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ABSTRACT

EXTRACTION OF AUDITORY EVOKED POTENTIALS FROM
ONGOING EEG

Aydın, Serap
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Nevzat Güneri Gençer
Co-Advisor: Prof. Dr. Buyurman Baykal

September 2005, 89 pages

In estimating auditory Evoked Potentials (EPs) from ongoing EEG the
number of sweeps should be reduced to decrease the experimental time and to
increase the reliability of diagnosis. The first goal of this study is to demon-
strate the use of basic estimation techniques in extracting auditory EPs
(AEPs) from small number of sweeps relative to ensemble averaging (EA).
For this purpose, three groups of basic estimation techniques are compared
to the traditional EA with respect to the signal-to-noise ratio(SNR) improve-
ments in extracting the template AEP. Group A includes the combinations
of the Subspace Method (SM) with the Wiener Filtering (WF) approaches
(the conventional WF and coherence weighted WF (CWWF). Group B con-
sists of standard adaptive algorithms (Least Mean Square (LMS), Recursive
Least Square (RLS), and one-step Kalman filtering (KF). The regularization
techniques (the Standard Tikhonov Regularization (STR) and the Subspace
Regularization (SR) methods) forms Group C. All methods are tested in sim-
ulations and pseudo-simulations which are performed with white noise and
EEG measurements, respectively. The same methods are also tested with
experimental AEPs. Comparisons based on the output signal-to-noise ratio
(SNR) show that: 1) the KF and STR methods are the best methods among
the algorithms tested in this study,2) the SM can reduce the large amount
of the background EEG noise from the raw data, 3) the LMS and WF algo-
rithms show poor performance compared to EA. The SM should be used as
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a pre-filter to increase their performance. 4) the CWWF works better than
the WF when it is combined with the SM, 5) the STR method is better than
the SR method. It is observed that, most of the basic estimation techniques
show definitely better performance compared to EA in extracting the EPs.
The KF or the STR effectively reduce the experimental time (to one-fourth of
that required by EA). The SM is a useful pre-filter to significantly reduce the
noise on the raw data. The KF and STR are shown to be computationally
inexpensive tools to extract the template AEPs and should be used instead
of EA. They provide a clear template AEP for various analysis methods. To
reduce the noise level on single sweeps, the SM can be used as a pre-filter
before various single sweep analysis methods.

The second goal of this study is to to present a new approach to extract
single sweep AEPs without using a template signal. The SM and a modi-
fied scale-space filter (MSSF) are applied consecutively. The SM is applied
to raw data to increase the SNR. The less-noisy sweeps are then individu-
ally filtered with the MSSF. This new approach is assessed in both pseudo-
simulations and experimental studies. The MSSF is also applied to actual
auditory brainstem response (ABR) data to obtain a clear ABR from a rel-
atively small number of sweeps. The wavelet transform coefficients (WTCs)
corresponding to the signal and noise become distinguishable after the SM.
The MSSF is an effective filter in selecting the WTCs of the noise. The esti-
mated single sweep EPs highly resemble the grand average EP although less
number of sweeps are evaluated. Small amplitude variations are observed
among the estimations. The MSSF applied to EA of 50 sweeps yields an
ABR that best fits to the grand average of 250 sweeps. We concluded that
the combination of SM and MSSF is an efficient tool to obtain clear single
sweep AEPs. The MSSF reduces the recording time to one-fifth of that re-
quired by EA in template ABR estimation. The proposed approach does not
use a template signal (which is generally obtained using the average of small
number of sweeps). It provides unprecedented results that support the basic
assumptions in the additive signal model.

Keywords: Auditory Evoked Potential, Adaptive filtering, Tikhonov regular-
ization,Wavelet Transform
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ÖZ

SÜREGÍDEN EEG SÍNYALÍNDEN ÍŞÍSEL UYARILMIŞ
POTANSÍYELLERÍNÍN ELDE EDÍLMESÍ

Aydın, Serap
Doktora, Elektrik-Elektronik Mühendisliǧi Bölümü
Tez Yöneticisi: Prof. Dr. Nevzat Güneri Gençer

Yardımcı Danışman: Prof. Dr. Buyurman Baykal

Eylül 2005, 89 sayfa

Devam eden EEG sinyalinden, az sayıda kayıt kullanılarak örnek
Uyarılmış Potansiyel (UP) bilgisinin elde edilmesi, klinik uygulamalarda
kayıt süresinin azaltılması ve tanı güvenilirliǧinin arttırıması için gereklidir.
Bu tez çalışmasındaki ilk amaç, az sayıda tekrardan örnek işitsel UP (IUP)
elde edilmesinde geleneksel Ortalama Alma (OA) yöntemi ile temel doǧrusal
tahmin tekniklerinin kıyaslanmasıdır. Bu amaçla yöntemler kavramsal olarak
gruplandırılmıştır. Grup A, üç yöntem içerir: 1) Literatürde yeralan ve
Wiener Süzgeç (WS) ile Altuzay Yöntemi (AY)’nin birlȩstirilmesini öneren
yöntem, 2) WS ile AY’nin uygulama sırasının deǧis.tirilmesiyle oluşturulan
yöntem, 3) Birinci yöntemde WS yerine yinelemeli bir WS kullanılarak
olus.turulan yöntem. Grup B, uyarlanır Enküçük Ortalama Kare (EOK)
ve Geribeslemeli Enküçük Kareler (GEK) süzgeç ile Kalman süzgeç (KS)
uygulamalarını içerir. Yanısıra, EOK süzgeç, AY ile birles.tirilerek de
uygulanmıs.tır. Grup C, geriplan EEG gürültüsünün ikinci dereceden is-
tatistiksel bilgisini kullanan Standart Tikhonov Düzenleme (STD) ile Al-
tuzay Düzenleme (AD) yöntemlerini kapsar. Peformans ölçütü olarak sinyal-
gürültü-oranı (SGO) kullanılmıştır. Yaklaşık - 5 dB civarında olan giriş SGO
deg̃eri, AY kullanılarak 20 dB’ye kadar arttırılabilmektedir. AY yönteminin
sag̃ladıg̃ı bir başka avantaj da tek kayıtlar üzerindeki EEG gürültüsünün
karakteristig̃ini beyaz gürültüye yaklas.tırmasıdır. Bu yüzden AY’nin bir
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ön-süzgeç olarak kullanılması, WS yaklaşımlarının ve EOK süzgecin per-
formanslarını arttırmıs.tır. Deneysel ve yapay verilerle sözügeçen üç grup
yöntemin kıyaslanması sonusunda deney süresinin KS ya da STD yöntemleri
ile yaklaşık dörtte bir oranında kısaltılabildiǧi görülmüs.tür.

Tezin ikinci amacı, referans sinyal kullanılmadan tek kayıt IUP bilgisinin
elde edilmesinde yeni bir yöntem önerilmesidir. Tek kayıt UP bilgisinin elde
edilmesi, tanı için yeni veriler saǧlayabilir. Bu amaçla, tek deneyden IUP
tahmini için AY ile Deǧiştirilmiş Olçek-Uzay Süzgeç (DOUS) ardarda bir-
birinden baǧımsız olarak uygulanmıştır. AY kullanılarak kaba veride SGO
artışı saǧlanır. Az gürültülü tek kayıtlar DOUS’den geçirilir. Önerilen
yeni yaklas.ımla elde edilen tek kayıt gerçek IUP tahminleri büyük ortala-
mayı yakından izler. Saǧlıklı kis.ilerin verileri kullanıldıǧında, beklenildiǧi
gibi düşük genlik deǧis.imleri gözlenmis.tir. Sinyalin ve gürültünün Dalgacık
Dönüşümü katsayıları, AY kullanıldıǧında ayırtedilebilir hale gelir. 50 kaydın
ortalamasına DOUS uygulandıǧında işitsel beyin sapı yanıtı (250 kaydın or-
talamsı) elde edilebilmiştir. DOUS kullanılarak beyin sapı yanıtının elde
edilmesinde kayıt süresi OA yöntemine göre beşte biri oranında azaltılmıştır.
Önerilen yeni yaklaşım, tek kayıt IUP tahmininde etkili bir yöntemdir ve
bir referans sinyal (genelde az sayıda deneyin ortalaması alınarak elde edilir)
bilgisine ihtiyaç duymaz. Elde edilen yeni sonuçlar, toplanırlık sinyal UP
modelinde kabul edilen varsayımları doǧrular.

Anahtar sözcükler: İs.itsel uyarılmış potansiyel, uyarlanır süzgeç, Tikhonov
düzenleme yaklaşımı, dalgacık dönüşümü.
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chapter 1

introduction

The brain is probably the most complex structure in the known universe.
The brain possesses many highly specialized component parts each associated
with specific tasks, for example memory and vision. While these parts work
together, each part is responsible for a specific function. To understand the
functional status of the brain such as in sleep, anesthesia, hypoxia (lack of
oxygen) and in certain nervous diseases, e.g. epilepsy, the brain’s recordable
neuro-electric signals, called electroencephalogram (EEG), are processed and
analyzed [90]. The brain electrical activity, that occurs in association with
an external stimulus (auditory, visual or somatosensory), is called Evoked
Potential (EP). If the experiment is relevant to a cognitive activity, the re-
sponse signal is frequently called as either event-related-potential (ERP) or
cognitive EP in a wide range of cognitive paradigms. EPs are important
diagnostic tools in investigation of physiological and psychological situation
of subjects. In general, EPs or ERPs are not recognizable by visual inspec-
tion since they are buried in spontaneous Electroencephalogram (EEG) with
signal-to-noise ratio (SNR) as low as −5 dB considering stimulus-unrelated
background EEG as the noise in the measurements [90]. The separation of
the EP (the signal) and the ongoing EEG (the noise) in the measurements
have been very attractive research area. This requires use of powerful signal
processing tools and several methods have been proposed for this purpose. In
this chapter, first the general characteristics of the EEG and EP signals are
presented. Next, various methods studied for EP estimation will be reviewed.

1.1 Characteristics of EEG and EPs

The EEG recording was first announced by a German psychiatrist named
Hans Berger in 1929. The EEG signals are commonly measured from the
scalp surface by using scalp electrodes according to the international 10-20
electrode system (1.1). EEG recordings are also obtained from 64, 128, or
256 channel EEG electrode systems for source localization purposes.
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Figure 1.1: The international 10-20 electrode placement system for EEG
recording [96].

The spectral classification of the EEG consists of four bands [4]:
δ activities vary from 0.5 to 3.5Hz. They are rare and are often considered

pathological when observed in the normal waking adult with high amplitude.
θ activities vary from 3 to 8Hz. During sleep, these waves are usually

more prominent in the temporal areas of the brain.
α activities vary from 8 to 13Hz. They are prominent in the occipital

region of the brain when the person is relaxed with eyes closed.
β activities vary from 14 to 30Hz. Their amplitudes range from 5µV olt

to 20µV olt. They are commonly seen in the frontal and central regions of
the brain. Each type of EP looks at a different neurological pathway: The
auditory evoked potentials (AEPs) help evaluate the auditory nerve pathways
from the ears through the brainstem, the visual EP (VEP) evaluates the
visual nervous system from the eyes to the occipital cortex of the brain and
the somatosensory EP (SEP) assesses pathways from nerves in the arms or
legs, through the spinal cord, to the brainstem or cerebral cortex. In this
thesis, we deal with AEPs that are valuable tools for some clinical application
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areas such as audiometry, psychiatry [11, 45], nervous system disorders [23,
100].

