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in partial fulfillment of the requirements

for

the degree of doctor of philosophy

in

mathematics

december 2005



Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN
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Prof. Dr. Hasan TAŞELİ (METU)
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abstract

STURM COMPARISON THEORY FOR IMPULSIVE

DIFFERENTIAL EQUATIONS

ÖZBEKLER, Abdullah

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Ağacık ZAFER

December 2005, 72 pages

In this thesis, we investigate Sturmian comparison theory and oscilla-

tion for second order impulsive differential equations with fixed moments

of impulse actions. It is shown that impulse actions may greatly alter the

oscillation behavior of solutions.

In chapter two, besides Sturmian type comparison results, we give

Leightonian type comparison theorems and obtain Wirtinger type inequal-

ities for linear, half-linear and non-selfadjoint equations. We present anal-

ogous results for forced super linear and super half-linear equations with

damping.

In chapter three, we derive sufficient conditions for oscillation of nonlin-

ear equations. Integral averaging, function averaging techniques as well as

interval criteria for oscillation are discussed. Oscillation criteria for solutions

of impulsive Hill’s equation with damping and forced linear equations with

damping are established.

Keywords: Sturm, Leighton, Wirtinger, Damping, Hill’s Equation, Impulse.
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öz

İMPALSİF DİFERANSİYEL DENKLEMLERDE

STURM KARŞILAŞTIRMA TEORİLERİ

ÖZBEKLER, Abdullah

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Ağacık ZAFER

Aralık 2005, 72 sayfa

Bu tezde, impals etkisi sabit zamanlı impalsif diferansiyel denklemler için

Sturm tipi karşılaştırma teorisi ve salınımını araştırdık. İmpals etkilerinin,

çözümlerin davranışını önemli ölçüde değiştirebileceği gösterildi.

İkinci bölümde, Sturm tipi karşılaştırma sonuçlarıyla birlikte, lineer, yarı-

lineer ve kendine eşlenik olmayan denklemler için Leighton tipi karşılaştırma

teoremleri verdik ve Wirtinger tipi eşitsizlikler elde ettik. Damping terimli

kuvvetlendirilmiş süper lineer ve süper yarı-lineer denklemler için benzer

sonuçlar sunduk.

Üçüncü bölümde, lineer olmayan denklemlerin salınımı için yeterli

koşulları elde ettik. Salınım için aralık kritelerinin yanısıra integral orta-

lama, fonksiyon ortalama metodları ele alındı. Damping terimli İmpalsif

Hill denklemi ve kuvvetlendirilmiş lineer denklemler için salınım kriterleri

kanıtlandı.

Anahtar Kelimeler: Sturm, Leighton, Wirtinger, Damping Terim, Hill Denk-

lemi, İmpals.
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chapter 1

introduction and

preliminaries

1.1 Introduction

Many evolution process are characterized by the fact that they are subject

to short-time perturbation whose duration is negligible in comparison with

the duration of the process. This results in a sudden change of the state

of the process. For example, when a hammer hits a string which is already

oscillating, it experiences a rapid change of velocity; a pendulum of a clock,

meanwhile, undergoes a sudden change of momentum when it crosses its

equilibrium position; and so on.

For the description of the continuous change of such processes, ordinary

differential equations are used, while the short-time perturbations of those

processes are described by sudden changes of their states at certain times. It

becomes, therefore, necessary to study dynamical systems with discontinu-

ous trajectories, or with impulse effect, shortly as they are called, impulsive

differential equations, or sometimes, differential equations with impulse ac-

tions.

In the last a few decades the theory of impulsive differential equa-

tions has been developed very rapidly due to the fact that such equa-

tions find a wide range of applications modelling adequately many real

processes observed in modern technology, engineering, physics and biology,

etc. [2, 49, 56, 67, 68, 69, 72, 74, 86]. Moreover, impulsive differential equa-
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tions is richer in applications compared to the corresponding theory of or-

dinary differential equations. Many of the mathematical problems encoun-

tered in the study of impulsive differential equations cannot be treated with

the usual techniques within the standard framework of ordinary differential

equations. Numerous aspects of qualitative theory and the existence and

uniqueness theorems of solutions of impulsive differential equations subject

the initial conditions has been investigated in the monographs of Samoilenko

and Perestjuk [62], Bainov, Lakshmikantham and Simeonov [37], Bainov and

Simeonov [4, 5, 6].

The oscillation theory is one of the directions which initiated the investiga-

tions on the qualitative properties of the differential equations. Its occurrence

started with the classical works of Sturm [66] and Kneser [28, 29], and still

attracts attention of many mathematicians as they find various applications.

The attractiveness of the oscillation theory links rather strongly the oc-

currence of new objects to be investigated. Such fast development can be

observed in studying the oscillatory properties of the impulsive differential

equations. The paper of K. Gopalsamy and B. G. Zhang [12] is the first inves-

tigation on oscillatory properties of impulsive differential equations. In the

last decade D.D. Bainov, M. B. Dimitrova, Yu. I. Domshlak, E. I. Minchev,

J. Yan and P. S. Simeonov have studied the oscillatory properties of var-

ious classes of impulsive differential equations. The book by Bainov and

Simeonov [7] is the only source dealing with the subject.

The classical Sturmian comparison theory of second order ordinary dif-

ferential equations is known to be the basis for study of numerous important

properties of their solutions and, especially, of their oscillatory properties.

The principal improvement in this direction was achieved due to the results

of Sturmian theory (Sturm comparison theorem, oscillation and nonoscilla-

tion theorem, zeros separation theorem, dichotomy theorem) although many

of the more recent investigations (especially for nonlinear equations) are no

more based on this theory. The first investigation on Sturmian theory for sec-
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ond order impulsive differential equations was published in 1996, the paper

of Bainov, Domshlak and Simeonov [3](see also [7]).

In this thesis, we investigate Sturmian comparison theory and oscilla-

tion of solutions for second-order impulsive differential equations with fixed

moments of impulse actions. It is shown that impulse actions may greatly

change oscillatory behavior of solutions.

The comparison and oscillation property of solutions of second order equa-

tions is of special interest, and therefore, it has been the subject of many

investigations. The interest in this subject is due to the fact that many

physical systems are modelled by such equations.

The thesis is organized as follows: In chapter 2, besides Sturmian type

comparison results, we also give Leigtonian type comparison theorems and

obtain Wirtinger type inequalities for linear, half-linear and non self-adjoint

equations. We present analogous results for forced super linear and super

half-linear equations with damping. In chapter 3, we work on the oscillation

theory for nonlinear equations. Integral averaging, function averaging tech-

niques as well as interval criteria for oscillation are also discussed. Several

criteria for oscillation of impulsive Hill’s equation with periodic damping and

forced linear equations with damping are established.

1.2 Impulsive Differential Equations

The impulsive differential equations are adequate mathematical models

of processes and phenomena characterized by as continuous as jumpwise

changes of the phase variables describing the processes. The continuous

change is prescribed by the differential equation which can be ordinary one

or partial. The jumpwise change is prescribed by jump conditions which de-

termine the moments and magnitudes of the jumpwise (impulse) change of

some of the phase variables.
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In this thesis, it is assumed that

0 < θ1 < θ2 < . . . and lim
i→∞

θi =∞.

Let n ∈ N, I ⊂ R, and let the sequence {θi} be fixed. We denote by

PLC(I) the space of all functions ψ : I → R such that ψ is continuous for

all t 6= θi at which ψ(t) is continuous from left and has discontinuity of the

first kind. As usual by PLCn(I) we mean the space of functions ψ : I → R

such that ψ(k) ∈ PLC(I), k = 0, 1, 2, ..., n.

For ψ ∈ PLC(I), ∆ψ(t)|t=θi
denotes the jump at t = θi ∈ I, i.e.

∆ψ(θi) = ψ(θ+
i )− ψ(θ−i ),

where

ψ(θ±i ) = lim
h→0+

ψ(θi ± h).

Note that if ψ ∈ PLC(I) and ∆ψ(θi) = 0 for all i ∈ N, then ψ becomes

continuous and vice versa.

The mathematical model of a real process which experiences certain im-

pulses at fixed moments {θi} could be given by an impulsive differential

equation

x′ = f(t, x), t 6= θi;

∆x = Ii(x), t = θi, i ∈ N
(1.1)

where x′ = dx/dt. The function x = ψ(t) is said to be a solution of the

equation (1.1) on an interval J = (a, b) if ψ ∈ PLC1(J ) satisfies

ψ′(t) = f(t, ψ(t)), t 6= θi

and

ψ(θ+
i )− ψ(θ−i ) = Ii(ψ(θ

−
i )), θi ∈ J .

An initial condition

x(t0) = x0 or x(t+0 ) = x0, (1.2)

can be associated with equation (1.1). For basic theory of initial value prob-

lems (1.1) and (1.2), we refer to [5, 6, 62].
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chapter 2

sturmian comparison theory

2.1 Introduction

Although numerous aspects of qualitative theory are contained in the

monographs [37, 62], there appears to be less known about the oscillation

theory, especially the Sturmian theory, of impulsive differential equations

when compared to equations without impulses. Therefore, our objective is to

make a contribution to the impulsive differential equations in this direction.

Specifically, we are interested in a Picone’s formula so as to obtain comparison

theorems of Leighton and Sturm-Picone types for second order impulsive

differential equations.

Sturmian type comparison theorems for linear equations without impulse

effect are very classical and well known [16, 18, 70]. However, there is hardly

any result for impulsive equations.

Consider the second order linear ordinary differential equations

l[x] = (k(t)x′)′ + p(t)x = 0, (2.1)

L[y] = (m(t)y′)′ + q(t)y = 0 (2.2)

where k, p,m, q ∈ C(J), J ⊂ R. The classical Sturmian comparison theorem

asserts that, if equation (2.1) has a nontrivial solution x(t) with two zeros t1

and t2 in J , t1 < t2, under the assumption that k(t) ≥ m(t) and q(t) ≥ p(t)

for t ∈ [t1, t2], then every nontrivial solution y(t) of equation (2.2) has a zero

in (t1, t2) unless y(t) is a constant multiple of x(t).

The proof of the well-known Sturm-Picone comparison theorem given by

Picone [59] in 1909 (see also [30, 31, 70, 71]) was based on employing the

5



Picone’s formula

x

y
(ykx′ − xmy′)

∣∣∣∣
b

a

=

∫ b

a

[
(k −m)(x′)2 + (q − p)x2 +m(x′ −

x

y
y′)2

+
x

y
{yl[x]− xL[y]}

]
dt (2.3)

which holds for all real valued functions x and y defined on an interval [a, b]

such that x, y, kx′ and my′ are differentiable on [a, b] and y 6= 0 for t ∈ [a, b].

The formula (2.3) has also been used for establishing Wirtinger type inequal-

ities for solutions of ordinary differential equations [30, 70], and generalized

to linear non self-adjoint equations [30, p. 11].

Recently, Jaroš and Kusano [22] have shown that Picone’s identity (2.3)

can be generalized to the half-linear equations

lα[x] = (k(t)ϕα(x
′))′ + p(t)ϕα(x) = 0, (2.4)

Lα[y] = (m(t)ϕα(y
′))′ + q(t)ϕα(y) = 0, (2.5)

where ϕα(s) = |s|
α−1s and α is a positive constant. The generalized Picone’s

identity is written as follows:

d

dt

{
x

ϕα(y)

[
ϕα(y)k(t)ϕα(x

′)− ϕα(x)m(t)ϕα(y
′)

]}

= [k(t)− p(t)]|x′|α+1 + [q(t)− p(t)]|x|α+1 +m(t) Φα

(
x′, xy′/y

)

+
x

ϕα(y)

{
ϕα(y) lα[x]− ϕα(x)Lα[y]

}
(2.6)

where

Φα(u, v) := uϕα(u) + α v ϕα(v)− (α + 1)uϕα(v). (2.7)

There were several attempts to extend Picone’s formula to nonlinear equa-

tions (see, for instance, [14]). Jaroš, Kusano and Yoshida [23, 24] showed

how Picone’s formula can be used, rather surprising but simple way, to ex-

tend the classical Sturm theory to forced super-linear and super half-linear

equations. In [24], they compared the solutions of (2.4) with those of

(m(t)ϕα(y
′))′ + q(t)ϕβ(y) = f(t), β ≥ α > 0 (2.8)

6



by employing

d

dt

{
x

ϕα(y)

[
ϕα(y) k ϕα(x

′)− ϕα(x)mϕα(y
′)

]}
= (k −m)|x′|α+1

+

{
q|y|β−α −

f

ϕα(y)
− p

}
|x|α+1 +mΦα(x

′, xy′/y). (2.9)

The first investigation on oscillatory properties of impulsive differential

equations is due by Gopalsamy and Zhang [12]. Later, several investiga-

tions have been done for various classes of impulsive differential equations,

see [3, 8, 12, 17, 50, 63] and references cited therein. As far as the Sturmian

theory is concerned, to the best of our knowledge, the first work has appeared

in the literature in 1996, in which Bainov, Domshlak and Simeonov [3] studied

the Sturmian comparison theory for second order linear impulsive differential

equations of the form

x′′ + p(t)x = 0, t 6= θi;

∆x′ + pi x = 0, t = θi.
(2.10)

They proved theorems on linear dependence, zeros-separation, dichotomy,

oscillation, and nonoscillation of solutions of linear impulsive equations.

In this chapter, we obtain some analogous results in [3]. In Section 2.2,

we deal with linear and half-linear impulsive equations. In Section 2.3, we

obtain some analogous results for non self-adjoint impulsive equations and

in the last section we extend the previous results to forced super half-linear

impulsive equations with damping. Examples are also provided to illustrate

the results.

2.2 Linear and Half-Linear Equations

It is well-known that the Sturmian theory for linear and half-linear differ-

ential equations plays an important role in the study of qualitative behavior

of solutions of both linear and nonlinear equations.

7



Consider half-linear equations of the form

(k(t)ϕα(x
′))′ + p(t)ϕα(x) = 0, t 6= θi;

∆(k(t)ϕα(x
′)) + piϕα(x) = 0, t = θi.

(2.11)

and

(m(t)ϕα(y
′))′ + q(t)ϕα(y) = 0, t 6= θi;

∆(m(t)ϕα(y
′)) + qiϕα(y) = 0, t = θi

(2.12)

where α is a positive constant, {pi}, {qi} and {θi} are real sequences with

θ1 > t0 for some fixed t0 ∈ R, and k,m, p, q ∈ PLC[t0,∞) with k(t) > 0 and

m(t) > 0.

