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ABSTRACT 
 

SOLUTION OF ONE-DIMENSIONAL TRANSIENT FLOW IN 
FRACTURED AQUIFERS BY NUMERICAL LAPLACE 

TRANSFORM INVERSION  

 

DÜNDAR, Serdar 

M.Sc., Department of Civil Engineering 

Supervisor: Prof. Dr. Halil Önder  

 

November 2005, 71 pages 

 

Laplace transform step-response functions are presented for one 

dimensional transient flow in fractured semi-infinite & finite aquifers. 

Unsteady flow in the aquifer resulting from a constant discharge pumped 

from the stream is considered. Flow is one-dimensional, perpendicular to 

the stream in the confined aquifers. The stream is assumed to penetrate 

the full thickness of the aquifer. The aquifers may be semi-infinite or finite 

in width. The Laplace domain solutions are numerically inverted to the 

real-time domain with the Stehfest (1970) algorithm. During the course of 

the thesis a simple computer code is written to handle the algorithm and 

the code is verified by applying it to the one-dimensional transient flow in 



 v

a semi-infinite homogeneous aquifer problem which can be solved 

analytically to crosscheck with the numerical results. 

Keywords: Transient Flow, Double Porosity Model, Stehfest Algorithm, 

Laplace Transform, Groundwater Flow, Numerical Modeling. 
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ÖZ 

ÇATLAKLI AKİFERLERDE TEK BOYUTLU ZAMANA 
BAĞIMLI AKIMIN SAYISAL LAPLACE GERİ DÖNÜŞÜM 

YÖNTEMİYLE ÇÖZÜMÜ  

Dündar, Serdar 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi:  Prof. Dr. Halil Önder  

 

Kasım 2005, 71 sayfa 

 

 

 

Bu çalışmada sınırlı ve yarı sınırsız akiferlerdeki tek boyutlu 

süreksiz akım için Laplace transformasyonuyla elde edilmiş akifer tepki 

fonksiyonları elde edilmiştir. Nehirden sabit basınçlı pompaj yapılması 

durumunda akiferde meydana gelen değişken akım incelenmiştir. Akım 

tek boyutlu, basınçlı akiferde nehire dik gerçekleşmektedir.Nehirin akifer 

kalınlığı boyunca sürekli olduğu varsayılmıştır. Akifer genişliği yarı-

sonsuz veya sonlu olabilir. Laplas düzleminde elde edilen sonuçlar daha 

sonra nümerik bir geri dönüşüm tekniği olan Stehfest (1970) algoritması 

kullanılarak reel düzleme aktarılmıştır. Bu algoritmanın kolaylıkla 
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uygulanabilmesi için kısa bir bilgisayar kodu çalısma sırasında 

yazılmıştır. Ve bu kod literatürde çözümleri analitik olarak bilinen yeraltı 

problemlerine –yarı sınırlı homojen akiferdeki akım ve tek boyutlu 

süreksiz akım- uygulanarak sonuçlarının doğruluğu kanıtlanmıştır. 

 

Anahtar Kelimeler: Süreksiz Akım, Çift Geçirgenlik Modeli, 

Laplas Transformasyonu, Zamana Bağlı Yeraltı Suyu Akımı, Sayısal 

modelleme. 
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CHAPTER 1 

INTRODUCTION 

Increased demand for water associated with population growth 

has heightened public awareness of the importance of the proper 

management of limited water resources. With this awareness, water-

resource managers have taken considerable interest in quantification of 

the interaction of surface water and ground water. Analytical models are 

helpful tools in this endeavor. 

One perceived difficulty in the use of analytical models is the fact 

that the necessary boundary conditions —stream stage and regional 

recharge or evapotranspiration— change continuously. While it is 

recognized that the effects of variable boundary conditions can be 

simulated with numerical models, the literature is full with analytical 

solutions for the interaction of confined, leaky, and water-table aquifers 

with an adjoining stream. A detailed but not fully comprehensive review 

of these solutions and their applications is provided by Moench and 

Barlow (2000) and will not be repeated here.  

The groundwater flow behavior in an aquifer between a stream 

and an impervious boundary under natural or artificial conditions has to 

be known in various engineering applications. The prediction of the 

drawdown distribution in the aquifer and the prediction of the discharge 

from the stream in evaluation, in slope stability problems when a 

reservoir with variable water level is built on the stream are some 
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examples. The flow behaviour in a finite aquifer system due to a sudden 

rise or decline of the water level in the adjacent stream has been 

studied by many investigators (Rorabaugh, 1960; Rorabaugh, 1964; 

Pinder et al. 1969; Venetis, 1970; Önder 1994). In those studies, 

aquifers consisting of granular media were considered. However, a 

widely encountered type of aquifer, which can be found quite often 

around the world as a water-bearing formation, is fractured rock. These 

formations are known as a heterogeneous medium in which the blocks 

having very low permeability and containing the great amount of 

storage are separated by the fractures of high permeability. It is usually 

assumed that the conducting properties of the aquifer are associated 

with the fracture permeability, while the storage properties are related to 

the primary porosity of the blocks. (Barenblatt, et al.,1960 Huyakorn and 

Pinder, 1983). 

Double porosity model is first introduced by Barenblatt et al. 

(1960) as a conceptual model to study the flow in fractured formations. 

This approach has been followed closely by other investigators. In such 

studies an exchange of water between fractures and blocks has been 

taken into account. In one group of studies it has been assumed that 

the flow from fractures to blocks takes place under pseudo-steady state 

conditions (Barenblatt et al., 1960; Warren&Root, 1963).Streltsova 

(1988) called this approach a lumped parameter model. In another 

group it has been assumed that the flow occurs under fully transient 

conditions (Kazemi, 1969; Kazemi et al., 1969) and Streltsova(1976) 

analyzed the radial flow case. Bear et al. (1993) recently gave a 

comprehensive treatment of flow and contamination transport in 

fractured rocks. According to Moench (1984), well test data obtained in 

the field support the assumption of the pseudo-steady state fracture-to-

block flow assumption. However, on theoretical grounds alone, it is 

difficult to justify use of this assumption. Introducing the concept of a 

fracture skin, Moench (1984) showed that pseudo-state state fracture-
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to-block flow is a special case of transient fracture-to-block flow with a 

fracture skin. The assumption of pseudo-steady state fracture-to-block 

flow has the advantage over the transient flow assumption of providing 

the greater mathematical simplicity; hence this assumption is used in 

this study (Önder, 1998). 