EPs are interpreted in terms of the wave components such as magni-
tudes and latencies. EPs have no special characteristics like ECG signals.
Their components changes depending on 1) stimulus type, 2) individual
differences, 3) psychophysiological factors for a given individual [90, 96].
The general characteristics of EPs are briefly summarized in Table 1.1 [4, 46].

Table 1.1: The general characteristics of EPs and ERPs
Type Specific for recording Amplitude Frequency
AEP on vertex 0.5− 10µV olt 10Hz − 3KHz
SEP somatosensory cortex 1− 10µV olt 2Hz − 3KHz
VEP occipital cortex 1− 20µV olt 1Hz − 300Hz
General ERP (e.g. P300) 1− 50µV olt 0.2Hz − 100Hz
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The auditory brainstem response (ABR) is a subclass of AEPs. ABR is
the brain wave activity starting in the inner ear that travels through the
auditory nerve and to the auditory nuclei of the brain stem. It does not
affected by the mental state of the subject and has very small amplitudes,
ranging from 0.001 to 2 µV olt [90]. The typical ABR waveform is shown
in Figure 1.2 [32]. The brainstem links the brain to the spinal cord. It
controls many functions vital to life, such as heart rate, blood pressure and
breathing. This area is also important for sleep. Therefore, ABR is used
to help diagnose hearing loss, acoustic neuroma and some nervous system
abnormalities.

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.2: Typical ABR waveform (adapted from [36]). Five general re-
sponse categories of the ABR waveform are also shown (I-Fast response occur
between 2 and 12 ms, II-Slow wave response occur about 12 ms, III- Middle
responses occur 12 to 50 ms, IV-Slow responses occur 50 to 300 ms, V-Late
responses occur 250 to 600 ms).

1.2 Extraction of EPs from ongoing EEG

The ultimate goal in the field of EP research is to recover the response
to each stimulus. However, not only the psychophysiological factors [90, 96]
but also the recording problems [15, 56] makes the extraction of single sweep
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EP from ongoing EEG difficult. Traditionally, a large number of repeti-
tive measurements are ensemble-averaged (EA) to decrease the noise level
and find a template EP signal, assuming the stimulus-induced changes in
the EEG are small [1, 19, 38, 43]. This approach is based on an additive
model to describe the background EEG noise and an uncorrelated EP signal
[111, 2, 65, 66, 60, 91, 48, 17, 19, 18, 62, 85, 28, 128, 12, 39, 71]. For clinical
evaluations, either the template EP signal or possible amplitude/latency vari-
ations on single sweeps (with respect to a template EP signal) are used [90].
The use of EA is impractical , however in cases where there are relatively tight
constraints related to the available recording time or cooperativity of the sub-
ject. This has led to the development of the alternative SNR improvement
methods based on the additive model. Therefore, researchers have studied
on powerful signal processing techniques associated with either template EP
estimation or single trial EP estimation. In this thesis, three groups of linear
filtering algorithms (combinations of the SM with WF approaches, standard
adaptive filtering algorithms, Tikhonov regularization techniques) are com-
pared with traditional EA dealing with template EP estimation. In addition,
a new approach is presented dealing with the single trial EP estimation.

Considering the first topic, various methods are suggested as either an
alternative to EA to reduce the number of sweeps, or as a post-processing
step to remove the noise remaining on average signal. These methods are
applied to different types of EPs as summarized in Table 1.2. Some of them
may be listed as follows: the weighted averaging approach [17], the subspace
averaging method [18, 19], the parametric filtering [52], the adaptive filtering
[6, 66, 69, 71, 75, 112, 113, 102], Wiener filtering [12, 24, 91, 126], the
transform based algorithms [129, 103, 109], Bayesian estimation [110],
and Tikhonov regularization [60]. In these studies, the background EEG
noise is assumed to be independent of the stimulus. Among them, the
weighted averaging technique is introduced to preserve the high frequency
information that may be lost by EA, for both constant noise variances [17]
and, non-constant noise variances [18] on noisy sweeps. Most of the adaptive
algorithms commonly use the least-mean-square (LMS) algorithm due to its
low computational complexity. However, since the estimation performance
of LMS algorithm is sensitive to the step-size, different approaches have been
studied in EP research area to reduce this sensitivity utilizing the Wavelet
Transform (WT) [6, 49, 74], higher order statistics [112] or, moving window
technique [69, 102]. The EP signal is commonly assumed to be stationary
in post-processing methods based on various estimation techniques dealing
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with several types of EPs. For instance, 2nd order statistical information
about the signal and the noise [28], least square lattice algorithm [75], adap-
tive filtering approaches [102] and WT [109] is used for BAEP estimation.
Another WT based post-processing method is presented to enhance the SNR
for SEP and VEP signals [129]. A group of basic estimation techniques are
compared to traditional EA such that the Bayesian estimation and Kalman
filtering (KF), which is based on mean square estimation technique, are
found to better than the others in template AEP estimation regarding as
the SNR enhancement[62]. In literature, the state-space modeling concept
is also used for template EP estimation from a relatively small number of
sweeps [30, 50, 92, 111]. The SNR improvement methods require either
a reference signal or prior knowledge about the signal or noise. A set
of measurements must be available for both of these requirements. To
overcome these drawbacks, a few studies evaluate the measurement dividing
into two part: the EP signal corrupted with the noise is estimated by
filtering of the post-stimulus interval after characterizing of the noise from
the pre-stimulus interval [70, 72, 75, 111]. Either signal or noise is assumed
to be stationary in linear SNR improvement algorithms. However, such
assumptions are being questioned in some reports describing the EPs or
ERPs as superposition of some phase modulated rhythmic activities which
may be related to different cognitive processes of the brain [80, 20, 67, 93, 55].

Table 1.2: The literature review on template EP estimation
MS B LS TB

actual AEP [69] [110]
simulation [121, 12, 102] [110] [111]
actual SEP/VEP [121, 28, 69] [111] [129, 21]

[75, 109, 91]
[102]

The template EP is widely consulted in literature associated with the
second topic (single sweep EP estimation) for several EPs as summarized
in Table 1.3. The possible variations, which may important in some clinical
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Table 1.3: The literature review on single sweep EP extraction
MS B LS TB

actual AEP [103, 47]
simulation [113, 66] [60] [2, 105] [105, 103]
actual SEP/VEP [65, 66] [105, 72] [115]
P300 [60]

evaluations [3, 98, 118, 84], are obtained by evaluating a small number of
sweeps in wide range of EP research area. In that case, the specific features
are identified from a template EP by using various algorithms such as an
adaptive algorithm for VEPs [113], a specified model for movement related
EPs [71, 72, 111], a neural network approach (training based algorithm)
for either SEPs [47], maximum likelihood approach [51], moving window
technique for intracranially ERP [25] or, the multi-resolution-decomposition
approximation for auditory ERP signals [105, 103]. The template EP
signal is computed by averaging small number of sweeps in these studies.
Therefore, validity of the feature selection is highly influenced by the noise
remaining on the template EP. In this thesis, we propose a new approach
that combines the SM and a wavelet domain filtering named as modified
scale space filter (MSSF) for single sweep auditory EP estimation. The
proposed approach does not require a template EP. In EP research area,
researchers have also dealt with the analysis of ERPs or EEG itself. The
literature may be summarized in Table 1.4 with respect to relevant topics
((i) template EP estimation, ii) single sweep EP estimation, iii) ERP
analysis, iv) EEG/ERP analysis) and estimation techniques (least square
(LS), mean square (MS), Bayesian (B), transform based (TB), model based
(MB), neural network (NN) approach, independent component analysis
(ICA)).
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Table 1.4: The brief summary on literature review
i ii iii iv

MS [12, 28, 69] [66, 113] [30] [114]
[75, 91, 109]
[102, 113, 121]

LS [111, 120, 128] [2, 72] [72]
B [110, 60] [65, 60, 66] [30]
TB [25, 129, 21] [103, 47, 105] [5, 21, 25] [55, 99]

[8, 109, 128] [115] [85, 118]
[129, 9]

MB [50, 92, 19, 95] [122]
NN [116, 33] [47] [73, 132, 34]
ICA [80] [57, 58, 80]

[59]

In this thesis, the SM that is usually proposed to filter the noise compo-
nents in image processing [97, 104], has been applied solely to estimate EPs.
We apply the SM as presented by Moor [82]. The SM is proposed as a sec-
ondary filtering process following the conventional WF in a simulation study
[12]. We change the application order of the filtering and the SM in this the-
sis. We also use an iterative WF approach, called the Coherence Weighted
WF (CWWF) that is introduced for SEP estimation [91], instead of conven-
tional WF. These combination methods form the Group A among the basic
linear estimation techniques to be compared for template auditory EP esti-
mation as a first contribution of this thesis. The basic adaptive algorithms
(LMS, RLS and one-step KF) and the Tikhonov regularization techniques
form Group B and Group C, respectively. Standard Tikhonov regularization
(STR) method has not been applied to extract the EPs whereas a special
case of the STR so called Subspace Regularization (SR) method is proposed
to single trial EP estimation [60]. In this thesis, we use both the STR and SR
methods as post-processing steps for template AEP estimation. The above
listed three groups of algorithms are introduced in Chapter 2. As a result
of the comparison study, it is concluded that the SM is a useful pre-filter to
reduce the large amount of the background EEG noise from the raw data.
Then, less-noisy sweeps are filtered in wavelet domain with MSS in the sec-
ond contribution of the thesis. The theoretical basis of the filtering algorithm
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are given in Chapter 3.

1.3 The Scope of the Thesis

The objectives of this study are as follows:
1) to compare a group of linear filtering algorithms relative to traditional

EA for template AEP estimation from a small number of sweeps,
2) to present a new approach for single sweep AEP extraction.

1.4 The Significance of the Thesis

As a first contribution of this thesis, we compare a group of basic linear
estimation techniques to forms a reference for future studies on auditory EP
extraction using all possible data sets (i.e, simulations, pseudo-simulations
and experimental data). The SM, which was used as a post-processing step
for EP extraction, is shown to be an effective pre-processing step to improve
the performance of different algorithms. The STR method was not applied
before for auditory EP estimation. It is shown to be better than the SR
method and found among the best in this case.

Corresponding to the second goal of this study, a wavelet domain filter,
namely modified scale-space filter MSSF is applied to the projected data.
This new approach provides new results that support additivity model as-
sumption.

1.5 The Thesis Organization

The thesis is organized as follows: In Chapter 2, the comparison study
was given on the estimation of template AEP from small number of sweeps.
The algorithms corresponding to the three groups of methods, the Subspace
Method in combination with Wiener Filtering approaches, standard Adap-
tive Filtering approaches, Tikhonov regularization techniques, were given in
section 2.2, 2.3 and 2.4, respectively. The results corresponding to the actual
and simulated data sets were given in section 2.5.