Note that the above equations become linear if α = 1.

By a solution x(t) of (2.11) on an interval J ⊂ [t0,∞) we mean a nontrivial

continuous function x(t) defined on J such that k(t)ϕα(x
′) ∈ PLC1(J) and

x(t) satisfies (2.11). A solution y(t) of (2.12) is defined in a similar manner.

The existence and uniqueness of the solutions of (2.4) subject the initial

condition has been investigated by Elbert [11], Kusano and Kitano [32].

The purpose of this section is to obtain some Sturmian type comparison

theorems for both linear and half-linear impulsive differential equations. By

applying the results, several oscillation criteria are also established.

The pioneering works of Elbert [11] and Mirzov [54] showed that there

is a striking similarity between linear and half-linear equations without im-

pulse, showing that many results in the Sturmian comparison and oscillation

theory for linear equations can be carried over almost literatim and verbatim

to half-linear equation, see e.g. [22, 44]. Motivated by this we attempt to

obtain analogous comparison results for second order half-linear impulsive

differential equations.

In order to prove our results, we need the following well-known inequality.

Lemma 2.2.1. [15] Let A,B ∈ R and β > 0 be a constant, then Φβ(A,B)

defined by (2.7) satisfies

Φβ(A,B) ≥ 0, (2.13)

8



where equality holds if and only if A = B.

Our first result is the following Sturm-Picone type comparison theorem.

Theorem 2.2.2 (Sturm-Picone type comparison). Let x(t) be a solution

of (2.11) having two consecutive zeros a and b in J . Suppose that p(t) ≤ q(t)

and m(t) ≤ k(t) are satisfied for all t ∈ [a, b], and that pi ≤ qi for all i ∈ N

for which θi ∈ [a, b]. If either p(t) 6≡ q(t) or k(t) 6≡ m(t) or pi 6≡ qi, then any

solution y(t) of (2.12) must have at least one zero in (a, b).

Proof. Assume that y(t) never vanishes on (a, b). Define

u(t) :=
x

ϕα(y)

[
ϕα(y)k(t)ϕα(x

′)− ϕα(x)m(t)ϕα(y
′)

]
, (2.14)

where the dependence on t of x and y are suppressed. It is not difficult to

see that

u′(t) = [k(t)− p(t)]|x′|α+1 + [q(t)− p(t)]|x|α+1

+m(t) Φα

(
x′, xy′/y

)
, t 6= θi (2.15)

∆u(t) = (qi − pi)|x|
α+1, t = θi. (2.16)

The last term of (2.15) is integrable over (a, b) if y(a) 6= 0 and y(b) 6= 0.

Moreover, u(a+) = u(b−) = 0 in this case. Suppose that y(a+) = 0. The

case y(b−) = 0 is similar. Since y′(a+) 6= 0 and

lim
t→a+

x(t)

y(t)
= lim

t→a+

x′(t)

y′(t)
<∞,

we get

lim
t→a+

ϕα

(
x(t)

y(t)

)
<∞,

and so

lim
t→a+

Φα

(
x′, xy′/y

)
= lim

t→a+

[
x′ϕα(x

′) + α

(
x

y

)
ϕα

(
x

y

)
y′ϕα(y

′)

−(α + 1)x′ϕα(y
′)ϕα

(
x

y

)]
<∞.

9



Moreover,

lim
t→a+

u(t) = lim
t→a+

x

[
k(t)ϕα(x

′)−m(t)ϕα

(
x

y

)
ϕα(y

′)

]
= 0.

Integrating (2.15) from a to b and using (2.16), we see that

0 =

∫ b

a

{
[k(t)−m(t)]|x′|α+1 + [q(t)− p(t)]|x|α+1

}
dt

+

∫ b

a

m(t)Φα

(
x′, xy′/y

)
dt+

∑

a≤θi<b

(qi − pi)|x(θi)|
α+1. (2.17)

It is clear that (2.17) is not possible under our assumptions and Lemma 2.2.1

with u = x′ and v = xy′/y, and hence y(t) must have a zero in (a, b).

Corollary 2.2.3. The zeros of two linearly independent solutions x(t) and

y(t) of (2.11) separate each other.

Proof. Let a and b be two consecutive zeros of x(t). Assume that y(t) never

vanishes on (a, b). Then, in view of (2.17), we see that

0 =

∫ b

a

k(t) Φα

(
x′, xy′/y

)
dt. (2.18)

Since x(t) and y(t) are linearly independent, (2.18) leads to a contradiction

due to Lemma 2.2.1. Therefore y(t) must have a zero in (a, b). Moreover,

y(t) cannot have more than one zero in (a, b) as a and b are consecutive zeros

of x(t).

Definition 2.2.4. A nontrivial function ξ(t) is called oscillatory if it has ar-

bitrarily large zeros. Otherwise, ξ(t) is said to be nonoscillatory. A nonoscil-

latory function is either eventually positive or eventually negative, i.e. there

exists a t∗ ∈ R such that ξ(t) 6= 0 for all t > t∗. A differential equation is

called oscillatory if every solution of the equation is oscillatory and nonoscil-

latory if it has at least one nonoscillatory solution.

10



Corollary 2.2.5. Suppose that p(t) ≤ q(t) and m(t) ≤ k(t) are satisfied for

all t ∈ [t∗,∞) for some t∗ ≥ t0, and that pi ≤ qi for all i ∈ N for which

θi ≥ t∗. If either p(t) 6≡ q(t) or k(t) 6≡ m(t) or pi 6≡ qi, then every solution

y(t) of (2.12) is oscillatory whenever a solution x(t) of (2.11) is oscillatory.

Corollary 2.2.6. The solutions of (2.11) are either all oscillatory or all

nonoscillatory.

Theorem 2.2.7 (Leighton-type comparison). Let x(t) be a solution of

(2.11) having two consecutive zeros a and b in J . Suppose that

Vα[x] :=

∫ b

a

{
[k(t)−m(t)]|x′(t)|α+1 + [q(t)− p(t)]|x(t)|α+1

}
dt

+
∑

a≤θi<b

(qi − pi)|x(θi)|
α+1 > 0.

Then any nontrivial solution y(t) of (2.12) must have at least one zero in

(a, b).

Proof. Assume that y(t) has no zero in (a, b). Define the function u(t) as in

(2.14). Clearly, (2.15) and (2.16) hold. It follows that

0 = u(b−)− u(a+)

=

∫ b

a

{
[k(t)−m(t)]|x′(t)|α+1 + [q(t)− p(t)]|x(t)|α+1

}
dt

+

∫ b

a

m(t) Φα

(
x′, xy′/y

)
dt+

∑

a≤θi<b

(qi − pi)|x(θi)|
α+1,

and that

Vα[x] = −

∫ b

a

m(t) Φα

(
x′, xy′/y

)
dt ≤ 0,

which is a contradiction. Therefore, y(t) must have a zero on (a, b).

If Vα[x] ≥ 0 then we may conclude that either y(t) has a zero in (a, b) or

y(t) is a constant multiple of x(t). As a consequence of Theorem 2.2.2 and

Theorem 2.2.7, we have the following oscillation result.
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Corollary 2.2.8. Suppose for a given T ≥ t∗ there exists an interval (a, b) ⊂

[T,∞) for which either the conditions of Theorem 2.2.2 or Theorem 2.2.7 are

satisfied, then every solution y(t) of (2.12) is oscillatory.

Example 2.2.9. Consider

x′′ − a2x = 0, t 6= i, (i ∈ N)

∆x′ + 2a coth (a/2)x = 0, t = i
(2.19)

where a > 0 is a fixed real number. It is not difficult to see that x(t) = xi(t),

xi(t) =
(−1)i+1

ea − 1

{
ea(t−i+1) − ea(i−t)

}
, t ∈ (i− 1, i],

is a solution defined on [1/2,∞). Clearly, this solution is oscillatory with

zeros at ti = (2i− 1)/2, i ∈ N. From Corollary 2.2.6, we may conclude that

all solutions of (2.19) are oscillatory. Applying Theorem 2.2.2 we deduce that

if there exists an n0 ∈ N such that

0 < m(t) ≤ 1, q(t) ≥ −a2, qi ≥ 2a coth (a/2)

for all t ≥ n0, and all i ≥ n0, where a is any positive real number, then (2.12)

with α = 1 and θi = i is oscillatory.

The lemma below, cf. [3, Lemma 1], provides more choices of test equa-

tions which can be used for comparison purposes.

Lemma 2.2.10. Let ψ be a positive and continuous function for t ≥ a with

ψ′ ∈ PLC1[a,∞), where a is a fixed real number, and k ∈ PLC2[a,∞). Then

the function x(t) =
1√

k(t)ψ(t)
sin

(∫ t

a

ψ(s)ds

)
is a solution of

(k(t)x′)′ + p(t)x = 0, t 6= θi, (i ∈ N)

∆k(t)x′ + pix = 0, t = θi
(2.20)

where

p(t) =
1

2
k′′(t)−

(k′(t))2

4k(t)
+ k(t)

[
ψ′′(t)

2ψ(t)
+ ψ2(t)−

3

4

(
ψ′(t)

ψ(t)

)2 ]

pi =
1

2ψ(θi)

[
ψ(θi)∆k

′(θi) + k(θi)∆ψ
′(θi)

]
.
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It is obvious that if

∫ ∞

a

ψ(t) dt =∞ then x(t) is oscillatory.

By choosing specific functions, we may obtain several oscillation criteria

for equation (2.12) with α = 1.

Example 2.2.11. Let k(t) = t2/4, ψ(t) =
2i− t

i(i+ 1)
, i− 1 < t ≤ i, (i ∈ N).

We see that

x(t) =
2

t
√
ψ(t)

sin

(∫ t

a

ψ(s)ds

)

is an oscillatory solution of

(t2x′)′ + t2
[(

2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
x = 0, t 6= i;

∆(t2x′) +
i

i+ 2
x = 0, t = i.

In view of Theorem 2.2.2 we easily see that every solution of (2.12) with

α = 1 and θi = i is oscillatory if there exists an n0 ∈ N such that

m(t) ≤ t2, q(t) ≥ t2

[(
2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2
]
, qi ≥

i

i+ 2

for all t ∈ (i− 1, i] and i ≥ n0.

The generalized sine function S(t) is defined [11] as the unique solution

of

(|u′|α−1u′)′ + α|u|α−1u = 0, u(0) = 0, u′(0) = 1,

where α > 0 is a fixed real number. We note that the generalized cosine

function C(t) is then defined by C(t) = S ′(t), and the generalized tangent

function T (t) becomes

T (t) =
S(t)

C(t)
, t 6=

πα
2

(mod πα), πα =
2π

α + 1

/
sin

π

α + 1
.

Lemma 2.2.12. Let ψ be a positive and continuous function defined for t ≥ a

with ψ′ ∈ PLC1[a,∞), where a is a fixed real number. If limt→∞ ψ(t) = ∞,
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then x(t) = S
{
ψβ(t)

}
, with β = α/(α + 1), is an oscillatory solution of

(2.11) where

k(t) = ψβ(t),

p(t) = αβα+1 ψ−β/α(t) |ψ′(t)|α+1 − αβα
|ψ′(t)|α−1ψ′′(t)

ϕα(T (ψβ(t)))
,

pi = −β
α ∆ϕα(ψ

′(θi))

ϕα(T (ψβ(θi)))
.

The proof of the above Lemma can be accomplished by a direct substi-

tution. Using Lemma 2.2.12, we obtain the following particular case.

Example 2.2.13. Let ξi = 22i−2(i− 1)!2/(2i− 1)! for i ∈ N. Consider

((t+ i)β ξβi ϕα(x
′))′ + αβα+1 (t+ i)−β/α ξ

β(α+2)
i ϕα(x) = 0, t 6= i;

∆[(t+ i) ξi]
β ϕα(x

′) + (β ξi)
α (2i+ 1)α − (2i)α

(2i+ 1)α ϕα(T ((2i ξi)β))
ϕα(x) = 0, t = i

where β = α(α + 1)−1. Clearly ψ(t) = (t + i) ξi and so by Lemma 2.2.12,

x(t) = S
{
(t+ i)β ξβi

}
is an oscillatory solution.

Applying Theorem 2.2.2 we easily see that every solution of (2.12) with

θi = i is oscillatory if there exists an n0 ∈ N such that for all i ≥ n0,

m(t) ≤ (t+ i)β ξβi , t ∈ (i− 1, i],

q(t) ≥ αβα+1 (t+ i)−β/α ξ
β(α+2)
i , t ∈ (i− 1, i],

qi ≥ (β ξi)
α (2i+ 1)α − (2i)α

(2i+ 1)α ϕα(T ((2i ξi)β))
.

As in the classical case we may employ the Sturmian comparison theory to

establish sufficient conditions for oscillation of second order nonlinear impul-

sive equations of the form

(m(t)ϕα(x
′))′ + f(t, x, x′) = 0, t 6= θi;

∆(m(t)ϕα(x
′)) + fi(x, x

′) = 0, t = θi
(2.21)

where f(t, u, v) and fi(u, v), i ∈ N, are real valued continuous functions

defined for all t ≥ t0 ≥ 0 and for all for all (u, v) ∈ R
2, m, ϕα, and {θi} are

as previously defined.
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Theorem 2.2.14. Suppose that

(k(t)ϕα(y
′))′ + q(t)ϕα(y) = 0, t 6= θi;

∆(k(t)ϕα(y
′)) + qi ϕα(y) = 0, t = θi

(2.22)

is oscillatory. If k(t) ≥ m(t) and

ϕα(u) f(t, u, v) ≥ q(t)ϕ2
α(u), ϕα(u) fi(u, v) ≥ qi ϕ

2
α(u) (2.23)

for all t ≥ t0 and for all (u, v) ∈ R
2, then every solution of (2.21) is also

oscillatory.

Proof. Let us assume on the contrary that there exists a nonoscillatory solu-

tion w(t) of (2.21) while every solution of (2.22) is oscillatory. Consider the

impulsive system

(m(t)ϕα(y
′))′ + p(t)ϕα(y) = 0, t 6= θi;

∆(m(t)ϕα(y
′)) + pi ϕα(y) = 0, t = θi

(2.24)

where

p(t) =
f(t, w(t), w′(t))

ϕα(w(t))
, pi =

fi(w(θi), w
′(θi))

ϕα(w(θi))
.

