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ABSTRACT 

 

3D MARKER TRACKING FOR HUMAN GAIT ANALYSIS 

 

Küçük, Can 

M.S., Department of Electric and Electronics Engineering  

Supervisor: Prof. Dr. Uğur Halıcı 

  

December 2005, 85 pages 

 

This thesis focuses on 3D marker tracking for human gait analysis. In KISS Gait 

Analysis System at METU, a subject's gait is recorded with 6 cameras while 13 

reflective markers are attached at appropriate locations on his/her legs and feet. 

These images are processed to extract 2 dimensional (2D) coordinates of the markers 

in each camera. The 3 dimensional (3D) coordinates of the markers are obtained by 

processing the 2D coordinates of the markers with linearization and calibration 

algorithms. Then 3D trajectories of the markers are formed using the 3D coordinates 

of the markers. In this study, software which takes the 2D coordinates of markers in 

each camera and processes them to form the 3D trajectories of the markers is 

developed. Kalman Filter is used in formation of 3D trajectories. The results are 

found to be satisfactory. 

 

Keywords: 3D Marker Tracking, Gait Analysis, Kalman Filter 
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ÖZ 

 

İNSAN YÜRÜYÜŞ ANALİZİ İÇİN 3 BOYUTLU İŞARETLEYİCİ İZLEME 

 

Küçük, Can 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Aralık 2005, 85 sayfa 

 

Bu tez, insan yürüyüş analizi için 3 boyutlu işaretleyici izleme üzerine odaklanmıştır. 

ODTÜ'deki KISS Yürüyüş Analiz Laboratuarı'nda, bacak ve ayaklarının uygun 

konumlarına ışık yansıtan işaretleyiciler yerleştirilen deneğin yürüyüşü 6 kamera ile 

kaydedilir. Bu görüntüler işaretleyicilerin her bir kameradaki 2 boyutlu (2B) 

koordinatlarını bulmak üzere işlenir. İşaretleyicilerin 2B koordinatlarının 

doğrusallaştırma ve kalibrasyon algoritmaları ile işlenmesiyle işaretleyicilerin 3 

boyutlu (3B) koordinatları elde edilir. Daha sonra işaretleyicilerin 3B koordinatları 

kullanılarak işaretleyicilerin 3B yörüngeleri oluşturulur. Bu çalışmada, her bir 

kameradaki işaretleyicilerin 2B koordinatlarını alan ve onları işaretleyicilerin 3B 

yörüngelerini oluşturmak üzere işleyen bir yazılım geliştirilmiştir. 3B yörüngelerin 

oluşturulması sırasında Kalman Filtresi kullanılmıştır. Sonuçlar tatmin edici 

bulunmuştur. 

 

Anahtar Kelimeler: 3 Boyutlu İşaretleyici İzleme, Yürüyüş Analizi, Kalman Filtresi. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

1.1 GAIT ANALYSIS 
 

Gait analysis is the study of walking and often referred to as "the quantitative 

description of all mechanical aspects of walking" [11]. Gait analysis is therefore a 

multidisciplinary field where people from the fields of engineering, physical 

medicine and rehabilitation, orthopedics, neurology and physiology are working on 

[1]. Main objective of gait analysis is to obtain quantitative information about the 

mechanics of the gait, including positions, angles, forces, etc. [12]. 

 

 

1.2 KISS GAIT ANALYSIS SYSTEM 
 

KISS, Kinematic Support System, is the Gait Analysis System at METU. This is a 6-

camera system with force plates to measure ground forces. To distinguish the 

markers placed on a subject whose gait is to be analyzed, the cameras are equipped 

with IR Filters which only let the IR light reach the CCD. Markers are passive balls 

wrapped with reflective material that reflects the IR light emitted from the IR LEDs 

placed at each camera. 

 

Markers used in the experiments are shown in Figure 1.1 and the cameras equipped 

with IR Filters are shown in Figure 1.2.  
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Figure 1.1 The Markers 
 

 

 
 

Figure 1.2 CCD Camera with IR LEDs 
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The marker positions on the subject's legs and feet are given in the Figure 1.3 (a) and 

(b), which show the side and front views, respectively. Figure 1.3 (c) shows the 

skeleton formed by markers. 

 

 

 
 

Figure 1.3 Marker Positions on the Legs and Feet from 
(a) Side View and (b) Front View and (c) the Skeleton Formed by Markers 

 

 

For the gait analysis experiment, 13 markers are placed on the subject's legs and feet. 

The subject walks through a path while the cameras are recording. At the same time, 

forces on the force plates on the floor are measured and recorded synchronously to 

the cameras. Recorded image sequences and measured force values are analyzed 

together using various gait analysis software. 

 

There has been a lot of academic work done on this system at METU. The work 

presented in this thesis is also a continuation of the academic work for KISS. 

 

(c) (a) (b) 
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H. C. Güler developed the mathematical tools in order to setup this laboratory. 

Mathematical formulations were presented to calibrate the cameras, to calculate 3D 

coordinates of the markers, anatomical angles between segments and the joint 

moments [1]. 

 

M. S. Shafiq prepared software which analyzes the 2D images to extract 2D marker 

position information, constructs 3D coordinates of the markers and then finds the 3D 

trajectories [3] [13]. 

 

Y. Karpat programmed and tested different camera calibration algorithms with the 

hardware of KISS [2]. 

 

B. Söylemez has evaluated and refined the gait analysis protocol used in the 

laboratory [11]. 

 

B. B. Kentel developed a database for KISS and confidence and prediction bands 

were constructed in order to interpret gait data [12].  

 

 

1.3 SCOPE OF THE THESIS 
 

This thesis focuses on 3D marker tracking for human gait analysis. In this study, 

software which takes the 2D marker positions of each of the 6 cameras and processes 

them to form the 3D marker trajectories is developed. The software uses the 

linearization parameters that were already generated for each camera to linearize the 

2D marker positions and uses the calibration parameters that were already generated 

for each camera to form 3D marker positions from multiple images of the same 

marker from different cameras. 3D marker tracks are found from the 3D marker 

positions using the Kalman Filter. 
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1.4 ORGANIZATION OF THE THESIS 
  

In the first chapter an introduction to gait analysis and the gait analysis system at 

METU is given. Previous work on KISS system is given also in this chapter. 

 

In the second chapter the background information necessary to understand the 

methods applied is given briefly. Camera linearization, camera calibration, stereo 

vision, epipolar lines and Kalman Filter are explained briefly in this chapter. 

 

The algorithms implemented in this thesis are given in the third chapter. These 

include the elimination of false detections in 2D images, linearization of 2D images, 

calibration of cameras, finding epipolar lines, matching points in 2D images, finding 

3D points, finding 3D point groups, finding 3D point group initial tracks, and finally 

using Kalman Filter with 3D point group initial tracks. 

 

Chapter 4 gives brief information about the graphical interface of the 3D Marker 

Tracking Software developed. 

 

Chapter 5 gives the experimental results after the implementation of the methods 

mentioned. 

 

Chapter 6 gives the conclusion and possible future work about the work done in this 

thesis. 
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CHAPTER 2 
 
 

BACKGROUND 
 

 

2.1 INTRODUCTION 
 

This thesis is intended for forming 3D tracks of markers placed on a subject's legs 

and feet captured while the subject is walking in a gait analysis laboratory, 

specifically, KISS Gait Analysis Laboratory at METU. The input data is 2D marker 

positions in 6 cameras, linearization and calibration parameters for each of the 6 

cameras. The output data is 3D marker tracks. This chapter gives the background 

information which is essential to understand the methods used in this thesis. Section 

2.2 gives fundamental information about camera linearization and Section 2.3 briefly 

explains camera calibration. Stereo vision and epipolar lines are mentioned in 

Section 2.4 and Section 2.5, respectively. Section 2.6 is devoted to Kalman Filter. 

 

 

2.2 CAMERA LINEARIZATION 
 

Linearization is the process needed to correct the image coordinates which are 

displaced because of distortions [2]. In this thesis, the algorithm reported in [14] is 

used for camera linearization. A summary of the algorithm used is given in this 

section, while the details could be reached in the referenced material [2] [14]. 

 

Systematic errors, which are due to lens deformation, nonorthogonality of image 

axes and non-linear lens distortions, radial or tangential, result in displacement of the 

image coordinates. To correct the coordinates of the markers for nonlinearities of the 

systematic errors, linearization is applied to each marker coordinate in each camera. 

For the linearization process, linearization parameters must be generated for each 
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camera. Otherwise, calculation of 3D point coordinates from 2D point coordinates 

will be affected by the lens distortions and so accuracy in 3D point coordinates will 

be decreased. After linearization, the measured 2D coordinates may be assumed to be 

the correct 2D coordinates [2]. 

 

In the linearization algorithm used in this thesis, a linearization grid in the form of M 

rows and N columns is produced. MxN circles covered with reflective material are 

placed on each corner of this grid. Firstly, a stick with reflective material on one end 

is mounted in the middle of the grid plane and the camera is placed in front of the 

grid such that the grid covers most of the image in the camera and the tip of stick 

with reflective material is observed in the middle of the grid. Then the stick is 

removed and the image of the grid is recorded for some duration. The average of the 

images recorded in this duration is used in a linearization algorithm to correct the 

lens distortion errors [2]. 

 

The linearization algorithm is based on finding a mapping between "the distorted 

grid", which is the average of the recorded images mentioned above, and "the 

optimal grid", which is representing the undistorted grid corresponding to the given 

distorted grid. This mapping is performed using a 4th order polynomial function and 

the 30 linearization parameters, 15 for horizontal and 15 for vertical direction, which 

are the coefficients of this mapping function. The procedure for finding these 

linearization parameters for the distorted grid is a three step procedure, starting first 

by forming the primary grid, then forming the optimal grid, and finally finding the 

parameters to change the distorted grid to the optimal grid. After finding these 

parameters, point coordinates in distorted images may be corrected using this 4th 

order polynomial with known coefficients [2]. 

 

The primary grid is formed by first finding the point which is the nearest point to the 

center of the distorted grid. As it can be assumed that distortions in the middle of the 

image are small compared to distortions in the outer parts of the image, the general 

horizontal and vertical distances in the grid can be taken as the distances between the 

points at the center of the grid. Therefore the average of the horizontal distances just 
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at the left and right of the center point can be taken as the general horizontal distance 

in the grid and the average of the vertical distances just at the top and bottom of the 

center point as the general vertical distance in the grid. We form a new grid where 

the location of the center point is the same as the distorted grid but all the other 

points in the grid are located such that the general horizontal and vertical distances 

between the points are the calculated average horizontal and vertical distances, 

respectively. This new grid is called the primary grid [2]. 

 

The optimal grid is a scaled, rotated, and translated version of the primary grid. It 

represents the undistorted grid to which the distorted grid is tried to be converted. 

The transformation applied to the primary grid to obtain the optimal grid in 

homogeneous coordinates is  

 

 































−=

















1
'
'

100
cossin
sincos

1
''
''

0

0

i

i

i

i

v
u

vss
uss

v
u

αα
αα

     (2.1) 

 

where 

i=1, 2, ... MN where MN is the total number of points on the grid, 

(ui'',vi'') are the point coordinates in the optimal grid corresponding to the point 

coordinates (ui,vi) in the distorted grid, 

(ui',vi') are the point coordinates in the primary grid corresponding to the point 

coordinates (ui,vi) in the distorted grid, 

s is a scale factor, 

α is a rotation, 

u0 and v0 are translations in two directions [2]. 