In Chapter 3, a new approach was presented to single trial auditory EP
estimation. For this purpose, two independent methods, the SM and MSSF
in this thesis, were applied consecutively. The SM and MSSF algorithm were
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introduced in section 2.1 and section 3.1, respectively. The new approach
was tested in both simulations and experimental studies in template AEP
estimation. The related results were given in section 3.2.2 and 3.2.1. The
MSSF was used for estimation of template ABR, as well. The MSSF was
applied to average small number of sweeps as a post-filter to obtain the
template ABR. For this purpose, MSSF was tested for actual ABR data
recorded from rats and the results were given in section 3.2.2.
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chapter 2

comparison of basic
estimation techniques in

extracting template auditory
ep

In this chapter, a group of algorithms were assessed to obtain a template
auditory EP from a relatively small number of sweeps (Figure 2.1).

 
 
 
 
 
 
 
 
 
 

...
...

x1

xL

x512

filtering

EP = averaging

...
...

x1

xL

x512

filtering

EP = averaging

Figure 2.1: The EP can be estimated from a small number of sweeps

Here, each noisy sweep denoted by xi.
The additive signal model was commonly considered to estimate different

types of EPs, such as somatosensory EP [2, 65, 66, 60, 91, 111], visual EP
[18, 19, 48], auditory EP [12, 17, 62], cognitive EP [39, 85] or, brainstem
auditory EP [28, 128]. In this comparison study, the same model was adopted
for auditory EP estimation. Mathematically, this can be expressed as follows:

xi(n) = s(n) + wi(n) 0 ≤ n ≤ N − 1, 1 ≤ i ≤ L (2.1)
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where s and wi respectively represent the true EP signal (the grand average
EP in experimental case and the known EP in simulations) and the noise
components of the response xi to the ith stimulus. Here n is the time index
and N denotes the number of samples per response. L represents the number
of repetitions.

In experimental studies, the EP signal ŝ (grand average AEP) was com-
puted by

ŝ(n) =
1

L

L∑
i=1

xi(n). (2.2)

where L represents the overall number of sweeps.
In addition to the additive signal model, we assume the following: 1) the

EP signal is stationary, and 2) the EP signal and the background EEG noise
are uncorrelated.

Below, the mathematical basis of the algorithms studied in this work, shall
be briefly introduced. The matrices and vectors were given with boldfaced
lowercase and uppercase letters, respectively. The scalar variables were given
in regular type.

2.1 The Subspace Method

It was shown that, it is not possible to reconstruct the exact data matrix
S from the noisy version X [82]. Thus, estimates of S should be explored.
In this study, the noise matrix X is approximated by a matrix of rank r in
the least squares sense [36]. Note that, it is possible to obtain a minimum
variance estimate or a whole set of data matrices S that could have generated
the observation matrix X under certain assumptions [82]. The least squares
estimates or the minimum variance estimate can simply be obtained using
the singular value decomposition (SVD) of X. In this section, we shall briefly
describe the SVD and the least squares estimate of S.

The SVD of X ∈ RN×L is any factorization of the form,

X = UΣVT (2.3)

where U ∈ RN×N and V ∈ RL×L are orthogonal matrices. The columns of
U and V are called as left and right singular vectors which span the column
space and row space of X, respectively. The entries of the diagonal matrix
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Σ indicates the singular values of X such as λ1 > . . . > λp−1 > λp where
p = min(N, L) [36].

The SVD of X can be expressed as

X =
(

Um1 Um2

) (
Σm1 0
0 Σm2

)(
Vt

m1

Vt
m2

)
(2.4)

For r = rank(S) then Σm1 = diag (λ1, . . . , λr), λr À λr+1 [36].
The least squares estimate SLS can be computed by projecting X onto

the signal subspace as follows [36]:

Y = Um1U
t
m1X = Um1Σm1V

T
m1 (2.5)

Note that, the original column space of S can not be recovered since
Um1 6= Us1 where Us1 consists of the largest r left-singular vectors of the
original signal matrix S [82]. However, as the SNR increases, the canonical
angles between Um1 and Us1 decrease [42].

In an EP experiment, possible amplitude variations on single sweeps will
not change the rank of S whereas latency variations will be effective. The
number of sweeps having different latencies determine the number of basis
which spans the signal subspace. If we assume that the EP signal is sta-
tionary, then only the first left singular vector spans the signal subspace of
interest and r = 1.

2.2 Group A: The Subspace Method in

combination with Wiener Filtering Ap-

proaches

In a simulation study, to improve the performance of conventional Wiener
filtering (WF), filter outputs are projected onto the signal subspace by using
the SM [12]. In this study, we apply the same method to extract auditory
EPs. In addition, we explore the use of changing the application order of
filtering and the projection process. We also use the Coherence Weighted
Wiener Filter (CWWF), which was presented for estimation of somatosen-
sory EPs [91], instead of conventional WF to filter out the noise remaining
on the projected version the data. Thus, these three mentioned methods are
chosen as the first group of algorithms used for the performance assessment.
The algorithms in Group A can be listed as follows:
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• Projection after WF (WFSM)

• WF after projection (SMWF)

• CWWF after projection (SMCWWF)

Wiener Filtering is a linear discrete-time filtering operation as shown in
Figure 2.2. Here xi and yi(n) are the input and output sequences of the
filter, di(n) is the desired signal, and i is the trial index. The desired signal
can be calculated as

di(n) =
1

L− 1

L∑

j=1,j 6=i

xj(n) (2.6)

The estimation error ei(n) is expressed as

ei(n) = di(n)− yi(n) (2.7)

The elementary properties of WF can be found elsewhere [44]. We give
the basic mathematical descriptions about the weight vector of both WF
and CWWF in the following sub-sections.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WF

di(n)

ei(n)

yi(n)xi(n)
WF

di(n)

ei(n)

yi(n)xi(n)

Figure 2.2: The Wiener Filtering model

2.2.1 Conventional Wiener Filtering

Assume that the ith noisy sweep, namely xi and the desired response di

are jointly wide-sense stationary stochastic processes as given with Equation
2.1 and Equation 2.6, respectively.
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WF converge the optimum weight vector woi based on Mean Square (MS)
estimation without any need of an algorithm. The optimum weight vector is
computed by minimizing the mean square error as follows:

∂Ji(n)

∂wi

= 0, Ji(n) = E| ei(n) |2 (2.8)

woi = R−1
i pi. (2.9)

Here Ri denotes the N×N correlation matrix of the ith input noisy sweep
xi and pi is the cross-correlation vector between the input noisy sweep xi

and the desired signal di. Then the corresponding WF output vector (yi) is
obtained as follows

yi(n) =
M∑

m=0

woi(m)xi(n−m), n = 1, ..., N (2.10)

where woi refers the ith optimum weight vector. Here M refers the filter
length.

2.2.2 Coherence Weighted Wiener Filtering

The weight vector, namely the Wiener filter coefficient vector is also esti-
mated in an iterative way [91]. For this purpose, the filter transfer function
H(ω) is defined by

H(ω) =
Ss(ω)

Ss(ω) + Sz(ω) 1
L−1

(2.11)

where ω is the frequency index, Ss(ω) and Sz(ω) denote the power spectral
densities (squared magnitude of the Fourier Transform) corresponding to the
signal s and the noise z. The power spectral densities are defined for L
consecutive sweeps as follows,

Ss(ω) =
L

L− 1
Sx̄(ω)− 1

L− 1
Sx(ω) (2.12)

Sz(ω) =
L

L− 1
[Sx(ω)− Sx̄(ω)] (2.13)

Here, Sx(ω) and Sx̄(ω) are the power spectral densities corresponding to
the input noisy signal xi and averaged L number of noisy sweeps. These
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spectrums are calculated iteratively by using a coherence function γxz. The
coherence function reflects the degree of correlation between the different
frequency components of two stationary time sequences x(n) and z(n) as

γxz =
Sxz(ω)√

sxx(ω)Szz(ω)
(2.14)

where the Sxz(ω) is the cross spectrum between x(n) and z(n). Here, Sxx(ω)
and Szz(ω) are the auto-power spectra of each signal. The filter transfer
function is then expressed for the ith response as

H(ω, i) =
Sx̄(ω, i)

Sx̄(ω, i) + Sz̄(ω, i) 1
L

(2.15)

where

Sx̄(ω, i) =
i− 1

i
Sx̄(ω, i− 1) +

1

i
γ(w, i)Sx(ω, i) (2.16)

and

Sz̄(ω, i) =
i− 1

i
Sz̄(ω, i− 1) +

1

i
[1− γ(ω, i)]Sx(ω, i). (2.17)

Here, γ(ω, i) refers the spectral coherence between Sx(ω, i) and Sx̄(ω, i− 1).
Thus, the filter impulse response is obtained by taking the inverse Fourier
Transform of the transfer function H(ω) [91].

2.3 Group B: Standard Adaptive Filtering

Algorithms

The standard LMS and RLS algorithms are based on the Wiener filter
theory and the theory of least squares and Kalman filters, respectively. In
the present study, the LMS filtering, the RLS filtering and, one-step Kalman
filtering algorithms are applied. The block diagram representation of the
adaptive filters is illustrated in Figure 2.3 [44].

Here, xi(n) and wi(n) denotes respectively the input noisy sequence
and weight vector of the filter at time n. The filter output sequence yi(n) is
given by

yi(n) = wH
i (n)xi(n). (2.18)
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Figure 2.3: The Adaptive Filtering model

where superscript H denotes Hermitian transposition. Since the noise on
the desired signal and the input signal are assumed uncorrelated, the desired
signal sequence di(n) is calculated from the average of L− 1 sweeps as given
with Equation 2.6. The estimation error ei(n) is computed by using Equation
2.7.

2.3.1 Least Mean Square Filtering

The LMS algorithm is a stochastic gradient search algorithm that is an
alternative way of finding the optimum weight vector woi. In this algorithm,
the mean square error is minimized by moving along the negative gradient
direction with a constant learning rate (step-size) symbolized by µ. In this
algorithm, iterative search algorithm is used as follows:

ŵi(n + 1) = ŵi(n) +
µ

2
(−∇Ji(n)) (2.19)

where Ji(n) = E| ei(n) |2. Here, the error ei(n) is computed as a posteriori
that is based on the current weight vector. Its expression is given in Equation
2.7. By solving above equation the weight vectors ŵi are computed in the
following formula:

ŵi(n + 1) = ŵi(n) + µxi(n)e∗i (n) (2.20)

The entries of ŵi are initially set to zero. In case, the weight error between
ŵi and the optimum weight vector is defined by

e(n) = ŵi(n)−woi. (2.21)

This weight error can be rewritten in terms of the estimation error eoi(n)
produced in the optimum Wiener filtering algorithm:
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e(n + 1) =
[
I− µxi(n)xH

i (n)
]
e(n) + µxi(n)e∗oi(n) (2.22)

where eoi(n) = di(n) − wH
oixi(n).