Clearly, w(t) is also solution of (2.24). Let x(t) be a solution of (2.22) such

that x(a) = x(b) = 0 and x(t) > 0 for all t ∈ (a, b), where a ≥ t0 is sufficiently

large. Since m(t) ≤ k(t) by our hypothesis and q(t) ≤ p(t) for t ≥ t0, and

qi ≤ pi for all i ∈ N for which θi ≥ t0 by (2.23), we may apply Theorem 2.2.2

to deduce that w(t) must have a zero in (a, b), which is a contradiction.

If α = 1 and k(t) ≡ 1 then the above result reduces to Theorem 13 in

[3].

2.3 Non-Selfadjoint Equations

Consider the second order linear impulsive differential equations of the

form

l[x] = (k(t)x′)′ + r(t)x′ + p(t)x = 0, t 6= θi;

l0[x] = ∆(k(t)x′) + pi x = 0, t = θi
(2.25)
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and

L[y] = (m(t)y′)′ + s(t)y′ + q(t)y = 0, t 6= θi;

L0[y] = ∆(m(t)y′) + qi y = 0, t = θi,
(2.26)

where {pi}, {qi} and {θi} are real sequences with θ1 > t0 for some fixed

t0 ∈ R, and that k, m, r, s, p, q ∈ PLC(I) with k(t) > 0 and m(t) > 0 for

all t ∈ I ⊂ [t0,∞).

By a solution of (2.25) on an interval I we mean a nontrivial continuous

function x(t) defined on I such that x′ ∈ PLC(I), kx′ ∈ PLC1(I), and x(t)

satisfies (2.25). It is not difficult to see that such solutions exist.

In this section, our purpose is to modify (2.3) and thereby extend the

results in [30] to linear impulsive differential equations with damping and

also generalize some of the results given in [3]. In particular, we establish a

Wirtinger type inequality and a Leighton type comparison theorem together

with some oscillation criteria for linear non-selfadjoint equations.

Let I0 be a nondegenerate subinterval of I. In what follows we shall make

use of the following condition:

k(t) 6= m(t) whenever r(t) 6= s(t), t ∈ I0. (H)

It is well known that condition (H) is crucial in obtaining a Picone’s formula

in the case when impulses are absent. If (H) fails to hold then Wirtinger,

Leighton, and Sturm-Picone type results require employing a so called ”de-

vice of Picard”. We will show how this is possible for impulsive differential

equations as well.

Let (H) be satisfied. Suppose that x and y are continuous functions

defined on I0 such that x′, y′ ∈ PLC(I0) and kx′,my′ ∈ PLC1(I0). These

simply mean that x and y are in the domain of l, l0 and L,L0, respectively.

If y(t) 6= 0 for any t ∈ I0, then we may define

w(t) =
x(t)

y(t)
[y(t)k(t)x′(t)− x(t)m(t)y′(t)] for t ∈ I0.

16



For clarity we suppress the variable t. Clearly,

w′ = (k −m)(x′)2 + (q − p)x2 +m(x′ −
x

y
y′)2 + x2 sy

′

y
− rxx′

+
x

y
{yl[x]− xL[y]}, t 6= θi; (2.27)

∆w = x {l0[x]− pix} −
x2

y
{L0[y]− qiy}, t = θi. (2.28)

In view of (2.25) and (2.26) it is not difficult to see, cf.[30], from (2.27) and

(2.28) that

w′ = (k −m)(x′)2 + (q − p)x2 +m(x′ −
xy′

y
)2 − sx(x′ −

xy′

y
)

+ (s− r)xx′ +
x

y
{yl[x]− xL[y]}, t 6= θi

=

{
q − p−

(s− r)2

4(k −m)
−

s2

4m

}
x2 + (k −m)

{
x′ +

(s− r)

2(k −m)
x

}2

+
m

y2

(
x′y − xy′ −

s

2m
xy

)2

+
x

y
{yl[x]− xL[y]}, t 6= θi (2.29)

and

∆w = (qi − pi)x
2 +

x

y
{yl0[x]− xL0[y]}, t = θi. (2.30)

Employing the identity

w(β)− w(α) =

∫ β

α

w′(t) dt+
∑

α≤ θi<β

∆w(θi),

we easily obtain the following Picone’s formula.

Theorem 2.3.1 (Picone’s formula). Let (H) be satisfied. Suppose that x

and y are continuous functions defined on I0 such that x′, y′ ∈ PLC(I0) and
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kx′,my′ ∈ PLC1(I0). If y(t) 6= 0 for any t ∈ I0, and [α, β] ⊆ I0 then

x

y
(ykx′ − xmy′)

∣∣∣∣
β

α

=

∫ β

α

{[
q − p−

(s− r)2

4(k −m)
−

s2

4m

]
x2

+(k −m)

{
x′ +

(s− r)

2(k −m)
x

}2

+
m

y2

(
x′y − xy′ −

s

2m
xy

)2

(2.31)

+
x

y
{yl[x]− xL[y]}

}
dt+

∑

α≤ θi<β

[
(qi − pi) x

2 +
x

y
{yl0[x]− xL0[y]}

]
.

In a similar manner we derive a Wirtinger type inequality.

Theorem 2.3.2 (Wirtinger type inequality). If there exists a solution

x of (2.25) such that x 6= 0 on (a, b), then

W [η] :=

∫ b

a

{
p η2−k

(
η′−

r

2k
η

)2}
dt+

∑

a≤θi<b

pi η
2 ≤ 0, η ∈ Ωrk, (2.32)

where

Ωrk =
{
η ∈ C[a, b] : rη′ ∈ PLC[a, b], kη′ ∈ PLC1[a, b], η(a) = η(b) = 0

}
.

Proof. Let x be a solution of (2.25) such that x(t) 6= 0 for any t ∈ (a, b).

Setting m ≡ k, q ≡ p, s ≡ r, and qi = pi, replacing x by η and y by x in

(2.27) and (2.28) we see that

w′ = k(η′ −
η

x
x′)2 + η2 rx

′

x
− rηη′ + ηl[η], t 6= θi

= η(kη′)′ +
(
p−

r2

4k

)
η2 + rηη′ +

k

x2
(η′x− ηx′ −

rηx

2k
)2, t 6= θi (2.33)

and

∆w = η{∆(kη′) + piη}, t = θi, (2.34)

It is clear that if x(a+) 6= 0 and x(b−) 6= 0, then the last term in (2.33) is

integrable over (a, b). If x(a+) = 0, then since x′(a+) 6= 0 (otherwise, we

have only the trivial solution) it follows that

lim
t→a+

{
η′(t)x(t)− η(t)x′(t)

x(t)
−
r(t)η(t)

2k(t)

}
= η′(a+)− η′(a+)−

r(a+)η(a+)

2k(a+)
= 0.
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The same argument applies if x(b−) = 0. Thus, the last term in (2.33) is

integrable on (a, b).

We now claim that w(a+) = w(b−) = 0. Let us consider w(a+) = 0. The

case w(b−) = 0 is similar. If x(a+) 6= 0, then we certainly have w(a+) = 0.

In case x(a+) = 0, it follows from

lim
t→a+

η(t)

x(t)
= lim

t→a+

η′(t)

x′(t)
<∞

that

w(a+) = lim
t→a+

η(t)

x(t)

{
k(t)η′(t)x(t)− k(t)η(t)x′(t)

}
= 0.

Integrating (2.33) over (a, b) and using (2.34) we see that

∫ b

a

η(kη′)′ dt+

∫ b

a

{(
p−

r2

4k

)
η2 + rηη′

}
dt

+

∫ b

a

k

x2

{
η′x− ηx′ −

r

2k
η x

}2

dt+
∑

a≤ θi<b

η{∆(kη′) + piη} = 0.

Applying the integration by parts formula to the first integral leads to

W [η] = −

∫ b

a

k

x2

{
η′x− ηx′ −

r

2k
η x

}2

dt ≤ 0.

As a corollary we have the following criterion on the existence of a zero of

a solution of (2.25). This result may be considered as an extension of Lemma

1.3 in [70].

Corollary 2.3.3. If there exists an η ∈ Ωrk such that W [η] > 0 then every

solution x of (2.25) has a zero in (a, b).

As an immediate consequence of Corollary 2.3.3, we have the following

oscillation result.
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Corollary 2.3.4. Suppose for any given t1 ≥ t0 there exists an interval

(a, b) ⊂ [t1,∞) and a function η ∈ Ωrk for which W [η] > 0, then (2.25) is

oscillatory.

Next, we provide a Leighton type comparison result between nontrivial

solutions of (2.25) and (2.26), which may be considered as an extension of

the classical comparison theorem of Leighton [38, Corollary 1].

Theorem 2.3.5 (Leighton type comparison). Suppose that there exists

a solution x ∈ Ωrk of (2.25). If (H) is satisfied with (a, b) ⊂ I0 and

L[x] :=

∫ b

a

{[
q − p−

(s− r)2

4(k −m)
−

s2

4m

]
x2 + (k −m)

[
x′ +

s− r

2(k −m)
x

]2}
dt

+
∑

a≤ θi<b

(qi − pi) x
2 > 0, (2.35)

then every solution y of (2.26) must have at least one zero in (a, b).

Proof. Let α = a+ ε and β = b− ε ∈ I0. Since x and y are solutions of (2.25)

and (2.26) respectively, we have l[x] ≡ l0[x] ≡ L[y] ≡ L0[y] ≡ 0. Employing

Picone’s formula (2.31) we see that

x

y
(ykx′ − xmy′)

∣∣∣∣
b−ε

a+ε

=

∫ b−ε

a+ε

[{
q − p−

(s− r)2

4(k −m)
−

s2

4m

}
x2

+(k −m)

{
x′ +

(s− r)

2(k −m)
x

}2

+
m

y2

{
x′y − xy′ −

s

2m
xy

}2]
dt

+
∑

a+ε≤ θi<b−ε

(qi − pi)x
2. (2.36)

As in the proof of Theorem 2.3.2, the functions under integral sign are all

integrable and regardless of the values of y(a) or y(b), left-hand side of (2.36)

tends to zero as ε→ 0+. Clearly (2.36) results in

L[x] ≤ 0,

a contradiction to (2.35).
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Corollary 2.3.6 (Sturm-Picone type comparison). Let x be a solution

of (2.25) having two consecutive zeros a, b ∈ I0. Suppose (H) holds, and

k ≥ m, (2.37)

q ≥ p+
(s− r)2

4(k −m)
+

s2

4m
(2.38)

for all t ∈ [a, b], and

qi ≥ pi (2.39)

for all i ∈ N for which θi ∈ [a, b].

If either (2.37) or (2.38) is strict in a subinterval of [a, b] or (2.39) is

strict for some i ∈ N, then every solution y of (2.26) must have at least one

zero on (a, b).

We note that, if there is no impulse then we recover Theorem 2.1 in [30].

Corollary 2.3.7. Suppose that conditions (2.37)-(2.38) are satisfied for all

t ∈ [t∗,∞) for some integer t∗ ≥ t0, and that (2.39) is satisfied for all i ∈ N

for which θi ≥ t∗. If one of the inequalities (2.37)–(2.39) is strict then (2.26)

is oscillatory whenever any solution x of (2.25) is oscillatory.

As a consequence of Theorem 2.3.5 and Corollary 2.3.6, we have the

following oscillation result.

Corollary 2.3.8. Suppose for any given t1 ≥ t0 there exists an interval

(a, b) ⊂ [t1,∞) for which either the conditions of Theorem 2.3.5 or Corollary

2.3.6 are satisfied, then (2.26) is oscillatory.

If (H) does not hold, we introduce a setting which is based on a device of

Picard [58] (see also [30, p. 12]) and leads to different versions of Corollary

2.3.6. Indeed, for any h ∈ PLC1(I) we have

d

dt
(x2h) = 2xx′h+ x2h′, t 6= θi.
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Let

v :=
x

y
(ykx′ − xmy′) + x2h, t ∈ I.

It follows that

v′ =

{
q − p+ h′ −

(s− r + 2h)2

4(k −m)
−

s2

4m

}
x2 + (k −m)

{
x′ +

s− r + 2h

2(k −m)
x

}2

+
m

y2

{
x′y − xy′ −

s

2m
xy

}2

, t 6= θi;

∆v = (qi − pi) x
2 + x2 ∆h, t = θi.

Assuming that r, s ∈ PLC1(I), the choice of h = (r − s)/2 yields

v′ = (k −m)(x′)2 +

{
q − p−

s′ − r′

2
−

s2

4m

}
x2

+
m

y2

{
x′y − xy′ −

s

2m
xy

}2

, t 6= θi;

∆v =

{
qi − pi −

1

2

(
∆s−∆r

)}
x2, t = θi.

Then, we have the following result.

Theorem 2.3.9 (A Device of Picard). Let r, s ∈ PLC1(I) and x be a

solution of (2.25) having two consecutive zeros a and b in I. Suppose that

k ≥ m, (2.40)

q ≥ p+
1

2
(s′ − r′) +

s2

4m
(2.41)

are satisfied for all t ∈ [a, b], and that

qi ≥ pi +
1

2

(
∆s−∆r

)
(2.42)

for all i ∈ N for which θi ∈ [a, b].

If either (2.40) or (2.41) is strict in a subinterval of [a, b] or (2.42) is

strict for some i, then any solution y of (2.26) must have at least one zero

in (a, b).
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Corollary 2.3.10. Suppose that (2.40)-(2.41) are satisfied for all t ∈ [t∗,∞)

for some integer t∗ ≥ t0, and that (2.42) is satisfied for all i ∈ N for which

θi ≥ t∗. If r, s ∈ PLC1[t∗,∞) and one of the inequalities (2.40)-(2.42) is

strict, then (2.26) is oscillatory whenever any solution x of (2.25) is oscilla-

tory.

As a consequence of Theorem 2.3.9, we have the following Leighton type

comparison result which is analogous to Theorem 2.3.5.

Theorem 2.3.11 (Leighton type comparison). Let r, s ∈ PLC1[a, b]. If

there exists a solution x ∈ Ωrk of (2.25) such that

L[x] :=

∫ b

a

{(
k −m

) (
x′
)2

+

[
q − p−

1

2
(s′ − r′)−

s2

4m

]
x2

}
dt

+
∑

a≤θi<b

{
qi − pi −

1

2

(
∆s−∆r

)}
x2 > 0,

then every solution y of (2.26) must have at least one zero in (a, b).