 

The optimal grid which is closest to the distorted grid is formed using least squares 

technique in finding the scale, rotation and translation factors given in Equation 

(2.1). After finding the optimum scale, rotation, and translation factors for this 

transformation, the optimal grid is formed. Details of this computation are explained 

in [2]. 
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The optimal grid, which represents the undistorted grid to which the distorted grid is 

tried to be converted, is prepared and the mapping from the distorted grid to the 

optimal grid needs to be found. 

 

It is assumed that the corrected coordinates are 4th order polynomial functions of the 

distorted coordinates. Assumed polynomial function is 

 

 u''' = x0 + x1u + x2v + x3u2 + x4uv + x5v2 + x6u3 + x7u2v + x8uv2 + 

  x9v3 + x10u4 + x11u3v + x12u2v2 + x13uv3 + x14v4  

 v''' = y0 + y1u + y2v + y3u2 + y4uv + y5v2 + y6u3 + y7u2v + y8uv2 + 

  y9v3 + y10u4 + y11u3v + y12u2v2 + y13uv3 + y14v4  

            (2.2) 

 

where 

(u''',v''') are the point coordinates in the corrected image corresponding to the point 

coordinates (u,v) in the distorted image, 

x0 ... x14 are the horizontal linearization parameters, 

y0 ... y14 are the vertical linearization parameters [2]. 

 

Writing these equations for each point pair in the distorted grid and the optimal grid 

in matrix form, 

 

 Z . x = u          (2.3) 

 

and 

 

 Z . y = v          (2.4) 

 

where 
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where 

MN is the total number of points on the grid, 

(ui'',vi'') are the point coordinates in the optimal grid corresponding to the point 

coordinates (ui,vi) in the distorted grid [2]. 

 

Solving Equations (2.3) and (2.4) for x and y, 30 linearization parameters will be 

found, 15 for horizontal and 15 for vertical directions [2]. 

 

Using these parameters as the known constant coefficients for the mapping function 

given in Equation (2.2), point coordinates from each distorted image should be 

corrected before further analysis using these point coordinates [2]. 
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2.3 CAMERA CALIBRATION 
 

Basically cameras are devices which take a 2D snapshot of our 3D world. In Figure 

2.1, it can be seen that both of the points Pg1(x1,y1,z1) and Pg2(x2,y2,z2) in the global 

coordinate system are represented by the same point, which is the point Pi(u,v), in the 

image coordinate system. In order to be able to use the information from the cameras 

in measuring positions of real world points, the mapping from the 3D global system 

to the 2D image system has to be known. There are different techniques of 

calibration in the literature. 

 

 

 
 

Figure 2.1 Camera Coordinate System and Object Coordinate System 
 

 

The internal and external camera parameters are required to be known to be able to 

calculate the 3D coordinates of a point in space using its 2D coordinates in the 

Pg1(x1,y1,z1) 

Pg2(x2,y2,z2) 

Pi(u,v)

Center of Projection

Optical Axis 

Pg(x,y,z) 

Pg0(x0,y0,z0) 

Pi0(u0,v0)

C

Principle Point 
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image. The six parameters for the position and orientation of a camera coordinate 

system with respect to a global coordinate system are the external camera parameters 

and the internal camera parameters are the focal length of the lens, the two 

coordinates of the principal point and the aspect ratio of the image [1]. 

 

The Direct Linear Transformation (DLT) is a method used for camera calibration. 

DLT describes a linear mapping between the 3D object space and the 2D image 

space in terms of 11 parameters and these parameters implicitly include the internal 

and external camera parameters [1] [7]. In this study, the DLT method was used to 

calibrate the cameras. 

 

The mapping between 3D global coordinate system and 2D image coordinate system 

is shown in Figure 2.2 [6]. 

 

 

 
 

Figure 2.2 Object Point - Image Point Transformation 
 

 

The transformation from 3D global coordinate system to 2D image plane coordinate 

system is given in homogeneous coordinates in [6] as 

f 
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 gi Axx =           (2.5) 

 

where 
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and 
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where aij are the camera calibration parameters. 

 

Due to the use of homogeneous coordinates, A matrix is not unique. It is possible to 

set a34 to 1 and use the remaining 11 parameters [6]. 

 

Note that there are notation differences between sources in the literature about the 

naming of the 11 calibration parameters. One notation is aij where i=1,2,3 and 

j=1,2,3,4 and one other notation is ai where i=1,2, ... 11. 

 

Rewriting the Equation (2.5) for a point in 3D global coordinates (X,Y,Z) and its 2D 

image coordinates (u,v) with a34=1 [6] [1], 

 

 
111109

4321

+++
+++

=
ZaYaXa

aZaYaXau        (2.6) 

 

 
111109

8765

+++
+++

=
ZaYaXa

aZaYaXav        (2.7) 
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where the parameters a1, a2, ... a11 are the camera calibration constants (DLT 

parameters). 

 

The 3D coordinates (X,Y,Z) are specified either in meters or millimeters, and u and v 

are the pixel coordinates of the point on the image plane [1]. The derivation of 

Equations (2.6) and (2.7) are given in [1]. 

 

There are modifications to the Equations (2.6) and (2.7) given above. DLT method 

was modified later into "Modified DLT" or MDLT in [20]. Or Equations (2.6) and 

(2.7) can be modified into Equations (2.8) and (2.9) to include the optical errors from 

the lens 

 

 
111109

4321

+++
+++

=∆−
ZaYaXa

aZaYaXauu       (2.8) 

 

 
111109

8765

+++
+++

=∆−
ZaYaXa

aZaYaXavv       (2.9) 

 

where the parameters a1, a2, ... a11 are the standard camera calibration constants 

(standard DLT parameters), u∆  and v∆  are the terms for optical errors [8]. 

 

There are five additional calibration parameters, a12, a13, ... a16 in u∆  and v∆  in 

Equations (2.8) and (2.9). a12, a13, a14 are given to be related to the optical distortion 

while a15 and a16 to the de-centering distortion in [8] with reference to [19]. 

 

In this study, the additional calibration parameters, a12, a13, ... a16 are not used, only 

11 DLT parameters, a1, a2, ... a11 in Equations (2.6) and (2.7) are used. 

 

To find the DLT parameters, calibration points with known (X,Y,Z) coordinates are 

used. Each calibration point and the corresponding image point forms a point pair 

and each point pair yields 2 equations of 11 unknowns. Therefore, to find the 11 

DLT parameters, at least six calibration points with known (X,Y,Z) coordinates are 
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needed. More calibration points will decrease measurement errors [6] [1]. 

 

Equations (2.6) and (2.7) can be rewritten for each control point as: 

 

 0411109321 =−+−−−++ kkkkkkkkkk uaaZuaYuaXuaZaYaX  (2.10) 

 0811109765 =−+−−−++ kkkkkkkkkk vaaZvaYvaXvaZaYaX  (2.11) 

 

where k = 1, 2 ... N, and N is number of calibration points used. The 2N equations 

given in Equations (2.10) and (2.11) can be written in a matrix form as follows: 

 

 bDa =           (2.12) 

 

where 

D is a 2Nx11 matrix consisting of the known coordinates Xk, Yk, Zk, uk, vk, 

a is the 11x1 vector of unknown DLT parameters, 

b is a 2Nx1 vector consisting of the known coordinates uk and vk [1]. 

 

A least squares solution for Equation (2.12) was carried out using the pseudo-inverse 

technique: 

 

 bDDDa TT 1)( −=         (2.13) 

 

Information about the pseudo inverse technique can be found in [6]. 

 

Solution of Equation (2.13) yielded the unknown calibration parameters, which 

enabled the determination of the 3D coordinates of an arbitrary point in the space 

using its image coordinates. 
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2.4 STEREO VISION 
 

Stereo vision is the case where a 3D point has a projection on the image planes of 

two cameras, as in shown in Figure 2.3. In this figure, P1(u1,v1) and P2(u2,v2) are the 

points in image planes of the two cameras, namely IP1 and IP2, corresponding to the 

point P(x,y,z) in 3D global coordinate system. 

 

 

 
 

Figure 2.3 Stereo Vision 
 

 

The problem of finding the corresponding points in two images in stereo vision will 

be explained in Section 2.5. In this section, stereo vision will be explained assuming 

that correspondence between points in two images has already been done. Therefore 

point pairs in two cameras corresponding to the same 3D point, like the points 

P1(u1,v1) and P2(u2,v2) in Figure 2.3, are available. 
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Equations (2.6) and (2.7) given in Section 2.3 can be rewritten in another from as 

 

 

 0411109321 =−+−−−++ kkkk uaZauYauXauZaYaXa   (2.14) 

 0811109765 =−+−−−++ kkkk vaZavYavXavZaYaXa   (2.15) 

 

where 

(X,Y,Z) are the 3D point coordinates, 

(uk,vk), k=1,2 are the 2D point coordinates in image k corresponding to this 3D point, 

ai, i=1,2, ... 11 show the calibration parameters. 

 

There are two equations for each point in each camera as given in Equations (2.14) 

and (2.15), making a total of 4 equations for two 2D point pairs (u1,v1) and (u2,v2) in 

two cameras corresponding to the 3D point (X,Y,Z). These 4 equations may be 

written in matrix form as 

 

 FPx =           (2.16) 

 

where 
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where 

(X,Y,Z) are the 3D point coordinates, 

(uk,vk), k=1,2 are the 2D point coordinates in image k corresponding to this 3D point, 

ai,k, i=1,2, ... 11, k=1,2 show the calibration parameters ai for the camera k [6]. 

 

From Equation (2.16), least squares estimate of x, denoted by xe, may be found by 

using the pseudo inverse of P, denoted by P+, as follows [6]: 

 

 FPxe +=           (2.17) 

 

Alternately, the elimination of one equation leaves three equations with three 

unknowns and a simple matrix inversion approach may be used to solve these 

equations [6]. 

 

 

2.5 EPIPOLAR LINES 
 

Epipolar line concept, which is very useful in stereo vision, will be explained briefly 

in this thesis but more information can be found in [6]. In Figure 2.4 it can be seen 

that the points P1(x1,y1,z1) and P2(x2,y2,z2) in the 3D world coordinate system are 

projected to the same point, P0(u0,v0), in IP1, the image plane of camera 1. Thinking 

in reverse, the point P0(u0,v0) in IP1 may be the projection of P1(x1,y1,z1) or 

P2(x2,y2,z2) or any point on the line C1P1. The projection of the points P1(x1,y1,z1) and 

P2(x2,y2,z2) on IP2 is P1' and P2', respectively. The possible source points of the 

projection P0(u0,v0) in IP1, namely all the points on the line C1P1, forms a line when 

projected on IP2, namely the line P1'P2'. This line is called the "epipolar line" [6]. 

This epipolar line is formed by the points which are the possible correspondence 

points of the point P0(u0,v0) in IP1 when projected on IP2. The "epipolar plane" is the 

plane formed by the line C1P1 and the point C2 [6]. In fact, the epipolar line is the 

intersection of the epipolar plane with IP2.  
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Figure 2.4 The Epipolar Line and the Epipolar Plane 
 

 

This graphical explanation about epipolar lines and epipolar planes may also be 

shown using the equations given in Section 2.3 and Section 2.4, camera calibration 

and stereo vision sections. 