[
I− µxi(n)xH

i (n)
]

= I, the step-size
parameter µ should be selected as

0 < µ <
2

ΣN
n=1 |xi(n)|2 (2.23)

2.3.2 Recursive Least Squares Filtering

In adaptive RLS algorithm, the weight vector is computed by minimizing
the exponentially weighted errors based on Least Squares estimation ap-
proach as follows:

∂Ji(n)

∂wi

=
∂

∂wi

E{
n∑

j=1

λn−j|ei(j)|2} = 0 (2.24)

where i indicates the number of sweeps (i = 1, ..., L). Here, the error function
is in form

ei(n) = di(n)− ŵH
i (n)xi(n) (2.25)

Then, the resulting solution of Equation 2.24 is obtained as

[
n∑

i=1

λn−ixix
H
i

]
ŵi(n) =

n∑
i=1

λn−ixid
∗
i (n) (2.26)

We can rewrite the above equation in matrix form as follows:

Φi(n)ŵi(n) = zi(n) (2.27)

where
∑n

i=1 λn−ixix
H
i = Φi(n) and

∑n
i=1 λn−ixid

∗
i (n) = zi(n).

When the exponentially weighting factor (λ) is set to 1, the problem
becomes an ordinary least squares problem. By applying the matrix inversion
Lemma to the matrix Φi, the weight vector is computed by using the resulting
update equation as follows:

ŵi(n) = ŵi(n− 1) + ki(n)ξ∗i (n) (2.28)

ξi(n) = di(n)− ŵH
i (n− 1)xi(n) (2.29)
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ki(n) =
Pi(n− 1)xi(n)

λ + xH
i (n)Pi(n− 1)xi(n)

(2.30)

Pi(n) = λ−1Pi(n− 1)− λ−1k(n)xH
i (n)Pi(n− 1) (2.31)

where Pi is the input correlation matrix. The error ξ∗i (n) is defined as a
priori that is based on the old weight vector. The algorithm requires an
initial setting as given below:

ŵi(0) = 0 and Pi(0) = δ−1I δ : a small positive constant
It is recommended based on practical experience that δ should be selected

smaller than 0.01σ2
x where σ2

x is the variance of the input sequence xi(n). If
λ = 1, the RLS filter converge to the optimum solution, namely E{ŵi(n)} =
woi for n ≥ M .

The RLS algorithm is a special case of the KF. The relations between
these algorithms are given in the literature [107]. The RLS algorithm has
more computational complexity over LMS algorithm since it requires vector
multiplications for each weight update.

2.3.3 One-step Kalman Filtering Algorithm

The KF solves the minimum mean square estimation problem based on
the state-space concept in recursive manner. It is the linear minimum vari-
ance estimator for finite duration data records. In the literature, it is stated
that the KF provides a smaller mean square error than does the WF [108].
However, the KF requires more computational effort.

In one-step adaptive KF algorithm, the weight vector is updated as follows

ŵi(n + 1) = ŵi(n) + gi(n)e∗i (n) (2.32)

where ei(n) denotes the estimation error which is computed by using Equa-
tion 2.7 and gi(n) denotes the Kalman gain which is computed in form

gi(n) =
Ki(n− 1)xi(n)

xH
i (n)Ki(n− 1)xi(n) + Qm

(2.33)

KF leads to minimization of the trace of the N×N state error correlation
matrix Ki(n) which is calculated as below

Ki(n) = Ki(n− 1)− gi(n)xH
i (n)Ki(n− 1) + Qp (2.34)

Here Qm and Qp are N ×N autocorrelation matrices associated with the
measurement noise sequence and the process noise sequence, respectively. H
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denotes the hermitian transposition. Both these noise sequences are assumed
to be zero mean white noise sequences. Thus, Qm and Qp are initially selected
as follows,

Qm = qmIN×N , Qp = qpIN×N (2.35)

where qm and qp are used to denote the noise variance of the measurement
and the process noises, respectively. These noise processes are assumed to
be statistically independent and uncorrelated. The initial settings of the KF
algorithm are given by,

ŵi(0) = 0 and Ki(0) = k0I (2.36)

where the initial weight vector is assumed to be independent of the both qm

and qp. If there is a correlation between the states, the KF works as a RLS
filter.

2.4 Group C: Regularization Techniques

Tikhonov regularization is a technique that is largely used to solve ill-
posed linear problems and linear least squares problems in various areas. In
addition to the standard Tikhonov regularization (STR) approach [117] there
are also special cases, one of them which is the subspace regularization (SR)
method presented in [119]. The SR method was already applied for single
trial EP estimation in the literature [60]. In the present study, both the SR
and the STR methods are applied as post-processing steps after EA.

Let the EP signal be modeled with respect to the additive model (see
Equation 2.1) as follows:

s = Hθ (2.37)

where H ∈ RN×p is the known observation matrix. The columns of H are
the basis vectors modeling the EP signal. The model parameters denoted by
θ ∈ Rp can be obtained by solving the ordinary least squares (LS) problem

min{‖Hθ − x‖2} (2.38)

The ordinary LS solution θ̂LS of this problem is

θ̂LS = (HTH)−1HTx (2.39)
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Since N > p, the system can be called over-determined. To model the sig-
nal appropriately, the basis vectors should overlap enough. Thus, the matrix
HTH in Equation 2.39 becomes ill conditioned yielding unstable solution.
Then, the problem becomes an ill-posed problem that should be solved by
using regularization techniques to obtain stable solution. The theoretical
basis of these techniques are summarized in the following sections.

2.4.1 Standard Tikhonov Regularization Method

The general form of the Tikhonov solution is obtained by minimizing the
weighted least-squares problem:

min{‖Hθ − x‖2 + α2‖L(θ − θ∗)‖2} (2.40)

where L ∈ Rp×n is non-negative semi-definite matrix for n ≥ p. θ∗ refers to
the initial estimate of the solution. α is the regularization parameter which
regularizes the minimization of the side constraint relative to the minimiza-
tion of the residual norm. α−1 is proportional to the bound of perturbations
in H and x. The regularization matrix L is either the identity matrix or
approximation of the derivative operators based on the smoothness assump-
tion about the solution. In this case, L has the null space that are not
contaminated by the noise [41].

The solution of the weighted least squares problem is called as the stan-
dard Tikhonov regularized solution [37, 117] and expressed as

θ̂α = (HTH + α2LTL)−1(HTx + α2LTLθ∗) (2.41)

where L ∈ Rp×n is non-negative semi-definite matrix for n ≥ p. α is the
regularization parameter which regularizes the minimization of the semi norm
relative to the minimization of the residual norm. α−1 is proportional to the
bound of perturbations in H and x.

The Tikhonov solution denoted by θ̂α consist of both a regularized part
(θ̂reg) and an un-regularized part (θ̂null) lying in the null space as follows

θ̂α = θ̂reg + θ̂null. (2.42)

The null space of the second term in Equation 2.40 (so called the semi
norm) is determined by the regularization matrix L. The null space con-
tributes to the solution of Equation 2.42. When L = I, the Tikhonov solution
reminds of the truncated singular-value-decomposition solution as follows [41]
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θ̂k =
k∑

i=1

ut
ixvi/σi (2.43)

where k is the truncation index. Here, ui and vi refer the left and right
singular vectors of H, respectively. σi denotes the ith singular value of H.

In various application areas, the regularization matrix has been con-
structed in different ways [119]. One of them is described in the following
subsection which assumes an inhomogeneous solution with sharp variations.

2.4.2 Subspace Regularization Method

In the SRM, the original least squares problem is modified as follows:

min{‖L1(x−Hθ)‖2 + α2‖L2(θ − θ∗)‖2} (2.44)

where L1 and L2 are the regularization matrices. The matrix L1 is selected
utilizing the prior information about the noise

LT
1 L1 = C−1

w (2.45)

where Cw is the covariance matrix of the background EEG noise sequences.
The 2nd order statistical information about the background EEG noise is
obtained from a set of measurements collected before the experiments.

Assuming the measurements are jointly Gaussian, the regularization ma-
trix L2 is determined for a special case such that HTH = I [60]. Then the
LS solution is expressed in terms of random coefficients as

θ̂LS = HTx =

p∑
i=1

ψici (2.46)

where the coefficients, ci are uncorrelated to model the EP with minimum
number of basis. The autocorrelation matrix of these coefficients is obtained
from the correlation matrix of data as follows:

E{ccT} = E{HTxxTH} = HTRxH (2.47)

This expression is largely used in PCA to solve the Equation 2.46 if
the basis vectors are formed with the eigenvectors of Rx. If the distance
between the model and the signal subspace spanned by the eigenvectors of
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Rx, the norm ‖Hθ − HsH
T
s Hθ‖ = ‖(I − HsH

T
s )Hθ‖ must be minimum.

Here, Hs consists of the r largest eigenvectors of the autocorrelation matrix
corresponding to input of the estimator. Thus, this norm is used as a side
constraint of the problem (Equation 2.44) such that L2 = (I−HsH

T
s )H.

Then, the estimated solution can be expressed in the following form:

θ̂α = (HTLT
1 L1H + α2LT

2 L2)
−1(HTLT

1 L1x + α2LT
2 L2θ

∗) (2.48)

2.5 Results

2.5.1 Performance Evaluation

In this study, we use the SNR in evaluating the performance of the algo-
rithms. The input and output SNRs are defined as follows:

inputSNR = 10log

[ ∑N
i=1 s(i)2

∑N
i=1(s(i)− x(i))2

]
(2.49)

outputSNR = 10log

[ ∑N
i=1 s(i)2

∑N
i=1(s(i)− y(i))2

]
(2.50)

where s, x and y denote the signal, i.e., the grand average auditory EP (or
known EP in simulations), input noisy sequence of the estimator and the
output of the estimator, respectively.

To understand the effect of the number of sweeps for a specified input
SNR, the output SNR improvements are calculated after each additional
sweep. In addition, the effects of the input SNR are explored, for a specific
number of sweeps, by changing the input SNR and calculating the corre-
sponding output SNR. In experimental studies, the output SNR values are
calculated after each additional sweep using the empirically found optimum
parameters of each algorithm. Since it is not possible to analyze all the out-
put waveforms recovered under different SNR conditions for all methods, a
series of plots are shown to represent the effect of the input SNR.

2.5.2 Experimental data

The experimental data was provided from the EEG Research Laboratory
of Biophysics Department at the Hacettepe University Medical Faculty. Sin-
gle sweeps were recorded from the left mastoid of eight subjects listening to
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binaurally delivered stimuli via headphones. Vertex electrode was used as
the reference. The pass-band of the amplifier was 0.3-70 Hz and the ampli-
fier noise was 2 µV . During the experiments, the subject was sitting on a
chair in an electrically and acoustically shielded room. The stimuli were 1
kHz tones of 100 msec duration and 80 dB HL (Hearing Level) intensity,
presented with an inter-stimulus interval of 2 sec. 512 single sweeps were
acquired with a sampling rate of 250 samples/sec. The epoch length was
1 sec including a 200 msec pre-stimulus part. The SNR of a single sweep
was found to be about -5 dB. To generate the pseudo-simulations, sponta-
neous EEG recordings were obtained from the same subject under the same
experimental conditions but without using any stimulation.