As a consequence of Theorem 2.3.9 and Theorem 2.3.11, we have the

following oscillation result.

Corollary 2.3.12. Suppose for any given t1 ≥ t0 there exists an interval

(a, b) ⊂ [t1,∞) for which either the conditions of Theorem 2.3.9 or Theorem

2.3.11 are satisfied, then (2.26) is oscillatory.

Moreover, it is possible to obtain results for (2.26) analogous to Theorem

2.3.2 and Corollary 2.3.3.

Theorem 2.3.13 (Wirtinger type inequality). If there exists a solution

y of (2.26) such that y 6= 0 on (a, b), then for s ∈ PLC1[a, b] and for all

η ∈ Ωsm

W [η] :=

∫ b

a

{(
q −

s2

2m
−
s′

2

)
η2 −m(η′)2

}
dt+

∑

a≤θi<b

(
qi −

1

2
∆s
)
η2 ≤ 0.
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Corollary 2.3.14. If there exists an η ∈ Ωsm with s ∈ PLC1[a, b] such that

W [η] > 0 then every solution y of (2.26) must have at least one zero in (a, b).

As an immediate consequence of Corollary 2.3.14, we have the following

oscillation result.

Corollary 2.3.15. Suppose for any given t1 ≥ t0 there exists an interval

(a, b) ⊂ [t1,∞) and a function η ∈ Ωsm with s ∈ PLC1(I) for which W [η] >

0, then (2.26) is oscillatory.

Example 2.3.16. Consider

x′′ − 2cx′ + c2x = 0, t 6= i, (i ∈ N)

∆x′ + 2(1 + coth c)x = 0, t = i
(2.43)

where c is a fixed real number. It is easy to verify that x(t) = xi(t), where

xi(t) = (−1)i ec (t−i)+1
{
(ec + 1)(i− t)− 1

}
, t ∈ (i− 1, i], (i ∈ N)

is a continuous solution of (2.43). Clearly, this solution is oscillatory with

zeros at ti = i− (ec + 1)−1, i ∈ N.

Note that if the impulse conditions are dropped then the equation has no

oscillatory solution.

Applying Corollary 2.3.7 and Corollary 2.3.10 we get the following oscil-

lation criteria (a) and (b), respectively.

(a) If there exists an n0 ∈ N such that

k(t) ≤ 1

k(t) < 1 whenever r(t) 6= −2c,

p(t) ≥ c2 +
{r(t) + 2c}2

4{1− k(t)}
+
r2(t)

4k(t)

pi ≥ 2(1 + coth c)

for all t ≥ n0, and for all i ≥ n0, then (2.25) with θi = i is oscillatory.
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(b) If there exists an n0 ∈ N such that

k(t) ≤ 1

p(t) ≥ c2 +
r′(t)

2
+
r2(t)

4k(t)

pi ≥ 2(1 + coth c) +
1

2
∆r(i)

for all t ≥ n0, and for all i ≥ n0, then (2.25) with θi = i is oscillatory.

The lemma below, cf. [3, Lemma 1.] can be proved directly.

Lemma 2.3.17. Let ψ be a positive and continuous function for t ≥ a

with ψ′ ∈ PLC1[a,∞), where a is a fixed real number. Suppose that

k ∈ PLC2[a,∞) and r ∈ PLC1[a,∞). Then the function

x(t) =
1√

k(t)ψ(t)
exp

(
−

1

2

∫ t

a

r(s)

k(s)
ds

)
sin

(∫ t

a

ψ(s)ds

)
, t ≥ a (2.44)

is a solution of (2.25) where

p(t) =
1

2

{
k′′(t) + r′(t) + r(t)

k′(t)

k(t)
+
r2(t)

k(t)

}
−
{k′(t) + r(t)}2

4k(t)

+k(t)

{
ψ′′(t)

2ψ(t)
+ ψ2(t)−

3

4

(
ψ′(t)

ψ(t)

)2}
,

pi =
1

2ψ(θi)

[
ψ(θi)∆k

′(θi) + k(θi)∆ψ
′(θi)

]
+

1

2
∆r(θi), θi > a.

It is obvious that if

∫ ∞

a

ψ(t) dt =∞ then x(t) defined in (2.44) is oscillatory.

Clearly, Lemma 2.3.17 can be used to derive general oscillation criteria

for (2.25). We prefer, however, to establish more concrete oscillation criteria

by making use of the following particular cases of Lemma 2.3.17.

Example 2.3.18. Let k(t) = t2/4, r(t) = −t/4 and ψ(t) =
2i− t

i(i+ 1)
, i− 1 <

t ≤ i, i ∈ N. In view of Lemma 2.3.17, we see that x(t) = xi(t), where

xi(t) =
2√

β t ψ(t)
sin

(∫ t

1

ψ(s)ds

)
, t ∈ (i− 1, i], (i ∈ N)
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is an oscillatory solution of

(t2x′)′ − tx′ +

{
t2
[(

2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
−

1

4

}
x = 0, t ∈ (i− 1, i),

∆(t2x′) +
i

i+ 2
x = 0, t = i, (i ∈ N).

Example 2.3.19. Let k(t) = ξ2
i (t+i)

2, r(t) = −ξ2
i (t+i) and ψ(t) =

2i− t

i(i+ 1)
,

i− 1 < t ≤ i, i ∈ N, where

ξi =
22i−2(i− 1)!2

(2i− 1)!
for i ∈ N.

In view of Lemma 2.3.17, we see that x(t) = xi(t), where

xi(t) =
1

ξi(t+ i)
√
ψ(t)

exp

(
1

2

∫ t

γ

ds

s+ i

)
sin

(∫ t

1

ψ(s)ds

)
, t ∈ (i− 1, i]

is an oscillatory solution of

(ξ2
i (t+ i)2x′)′ − ξ2

i (t+ i)x′ +

{
(t+ i)2

[(
2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
−

1

4

}
ξ2
i x = 0, t ∈ (i− 1, i),

∆(ξ2
i (t+ i)2x′) +

i(7i+ 2)

(i+ 2)(2i+ 1)
ξ2
i x = 0, t = i.

In view of the above examples, by applying Corollary 2.3.7 and Corol-

lary 2.3.10 we easily see that (2.25) with θi = i is oscillatory if there exists

an n0 ∈ N such that, for each fixed i ≥ n0 and for all t ∈ (i − 1, i], any one

of the following conditions (a)–(d) holds:

(a) k(t) ≤ t2; k(t) < t2 whenever r(t) 6= −t;

p(t) ≥ t2
[(

2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
−

1

4
+
{r(t) + t}2

4{t2 − k(t)}
+
r2(t)

4k(t)
;

pi ≥
i

i+ 2
.
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(b) k(t) ≤ t2;

p(t) ≥ t2
[(

2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
+

1

4
+
r′(t)

2
+
r2(t)

4k(t)
;

pi ≥
i

i+ 2
+

1

2
∆r(i).

(c) k(t) ≤ ξ2
i (t+ i)2; k(t) < ξ2

i (t+ i)2 whenever r(t) 6= −ξ2
i (t+ i);

p(t) ≥ ξ2
i (t+ i)2

[(
2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
−

1

4
ξ2
i

+
{r(t) + ξ2

i (t+ i)}2

4{ξ2
i (t+ i)2 − k(t)}

+
r2(t)

4k(t)
;

pi ≥
i(7i+ 2)

(i+ 2)(2i+ 1)
ξ2
i .

(d) k(t) ≤ ξ2
i (t+ i)2;

p(t) ≥ ξ2
i (t+ i)2

[(
2i− t

i(i+ 1)

)2

−
3

4

(
1

2i− t

)2]
+

1

4
ξ2
i +

r′(t)

2
+
r2(t)

4k(t)
;

pi ≥
6i2

(i+ 2)(2i+ 1)
ξ2
i +

1

2
∆r(i).

Consider the nonlinear impulsive equations of the form

(m(t)z′)′ + s(t)z′ + f(t, z, z′) = 0, t 6= θi;

∆(m(t)z′) + fi(z, z
′) = 0, t = θi

(2.45)

where f(t, u, v) and fi(u, v), i ∈ N, are real-valued continuous functions

defined for all t ≥ t0 ≥ 0 and for all (u, v) ∈ R
2, m, s, and {θi} are as

previously defined. It is tacitly assumed that there exist solutions of (2.45)

which are continuous and defined for all t ≥ t0 satisfying sup{|z(t)|, t ≥

T} > 0 for all T ≥ t0. This last condition simply means that the solutions

are nontrivial in the neighborhood of ∞.

The following oscillation criteria can be easily established, cf [3].

Theorem 2.3.20. Suppose that (H) holds, k(t) ≥ m(t), and

u f(t, u, v) ≥

{
p(t) +

[s(t)− r(t)]2

4[k(t)−m(t)]
+

s2(t)

4m(t)

}
u2,

u fi(u, v) ≥ pi u
2

(2.46)
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for all t ≥ t0 and for all (u, v) ∈ R
2. If (2.25) is oscillatory, then so is

(2.45).

Proof. Let us assume on the contrary that there exists a nonoscillatory solu-

tion w(t) of (2.45) while every solution of (2.25) is oscillatory. Consider the

linear impulsive system

(m(t)z′)′ + s(t)z′ + q(t)z = 0, t 6= θi;

∆(m(t)z′) + qi z = 0, t = θi
(2.47)

where

q(t) =
f(t, w(t), w′(t))

w(t)
, qi =

fi(w(θi), w
′(θi))

w(θi)
.

Clearly, w(t) is also solution of (2.47). Let x(t) be an oscillatory solution

of (2.25) such that x(a) = x(b) = 0 and x(t) > 0 for all t ∈ (a, b). Since

m(t) ≤ k(t) by our hypothesis and

q(t) ≥ p(t) +
[s(t)− r(t)]2

4[k(t)−m(t)]
+

s2(t)

4m(t)

for t ≥ a, and qi ≥ pi for all i ∈ N for which θi ≥ a by (2.46), we may apply

Corollary 2.3.6 to deduce that w(t) must have a zero in (a, b), which is a

contradiction.

Alternatively, if (H) fails but r, s ∈ PLC1[t0,∞), then as an application

of Theorem 2.3.9 we have the following result.

Theorem 2.3.21. Suppose that r, s ∈ PLC1[t0,∞), k(t) ≥ m(t), and

u f(t, u, v) ≥

{
p(t) +

1

2
[s′(t)− r′(t)] +

s2(t)

4m(t)

}
u2,

u fi(u, v) ≥

{
pi +

1

2
[∆s(θi)−∆r(θi)]

}
u2

for all t ≥ t0 and for all (u, v) ∈ R
2. If (2.25) is oscillatory, then so is

(2.45).
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2.4 Super Half-Linear Equations

Consider the forced second order super half-linear impulsive differential

equation of the form

(m(t)ϕα(y
′))′ + s(t)ϕα(y

′) + q(t)ϕβ(y) = f(t), t 6= θi,

∆(m(t)ϕα(y
′)) + qi ϕβ(y) = fi, t = θi,

(2.48)

where α and β are real constants with β ≥ α > 0. Further we assume that

(i) {qi}, {fi} and {θi} are real sequences with θ1 > t0 for some fixed

t0 ∈ R;

(ii) m, s, q, f ∈ PLC[t0,∞); m(t) > 0.

By a solution of (2.48), we mean a continuous function y(t) defined on [t0,∞)

such that y,mϕα(y
′) ∈ PLC1[t0,∞) and (2.48) is fulfilled for all t ≥ t0.

Existence of such solutions can be proved in a similar manner performed for

equations without impulse effect [11].

In [24], some oscillation criteria about equation (2.8) are given and the

results improve and extend those in [23, 55]. In 2004, W. Tong Li [45]

obtained several interval oscillation criteria by use of Riccati techniques for

the equation

(m(t)ϕα(y
′))′ + s(t)ϕα(y

′) + q(t)ϕβ(y) = f(t), β > α > 0. (2.49)

The case α = 1, β > 1 and s(t) ≡ 0, has been studied by Nasr [55] by using

the technique duo to El-Sayed [10]. Recently, Jaroš, Kusano and Yoshida [23]

studied the same equation by using Picone’s formula which improves the

results of Nasr [55].

Theorem 2.4.1. Suppose that for any given t∗ ≥ t0, there exist intervals

I1 = [a1, b1], I2 = [a2, b2], t∗ ≤ a1 < b1 ≤ a2 < b2, such that

(A) q(t) ≥ 0 for all t ∈
{
I1 ∪ I2

}
\ {θi} and qi ≥ 0 for all i ∈ N for which

θi ∈ I1 ∪ I2;
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(B) f(t)

{
≤ 0, t ∈ I1 \ {θi}

≥ 0, t ∈ I2 \ {θi}
; fi

{
≤ 0, θi ∈ I1

≥ 0, θi ∈ I2
for all i ∈ N.

If there exists η ∈ D(aj, bj) = {z ∈ C1(Ij) : z(t) 6≡ 0, z(aj) = z(bj) = 0},

j = 1, 2, such that

Wαβ[η; Ij] :=

∫ bj

aj

{
q̃ |η|α+1 −m

∣∣η′ − s

(α+ 1)m
η
∣∣α+1
}
dt

+
∑

aj≤θi<bj

q̃i |η|
α+1 ≥ 0, (2.50)

for j = 1, 2, where

q̃(t) = β α−α/β(β − α)(α−β)/β [q(t)]α/β |f(t)|(β−α)/β,

q̃i = β α−α/β(β − α)(α−β)/β [qi]
α/β |fi|

(β−α)/β

with the convention that 00 = 1, then all solutions of (2.48) are oscillatory.

Proof. Suppose that y is a nonoscillatory solution of (2.48) which is eventu-

ally positive, say y(t) > 0 when t ∈ [t∗,∞) for some t∗ ≥ t∗ depending on

the solution y. By assumption, we can choose a1, b1 ≥ t∗ so that f(t) ≤ 0 on

I1 \ {θi} and fi ≤ 0 for θi ∈ I1 with a1 < b1.

