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ABSTRACT 

 

A QUADTREE-BASED ADAPTIVELY-REFINED CARTESIAN-GRID 

ALGORITHM FOR SOLUTION OF THE EULER EQUATIONS 

 

Bulgök, Murat 

M. Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk Aksel 

October 2005, 85 pages 

 

A Cartesian method for solution of the steady two-dimensional Euler equations is 

produced. Dynamic data structures are used and both geometric and solution-based 

adaptations are applied. Solution adaptation is achieved through solution-based 

gradient information. The finite volume method is used with cell-centered approach. 

The solution is converged to a steady state by means of an approximate Riemann 

solver. Local time step is used for convergence acceleration. A multistage time 

stepping scheme is used to advance the solution in time. A number of internal and 

external flow problems are solved in order to demonstrate the efficiency and 

accuracy of the method. 

 

Keywords: Euler equations, Cartesian method, Dynamic data structures, Finite 

volume method 
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ÖZ 

 

EULER DENKLEMLERİNİN ÇÖZÜMÜ İÇİN ADAPTASYONA YÖNELİK 

KARTEZYEN AĞ ALGORİTMASI GELİŞTİRİLMESİ 

 

Bulgök, Murat 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Haluk Aksel 

Ekim 2005, 85 sayfa 

 

Bu tezde iki boyutlu Euler denklemlerinin kartezyen metodu ile çözümü 

incelenmiştir. Dinamik data yapıları kullanılmış ve geometrik ve çözüme yönelik 

adaptasyon uygulanmıştır. Çözüme yönelik adaptasyon için çeşitli parametrelerin 

akış içindeki değişimleri kullanılmıştır. Sonlu hacimler yöntemi hücre merkezli 

yaklaşımla birlikte uygulanmıştır. Çözüme ulaşmak için Riemann çözücüsü 

kullanılmıştır. Çözümü hızlandırmak için lokal zaman adımı yaklaşımından 

faydalanılmıştır. Metodun hassasiyetini inceleyebilmek için çeşitli iç ve dış akış 

problemleri çözülmüştür. 

 

Anahtar Sözcükler: Euler denklemleri, Kartezyen metodu, Dinamik data yapıları, 

Sonlu hacimler yöntemi 
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CHAPTER 1 

 

INTRODUCTION 

 

There are a huge variety of problems that are to be solved by using computational 

fluid dynamics. Despite the continuous increase in computational capabilities, more 

sophisticated techniques are needed due to the diversity and complexity of flow 

problems. These techniques reduce computational time and memory needed for 

many problems. Hence, very complex two and three-dimensional, steady and 

unsteady problems can be solved using the currently available computational 

capabilities. 

 

It is almost impossible to handle this complexity by means of a single approach. 

Hence, a number of different approaches are to be used. Each one has its own 

advantages and disadvantages and selection of a specific one depends on the 

problem under consideration. The most commonly used techniques in computational 

fluid dynamics can be classified into two main groups: mesh generation and solution 

techniques. 

 

1.1 Mesh Generation Techniques 

 

In order to achieve spatial discretization of the governing equations, a suitable mesh 

is to be produced on the solution domain of the problem. In computational fluid 

dynamics there are three main mesh generation techniques: structured, unstructured 

and Cartesian methods. 

 

1.1.1 Structured Methods 

 

The main feature of structured methods is transformation. It means mapping or 

transforming from a physical domain to a computational one, which appears as a 

rectangle in two dimensions. All the solution process is performed in this 
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computational domain and the results are then remapped to the physical one for 

post-processing. 

 

One of the main disadvantages of structured methods is that their use is usually 

restricted to simple shapes like a single airfoil. In case of a multi-element airfoil, for 

instance, complicated approaches like overlapping grids have to be used. Structured 

methods, on the other hand, require relatively simple data structures. Two or three-

dimensional arrays are usually used for storing data. Consequently, structured 

methods are relatively faster than unstructured and Cartesian ones. 

 

1.1.2 Unstructured Methods 

 

Unlike structured ones, unstructured methods do not involve transformation between 

physical and computational domains. Instead, all the computation is performed in a 

physical domain only. This makes unstructured methods more suitable for complex 

shapes like a multi-element airfoil. 

 

Unstructured methods, on the other hand, usually require more complicated data 

structures compared to structured ones. This results in more sophisticated computer 

programs and usually increases computational time and memory usage. Hence, 

unstructured methods should be preferred over structured ones in case of complex 

shapes only. 

 

1.1.3 Cartesian Methods 

 

Cartesian methods are simply a special class of unstructured methods. However, 

they require more complicated programs and data structures and are used for solving 

flows over even more complex geometries. 

 

An important advantage of Cartesian methods is that any kind of adaptation is very 

easy to implement. By means of solution adaptation, for instance, a finer grid can be 
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obtained around a shock wave. Hence, very high accuracy levels can be obtained 

without increasing cell number and computational time significantly. 

 

Structured and ordinary unstructured methods require user interfere to some extend. 

Cartesian methods, on the other hand, enable automatic mesh generation. The user 

has to define the problem only. 

 

1.2 Solution Techniques 

 

The two-dimensional Euler equations are governed by a system of four differential 

equations. Since an analytical solution technique does not exist, these equations are 

to be solved numerically. There are three main solution techniques in computational 

fluid dynamics: finite volume, finite difference and finite element. Moreover, each 

of these techniques can be implemented in two different ways: implicitly and 

explicitly. 

 

1.2.1 Finite Difference Method 

 

In finite difference method the differential form of the governing equations are used. 

The derivative terms in the equations are approximated with backward, forward or 

central differences. For this purpose, the solution domain is divided into a finite 

number of discrete points. 

 

Finite difference method is widely used with structured mesh generation techniques. 

It enables faster computation compared to its counterparts. The drawback, however, 

is that in case of a complex geometry representation of derivative terms with finite 

differences may become difficult and reduce accuracy. 
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1.2.2 Finite Volume Method 

 

Unlike finite difference, in finite volume method the integral forms of the governing 

equations are used. The solution domain is divided into a finite number of discrete 

areas. These are called cells. Finite volume method physically means to conserve 

mass, momentum and energy in each of these cells. 

 

Finite volume method is more suitable for complex geometries and is commonly 

used with unstructured and Cartesian methods. In this thesis it is used for solution of 

the two-dimensional Euler equations in integral form. 

 

1.2.3 Finite Element Method 

 

As mentioned before, in finite volume method the solution domain is divided into a 

finite number of discrete areas. In finite element method, on the other hand, the 

solution domain is divided into a finite number of elements and the integral form of 

the governing equations is evaluated on each element by means of local and global 

interpolation functions. 

 

This results in a set of algebraic equations to be solved by using various 

linearization, integration and acceleration methods. Some examples to these 

methods are Newton linearization, modified Euler method, Runge-Kutta schemes, 

Gauss-Seidel methods and artificial smoothing. 

 

1.2.4 Implicit Methods 

 

In implicit methods the system of governing differential equations are reduced to a 

large system of algebraic equations using finite difference, finite volume or finite 

element. These algebraic equations are then solved using a matrix solution technique 

in a coupled manner. 
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One of the main advantages of implicit methods is that convergence is guaranteed 

due to the fact that conservation of mass, momentum and energy are guaranteed in 

the next solution step. However, they are more complex compared to explicit 

methods and require more memory for storing a large number of algebraic 

equations. 

 

1.2.5 Explicit Methods 

 

The main feature of explicit methods is that mass, momentum and energy are 

conserved using the current values of flow variables in the current solution step. 

Hence, unlike implicit methods, there is no need for a large number of algebraic 

equations. This reduces memory requirement but does not guarantee convergence. 

 

Explicit methods are simpler compared to implicit ones and there are special 

techniques for reducing the risk of divergence. One of these techniques is called 

multi-stage time stepping and it is used in this thesis. 

 

1.3 Review of Literature 

 

Cartesian methods were first proposed in 1975 as an alternative to structured and 

ordinary unstructured methods. The aim was to enhance automatic grid generation 

and facilitate solution adaptation. However, they did not take much attention until 

1980s because of the relative inefficiency of commercial computers. The reason for 

this was that Cartesian methods require complicated data structures, which require 

more efficient computers. 