The waveforms and power spectra of the grand average EP and a single
sweep are shown in Figure 2.4. Note that, the EP is not visible in the single
sweep and the power spectra overlap.
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Figure 2.4: For experimental data (input SNR = -5 dB), a) the waveforms
and b) frequency contents of the grand average EP and single noisy response.
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2.5.3 Simulated data

A realistic auditory EP signal is generated by using the following EP
model [121]:

s(n) =
M∑

r=1

[ar cos (
2

π
Trn) + br sin (

2

π
Trn)] (2.51)

where n is the time index,T denotes the number of samples and M is the
model order. To obtain a typical auditory EP signal, the model parameters
are chosen for T = 250 and, M = 4, as follows:

a1 = 62, a2 = −44, a3 = −10, a4 = 12,

b1 = −10, b2 = −5, b3 = 14, b4 = −2

In the simulation studies, white noise sequences with different variances
are added to the known auditory EP signal to obtain 40 noisy sweeps with a
specific SNR. Examples of the generated noisy sweep waveforms are shown
in Figure 2.5 (a) and (b), for SNR values of -5 dB and 0 dB, respectively.
Note that, the auditory EP signal is not visible for both SNR conditions.

In the pseudo-simulation studies, spontaneous EEG sequences are added
on the known auditory EP. The waveforms and power spectra of the simulated
EP signal and the single noisy sweep (SNR is -5 dB) are shown in Figure
2.6. Note that, the EP signal is not visible in the single sweep and the power
spectra overlap.

Figure 2.7 shows different waveforms of ensemble averages to illustrate
the effect of the SNR on the EP signals. The noise fluctuations are apparent
as the SNR decreases.
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Figure 2.5: The waveforms of the single sweeps for simulations (the known
EP + white noise) for a) input SNR = 0 dB, b) input SNR = -5 dB.
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Figure 2.6: a) The waveforms and b) frequency contents of the known AEP
and the noisy sweep (EP + EEG). (input SNR = -5 dB)
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2.5.4 Results with the SM in combination with Wiener
Filtering Approaches (Group A)

Figure 2.8 (a) shows changes in the output SNR values for different num-
ber of sweeps used in the simulation study. It is observed that the SMCWWF
provides superior results compared to EA. WF, WFSM and SMWF pro-
vide only a marginal improvement. No SNR improvements are observed for
CWWF alone, thus the results are not given in these figures. Figure 2.8 (b)
presents the output SNR versus input SNR plots for 20 sweeps. SMCWWF
provides an output SNR which is about 13 dB above the values of the EA for
all input SNR values. WF, WFSM and SMWF again provide only a marginal
improvement. When input SNR is adjusted to 0 dB, the performances of the
WF and EA are nearly the same. In addition, WFSM and SMWF provides
almost the same performance under 0 dB SNR condition.

Figure 2.9 (a) shows changes in the output SNR values for different num-
ber of sweeps used in the pseudo-simulation studies. No SNR improvements
are observed for WF. For 40 sweeps, the SMCWWF provides 45 dB of output
SNR, whereas a 33 dB of output SNR is obtained by using the EA. For the
first 20 sweeps, the algorithms in Group A do not have good performance.
For more than 20 sweeps, both the SMWF and SMCWWF provide more
SNR enhancement compared to the EA. Therefore, we adjust the input SNR
for 20 sweeps and then the output SNR improvements are shown in Figure
2.9 (b). Both SMWF and SMCWWF are superior to the EA, whereas the
WF and WFSM show poor performances. As the number of sweeps used in
projections increases the output SNR of the single sweeps increases.

Figure 2.10 shows the waveforms of the estimated EPs in the simulation
and pseudo-simulation studies when the input SNR is -5.5 dB and only 20
sweeps are used. Among the methods of Group A, the WFSM provides the
most clear waveform in the simulation studies, whereas SMCWWF result is
better in the pseudo-simulations.

Figure 2.11 (a) shows the changes in the output SNR values for differ-
ent number of sweeps when experimental data are used. Both SMWF and
SMCWWF provide higher SNR improvements compared to EA. In the case
of WFSM, an SNR improvement is observed when the number of sweeps
are increased up to 64. The waveforms of the estimations for 64 sweeps
are given in Figure 2.11 (b). There are undesired noise fluctuations in both
pre-stimulus and post-stimulus intervals when the methods in Group A are
used. The main positive and negative peaks of the grand average are ob-
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tained without distortion by using the SMCWWF and SMWF. However, the
same estimation performance can not be observed by applying the WF and
WFSM.

To find the maximum SNR that a method can achieve in the experimental
studies, the number of sweeps is increased from 32 to 511 (the average of 512
sweeps is considered as the signal). The ensemble average yields an SNR
of 68 dB for 511 sweeps and the methods of SMCWWF and SMWF reach
to this value when only 128 sweeps are used. No further improvements are
observed when the number of sweeps is increased beyond 128 sweeps. When
the WFSM is used, the output SNR increases to 45 dB when 100 sweeps are
used and remains constant even the number of sweeps is more than 100.
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Figure 2.8: The simulation results for Group A: (a) Output SNR versus the
number of sweeps, (b) output SNR versus the input SNR for 20 sweeps
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Figure 2.9: The pseudo-simulation results for Group A: (a) Output SNR
versus the number of sweeps, (b) the output SNR versus the input SNR for
20 sweeps
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Figure 2.10: The waveforms of the estimations corresponding to the (a)
simulation, (b) pseudo-simulation for 20 sweeps. The letters A, B and C
refer the SMCWWF, SMWF and WFSM, respectively
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Figure 2.11: The experimental results for Group A: a) The output SNR
versus the number of sweeps, b) The waveforms of the estimations for 64
sweeps. The letters A, B and C refer the SMCWWF, SMWF and WFSM,
respectively.

2.5.5 Results with Standard Adaptive Filtering Algo-
rithms (Group B)

In this study, the filter parameters are chosen empirically by using ac-
tual standard auditory data sets collected from 8 healthy volunteers. To
determine the useful parameter sets roughly, two data sets are chosen and
the number of sweeps used in the estimation process is increased from 32
to 128. A parameter set that provides maximum output SNR improvement
is determined within their theoretical ranges (see Section 2.3). The optimal
parameter set is explored by adjusting the parameters around this rough
estimate. When a parameter set provides optimal estimation performance
for all data sets, it is decided as the optimal parameter set. The same filter
parameters are used in the simulation and pseudo-simulation studies.

It is observed that a filter length M = 50 is appropriate for all exper-
imental data sets. Other filter parameters chosen for different algorithms
in Group B are presented in Table 2.1. Note that, the adjusted parameter
values may change depending on the variations of stimulus types and
experimental conditions.
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Table 2.1: The filter parameters chosen for the algorithms in Group B
filter parameters µ λ δ qp qm ko

adjusted values 0.000011 0.001 0.1 100 0.1 0.2

Figure 2.12 (a) shows changes in the output SNR values for different
number of simulated sweeps. Three algorithms in Group B, namely the RLS
filter, the KF and SMLMS (the LMS filtering after SM), provide better
SNR improvements when compared to the EA. When 10 sweeps are used,
an SNR enhancement of 16 dB is obtained by using the RLS filtering. This
high performance is preserved as the number of sweeps is increased. When
40 sweeps are used, it is possible to obtain an output SNR of 47 dB using
the RLS filtering. However, the output SNR can only reach 28 dB with
the EA. Figure 2.12 (b) presents the output SNR versus input SNR plots
for 20 sweeps. For all algorithms, except the LMS filtering, the output
SNR increases linearly for a wide range of input SNR values (-7.5 dB to 4
dB). We observe that there is a linear relationship between input SNR and
output SNR improvement corresponding to the algorithms of the RLS, LMS
and KF.

Figure 2.13 (a) shows changes in the output SNR values for different
number of sweeps used in the pseudo-simulation studies. For all sweep num-
bers, the RLS filtering provides output SNR values about 5 dB above the
corresponding SNRs obtained using the EA. The LMS filtering is found un-
successful even when it is applied to the projected data. Figure 2.13 (b)
shows the output SNR versus input SNR plots for 20 sweeps. The output
SNRs obtained using the RLS and KF are above the corresponding ones ob-
tained with the EA and increases linearly for all input SNR values. The slope
for the KF is slightly greater than the slope for the RLS. The LMS filtering
is found unsuccessful when only 20 sweeps are used (even for a high input
SNR of 0 dB). When the LMS filter is applied to the projected version of
data, the output SNR improves, yet it remains below the corresponding SNR
value obtained using the EA. The improvement in the output SNR values is
also influenced by the number of sweeps used for the projection. Increasing
sweep number to 32 improves the performance notably.

Figure 2.14 shows the waveforms of the estimations in both simulations
and pseudo-simulations obtained from 20 sweeps (the input SNR is -5.5 dB).
For both studies, the most clear waveforms are obtained by using the RLS
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and KF algorithms.
To understand the effect of step sizes, the LMS and SMLMS methods

are applied to the experimental data using three different step sizes (µ1 =
0.000011, µ2 = 0.000022, µ3 = 0.000044). The corresponding output SNR
improvements for increasing number of sweeps are shown in Figure 2.15 (a).
We observe that the performance of the LMS filtering increases when the
number of sweeps are increased. In addition, the sensitivity to the step-
size decreases when the LMS filtering is applied after the SM. Figure 2.15
(b) shows the changes in the output SNR values for incremental number of
sweeps when experimental data are used. The KF appears to have the best
performance compared to the EA. When more than 20 sweeps are used, the
KF provides an SNR enhancement of 15 dB compared to EA.

Figure 2.16 shows the estimated waveforms obtained by applying the
algorithms in Group B to 64 actual sweeps. The KF provides the highest
SNR improvement. The RLS filtering and the SMLMS method show nearly
the same performance. The maximum SNR value (68 dB) is provided
by the RLS filter and KF when only 128 sweeps are used and no further
enhancements are observed when the number of sweeps is increased from
128 to 511. The output SNR increases to 45 dB when 100 sweeps are filtered
by the LMS filtering and this SNR improvement remains nearly constant
beyond 100 sweeps.
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Figure 2.12: The simulation results for Group B: (a) Output SNR versus the
number of sweeps, (b) output SNR versus input SNR for 20 sweeps
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Figure 2.13: The pseudo-simulation results for Group B: (a) The output SNR
versus the number of sweeps, (b) the output SNR versus input SNR for 20
sweeps
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Figure 2.14: The waveforms of the estimations corresponding to the (a)
simulations and, (b) pseudo-simulations for 20 sweeps. The letters A, B, C
and D refer the RLS filtering, KF, SMLMS and LMS filtering, respectively.
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Figure 2.15: The experimental results for Group B: The output SNR versus
the number of sweeps using (a) the LMS and SMLMS algorithms, (b) the
other methods in Group B
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Figure 2.16: The waveforms of the estimations for experimental 64 sweeps
The letters A, B, C and D refer the RLS filtering, KF, SMLMS and LMS
filtering, respectively.