Define

ν := −
mϕα(y

′)

ϕα(y)
|η|α+1 for t ∈ I1

where the dependence of t of the functions are suppressed. It follows from

equation (2.48) that ν(t) satisfies the pair of identities

ν ′ = αm

∣∣∣∣
ηy′

y

∣∣∣∣
α+1

− (α + 1)m

(
η′ −

s

(α + 1)m
η

)
ϕα

(
ηy′

y

)

+

[
q|y|β−α −

f

ϕα(y)

]
|η|α+1, t 6= θi;

= mΦα

(
η′ −

s

(α + 1)m
η,
ηy′

y

)
+

[
q|y|β−α +

|f |

|y|α

]
|η|α+1

−m
∣∣η′ − s

(α + 1)m
η
∣∣α+1

, t 6= θi; (2.51)
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and

∆ν = −
|η|α+1

ϕα(y)
∆mϕα(y

′) =

[
qi|y|

β−α −
fi

ϕα(y)

]
|η|α+1, t = θi;

=

[
qi|y|

β−α +
|fi|

|y|α

]
|η|α+1, t = θi. (2.52)

Define the function G(u) : R
+ → R

+

G(u) := λ1 u
β−α +

λ2

uα
, λ1,2 ≥ 0, β ≥ α > 0,

and observe that

min
u>0

G(u) = β α−α/β(β − α)(α−β)/β λ
α/β
1 λ

(β−α)/β
2 . (2.53)

Taking the nonnegativity of q(t) and qi into account, and considering the

expressions in brackets on the right-hand sides of (2.51) and (2.52) as the

functions of y(t) and y(θi) respectively, (2.53) yields

ν ′ ≥ q̃ |η|α+1 −m
∣∣η′ − s

(α+ 1)m
η
∣∣α+1

+mΦα

(
η′ −

s

(α + 1)m
η,
ηy′

y

)
, t 6= θi; (2.54)

∆ν ≥ q̃i |η|
α+1, t = θi. (2.55)

Integrating (2.54) over I1 and using (2.55), we see that

0 ≥ Wαβ[η; I1] +

∫ b1

a1

mΦα

(
η′ −

s

(α + 1)m
η,
ηy′

y

)
dt. (2.56)

Since Wαβ[η; I1] ≥ 0, (2.56) yields

η′y − ηy′ −
s

(α+ 1)m
ηy = 0 on I1.

Since y(t) > 0, it follows that

η = C0 y exp

(
1

α+ 1

∫ t s

m
dτ

)
on I1,
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for some constant C0. Since η ∈ D(a1, b1) and η 6≡ 0, this is incompatible to

the fact that y(t) > 0 on I1.

When y(t) is eventually negative, we use η ∈ D(a2, b2) and f(t) ≥ 0

on I2 \ {θi} and fi ≥ 0 for θi ∈ I2 to reach a similar contradiction. This

contradiction proves that y(t) must be oscillatory. The proof is complete.

Note that, if s(t) ≡ 0 and qi = fi = 0 with α = β > 0, then we recover

the results in [46].

Next, we prove the following result.

Theorem 2.4.2. Let x(t) be an oscillatory solution of (2.11) with zeros at

{tn}, limn→∞ tn =∞. Suppose that for any given t∗ ≥ t0, there exist intervals

I1 = [tn1
, tm1

], I2 = [tn2
, tm2

] ⊂ [t∗,∞) on which (A)-(B) hold.

If
∫ tmj

tnj

{
(k −m)|x′|α+1 + (q̃ − p) |x|α+1

}
dt

+
∑

tnj
≤θi<tmj

(
q̃i − pi

)
|x|α+1 > 0, (2.57)

for j = 1, 2, then all solutions of (2.48) with s(t) ≡ 0 are oscillatory.

Proof. Suppose that y is a nonoscillatory solution of (2.48) which is eventu-

ally positive, say y(t) > 0 when t ∈ [t∗,∞) for some t∗ ≥ t∗ depending on

the solution y. By assumption, I1 ⊂ [t∗,∞) so that f(t) ≤ 0 on I1 \ {θi} and

fi ≤ 0 for θi ∈ I1.

Define

w(t) :=
x

ϕα(y)

[
ϕα(y) k ϕα(x

′)− ϕα(x)mϕα(y
′)

]
for t ∈ I1.

For abbreviation we secrete the variable t. Clearly

w′ = (k −m)|x′|α+1 +

[
q|y|β−α +

|f |

|y|α

]
|x|α+1 − p |x|α+1

+ mΦα(x
′, xy′/y), t 6= θi; (2.58)

∆w =

[
qi|y|

β−α +
|fi|

|y|α

]
|x|α − pi |x|

α+1, t = θi. (2.59)
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In the view of (2.53), it is not difficult to see from (2.58) and (2.59) that

w′ ≥ (k −m)|x′|α+1 + (q̃ − p) |x|α+1 +mΦα(x
′, xy′/y), t 6= θi; (2.60)

and

∆w ≥ (q̃i − pi) |x|
α+1, t = θi. (2.61)

Integrating (2.60) over I1 and using (2.61) and (2.57), we get

∫ tm1

tn1

mΦα(x
′, xy′/y) dt ≤ 0 (2.62)

which yields Φα(x
′, xy′/y) = 0 on I1. Since y(t) > 0, it follows that x = C1 y

on I1, for some constant C1. This is incompatible with the fact that y(t) > 0

on I1.

When y(t) is eventually negative, we choose the interval I2 ⊂ [T,∞) for

some T ≥ t∗ so that f(t) ≥ 0 on I2 \ {θi} and fi ≥ 0 for θi ∈ I2 to reach a

similar contradiction. This contradiction proves that y(t) must be oscillatory.

The proof is complete.

Note that if there is no impulse effect, we recover the results in [23]

and [24].

Theorem 2.4.2 does not work when s(t) 6= 0. However, it is possible to

obtain analogous results for the equation (2.48) if α = 1. The first one will

be obtained by comparing the solutions of equation

(m(t)y′)′ + s(t)y′ + q(t)ϕβ(y) = f(t), t 6= θi,

∆(m(t)y′) + qi ϕβ(y) = fi, t = θi,
(2.63)

β > 1, and those of non self-adjoint equation (2.25).

The following comparison result can be considered as an extension of the

results in [1, pp. 358], [3, Corollary 1] , [23, Theorem 2], [30, pp. 12].

33



Theorem 2.4.3. Let x(t) be an oscillatory solution of (2.25) with zeros at

{tn}, limn→∞ tn =∞. Suppose that for any given t∗ ≥ t0, there exist intervals

I1 = [tn1
, tm1

], I2 = [tn2
, tm2

] ⊂ [t∗,∞) on which (A)-(B) hold.

If (H) is satisfied and

∫ tmj

tnj

{[
q̃ − p−

(s− r)2

4(k −m)
−

s2

4m

]
x2 + (k −m)

[
x′ +

(s− r)

2(k −m)
x

]2}
dt

+
∑

tnj
≤θi<tmj

(
q̃i − pi

)
x2 > 0 (2.64)

for j = 1, 2, then all solutions of (2.63) are oscillatory.

Proof. Suppose that y is a nonoscillatory solution of (2.48) which is eventu-

ally positive, say y(t) > 0 when t ∈ [t∗,∞) for some t∗ ≥ t∗ depending on

the solution y. By assumption, we can choose I1 ⊂ [t∗,∞) so that f(t) ≤ 0

on I1 \ {θi} and fi ≤ 0 for θi ∈ I1.

Define

ρ(t) :=
x(t)

y(t)

{
y(t)kx′(t)− x(t)my′(t)

}
for t ∈ I1.

For abbreviation we secrete the variable t. Clearly

ρ′ =

[
q|v|β−1 +

|f |

|y|

]
x2 − p x2 + (k −m)(x′)2 +m (x′ −

x

y
y′)2

+
sy′

y
x2 − r xx′, t 6= θi; (2.65)

∆ρ =

[
qi|y|

β−1 +
|fi|

|y|

]
x2 − pi x

2, t = θi. (2.66)

In the view of (2.53), it is not difficult to see, cf.[30], from (2.65) and (2.66)

that

ρ′ ≥

[
q̃ − p−

(s− r)2

4(k −m)
−

s2

4m

]
x2 + (k −m)

[
x′ +

(s− r)

2(k −m)
x

]2

+
m

y2

(
x′y − xy′ −

s

2m
xy

)2

, t 6= θi; (2.67)
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and

∆ρ ≥ (q̃i − pi)x
2, t = θi. (2.68)

Integrating (2.67) over I1 and using (2.68) and (2.64), we get

∫ tm1

tn1

m

y2

{
x′y − xy′ −

s

2m
xy

}2

dt ≤ 0. (2.69)

From inequality (2.69), we conclude that

x′y − xy′ −
s

2m
xy = 0 on I1.

As before, it follows that

x = C2 y exp

(∫ t s

2m
dτ

)
on I1,

for some constant C2. Since x(tn1
) = x(tm1

) = 0, this is incompatible with

the fact that y(t) > 0 on I1.

When y(t) is eventually negative, we choose the interval I2 ⊂ [T,∞) for

some T ≥ t∗ so that f(t) ≥ 0 on I2 \ {θi} and fi ≥ 0 for θi ∈ I2 to reach a

similar contradiction. This contradiction proves that y(t) must be oscillatory.

The proof is complete.

Note that if there is no impulse and s(t) ≡ 0, then we recover the results

in [23].

If (H) does not hold, we introduce a device of Picard [58](see also [30, p.

12]). Clearly, for any h ∈ PLC1(I) we have

d

dt
(x2h) = 2xx′h+ x2h′, t 6= θi.

Let

µ :=
x

y
(ykx′ − xmy′) + x2h, t ∈ I.
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It follows that

µ′ ≥

{
q̃ − p+ h′ −

(s− r + 2h)2

4(k −m)
−

s2

4m

}
x2

+(k −m)

{
x′ +

s− r + 2h

2(k −m)
x

}2

+
m

y2

{
x′y − xy′ −

s

2m
xy

}2

, t 6= θi

∆µ ≥ (q̃i − pi +∆h)x2, t = θi.

Assuming that r, s ∈ PLC1(I), the choice of h = (r − s)/2 yields

µ′ ≥

{
q̃ − p−

1

2
(s′ − r′)−

s2

4m

}
x2 + (k −m)(x′)2

+
m

y2

{
x′y − xy′ −

s

2m
xy

}2

, t 6= θi

∆µ ≥

{
q̃i − pi −

1

2

(
∆s−∆r

)}
x2, t = θi.

Then, we have the following result which is analogous to Theorem 2.4.3.

Theorem 2.4.4 (A Device of Picard). Let x(t) be an oscillatory solution

of (2.25) with zeros at {tn}, limn→∞ tn = ∞. Suppose that for any given

t∗ ≥ t0, there exist intervals I1 = [tn1
, tm1

], I2 = [tn2
, tm2

] ⊂ [t∗,∞) on which

(A)-(B) hold.

If r, s ∈ PLC1(Ij) for j = 1, 2 and

∫ tmj

tnj

{[
q̃ − p−

1

2
(s′ − r′)−

s2

4m

]
x2 + (k −m)(x′)2

}
dt

+
∑

tnj
≤θi<tmj

[
q̃i − pi −

1

2

(
∆s−∆r

)]
x2 > 0,

for j = 1, 2, then all solutions of (2.63) are oscillatory.
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chapter 3

oscillation theorems

3.1 Nonlinear Equations

3.1.1 Introduction

In this chapter, we are interested in oscillation of second order nonlinear

impulsive differential equations of the form

(r(t)ϕα(x
′))′ + p(t)ϕα(x

′) + q(t)f(x) = e(t), t 6= θi;

∆(r(t)ϕα(x
′)) + qi f(x) = ei, t = θi

(3.1)

where α > 0 is a constant, {qi}, {ei} and {θi} are real sequences, for i ∈ N,

with θ1 > t0 for a fixed t0 ∈ R.

Throughout this chapter, we assume that

(i) r, p, q, e ∈ PLC([t0,∞)); r(t) > 0;

(ii) f ∈ C(R) with sf(s) > 0 for s 6= 0 and the inequality

f ′(s)|f(s)|(1−α)/α ≥ Kα > 0 (3.2)

holds.

By a solution of equation (3.1), we mean a nontrivial continuous function

x(t) for t ≥ tx > t0 such that rϕα(x
′) ∈ PLC1([tx,∞)) satisfies equation

(3.1).

In special cases (3.1) reduces to

(r(t)ϕα(x
′))′ + q(t)ϕα(x) = 0, (3.3)
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(r(t)ψ(x)ϕα(x
′))′ + q(t)f(x) = 0, (3.4)

and

(r(t)ψ(x)x′)′ + p(t)x′ + q(t)f(x) = 0. (3.5)

These equations have been the object of intensive studies in recent years.

(See [1, 20, 33, 34, 35, 39, 40, 41, 42, 43, 48, 51] for (3.3), [19, 20, 52, 77, 76, 83]

for (3.4), and [13, 47, 53, 61, 75, 78, 85] for (3.5)).

In Section 3.1.2, we consider equation (3.4) with ψ(s) ≡ 1 and impulse ef-

fect, and using integral averaging technique, we extend the results of Coles [9]

and Wintner [80].

In Section 3.1.3, we consider equation (3.1) with e(t) ≡ 0 and ei ≡ 0, and

using function averaging technique, we extend some of the results presented

in literature to the impulsive case.

In another special case of (3.1) we have

(r(t)ϕα(x
′))′ + q(t)ϕα(x) = e(t), (3.6)

which includes

(r(t)x′)′ + q(t)x = e(t). (3.7)

In 1993, El-Sayed [10] established an interval criterion for (3.7) and in

1999, Wong [82] proved more general oscillation result for the same equa-

tion. Numerous oscillation criteria have been obtained for equation (3.7)

(See [26, 27, 60, 64, 65, 73]). Recently, Li and Cheng [46] established an

interval oscillation criterion for (3.6). In Section 3.1.4, we consider the equa-

tion (3.1) and using interval criteria we extend the results of Wong [82] and

Li and Cheng [46] to the impulsive case.

3.1.2 Coles Type Oscillation Criteria

In 1968, Coles [9] studied the oscillation problem for

(r(t)x′)′ + q(t)x = 0, (3.8)
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by considering weighted averages of

∫ t

q(τ)dτ . In present work, we study

equation

(r(t)ϕα(x
′))′ + q(t)f(x) = 0, t 6= θi;

∆(r(t)ϕα(x
′)) + qi f(x) = 0, t = θi

(3.9)

in the special case when p(t) ≡ e(t) ≡ 0 and ei ≡ 0, by considering weighted

averages of ∫ t

q(τ)dτ +
∑

θi≤t

qi.