 

In 1986 Clarke used Cartesian methods to solve two-dimensional steady inviscid 

flows over multi-element airfoils. Using structured methods to solve such problems 

is much more difficult and requires complicated techniques like overlapping grid 

generation [1]. This is followed by Mitchel, who developed alternative Cartesian 

grid generation techniques to solve the two-dimensional Euler equations [2]. 
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In 1992 Tidd applied a Cartesian approach to solve flows over a complete aircraft 

[3]. He solved three-dimensional steady inviscid flows and achieved to reduce errors 

up to 1%. He also used multigrid as a convergence acceleration tool, which was 

almost a must for three-dimensional applications at that time due to relative 

computational inefficiency. Epstein later applied similar approaches to arbitrary 

aircraft configurations [4]. 

 

Being unstructured approaches, Cartesian methods are usually used with the finite 

volume method. However, Morinishi applied the finite difference method to the 

two-dimensional compressible Euler equations on Cartesian grids [5]. He used 

Runge-Kutta schemes for time stepping. 

 

In 1993 De Zeeuw wrote a computer code to solve the two-dimensional Euler 

equations using a Cartesian method approach [6]. He proposed and successfully 

applied quadtree data structure. Linked list data structure was used in his study as 

well for a number of purposes. His code was applicable to both internal and external 

steady inviscid problems. Moreover, he applied a special multigrid technique called 

saw-tooth cycle successfully and he proved that any Cartesian method is very 

suitable for multigrid applications due to the data structures used. Hence, he 

achieved an approximately two-times increase in computational efficiency without 

increasing memory usage significantly. Moreover, the difficulties related with small 

cut cells were first eliminated by using a special local time step technique together 

with second-order spatial accuracy. 

 

In 1994 Coirier developed a computer code to solve the two-dimensional Euler and 

Navier-Stokes equations [7]. He used a special hybrid grid technique for resolving 

boundary layers efficiently. Hence, his work was not truly about Cartesian methods 

due to the fact that Cartesian methods are inherently non-body-fitted. However, he 

applied Cartesian method techniques to hybrid grid generation for the first time. 
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Cartesian methods are modern approaches. Hence, solution techniques used are 

usually developed for more conventional approaches like structured methods. Quirk 

studied applicability of several solution techniques to Cartesian methods and offered 

a number of improvements [8]. 

 

In 1995 Aftosmis developed alternative techniques for three-dimensional Cartesian 

grid generation [9]. The main features were inside-outside test and polygon clipping. 

Afterwards, he applied Cartesian methods to three-dimensional geometries 

involving component-based geometries successfully [10]. Hence, the difficulties 

related with dirty surfaces were eliminated for the first time. This enables defining 

input geometries in graphical environment and transferring them for analysis using 

Cartesian methods, enabling flow analysis over much more complicated geometries. 

Before that, dirty surfaces were eliminated manually before solution process, which 

reduces the efficiency of any method significantly. 

 

Coirier achieved an accuracy study of Cartesian mesh approaches for steady 

transonic inviscid flow problems [11]. He compared the results obtained by both 

uniformly and adaptively refined Cartesian mesh approaches with those by 

structured methods. He used some exact solutions of the steady Euler equations as 

well. 

 

In 1995 Pember applied a Cartesian approach to solve unsteady compressible flows 

in irregular regions [12]. Since Cartesian methods are especially suitable for solving 

flows over complex geometries, his work was of great importance. Moreover, he 

proved that Cartesian methods are very efficient in solving unsteady inviscid flows. 

 

One of the main drawbacks of any Cartesian method is that connectivity is very 

time-consuming to determine due to the complicated data structures used. In 1998 

Khokhlov developed a special algorithm in order to eliminate this difficulty [13]. He 

grouped special cells together forming certain boxes and connect them together by 

means of extra pointers. Hence, time intervals needed for traversing the tree for 
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connectivity information were reduced significantly without increasing memory 

usage excessively. 

 

Cartesian approaches have usually first or second-order spatial accuracy. Forrer, 

however, applied a special technique in 1998 for higher-order spatial accuracies in 

two-dimensional problems [14]. He also treated cut cells in a special manner. Using 

a special boundary treatment, cut cells were handled as whole cells. By this way 

stability problems inherent in Cartesian methods were avoided. 

 

Wu applied an anisotrpic refinement technique to inviscid flow problems [15]. The 

method was originally developed in order to capture the inherent anisotropic nature 

of viscous boundary layers by the same person. It was slightly modified for 

capturing oblique and normal shock waves in two-dimensional inviscid flow 

problems. 

 

Qian used a Cartesian method approach for two-fluid hydraulic flow problems [16]. 

He solved incompressible Euler equations for simulating compressible phenomena 

using the artificial compressibility factor. The computational domain encompassed 

both water and air regions and the interface in between was treated as a contact 

discontinuity. 

 

In 2004 Hunt developed a much more sophisticated computer code to solve the 

three-dimensional Euler equations [17]. The data structures and main techniques 

were the same as those proposed by Aftosmis [9]. His code, however, was 

applicable to both steady and unsteady problems. He used a special technique called 

cell merging for efficient mesh generation in case of moving boundaries. He used it 

for eliminating the difficulties related with small cut cells as well due to the fact that 

local time step approach cannot be used in unsteady problems [6]. Moreover, he 

applied parallel programming to Cartesian methods successfully. Hence, he was able 

to solve complicated three-dimensional problems within reasonable time intervals. 
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Li used both isotropic and anisotropic refinement techniques for solving two-

dimensional inviscid flow problems especially around strong shock waves [18]. He 

also applied finite difference to Cartesian grids. Hence, he proved the efficiency of 

Cartesian methods in capturing critical regions in a flow field by means of solution 

adaptation. 

 

Unlike the remaining of the literature, French used a conservative cell-vertex Euler 

solver on Cartesian grids [19]. He also applied Lax-Wendroff time stepping unlike 

the previous studies that use multi-stage time stepping. He proved that, as modern 

approaches, Cartesian methods are suitable for many conventional solution 

techniques. 

 

In 2004 Dadone introduced a new technique called the curvature-corrected 

symmetry technique (CCST) in order to handle cut cells more efficiently [20]. The 

method was originally used for body-fitted approaches and applied to Cartesian 

meshes successfully. His work was of great importance in that cut cells are the most 

critical part of any Cartesian method and more efficient techniques are needed to 

handle them. 

 

In 2004 Keats applied anisotropic refinement to the steady and unsteady two-

dimensional Euler equations [21]. The technique adapted by him was originally 

developed for incompressible laminar flows. By means of anisotropic refinement an 

excessive number of computational cells were prevented, resulting in significant 

computational savings. He proved that the importance of anisotropic refinement is 

much higher in unsteady flow problems compared to steady ones. 

 

1.4 Present Study 

 

In Chapter 2 a number of dynamic data structures are introduced and those that are 

used in this study are emphasized. In Chapter 3 the mesh generation technique is 

described in detail. A number of topics like line clipping and inside-outside test are 
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explained as well. Chapter 4 deals with adaptation, which is the most important part 

of Cartesian methods. Solution of the two-dimensional Euler equations is explained 

in Chapter 5. In Chapter 6 the basics of post-processing are given together with a 

number of crucial points. A number of test cases are given in Chapter 7 in order to 

demonstrate the efficiency and accuracy of the method. The results are then 

discussed in Chapter 8. 
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CHAPTER 2 

 

DATA STRUCTURE 

 

As mentioned previously, unstructured and especially Cartesian methods require 

sophisticated data structures. Since the number of cells cannot be predetermined, 

simple static data structures like two or three-dimensional arrays cannot be used 

efficiently. Instead, dynamic data structures like quadtree, octree, binary tree and 

linked list are preferred. 

 

2.1 Quadtree Data Structure 

 

As the name implies, in quadtree data structure cells are stored in a tree-like 

structure [6]. Each cell has a pointer to its parent and four pointers to its children. 

The cell that does not have a parent is called the root cell and its related pointer is set 

to zero. Similarly, some cells do not have children and their related pointers are set 

to zero as well. They are called leaf cells and are very important in solution and 

post-processing. Other cells have a parent and four children. An illustration of the 

quadtree data structure is given in Figure 2.1. 
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Figure 2.1 Quadtree Data Structure 

 

 

Quadtree data structure is totally flexible. Any number of cells can be stored in any 

configuration. In an array, however, the number has to be fixed and known in 

advance. Hence, quadtree data structure is very suitable for Cartesian methods, 

which enable the analysis of flows over complex geometries. 

 

In two and three-dimensional arrays an element in the array is referred to using its 

index. Hence, they are significantly faster compared to dynamic data structures. In 

quadtree, on the other hand, the elements are not stored in such an order and do not 

have an index. For this reason each element in the tree are referred to using recursive 

functions. 