2.5.6 Results with Regularization Methods (Group C)

In the STR and SR methods, the same observation matrix H is used for
all data sets. The basis vectors, namely the columns of H are chosen as the
scaling functions associated with the Meyer wavelets [16]. This selection is
based on the known auditory EP waveform. The basis vectors are formed to
cover the estimated EP interval. The useful basis set is determined by testing
both the STR and SR methods with the experimental data. The basis set
is formed by shifting and dilating a reference scaling function (Figure 2.17).
Initially 40 basis functions are generated by 10 dilations and 4 shifts (of one
sample). Using this basis set, the output SNR improvements are recorded by
increasing the number of sweeps from 32 to 128. To determine the optimal
number of dilations, the number of dilations is decreased. For each of 8 actual
data sets, the same SNR improvement is obtained when only 5 dilations are
used. Thus, in simulations, pseudo-simulations and experimental studies 20
basis vectors are used to form H.

The regularization parameter α is chosen by evaluating the Generalized
Cross Validation (GCV) function using the regularization tools presented by
Hansen [40].
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In the application of the SR, the autocorrelation matrix corresponding
to the input of the estimator (the average of small number of sweeps) is
analyzed. The two eigenvectors corresponding to the two largest eigenvalues
of the autocorrelation matrix form the columns of Hs.

Figure 2.18 (a) shows changes in the output SNR values for different num-
ber of sweeps used in the simulation study. Both the STR and SR methods
provide about 20 dB more SNR than the EA for all number of sweeps. Figure
2.18 (b) shows the output SNR versus input SNR for 20 sweeps. Both the
STR and SR methods keep the same performance for all input SNR values.
Figure 2.19 (a) shows the output SNR versus the number of sweeps for the
pseudo-simulation study. Both regularization methods appear to be more
successful in comparison with the EA. The difference between the perfor-
mances of the STR and SR methods get larger in the pseudo-simulations.
For 40 sweeps, an output SNR of 49 dB is obtained by the STR method,
whereas it is 33 dB when the EA is applied. Figure 2.19 (b) presents the
output SNR versus input SNR plots for 20 sweeps. There is a linear rela-
tionship between the performance of the methods and input SNR in both
simulations and pseudo-simulations. The STR shows better performance in
the pseudo-simulation studies whereas the performance of the SR degrades.

The waveforms of the estimations obtained in the simulation and pseudo-
simulation studies are given in Figure 2.20. For these estimations, 20 sweeps
are used and the input SNR is assumed as -5.5 dB. In the simulation study, al-
most the same waveforms (which perfectly match the waveform of the known
auditory EP) are obtained by using STR and SR whereas they are different
in the pseudo-simulations. Some undesired fluctuations on both pre- stimu-
lus and post-stimulus intervals remain when the SR is used whereas almost
the whole noise component is perfectly removed when the STR is applied.

Figure 2.21 (a) shows the changes in the output SNR values for different
number of sweeps when the experimental data are used. As the number of
sweeps increases, the performance of the STR and SR increase rapidly and
they perform better than the EA after the first 35 sweeps. The waveforms of
the estimations for 64 sweeps are given in Figure 2.21 (b). Almost the same
waveforms, very similar in shape to the grand average EP, are estimated by
using the STR and the SR methods.

To find the maximum SNR that a method can achieve in the experi-
mental studies, the number of sweeps is increased from 32 to 511. Both
methods reach to the maximum output SNR value of 68 dB when only 128
sweeps are used and no major enhancements are observed when the number
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of sweeps is increased beyond 128.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.17: Selected basis vectors of H.
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Figure 2.18: The simulation results for Group C: (a) Output SNR versus the
number of sweeps, (b) output SNR versus input SNR for 20 sweeps
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Figure 2.19: The pseudo-simulation results for Group C:(a) Output SNR
versus the number of sweeps, (b) output SNR versus input SNR for 20 sweeps
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Figure 2.20: The waveforms of the estimations corresponding to a) the sim-
ulation study and b) the pseudo-simulation study. The letters A and B refer
the STR and SR methods, respectively
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Figure 2.21: The experimental results for Group C: a) The output SNR
versus the number of sweeps, b) the waveforms of the estimations for 64
sweeps

2.5.7 Computational Complexity

The computational complexity [14] of the discussed algorithms is inves-
tigated from various sources [44, 86, 64]. To compare the algorithms in that
respect, the total number of floating point operations is chosen as a complex-
ity measure (O). Table 2.2 presents the corresponding measures for different
algorithms. Here N denotes the number of samples at each sweep, M is the
number of weights in the related filter, and L is the number of sweeps.

It is observed that, the LMS filtering algorithm and WF have the lowest,
whereas Tikhonov Regularization methods has the highest computational
complexity. However, for specific parameter values (for example,N = 250
M = 50 L = 60) the computation times in an average personal computer is
in seconds. Thus, as long as the number samples N is on the same order, all
algorithms can be assumed to be computationally efficient.

Most of the basic estimation techniques show definitely better perfor-
mance compared to EA in extracting the EPs. The KF or the STR
effectively reduce the experimental time (to one-fourth of that required by
EA). The SM is a useful pre-filter to significantly reduce the noise on the
raw data.
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Table 2.2: The computational complexities of the algorithms
method O

SM O(NL2)
WF O(M2)
LMS O(M)

RLS/KF O(M2) (each iteration)
STR/SR O(N3)
CWWF O

(
N
2
log2(N)

)
(each iteration)

The significance of this comparison study can be summarized as follows:
The KF and STR are computationally inexpensive tools to extract the tem-
plate auditory EPs and should be used instead of EA. They provide a clear
template auditory EP for various analysis methods. To reduce the noise level
on single sweeps, the SM can be used as a pre-filter before various single sweep
analysis methods.
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chapter 3

single sweep auditory ep
extraction

In this thesis study, we propose a new approach for single sweep auditory
EP estimation. In the proposed hybrid algorithm, the SM and a wavelet
domain filter named as Modified Scale Space Filter (MSSF) are used consec-
utively (Figure 3.1). Firstly, large amount of EEG noise on the raw data is
removed by using the SM as a pre-filter. The WT coefficients corresponding
to the signal and noise becomes distinguishable due to SNR improvement
after the projection process. Thereafter, less-noisy single sweeps are filtered
in the wavelet domain by using MSSF. The new approach is tested with
pseudo-simulations and experimental studies. The basic components of the
new approach are introduced in the following subsections.
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ŜFZ

 

Figure 3.1: The proposed approach for single sweep AEP estimation

3.1 The Modified Scale Space Filtering

Singularities provide important features of signals. In mathematics, a
singularity of a function is, in general, a point at which the derivative does not
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exist, whereas the function is differentiable at every neighborhood point. The
singular structure of a function f(x) ∈ L2(R) is characterized by Lipschitz
exponents and can be detected through the WT [78]. The Lipschitz exponent
is defined as a generalized measure of the differentiability or regularity of f
(If f can be locally approximated by a polynomial, then it is regular.) [16].

The WT of a function f(x) ∈ L2(R) is defined as

Wf(s, x) = f(x) ? ψs(x) (3.1)

where L2(R) denotes the vector spaces of measurable, square-integrable one
dimensional functions. Here ψs(x) is a dilated version of ψ(x) such that
ψs(x) = 1

s
ψ

(
x
s

)
. x and s indicate the location and scale index. In smaller

scales, the high frequency components of f are observed. Thus, the time
resolution is high in small scales, the frequency resolution is high in the large
scales. The set of couples (s, x) is called the scale-space plane. If the function
f has N samples, the largest scale is s = N [79].

Any point (s0, x0) in the scale-space is called modulus maximum (MM)
if |Wf(s0, x)| < |Wf(s0, x0)| when x is in either to the right or left neigh-
borhood of x0 [79]. The chain of MM across scales in the scale-space plane
is called modulus maxima line [79]. A remarkable property of MMs is their
ability to characterize the Lipschitz regularity of f . If Lipschitz exponent of
f(x) is negative (positive) at a certain location x, then the amplitudes of the
MMs increase (decrease) as the scale decreases. If it is 0, then the maxima
values remain constant over a large range of scales.

If the decay behavior of the MMs corresponding to signal and noise sin-
gularities are different, then this information can be used for extracting an
approximate signal information from a noisy signal [78, 77]. The Lipschitz
exponent of White noise is shown to be negative, whereas the signal has sin-
gularities with positive Lipschitz exponents. Thus the MMs corresponding
to singularities of signal (noise) decrease (increase) as the scale decreases.
For low SNR, the MMs in small scales are mostly dominated by noise. Thus,
it is difficult to use the MMs at small scales to recover the signal. The
original signal corrupted with noise was approximated by using WT and an
alternate projection algorithm [78]. This approximation does not require
that the noise is white. Another de-noising algorithm (WT scale-space filter
(WTSSF)) based on distinguishing signal and noise singularities from the
WT MM lines was also presented in [131].

In the EP research area, detecting the WT coefficients created by the EP
signal or EEG noise has already been applied for the EP estimation [9, 103,

45



105, 115]. In those studies, commonly, the WT coefficients corresponding to
signal are identified with respect to the WT of a template EP. For single-
trial EP estimation, the WT coefficients other than the ones identified from
the template EP are set to 0. However, since the template EP is still noisy,
the validity of this approach is questionable. In another study, the above
given ideas, i.e., the singularity characteristics of the EEG and EP signals
were explored. It was shown that the EEG noise has singularities whose
Lipschitz exponents are almost negative, whereas the Lipschitz exponents of
the EP signal singularities are positive [129]. The EP signal is extracted by
the alternate projection algorithm after removing the maxima that do not
propagate to larger scales.

In the present study, firstly, the WTSSF is applied to estimate auditory
EPs in combination with the SM. Application of the SM identifies the WT co-
efficients created by the noise more methodologically. Although this approach
yields SNR improvement, it does not provide the true EP waveform. The
resultant signals in the pre- and post-stimulus intervals carry undesired fluc-
tuations. To distinguish the WT coefficients corresponding to the EP signal
and the background EEG noise more accurately, this algorithm is modified.
In the WTSSF, a scale correlation function (scf) is adopted to enhance the
MMs originated by the signal. In fact, this algorithm is originated from a
Wavelet Transform domain filter (WTDF) that is introduced to remove the
Gaussian distribution white noise from the noisy signal that contains very
sharp edges [127]. Since the WT coefficients created by sharp edges have
much higher correlation between scales than the WT coefficients created by
the noise, the scf, that is, the multiplication of wavelet coefficients at ad-
jacent scales, is used to identify the sharp edges in the WTDF citeXu1994.
The algorithm of the WTDF, so called an edge extraction technique, is given
in Table 3.1. Here, corr2(m,n) refers the scf and m and n indicates the
scale and time index, respectively. This procedure, which use dyadic WT,
is demonstrated for a large boxcar having two sharp edges and two small
bumps as shown in Figure 3.2. Since the data has 256 points, dyadic WT is
performed for 8 scales. Note that, the WT is correlated across scales since
sharp edges creates high amplitude coefficients. The two sharp edges are
extracted after the first iteration. The two small bumps are extracted after
the second iteration. The first iteration of the filtering algorithm is demon-
strated graphically in Figure 3.3 showing how the scf highlights the edges.
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Table 3.1: The algorithm of the WTDF (adapted from [127])
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Figure 3.2: An example of detecting sharp edges using WTDF: dyadic WT
coefficients at 8 scales of a large boxcar, (adapted from [127])
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Figure 3.3: Graphical illustration of the WTSF algorithm: WT coefficients
at the first scale before filtering, the scf for the WT coefficients at the first
and second scales, the spatially selective filter mask and WT coefficients at
the first scale after filtering (shown from top to bottom)(adapted from [127]).
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Table 3.2: The algorithm of the WTSSF (adapted from [131])
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In the algorithm of WTSSF, a re-scaling scheme was proposed to remove
the WT coefficients created by the noise within an algorithm as given in Table
3.2. Here M denotes the small scale limit where the noise power is assumed
relatively high. Such scales correspond to the high frequency components in
the Fourier domain. M is determined using the following formula [131]:

M = log2

fm

fu

− 1

where fm is the sampling frequency and fu is the maximum frequency in
the frequency range of the signal which is roughly estimated from the power
spectral density of the noisy data.