Theorem 3.1.1. If there exists a nonnegative, locally integrable function

g(t) : R → R such that

∫ t

g(τ) dτ 6≡ 0 and satisfying

∫ ∞

β

{
g(t)

(∫ t

0

g(s)ds

)k/α/(∫ t

0

r(s)gα+1(s)ds

)1/α}
dt =∞ (3.10)

for some k, 0 ≤ k < 1, and for β > 0 and

lim
t→∞

A(t) =∞, (3.11)

then the equation (3.9) is oscillatory, where

A(t) :=

∫ t

0

g(s)

{∫ s

0

q(τ) dτ +
∑

0<θi<s

qi

}
ds

/∫ t

0

g(s) ds. (3.12)

Proof. We give a proof for g(t) continuous; the proof easily modified for g

locally integrable. Also, if convenient we will change the lower limits of the

integrals in (3.12) and (3.10), since the asymptotic behavior as t→∞ is not

changed thereby.

Let x(t) be a nonoscillatory solution of the equation (3.9). Without loss

of generality, we assume that x(t) 6= 0 for t ≥ β, for large enough β. We

define

z(t) :=
r(t)ϕα(x

′)

f(x)
, t ∈ [β,∞)
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then z(t) satisfies

z′ +Kα
|z|(α+1)/α

r1/α(t)
+ q(t) ≤ 0, t 6= θi; (3.13)

∆z + qi = 0, t = θi (3.14)

on [β,∞), where Kα as in (3.2). Integrating (3.13) over [β, t) and using

(3.14), we see that

z(t) +Kα

∫ t

β

|z(s)|(α+1)/α

r1/α(s)
ds ≤ z(β)−

∑

β≤θi<t

qi −

∫ t

β

q(s)ds. (3.15)

Multiplying equation (3.15) by the function g(s) and integrating over [β, t),

we obtain

∫ t

β

g(s)z(s)ds+Kα

∫ t

β

g(s)

∫ s

β

|z(τ)|(α+1)/α

r1/α(τ)
dτds ≤

[
z(β)−A(t)

] ∫ t

β

g(s)ds.

(3.16)

By (3.11), the right hand side of (3.16) tends to −∞; hence, for large values

of t,

∫ t

β

g(s)z(s)ds+Kα

∫ t

β

g(s)

∫ s

β

|z(τ)|(α+1)/α

r1/α(τ)
dτds < 0. (3.17)

Using Hölder’s inequality and (3.17), we obtain

(
Kα

∫ t

β

g(s)

∫ s

β

|z(τ)|(α+1)/α

r1/α(τ)
dτds

)α+1

≤

(∫ t

β

g(s)|z(s)|ds

)α+1

≤

(∫ t

β

r(s)gα+1(s)ds

)(∫ t

β

|z(s)|(α+1)/α

r1/α(s)
ds

)α
. (3.18)

Let

R(t) := Kα

∫ t

β

g(s)

∫ s

β

|z(τ)|(α+1)/α

r1/α(τ)
dτds.
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Since, for t ≥ γ > β,

R(t) ≥ Kα

(∫ t

γ

g(s)ds

)(∫ γ

β

|z(τ)|(α+1)/α

r1/α(τ)
dτ

)
, (3.19)

using inequalities (3.18) and (3.19), we see that

gα(t)

(∫ t

γ

g(s)ds

)k(∫ γ

β

|z(τ)|(α+1)/α

r1/α(τ)
dτ

)k/∫ t

β

r(s)gα+1(s)ds

≤
1

Kα+k
α

R(k−α−1)(t)(R′(t))α. (3.20)

For γ > β, integration of the inequality (3.20) gives

∫ t

γ

[
g(s)

(∫ s

γ

g(τ)dτ

)k/α/(∫ s

β

r(τ)gα+1(τ)dτ

)1/α]
ds ≤ K R(k−1)/α(γ)

(3.21)

where

K =
α

Kα(1− k)

(
Kα

∫ γ

β

|z(τ)|(α+1)/α

r1/α(τ)
dτ

)−k/α
.

Inequality (3.21) implies that condition (3.10) cannot be hold. This contra-

diction completes the proof of Theorem 3.1.1.

Note that if f(s) = s, qi ≡ 0 and α = 1, we obtain the Coles result [9].

In case r(s) ≡ 1, f(s) = s and α = 1, equation (3.9) reduces to linear

impulsive equation (2.10) and as a consequence of Theorem 3.1.1, we have the

following result which is the extension of Wintner’s [80] oscillation criteria

to impulsive equations.

Corollary 3.1.2. If

lim
t→∞

1

t

∫ t

0

{∫ s

0

q(τ)dτ +
∑

0<θi<s

qi

}
ds =∞,

then equation (2.10) is oscillatory.

Proof. Take the function g(t) to be 1, let k = 0, and apply Theorem 3.1.1.
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3.1.3 Averaging Method

Throughout this section, we consider

(r(t)ϕα(x
′))′ + p(t)ϕα(x

′) + q(t)f(x) = 0, t 6= θi;

∆(r(t)ϕα(x
′)) + qi f(x) = 0, t = θi.

(3.22)

Many authors have studied the oscillation problem for the less general equa-

tions such as the second order linear equation (3.8) or nonlinear equations

(3.4) and (3.5) (see the references cited in section 3.1.1). In 1989, Philos [57]

proved two oscillation criteria for equation

x′′ + q(t)x = 0, (3.23)

which are considered as extension of the results of Kamenev [25] and Yan [84].

Later, some of the extensions of results of Philos were given (see section 3.1.1).

In present section, we extend the Philos theorems [57] to the impulsive

equation (3.22) and we give some analogous results, cf. [51] and [85].

The following Theorem is one of the main result of this section.

Theorem 3.1.3. Let D0 = {(t, s) : t > s > t0} and D = {(t, s) : t ≥ s ≥ t0}.

Assume H(t, s) ∈ C1(D : (0,∞)), h(t, s) ∈ C(D0,R), ρ ∈ C1([t0,∞), (0,∞))

satisfy the conditions

(i) H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 on D0;

(ii) H has a continuous and nonpositive partial derivative on D0 with re-

spect to the second variable;

(iii)

∂H

∂s
(t, s) +

{
ρ′(s)

ρ(s)
−
p(s)

r(s)

}
H(t, s) = −h(t, s)Hα/(α+1)(t, s), (t, s) ∈ D0.
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If

lim sup
t→∞

1

H(t, t0)

{∫ t

t0

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds

+
∑

t0≤θi<t

H(t, θi) ρ(θi) qi

}
=∞, (3.24)

where

Γα =

(
α

Kα

)α(
1

α + 1

)α+1

(3.25)

and Kα as in (3.2), then equation (3.22) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (3.22). We assume

that x(t) 6= 0 on [T,∞) for some sufficiently large T ≥ t0. Define

w(t) := ρ(t)
r(t)ϕα(x

′)

f(x)
, t ≥ T. (3.26)

Differentiating (3.26) and making use of (3.22) and (3.2), we obtain

w′(t) ≤

{
ρ′(t)

ρ(t)
−
p(t)

r(t)

}
w(t)− ρ(t)q(t)−Kα

|w(t)|(α+1)/α

(ρ(t)r(t))1/α
, t 6= θi; (3.27)

∆w(t) = −qi ρ(t), t = θi. (3.28)

Multiplying (3.27), with t replaced by s, by H(t, s) and integrating from T

to t, we have
∫ t

T

H(t, s)ρ(s)q(s) ds ≤

∫ t

T

H(t, s)

{
ρ′(s)

ρ(s)
−
p(s)

r(s)

}
w(s) ds

−Kα

∫ t

T

H(t, s)
|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds−

∫ t

T

H(t, s)w′(s) ds. (3.29)

Integration by parts and using (3.28), the last integral on the right hand side

of inequality (3.29) becomes
∫ t

T

H(t, s)w′(s)ds =

∫ t

T

[
∂

∂s

{
H(t, s)w(s)

}
− w(s)

∂H

∂s
(t, s)

]
ds,

= −H(t, T )w(T )−
∑

T≤θi<t

H(t, θi)∆w(θi)−

∫ t

T

w(s)
∂H

∂s
(t, s)ds,

≥ −H(t, T )w(T ) +
∑

T≤θi<t

H(t, θi)ρ(θi)qi −

∫ t

T

w(s)
∂H

∂s
(t, s)ds. (3.30)
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Using (3.29) and (3.30), we obtain

∫ t

T

H(t, s)ρ(s)q(s) ds+
∑

T≤θi<t

H(t, θi)ρ(θi) qi

≤ H(t, T )w(T ) +

∫ t

T

[
∂H

∂s
(t, s) +H(t, s)

{
ρ′(s)

ρ(s)
−
p(s)

r(s)

}]
w(s) ds

−Kα

∫ t

T

H(t, s)
|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds

≤ H(t, T )w(T )−

∫ t

T

[
KαH(t, s)

|w(s)|(α+1)/α

(ρ(s)r(s))1/α

−|h(t, s)|Hα/(α+1)(t, s) |w(s)|

]
ds. (3.31)

Using inequality (2.13) with β = 1/α

A =
(KαH)α/(α+1)|w|

(ρ r)1/(α+1)
and B =

(
α

α + 1

)α(
ρ r

Kα
α

)α/(α+1)

|h|α,

we obtain

KαH(t, s)
|w(s)|(α+1)/α

(ρ(s)r(s))1/α
− |h(t, s)|Hα/(α+1)(t, s) |w(s)|

≥ −Γα ρ(s)r(s) |h(t, s)|
α+1. (3.32)

From (3.31) and (3.32), we obtain

∫ t

T

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds+

∑

T≤θi<t

H(t, θi) ρ(θi) qi

≤ H(t, T )w(T ) (3.33)

≤ H(t, T ) |w(T )| ≤ H(t, t0) |w(T )| (3.34)

for all t > T ≥ t0. In the above inequality we choose T = T0, then we have
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∫ t

t0

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds+

∑

t0≤θi<t

H(t, θi) ρ(θi) qi

=

∫ T0

t0

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds+

∑

t0≤θi<T0

H(t, θi) ρ(θi)qi

+

∫ t

T0

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds+

∑

T0≤θi<t

H(t, θi) ρ(θi) qi

≤ H(t, t0)

{∫ T0

t0

ρ(s)|q(s)| ds+
∑

t0≤θi<T0

ρ(θi) |qi|

}
+H(t, t0) |w(T0)|.

It follows that

lim sup
t→∞

1

H(t, t0)

{∫ t

t0

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds

+
∑

t0≤θi<t

H(t, θi) ρ(θi) qi

}

≤

∫ T0

t0

ρ(s)|q(s)| ds+
∑

t0≤θi<T0

ρ(θi) |qi|+ |w(T0)| <∞,

which contradicts with (3.24). This completes the proof.

As a conclusion of the Theorem 3.1.3, we have the following corollary .

Corollary 3.1.4. Let condition (3.24) in Theorem 3.1.3 be replaced by

lim sup
t→∞

1

H(t, t0)

{∫ t

t0

H(t, s)ρ(s)q(s) ds+
∑

t0≤θi<t

H(t, θi) ρ(θi) qi

}
=∞

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α+1 ds <∞,

then equation (3.22) is oscillatory.

Our second result is the following Theorem which can be considered as

an extension of [51, Theorem 2].
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Theorem 3.1.5. Let the functions H, h and ρ be defined as in Theorem

3.1.3. Moreover, Suppose that

0 < inf
s≥t0

{
lim inf
t→∞

H(t, s)

H(t, t0)

}
≤ ∞ (3.35)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α+1 ds <∞. (3.36)

If there exists a function A ∈ C([t0,∞);R) such that

lim sup
t→∞

∫ t

t0

(A+(s))
(α+1)/α

(ρ(s)r(s))1/α
ds =∞, (3.37)

and for every T ≥ t0

lim sup
t→∞

1

H(t, T )

{∫ t

T

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds

+
∑

T≤θi<t

H(t, θi) ρ(θi) qi

}
≥ A(T ), (3.38)

where A+(s) = max{A(s), 0}, then equation (3.22) is oscillatory.

Proof. Without loss of generality, we may assume that there exists a solution

x(t) of equation (3.22) such that x(t) 6= 0 on [T0,∞) for some sufficiently

large T0 ≥ t0. Define w(t) as in (3.26). As in the proof of Theorem 3.1.3, we

can obtain (3.31) and (3.33). It follows that

lim sup
t→∞

1

H(t, T )

{∫ t

T

[
H(t, s)ρ(s)q(s)− Γαρ(s)r(s) |h(t, s)|

α+1

]
ds

+
∑

T≤θi<t

H(t, θi) ρ(θi) qi

}
≤ w(T )

for all T ≥ T0. Thus by (3.38) we have

A(T ) ≤ w(T ) for all T ≥ T0 (3.39)
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and

lim sup
t→∞

1

H(t, T0)

{∫ t

T0

H(t, s)ρ(s)q(s) ds+
∑

T0≤θi<t

H(t, θi) ρ(θi) qi

}
≥ A(T0).

(3.40)

Let

F (t) :=
1

H(t, T0)

∫ t

T0

|h(t, s)w(s)|Hα/(α+1)(t, s) ds

and

G(t) :=
Kα

H(t, T0)

∫ t

T0

H(t, s)
|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds

for all t > T0. Then, by (3.31) and (3.40), we see that

lim inf
t→∞

[G(t)− F (t)] = w(T0)− lim sup
t→∞

1

H(t, T0)

{∫ t

T0

H(t, s)ρ(s)q(s) ds

+
∑

T0≤θi<t

H(t, θi) ρ(θi) qi

}

≤ w(T0)− A(T0) <∞. (3.41)

Now, claim that ∫ ∞

T0

|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds <∞. (3.42)

Suppose to the contrary that

∫ ∞

T0

|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds =∞. (3.43)

By (3.35), there is a positive constant η satisfying

inf
s≥t0

{
lim inf
t→∞

H(t, s)

H(t, t0)

}
> η > 0. (3.44)

On the other hand, by (3.43), for any positive number µ there exists a T1 > T0

such that ∫ t

T0

|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds ≥

µ

Kαη
for all t ≥ T1 (3.45)
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so for all t ≥ T1

G(t) =
Kα

H(t, T0)

∫ t

T0

H(t, s) d

[ ∫ s

T0

|w(τ)|(α+1)/α

(ρ(τ)r(τ))1/α
dτ

]

=
Kα

H(t, T0)

∫ t

T0

[
−
∂H

∂s
(t, s)

] [ ∫ s

T0

|w(τ)|(α+1)/α

(ρ(τ)r(τ))1/α
dτ

]
ds

≥
Kα

H(t, T0)

∫ t

T1

[
−
∂H

∂s
(t, s)

] [ ∫ s

T0

|w(τ)|(α+1)/α

(ρ(τ)r(τ))1/α
dτ

]
ds

≥
µ

Kαη

Kα

H(t, T0)

∫ t

T1

[
−
∂H

∂s
(t, s)

]
ds =

µ

η

H(t, T1)

H(t, T0)
. (3.46)

From (3.44) we have

lim inf
t→∞

H(t, T1)

H(t, t0)
> η > 0, (3.47)

there exists T2 ≥ T1 such that H(t, T1)/H(t, t0) ≥ η for all t ≥ T2. Therefore

by (3.46), G(t) ≥ µ for all t ≥ T2, and since µ is arbitrary constant, we

conclude

lim
t→∞

G(t) =∞. (3.48)

Next, consider a sequence {tn}
∞
n=1 in (T0,∞) with limt→∞ tn = ∞ and such

that

lim
n→∞

[G(tn)− F (tn)] = lim inf
t→∞

[G(t)− F (t)].