 

In structured methods connectivity information is apparent. In other words, the 

neighbors of a cell are predetermined and a special means for connectivity is not 

necessary. In Cartesian methods, on the other hand, connectivity information is 

extracted from the tree using the parent-children relationships between the cells 

through recursive functions. 
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2.2 Octree Data Structure 

 

Octree data structure is very similar to quadtree. There is one root cell and there are 

leaf cells in the tree. Each element in the tree has a pointer to its parent. The only 

difference is that each element has eight pointers to its children [9, 17]. 

 

Octree data structure is very suitable for three-dimensional Cartesian methods 

applications. Each element in the tree represents a cubic region in three dimensions. 

Similar to quadtree data structure, connectivity information is to be obtained using 

recursive functions. 

 

2.3 Binary Tree Data Structure 

 

Binary tree data structure is very similar to quadtree and octree. The only difference 

is that, as the name implies, each cell has two pointers to its children. The recursive 

structures are the same as quadtree and octree and the connectivity information is 

obtained via parent-children relationships. 

 

Binary tree data structure is very suitable for anisotropic refinement, which is 

necessary for efficient solution of viscous problems, which are governed by the 

Navier-Stokes equations. As mentioned before, quadtree and octree data structures 

are usually used for solution of the two and three-dimensional Euler equations, 

respectively. 

 

2.4 Linked List 

 

Another important dynamic data structure is linked list. Each element has a pointer 

that points to the next element in the list. In an ordinary linked list the pointer of the 

final element is set to zero. A special pointer is used in order to distinguish the first 

element from the other ones in the list. An example is given in Figure 2.2. 
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Figure 2.2 Ordinary Linked List 

 

 

A special type of linked list is circular linked list. Unlike its ordinary counterpart, 

the pointer of the final element in the list is not set to zero. Instead, it points to the 

first element of the list. It can be used, for instance, for storing the points of a simple 

closed curve in two dimensions. An example to circular linked list is given in Figure 

2.3. 

 

 

 
Figure 2.3 Circular Linked List 

 

 

The most important drawback of an ordinary linked list is that it can be traversed in 

one direction only. In order to overcome this difficulty, doubly linked lists are used. 

In a doubly linked list each element in the list has two pointers: one for the next 

element and the other for the previous one. Hence, a doubly linked list can be 

traversed in both directions. An example to doubly linked list is given in Figure 2.4. 

 

 

START

NULLSTART
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Figure 2.4 Doubly Linked List 

 

 

2.5 Memory Usage 

 

Every computer program needs a compromise between computational time and 

memory usage. Using the memory as much as possible reduces computational time 

by reducing recalculations. The limited capabilities of a computer, however, limit 

the number of variables that can be stored in the memory. Hence, any decision 

depends on the available computational capabilities. 

 

In this thesis the integer variables stored per cell are 

 

• 5 words – Pointers to one parent and four children cells 

• 1 word – Cell type information 

• 1 word  – Cell level 

 

while the real variables stored per cell are 

 

• 4 words – Primitive variables, which are density, velocity components 

and pressure 

• 4 words – Temporary conserved variables for multistage time stepping 

• 2 words – Cell centroid 

• 1 word  – Cell area 

• 8 words – Gradients of the primitive variables 

NULL
NULL

START
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• 4 words – Residuals for updating primitive variables 

• 1 word – Local time step 

• 4 words – Limiter values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17

CHAPTER 3 

 

MESH GENERATION 

 

In order to achieve spatial discretization of the Euler equations in two dimensions, a 

suitable mesh is required prior to the solution step. Cartesian methods are inherently 

unstructured and require sophisticated mesh generation techniques. Such techniques 

have to be suitable for generating efficient, robust and high-quality meshes around 

arbitrarily complex input geometries. 

 

The technique described here is based on line clipping. No restricting assumption is 

made for the input geometry and it is valid for both internal and external flow 

problems. The mesh generation procedure is composed of three steps: determination 

of boundary segments, flow segments and area, centroid and type of each cell. Since 

line clipping and inside-outside test are used in determining boundary and flow 

segments, respectively, they are explained in detail as well. 

 

3.1 Line Clipping 

 

Given an oriented line segment and a simple closed region is space, line clipping 

means finding the part of the line segment residing in the given region [22, 23]. The 

important point is that the original orientation of the line segment is to be conserved. 

A general case is illustrated in Figure 3.1. 
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Figure 3.1 A General Line Clipping Example 

 

 

In general, the simple closed region against which a line segment is clipped may be 

totally arbitrary in shape as illustrated in Figure 3.1. Hence, very complex 

configurations may result due to very complex interactions between the two objects. 

In Cartesian methods, however, only rectangular regions are considered as shown in 

Figure 3.2. This restriction enables the use of simpler algorithms and improves 

computational efficiency. 

 

 

 
Figure 3.2 Clipping of an Oriented Line Segment against a Rectangular Region 
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There are a number of different methods, algorithms, in the literature for clipping 

arbitrary oriented line segments against rectangular regions. Some examples are 

Liang Barsky, Sutherland Cohen and Blinn’s algorithm. Each one has its own 

advantages and disadvantages considering computational efficiency, simplicity and 

robustness. In this thesis Liang Barsky is used due to its simplicity compared to the 

other methods. 

 

In the original Liang Barsky algorithm the line segments which are coincident with 

one of the faces of the rectangular region are considered to be inside the region. The 

orientation of the line segment is not taken into account in such a case. In Cartesian 

methods, on the other hand, each cell has a counterclockwise orientation. In other 

words, the faces of a cell are oriented in a counterclockwise direction with respect to 

the cell itself as shown in Figure 3.3. 

 

 

 
Figure 3.3 Orientation of a Cell 

 

 

Hence, in this thesis a line segment which is coincident with one of the faces of a 

cell is considered to be inside if its orientation is the same as the orientation of the 

face under consideration. Otherwise it is considered to be outside and discarded. 

This is the only modification to the original Liang Barsky algorithm and illustrated 

in Figure 3.4. 
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Figure 3.4 The Modification to the Original Liang-Barsky Algorithm 

 

 

In some problems special interactions between rectangular regions and line 

segments may occur. Although such occurrences are very rare, for the sake of 

robustness, they are to be handled correctly. A number of them are given in Figure 

3.5 together with the resulting configurations obtained by Liang Barsky. The empty 

boxes mean that there is not a line segment inside the cell. 
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Figure 3.5 Special Cases of Line Segment-Rectangular Region Interactions 

 

 
3.2 Boundary Segments 

 

In almost all applications input geometries are defined as a combination of oriented 

line segments. (In three-dimensional space line segments are replaced by oriented 

triangles.) In Cartesian methods these line segments are allowed to intersect the cells 

arbitrarily. As a result, some cells contain line segments that are part of the input 

geometry. These oriented line segments are called boundary segments. 

 

There are four boundary segment types: wall, far-field, inlet and outlet. Boundary 

segments of each cell are kept in a four-element array of pointers. Each pointer 

points to boundary segments of one type and it is set to zero if the cell does not have 

any boundary segments of that type. 

 

The cell given in Figure 3.6, for instance, has three wall boundary segments and no 

far-field, inlet and outlet boundary segments. Hence, the second, third and fourth 

elements of the array are set to zero. The first element, on the other hand, points to a 
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linked list containing the three wall boundary segments of the cell. If the cell were 

an uncut cell, then all of the elements of the array would be set to zero. 

 

 

 
Figure 3.6 An Example for Boundary Segments 

 

 

Wall boundary segments are boundary segments through which there is no fluid 

flow. This means that there is no mass flow rate. There is no energy flow rate as 

well. Considering momentum flow rate, only the pressure term is present. Far-field, 

inlet and outlet boundary segments, on the other hand, are boundary segments 

through which fluid flow is possible. 

 

Boundary segments of a cell are determined by a four-step procedure. The procedure 

results in zero pointers in case of an uncut cell. Each step is explained below. 

 

 

 

0 0

0

0
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3.2.1 First Step 

 

The first step in determining boundary segments of a cell is to copy the boundary 

segments of the parent cell into a separate linked list. This is a typical linked list 

creation process. A new linked list is created containing the same boundary 

segments with the original one. This is illustrated in Figure 3.7. 

 

 

 
Figure 3.7 The First Step in Boundary Segment Determination 

 

 

Considering only the boundary segments of the parent cell saves computational 

time. The input geometry is composed of much more oriented line segments. Since 

the boundary segments of a cell are to be the boundary segments of the parent cell at 

the same time, there is no need to consider all the line segments comprising the input 

geometry. 