In this study, numerically inverted Laplace transform solutions 

are presented for semi-infinite and finite fractured aquifers. The Laplace 

domain solutions are numerically inverted to the real-time domain with 

the Stehfest (1970) algorithm (more detail may be found in Moench and 

Ogata, 1982).  

 

1.1 Mathematical Background   

In general, specifying the flow domain might be a trivial or a 

major question in formulating the ground-water flow problem. The 

governing equation is the ground-water flow equation (Hsieh, 2002), 

expressed as; 

t
hS

z
hK

zy
hK

yx
hK

x szyx ∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂ )()()(  (1.1) 

Where; 

xK , yK , zK are hydraulic conductivity in three directions 

h is the hydraulic head  

sS is the specific storage 

t is time 

x,y,z are the distances in coordinate directions 

Eq. 1.1 is derived from the combination of the continuity equation 

and the Darcy’s Law. 
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If the porous medium is assumed to be homogeneous K and Ss 

become constant in space. 

Different approaches are utilized to solve the groundwater 

problems as explained in the most general way above. Because of the 

nature and complexity of the groundwater problems; many analytical 

solutions are available, but not all of them can readily be evaluated 

numerically or sometimes even the analytical solution may not be 

obtained. The independent “time“ variable makes the equations even 

more difficult to deal with. This is where the Laplace transform is 

introduced to make the equation independent from the time variable so 

that it is easier to be solved. The result of this solution will be in Laplace 

domain, and need to be inverted to obtain the solution in the real 

domain. The inversion method chosen is Stehfest algorithm which is a 

numerical inversion method easily applied with a subroutine written 

during course of this study. 

1.2 Statement of the Problem 

Double porosity models are used to describe flow in a medium 

composed of two components with distinctly different hydraulic 

properties. It is often applied to fractured porous rocks—the two 

components being the fractures and the porous intact rock (matrix). The 

fracture system is characterized by high hydraulic conductivity and low 

specific storage, while the matrix system is characterized by low 

hydraulic conductivity and high specific storage. In effect, the fractures 

provide the pathways for flow, while the matrix provides the source of 

water to a well (Hsieh, 2002). 

Another example of an aquifer that might be represented as a 

double porosity medium is one composed of sand with clay lenses. The 

sand would play the role of the fractures, while the clay lenses would 

play the role of the matrix (Hsieh, 2002). 
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In this study, one dimensional flow in a confined fractured aquifer 

is analyzed using the double porosity approach assuming pseudo-

steady state fracture-to-block flow under a prescribed flux condition at 

the stream boundary rather than under a step drawdown condition in 

the stream. The width of the aquifer is either semi-infinite or finite.  It is 

believed that the outcome will be of use in the determination of storage 

and yield characteristics and of the recharge capability of strip shape 

fractured aquifers. The method utilized through the study consists of 

solving the differential equations in the Laplace domain for semi-infinite 

and finite fractured aquifers which are then numerically inverted to the 

real-time domain with the Stehfest (1970) algorithm (Moench and 

Ogata, 1982). Following Hall and Moench (1972), the stream is 

assumed to penetrate the full thickness of the aquifer as shown in the 

following figure  

Stream
Confined Fractured Aquifer

t>0

t=0

 

 Figure 1.1: Drawdown in a confined fractured aquifer under a 

constant discharge 

 

1.3 Objective of the study 

The objective of this study is to demonstrate the advantage of 

working in Laplace plane. The Stehfest algorithm of the Laplace 

transform inversion is applied to several problems like the ones above –
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which don’t have a readily available analytical solution in the literature- 

and to the ones whose analytical solutions are available already, in 

order to prove the validity of the subroutines and for comparison of the 

results. 

 

1.4 Description of the Thesis : 

In the first chapter the statement of the problem and introductory 

comments are presented together with the objective of the work. 

Chapter 2 provides a definitive and informative overview for the 

river-fractured aquifer interaction containing the mathematical 

background of the methods utilized during the study.   

Chapter 3 involves the proof of the methods utilized. Several 

common groundwater problems are solved with Laplace transform and 

Stehfest algorithm procedure and the results are compared against the 

analytical solutions which are readily available.  The problems solved in 

this chapter are involved with groundwater flow in homogeneous 

aquifers whose results are used in the later chapters to compare 

against the fractured aquifer cases. 

Chapter 4 involves the application of the numerical methods to 

the chosen groundwater problems which do not have analytical 

solutions in the literature at the moment. These problems are involved 

in fractured aquifers. 

 Chapter 5 covers the evaluation, interpretation, and comparison 

of the results of the numerical study. Ferris’ equations are used as the 

basis of the comparisons in this chapter. 

Summary, discussions and conclusions together with 

recommendations are presented in Chapter 6. 
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CHAPTER 2 

MATHEMATICAL FORMULATION OF RIVER – 
FRACTURED AQUIFER INTERACTION PROBLEM 

2.1  Introduction 

The fracture system is characterized by high hydraulic 

conductivity and low specific storage, while the matrix system is 

characterized by low hydraulic conductivity and high specific storage. In 

effect, the fractures provide the pathways for flow, while the matrix 

provides the source of water to fractures (Önder, 1998). 

In the application of the double porosity conceptual model, a 

naturally fractured medium is separated into two overlapping continua, 

each filling the entire domain (Figure 2.1). The flow takes place both 

through pores of blocks and through fractures. The fluid is transferred 

between fractures and blocks, but there is no flow between any blocks. 

At each geometric point of a fractured medium, following the continuum 

concept, two sets of medium and flow parameters and variables are 

introduced, the first set being for the fracture flow and the second being 

for the flow in the blocks (Önder, 1998). 

For the model to adequately represent a real aquifer, it is 

necessary for the fractures be closely spaced relative to the scale of the 

problem (for example, the distance between wells). In other words, the 

“representative elementary volume (REV)” should contain a large 

number of fractures and matrix blocks, so the inclusion or deletion of a 
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few fractures and matrix blocks would not substantially alter the 

hydraulic properties of the REV. The representative elementary volume 

at the geometric point under consideration consists of a sufficient 

number of porous blocks as well as a sufficient number of fractures 

having random distribution, orientation and size. 