 

Analyzing the Equation (2.16), it can be said that not all of the knowledge of 

corresponding image point locations is required to estimate x. We may be able to 

determine x using only three of these four equations, assuming that the three equa-

tions are linearly independent. Therefore this equation defines an "over determined" 

situation [6]. 

 

The relationship given in Equation (2.16) may be written in homogeneous 
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coordinates as 

 

 [ ] 0ˆ =− xFP          (2.18) 

 

where 
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where X, Y, and Z are the 3D coordinates [6]. 

 

Defining the 4 x 4 matrix C as 

 

 ][ FPC −= ,         (2.19) 

 

then 

 

 0ˆ =xC .          (2.20) 

 

In [6] the basis for the epipolar line concept is given using the Equation (2.20) as 

follows: 

 

This equation specifies that "every column of CT (i.e., the rows of C) is orthogonal to 

x̂ ". The elements of the matrix C are functions of the calibration parameters for the 

two cameras and the corresponding image plane points (u1,v1) and (u2,v2). It can be 

seen from the Equations (2.18), (2.19) and (2.20) that "the columns of C must not 

span R4". Therefore the determinant of C must be zero; that is, 

 

 0=C           (2.21) 
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Expanding the determinant C  and simplifying the result yields the important result 

that u1, v1, u2, and v2 are constrained by the single equation 

 

 u1u2m1+u1v1m2+u1v2m3+u2v1m4+u1m5+u2m6+v1m7+v2m8+m9=0 

            (2.22) 

 

Equation (2.22) is referred to as "a bilinear relationship" in the variables u and v [6]. 

The mi coefficients in the above equation are functions of the camera calibration 

parameters. This relationship has the geometric significance that, "given a point in 

one image plane, i.e. (u1,v1), the set of corresponding image points in the second 

image plane are constrained to lie along a line" [6]. This can be seen by assuming a 

known point in one of the cameras and rewriting the Equation (2.22) for the point in 

the other camera. If (u1,v1) is a known point, Equation (2.22) can be written for the 

unknown point (u2,v2) as 

 

 (u1m1+ v1m4+m6) u2 + (u1m3+ m8) v2 + (u1v1m2+u1m5+v1m7+m9) = 0 

            (2.23) 

 

Equation (2.23) describes a line in 2D in terms of unknowns, u2 and v2. Thus, given a 

point in image plane of one camera, the region to be searched for the corresponding 

point in image plane of the other camera is not all the image plane, but only the line 

given by the Equation (2.23), that is the epipolar line [6]. Given a point in one 

camera, utilizing the epipolar line method reduces the search complexity to find the 

corresponding point in the image plane of the other camera as the search region is 

reduced to a line in the image plane rather than searching the entire image plane [21]. 
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2.6 KALMAN FILTER 
 

"The Kalman Filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that 

minimizes the mean of the squared error. The filter is very powerful in several 

aspects: it supports estimations of past, present, and even future states, and it can do 

so even when the precise nature of the modeled system is unknown." [5]. 

 

R. E. Kalman published his paper [4] in 1960. Kalman Filter is examined 

academically and used a lot in many applications since then. Kalman Filter will not 

be examined with details in this thesis but just a summary will be given. Details of 

the Kalman Filter is given in [4], [5], [15], and many other sources in the literature. 

 

"The Kalman Filter addresses the general problem of trying to estimate the state 
nx ℜ∈  of a discrete-time controlled process that is governed by the linear stochastic 

difference equation 

 

 111 −−− ++= kkkk wBuAxx ,       (2.24) 

 

with a measurement mz ℜ∈  that is 

 

 kkk vHxz += .         (2.25) 

 

The random variables wk and vk represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions p(w) ~ N(0,Q), p(v) ~ N(0,R)." [5]. 

 

A is the nxn matrix showing the relation of the previous state to the current state if no 

driving function or process noise exists, previous state being the state at time step k-1 

and current state being the state at time step k. B is the nxl matrix showing the 

relation of the control input lu ℜ∈  to the state. H is the mxn matrix showing the 

relation of the state to the measurement zk [5]. 
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In practice, the "process noise covariance" Q, "measurement noise covariance" R, 

"state transition matrix" A, "control matrix" B, and "measurement matrix" H might 

change with each time step, however here they are assumed to be constant [5] [10]. 

 

Defining the "a priori state estimate" at step k as n
kx ℜ∈−ˆ  and the "a posteriori state 

estimate" at step k as n
kx ℜ∈ˆ ; the "a priori estimate error", −

ke , and the "a posteriori 

estimate error", ke , is defined as 

 

 −− −= kkk xxe ˆ          (2.26) 

 kkk xxe ˆ−=          (2.27) 

 

in [5]. 

 

Therefore, "a priori estimate error covariance" −
kP  and "a posteriori estimate error 

covariance" kP  are given as 

 

 ][ T
kkk eeEP −−− =          (2.28) 

 ][ T
kkk eeEP =          (2.29) 

 

in [5]. 

 

"A posteriori state estimate kx̂  is a linear combination of a priori estimate −
kx̂  and 

the weighted difference between an actual measurement kz  and a measurement 

prediction kxHˆ " with the relation given as 

 

 )ˆ(ˆˆ −− −+= kkkk xHzKxx        (2.30) 

 

where 
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)ˆ( −− kk xHz  is called "the measurement innovation", or "the residual", and 

K  is called "the gain" or "the blending factor" [5]. 

 

The residual shows the discrepancy between the predicted measurement and the 

actual measurement. The gain is selected such that a posteriori error covariance Pk 

given in Equation (2.29) is minimized. The gain satisfying this minimization 

requirement is found as  

 

 1)( −−− += RHHPHPK T
k

T
kk        (2.31) 

 

The details of this calculation can be found in [16], [17], and [18]. 

 

Analyzing the Equations (2.30), it can be seen that the gain is the weighing factor 

between the predicted measurement and the actual measurement. When the gain is 

zero, then only the predicted measurement and when the gain is H-1 then only the 

actual measurement is used in the calculation of the a posteriori state estimate. 

 

It can be concluded from the Equation (2.31) that the gain approaches zero when the 

a priori estimate error covariance approaches zero, that is, the predicted measurement 

is more important than the actual measurement and on the other hand the gain 

approaches H-1 when the measurement error covariance approaches zero, that is, the 

actual measurement is more important than the predicted measurement in the a priori 

state estimate. 

 

Operation of the Kalman Filter may be divided into two stages: In the first stage, 

using the information from the current time step it makes estimates, which are called 

"a priori" estimates for the next time step. In the second stage, it takes the 

measurement, and makes "a posteriori" estimates which are corrected versions of "a 

priori" estimates. These two stages are called "time update" and "measurement 

update" stages, respectively [5]. 
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The equations of the time update stage are [5] 

 

 11ˆˆ −−
− += kkk BuxAx         (2.32) 

 QAAPP T
kk += −

−
1         (2.33) 

The time update equations form the a priori estimates for the next time step, k and are 

using the a posteriori estimates for the time step k-1. That is, these equations project 

the estimates forward in time [5]. 

The equations of the measurement update stage are [5] 

 

 1)( −−− += RHHPHPK T
k

T
kk        (2.34) 

 )ˆ(ˆˆ −− −+= kkkkk xHzKxx        (2.35) 

 −−= kkk PHKIP )(         (2.36) 

 

The measurement update equations form the a posteriori estimates for the time step 

k, using the a priori estimates for the same time step. That is, these equations correct 

the estimates using the actual measurement. In measurement update equations, no 

information from the previous time step, k-1, is used directly but this information is 

stored implicitly in the a priori estimates of the time step k [5]. 

 

Kalman Filter is a recursive algorithm. Time update and measurement update 

operation pair is performed recursively for each time step. This recursive algorithm 

has to be initialized somehow so that the prediction and correction operations can run 

correctly. There is plenty of information about how the initialization should be done 

and what the effects of initialization are in the literature, including [5] and [15]. 
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CHAPTER 3 
 
 

3D MARKER TRACKING 
USING KALMAN ESTIMATOR 

 

 

3.1 INTRODUCTION 
 

In this chapter, the algorithm for finding the 3D trajectories of the markers from the 

2D marker positions is given. The positions of the markers in each of the 6 cameras 

for each frame of the sequence are given as input to the algorithm. The algorithm 

finds the 3D trajectories of the markers using these 2D marker position data and the 

calibration and linearization parameters of each camera. 

 

 

3.2 STEPS OF OUR ALGORITHM 
 

The flow is shown in Figure 3.1. As shown in this figure, firstly 2D marker positions 

are analyzed and false detections in 2D marker positions are eliminated. Then the 

distortions in 2D positions of markers in each camera view are corrected using the 

linearization parameters. After correction of 2D point positions, epipolar lines are 

formed in each camera view using the calibration parameters. After 2D marker 

matching, matched 2D marker positions are used to form 3D marker positions using 

the calibration parameters again. The 3D markers that are very close to each other in 

fact correspond to the same real marker and these are grouped to find an estimate of 

the real 3D marker. After grouping, 3D tracks can be formed using these groups. 
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Figure 3.1 The Steps of 3D Marker Tracking 

Elimination of 
False Detections 

in 2D Images 

Linearization 
Parameters 

for 6 Cameras 

Calibration 
Parameters 

for 6 Cameras 

2D Marker 
Positions  

for 6 Cameras 

2D Marker Positions  
for 6 Cameras 

 
Linearization 

 

3D Marker Group 
Tracks 

Finding 
3D Point Groups 

Finding 
3D Point Group 

Tracks 

Finding 
Epipolar Lines 

Matching 
2D Points 

Finding 
3D Points 

2D Marker Positions  
for 6 Cameras 

2D Marker Positions  
for 6 Cameras 

2D Marker Positions  
for 6 Cameras 

3D Marker Positions  
for 6 Cameras 

3D Marker Group Positions 
for 6 Cameras 



 28

3.3.1 ELIMINATION OF FALSE DETECTIONS IN 2D IMAGES 
 

Elimination of false detections is needed because there are some false points in 2D 

images which are generally due to the detection of the LEDs on the other cameras. 

This can be seen from the Figure 3.2. This figure is formed by drawing all the marker 

positions throughout the sequence in one image. In the figure the false detections are 

clearly seen as they are stationary, that is they do not form a moving 2D track in the 

image through the sequence. 

 

These false detections are eliminated using the fact that they are stationary. Firstly, 

all the marker positions throughout the sequence are scanned and the number of 

markers per pixel in the image is counted. If the number of markers per pixel of the 

image exceeds a determined constant value, this pixel is marked as a stationary point. 

Then all the marker coordinates are scanned and markers at that stationary point are 

deleted. But due to digitization and marker detection errors, these "stationary" points 

tend to move a few pixels through the frames in the sequence. Therefore the deletion 

operation is modified so that for each stationary marker position, the markers at the 

neighboring pixels are deleted. "Neighboring pixel" definition can be changed by a 

constant. Decreasing the number of neighboring pixels decrease the elimination rate 

of stationary points while increasing it may result in losing real "moving" marker 

points which are important. So a minimum of "neighboring distance" definition is 

made. 

 

This elimination process must be avoided for only some camera configurations 

where a moving marker "seems" as stationary to a camera. But this is a very 

awkward situation because all the marker points tend to move through the sequence. 