 

0

0
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3.2.2 Second Step 

 

In the second step all the line segments in the copy created in the first step are 

clipped against the cell itself using Liang Barsky algorithm explained previously. In 

other words, the parts of these line segments residing in the cell under consideration 

are determined. The line segments that are outside are flagged as well as shown in 

Figure 3.8. 

 

 

 
Figure 3.8 The Second Step in Boundary Segment Determination 

 

 

3.2.3 Third Step 

 

In this step the line segments that are outside and flagged in the second step are 

deleted from the linked list. This is a typical linked list deletion process. An 

illustration is given in Figure 3.9. 

 

 

0

0
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Figure 3.9 The Third Step in Boundary Segment Determination 

 

 

The important point is that the line segments in the final linked list do not have to be 

in a specific order like clockwise or counterclockwise. Instead of this, they are 

stored in a totally arbitrary manner. The orientation of each line segment, on the 

other hand, is important and each one is to be oriented in a counterclockwise 

direction with respect to the cell itself. 

 

3.3 Inside-Outside Test 

 

Inside-outside test means determining whether a point is inside or outside a simple 

closed region. In general, a combination of such regions may be under consideration 

as well. Inside-outside test is almost a must in Cartesian methods and an efficient 

method is to be used for an efficient and robust mesh generator. 

 

There are several methods in the literature used for inside-outside test. The most 

well-known and widely used ones are ray casting and winding number methods. The 

latter is used for all cases in this thesis. Since all methods may cause problems while 

0

0
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dealing with points that are exactly on or very close to the boundary of the region, a 

check should by applied for such cases in advance for the sake of robustness. 

 

3.3.1 Ray Casting Method 

 

One of the most commonly used methods for inside-outside test is ray casting. The 

main idea is to send a ray from the point under consideration and count the number 

of intersection points with the boundary of the region. If the number of intersection 

points is odd then the point is inside the region. Otherwise it is outside. 

 

Ray casting method is considered to be more efficient compared to winding number 

due to the fact that it does not include complex mathematical operations like square 

root and inverse trigonometric functions. Moreover, it is readily extendable to three-

dimensional applications. In ray casting method, however, there are some special 

cases which are to be taken into account for the sake of robustness. The ray, for 

instance, may be tangent to or coincident with the boundary of the region. 

 

3.3.2 Winding Number Method 

 

A less efficient but more robust way of inside-outside test is winding number or 

solid angle method. It involves a number of angle calculations and then summing 

them up in an arbitrary manner. If the summation is zero then the point is outside the 

region. If it is 2π then the point is inside. Round-off effects, however, are to be taken 

into account for the sake of robustness. An illustration is given in Figure 3.10. 
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Figure 3.10 Winding Number Method 

 

 

Like ray casting, winding number can be used for combinations of simple closed 

regions and in three-dimensional applications as well. Unlike ray casting, however, 

winding number requires the line segments comprising the boundary or boundaries 

of the region to be in a counterclockwise orientation. If there are holes in the region 

then the boundaries of these holes have to be in a clockwise orientation. An example 

is given in Figure 3.11. 

 

 

 
Figure 3.11 Oriented Boundaries Representing a Simple Closed Region 

The point is inside. The point is outside. 



 28

3.4 Flow Segments 

 

Flow segments are line segments through which both mass and energy flows are 

possible together with momentum flows in each main direction. All computational 

cells have at least two flow segments and cells that do not have any flow segments 

are classified as unused cells. 

  

Although boundary segments of a cell may be totally arbitrary in orientation, flow 

segments are to be either horizontal or vertical. No cell may have a flow segment 

that is inclined with respect to main directions. This is one of the basic properties of 

Cartesian methods that make them easier and more efficient compared to their 

counterparts. 

 

Flow segments of each cell are kept in a four-element array of pointers. Each pointer 

points to flow segments associated with one of the faces of the cell. A pointer is set 

to zero if there are not any flow segments in the linked list. 

 

In order to determine flow segments of a cell its boundary segments are to be 

determined in advance using the procedure explained previously. Flow segments are 

then determined using a four-step procedure. 

 

3.4.1 First Step 

 

The first step in determining the flow segments of a cell associated with one of its 

faces is to produce a linked list containing the two endpoints of the face and all the 

endpoints of the boundary segments of the cell that are on this face. This is a typical 

linked list creation process. An illustration is given in Figure 3.12. 
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Figure 3.12 The First Step in Flow Segment Determination 

 

 

Note that, since the boundary segments of a cell do not have to be in a specific order, 

the points in the linked list do not have to be in a specific order as well. This is 

obvious in Figure 3.12. 
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3.4.2 Second Step 

 

In the second step the linked list created in the first step is sorted in order to obtain a 

linked list that is suitable for the third step. The sorting criterion depends on which 

face of the cell is under consideration. For the first face, for instance, the points are 

sorted with respect to increasing apses value. An illustration is given in Figure 3.13. 

 

 

Figure 3.13 The Second Step in Flow Segment Determination 
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3.4.3 Third Step 

 

Sorting produces a linked list containing point elements that are in a specific order. 

The next step is to create a linked list of line segments whose end points are the 

elements of the previous linked list. An ordinary linked list creation algorithm is 

used for this purpose together with the fact that there must be at least two points in 

the previous list. This means that there is to be at least one line segment in the new 

linked list. This step is illustrated in Figure 3.14. 
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Figure 3.14 The Third Step in Flow Segment Determination 

 

 

3.4.4 Fourth Step 

 

The linked list created in the third step involves line segments. In the fourth and 

final step each of these line segments are checked for whether they are inside or 

outside the flow field. For this task, first, the midpoint of each line segment is 

determined. If the point is outside the flow field then the line segment is deleted 
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from the list. This test is performed by winding number method and is illustrated in 

Figure 3.15. 

 

 

 
Figure 3.15 The Fourth Step in Flow Segment Determination 

 

 

3.5 Cell Centroid, Area and Type 

 

As mentioned before, boundary and flow segments of a cell do not have to be in a 

specific order. However, they are bound to form a simple closed curve or a 

combination of such curves in two dimensions. Hence, once the boundary and flow 

segments of a cell are determined, its centroid and area can be calculated using 
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simple geometric identities. In addition, cell type can be given considering the 

existence and type of flow and boundary segments. 

 

Cell centroid is used in case of second-order spatial accuracy. Cell area is necessary 

for residual calculation and cell type is mainly used for increasing the efficiency of 

recursive functions. 

 

3.6 Split Cells 

 

One of the most important problems associated with Cartesian methods is split cells. 

Unlike the usual case, flow and boundary segments of a split cell form at least two 

simple closed curves as shown in Figure 3.16. 

 

 

   
 

Figure 3.16 Split Cells 

 

 

The most logical, robust and accurate way of handling split cells is to consider these 

curves being totally independent from each other. This approach is, however, 

inefficient in terms of computational time and requires much more complicated data 

structures. 

 

For this reason, as an alternative approach, these curves are considered as a whole 

with only one set of primitive variables, gradients, frozen limiters and so on. The 
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inaccuracy introduced with this approach is assumed to be negligible due to the fact 

that split cells are cut cells and very small in size compared to the remaining of the 

grid. 

 

In order to reduce the number and size of split cells, a special recursive function is 

used. Following the generation of an initial mesh, the whole tree is traversed and the 

split cells are divided until the remaining ones are sufficiently small. By this way the 

effect of split cells to the overall accuracy of the solution is minimized. 

 

3.7 Machine Zero Effect 

 

Computers work with a finite number of digits. Some use a very high number but no 

one uses infinitely many digits. For the sake of robustness this should be taken into 

account as well. 

 

The usual way of taking machine zero effect into account is to define a global 

variable representing the minimum real value that the program can handle. All the 

values whose absolute values are less than this value are taken as zero. Hence, this 

global variable represents the maximum resolution of the program. In this thesis a 

value between 1010− and 1410− is used. 
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CHAPTER 4 

 

ADAPTATION 

 

In computational fluid dynamics high accuracy levels are usually required. One way 

of acquiring this is to use a fine mesh. By this way, the solution domain is divided 

into smaller regions, namely cells, and more accurate results can be obtained. 

 

Using a fine mesh, however, increases computational time and memory usage 

significantly. Hence, the time required for the solution of a problem may increase to 

unacceptable values. An alternative is to use a finer mesh wherever necessary. For 

this purpose critical regions in the domain are identified where a finer mesh is 

required. This technique is known as adaptation. 