 

 

Figure 2.1: Representation of a system of fractures and matrix 

blocks [ Bolton and Streltsova (1977)]. 
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2.2  Mathematical Statement of the Problem 

A complete statement of a ground-water flow problem requires 

specifying: (a) the extent of the flow domain, (b) the governing 

differential equation, (c) spatial distribution of properties, for example, 

hydraulic conductivity and specific storage, (d) boundary conditions, 

and (e) initial condition (for transient problems).The flow equations can 

be written separately for the fractures and for the matrix.  

For the flow region, two cases, namely semi-infinite and finite 

aquifers, will be considered. 

 

2.2.1 Governing Differential Equations 

 

The one dimensional confined fracture flow may be obtained by 

combining the continuity equation and Darcy’s Law, which leads to; 

(Önder, 1998): 

t
hS

t
hS

x
hT

∂
∂

+
∂
∂

=
∂
∂ 2

2
1

12
1

2

1      (2.1) 

In a similar way, the differential equation governing flow in the 

blocks is (Önder, 1998): 

)( 212
2

2 hhT
t
hS −=
∂
∂ ε       (2.2) 

where; 

iT  is the coefficient of transmissivity (i=1,2)  

iS  is the coefficient of storage (i=1,2) 

ih is the mean piezometric head averaged over the thickness of 

the aquifer (i=1,2) 

x is the distance along the flow direction 
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t is the time 

ε relates to the geometry of the fractured rock. It may be viewed 

as a shape factor and has the dimension of inverse area 

Subscript 1 denotes fracture flow whereas subscript 2 denotes 

the flow in blocks 

Fin ite Fractured Aquifer : x→ L
Sem i-in fin ite Fractured Aquifer : x→∞

Stream
Confined Fractured Aqu ifer

Q=const

t>0

t=0

h0

In itia l Condition: h1(x,0)=h0

 

  Figure 2.2: One dimensional transient flow 

 

2.2.2  Initial and Boundary Conditions 

The initial and boundary conditions to be satisfied by 1h and 2h for 

the problems considered in this work may be written as follows; 

Case 1. One dimensional transient flow in a semi-infinite 
fractured aquifer: 

Initial conditions: 

01 hh =  at t=0       (2.3) 

02 hh =  at t=0       (2.4) 

Boundary conditions:  

1

1
0

lim
T
Q

x
h

x
−=

∂
∂

→
       (2.5) 
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01lim hh
x

=
∞→

        (2.6) 

where; 

Q  is the volumetric discharge rate 

Case.2  One dimensional transient flow in a finite fractured 
aquifer: 

Initial conditions 

01 hh =  at t=0       (2.7) 

02 hh =  at t=0       (2.8) 

Boundary conditions:  

1

1
0

lim
T
Q

x
h

x
−=

∂
∂

→
       (2.9) 

0lim 1 =
∂
∂

→ x
h

Lx
        (2.10) 

 

2.2.3   Assumptions 

This section describes the simplifying assumptions used in the 

above formulation. The following assumptions apply to both problems in 

this study: 

1. Darcy’s Law is valid for the flows both in fractures and blocks 

2. Fractures and blocks are homogeneous and isotropic 

3. The aquifer is confined and non-leaky, and its thickness is 

constant 

4. Flow occurs only in x direction 

5. The geometry of fractures is unaffected by chemical dissolution 

or deposition 

6. Flow is fully saturated. 
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7. The lower and upper boundaries of each aquifer are horizontal 

and impermeable. 

8. Hydraulic properties of the aquifers do not change with time. 

9. The porous medium and fluid are slightly compressible. 

10. The water level in the stream is initially at the same elevation as 

the water level everywhere in the aquifer  

11. The stream forms a vertical boundary to the aquifer and fully 

penetrates the aquifer. 

12. The stream flows in a straight line (that is, without sinuoisity). 

(Önder 1998; Moench & Barlow, 2000) 

2.3 Analytical Solution 

 One perceived difficulty in the use of analytical models is the fact 

that the necessary boundary conditions –stream stage and regional 

recharge or evapotranspiration- change continuously. During the course 

of this study one of the most widely used analytical methods, Laplace 

transform, is combined with a numerical inversion method, the Stehfest 

algorithm, to solve complex groundwater problems. 

2.3.1 Laplace Transform 

The Laplace transform is a powerful method for solving partial 

differential equations. Typically, the Laplace transform removes the time 

derivative term, so that we only have to deal with the spatial derivative 

terms. The Laplace transform of a function u(t) is obtained by 

multiplying u(t) by pte− and integrating the result with respect to t from 

t=0 to t=∞. By this procedure, we obtain a new function, called the 

Laplace transform of u(t) and denoted by )(pu , which is a function of p, 

the Laplace transform parameter. In other words; 

∫
∞ −=
0

).()( dtetupu pt       (2.11) 
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The Laplace transform parameter p can be thought of as an 

inverse time. In other words, large p corresponds to small time, and 

small p corresponds to large time.  

The elementary properties  of Laplace transform can be found 

from various Calculus literature. Some of the very basic properties 

which are used in this study are given below (Hsieh, 2002): 

1. The Laplace transform is a linear transform. In other words, 

the Laplace transform of u(t)+v(t) is )()( pvpu + , and the Laplace 

transform of Au(t) is A )(pu , where A is a constant. 

2. The Laplace transform of a constant A is A/p.  

3. The Laplace transform of the derivative
dt
du  is )0()( upup − . 

4. If u is a function of t and additional independent variables, for 

example, u = u(t,x), then the Laplace transform of n

n

x
u

∂
∂ is n

n

x
u

∂
∂ . 

2.3.2 Stehfest Algorithm – Numerical Inversion of Laplace 
Transform 

Inversion of the Laplace transform may be accomplished by: a) 

use of tables, if )(pu is a simple function, b) complex integration, or c) 

numerical inversion. For groundwater applications, tables are not 

always adequate. Complex integration is often possible but requires 

very complicated evaluations. Numerical inversion, is simple and often 

effective, and will serve as main tool in the course of this study. 

Of the many numerical algorithms for Laplace inversion, the 

Stehfest (1970) algorithm is utilized in this study. If ),( pxu is the 

Laplace transform, then the inverse (that is, the original function) u(x,t) 

can be approximately calculated by 

∑
=

≈
N

i
i t

ixuV
t

txu
1

))2ln(,(.))2ln((),(     (2.12) 
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In the above equation the quantity 
t

i )2ln(  substitutes for the Laplace 

parameter p. In this expression i is summation variable and t is time. 