But this portion of the algorithm may be taken out in such a case in another GAIT 

analysis system. 

 

The results of this elimination can be seen in Figure 3.3. This figure is also formed 

by drawing all the marker positions throughout the sequence in one image. When 

compared with the Figure 3.2, it can be clearly seen that most of the stationary false 
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detections are eliminated while moving marker positions are not effected from this 

elimination process, that is, no real markers are lost in this elimination process. But 

there are still some stationary points in Figure 3.3. They are distributed over a large 

area to be assumed to be stationary and trying to remove them will result in losing 

some real marker data, which is not accepted. Therefore these remaining false 

detections are left in the sequence. 
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Figure 3.2 2D Markers in the Sequence Before Elimination of False Detections 
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Figure 3.3 2D Markers in the Sequence After Elimination of False Detections 
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3.3.2 LINEARIZATION OF 2D IMAGES 
 

The linearization process is explained in Section 2.2 and [2]. In the scope of this 

thesis, linearization parameters are assumed to be already determined. With this 

known linearization parameters, the 2D coordinates of the markers are corrected. The 

linearization process is applied after applying our method of elimination of false 

detections in 2D images. 

 

As in explained in Section 2.2 and [2], it is assumed that the corrected coordinates 

are a polynomial function of the distorted coordinates. This relation between the 

corrected coordinates and the distorted coordinates was given in Equation (2.2) with 

the 30 linearization parameters, 15 for x coordinate and 15 for y coordinate, which 

are already known. 

 

For each point in the image, the corrected point coordinates are found by using the 

Equation (2.2) with the known linearization parameters and the measured point 

coordinates which are distorted due to distortions [2].  

 

The effect of linearization can be seen in Figure 3.4 and 3.5. The first figure shows 

marker positions in 6 camera images in a frame in the sequence before linearization, 

second figure shows the images in the same frame after linearization. 
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Figure 3.4 2D Marker Images of 6 Cameras at a Selected Frame Before 
Linearization 

 

 

 
 

Figure 3.5 2D Marker Images of 6 Cameras at a Selected Frame After Linearization 
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The difference between the marker positions in Figure 3.4 and 3.5 can be seen when 

looked closer to the markers. The comparison of the 2D marker positions in the 

upper right camera shown in these figures is shown closer in Figure 3.6. In this 

figure, the plus signs show the positions before linearization and the squares show 

the positions after linearization. 

 

 

 
 

Figure 3.6 Close View of the Superimposed Camera Images Before and After 
Linearization at the Selected Frame in Figure 3.4 and 3.5 
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3.3.3 CALIBRATION OF CAMERAS 
 

Calibration was mentioned in Section 2.3. In our application, calibration of the 

cameras is assumed to be already done. Our application takes the calibration 

parameters that are calculated in this calibration procedure. These calibration 

parameters are used in finding the epipolar lines and calculating the 3D position from 

the 2D positions of matched 2D points. These are explained in Sections 3.3.4 and 

3.3.6, respectively. 

 

 

3.3.4 FINDING EPIPOLAR LINES 
 

In our first approach, all the points in the neighborhood of each epipolar line in an 

image were matched and a 3D point corresponding to this matching was created. In 

the second approach, to create a 3D point, finding a match between a point and an 

epipolar line is not enough and matching between three 2D points and the 

corresponding epipolar lines are looked for. Matching between three 2D points 

requires checking the matching between three possible pairs. This enables to filter 

out markers that are only seen by 2 of the 6 cameras. This is useful to filter out some 

ambiguous matches because most of the markers are seen by more than 2 cameras 

and therefore a correct marker will pass through this filter but a false match between 

unrelated points will not. 

 

For a point A(u0,v0) in camera i, there are (n-1) epipolar lines in maximum, where n 

is the number of cameras in the system, because there may be at most one epipolar 

line in each of the cameras other than the camera i. The actual number of epipolar 

lines may not reach the maximum value (n-1) because for the point A(u0,v0) to have 

an epipolar line in camera j, the line connecting the projection center of the camera i 

to the point in 3D space should be in the visible area of the camera j. Generally, 

sights of all the cameras are adjusted so that these cameras see the entire calibration 

region. Even though a point which is detected to be in the calibration region by a 

camera will be in the area of vision of all the other cameras, the detection may or 

may not exist. So the number of matches is not predetermined. 
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Assuming that all the cameras are placed such that all of them can see the calibration 

region completely and that each point is detected correctly, each point in camera i 

will have one epipolar line in camera j, where ij ≠  resulting in (n-1) epipolar lines 

in total in camera j. Therefore, the number of epipolar lines in an image in a frame is 

the total number of points in all other cameras in that frame.  

 

There are many epipolar lines in an image. This can be seen in Figure 3.7. In this 

figure, epipolar lines of the second camera on all other cameras at a selected frame in 

the sequence are seen. It can be seen easily that many epipolar lines seem to match 

points correctly.  

 

In our application, epipolar lines have to be stored for each image. This is performed 

by storing the gain m and offset n values describing the line given in Equation (2.23). 

For each camera in the system, all points in the camera are taken as the source point 

and epipolar lines corresponding to these source points in all the target cameras (i.e. 

all the other cameras) are found using Equation (2.23). 

 

The epipolar line is represented by the formula y=mx+n or v=mu+n in the target 

image plane. Equation (2.22) may be used to calculate v2 for a given u2 after giving 

the constant source plane pixel positions (u1,v1) and the mi coefficients in this 

equation, which are the known calibration parameters. This method is used to find v2 

values corresponding to two u2 values, the first value being zero, corresponding to 

the left edge of the image plane of the target camera, IP2, and the second value being 

the maximum horizontal value in the target image plane, corresponding to the right 

edge of the image plane of the target camera, IP2. 
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Figure 3.7 Epipolar Lines of the Second Camera on all Other Cameras at a Selected 
Frame 
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The calculated v2 values may be invalid for that image plane but as only gain, m, and 

offset, n, are calculated and stored, the line segment which is in the valid area (image 

plane) will be reconstructed using these m and n values. Invalid v2 values may be 

negative values or values larger than the image height. This can be seen in Figure 3.8 

where P3P4 or P5P6 are also valid epipolar lines as well as P1P2. 

 

 

 
 

Figure 3.8 Examples of Valid Epipolar Lines on an Image Plane 
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Figure 3.9 Epipolar Line Neighborhood 
 

 

When a point in the target plane, say point P0(u0,v0), is analyzed for being on an 

epipolar line or not, the distance of this point to the epipolar line has to be calculated. 

Theoretically, if two 2D points in two camera images are the corresponding points of 

the same 3D point, then each of these points must lie exactly on the epipolar line of 

the other point. But due to digitization and marker detection errors, points may be 

very close to the epipolar line if they are not lying on it. Therefore an epipolar line 

neighborhood distance s is defined and the points closer to the epipolar line than this 

neighborhood distance are assumed to be lying on the epipolar line. In Figure 3.9, a 

point and an epipolar line are drawn and the distance of the point to the epipolar line 

d is shown. We have to find if d is smaller than the fixed neighborhood distance s or 

not. But the horizontal and vertical distances of the point to the epipolar line, du and 

dv respectively, can also be used to determine if the point is close enough to the 

epipolar line. 
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Firstly, the points P1 and P2 in the figure are found. These points are found using the 

information that these are the horizontal and vertical projections of the point P0(u0,v0) 

on the epipolar line and that these points are lying on the line defined with the 

equation v=mu+n or u=(v-n)/m, that is, coordinates of these points should satisfy 

these equations. Therefore P1(u1,v1) and P2(u2,v2) will be found as 

 

 u1 = u0          (3.1) 

 v1 = mu0+n          (3.2) 

 u2 = (v0-n)/m         (3.3) 

 v2 = v0          (3.4) 

 

and therefore 

 

 du = u2-u0 = [(v0-n)/m]-u0       (3.5) 

 dv = v1-v0 = mu0+n-v0        (3.6) 

 

for the point P0(u0,v0). 

 

As the neighborhood condition is defined by a constant s, that is, a point is assumed 

to be lying on the epipolar line if the distance of that point to the epipolar line is 

smaller than s, this neighborhood distance can be written in horizontal and vertical 

directions using Figure 3.9 as 

 

 22 )(
m
sssu +=          (3.7) 

 

 22 ).( msssv +=         (3.8) 

 

Then the distance of the point is compared with these distances and the point is said 

to be on the epipolar line if du<su or dv<sv. 
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3.3.5 MATCHING POINTS IN 2D IMAGES 
 

Algorithm for matching points in 2D images starts after all the epipolar lines in all 

frames of the sequence is calculated and stored as gain, m, and offset, n. Matching 

2D points is performed to find the point in other camera corresponding to the point in 

selected camera. Only after this matching is done, these two points corresponding to 

the same 3D point is used to find the position of this 3D point according to Equation 

(2.16). If false matching is performed, a false 3D point is assumed to be detected, 

which makes tracking in 3D space more difficult and increases the number of 

mistakes in forming tracks or may lead the track to a wrong direction and lose the 

real movement. 

 

Our matching algorithm does not guarantee the one-to-one matching between the 

points and the epipolar lines. That is, as the search algorithm does not check if the 

epipolar line has already been matched to another point, an epipolar line may be 

matched to more than one point at the end of searching all points in the image. There 

is no easy way to determine which point is the real match to the epipolar line 

therefore all matches are accepted including the multiple matches. Possible false 

matches are eliminated through the method of only accepting three points which are 

matched in pairs. This guarantees that in order to generate a point in 3D space, there 

must be at least three cameras where this 3D point was seen and detected. This 

method will decrease false 3D point generation and will not affect the true points as 

most of the true markers are seen and detected by more than two cameras. 

 

Firstly, all the points in each frame of each camera are searched for an epipolar line 

the point lies on. In Section 3.3.4 the definition for a point be "lying on an epipolar 

line" or be "close to an epipolar line" was given. When a point P1 from camera i is 

detected to be on the epipolar line of point P2 from camera j on the image plane of 

camera i, these two points are temporarily matched and progress to a second 

operation where a third point in that frame to match the two points matched 

temporarily are found. This is done by analyzing the points in the cameras other than 

i and j. If the epipolar lines corresponding to this third point P3 in the image of the 
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camera k, on the image planes of cameras i and j is in the neighborhood of the points 

P1 and P2, respectively, and the epipolar lines corresponding to P1 and P2, on the 

image plane of camera k is in the neighborhood of the point P3 then P1, P2, and P3 are 

matched. This triple point matching criterion does not use any priority system with 

respect to the distance of the point to the epipolar line since the neighborhood limits 

are need to be kept very small not to have many false alarms and that the differences 

in distances of the points to the epipolar lines in this small region may not contain 

much information about the correct matching between epipolar line and the points 

and may as well be caused by measurement noise.  