 

One of the most important features of Cartesian methods is that any kind of 

adaptation can easily be applied to any input geometry. Hence, relatively high 

accuracy levels can be obtained with a relatively low number of cells. This saves 

computational time and memory significantly. 

 

There are two kinds of adaptation: geometric and solution. After defining the input 

geometry, they are applied for obtaining a suitable mesh, or successive meshes, for 

the solution of a problem. Each of these steps is explained below. 

 

4.1 Defining the Input Geometry 

 

In Cartesian methods the whole procedure begins with defining the input geometry 

or flow domain. A suitable mesh is then produced on this domain and the problem is 

solved on this mesh. Finally, the results are post-processed using some means. 

 

The flow domain is defined by specifying the boundaries. Four different boundary 

types are used in this thesis: wall, far-field, inlet and outlet. Wall and far-field 
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boundaries are used for external flows. Wall, inlet and outlet boundaries are used for 

internal flows. 

 

Boundaries are specified as a combination of line segments. All boundaries are 

oriented in counterclockwise direction. The holes, on the other hand, are given in 

clockwise orientation. An illustration is given in Figure 4.1. 

 

 

 
Figure 4.1 Boundary Orientation 

 

 

The line segments comprising the boundaries of the flow domain are read from the 

input files and are given as the boundary segments to the root cell. In other words, 

the boundary segments of the root cell are given explicitly. For other cells, on the 

other hand, the boundary segments are determined using the procedure explained in 

Chapter 3. An illustration is given in Figure 4.2. 
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Figure 4.2 The Input Geometry 

 

 

The flow segments of the root cell are set to zero by default. The reason for this is 

that the root cell has no neighbor and it can not have any flow segment. This 

completes defining the input geometry. The next step is producing a suitable initial 

mesh on this flow domain by means of geometric adaptation. 

 

4.2 Geometric Adaptation 

 

After defining the input geometry, geometric adaptation is applied in order to obtain 

a suitable initial mesh for the solution of a given problem. There are three types of 

geometric adaptation: all-cell, cut-cell and curvature. The amount of each type of 

adaptation is determined by the user. 

 

4.2.1 All-Cell Adaptation 

 

In all-cell adaptation all the leaf cells are divided without using any specific 

criterion. The aim is to obtain sufficiently small cells before applying other types of 

adaptation. If all-cell adaptation is not applied, the root cell itself is used as the 

initial mesh. In Figure 4.3 two levels of all-cell adaptation applied to the simple 

input geometry given in Figure 4.2 is shown. 
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Figure 4.3 All-Cell Adaptation 

 

 

During all cell adaptation the overall cell number increases exponentially. Hence, it 

is considered to be very costly compared to other types of geometric adaptation and 

excessive use of it should be avoided. For most cases two or three steps are found to 

give superior results. 

 

4.2.2 Cut-Cell Adaptation 

 

After all-cell adaptation cut-cell adaptation is applied in order to obtain smaller cells 

at solid boundaries. For this purpose, cells that are cut by the input geometry are 

determined and divided until a sufficiently fine mesh is obtained. Cut-cell adaptation 

is illustrated in Figure 4.4. 
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Figure 4.4 Cut-Cell Adaptation 

 

 

4.2.3 Curvature Adaptation 

 

There may be some regions of the input geometry with a high curvature such as the 

tip or tail of an airfoil. Such regions are expected to be more critical and require 

careful attention compared to those with a low curvature. Hence, high curvature 

regions are determined and resolved better by using smaller cells. This is achieved 

by curvature adaptation. In Figure 4.5, 3 levels of curvature adaptation are applied to 

the mesh given in Figure 4.4. 
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Figure 4.5 Curvature Adaptation 

 

 

Curvature adaptation is implemented in two steps. In the first step the angles 

between the successive wall boundary segments of each cut cell are calculated. The 

cell has to contain at least two wall boundary segments. Uncut cells and cut cells 

which have just one wall boundary segment are discarded. 

 

The maximum of these angles is then compared with a user-specified threshold 

value. If it is higher than this value then the cell is divided. In this thesis the 

threshold value of 20ο is used for all cases. 

 

In some cases one of the endpoints of the line segments comprising the input 

geometry may coincide with one of the faces of a cut cell. For the sake of robustness 

these special cases are to be taken into account as well. For this purpose, the same 

threshold value is used and if the angle is higher than this value then both cells are 

divided. 

 

4.3 Solution adaptation 

 

By defining the input geometry and applying geometric adaptation, namely all-cell, 

cut-cell and curvature adaptations, a suitable initial mesh is produced for the 
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solution of the problem as given in Figure 4.5. The first solution is then obtained 

using this initial mesh. 

 

In each problem, however, there may be critical regions where the flow variables 

undergo abrupt changes. Shock waves, contact layers and shear layers are examples 

of such features frequently encountered in inviscid and viscous problems. In order to 

obtain higher accuracy levels these features have to be resolved sufficiently. 

 

One way of obtaining enough resolution is to use a much finer mesh. Such an 

approach, however, resolves unnecessary regions as well and increases the total 

number of computational cells significantly and unnecessarily. Hence, 

computational time and memory usage may increase to intolerable levels. 

 

Hence, techniques for resolving the critical regions without increasing the total 

number of cells significantly are needed in order to find a compromise between 

accuracy and computational capabilities. Such techniques are generally called 

solution adaptation. 

 

In conventional approaches solution adaptation is performed manually by the user at 

the beginning. The critical regions are estimated and a finer mesh is used in these 

regions. This method is, however, not efficient due to the fact that the critical 

regions in a flow field cannot be predetermined. 

 

Hence, solution adaptation is most efficiently applied in an automated manner. The 

problem is solved on an initial mesh in order to determine the critical regions in the 

domain. The mesh is then refined in order to obtain a finer mesh in these critical 

regions. 

 

There are several ways to distinguish such critical regions in a flow field. In this 

thesis the curl and divergence of velocity are used together. Curl of velocity is used 

for resolving shear layers while divergence of velocity is used for resolving shock 
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waves. Using two different criteria at the same time gives superior results compared 

to using a single one. 

 

For each cell the curl cτ and divergence dτ of velocity are computed in weighted form 

as 

 

r
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⋅∇=τ                                                                            (4.1) 

 

where l is the length scale for the cell. In this thesis r is always taken as 2. Once the 

curl and divergence of velocity are computed for all cells, the standard deviations 

about zero are computed as 
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where n is the total number of cells. Hence, the conditions for refinement and 

coarsening may be written as 

 

i. If cc τσ < or dd τσ < the cell is flagged for refinement. 

ii. If 10cc στ < and 10dd στ < the cell is flagged for coarsening. 

 

In order to demonstrate the effect of solution adaptation on the accuracy of the 

results, a supersonic flow over a wedge is solved. The free-stream Mach number is 

2. The initial mesh is produced by means of 2 levels of all-cell, 7 levels of cut-cell 

and 3 levels of curvature adaptation. 4 levels of solution adaptation are then applied 

successively on this initial mesh. The results are given in Figure 4.6, 4.7, 4.8, 4.9 

and 4.10. It is apparent from the figures that critical features like the double-

reflecting shock and the expansion fan are resolved better increasing the level of 

solution adaptation. 



 44

 
Figure 4.6a Mesh without Any Solution Adaptation 

 
Figure 4.6b Pressure Contours without Any Solution Adaptation 

 
Figure 4.7a Mesh after 1 Level of Solution Adaptation 
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Figure 4.7b Pressure Contours after 1 Level of Solution Adaptation 

 
Figure 4.8a Mesh after 2 Levels of Solution Adaptation 

 
Figure 4.8b Pressure Contours after 2 Levels of Solution Adaptation 
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Figure 4.9a Mesh after 3 Levels of Solution Adaptation 

 
Figure 4.9b Pressure Contours after 3 Levels of Solution Adaptation 

 
Figure 4.10a Mesh after 4 Levels of Solution Adaptation 
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Figure 4.10b Pressure Contours after 4 Levels of Solution Adaptation 
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CHAPTER 5 

 

SOLVER 

 

As mentioned before, the first step in Cartesian methods is to define the input 

geometry. A suitable initial mesh is then produced by means of all-cell, cut-cell and 

curvature adaptations. The next step is to solve the governing equations on this 

mesh. 