In the view of (3.41), there exists a constant M such that

G(tn)− F (tn) ≤M for all sufficiently large n. (3.49)

It follows from (3.48) that

lim
n→∞

G(tn) =∞. (3.50)

This and (3.49) give

lim
n→∞

F (tn) =∞. (3.51)

Then by (3.49) and (3.50),

F (tn)

G(tn)
− 1 ≥ −

M

G(tn)
> −

1

2
for n large enough.
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Thus,
F (tn)

G(tn)
>

1

2
for all n large enough.

This and (3.51) imply that

lim
n→∞

F α+1(tn)

Gα(tn)
=∞. (3.52)

On the other hand, by Hölder’s inequality, we have

F (tn) =
1

H(tn, T0)

∫ tn

T0

|h(tn, s)w(s)|H
α/(α+1)(tn, s) ds

≤

{
Kα

H(tn, T0)

∫ tn

T0

H(tn, s)
|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds

}α/(α+1)

×

{
1

Kα
α H(tn, T0)

∫ tn

T0

ρ(s)r(s)|h(tn, s)|
α+1 ds

}1/(α+1)

≤
Gα/(α+1)(tn)

K
α/(α+1)
α

{
1

H(tn, T0)

∫ tn

T0

ρ(s)r(s)|h(tn, s)|
α+1 ds

}1/(α+1)

,

and therefore

F α+1(tn)

Gα(tn)
≤

1

Kα
α H(tn, T0)

∫ tn

T0

ρ(s)r(s)|h(tn, s)|
α+1 ds

≤
1

Kα
α η H(tn, t0)

∫ tn

t0

ρ(s)r(s)|h(tn, s)|
α+1 ds

for a large n. It follows from (3.52) that

lim
n→∞

1

H(tn, t0)

∫ tn

t0

ρ(s)r(s)|h(tn, s)|
α+1 ds =∞, (3.53)

that is,

lim sup
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)r(s)|h(t, s)|α+1 ds =∞,

which contradicts (3.36). Hence (3.42) holds. Then, it follows from (3.39)

that ∫ t

T0

(A+(s))
(α+1)/α

(ρ(s)r(s))1/α
ds ≤

∫ ∞

T0

|w(s)|(α+1)/α

(ρ(s)r(s))1/α
ds <∞

which contradicts (3.37). This completes the proof of Theorem 3.1.5.
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Note that if ρ(t) ≡ 0, p(t) ≡ 0, f(s) = s, qi ≡ 0 and α = 1, we obtain the

results of Philos [57].

3.1.4 Interval Oscillation Criteria

In this section, we obtain the following interval oscillation criteria for

(3.1).

Theorem 3.1.6. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤

s2 < t2 such that

e(t)

{
≤ 0, t ∈ [s1, t1]

≥ 0, t ∈ [s2, t2]
and ei

{
≤ 0, θi ∈ [s1, t1]

≥ 0, θi ∈ [s2, t2]
(3.54)

for all i ∈ N. If there exists u ∈ D(sk, tk) for k = 1, 2, and a positive,

nondecreasing function φ ∈ C([t0,∞)) such that
∫ tk

sk

{
φ q |u|α+1 − Γα r φ

∣∣∣∣(α + 1)u′ +

(
φ′

φ
−
p

r

)
|u|

∣∣∣∣
α+1
}
dt

+
∑

sk≤θi<tk

φ qi |u|
α+1 > 0

for k = 1, 2, where Γα is defined as in (3.25), then every solution of the

equation (3.1) is oscillatory.

Proof. Suppose now that x be a nonoscillatory solution of equation (3.1)

which is positive, say x > 0 when t ≥ t∗ for some t∗ depending on the

solution x. Now, we define

v(t) := φ(t)
r(t)ϕα(x

′)

f(x)
, t ≥ t∗. (3.55)

Then, for every t ≥ t∗, we obtain

v′ =

(
φ′

φ
−
p

r

)
v − f ′(s)|f(s)|(1−α)/α |v|

(α+1)/α

(rφ)1/α

+

(
e

f(x)
− q

)
φ, t 6= θi; (3.56)

∆v =

(
ei
f(x)

− qi

)
φ, t = θi. (3.57)
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By assumption, we can choose s1, t1 ≥ t∗ so that e(t) ≤ 0 on the interval

I1 = [s1, t1] and ei ≤ 0 for all i ∈ N for which θi ∈ I1 with s1 < t1. On the

interval I1, using (3.2) and (3.56)-(3.57), v(t) satisfies

q φ ≤ −v′ +

(
φ′

φ
−
p

r

)
v −Kα

|v|(α+1)/α

(rφ)1/α
, t 6= θi; (3.58)

∆v + qi φ ≤ 0, t = θi. (3.59)

Let u ∈ D(s1, t1) be given as in the hypothesis. Multiplying |u|α+1 through

(3.58) and integrating over I1, we get

∫ t1

s1

q φ |u|α+1dt ≤

∫ t1

s1

(
φ′

φ
−
p

r

)
|u|α+1 v dt−Kα

∫ t1

s1

|v|(α+1)/α

(rφ)1/α
|u|α+1 dt

−

∫ t1

s1

|u|α+1 v′ dt. (3.60)

Integration by parts and using the fact that u(s1) = u(t1) = 0 and (3.59), we

obtain further that
∫ t1

s1

q φ |u|α+1dt+
∑

s1≤θi<t1

qi φ |u|
α+1

≤ (α+ 1)

∫ t1

s1

ϕα(u)u
′ v dt+

∫ t1

s1

(
φ′

φ
−
p

r

)
|u|α+1 v dt

−Kα

∫ t1

s1

|v|(α+1)/α

(rφ)1/α
|u|α+1dt

≤

∫ t1

s1

∣∣∣∣(α + 1)ϕα(u)u
′ +

(
φ′

φ
−
p

r

)
|u|α+1

∣∣∣∣ |v| dt

−Kα

∫ t1

s1

|u|α+1

(rφ)1/α
|v|(α+1)/α dt.

By taking β = 1/α,

A = Kα/(α+1)
α

|u|α

(rφ)1/(α+1)
|v|

and

B =

(
αΓαrφ

|u|α(α+1)

)α/(α+1)∣∣∣∣(α + 1)ϕα(u)u
′ +

(
φ′

φ
−
p

r

)
|u|α+1

∣∣∣∣
α

,
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the inequality (2.13) implies that, for t ∈ [s1, t1],
∣∣∣∣(α + 1)ϕα(u)u

′ +

(
φ′

φ
−
p

r

)
|u|α+1

∣∣∣∣ |v| −Kα
|u|α+1

(rφ)1/α
|v|(α+1)/α

≤ Γα r φ

∣∣∣∣(α+ 1)u′ +

(
φ′

φ
−
p

r

)
|u|

∣∣∣∣
α+1

,

thus,
∫ t1

s1

φ q |u|α+1dt+
∑

s1≤θi<t1

φ qi |u|
α+1

≤ Γα

∫ t1

s1

r φ

∣∣∣∣(α+ 1)u′ +

(
φ′

φ
−
p

r

)
|u|

∣∣∣∣
α+1

dt,

which contradicts with our assumption.

When x(t) eventually negative, we may employ the fact that e(t) ≥ 0 on

I2 = [s2, t2] and ei ≥ 0 for all i ∈ N for which θi ∈ I2 to reach a similar

contradiction. The proof is complete.

When f(s) = ϕα(s), then equation (3.1) reduces to forced half-linear

impulsive equation with damping

(r(t)ϕα(x
′))′ + p(t)ϕα(x

′) + q(t)ϕα(x) = e(t), t 6= θi;

∆(r(t)ϕα(x
′)) + qi ϕα(x) = ei, t = θi.

(3.61)

As a conclusion of Theorem 3.1.6, equation (3.61) is oscillatory if the condi-

tions of Theorem 3.1.6 are all satisfied with Γα = (α + 1)−(α+1). Note that

by taking p(t) ≡ 0 and qi ≡ ei ≡ 0 in the equation (3.61), we recover the

result of Li and Cheng [46].

Taking α = 1 in the equation (3.61), we obtain the forced linear impulsive

equation with damping

(r(t)x′)′ + p(t)x′ + q(t)x = e(t), t 6= θi;

∆(r(t)x′) + qi x = ei, t = θi.
(3.62)

Taking φ ≡ 1 and applying Theorem 3.1.6 to equation (3.62), we obtain the

following oscillation criteria which can be considered as a generalization of

the result given by Wong [82].
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Corollary 3.1.7. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤

s2 < t2 such that (3.54) holds for all i ∈ N. If there exist u ∈ D(sk, tk), for

k = 1, 2 such that
∫ tk

sk

[
q u2 − r (u′ −

p

2r
u)2
]
dt+

∑

sk≤θi<tk

qi u
2 > 0 (3.63)

for k = 1, 2, then every solution of the equation (3.62) is oscillatory.

We will illustrate our oscillation criterion by means of one example.

Example 3.1.8. Consider the following special case of equation (3.62),

x′′ + (sin t)x′ + (cos t)x = −ecos t sin t, t 6= θi;

∆x′ + (sin2 t)x = −ecos t sin t, t = θi
(3.64)

where θi = iπ/m, m ∈ N. Here the zeros of the forcing term −ecos t sin t are

kπ, k ∈ Z .

Let u = sin t. For any T ≥ 0, choose n ∈ N sufficiently large so that

nπ ≥ T and set s1 = (2n−1)π and t1 = 2nπ in (3.63), then condition (3.54)

is satisfied for all n. It is easy to verify that
∫ 2nπ

(2n−1)π

[
cos t sin2 t− (cos t−

1

2
sin2 t)2

]
dt+

∑

(2n−1)π≤θi<2nπ

sin4 θi

= −
19π

32
+

−1∑

i=−m

sin4(
iπ

m
)

=
3m

8
−

19π

32
(3.65)

and similarly, for s2 = 2nπ and t2 = (2n+ 1)π, we obtain

∫ (2n+1)π

2nπ

[
cos t sin2 t− (cos t−

1

2
sin2 t)2

]
dt+

∑

2nπ≤θi<(2n+1)π

sin4 θi

= −
19π

32
+

m−1∑

i=0

sin4(
iπ

m
)

=
3m

8
−

19π

32
. (3.66)
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It follows from Corollary 3.1.7 that equation (3.64) is oscillatory if m ≥ 5.

Note that differential part of equation (3.64) is nonoscillatory with a

nonoscillatory solution x(t) = tecos t.

3.2 Hill’s Equation with Damping

In this section, we are concerned with second order linear impulsive equa-

tion of the form

x′′ + p(t)x′ + q(t)x = 0, t 6= θi;

∆x′ + qix = 0, t = θi
(3.67)

where p(t), q(t) are continuous functions of period T and {qi}, {θi} are real

sequences satisfying qi+r = qi, θi + T = θi+r for all r, i ∈ {1, 2, ...} with

θ1 > t0 for fixed t0 ∈ R.

By a solution of equation (3.67), we mean a nontrivial continuous function

x(t) for t ≥ tx, tx > t0, such that x′ ∈ PLC1([tx,∞)) and satisfies equation

(3.67).

In present section, we extend the results of Kwong and Wong [36] to

the impulsive equation (3.67). Before giving the main results, we need the

following two Lemmas which are the extension of the results due to Wint-

ner [79, 81].

Lemma 3.2.1. Equation (3.67) is nonoscillatory on [0,∞) if and only if

there exists a t∗ ∈ [0,∞) and a function r ∈ PLC([t∗,∞)) such that

r′(t) ≥ r2(t)− p(t)r(t) + q(t), t 6= θi;

∆r(t) ≥ qi, t = θi
(3.68)

for all t ≥ t∗.

Proof. Assume that x(t) be a solution of equation (3.67) such that it has no

zero on [t∗,∞). Define r(t) := −x′(t)/x(t) for t ≥ t∗, then r(t) satisfies the
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impulsive equation

r′(t) = r2(t)− p(t)r(t) + q(t), t 6= θi;

∆r(t) = qi, t = θi.
(3.69)

Now, let there exists a function r ∈ PLC([t∗,∞)) satisfying (3.68). Define

f(t) := r′(t)− r2(t) + p(t)r(t)− q(t), t 6= θi;

fi := ∆r(θi)− qi, i ∈ N,

then f(t) ≥ 0 for t ≥ t∗ and fi ≥ 0 for which θi ≥ t∗, and we have the

following Riccati type impulsive equation:

r′(t) = r2(t)− p(t)r(t) + [q(t) + f(t)], t 6= θi;

∆r(t) = qi + fi, t = θi.
(3.70)

The corresponding equation becomes

x′′ + p(t)x′ + [q(t) + f(t)]x = 0, t 6= θi;

∆x′ + [qi + fi]x = 0, t = θi.
(3.71)

Since q(t)+ f(t) ≥ q(t) and qi+ fi ≥ qi, equation (3.71) is a Sturm majoring

for (3.67) and has a positive solution x(t) = exp(−
∫ t
r(τ)dτ). Hence by

Sturmian Oscillation Theorem for impulsive equations (see Corollary 2.2.5),

equation (3.67) is nonoscillatory.

In case qi ≡ 0, Lemma 3.2.1 can be found in [81] and [16, p. 362, Theorem

7.2].