 

This triple point matching is shown in the Figure 3.10. In this figure, IPi is the image 

plane of camera i, Pi is the point in camera i which is the candidate of matching, 

ELm
n is the epipolar line corresponding to the point Pm in the image plane IPn. As can 

be seen in the figure, each point has a corresponding epipolar line in the image 

planes of the other cameras. For these three points, namely P1, P2, and P3, to be 

matched, all should be in the neighborhood of the two epipolar lines corresponding 

to the two other points. That is, 

 

 Pi should be in the neighborhood of ELm
n for i=1..3, n=1..3, m=1..3, m≠i, n≠i 

            (3.9) 
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Figure 3.10 Matching 2D Points in Groups of Three Points 
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3.3.6 FINDING 3D POINTS 
 

After matching 2D point triples in three cameras, the 3D point corresponding to these 

matched 2D points is possible according to Equation (2.16). But Equation (2.16) can 

be used to find the 3D point corresponding to two 2D points in two cameras which 

are thought to be the projection of the same 3D point on the image planes of these 

two cameras. In our case, there are three points in three cameras which are thought to 

be the projection of the same 3D point on the image planes of these three cameras. 

There may be two solutions for this situation. 

 

One solution may be finding the least squares estimation to the equation set written 

using Equation (2.14) and Equation (2.15) for each of the three cameras, that is, the 

extended version of Equation (2.16) for three cameras. This equation set is written in 

matrix form as 

 

 FPx =           (3.10) 

 

where 
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where ai,k, i=1,2, ... 11, k=1,2,3, show the calibration parameters ai for the camera k. 

 

Solving this vector equation using pseudo-inverse technique, a solution for the 3D 

point positions, (X,Y,Z), will be found. By this way, only one 3D point will be 

generated for the three 2D points that are the projection of the same 3D point on the 

image planes of the three cameras. 

 

Yet one other solution may be solving Equation (2.16) for each pair of 2D points in 

the 2D point triple. Solving Equation (2.16) for each pair of 2D points using pseudo-

inverse technique, a solution for the 3D point positions, (X,Y,Z), will be found for 

each pair. This leads to having three 3D points corresponding to each point triple in 

2D coordinates. 

 

One another solution may be not storing the three 3D points found in the solution 

above and store only one 3D point for these three points using averaging or any other 

way. This leads to smaller number of points in 3D frames. 

 

The second solution is selected for our application because many points are seen by 

more than three cameras and a group of 3D points already form in 3D frames around 

the real position of the marker. As grouping is performed in 3D frames as in 

explained in Section 3.3.7, grouping is left to 3D domain. 
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3.3.7 FINDING 3D POINT GROUPS 
 

For each point triple in 2D images, three 3D points are generated. If a point in 3D 

world is seen and detected by more than three cameras, there will be more than three 

points in the 3D image, which should ideally be located at the same 3D position. But 

due to measurement and marker detection errors, these 3D points corresponding to 

the same 3D point will group like a cloud in the 3D frames. 

 

Figure 3.11 shows 3D points created in a selected frame in the sequence. A closer 

look into this figure is shown in Figure 3.12, where it is clearly seen that 3D points 

come close forming 3D "clouds". 

 

 

 
 

Figure 3.11 3D Points at a Selected Frame Without Grouping 
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Figure 3.12 Closer View of Figure 3.11 
 

 
By defining a neighborhood distance, these "cloud" of 3D points may be unified to 

have one 3D point which can be assumed to be near to the real 3D position of the 

marker. The cloud of points are marked and the average x, y, and z values for the 

group is calculated. Scanning all the points in 3D frames, if there are no groups in the 

neighborhood distance, a new group is formed, if there is a group, this point is also 

added to the group and the average values of the group is updated. 

 

Grouping the 3D points which are very near to each other, the number of 3D points 

can be decreased. From this point on, tracking is performed on 3D groups but not on 

the 3D points. 

 

The selected frame after grouping is shown in Figure 3.13. In this figure, false 

detections are easily seen. The skeleton formed by the markers given in Figure 1.3 is 

manually drawn onto the snapshot. Note that the image in this figure is formed by 
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decreasing the scales in all three dimensions asymmetrically to be able to see the 

whole volume easily. 

 

 

 
 

Figure 3.13 3D Points at a Selected Frame After Grouping 
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3.3.8 FINDING 3D POINT GROUP INITIAL TRACKS 
 

After grouping the 3D points in the sequence, 3D tracks are to be formed. The 

sequence is processed one frame at a time until the formation of the tracks, that is, no 

temporal information is considered. To form the tracks using the 3D point groups, 

temporal information is also considered to find the correspondences of 3D point 

groups through the frames, that is, correspondences in time. 

 

Our first method for placing the 3D points on continuous tracks was using linear 

extrapolation and taking the nearest neighbor. In this method, firstly, the predicted 

position of each 3D point group in the following frame is found. When predicting the 

position of the point in the following frame, the point is assumed to move the same 

amount as it moved between the previous frame and the present frame. This means 

that the point is assumed to have constant velocity. This predicted position is found 

by performing linear extrapolation using the position of that point and the position of 

the previous point of the track. This method is shown in Figure 3.14. The figure is 

prepared for the 2D case in order to be able to show the method easily and extension 

to 3D case is trivial. The equations of this prediction are given below: 

 

 x'i+1 = xi + ( xi - xi-1 ), 

 y'i+1 = yi + ( yi - yi-1 ), 

 z'i+1 = zi + ( zi - zi-1 )        (3.11) 

 

where 

(xi,yi,zi) is the position of the point in frame i, 

(xi-1,yi-1,zi-1) is the position of the point in frame i-1, and 

(x'i+1,y'i+1,z'i+1) is the predicted position of the point in frame i+1. 
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Figure 3.14 Prediction Method of Finding 3D Point Group Initial Tracks 
 

 

This method assumes the points to have constant velocity. The difference in this 

equation gives the average velocity of the point from frame i-1 to frame i. The 

equation shows that this difference is added to the position of the point in the present 

frame to find the position in the following frame. This difference is updated for each 

frame in order to update the velocity. 

 

This constant velocity prediction cannot be performed for the first point in the track 

as there is no previous point of the track. For the first point, the predicted point in the 

following frame is taken as the same point. 

 

After the predicted point is found in the following frame, the next frame is searched 

and the nearest point to this predicted point is found. Then the distance of the nearest 

point to the predicted point is compared to a constant measure of neighboring 

distance to determine if it will be taken as the next point or the track will end at this 

point. If the distance of the nearest point in three dimensions is smaller than this 

constant value, the point is selected as the next point of the current track. Otherwise, 
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the track is marked as ending at that frame. 

 

 

 
 

Figure 3.15 Formation of 3D Point Group Initial Tracks 
 

 

Figure 3.15 shows the steps of this method. The figure is prepared for the 2D case to 

show easily and extension to 3D case is trivial. In the figure, subscripts show the 

frame numbers, Pk and Qk are points in frame k, P'k is the predicted point in frame k, 
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and Sk is the search region in frame k. The track starts from point Pi in frame i. As 

this is the starting point of the track, there are no points of the track in the previous 

frame to use in the extrapolation operation to find the predicted point in the 

following frame. Therefore this starting point is taken as the predicted point for the 

following frame, P'i+1, and the search region Si+1 is formed directly around this point. 

In frame i+1, all the points are analyzed if they are in the search region Si+1. The 

point Pi+1 is found to be in the search region Si+1. As this point is the only point in 

the search region, it is taken as the point of the track in frame i+1. Using the points 

Pi and Pi+1, the point P'i+2 is found and the search region Si+2 is formed around this 

point for frame i+2. Then Pi+2 is found in Si+2 and then P'i+3 is found and Si+3 is 

formed. In frame i+3, there are two points in the search region Si+3, the points Pi+3 

and Qi+3. As Pi+3 is closer to the predicted point P'i+3 than the point Qi+3, Pi+3 is 

taken as the point in track in frame i+3. Similarly, P'i+4, Si+4, Pi+4, P'i+5 are found in 

order and finally Si+5 is formed. No points are found in Si+5 and therefore i+4 is the 

frame that the track ends in. In the figure, the track is shown with bold lines while the 

prediction extrapolations for the following frame are shown with dotted lines. 

 

This basic temporal matching algorithm did not give satisfactory results. Data 

association was sometimes problematic and tracks may be lost easily. The velocity of 

the point is found from only the previous two points and therefore the noise in these 

two measurements may lead to a wrong velocity assumption and the track may be 

lost easily. This also makes estimating the position of a missing point in one or more 

frames and then catching the track again as the velocity assumption using only two 

frames is not enough to estimate the position after a missing point. If the number of 

missing points is greater than 1, the track is lost probably. 

 

 

3.3.9 USING KALMAN FILTER WITH 3D POINT GROUP INITIAL TRACKS 
 

Because of the problems encountered in tracking using a simple nearest neighbor 

method using the 3D groups, it is necessary to use a better tracking method which 

will know the direction and speed of the track and estimate the position of the next 
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point in the track so that false point associations will not be seen. Another advantage 

of such a clever tracking, even if one or more points in the track is not detected, due 

to occlusion or detection algorithms applied beforehand, the track may be continued 

for a few frames to catch a point continuing the track. So that the algorithm may be 

able to handle separated tracks without the help of an operator, which was included 

in our aims to increase the performance of the tracker. 

 

In this thesis, Kalman Filter is used as an estimator in tracking 3D markers groups. A 

summary of the Kalman Filter was given in Section 2.6. 

 

Intel® Open Source Computer Vision Library (OpenCV) [9] is used in this thesis 

work as the Kalman Filter. In this thesis, notation in OpenCV is used as Kalman 

Filter notation [5] [9] [10]. 

 

Kalman Filter or Kalman Estimator will be used in this application. The fundamental 

equations of the Kalman Filter were given in Section 2.6 in Equations (2.24) and 

(2.25). 

 

Three independent Kalman Filters are created for x, y, and z directions. 

 

The "states" of the estimators are selected to be the position and the velocity of the 

marker, that is, the three Kalman Filter has the states 
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         (3.12) 

 

where x&  shows the derivative of x , y&  shows the derivative of y , z&  shows the 

derivative of z . 

 

The transition equations without the control input function and noise elements are 

 

 11 −− += kkk xxx &  and 1−= kk xx && , 
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 11 −− += kkk yyy &  and 1−= kk yy && , 

 11 −− += kkk zzz &  and 1−= kk zz && .       (3.13) 

 

Therefore, the common transition matrix, which is the vector A in Equation (3.12), of 

all three Kalman Filters is 
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
10
11

.          (3.14) 

 

In our application, the control input, u in Equation (2.24), is not used, therefore the 

matrix B in that equation is set to zero. 

 

The measurement is directly the position, therefore the measurement matrix, that is, 

the matrix H in Equation (2.25) is 

 

 [ ]01 .          (3.15) 

 

These values for Kalman Filter mean that a constant velocity model is used in 

modeling marker movements. 

 

In Section 2.6, the operation cycle of the Kalman Filter was mentioned. In each 

cycle, Kalman Filter makes a prediction about the state of the system based on 

previous measurements, and then given the present measurement, it updates its 

prediction about the state. In OpenCV, the first stage of this cycle is performed with 

the cvKalmanPredict function, and after updating the measurement matrix in the 

Kalman Filter, the second stage is performed with the cvKalmanCorrect function. 

 

As Kalman Filter is a recursive algorithm, it must be initialized before the start of the 

operation cycles. Process noise covariance, measurement noise covariance and initial 

a posteriori error covariance are given to the Kalman Filter algorithm before the start 

of recursive operation. Then Kalman Filter is initialized at the start points of each 3D 
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point group initial track. This initializes the start point of the Kalman Filter. 