 

In this thesis, cell-centered approach is used in order to discretize the finite volume 

form of the two-dimensional Euler equations. Flux difference splitting and flux 

vector splitting methods are used for calculating mass, momentum and energy flow 

rates through the cell faces. 

 

For first-order spatial accuracy, the cell-centered values of the primitive variables 

are used directly in flux calculation. For second-order spatial accuracy, on the other 

hand, these values are reconstructed at the midpoints of the cell faces. For this 

purpose, the gradients of the primitive variables and limiting are used. 

 

In this thesis, steady solutions of the two-dimensional Euler equations are sought. 

Hence, high convergence rates are usually required. In order to achieve this, local 

time step technique is used. 

 

5.1 Gradient Estimation 

 

Gradients of the primitive variables are used for two main purposes: second-order 

spatial accuracy and solution adaptation. For second-order spatial accuracy, 

primitive variables at cell centroids are reconstructed at the midpoints of the cell 

faces using gradients and limiting. For solution adaptation, cells are flagged for 

refinement or coarsening with respect to a criterion or some criteria involving 

gradients of the primitive variables. 
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There are two methods that are widely used for gradient estimation: least squares 

and path integral. Although the least squares method has some advantages, the path 

integral method is used for all cases in this thesis due to its computational efficiency. 

 

5.1.1 Path Integral Method 

 

One of the methods that are used for estimating gradients of the primitive variables 

in a cell is the path integral method. As the name implies, the main idea is to 

construct a suitable path around the cell under consideration. Divergence theorem is 

then applied on this path. 

 

In order to construct such a path, the neighboring cells are to be collected in a 

counterclockwise order. For an uncut cell, which is the most common case in 

Cartesian methods, the procedure is relatively simple. In Figure 5.1a a normal path 

is illustrated, which is the simplest case. In Figure 5.1b, on the other hand, a path 

that is altered due to the differences between the length scales of the neighboring 

cells is given. 

 

 

 
Figure 5.1a Normal Path for an Uncut Cell 
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Figure 5.1b Altered Path for an Uncut Cell 

 

 

In case of a cut cell the procedure is more complicated. The main difficulty is that, 

for a cut cell, at least one of neighboring cells is bound to not exist. In such a case, 

the cell itself is to be used instead of the missing cells. This is illustrated in Figure 

5.2. In the figure the dotted cells are the missing neighbors. 
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Figure 5.2 Path for a Cut Cell 

 

 

As mentioned before, once a suitable path is constructed, divergence theorem is 

applied on this path [24]. This gives the gradient of a quantity kW∇ in a cell as 

 

∫ Ω∂
→

Ω

=∇ ldnW
A

W kk
1                                                                                             (5.1) 

 

where ΩA represents the area enclosed by the path of integration Ω∂ . It can be 

calculated by triangulating the area and summing the areas of these triangles. 

 

5.1.2 Least Squares Method 

 

Another way of estimating gradients of the primitive variables is the least squares 

method [6]. It relies on the solution of a weighted least squares system. Such a 

system being solved for the gradient of u is 
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where 

 

0xxx ii −=∆  

0yyy ii −=∆                                                                                                           (5.3) 

0uuu ii −=∆  

 

where the subscript i represents a neighboring cell and the subscript 0 represents the 

cell in which the gradient of u is to be calculated. x and y represents the coordinates 

of the cell centroids. N is the total number of cells that are used for gradient 

estimation. The result may be written as 

 

( ) i

N

i
iix uycxc

ccc
u ∆∆−∆

−
=∇ ∑

=1
232

231

1  

( ) i

N

i
iiy uxcyc

ccc
u ∆∆−∆

−
=∇ ∑

=1
212

231

1                                                                     (5.4) 

 

where c1, c2 and c3 are defined as 
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Similar to the path integral method, the least squares method require collecting the 

neighboring cells. The same procedure explained for the path integral method may 

be used for the least squares method as well. However, the latter does not require the 

neighboring cells to be collected in a counterclockwise order. 
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5.2 Limiting 

 

Gradient estimation is based on the fact that flow variables change continuously in 

the region of estimation. Near solid boundaries or shock waves, however, flow 

variables may change discontinuously and gradient estimation may give results that 

are totally inaccurate. 

 

In order to eliminate this drawback and obtain accurate, bounded values of the 

primitive variables, the estimated gradient values are limited before being used in 

calculations [6]. The limiter used is a diffusive limiter and is given as 
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In this thesis four limiters are used: one for each primitive variable. This gives more 

accurate results due to the fact that each primitive variable has its own limiter and 

excessive limiting of the gradients is eliminated. The drawback, however, is that it 

requires four real variables and expensive in terms of memory. 

 

Alternatively, only the minimum of these limiters can be stored and used for all 

primitive variables. This method is less expensive in terms of memory and more 

conservative compared to the previous one. The drawback, however, is that the 

effect of second-order spatial accuracy decreases. It may be more suitable for three-

dimensional applications. 

 

 

 



 54

5.3 Flux Formulation 

 

As mentioned before, flow segments are line segments through which mass, 

momentum and energy flow are possible. Estimation of these flow rates requires a 

suitable flux formulation. Flux formulation described here corresponds to solution of 

the Euler equations. In this thesis two well-known flux formulation methods are 

examined: Roe’s flux difference splitting and Van Leer’s flux vector splitting. 

 

5.3.1 Euler Equations 

 

The governing equations for two-dimensional inviscid flows in the absence of body 

forces may be written in differential form as 
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where ρ is the density, p is the thermodynamic pressure, u and v are the velocity 

components in the x and y directions, E is the total energy per unit mass and H is the 

total enthalpy per unit mass [24, 25, 26, 27, 28]. Taking the integral of Equation 

(5.7) over a cell with an area of A leads to 
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which may be written as 
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due to the fact that the area of the cell is constant. Using the divergence theorem for 

the second and third terms of the left hand side of Equation (5.10) leads to 
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where S represents the circumference of the cell. With a second-order accuracy, the 

second and third terms of Equation (5.11) may be combined and written as 
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which may be arranged as 
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where x∆ and y∆ are the changes in the x and y coordinates along a face of the cell. 

Defining the face length and the normal and tangential velocity components as 

 

( ) ( )22 yxs ∆+∆=∆                                                                                             (5.14) 

 

and 
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s
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the flow rates through a face may be written as 
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where Φ represents the fluxes through a face. Hence, Equation (5.13) may be 

written as 
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Defining the residuals of a cell as 

 

s
faces

∆−= ∑ΦURes )(                                                                                               (5.18) 

 

Equation (5.17) may be written as 
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Calculating the flux vector Φ is the most critical part of the solution process. In this 

thesis it is performed by means of flux splitting. The residuals are then calculated for 

each cell and integrated in time. These are explained below.  
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5.3.2 Roe’s Flux Difference Splitting 

 

Roe’s flux difference splitting is one of the most accurate methods for flux 

calculation. The flux vector Φ is defined as 
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where γ is the specific heat ratio. The summation term in Equation (5.20) provides 

the upwind character and stabilizes the scheme [25]. 

 

In order to prevent expansion shocks, which may occur computationally but are 

totally unphysical, an entropy fix is imposed [11]. Hence, the entropy controlling 

term ka is replaced by a smoothed value
∗

ka when k takes the values of 1 and 4. 

This leads to 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤+

≥
=

∗

kkk
k

k

kkk

k

aaa
a
a

aaa
a

δδ
δ

δ

2
1

4
1

2
1

2      ( )0,4max kk aa ∆=δ      kLkRk aaa −=∆ .  (5.24) 

 

5.3.3 Van Leer’s Flux Vector Splitting 

 

Van Leer’s flux vector splitting is one of the alternatives to Roe’s flux difference 

splitting. Although proved to be more dissipative, it is faster and more robust [25]. 

The flux vector Φ is defined as 
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The split fluxes +H and −H are defined for various Mach numbers as 
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where nM and tM are the Mach numbers calculated using the normal and tangential 

velocity components, respectively. Unlike Roe’s flux difference splitting, Van 

Leer’s flux vector splitting does not have an entropy controlling term. Hence, in 

some cases expansion shocks may not be eliminated. This is one of the reasons why 

it is less accurate compared to Roe’s flux difference splitting. 

 

5.4 Time Stepping 

 

The residuals for each computational cell are calculated as described above. These 

residual values are then used to update the primitive variables by means of multi-

stage time stepping. Local time step is used in order to increase convergence rate. 

Since the Euler equations include a time derivative and a number of spatial 

derivatives, a suitable initial guess and a number of boundary conditions are 

necessary as well. 