In this thesis study, we attempt the WTSSF for single sweep auditory EP
extraction by using real WT instead of dyadic WT to obtain time/frequency
resolution as high as possible. As well, the WTSSF is modified and the
adopted filter is named as the modified scale-space filter (MSSF). In the
MSSF, we utilize the ratio between the WT coefficients at adjacent scales.
Correspondingly, we define a ratio function rf instead of the scale correlation
function scf used in the WTSSF to select the WT coefficients created by the
EEG noise more accurately. Thus, the algorithm is as follows:

1 computation of the ratio function rf :

rf(x, s) =
Wf(x, s + 1)

Wf(x, s)
, s = 1, ..., S, x = 1, ..., N

2 normalization of the ratio function:

nrf(s, x) = cf(s, x)
√

PWf (s)./Prf (s), s = 1, . . . , M

nrf(x, s) = cf(x, s)
MWf (s)

Mrf (s)
s = M + 1, ..., S

where

MWf (s) = max | Wf(x, s) |
Mrf (s) = max | rf(x, s) |

3 selection of the WT coefficients originated by the noise:

Wf(s, x) = 0 |Wf(s, x)| ≤ |nrf(s, x)|
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4 return to step (1) and perform re-filtering iteratively.

Both the WTSSF and the MSSF can be applied iteratively. In this study,
we use frame iteration (fi) (i.e., starting a new iteration after each scale is
filtered) and scale iteration (si) (i.e., repeating the filtering operation for
each scale) for both algorithms.

3.2 Results

In this study, the proposed scale space filtering approaches are tested with
pseudo-simulations and experimental data.

3.2.1 Pseudo-Simulation Study

In the pseudo-simulations, the recorded EEG sequences are added to the
known data sets. The performance of the scale space approaches are tested
for two data sets: 1) with no latency and amplitude variations in single
sweeps, 2) with latency and amplitude variations.

In the first case, two small bumps are placed on the pre- and post-stimulus
intervals of the reference EP signal. These are generated to avoid similarity
between the waveforms of the wavelet function and a typical auditory EP
signal. In the second case, an ideal waveform is generated.

Case 1: Estimating single-sweeps when there is no latency and
amplitude variations

The template EP signal is obtained by using the EP model (see Equation
2.51) which is represented by a dynamic Fourier series [121]. To obtain a
typical auditory EP signal, the model parameters are chosen as follows:

a1 = 2.72, a2 = −3.4, a3 = −0.34, a4 = 0.034,

b1 = 0.068, b2 = −0.34, b3 = 0.68, b4 = −0.068

T = 250,M = 4, k = 1, ..., 250

Since no latency variations are assumed on single sweeps, only the first
largest eigenvector can be used in the SM to to project the raw data. Figure
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3.4 and 3.5 shows the waveforms, real WT coefficients and their MM spec-
trums corresponding to the generated EP signal and the projected sweep,
respectively. Since the projected data contains noise fluctuations, large num-
ber of MMs are observed besides three main MM lines created by the signal
edges. In the small scales (first 20 scales), there are a large number of non-
zero coefficients associated with the projected data, whereas those coefficients
are zero for the generated EP signal.

Both MSSF and WTSSF are applied to the projected data using scale
iterations and frame iterations. The resulting output SNR improvements
are shown in Figure 3.6. As the number of iterations increases, the best
performance is obtained for the MSSF when the frame iterations are used. It
is observed that, the performance of MSSF increases linearly as the iteration
number is increased. The WTSSF shows a peak at the 4th iteration when
the frame iterations are used.

The sequences related to the MSSF and the WTSSF after two iterations
are demonstrated in Figure 3.7 and 3.8, respectively. It is seen that, different
coefficients are set to zero in these algorithms. This led to different estimation
performances.

The waveforms of the estimations are shown in Figure 3.9. Each single
sweep in the projected data is filtered by the WTSSF and the MSSF (si is
performed 14 times in the MSSF and, fi is performed 3 times in the WTSSF).

Another filtering approach may be setting the coefficients of small scales
lower than a threshold to zero. For this purpose, average of 10 sweeps (tem-
plate EP) is transformed in the wavelet domain and the threshold is estimated
from that real WT coefficients. Similarly, a threshold is obtained from the
wavelet coefficients of the projected single sweep. The signals reconstructed
using the remaining coefficients are compared with the ones obtained using
the scale space filtering approaches discussed in this study. The most clear
and adequate signal waveform is obtained by using the MSSF. The other esti-
mations contain undesired fluctuations in the pre- and post-stimulus intervals
of the recovered signal.

53



 
 
 
 
 
 
 
 
 
 
 

0 50 100 150 200 250
-5

0

5

10

A
m

pl
itu

de
 (

µ
V

ol
t)

samples
0 50 100 150 200 250

-5

0

5

10

A
m

pl
itu

de
 (

µ
V

ol
t)

0 50 100 150 200 250
-5

0

5

10

A
m

pl
itu

de
 (

µ
V

ol
t)

samples

(a)
 
 
 
 
 
 
 
 
 
 
 

50 100 150 200 250

10
20
30
40
50

sc
al

e

samples
50 100 150 200 250

10
20
30
40
50

sc
al

e

50 100 150 200 250

10
20
30
40
50

sc
al

e

samples

(b) 
 
 
 
 
 
 
 
 
 
 

50 100 150 200 250

10
20
30
40
50

samples

sc
al

e

50 100 150 200 250

10
20
30
40
50

samples

sc
al

e

(c)

Figure 3.4: (a) The waveform, (b) image of the WT coefficients (c) and the
MM spectrum corresponding to the generated EP signal.
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Figure 3.5: (a) The waveform, (b) image of the WT coefficients (c) and the
MM spectrum corresponding to the projected data.
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Figure 3.6: The output SNR improvements versus iteration number
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Figure 3.7: The sequences related to the MSSF with si
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Figure 3.8: The sequences related to the WTSSF with fi
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Figure 3.9: The si is performed 14 times in the MSSF and, fi is performed 3
times in the WTSSF.

59



Case 2: Estimation of single-sweeps having amplitude and/or la-
tency variations

To observe the performance of scale space filtering approaches in the case
of latency/amplitude variations, a pseudo-simulation study is performed with
6 sweeps. The template AEP signal is obtained by using the EP model given
by Equation 2.51. The model parameters are chosen as follows:

a1 = 120, a2 = −64, a3 = −10, a4 = 12,

b1 = −1, b2 = −15, b3 = 14, b4 = −1,

T = 250,M = 4, k = 1, ..., 250

Synthetic latency and amplitude variations are generated on the known EP
signal. In two sweeps latency variations are assumed. In two other sweeps,
the amplitude of the known EP is modified. The remaining two sweeps have
no amplitude or latency variations. The recorded EEG sequences are added
to the known data with -5 dB of input SNR. Since there is a latency variation
among raw data, two largest eigenvectors are selected in the SM.

Figure 3.10 shows waveforms of the 6 sweeps: the raw data, noiseless EP
signals with amplitude and latency variations, EP signals after SM, and the
MSSF outputs obtained after 8 si. Note that, the waveforms of the single
noise-less sweeps are not visible in the raw data. They becomes roughly
distinguishable after the SM. Small ripples are observed on the waveforms of
the estimations.
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Figure 3.10: The waveforms of 6 sweeps used in the pseudo-simulations:
a)raw data, b)the noiseless sweeps with amplitude/latency variations, c)the
projected data and, d)estimations obtained by using the MSSF after 14 si
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3.2.2 Experimental Study

Chapter 2.5, section 2.5.2 presents the related information about the ex-
perimental studies with auditory stimuli.

Figure 3.12 shows the waveform of the reference EP (average of 512
sweeps), the corresponding WT coefficients and the MM points of a spe-
cific experiment. Since the characteristics of the background EEG noise is
different from that of the white noise, there is still noise on the average signal
even though the large number of sweeps are averaged. The noise remaining
on the grand average, however, becomes similar to white noise. Thus, a large
number of MMs are observed at finer scales as shown in Figure 3.12.

The raw data (32 single-sweeps) are projected onto the signal space by
using the SM with respect to the first eigenvector since latency variations
are not expected for handled data. In this way, the output SNR is increased
to 25 dB and then, the waveform of the EP (the grand average) becomes
distinguishable.

The output SNR improvements obtained by filtering of the projected
data with MSSF and WTSSF are shown in Figure 3.11. It is observed that,
the estimation performances of these filters do not change when the scale
iteration is performed instead of the frame iteration. Initially (after a few
iterations), the performance of WTSSF is better. However, as the number of
iterations increases, its performance decreases. Whereas, the performance of
the MSSF increases as the number of iterations increases. Figure 3.13 shows
the waveform of the reference EP and estimations obtained using MSSF (after
18 iterations). The results obtained with scale truncation (i.e., reconstruction
using the scales of only low frequency components) are also presented. For
that study, both the average of 32 sweeps and projected sweep are used to
determine the threshold in the scales. It is observed that, the MSSF provides
the most clear waveform providing less noisy pre- and post-stimulus intervals.

The images related to the real WT coefficients corresponding to average
of 32 sweeps, grand average EP, projected sweep and, the output of the MSSF
are presented in Figure 3.14. The corresponding MM spectrums are shown
in 3.15. Note the similarity between the WT coefficients associated with the
average of 32 single-sweeps and the projected sweep: in small scales, a large
number of coefficients are non-zero. These non-zero coefficients are set to
zero by filtering (Figure 3.14 (d)). Thus, MMs becomes more sparse via the
MSSF (Figure 3.15 (d)).
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Figure 3.11: The output SNR improvements versus iteration number for
experimental data after MSSF and WTSSF.
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Figure 3.12: a) The grand average EP, b) image of the real WT coefficient
and, c) the plot of the related MMs.
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Figure 3.13: The waveforms of the grand average and estimations. (si is
performed 18 times in the MSSF)
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Figure 3.14: The real WT coefficients associated with a) the average of 32
raw sweeps, b) the grand average EP, c) the projected sweep and d) outputs
of the MSSF (si is performed 18 times)
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Figure 3.15: Plots of MMs associated with a) the average of 32 raw sweeps,
b) the grand average EP, c) the projected sweep and d) the outputs of the
MSSF (si is performed 18 times)
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Template ABR estimation

The proposed filter is also tested with experimental ABR data obtained
from six rats under auditory stimuli. The data are recorded with a sampling
frequency of 96 KHz and filtered with 1st order Butterworth filter (100 −
2500 Hz. The recording period is 15 msec, so 1440 samples are acquired
during each experiment.