 

Kalman Filter is used to track 3D point groups, therefore initialization with the use of 

3D point group initial tracks is performed. All initial tracks that have more than or 

equal to a predetermined number of 3D point groups is taken to initialize three 

Kalman Filters, one for each direction. This enables the Kalman Filter to adapt to the 

initial track for this number of 3D point groups so that following the initialization 

period, the Kalman Filter can track the 3D point groups without leading from this 

initial track. 

 

After Kalman Filter initialization on the track, the Kalman Filter tracks the 3D point 

groups independent of the 3D point group initial tracks even if the point group initial 

track continues to track. This separation from the initial track has to be performed as 

soon as possible so that the Kalman Filter does not make the same "mistakes" that 

the initial track does while proceeding through the frames. If the Kalman Filter does 

not leave the initial track, than it will be only used for filtering, not for estimating, 

and this would not help the tracking be more robust.  

 

Track gate is the region in the next frame that the next point in the track is predicted 

to be in. In tracking algorithms, the track gate concept is very important as it is used 

for filtering out the data that is not likely to be an element of the present track and 

thus reducing search region and eliminating some association problems. 
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Figure 3.16 Kalman Filter Track Gates 
 

 

The track gate used is shown in Figure 3.16. The figure is prepared for the 2D case to 

show easily and extension to 3D case is trivial. In the figure, P' is the predicted point 

for any frame, v'x and v'y are the predicted velocities of the predicted point P' in that 

frame, in x and y directions respectively, and S is the search region or the track gate 

for that frame. The size of the track gate is made dependent on the predicted 

velocities. This dependence is given as 
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where m and k are constants. 

 

The dependence of the track gate size on the predicted velocity is needed in order to 

be able to handle large velocities. If the track gate is formed with a constant size 
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which is large enough to cover the position of the point moving with a large velocity, 

wrong points will be taken into the track in regions where the point moves with a 

slower velocity. There are some frames where there are no points of a specific track 

because of occlusion or elimination in previous processes. Allowing the track to have 

occluded points is generally better than allowing the track to cover a wrong point. 

Another problem with large velocities is that the error in predicting the velocity or 

the error in predicting the position may be also large in points moving with large 

velocities. Therefore to cover the points with larger velocity, the track gate size is 

made dependent on the predicted velocity of the point in regions where the point 

moves with large velocities. If the track gate size is a constant multiple of the 

predicted velocity, another problem arises with small predicted velocities. The track 

gate size will be small where the predicted velocity is small but this leads to losing 

the track if the point starts to move after being stationary for a period of time. The 

markers close to the heel and toe are the markers with quite varying velocities. They 

are stationary for some period of gait and then they start to move and reach large 

velocities after which they slow down to stationary position again. In a typical gait 

cycle, there are stationary and moving states of heel and toe [22]. Therefore the track 

gate size should allow a quick start of movement from the stationary state. This 

constraint is satisfied with the condition in Equation (3.16) which guarantees a 

minimum value, m.k, for f(x). 

 

We find independent track gate lengths for the three Kalman Filters corresponding to 

three directions and these are used to find the 3D track gate. This is because the 

character of movement is different in three directions. 

 

Each frame represented one cycle of the Kalman Filter. At each frame, a track gate is 

formed around the predicted value of the next 3D point group position. If there is a 

3D point group in this track gate, it is taken as the measurement and Kalman Filter is 

correcting its prediction. This corrected prediction is used to form the track gate for 

the next frame. These cycles are repeated through the frames of the sequence until no 

3D point groups are found in the track gate. 
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If there are no 3D point groups in the track gate, the predicted value, that is the center 

of the track gate, is given the system as if it was the measurement so that one more 

cycle can be performed. In this second cycle, if a 3D point group is found in the track 

gate, the Kalman Filter can continue. This case is the situation where one 3D point 

group is lost in a frame in the track because of occlusion of any other reason. In this 

case, Kalman Filter is enough for most of the cases to continue the track in spite of 

this missing 3D point group because of the velocity information inherent in it, 

enabling it to predict the next state using the latest velocity value in the state 

definition given in Equation (3.12). 

 

In the case of having no point groups in the track gate, putting the predicted value 

instead of a lost 3D point group may work for a few frames but if the track is broken 

for a large number of 3D point groups, Kalman Filter will eventually have to stop. 

The stopping condition, i.e. the end of a track, is determined by counting the number 

of consecutive missing 3D point groups. Otherwise, Kalman Filter will continue to 

the end of the sequence. 

 

In Figure 3.17 through 3.19, 3D tracks formed in a sample gait are shown. 

 

 

 
 

Figure 3.17 Tracks A, F, G, J, and K in a Sample Gait 
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Figure 3.18 Tracks B, C, H, and I in a Sample Gait 
 

 

 
 

Figure 3.19 Tracks D, E, L, and M in a Sample Gait 
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CHAPTER 4 
 
 

THE 3D MARKER TRACKING SOFTWARE 
 

 

In this thesis work, 3D marker tracking software is developed. This software takes 

files of 2D marker positions for each of the 6 cameras as input and finds 3D 

trajectories corresponding to each marker as output. A general view from the 

software is shown in Figure 4.1. 

 

 

 
 

Figure 4.1 A General View from the 3D Marker Tracking Software 
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This software has a user friendly interface. While loading files, predetermined files at 

predetermined locations are automatically selected and loaded unless the user selects 

different files. Process sequence is embedded into the software and selections of the 

buttons show the user what the next step is and the user only needs to press the 

"Enter" key. After processing is finished, viewing selections can be made using the 

checkboxes. The 6 2D images show the markers from each camera view. Three 3D 

images are the top, right, and front views of the 3D volume. The fourth is a trimetric 

3D image. The sizes of the 2D and 3D images can be decreased by factors given by 

the user to be able to see the whole sequence on the screen without scrolling. For 

example, to get the snapshot in Figure 4.1, 2D image sizes are decreased by a factor 

of 4 and 3D image sizes are decreased by a factor of 12. Kalman Estimator inputs 

may be changed using the graphical interface by the user. 

 

The sequence of the software is given below with brief explanations of the steps and 

corresponding buttons. 

 

• "Open 2D Marker Position Files" Button: 

Opens 6 files corresponding to the 6 cameras containing 2D marker positions and 

forms 2D images in the graphical interface. 

• "Open Camera Linearization Files" Button: 

Opens 6 files corresponding to the 6 cameras containing 30 linearization 

parameters for each camera and performs linearization to all 2D points in the 

sequence in all cameras. 

• "Open Camera Calibration Files" Button: 

Opens 6 files corresponding to the 6 cameras containing 11 calibration parameters 

for each camera. 

• "Find Epipolar Lines" Button: 

Finds epipolar lines all through the sequence. After this operation, Clicking on an 

image will draw epipolar lines corresponding to the points in that image on the 

other 5 images. The software graphical interface will look like Figure 4.2 after 

clicking on the upper right image. 
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Figure 4.2 View of the Software after Finding Epipolar Lines and Clicking on the 
Upper Right Image 

 

 

• "Match Points in 2D Images" Button: 

Performs the process of matching 2D points in order to find 3D positions 

corresponding to these matched 2D points. 

• "Find 3D Points" Button: 

Calculates 3D positions corresponding to matched 2D points and forms the 3D 

images. 

• "Find 3D Groups" Button: 

Groups the 3D points that are very close to each other. 

• "Find 3D Group Initial Tracks" Button: 

Finds the initial tracks that are formed by linear extrapolation using previous two 

points and finding the nearest neighbor. 

• "Run Kalman Estimator" Button: 

Runs the Kalman estimator starting from the 3D group initial tracks. 

 

There are other functions or selections on the software for viewing or analyzing 

purposes. These functions and some of the selections are given below: 
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• "Analyze Tracks" Button: Selects only long tracks as valid tracks and assigns 

numbers to these tracks so that each track can be viewed separately. 

• "Form Statistics" Button: Calculates the average and variance statistics of the 

tracks. 

• "Animate" Button: Animates the sequence so that movements can be seen easily. 

• "Clear All Images" Button: Clears all 2D and 3D images. 

• "Update 3D Images" Button: Updates the 3D images after a change in one of the 

3D image size factors defined by "3D Ratio" and "3D Ratio - Y". 

• "Frame No" Box: Allows the user to see and change which frame is shown in the 

2D and 3D images. 

• "2D Ratio" Box: Allows the user to change the factor that all dimensions of the 

2D image are decreased by. 

• "3D Ratio" Box: Allows the user to change the factor that all dimensions of the 

3D image are decreased by. 

• "3D Ratio - Y" Box: Allows the user to change the factor that the Y axis of the 3D 

image is decreased by. 

• "Selected Track Numbers" Boxes: Allows the user to change the tracks that are 

shown in 3D images. 

• "Process Noise Covariance", "Measurement Noise Covariance" and "Initial Error 

Covariance" Boxes: Allows the user to change these inputs of the Kalman 

Estimator. 

• "Eliminate False 2D Detections" Selection: Allows the user to enable or disable 

elimination of false detections in 2D images. 

 

For the user, there are also many viewing selections which can be used in a large 

number of combinations. 
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CHAPTER 5 
 
 

EXPERIMENTAL RESULTS 
 

 

In this chapter, results of the algorithm are given. Firstly, markers are named 

according to Figure 5.1 (a) so that fixed names can be used for each marker, each 

track and each segment between markers. Segments are named using the two 

markers at each end, i.e. "A-B" is the name for the segment between markers "A" 

and "B". In Figure 5.1 (b), the skeleton formed by markers is shown. 

 

 

 
 

Figure 5.1 (a) Marker Names (b) the Skeleton Formed by Markers 
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The lengths of the segments D-F, E-G, F-H, G-I, H-J, and I-K are expected to be 

fixed because of their positions on the body. Other segments may have variable 

lengths because of the changes in the angle of the joints they are connected to. 

 

Our principle aim was finding marker tracks throughout the sequence without the 

need for an operator. If the tracks are lost easily, a track corresponding to a marker 

will be divided into parts and an operator will have to connect them in order to have 

a complete track for a marker. In our algorithm, if there are no markers in the track 

gate for a frame, the predicted position of the track at that frame is used as if it was a 

real measurement, that is, as if there was a marker detected at the predicted point 

position. This predicted position is found by the Kalman Filter. This makes the 

prediction of the marker position at a frame more accurate than prediction with linear 

extrapolation using two previous point positions. In Figures 5.2 and 5.3, two 

examples of application of this method on a sample gait data are seen. In Figure 5.2, 

a snapshot of a small part of the 3D track named F in Figure 5.1 is shown and in 

Figure 5.3, a snapshot of a small part of the 3D track named J in Figure 5.1 is shown. 

In these figures, dots show the real measurements and large crosses show the 

predicted position of the marker which is used as if it was a real measurement 

because no markers are found in that track gate. The points of the track in adjacent 

frames are connected with lines. There are 6 occurrences where the predicted 

position of the marker is used as if it was a real measurement in Figure 5.2 and 3 

occurrences in Figure 5.3. 
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Figure 5.2 A Part of Track F with Missing Measurements 
 

 

 
 

Figure 5.3 A Part of Track J with Missing Measurements 
 

 

As can be seen from these figures, a linear extrapolation would not be enough to 

predict the position of the marker in the following frame as the noise in the 

measurements may lead to a wrong "instant velocity". This will result in a wrong 

position prediction and afterwards wrong placement and size of the track gate. But 

with the Kalman Filter, measurements are filtered and making more accurate position 

and velocity prediction is possible. 