 

5.4.1 Local Time Step 

 

For steady problems, local time step concept can be used in order to increase 

convergence rate. The main idea is that each cell has its own time step depending on 

the size and flow properties. Hence, using higher time step values increases 

convergence rate. 

 

There are different local time step definitions. In this thesis it is defined as 
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where A is the area of the cell, S is the circumference of the cell, u and v are the 

velocity components and c is the speed of sound. In order to prevent divergence and 

for the sake of robustness, in some problems local time step values should be 

multiplied with a suitable safety factor as well. 

 

Note that local time step concept cannot be used for unsteady problems. In unsteady 

problems all the cells are to have the same time step value. It can be found by 

calculating the local time step value for each cell and then using the minimum of 

them. 

 

5.4.2 Multistage Time Stepping 

 

The general m-stage time stepping scheme is defined as 
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where ν and kα are chosen for optimal smoothing [6]. A number of different choices 

are given for first and second-order spatial accuracies in Table 5.1 and 5.2. 
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Table 5.1 Multi-Stage Coefficients for a First-Order Spatial Discretization 

 

Stages 
 

2 3 4 5 6 

ν 1.0 1.5 2.0 2.5 3.0 

α1 0.3333 0.1481 0.0833 0.0533 0.0370 

α2 1.0000 0.4000 0.2069 0.1263 0.0851 

α3  1.0000 0.4265 0.2375 0.1521 

α4   1.0000 0.4414 0.2562 

α5    1.0000 0.4512 

α6     1.0000 

 

 

Table 5.2 Multi-Stage Coefficients for a Second-Order Spatial Discretization 

 

Stages 
 

2 3 4 5 6 

ν 0.4693 0.6936 0.9214 1.1508 1.3805 

α1 0.4242 0.1918 0.1084 0.0695 0.0482 

α2 1.0000 0.4929 0.2602 0.1602 0.1085 

α3  1.0000 0.5052 0.2898 0.1885 

α4   1.0000 0.5060 0.3050 

α5    1.0000 0.5063 

α6     1.0000 

 

 

5.4.3 Convergence Criteria 

 

In order to stop the solution process a suitable convergence criterion is needed. 

Although there are several choices for this purpose, in this thesis the residual of the 
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first primitive variable, which is density, is used. The solution process is stopped 

when the residual of density is reduced to a user-specified value. 

 

In most cases the average value of the residuals is used. Since it is bound to be 

smaller compared to the maximum one, the number of iterations and computational 

time needed is reduced. Another approach is to use the maximum residual value in 

the domain. Although this approach takes considerably longer computational time, it 

is more conservative and gives more accurate results. 

 

5.4.4 Initial Guess and Boundary Conditions 

 

Due to the time derivative term in the two-dimensional Euler equations, a proper 

initial guess is needed. For external flow problems the far-field boundary conditions 

are given to the computational cells as the initial guess. The solution is then 

converged to steady state. For internal flow problems the inlet boundary conditions 

are used as the initial guess. 

 

The user, however, does not have to give these initial guesses. The program enables 

other choices as well. For an internal flow problem, for instance, the average of the 

inlet and outlet boundary conditions may be used as the initial guess. This may 

increase the convergence rate due to the fact that the Euler equations are a system of 

non-linear partial differential equations and highly sensitive to the initial guess. 

 

Due to the spatial derivatives, in addition to a proper initial guess, proper boundary 

conditions are needed as well. For flow-through boundaries, which are inlet, outlet 

and far-field boundaries, the boundary conditions are specified in the ghost cells just 

outside the computational domain and the Riemann problem is then solved yielding 

the boundary fluxes and flow rates. As mentioned before, Roe’s flux difference 

splitting is used for this purpose in this thesis. 
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Since the Euler equations represent inviscid flows, the flow velocity is not 

necessarily zero on the wall. Instead, only the normal component of the velocity is 

set to zero. The tangential component does not need to be zero. The physical 

meaning of this is that mass and energy flow rates through the wall are set to zero. 

Considering the momentum flow rate, only the pressure term is kept. One alternative 

to this approach is to use ghost cells just outside the walls. Density, pressure and the 

tangential component of the velocity are taken to be the same. The normal 

component of the velocity is taken just to be the opposite. 
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CHAPTER 6 

 

POST-PROCESSING 

 

Mesh generator and solver are two important parts of Cartesian methods. However, 

an efficient mesh generator and an accurate solver are not enough for an efficient 

and high-quality solution of a given problem. The process of presenting the final 

results, which is known as post-processing, is very important as well. 

 

For presenting the final results as accurately as possible, gradients of the primitive 

variables are used. This means that the primitive variables at the desired positions 

are obtained by reconstructing the cell-centered values using the gradients. In order 

to obtain accurate, bounded values limiting is applied as well. 

 

6.1 Contour Drawing 

 

As mentioned before, the primitive variables are stored at cell centers. However, 

contour drawing requires nodal values of the primitive variables. Hence, cell-

centered values of the primitive variables are reconstructed in order to find nodal 

values. This is illustrated in Figure 6.1. Other variables like Mach number and total 

pressure are then calculated from nodal values of the primitive variables. 
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Figure 6.1 Reconstruction to Find Nodal Values from Cell-Centered Ones 

 

 

6.2 Triangulation 

 

As mentioned before, in Cartesian methods, cells do not have a unique shape. This 

may cause difficulties in post-processing. Hence, after the mesh generation and 

solution steps, cells are triangulated. This means that each cell is represented as a 

combination of triangles. An illustration is given in Figure 6.2. 
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Figure 6.2 Cell Triangulation 

 

 

6.3 Pressure Distribution 

 

Another step of post-processing is presenting pressure distribution on the input 

geometry. For this purpose, cell-centered values are reconstructed in order to find 

the values on the input geometry. This is illustrated in Figure 6.3. 

 

 

 
Figure 6.3 Reconstruction of Pressure for Pressure Distribution 
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6.4 Residual History 

 

Another step of post-processing is to represent the convergence history of the 

solution. For this purpose, a residual graph is also supplied. It gives residual values 

at each iteration. The residual values are usually given in logarithmic scale. 

 

In this thesis the average value of the residuals of the first primitive variable, namely 

density, is presented. Hence, residual graphs give these values at each iteration. 

Other values like the maximum of the residuals of the fourth primitive variable, 

namely pressure, may also be presented. 

 

6.5 Solution Data 

 

For each problem a data file is produced that contains information about the problem 

itself and the solution process. Such a file is important in that it specifies which 

problem is solved under which conditions for later reference. Moreover, it helps 

specifying the performance of the solution process. A typical data file may contain 

the information given below. 

 

• The number of all-cell, cut-cell, curvature and solution adaptations 

• The order of the solution and whether limiting is used or not 

• Computational time and the total number of iterations 

• The number of unused, computational and boundary cells 

• The maximum and minimum cell levels 

• The maximum and minimum residual values 
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CHAPTER 7 

 

RESULTS 

 

In order to verify the accuracy and efficiency of the method, a number of test cases 

are solved. The results are compared with analytical and experimental ones as well 

as the results obtained by other solvers. 

 

7.1 Comparison with an Analytical Solution 

 

The geometry is composed of a forward-facing and a backward-facing ramp. The 

angles are 15 degrees and the height is 0.134 units. The distance between the two 

ramps is 2 units. The free-stream Mach number and the free-stream total pressure 

values are 2 and 101325 Pa, respectively. The total temperature value is 300 K. 

 

The initial mesh is produced by 2 levels of all-cell, 7 levels of cut-cell and 3 levels 

of curvature adaptation. 5 levels of solution adaptation are then applied successively. 

There are 15648 computational cells in the final mesh. The minimum cell level is 2 

and the maximum one is 15. The final mesh around the forward-facing and 

backward-facing ramps is given in Figure 7.1a and 7.1b, respectively. The problem 

is solved in 13 minutes and the total number of iterations is 1547. The residual 

history is given in Figure 7.1c. The peaks are due to the 5 levels of solution 

adaptation applied. 
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Figure 7.1a Final Mesh around the Forward-Facing Ramp at M∞ = 2 

 

 
Figure 7.1b Final Mesh around the Backward-Facing Ramp at M∞ = 2 
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Figure 7.1c Residual History at M∞ = 2 

 

 

The pressure and Mach number contours are given in Figure 7.1d and 7.1e, 

respectively. There are two oblique shock waves attached to the two compression 

corners. In addition to this, there are two expansion fans attached to the two 

expansion corners. 