The coefficients iV are given by; 

∑
+=

+

−−−−
−=

)2/,min(

2/)1(

2/
)2/(

)!12()!()!1(!)!2/(
)!2()1(

Ni

ik

N
iN

i kkikkkN
kkV  (2.13) 

where N is an even number and k is computed using integer arithmetic 

(k is taken as the integer part of 
2

1+i ) . 

In principle, the larger the value of N, the more accurate the 

numerically inverted solution is. In practice, however, N is limited by 

truncation errors. A characteristic of the Vi’s is that their absolute values 

tend to increase as N increases. Thus, the use of large N values causes 

subtraction of one large number from another, with a resulting loss of 

accuracy. Moench and Ogata (1982) use N = 10 and N = 18 for their 

computations. It is a good idea to make the computation with various 

values of N to check if the same result is obtained. High precision 

arithmetic is usually a necessity. In this study various N values will be 

tested until a satisfactory result is obtained.  

2.4  Verification of the Solution Methods 

In order to prove that the applied methods and the subroutine 

gives satisfactory results, two groundwater flow problems are solved 

with Laplace transform and numerical inversion by Stehfest algorithm. 

Then the results are compared against the results which are obtained 

by analytical inversion.  
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CHAPTER 3 

APPLICATION OF STEHFEST ALGORITHM TO 
HOMOGENEOUS AQUIFERS  

3.1  Introductory Remarks 

The main objective of this chapter is to demonstrate how the 

Stehfest algorithm is used in the solution of groundwater flow problems. 

For this purpose two problems have been selected. Both of these 

problems are one dimensional transient flow in a homogeneous aquifer 

and their exact analytical solutions are available in the literature.  These 

analytical solutions will be used to compare the solutions obtained by 

Stehfest algorithm. In this chapter a third problem is also solved by 

Stehfest algorithm. The results of this problem will be used later in the 

discussion of the flow mechanism in fractured aquifers. 

 

3.2  One dimensional transient flow in a semi-infinite 
homogeneous aquifer under constant drawdown  

The governing partial differential equation for one dimensional transient 

flow in an aquifer is given as (Bear, 1979) : 

t
h

x
h

∂
∂

=
∂
∂

ν
1

2

2

       (3.1) 

where; 

ν is hydraulic diffusivity 
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h is hydraulic head 

x is the distance along the flow direction 

t is the time 

It is subject to the boundary conditions; 

 h(0,t) = 1 , t>0     (3.2) 

 h(∞ ,t) = 0 , t>0     (3.3) 

and the initial condition 

 h(x,0) = 0 , x≥0     (3.4) 

Application of the Laplace transform to each term of (3.1) yields; 

))0,((1
2

2

xhhp
x
h

−=
∂
∂

ν
      (3.5) 

Replacing the initial condition (3.4) into (3.5) yields; 

hp
x
h

ν
=

∂
∂

2

2

        (3.6) 

Applying the Laplace transform to the boundary conditions (3.2) & (3.3) 

yields; 

p
h 1
=   at x=0, and       (3.7) 

0=h   as ∞→x       (3.8) 

The general solution of the equation (3.6) is; 

))/exp(())/(exp(),( 5.05.0 xpBxpApxh νν +−=    (3.9) 

A and B are either constants or functions of p (but not x) and are to be 

determined from boundary conditions. To satisfy (3.3), constant B must 

be 0. To satisfy (3.2), A must be 1/p. Therefore, the solution of (3.6) 

subject to (3.2) and (3.3) is; 
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))/(( 5.01),( xpe
p

pxh ν−=       (3.10) 

The solution above is known as the Laplace domain solution. 

This solution is used in the numerical inversion algorithm (Appendix A) 

to obtain solution on the real domain. 

With this objective, Eq(3.10) is inserted into Eq.(2.12) and this 

yields; 

∑
=

−≈
N

i

xp
in e
p

V
t

txh
1

))/(( 5.01.))2ln((),( ν     (3.11) 

In Equ. 3.11, the subscript n for h is used to indicate that the 

solution is obtained by numerical inversion. 

For this problem the analytically inverted solution is available in 

the literature, which is; 

)
.2

(),(
t

xerfctxha ν
=       (3.12) 

Similarly in Equ. 3.11, the subscript a for h is used to indicate 

that the solution is obtained by analytical inversion. 

Table 3.1 in the following page summarizes the results obtained 

for t=4, x=2, ν =1 against different N values. Between N=10 and N=20 

the results are very close to the exact result, whereas as N gets greater 

than 20 the numerical method starts to yield unreliable results as 

demonstrated in the table. In this study N=10 is chosen and used in the 

solution of other problems, although the results for different N values 

are compared for the other problems too, their results are omitted from 

this report. Following the table below an error term is defined against 

time, and the behaviour of the error as a function of time is examined 

for N=10. The exact result is independent of N and it is 0.4795. 
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Table 3.1: Comparison of Numerical results against exact result using 
different N values.  
 

 
N 
 

Approximate Result 
from Numerical 

Inversion by 
Stehfest Algorithm 

Exact Result from 
Analytically inverted 

solution 

 
4 

 
0.4869 

 
 

10 
 

 
0.4795 

 
 

20 
 

 
0.4795 

 
 

24 
 

 
0.4797 

 
 

30 
 

 
-2.001 

 
40 
 

 
7102561.1 x  

0.4795 

 

3.2.1 Variation of Piezometric Head: 

 

Figure 3.1a: Piezometric head vs time for different values of distance  
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Figure 3.1b: Piezometric head vs log time for different values of 

distance 

 
 

Figure 3.2: Piezometric head vs distance for different values of 

time 

3.2.2  Error Analysis 

 
In order to compare the real results of analytically inverted 

solution and the results of Stehfest algorithm following error term is 

defined and plotted against time.  

 
),(),(),( txhtxhtxE an −=       (3.13) 
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Where; ),( txhn and ),( txha are the results obtained by numerical and 
analytical inversion respectively. 

 

 

 
Figure 3.3a: Error function vs. time for different values of 

distance 

 

Figure 3.3b: Numerical result vs. exact result for different values 

of distance x 

As it can be seen from the above graphs, the results of the 

Stehfest algorithm are almost equal to the analytical solution. And the 
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difference between the results of the numerical solution and the 

analytical solution are negligible. As expected, the slope of the line in 

graph 3.3b is 1. 