 

To predict the point position and velocity each frame, Kalman Filter is used instead 
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of linear extrapolation which uses previous two points. As mentioned in Section 2.6, 

two important inputs of the Kalman Filter are "the process noise covariance" and "the 

measurement noise covariance". These can be seen in Kalman equations which were 

given in Equations (2.24) and (2.25). These constants effect the prediction and 

therefore the tracking performance. 

 

In Tables 5.1 through 5.12, the average length and variance of the length of each 

segment shown in Figure 5.1 are given. In these figures, the standard deviation of the 

length and the ratio of the standard deviation of the length to the average length are 

also shown for each segment. The tables are prepared using three different values for 

the "process noise covariance" (PNC) and three different values for the 

"measurement noise covariance" (MNC) of the Kalman Filter. Entries named as 

"measured" are the measurements and entries named as "corrected" are the a 

posteriori estimates of the Kalman Filter for that frame. 

 

In these tables, variances corresponding to Kalman Filter "corrected" tracks are seen 

to be smaller or equal to the variances of the "measured" tracks for the segments 

whose lengths are expected to be fixed, i.e. the segments D-F, E-G, F-H, G-I, H-J, 

and I-K, except very few cases. This means that the results obtained by applying 

Kalman Filter are more reliable. 
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Table 5.1 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment A-C for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             265,528 265,528 265,528
Corrected Average             264,813 264,927 265,041
Measured  Variance            197,787 197,787 197,787
Corrected Variance            168,471 170,515 170,087
Measured  Standard Deviation  14,064 14,064 14,064
Corrected Standard Deviation  12,980 13,058 13,042
Measured  Standard Deviation / Average  0,053 0,053 0,053
Corrected Standard Deviation / Average  0,049 0,049 0,049
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             242,508 243,180 234,431
Corrected Average             242,049 241,918 234,246
Measured  Variance            1625,499 1643,426 2158,151
Corrected Variance            1553,492 1725,190 2158,032
Measured  Standard Deviation  40,317 40,539 46,456
Corrected Standard Deviation  39,414 41,535 46,455
Measured  Standard Deviation / Average  0,166 0,167 0,198
Corrected Standard Deviation / Average  0,163 0,172 0,198
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             234,431 233,431 232,462
Corrected Average             234,231 233,262 232,215
Measured  Variance            2158,151 2167,013 2142,683
Corrected Variance            2162,269 2187,642 2171,741
Measured  Standard Deviation  46,456 46,551 46,289
Corrected Standard Deviation  46,500 46,772 46,602
Measured  Standard Deviation / Average  0,198 0,199 0,199
Corrected Standard Deviation / Average  0,199 0,201 0,201
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Table 5.2 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment A-B for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             271,232 271,232 271,232
Corrected Average             271,098 271,091 271,152
Measured  Variance            187,049 187,049 187,049
Corrected Variance            158,829 160,302 161,779
Measured  Standard Deviation  13,677 13,677 13,677
Corrected Standard Deviation  12,603 12,661 12,719
Measured  Standard Deviation / Average  0,050 0,050 0,050
Corrected Standard Deviation / Average  0,046 0,047 0,047
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             254,290 254,650 247,500
Corrected Average             254,290 254,090 247,740
Measured  Variance            1444,373 1451,592 2172,098
Corrected Variance            1397,271 1537,680 2145,826
Measured  Standard Deviation  38,005 38,100 46,606
Corrected Standard Deviation  37,380 39,213 46,323
Measured  Standard Deviation / Average  0,149 0,150 0,188
Corrected Standard Deviation / Average  0,147 0,154 0,187
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             247,500 246,875 246,240
Corrected Average             247,644 246,990 246,308
Measured  Variance            2172,098 2181,707 2188,758
Corrected Variance            2155,423 2172,354 2185,829
Measured  Standard Deviation  46,606 46,709 46,784
Corrected Standard Deviation  46,427 46,609 46,753
Measured  Standard Deviation / Average  0,188 0,189 0,190
Corrected Standard Deviation / Average  0,187 0,189 0,190
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Table 5.3 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment C-E for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             300,782 300,782 300,782
Corrected Average             300,605 300,630 300,588
Measured  Variance            190,060 190,060 190,060
Corrected Variance            198,929 195,227 192,632
Measured  Standard Deviation  13,786 13,786 13,786
Corrected Standard Deviation  14,104 13,972 13,879
Measured  Standard Deviation / Average  0,046 0,046 0,046
Corrected Standard Deviation / Average  0,047 0,046 0,046
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             300,782 300,782 300,782
Corrected Average             300,588 300,563 300,613
Measured  Variance            190,060 190,060 190,060
Corrected Variance            194,906 193,981 190,157
Measured  Standard Deviation  13,786 13,786 13,786
Corrected Standard Deviation  13,961 13,928 13,790
Measured  Standard Deviation / Average  0,046 0,046 0,046
Corrected Standard Deviation / Average  0,046 0,046 0,046
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             300,782 300,782 300,782
Corrected Average             300,588 300,588 300,605
Measured  Variance            190,060 190,060 190,060
Corrected Variance            191,945 192,031 192,476
Measured  Standard Deviation  13,786 13,786 13,786
Corrected Standard Deviation  13,854 13,858 13,874
Measured  Standard Deviation / Average  0,046 0,046 0,046
Corrected Standard Deviation / Average  0,046 0,046 0,046
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Table 5.4 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment B-D for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             284,372 284,372 284,372
Corrected Average             284,759 284,672 284,620
Measured  Variance            92,476 92,476 92,476
Corrected Variance            96,546 95,169 94,737
Measured  Standard Deviation  9,616 9,616 9,616
Corrected Standard Deviation  9,826 9,755 9,733
Measured  Standard Deviation / Average  0,034 0,034 0,034
Corrected Standard Deviation / Average  0,035 0,034 0,034
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             284,372 284,372 284,372
Corrected Average             284,423 284,416 284,423
Measured  Variance            92,476 92,476 92,476
Corrected Variance            92,237 91,435 93,143
Measured  Standard Deviation  9,616 9,616 9,616
Corrected Standard Deviation  9,604 9,562 9,651
Measured  Standard Deviation / Average  0,034 0,034 0,034
Corrected Standard Deviation / Average  0,034 0,034 0,034
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             284,372 284,372 284,372
Corrected Average             284,387 284,387 284,387
Measured  Variance            92,476 92,476 92,476
Corrected Variance            92,365 92,365 92,162
Measured  Standard Deviation  9,616 9,616 9,616
Corrected Standard Deviation  9,611 9,611 9,600
Measured  Standard Deviation / Average  0,034 0,034 0,034
Corrected Standard Deviation / Average  0,034 0,034 0,034
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Table 5.5 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment E-G for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             238,576 238,576 238,576
Corrected Average             238,896 238,752 238,712
Measured  Variance            14,322 14,322 14,322
Corrected Variance            11,519 11,034 11,227
Measured  Standard Deviation  3,784 3,784 3,784
Corrected Standard Deviation  3,394 3,322 3,351
Measured  Standard Deviation / Average  0,016 0,016 0,016
Corrected Standard Deviation / Average  0,014 0,014 0,014
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             238,576 238,576 238,576
Corrected Average             238,624 238,608 238,592
Measured  Variance            14,322 14,322 14,322
Corrected Variance            12,078 13,198 13,875
Measured  Standard Deviation  3,784 3,784 3,784
Corrected Standard Deviation  3,475 3,633 3,725
Measured  Standard Deviation / Average  0,016 0,016 0,016
Corrected Standard Deviation / Average  0,015 0,015 0,016
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             238,576 238,576 238,576
Corrected Average             238,568 238,560 238,552
Measured  Variance            14,322 14,322 14,322
Corrected Variance            14,473 14,471 14,423
Measured  Standard Deviation  3,784 3,784 3,784
Corrected Standard Deviation  3,804 3,804 3,798
Measured  Standard Deviation / Average  0,016 0,016 0,016
Corrected Standard Deviation / Average  0,016 0,016 0,016
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Table 5.6 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment D-F for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             260,796 260,796 260,796
Corrected Average             261,322 261,138 261,000
Measured  Variance            13,240 13,240 13,240
Corrected Variance            11,555 11,592 11,539
Measured  Standard Deviation  3,639 3,639 3,639
Corrected Standard Deviation  3,399 3,405 3,397
Measured  Standard Deviation / Average  0,014 0,014 0,014
Corrected Standard Deviation / Average  0,013 0,013 0,013
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             260,796 260,796 260,796
Corrected Average             260,875 260,888 260,836
Measured  Variance            13,240 13,240 13,240
Corrected Variance            11,953 12,098 12,352
Measured  Standard Deviation  3,639 3,639 3,639
Corrected Standard Deviation  3,457 3,478 3,515
Measured  Standard Deviation / Average  0,014 0,014 0,014
Corrected Standard Deviation / Average  0,013 0,013 0,013
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             260,796 260,796 260,796
Corrected Average             260,862 260,875 260,875
Measured  Variance            13,240 13,240 13,240
Corrected Variance            13,089 13,242 13,242
Measured  Standard Deviation  3,639 3,639 3,639
Corrected Standard Deviation  3,618 3,639 3,639
Measured  Standard Deviation / Average  0,014 0,014 0,014
Corrected Standard Deviation / Average  0,014 0,014 0,014
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Table 5.7 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment G-I for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             152,390 152,390 152,390
Corrected Average             152,881 152,791 152,537
Measured  Variance            19,525 19,525 19,525
Corrected Variance            17,787 17,930 17,570
Measured  Standard Deviation  4,419 4,419 4,419
Corrected Standard Deviation  4,217 4,234 4,192
Measured  Standard Deviation / Average  0,029 0,029 0,029
Corrected Standard Deviation / Average  0,028 0,028 0,027
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             152,390 152,390 152,390
Corrected Average             152,559 152,401 152,373
Measured  Variance            19,525 19,525 19,525
Corrected Variance            18,324 18,029 19,139
Measured  Standard Deviation  4,419 4,419 4,419
Corrected Standard Deviation  4,281 4,246 4,375
Measured  Standard Deviation / Average  0,029 0,029 0,029
Corrected Standard Deviation / Average  0,028 0,028 0,029
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             152,390 152,390 152,390
Corrected Average             152,384 152,395 152,379
Measured  Variance            19,525 19,525 19,525
Corrected Variance            19,546 19,505 19,436
Measured  Standard Deviation  4,419 4,419 4,419
Corrected Standard Deviation  4,421 4,416 4,409
Measured  Standard Deviation / Average  0,029 0,029 0,029
Corrected Standard Deviation / Average  0,029 0,029 0,029
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Table 5.8 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment F-H for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             168,722 168,722 168,722
Corrected Average             169,528 169,256 169,089
Measured  Variance            30,077 30,077 30,077
Corrected Variance            31,440 30,313 29,616
Measured  Standard Deviation  5,484 5,484 5,484
Corrected Standard Deviation  5,607 5,506 5,442
Measured  Standard Deviation / Average  0,033 0,033 0,033
Corrected Standard Deviation / Average  0,033 0,033 0,032
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             168,722 168,722 168,722
Corrected Average             168,928 168,839 168,733
Measured  Variance            30,077 30,077 30,077
Corrected Variance            28,677 29,360 29,871
Measured  Standard Deviation  5,484 5,484 5,484
Corrected Standard Deviation  5,355 5,418 5,465
Measured  Standard Deviation / Average  0,033 0,033 0,033
Corrected Standard Deviation / Average  0,032 0,032 0,032
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             168,722 168,722 168,722
Corrected Average             168,733 168,728 168,739
Measured  Variance            30,077 30,077 30,077
Corrected Variance            29,883 30,173 30,169
Measured  Standard Deviation  5,484 5,484 5,484
Corrected Standard Deviation  5,467 5,493 5,493
Measured  Standard Deviation / Average  0,033 0,033 0,033
Corrected Standard Deviation / Average  0,032 0,033 0,033
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Table 5.9 Average Length, Variance and Standard Deviation of the Length and Ratio 
of Standard Deviation of the Length to Average Length of the Segment I-K for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             321,006 320,793 320,570
Corrected Average             323,158 322,145 321,380
Measured  Variance            71,149 54,695 43,839
Corrected Variance            73,346 50,218 38,940
Measured  Standard Deviation  8,435 7,396 6,621
Corrected Standard Deviation  8,564 7,086 6,240
Measured  Standard Deviation / Average  0,026 0,023 0,021
Corrected Standard Deviation / Average  0,027 0,022 0,019
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             320,570 320,570 320,578
Corrected Average             320,832 320,626 320,539
Measured  Variance            43,839 43,839 43,592
Corrected Variance            38,112 38,503 39,999
Measured  Standard Deviation  6,621 6,621 6,602
Corrected Standard Deviation  6,173 6,205 6,324
Measured  Standard Deviation / Average  0,021 0,021 0,021
Corrected Standard Deviation / Average  0,019 0,019 0,020
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             320,578 319,821 319,821
Corrected Average             320,333 319,611 319,611
Measured  Variance            43,592 44,155 44,155
Corrected Variance            41,729 44,106 44,067
Measured  Standard Deviation  6,602 6,645 6,645
Corrected Standard Deviation  6,460 6,641 6,638
Measured  Standard Deviation / Average  0,021 0,021 0,021
Corrected Standard Deviation / Average  0,020 0,021 0,021