 

 
Figure 7.1d Pressure Contours at M∞ = 2 
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Figure 7.1e Mach Number Contours at M∞ = 2 

 

 

The computed and analytically calculated pressure distributions are compared in 

Figure 7.1f. The computed values are very close to the analytically calculated ones. 

The Mach number distributions are compared in Table 7.1. 

 

 
Figure 7.1f Computed and Analytical Pressure Distributions at M∞ = 2 

 

 



 72

Table 7.1 Exact and Computed Mach Number Values at M∞ = 2 

 

 Exact Computed Error (%) 

Between the First Shock Wave and 

the First Expansion Fan 
1.445 1.443 0.114 

Between the Two Expansion Fans 1.961 1.953 0.390 

Between the Second Expansion Fan 

and the Second Shock Wave 
2.551 2.536 0.613 

After the Second Shock Wave 1.914 1.911 0.146 

 

 

7.2 Backward-Facing Step 

 

The geometry is composed of a backward-facing step. The step height is 0.443 units. 

The domain extends 4 units upstream of the step, 12 units downstream of the step 

and 6.25 units above the step. The free-stream Mach number and the free-stream 

total pressure values are 2.5 and 101325 Pa, respectively. The total temperature 

value is 300 K. 

 

The initial mesh is produced by 2 levels of all-cell, 7 levels of cut-cell and 3 levels 

of curvature adaptation. 4 levels of solution adaptation are then applied successively. 

There are 46145 computational cells in the final mesh. The minimum cell level is 2 

and the maximum one is 16. The problem is solved in 42 minutes and the total 

number of iterations is 6286. The residual history is given in Figure 7.2a. 
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Figure 7.2a Residual History for Backward-Facing Step at M∞ = 2.5 

 

 

The pressure and Mach number contours are given in Figure 7.2b and 7.2c, 

respectively. The details are given in Figure 7.2d and 7.2e. The flow expands over 

the corner of the step. There is an oblique shock wave above the lower surface of the 

duct downstream the step. The computed pressure distribution on the lower surface 

of the duct downstream the step is compared with experimental data [29] in Figure 

7.2f. 
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Figure 7.2b Pressure Contours for Backward-Facing Step at M∞ = 2.5 

 

 
Figure 7.2c Mach Number Contours for Backward-Facing Step at M∞ = 2.5 
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Figure 7.2d Pressure Contours around the Step at M∞ = 2.5 

 

 
Figure 7.2e Mach Number Contours around the Step at M∞ = 2.5 
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Figure 7.2f Computed and Experimental Pressure Distributions 

 

 

7.3 Wedge 

 

The geometry is composed of a forward-facing ramp. The angle is 15 degrees and 

the height of the ramp is 0.134 units. The domain extends 0.5 units upstream of the 

ramp, 2.5 units downstream of the ramp and 0.866 units above the ramp. The free-

stream Mach number and the free-stream total pressure values are 2 and 101325 Pa, 

respectively. The total temperature value is 300 K. 

 

The initial mesh is produced by 2 levels of all-cell, 7 levels of cut-cell and 3 levels 

of curvature adaptation. 4 levels of solution adaptation are then applied successively. 

There are 8910 computational cells in the final mesh. The final mesh is given in 

Figure 7.3a. The minimum cell level is 2 and the maximum one is 14. The problem 

is solved in 35 minutes and the total number of iterations is 4258. The residual 

history is given in Figure 7.3b. 
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Figure 7.3a Final Mesh for Wedge at M∞ = 2 

 

 
Figure 7.3b Residual History for Wedge at M∞ = 2 

 

 

The pressure and Mach number contours are given in Figure 7.3c and 7.3d, 

respectively. There is an oblique shock wave attached to the compression corner. It 

reflects from the upper and lower walls of the duct and leaves the computational 

domain. In addition to this, there is an expansion fan around the expansion corner. It 
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acts to weaken the reflected shock wave. Another expansion region exists between 

the reflected shock wave and the upper wall of the duct. 

 

The computed pressure distributions on the upper and lower walls of the duct are 

compared with those obtained by another Cartesian code written by De Zeeuw [6] in 

Figure 7.3e. The results are almost the same. The Mach contours are also compared 

with those obtained by the same Cartesian code in Figure 7.3f. The solid lines are 

from De Zeeuw. Similarly, the two codes give almost the same results. 

 

 
Figure 7.3c Pressure Contours for Wedge at M∞ = 2 

 

 
Figure 7.3d Mach Number Contours for Wedge at M∞ = 2 
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Figure 7.3e Comparison of Pressure Distributions for Wedge at M∞ = 2 

 

 
Figure 7.3f Comparison of Mach Number Contours for Wedge at M∞ = 2 
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CHAPTER 8 

 

CONCLUSIONS 

 

8.1 Summary 

 

A method is developed by which steady solution of the two-dimensional Euler 

equations can be obtained using geometry and solution-based adaptations for flows 

around arbitrarily complex input geometries. 

 

A quadtree data structure is applied successfully. The cells are connected to each 

other by means of pointers in a parent-child relationship. Connectivity information is 

extracted from the tree by using these relationships. Ordinary linked list is used with 

static data structures like one or two-dimensional arrays as well. 

 

The mesh is generated with a minimum number of inputs for arbitrarily complex 

bodies. The user specifies a set of points defining the input geometry, boundary 

conditions and the amount of geometry and solution-based adaptations. The mesh is 

then generated in a totally automatic manner. 

 

The problem is then solved by using a multi-stage time stepping scheme with Roe’s 

flux difference splitting method. Local time step approach is applied in order to 

increase convergence rate. 

 

Finally, the results are post-processed. Residual graphs and pressure distributions are 

determined together with contours of several variables including the primitive 

variables. Comparisons with experimental data, analytical solutions and results of 

some other computer codes are performed in order to demonstrate the efficiency and 

accuracy of the code. 
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8.2 Conclusions 

 

One of the most important needs for computational fluid dynamics is to generate 

automatic and robust meshes around arbitrarily complex input geometries and 

compute accurate solutions on these meshes. Cartesian methods are proved to 

overcome this problem successfully. 

 

Accurate results usually require fine meshes. However, computational time and 

memory usage increase with increasing cell number. In order to obtain satisfactorily 

accurate results without increasing cell numbers unnecessarily, geometry and 

solution-based adaptations are usually needed. Cartesian methods are proved to be 

more suitable for both types of adaptation compared to its counterparts like 

structured and ordinary unstructured methods. 

 

The technique of using local time step is applied successfully. Since in Cartesian 

methods there are significant differences in length scales due to geometry and 

solution-based adaptations, local time step is highly effective. 

 

8.3 Future Work 

 

In this thesis the two-dimensional Euler equations are solved. Extension to three 

dimensions is straightforward. In two dimensions input geometries are composed of 

oriented line segments. Hence, mesh generation relies on line clipping. In three 

dimensions input geometries are composed of oriented triangles. Consequently, line 

clipping is replaced by polygon clipping in three dimensions. Sutherland 

Hodgemann algorithm, which is used for clipping convex polygons against convex 

regions in three dimensions, seems to be very suitable for Cartesian methods. 

 

Extension to the Navier-Stokes equations is less straightforward. The reason for this 

is that with the current data structure only isotropic refinement is possible. For 

resolving boundary layers with a minimum number of cells, however, anisotropic 
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refinement is necessary. Hence, extension to the Navier-Stokes equations requires a 

significant improvement in data structure. 

 

In this thesis steady solutions of the Euler equations are sought. Hence, local time 

step approach is used in order to increase convergence rate. For unsteady solutions, 

however, the same time step is to be used for all cells. Moreover, unsteady problems 

require more sophisticated mesh generation techniques like cell merging. 

 

As mentioned before, different regions of a split cell are considered as a whole and 

are given the same set of primitive variables. Although the effect of this approach to 

the overall accuracy of the solution is negligible, more accurate results can be 

obtained by considering each region being totally independent from each other. This 

approach, however, requires a more complicated mesh generation process and an 

advanced data structure. 

 

In Cartesian methods a significant portion of computational time is spent for 

obtaining connectivity information. One way of reducing this is to determine 

connectivity once at the beginning and then store it for each cell. This approach, 

however, increases memory need unreasonably. A compromise in between may be 

realized by changing the data structure slightly. Grouping the cells into a number of 

boxes and combining these boxes to each other by pointers may reduce 

computational time without increasing memory usage significantly. 
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