 
3.3 One dimensional transient flow in a semi-infinite 
homogeneous aquifer under constant discharge: 

The equation (3.1) is the governing one dimensional partial 

differential equation for this problem too. The only differences are in the 

boundary conditions as seen below;  

Boundary conditions; 

 
2

. Q
x
hLT =
∂
∂

−   at x=0     (3.14) 

 h=0    as ∞→x     (3.15) 

and the initial condition 

 h=0    at t=0     (3.16) 

where  

L is the length of the stream bounding the aquifer 

T is the coefficient of transmissivity 

Application of the Laplace transform to each term of (3.1) yields 

))0,((1
2

2

xhhp
x
h

−=
∂
∂

ν
      (3.17) 

The initial condition (3.26) yields; 

hp
x
h

ν
=

∂
∂

2

2

        (3.18) 

Applying the Laplace transform to the boundary conditions (3.14) 

&(3.15) yields; 
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p
Q

x
hLT

2
. =
∂
∂

−   at x=0, and     (3.19) 

0=h     as ∞→x     (3.20) 

The general solution of the equation (3.18) is same as (3.9); 

))/exp(())/(exp(),( 5.05.0 xpBxpApxh νν +−=    (3.9) 

To satisfy (3.20), B = 0. And to satisfy (3.19); 

p
QxppALT
2

))/(exp()/(.. 5.05.0 =−−− νν     (3.21) 

Hence A is found as; 

5.0)/.(2 νpLTp
QA =        (3.22) 

Therefore, the solution of (3.18) subject to (3.19) and (3.20) is ; 

))/((
5.0

5.0

)/.(2
),( xpe

pLTp
Qpxh ν

ν
−=      (3.23) 

If following variables are defined as, 
L
QQb =  and 

T
QQ b

d = ; the 

solution in the Laplace domain will be; 

))/((
5.1

5.0
5.0

2
.

),( xpd e
p

Q
pxh νν −=       (3.24) 

The solution above is known as the Laplace domain solution. 

Now Laplace inversion needs to be applied to this result to obtain the 

solution on the real domain as shown in the previous example. For that 

purpose Eq.(3.24) is inserted into Eq(3.9). 

))2ln(,(.))2ln((),(
1 t

ixhV
t

txh
N

i
in ∑

=

≈      (3.25) 

Below is the exact solution which is used to compare the results 

of numerical inversion. (Carslaw & Jaeger, 1959) 
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










−+=

−

1)
..4

(.()...4(
2

),(
2

..4

νπ
ν ν

t
xerfxetQ

txh t
x

d
a      (3.26) 

 

3.3.1 Variation of Piezometric Head: 

In the graphics below the variation of the piezometric head is 

investigated using both the analytical method (the exact solution) and 

the numerical inversion method. These are compared against each 

other to find that their results are very close to each other. 

 

 

Figure 3.4a: Piezometric head vs. square root of time for different 

values of distance (Analytical solution formula) 
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Figure 3.4b: Piezometric head vs. square root of time for different 

values of distance (Numerical inversion method)  

3.3.2 Comparison between analytical and numerical solutions 

 

 

Figure 3.4c: Piezometric head vs. square root of time  at x=300m  
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Figure 3.5a: Piezometric head vs. distance for different values of 

time (Analytical solution formula) 

 
 
 
 

Figure 3.5b: Piezometric head vs. distance for different values of 

time (Numerical inversion method) 
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Figure 3.5c: Piezometric head vs. distance at t=1500sec  

As it can be seen from the above graphs, the results of the 

Stehfest algorithm are almost equal to the results of the exact solution.  

 

3.4 One dimensional transient flow in a finite homogeneous 
aquifer under constant discharge: 

The equation (3.1) is the governing one dimensional partial 

differential equation for this problem too. The only differences are in the 

boundary conditions as seen below;  

Boundary conditions; 

 
2

. Q
x
hLT =
∂
∂

−   at x=0     (3.27) 

 0. =
∂
∂

−
x
hLT    at x=L     (3.28) 

and the initial condition 

 h(x,0) = 0       (3.29) 

Application of the Laplace transform to each term of (3.1) yields 
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hp
x
h

ν
=

∂
∂

2

2

        (3.30) 

Applying the Laplace transform to the boundary conditions (3.27) 

&(3.28) yields; 

p
Q

x
hLT

2
. =
∂
∂

−   at x=0, and     (3.31) 

0=
∂
∂

−
x
hLT    at Lx =     (3.32) 

The general solution of the equation (3.30) is; 

xpxp

BeAepxh
)()(

),( νν +=
−

      (3.33) 

Let α
ν

=
p  for simplification. 

xx BeAepxh αα += −),(       (3.34) 

xx BeAe
x
h αα αα +−=
∂
∂ −       (3.35) 

Using boundary condition (3.32); 

LL BeAe αα αα +−= −0        (3.36) 

LBeA α2=         (3.37) 

Replace (3.37) into (3.35) to obtain; 

xxL BeeBe
x
h ααα αα +−=
∂
∂ −2       (3.38) 

Simplify (3.38) to obtain; 

)( 2 xxL eeB
x
h αααα −−=
∂
∂ −       (3.39) 

Then replacing second boundary condition (3.32) into (3.39) yields; 
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)1(
2

2 −= Ld eB
p
Q αα        (3.40) 

Solving for B and then ),( pxh yields below the Laplace domain solution; 

)1(2 2 −
= L

d

ep
Q

B αα
       (3.41) 

xxL BeeBepxh ααα += −2),(       (3.42) 

The solution above is known as the Laplace domain solution. 

Laplace inversion needs to be applied to this result to obtain the real 

solution as shown in the previous examples; 

The exact analytical solution for this problem could not be 

obtained in spite of the extensive literature search. Below graphics are 

drawn using the results of numerical solution to compare against the 

semi-infinite version of the problem. 

