static and Dynamic Configurations”, PhD thesis, University

of Michigan, (2004).

[18] K. Li, Z. N. Wu, “Nonet-Cartesian Grid Method for Shock Flow

Computations”, Journal of Scientific Computing, 20, 303-329, (2004).

 85

[19] A. D. French, “Solution of the Euler Equations on Cartesian Grids”, Applied

Numerical Mathematics, 49, 367-379, (2004).

[20] A. Dadone, B. Grossman, “Ghost-Cell Method for Inviscid Two-

Dimensional Flows on Cartesian Grids”, AIAA Journal, 42, 2499-2507, (2004).

[21] W. A. Keats, F. S. Lien, “Two-Dimensional Anisotropic Cartesian Mesh

Adaptation for the Compressible Euler Equations”, International Journal for

Numerical Methods in Fluids, 46, 1099-1125, (2004).

[22] F. P. Preparata, M. I. Shames, “Computational Geometry”, (1985).

[23] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf,

“Computational Geometry”, (2000).

[24] C. Hirsch, “Numerical Computation of Internal and External Flows”, (1990).

[25] C. B. Laney, “Computational Gas Dynamics”, (1998).

[26] H. Lomax, T. H. Pulliam and D. W. Zingg, “Fundamentals of Computational

Fluid Dynamics”, (2001).

[27] J. H. Ferziger and M. Peric, “Computational Methods for Fluid Dynamics”,

(1996).

[28] D. A. McCaughey and M. M. Mafez, “Frontiers of Computational Fluid

Dynamics”, (1994).

[29] H. E. Smith, “The Flow Field and Heat Transfer Downstream of a Rearward

Facing Step in Supersonic Flow”, (1967).