 

 

 

 

 



 77

 

Table 5.10 Average Length, Variance and Standard Deviation of the Length and 
Ratio of Standard Deviation of the Length to Average Length of the Segment H-J for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             319,343 319,343 319,343
Corrected Average             321,203 320,636 320,175
Measured  Variance            37,966 37,966 37,966
Corrected Variance            34,081 30,923 29,872
Measured  Standard Deviation  6,162 6,162 6,162
Corrected Standard Deviation  5,838 5,561 5,466
Measured  Standard Deviation / Average  0,019 0,019 0,019
Corrected Standard Deviation / Average  0,018 0,017 0,017
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             319,160 319,160 319,160
Corrected Average             319,670 319,460 319,310
Measured  Variance            17,314 17,314 17,314
Corrected Variance            15,793 16,517 15,454
Measured  Standard Deviation  4,161 4,161 4,161
Corrected Standard Deviation  3,974 4,064 3,931
Measured  Standard Deviation / Average  0,013 0,013 0,013
Corrected Standard Deviation / Average  0,012 0,013 0,012
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             319,160 319,160 319,160
Corrected Average             319,160 319,180 319,200
Measured  Variance            17,314 17,314 17,314
Corrected Variance            16,431 16,453 16,493
Measured  Standard Deviation  4,161 4,161 4,161
Corrected Standard Deviation  4,054 4,056 4,061
Measured  Standard Deviation / Average  0,013 0,013 0,013
Corrected Standard Deviation / Average  0,013 0,013 0,013
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Table 5.11 Average Length, Variance and Standard Deviation of the Length and 
Ratio of Standard Deviation of the Length to Average Length of the Segment K-M 

for Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             129,581 132,011 132,330
Corrected Average             130,430 132,553 132,585
Measured  Variance            337,824 148,266 133,476
Corrected Variance            301,997 113,757 113,549
Measured  Standard Deviation  18,380 12,176 11,553
Corrected Standard Deviation  17,378 10,666 10,656
Measured  Standard Deviation / Average  0,142 0,092 0,087
Corrected Standard Deviation / Average  0,133 0,080 0,080
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             132,330 132,330 132,354
Corrected Average             132,319 132,298 132,206
Measured  Variance            133,476 133,476 132,886
Corrected Variance            120,441 125,210 129,805
Measured  Standard Deviation  11,553 11,553 11,528
Corrected Standard Deviation  10,975 11,190 11,393
Measured  Standard Deviation / Average  0,087 0,087 0,087
Corrected Standard Deviation / Average  0,083 0,085 0,086
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             132,354 132,809 132,809
Corrected Average             132,175 132,617 132,638
Measured  Variance            132,886 74,579 74,579
Corrected Variance            134,895 78,832 78,680
Measured  Standard Deviation  11,528 8,636 8,636
Corrected Standard Deviation  11,614 8,879 8,870
Measured  Standard Deviation / Average  0,087 0,065 0,065
Corrected Standard Deviation / Average  0,088 0,067 0,067
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Table 5.12 Average Length, Variance and Standard Deviation of the Length and 
Ratio of Standard Deviation of the Length to Average Length of the Segment J-L for 

Different Values of PNC and MNC 
 

       PNC: 0,005 
            MNC: 0,100 0,050 0,025 
Measured  Average             153,034 153,034 153,034
Corrected Average             153,691 153,450 153,383
Measured  Variance            57,618 57,618 57,618
Corrected Variance            93,652 72,342 61,189
Measured  Standard Deviation  7,591 7,591 7,591
Corrected Standard Deviation  9,677 8,505 7,822
Measured  Standard Deviation / Average  0,050 0,050 0,050
Corrected Standard Deviation / Average  0,063 0,055 0,051
          
       PNC: 0,050 
            MNC: 0,100 0,050 0,025 
Measured  Average             153,804 153,804 153,804
Corrected Average             154,178 154,103 153,972
Measured  Variance            64,624 64,624 64,624
Corrected Variance            51,717 55,046 58,176
Measured  Standard Deviation  8,039 8,039 8,039
Corrected Standard Deviation  7,191 7,419 7,627
Measured  Standard Deviation / Average  0,052 0,052 0,052
Corrected Standard Deviation / Average  0,047 0,048 0,050
          
       PNC: 0,500 
            MNC: 0,100 0,050 0,025 
Measured  Average             153,804 153,804 153,804
Corrected Average             153,841 153,785 153,813
Measured  Variance            64,624 64,624 64,624
Corrected Variance            62,861 64,354 64,060
Measured  Standard Deviation  8,039 8,039 8,039
Corrected Standard Deviation  7,929 8,022 8,004
Measured  Standard Deviation / Average  0,052 0,052 0,052
Corrected Standard Deviation / Average  0,052 0,052 0,052
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One measure of ability of tracking in spite of a missing marker is the number of 

occurrences where a marker is not found in the track gate and predicted value of the 

Kalman Filter is used as if it was the measurement and the track continues afterwards 

finding a marker in the track gate in the following frame. The number of occurrences 

of using predicted position instead of measured position, that is, the number of 

occurrences of missing point prediction with three different process noise covariance 

(PNC) and three different measurement noise covariance (MNC) values are given in 

Table 5.13 for the segments shown in Figure 5.1. The entries in this table give how 

many times the track is overcoming a problem of missing point that may have lead to 

losing the track and continues afterwards. 

 

 

Table 5.13 Number of Occurrences of Missing Point Prediction for Different Values 
of PNC and MNC 

 
PNC: 0,005 0,050 0,500 
MNC: 0,100 0,050 0,025 0,100 0,050 0,025 0,100 0,050 0,025
A 0 0 0 1 1 8 8 8 8 
B 2 2 2 2 2 2 2 2 2 
C 3 3 3 3 3 3 3 3 3 
D 3 3 3 3 3 3 3 3 3 
E 2 2 2 2 2 2 2 2 2 
F 6 6 6 6 6 6 6 6 6 
G 2 2 2 2 2 2 2 2 2 
H 13 13 13 13 13 13 13 13 13 
I 0 0 0 0 0 0 0 0 0 
J 5 5 5 3 3 3 3 3 3 
K 2 0 0 0 0 0 0 0 0 
L 10 10 10 10 10 5 5 5 5 
M 1 1 1 1 1 2 2 2 2 
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CHAPTER 6 
 
 

CONCLUSION 
 

 

This thesis is on 3D marker tracking for human gait analysis. Firstly 2D marker 

positions are analyzed and false detections in 2D marker positions are eliminated. 

Then the distortions in 2D positions of markers in each camera view are corrected 

using the linearization parameters. After correction of 2D point positions, epipolar 

lines are formed in each camera view using the calibration parameters. After 2D 

marker matching, matched 2D marker positions are used to form 3D marker 

positions using the calibration parameters again. The 3D markers that are very close 

to each other are grouped to find an estimate of the real 3D marker. After grouping, 

3D tracks are formed using these 3D groups. 

 

The algorithm of elimination of false detection points in 2D images was successful 

and useful as it eliminated the false stationary 3D points which are generally out of 

the calibration frame. The application software is adjusted to show all the 3D points 

generated in the output images but these false 3D points may sometimes be in 

extreme points in 3D space, making it impossible to see the real markers of the gait: 

if the 3D space to be viewed is very large, real markers may be stuck to a very small 

area. This was eliminated using the 2D stationary marker elimination method, which 

worked quite well. 

 

The linearization and calibration algorithms have already been developed and used in 

this system. The laboratory has the needed infrastructure (hardware and software) for 

linearization and calibration of the cameras. There are sets of calibration and 

linearization parameters for each set of marker 2D position data. This makes the 

measurement from the system be correct as linearization and calibration are 

performed frequently. 
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Grouping points in 3D coordinate system was also important to ease the problem. As 

the 3D points generally group in a "cloud" in 3D space, association of a 3D point 

with a 3D marker point is not very problematic because all the points in the "cloud" 

are associated with the same 3D marker point, but separated a little because of the 

digitization and marker detection processes. 

 

3D group initial tracks did not work satisfactorily. Finding the nearest neighbor of 

the point in a frame predicted with linear extrapolation using the two points in the 

previous two frames did not give satisfactory results. To overcome the large error in 

"instant velocity" of the marker found using previous two points, the area of 

neighborhood has to be increased but increasing the area of neighborhood results in 

association problems for some 3D groups of different tracks that are very close in 

some portions of the gait. This emerged the need for more accurate position and 

velocity prediction, and therefore Kalman Filter estimation is used. 

 

Kalman Filter worked well with the problem. If the algorithms up to Kalman 

Filtering are working well, then Kalman Filter makes the tracking algorithm be more 

robust. Less operator interaction to connect the tracks is required in this system. 

 

The variances corresponding to Kalman Filter "corrected" tracks are seen to be 

smaller or equal to the variances of the "measured" tracks for the segments whose 

lengths are expected to be fixed, except very few cases. This means that the results 

obtained by applying Kalman Filter are more reliable. 

 

In the algorithm presented in this thesis, constraints of the body are not used. An 

algorithm using a body model and fitting the measured marker positions onto this 

body model would give better results. In this way, false detections may be discarded 

and data association errors may be handled more easily. Also, different walking 

speeds of the subjects affect the performance of the algorithm because of the fixed 

minimum value for the track gate, which is independent of the predicted velocity. 
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