 

3.4.1 Comparison of the Results: 

Below constants are considered for the hypothetical finite 

homogeneous aquifer to carry out the numerical inversion procedure; 

135.0=ν  065.0=dQ  510.2 −=S   sec/10.7.2 26mT −=   

mL 100=  where 
S
T

=ν  
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Figure 3.6a: Piezometric head vs. square root of time  for 

different values of distance - Finite H. Aquifer 

 

 

Figure 3.6b: Piezometric head vs. distance for different values of 

time – Finite H. Aquifer 

 

Below graphics are results for the semi-infinite case of the 

problem. The same parameters and boundaries are used for both cases 

to make the comparison. 
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Figure 3.7a: Piezometric head vs. square root of time at for 

different values of distance - Semi-infinite H. Aquifer 

 

 

Figure 3.7b: Piezometric head vs. distance for different values of 

time - Semi-infinite H. Aquifer 

 

 

The behavior of the piezometric head in both semi-infinite and 

finite homogeneous aquifers is plotted together for several selected 

values of time and distance for comparison.  
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Figure 3.8a: Piezometric head vs. square root of time at x=50m – (Finite 

and Semi-Infinite Aquifers)  

 

 

Figure 3.8b: Piezometric head vs. square root of time at x=100m – 

(Finite and Semi-Infinite Aquifers) 
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Figure 3.9a: Piezometric head vs. distance at t=3600sec – (Finite and 

Semi-Infinite Aquifers) 

 

Figure 3.9b: Piezometric head vs. distance at t=18000sec – (Finite and 

Semi-Infinite Aquifers) 

 As it can be seen from the graphics above, the behavior of the 

piezometric head is the similar for both semi-infinite and finite cases for 

short distance and in a short period of time. As the time increases 

(discharge from the river continues) the piezometric head in the finite 

aquifer starts to increase more rapidly then the semi-infinite aquifer 

case. Also as the distance increases; the difference between the 
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piezometric heads of semi-infinite and finite homogeneous aquifers 

increases where the head in the finite aquifer is always higher. 
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CHAPTER 4 

 

APPLICATION OF STEHFEST ALGORITHM TO 
FRACTURED AQUIFERS 

 

4.1 Solution Procedure 

First of all the differential equations and the boundary conditions 

are non-dimensionalized to make it simpler to draw graphics and 

compare the variables. The second step is transferring all the boundary 

conditions and the differential equations to Laplace domain –applying 

Laplace transform- which is followed by the analytical solution of the 

differential equations in Laplace domain. Then the solutions in Laplace 

domain are converted to real domain with the help of a numerical tool: 

Stehfest Algorithm.  

4.2  One dimensional transient flow in a semi-infinite fractured 
aquifer with constant discharge  

In order to non-dimensionalize the equations 2.1 to 2.10 following 

transformations are applied to these equations; 

0

10
1 h

hhz −
=        (4.1) 

0

20
2 h

hh
z

−
=        (4.2) 

0h
xy =         (4.3) 

2
1

1

ohS
tT

=θ        (4.4) 
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where; 

z1 is the dimensionless head in fractures  

z2 is the dimensionless head in blocks 

y is the dimensionless distance from the face of the stream  

θ is the dimensionless time. 

Using the equations (3.1)-(3.4) the following non-dimensional equations 

are obtained;  

 2
0

1
2

2
1

2

yh
z

x
h

∂
∂

−=
∂
∂       (4.5) 

θ∂
∂

−=
∂
∂ 1

01

11 z
hS
T

t
h       (4.6) 

θ∂
∂

−=
∂
∂ 2

01

12 z
hS
T

t
h       (4.7) 

If (4.5)-(4.7) is replaced into (2.1) & (2.2) the following equations are 

obtained; 

θ
η

θ ∂
∂

+
∂
∂

=
∂
∂ 21

2
1

2 zz
y
z       (4.8) 

)( 21
2 zzz

−=
∂
∂ δ
θ

      (4.9) 

where 

2
0

2

2

1

1 h
S
T

T
S εδ =    and   

1

2

S
S

=η   (4.10) 

Similarly the initial and the boundary conditions are:  

 z1(y.0)=0       (4.11) 

 z2(y.0)=0       (4.12) 

 dy
Q

y
z

−=
∂
∂

→

1

0
lim        (4.13) 
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 0lim 1 =→∞
z

y
       (4.14) 

Where the dimensionless discharge Qd is defined as: 

 
1T
Q

Q b
d =         (4.15) 

If the Laplace Transform is applied to the equations (4.8) & (4.9) then; 

212
1

2

zpzp
y
z η+=

∂
∂       (4.16) 

)( 212 zzzp −= δ       (4.17) 

If the Laplace Transform is applied to the initial and boundary conditions 

(4.11) to (4.14) then; 

1z =0 at y=0       (4.18) 

 2z =0 at y=0       (4.19) 

 
p

Q
y
z

dy

1.lim 1
0

−=
∂
∂

→
      (4.20) 

 0lim 1 =→∞
z

y
       (4.21) 

Now (4.17) can be solved for 2z  to obtain; 

δ
δ
+

=
p
zz 1

2        (4.22) 

Replacing (4.22) into (4.16) yields; 

 
δ

δη
+

+=
∂
∂

p
zpzp

y
z 1

12
1

2

      (4.23) 

0)( 12
1

2

=
+

+−
∂
∂ z

p
pp

y
z

δ
ηδ      (4.24) 

Equation (4.24) is in the form of 0)( 1
22 =− zD α   
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D is 2

2 ()
y∂

∂  and α is )(
δ

ηδ
+

+
p
pp  therefore; 

δ
ηδ
+

++=
p
ppD1       (4.25a) 

δ
ηδ
+

+−=
p
ppD2       (4.25b) 

 

yDyD BeAez 21
1 +=       (4.26) 

Using the Boundary Condition (4.21);    0=A  

Using the Boundary Condition (4.20);    
2pD

QB d−=  

yDd e

p
ppp

Q
pyz 2),(1

δ
ηδ
+

+
+=     (4.27) 

yDd e
p

p
pp

p
Q

pyz 2

)(
11),(2 δ

δ
ηδ

δ
+

+
+

+=    (4.28) 

Now two solutions have been obtained for the two equations in 

Laplace Domain for the semi-infinite fractured aquifer problem. In order 

to get the results in the real domain numerical inversion should be 

applied as follows:  

By inserting Eq. (4.27) into Eq.(2.12) 1z  is obtained as: 

∑
=

≈
N

i
i iyzVyz

1
11 ))2ln(,(.))2ln((),(

θθ
θ     (4.29) 

Similarly by inserting Eq. (4.28) into Eq.(2.12) 2z  is obtained as: 

∑
=

≈
N

i
i iyzVyz

1
22 ))2ln(,(.))2ln((),(

θθ
θ     (4.30) 
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In order to check the validity of the results, the methods utilized 

over the course of this study are used to solve other groundwater 

problems as demonstrated in Chapter 3 and these results are 

compared against the exact solution. However the problems considered 

in this chapter have not been solved analytically before; so the exact 

solutions for these problems are not available in the literature.  