To estimate the template ABR, namely the average of 250 sweeps, the
average of 50 noisy sweeps is filtered using both MSSF and WTSSF. The
waveforms of the estimations corresponding to the MSSF and WTSSF are
respectively given in Figure 3.16 (a) and (b). The singularity behavior of
the ABR waveform is dominated by a number of oscillations, providing five
distinguishable peaks. When the MSSF is used, the estimated peaks match
the ones obtained by the grand average. Moreover, the pre-stimulus intervals
are closer to zero. However, the same performance can not be obtained by
the WTSSF.

To test the performances of MSSF and WTSSF, another actual ABR data
set is used. For this case, the input SNR is increased to about 3 dB when
50 single-sweeps are averaged. In addition, the waveform of the reference
ABR (the grand average ABR signal) becomes distinguishable after averaging
process. The waveform of the estimation, filtered real WT coefficients and
their MM spectrums corresponding to the MSSF and WTSSF are shown in
Figure 3.17 and 3.18, respectively. The waveform of the estimation obtained
by using the MSSF closely matches the reference ABR signal and the output
SNR is increased to 28 dB. However, the WTSSF provides 20 dB of output
SNR. Note that, a number of coefficients, which may be created by ABR
peaks, are set to zero at various scales when WTSSF is used. Thus, it can
be said that the MSSF shows better performance in extracting the template
ABR. The usage of the MSSF reduces the recording time to one-fifth of that
required by EA.

68



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 500 1000 1 5 00samples
-0.5

0

0.5

1

0 500 1000 1 5 00samples
-0.5

0

0.5

1

-0.5

0

0.5

1

Filter output

Average of 50 sweeps (filter input)

The grand average ABR

0 500 1000 1 5 00samples
-0.5

0

0.5

1

-0.5

0

0.5

1

0 500 1000 1 5 00samples
-0.5

0

0.5

1

-0.5

0

0.5

1

-0.5

0

0.5

1

-0.5

0

0.5

1

Filter output

Average of 50 sweeps (filter input)

The grand average ABR

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 500 1000 1500samples

-0.5

0

0.5

1

-0.5

0

0.5

1

Filter output

Average of 50 sweeps (filter input)

The grand average ABR

0 500 1000 1500samples

-0.5

0

0.5

1

-0.5

0

0.5

1

-0.5

0

0.5

1

-0.5

0

0.5

1

Filter output

Average of 50 sweeps (filter input)

The grand average ABR

(b)

Figure 3.16: The estimations of experimental ABR data using the a) MSSF
and b) WTSSF.
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Figure 3.17: The waveform of the estimation (a), real WT coefficients (b)
and their MM spectrums (c) corresponding to the MSSF.
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Figure 3.18: The waveform of the estimation (a), real WT coefficients (b)
and their MM spectrums (c) corresponding to the WTSSF.
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chapter 4

conclusion and discussion

The conclusion part of this thesis study is presented in the following two
subsections:

I-Comparison of Basic Linear Estimation Techniques in Extracting
Template Auditory Evoked Potentials

The performance of the basic estimation techniques (WF approaches,
standard adaptive filtering algorithms and Tikhonov regularization tech-
niques) were assessed in estimating the template auditory EP compared to
the traditional EA. The algorithms were tested with simulations, pseudo-
simulations and experimental studies dealing with standard auditory EPs.
The SNR was used as the performance criteria. To obtain simulated data,
white noise sequences were added to the known auditory EP signals gener-
ated by using the Fourier series model. In pseudo-simulation studies, actual
EEG recordings were used instead of white noise sequences.

Among the first group of methods, the SMWF seems to provide better
performance compared to WFSM in both pseudo-simulations and experi-
mental cases. This result shows that a large amount of EEG noise can be
removed by using the SM as a pre-filter. After application of the SM, the
characteristic of the remaining EEG noise renders closer to that of white
noise which can be removed optimally by conventional WF. The SMCWWF
was found better than the SMWF for all data sets. Thus, the CWWF in
combination with SM appears to be a better alternative to both the conven-
tional WF and EA. However, CWWF has more computational complexity
than conventional WF, since it is computed iteratively depending on the fast
Fourier Transform computations.

In the second group of algorithms, the RLS filtering and KF show better
performances compared to EA. The RLS filtering has the best performance
in both simulation and pseudo-simulation tests, whereas the KF provides the
highest performance in experimental studies. In this study, we have selected
an initial filter parameters set according to experimental data sets. When
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we analyze the KF after 128 sweeps, it shows a low-pass filter character-
istics which has a narrower bandwidth compared to the RLS filter. This
indicates the relatively better performance of the KF in the experimental
studies. However, with the same initial settings, it has wider a low-pass fil-
tering characteristics after 40 sweeps in the simulation and pseudo-simulation
studies.

The LMS filter performance depends on 1) the number of sweeps to be
filtered, 2) the step size parameter µ, 3) the filter length, and 4) the input
SNR of single sweeps. It is, in general, found unsuccessful for low input SNR
(-5 dB) cases. The selection of step size parameter is assumed to be the cru-
cial factor in the performance. To obtain a better performance with the LMS
filtering, various methods were proposed which explore an optimum step-size
at each iteration [68, 124]. In another study, the optimum value was deter-
mined methodologically considering the filter length, input signal variance
and the desired signal [13]. In the present study, these approaches are not
attempted, instead the performance of the SMLMS algorithm is tested. The
SMLMS algorithm appears to be relatively less sensitive to the step size and
showed better performance compared to the EA in both experimental and
simulation trials. However, its performance in the pseudo-simulations proves
again unsatisfactory. In conclusion, we leave the following matters for future
work: 1) the use of optimal step size in LMS algorithms, 2) exploring further
properties of the SMLMS algorithm for a better performance.

The regularization methods (the third group of algorithms; i.e., STR and
SR), show better performance compared to EA. It is observed that, the STR
is marginally better than SR in all cases. Note that the STR method is
optimum for smooth solutions whereas the SR allows sharp variations in the
solutions. The basis vectors of H are chosen from the dilated and shifted
forms of a mother wavelet which resemble the waveform of the auditory
evoked potential. The linear combination of these smooth vectors models
the EP. In line with the fact that a sharp variation in the coefficients of
this combination is not expected, we have not observed the superiority of
SR compared to STR. In addition, the STR method has less computational
complexity than the SR method. Thus, we propose the use of STR method
instead of SR for template auditory EP estimation.

We propose the use of basic estimation techniques to obtain a template
EP instead of traditional EA to reduce the recording time. The performances
of these techniques in extracting the signal, i.e., the grand average EP from
small number of sweeps are investigated. If there are amplitude/latency
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variations in single sweeps, than the grand average signal would change cor-
respondingly. In such a case, we would again expect a better performance
compared to EA. We have not explored the performance of these methods as-
suming such variations in single trials. However, we propose the use of STR
and KF to obtain a high quality template EP signal used in single sweep
analysis methods [113, 66, 71, 72, 111, 47, 51, 25, 103, 105, 85].

In conclusion, most of the basic estimation techniques show definitely
better performance compared to EA in extracting the EPs. Both KF and the
STR effectively reduce the experimental time (to one-fourth of that required
by EA). The SM, based on the LS estimation technique, proves to be a useful
pre-filter that can significantly reduce the noise in the raw data.

II-A Modified Scale Space Filter to extract single-sweep AEPs

A new approach was presented to observe the possible amplitude and/or
latency variations on single sweep auditory EPs without using a template
signal. The proposed approach uses the SM as a pre-process to increase the
SNR from about −5 dB to 0 dB. Consequently, the WT coefficients cor-
responding to the signal and the noise becomes distinguishable. Then, the
less-noisy sequences (projected sweeps) are filtered individually in wavelet do-
main with MSSF. The new algorithm was tested in both pseudo-simulations
and experimental studies. In pseudo-simulation studies, EEG noise measure-
ments were added to the artificial data sets that consist of either unchanged
single-sweeps or amplitude/latency variations. For both cases, noise remain-
ing ont he projected data were removed successfully by using the MSSF. In
experimental studies, small amplitude variations were observed as expected.
The MSSF was also tested for actual ABR data sets recorded from rats in
extracting of a template ABR from less number of sweeps. For this purpose,
MSSF was applied to the average of 50 single-sweeps. Then, a clear tem-
plate ABR was obtained from 50 sweeps instead of 250 sweeps. Thus, the
experimental time was reduced five times when the MSSF was used.

The results show that the MSSF is an efficient filter to remove the actual
EEG noise when the input SNR is higher than 0 dB. We propose the usage
of the SM as a primary process for auditory EPs to enhance the SNR when
the input SNR is very low.
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[52] Jaskula M and Kaszyński R. Using the Parametric Time-Varying Analog
Filter to Average-Evoked Potential Signals. IEEE Transaction on Instru-
mentation and Measurement. 2004: 53(3); 709-816.

[53] Jansen B H, Brandt M E. The effect of the phase of prestimulus alpha
activity on the averaged visual evoked response. ELSEVIER Electroen-
cephalography Clinical Neurophysiology. 1991: 80(4); 241-250.

79



[54] Jansen B H. Nonlinear dynamics and quantitative EEG analysis. ELSE-
VIER Electroencephalography Clinical Neurophysiology Suppl. 1996: 45;
39-56.

[55] Jansen B H, Agarwal G, Hegde A and Boutros N N. Phase synchroniza-
tion of the ongoing EEG and auditory EP generation. ELSEVIER Clinical
Neurophysiology 2003: 114; 7985.

[56] Jung T P, Humphries C, Lee T W, Makeig S, McKeown M J, Iragui
V, Sejnowski T J. Extended ICA removes artifacts from electroencephalo-
graphic recordings. Proceedings of the Conference on Advances in Neural
Information Processing Systems 10, USA. 1998: 0-262-10076-2; 894-900.

[57] Jung T P, Humphries C, Lee T W, Makeig S, McKeown M J, Iragui V,
Sejnowski T J. Extended ICA Removes Artifacts from Electroencephalo-
graphic Recordings. Advances in Neural Information Processing Systems.
1997

[58] Jung T P, Makeig S, Westerfield M, Townsend J, Courchesne E, Se-
jnowski T J. Analyzing and Visualizing Single-Trial Event-Related Po-
tentials. Advances in Neural Information Processing Systems. 1999: 11;
118-24.

[59] Jung T P, Makeig S, Humphries C, Lee T W, Mckeown M J, Iragui
V, Sejnowski T J. Removing Electroencephalographic Artifacts by Blind
Source Separation. Journal of Psychophysiology. 2000:37; 163-178.

[60] Karjalainen P A, Kaipio J P, Koistinen A S and Vauhkonen M. Subspace
regularization method for the single-trial estimation of evoked potential
IEEE Transaction on Biomedical Engineering 1999: 46; 849-859.

[61] Kay S. Fundamentals of Statistical Signal Processing. Vol. I - Estimation
Theory Prentice Hall. 1993.
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