Lemma 3.2.2. Suppose that
∫ ∞

exp

(
−

∫ t

p(τ)dτ

)
dt =∞

and

lim
ω→∞

[ ∫ ω

exp

(∫ t

p(τ)dτ

)
q(t)dt+

∑

θi<ω

exp

(∫ θi

p(τ)dτ

)
qi

]
=∞, (3.72)

then equation (3.67) is oscillatory.
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Wintner’s [79] original result was proved for the case p(t) ≡ 0 and qi ≡

0, but multiplying the equation (3.67) by the function exp(
∫ t
p(τ)dτ) and

applying Theorem 2 in [3], it is easy to verify that condition (3.72) is an

oscillation criterion for equation (3.67).

Theorem 3.2.3. Let there exist a function Q ∈ PLC([0,∞)) such that

Q′(t) = q(t), t 6= θi; (3.73)

where q(t) is periodic of mean value zero, i.e.,

∫ T

0

q(t)dt = 0 and a r periodic

sequence {pi} such that
∑

0<θi<T

pi = 0 and

∆Q(t) = pi, t = θi. (3.74)

If

p(t)−Q(t)]Q(t) ≥ 0, 0 ≤ t ≤ T ;

pi ≥ qi, 0 ≤ θi ≤ T,
(3.75)

then equation (3.67) is nonoscillatory.

Proof. We note that, if q(t) is periodic with mean value zero, we obtain

Q(T )−Q(0) =

∫ T

0

Q′(t)dt+
∑

0<θi<T

∆Q(θi) =

∫ T

0

q(t)dt+
∑

0<θi<T

pi = 0,

which yields Q(T ) = Q(0). On the other hand, we have

Q(t+ T )−Q(t) = [Q(t+ T )−Q(T )]− [Q(t)−Q(0)]

=

∫ t+T

T

Q′(τ)dτ +
∑

T≤θi<t+T

∆Q(θi)−

∫ t

0

Q′(τ)dτ −
∑

0<θi<t

∆Q(θi)

=

∫ t+T

T

q(τ)dτ −

∫ t

0

q(τ)dτ +
∑

T≤θi<t+T

pi −
∑

T≤θi+r<t+T

pi

=

∫ t

0

[q(τ + T )− q(τ)]dτ −
∑

T≤θi<t+T

[pi+r − pi].
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Since the function q(t) is T periodic and the sequence pi is r periodic, Q(t)

is periodic with period T . Observe that condition (3.75) implies

Q′(t) ≥ Q2(t)− p(t)Q(t) + q(t), t 6= θi;

∆Q(t) ≥ qi, t = θi
(3.76)

which becomes (3.68) if we set Q(t) = r(t) in (3.76). Hence by Lemma 3.2.1,

equation (3.67) is nonoscillatory.

Theorem 3.2.4. In addition to the assumptions in Theorem 3.2.3, let q(t) 6≡

0, p(t), Q(t) are also periodic with mean value zero and satisfy

[p(t)−Q(t)]Q(t) ≤ 0, 0 ≤ t ≤ T ;

pi ≤ qi, 0 ≤ θi ≤ T.
(3.77)

If either

measure
{
t ∈ [0, T ] : [p(t)−Q(t)]Q(t) < 0

}
> 0 or pi < qi (3.78)

for some i ∈ N for which θi ∈ [0, T ], then (3.67) is oscillatory.

Proof. Assume on the contrary that equation (3.67) is nonoscillatory, then

without loss of generality there exists a positive solution x(t) on [t0,∞) where

t0 ≥ 0 depends on the solution x(t). Let r(t) := −x′(t)/x(t) on t ≥ t0.

Then r(t) satisfies the Riccati type impulsive equation (3.69). Define R(t) =

r(t)−Q(t). It is easy to verify from (3.69) that R(t) satisfies

R′(t) = R2(t) + [2Q(t)− p(t)]R(t) +Q2(t)− p(t)Q(t), t 6= θi;

∆R(t) = qi − pi, t = θi.
(3.79)

Since R(t) ∈ PLC([t0,∞)) and satisfies (3.79), we can now apply the suffi-

ciency part of Lemma 3.2.1 to deduce that the second-order impulsive equa-

tion

z′′(t) + [p(t)− 2Q(t)]z ′(t) + [Q2(t)− p(t)Q(t)]z(t) = 0, t 6= θi;

∆z′(t) + [qi − pi]z = 0, t = θi
(3.80)

57



is nonoscillatory. Since p(t), Q(t) are periodic in T with mean value zero,

the function

E(t) := exp

∫ t

0

{
p(τ)− 2Q(τ)

}
dτ

is bounded below by a positive constant. Using (3.78), we get

∫ T

0

E(t)
{
Q2(t)− p(t)Q(t)

}
dt+

∑

0<θi<T

E(θi){qi − pi} = λ > 0,

which implies that condition (3.72) is satisfied. Now apply Lemma 3.2.2 to

equation (3.80) and conclude that it is oscillatory. This contradiction proves

the Theorem 3.2.4.

Note that if qi ≡ 0, we recover the results of Kwong and Wong [36].

3.3 Forced Linear Equations

In this section, we consider the forced second order linear impulsive equa-

tion

(p(t)y′)′ + q(t)y = f(t), t 6= θi;

∆p(t)y′ + qiy = fi, t = θi
(3.81)

under the assumption that the unforced equation,

(p(t)z′)′ + q(t)z = 0, t 6= θi;

∆p(t)z′ + qiz = 0, t = θi
(3.82)

is nonoscillatory, where {qi}, {fi} and {θi} are real sequences with θ1 > t0

for fixed t0 ∈ R. Throughout this work, we assume that the functions p,

q ∈ PLC[t0,∞) with p(t) > 0. Our interest is to establish an oscillation

criteria for equation (3.81) without assuming that the functions q and f are

of definite signs.

By a solution of equation (3.81), we mean a nontrivial continuous function

y(t) for t ≥ ty > t0 such that py′ ∈ PLC1([ty,∞)) and satisfies (3.81).
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In order to give an oscillation result for equation (3.81), we need to prove

the existence of nonprincipal solution of unforced equation (3.82). Therefore,

before giving the main results, we need some Lemmas.

Consider

Lx = (p(t)x′)′ + q(t)x = 0, t 6= θi;

Ix = ∆p(t)x′ + qix = 0, t = θi.
(3.83)

Lemma 3.3.1 (Polya Factorization). If (3.83) has a continuous solution

u(t) with no zeros in [a,∞), then for all η ∈ S = {η ∈ PLC1([a,∞)) : pη′ ∈

PLC1([a,∞))}

Lη = ρ1(ρ2(ρ1η)
′)′, t 6= θi; t ∈ [a,∞),

Iη = ρ1∆ρ2(ρ1η)
′, t = θi

(3.84)

where ρ1(t) = 1/u(t) and ρ2(t) = p(t)u2(t).

Proof. Let u(t) be the solution of (3.83) with no zeros in [a,∞), namely

Lu ≡ 0 for t 6= θi and Iu ≡ 0 for t = θi. Using Lagrange identity, we obtain

µLη − ηLµ = [p(t)W (η, µ)]′, t 6= θi;

µIη − ηIµ = ∆p(t)W (η, µ), t = θi
(3.85)

where W (η, µ) denotes the Wronskian. Taking µ(t) = u(t) in (3.85), we

obtain the equation (3.84).

Lemma 3.3.2 (Trench Factorization). If (3.83) has a positive continuous

solution on [a,∞), then for any η ∈ S

Lη = γ1(γ2(γ1η)
′)′, t 6= θi; t ∈ [a,∞),

Iη = γ1∆γ2(γ1η)
′, t = θi

(3.86)

where γ1(t), γ2(t) > 0 on [a,∞), and

∫ ∞

a

dt

γ2(t)
=∞.
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Proof. If

∫ ∞

a

dt

ρ2(t)
= ∞, take γ2(t) = ρ2(t) and γ1(t) = ρ1(t). Suppose

∫ ∞

a

dt

ρ2(t)
<∞, if we take

γ1(t) = ρ1(t)

(∫ ∞

t

ds

ρ2(s)

)−1

> 0 and γ2(t) = ρ2(t)

(∫ ∞

t

ds

ρ2(s)

)2

> 0,

then γ1(t) and γ2(t) satisfies the equation (3.86) and
∫ ∞

a

dt

γ2(t)
=

∫ ∞

a

1

ρ2(t)

(∫ ∞

t

ds

ρ2(s)

)−2

dt

=

∫ ∞

a

d

dt

(∫ ∞

t

ds

ρ2(s)

)−1

dt

=

(∫ ∞

t

ds

ρ2(s)

)−1 ∣∣∣∣
t=∞

t=a

−
∑

a<θi

∆

(∫ ∞

θi

ds

ρ2(s)

)−1

=∞.

Theorem 3.3.3. If (3.83) has a positive solution on [a,∞), then there exist

linearly independent solutions u and v, (v > 0) of equation (3.83) such that
u

v
→ 0 as t→∞ and

∫ ∞

a

dt

pu2
=∞ and

∫ ∞

a

dt

pv2
<∞.

Here the solutions u(t) and v(t) are called principal and nonprincipal solu-

tions of equation (3.83), respectively.

Proof. By Lemma 3.3.2, there exist γ1 > 0 and γ2 > 0 satisfying equation

(3.86). Then, take

u(t) =
1

γ1(t)
and v0(t) =

1

γ1(t)

∫ t

a

ds

γ2(s)
.

Since Lu = Iu = 0 and Lv0 = Iv0 = 0, u(t) and v0(t) are two linearly

independent solutions of equation (3.83) and

lim
t→∞

u(t)

v0(t)
= lim

t→∞

(∫ t

a

ds

γ2(s)

)−1

= 0. (3.87)
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Now, substituting η = u and µ = v0 on (3.85), we get

[p(t)W (u, v0)]
′ = 0, t 6= θi; (3.88)

∆p(t)W (u, v0) = 0, t = θi. (3.89)

Integrating equation (3.88) over [a, t] and using (3.89), we obtain

W (u, v0)(t) = c/p(t) where the constant c = p(a)W (u, v0)(a). This implies
(
v0

u

)′
(t) =

W (u, v0)(t)

u2(t)
=

c

p(t)u2(t)
. (3.90)

Integrating (3.90) over [a,∞) and using (3.87), we obtain
∫ ∞

a

dt

p(t)u2(t)
=

1

c
lim
A→∞

∫ A

a

(v0

u

)′
(t)dt

=
1

c
lim
A→∞

[
v0(t)

u(t)

∣∣∣∣
t=A

t=a

−
∑

a≤θi<A

∆
(v0

u

)
(θi)

]

=
1

c
lim
A→∞

[
v0(A)

u(A)
−
v0(a)

u(a)
−
∑

a≤θi<A

∫ θ+i

θi

γ−1
2 (s)ds

]

=
1

c
lim
A→∞

v0(A)

u(A)
−
v0(a)

cu(a)
=∞.

Let v(t) be any solution of (3.83). Then v(t) = c1u(t) + c2v0(t) for some

constants c1, c2 with c2 6= 0 and using (3.87), we get

lim
t→∞

u(t)

v(t)
= lim

t→∞

[
c1 + c2

v0(t)

u(t)

]−1
= 0. (3.91)

Since Lu = Iu = 0 and Lv = Iv = 0, u(t) and v(t) satisfy the equalities

(3.88) and (3.89) with v0(t) replaced by v(t). In a similar way, we obtain
(
u

v

)′
(t) =

W (v, u)(t)

v2(t)
=

c̃

p(t)v2(t)
(3.92)

where the constant c̃ = p(a)W (v, u)(a), and

∆

(
u

v

)
(θi) = ∆

[
c1 + c2

v0(θi)

u(θi)

]−1
= 0. (3.93)
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Integrating (3.92) over [a,∞) and using (3.91) and (3.93), we have
∫ ∞

a

dt

p(t)v2(t)
= −

u(a)

c̃v(a)
<∞. (3.94)

The proof of Theorem 3.3.3 is completed.

Let z(t) be the nonprincipal solution of the unforced equation (3.82), i.e.,

z(t) satisfies ∫ ∞ ds

p(s)z2(s)
<∞. (3.95)

Define the following function H(t),

H(t) :=

∫ t 1

p(s)z2(s)

(∫ s

z(τ)f(τ)dτ +
∑

θi<s

z(θi)fi

)
ds. (3.96)

Theorem 3.3.4. Suppose that (3.82) is nonoscillatory and let z(t) be a non-

principal solution. Then equation (3.81) oscillatory if

lim
t→∞

H(t) = − lim
t→∞

H(t) = +∞. (3.97)

Proof. The change of variable y = z(t)w(t) transforms (3.81) into

(p(t)z2w′)′ = f(t)z, t 6= θi; (3.98)

∆p(t)z2w′ = fiz, t = θi. (3.99)

When z(t) is a solution of (3.82), we can express w(t) by integration of (3.98)

and using (3.99) as follows,

w(t) = c1 + c2

∫ t

t0

ds

p(s)z2
+

∫ t

t0

1

p(s)z2

(∫ s

t0

zf(τ)dτ +
∑

t0≤θi<s

z(θi)fi

)
ds

where c1 and c2 are constants depending on the initial conditions w(t0) and

w′(t0). Note that z(t) nonprincipal solution, so (3.95) and (3.97) imply that

w(t) satisfies

lim
t→∞

w(t) = − lim
t→∞

w(t) = +∞. (3.100)

Because z(t) is nonoscillatory (3.100) implies that w(t) is oscillatory. Hence

y = z(t)w is also oscillatory.

Note that if qi ≡ fi ≡ 0, we recover the result of Wong [82].
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[11] Á. Elbert. A half-linear differential equation. in: Colloq. Math. Soc.

Janos Bolyai 30: Qualitative Theory of Differential Equations, Szeged,

pages 153–180, 1979.

[12] K. Gopalsamy and B. G. Zhang. On delay differential equations with

impulses. Journal of Mathematical Analysis and Applications, 139:110–

122, 1989.

[13] S. R. Grace. Oscillation theorems for nonlinear differential equations

of second order. Journal of Mathematical Analysis and Applications,

171:220–241, 1992.

[14] J. R. Graef, S. M. Rankin, and P. W. Spikes. Oscillation results for

nonlinear functional differential equations. Funkcialaj Ekvacioj, 27:255–

260, 1984.

[15] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge
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