Following parameter values and aquifer constants are 

considered for the hypothetical aquifer to illustrate the behavior of the 

groundwater flow : 

sec/135.0 2m=ν  065.0=dQ  5
1 10.2 −=S   sec/10.7.2 26

1 mT −=  

5=η    625.0=δ   

where 
1

1

S
T

=ν  

 

  

Figure 4.1: Dimensionless drawdown 1z  vs dimensionless time θ  for 

different values of dimensionless distance y – Semi Infinite Fractured 

Aquifer 
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Figure 4.2: Dimensionless drawdown 1z  vs logarithm of dimensionless 

time θ  for different values of dimensionless distance y – Semi Infinite 

Fractured Aquifer 

 

Figure 4.3: Dimensionless drawdown 1z  vs dimensionless distance y for 

different values of dimensionless time θ   – Semi Infinite Fractured 
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Figure 4.4: Dimensionless drawdown 1z  vs. logarithm of dimensionless 

time θ  for different values of η  where y=1 δ =5 Semi Infinite Fractured 

Aquifer 

 

Figure 4.5: Dimensionless drawdown 1z  vs. logarithm of dimensionless 

time θ  for different values of δ  where y=1 η =5 Semi Infinite Fractured 

Aquifer 
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4.3  One dimensional transient flow in a finite fractured aquifer 
with constant discharge  

The governing differential equations are exactly the same as the 

equations for the previous case except the boundary conditions.  

The solution will again be in the form of; 

yDyD BeAez 21
1 +=       (4.31) 

yDyD BeDAeD
y
z

21
21

1 +=
∂
∂      (4.32) 

where 1D  and 2D  are defined by Eq 4.25a and 4.25b 

δ
ηδ
+

+=
p
ppD m2,1       (4.33) 

 Initial conditions: 

 z1=0 at y=0       (4.34) 

 z2=0 at y=0       (4.35) 

 The boundary conditions will be as follows; 

 dy
Q

y
z

−=
∂
∂

→

1

0
lim        (4.36) 

 0lim 1

0

=
∂
∂

→ y
z

h
Ly

       (4.37) 

If Laplace Transform is applied to the initial and boundary conditions 

(4.34) to (4.37) following relationships will be obtained; 

1z (y.0)=0       (4.38) 

 2z  (y.0)=0       (4.39) 
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p
Q

y
z d

y
−=

∂
∂

→

1

0
lim       (4.40) 

 0lim 1

0

=
∂
∂

→ y
z

h
Ly

       (4.41) 

Using the boundary condition (4.40); 

 BDAD
p
Qd

21 +=−       (4.42) 

Solving (4.41) for A yields; 

 
1

2
1)(
D

BD
p
Q

A d −−=       (4.43) 

Similarly using the boundary condition (4.41); 

 0
2

0
1

210 h
LD

h
LD

BeDAeD +=      (4.44) 

Then (4.43)is replaced in (4.44) to obtain; 

0
2

0
1

22 )(0 h
LD

h
LD

d BeDeBD
p
Q

+−−=     (4.45) 

Solving (4.45) for B yields; 

)( 0
1

0
2

0
1

2
h
LD

h
LD

h
LD

d

eeD

e
p
Q

B

−

=      (4.46) 

Hence the solution for 1z  in the Laplace domain will be obtained by 

replacing A (Eq. 4.43) and B (Eq. 4.46) into Eq. (4.31);  

yDyDd Bee
D

BD
p
Q

pyz 21

1
21

1)(),( +−−=    (4.47) 

Similarly 2z  is obtained as: 
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 ]1)[(),( 21

1
22

yDyDd Bee
D

BD
p
Q

p
pyz +−−

+
=

δ
δ   (4.48) 

  

Stehfest Algorithm is used as shown below to invert the solution 

in the Laplace domain above and to obtain the solution in the real 

domain; 

By inserting Eq. (4.47) into Eq.(2.12) 1z  is obtained as: 

∑
=

≈
N

i
i iyzV

t
yz

1
11 ))2ln(,(.))2ln((),(

θ
θ     (4.49) 

Similarly by inserting Eq. (4.48) into Eq.(2.12) 2z  is obtained as: 

∑
=

≈
N

i
i iyzV

t
yz

1
22 ))2ln(,(.))2ln((),(

θ
θ     (4.50) 

Below constants are considered for the hypothetical aquifer to carry out 

the numerical inversion procedure; 

135.0=ν  065.0=dQ  5
1 10.2 −=S   sec/10.7.2 26

1 mT −=  5=η  

625.0=δ  mL 100=  mh 200 =  where 
1

1

S
T

=ν  
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Figure 4.6: Dimensionless drawdown 1z  vs. dimensionless time θ  for 

different values of y - Finite Fractured Aquifer  

 
Figure 4.7: Dimensionless drawdown 1z  vs. logarithm of dimensionless 

time θ  for different values of y - Finite Fractured Aquifer 

 

Figure 4.8: Dimensionless drawdown 1z  vs. dimensionless distance y  

for different values of θ - Finite Fractured Aquifer 
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Figure 4.9: Dimensionless drawdown 1z  vs. logarithm of dimensionless 

time θ  for different values of η  where y=1 δ =5 Finite Fractured Aquifer 

 

 

Figure 4.10: Dimensionless drawdown 1z  vs. logarithm of 

dimensionless time θ  for different values of δ  where y=1 η =5 - Finite 

Fractured Aquifer 
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Figure 4.11a: Dimensionless Drawdown vs. dimensionless time at y=2.5 

 

 

 

Figure 4.11b: Dimensionless Drawdown vs. dimensionless time at y=5 
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Figure 4.12a: Dimensionless drawdown vs. dimensionless distance at 

θ =5 

 

 

Figure 4.12b: Dimensionless drawdown vs. dimensionless distance (y) 

at θ =30 

As expected, the dimensionless drawdown vs. dimensionless 

time graphics of both finite and infinite cases is following exactly the 

same pattern. The graphics are drawn for a range of 0-100m and 

30min-6hours of discharge. Unfortunately as the time value increases in 

the finite fracture case the numerical solution does not yield an answer 
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because of very big numbers. Such as some of the parameters in the 

series becoming greater than 10^307, and the software stops carrying 

out the calculations after these values. As shown in the previous 

chapter the graphs of the two cases are expected to start separating 

after a point for greater values of dimensionless distance and 

dimensionless time. As an alternative method of comparison the finite 

fractured and semi-infinite fractured cases are analysed in detail using 

the Ferris equations in the following chapter. 
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CHAPTER 5 

INTERPRETATION AND DISCUSSION OF RESULTS 

5.1  Introduction 

The objective in this chapter is to explore the behavior of 

groundwater flow in fractured aquifers. This objective includes also the 

comparison of the responses of groundwater flow in fractured and 

homogeneous aquifers of same geometry to the imposed boundary and 

initial conditions of the same type. Finally a comparison between the 

results for the flow in semi-infinite and finite fractured aquifer is also 

considered in this chapter.  

5.2  Results of Semi-infinite Fractured Aquifer 

Two dimensionless parameters are defined in the presentations 

of the results as follows; 

tT
S

xtxu
1

1

4
),( =        (5.1) 

Note that this dimensionless variable is commonly used in groundwater 

literature and it may be related to the dimensionless quantities used 

earlier in Chapter 4 in the present study: 

θ2
),( ytxu =         (5.2) 
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yQ
z

yzDuD
d .

),()( 1==        (5.3) 

where 1z  is found from the numerical inversion method as 

demonstrated in chapter 4, Eq. 4.29. A subroutine - which can be found 

in Appendix C.1- is written to draw )(uD  vs. ),(2 txu  by using the 

numerical solution method.  

For the semi-infinite homogeneous aquifer with constant 

discharge problem based on Ferris et al. (1962) the function D,u,z are 

defined by Lohman (1972) as, 

Tt
Sxtxu

4
),( =        (5.4) 

 )(1
.

)(
2

uerf
u
euD
u

+−=
−

π
      (5.5) 

DxQxz d .)( =         (5.6) 

where z(x,t) is the exact analytical solution known as Ferris’ equation, 

and D(u) is also known as the drain function of u. Subroutine written to 

draw )(uD  vs. ),(2 txu  can be found in Appendix C.2- 

In order to compare the results of the exact solution against the 

solution obtained by numerical inversion for the homogeneous problem; 

z is calculated from the Stehfest algorithm (as demonstrated in Chapter 

2) and then it is used to calculate ),( txu  and )(uD   

)(1 xz is calculated by numerical inversion   (5.7) 

The subroutine used to draw )(uD  vs. ),(2 txu  for semi-infinite 

homogeneous aquifer with constant discharge problem by using the 

numerical inversion method can be found in Appendix C.3.  
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The constants below are used to draw the graphics in this chapter 

135.0=ν  065.0=dQ  6
1 10.2 −=S   sec/10.2 27

1 mT −=  5=η  

625.0=δ  where 
1

1

S
T

=ν  

 
Figure 5.1: )(uD  vs. ),(2 txu  on a log-log scale  

 As expected the graphs of the results for the numerical solution 

and the exact solution for homogeneous case are exactly the same 

showing that the results of the numerical inversion gives the same 

results as the exact solution.  

The graphic for the semi-infinite fractured case is asymptotic to 

the homogeneous case for smaller ),( txu  values, and as ),( txu  

increases the head starts to decrease faster than the homogeneous 

case. Physically this can be explained by the fact that in the fractured 

aquifer case the storage in the blocks moves to the fractured hence the 

drawdown is not as much as the homogeneous case. 
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Figure 5.2: )(uD  vs. ),(2 txu  on a log-log scale for constant δ =5 

and various η  values – Semi-infinite Fractured Aquifer 

 

Figure 5.3: )(uD  vs. ),(2 txu  on a log-log scale for constant η =5 

and various δ  values  - Semi-infinite Fractured Aquifer 
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5.3 Comparison of Results – Finite Fractured Aquifer 

As demonstrated in the previous example below graphics are 

drawn to make the same comparison against the semi-infinite fractured 

aquifer problem.  

Below constant are used to draw the graphics in this chapter: 

135.0=ν  065.0=dQ  6
1 10.2 −=S   sec/10.2 27

1 mT −=  5=η  

625.0=δ  mL 100=  mh 200 =  where 
1

1

S
T

=ν  

 

 

Figure 5.4: )(uD  vs. ),(2 txu  on a log-log scale  
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Figure 5.5: )(uD  vs. ),(2 txu  on a log-log scale for constant δ =5 

and various η  values – Finite Fractured Aquifer 

 

 

Figure 5.6: )(uD  vs. ),(2 txu  on a log-log scale for constant η =5 

and various δ  values – Finite Fractured Aquifer 

Unfortunately no reliable field data is available to compare results 

to the field values. As seen from Figure 5.4 the graph of the finite-

fractured case is becoming asymptotic to the homogeneous case for 

smaller ),( txu  values. And as D(u) increases the head starts to 

decrease faster than the homogeneous case. Comparing Figure 5.1 & 

Figure 5.4 shows that, in the finite fractured case after some point –the 
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effect of boundary starts to appear- D(u) begins to increase faster than 

the semi-infinite case as ),( txu  decreases. This can be seen easier in 

the below graph 5.7. 

 

 

Figure 5.7: )(uD  vs. ),(2 txu  on a log-log scale for semi-infinite and 

finite fractured aquifer cases. 

 

 

Figure 5.8: )(uD is plotted against ),(2 txu  on a log-log scale for semi-

infinite and finite fractured and homogeneous aquifer cases. 
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The results of this chapter are summarised above in Figure 5.8. 

As can be seen from this graph, the homogeneous case graphs and the 

fractured case graphs become asymptotic as ),(2 txu decreases. 

Whereas finite and semi-infinite case graphs become asymptotic as 

),(2 txu increases.  
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CHAPTER 6 
 

SUMMARY AND CONCLUSIONS  

Fluid flow in fractured media is gaining increasing importance 

especially in petroleum geology, mining engineering, and karstic terrain 

hydrogeology. Analytical methods are commonly used to analyze water 

level changes occur in response to groundwater pumpage. These 

methods permit determination of aquifer properties and prediction of 

aquifer response which are needed in the evaluation of the groundwater 

resources of a given region. Although many analytical solutions are 

available to groundwater hydrologists, not all of them are readily 

evaluated.  

In this study an attempt is made to demonstrate the advantage of 

working in Laplace plane. The unsteady flow in the aquifer resulting 

from a constant discharge pumped from the stream was investigated. 

Both a finite and semi-infinite aquifer is considered. The governing 

differential equations of the flow, which are based on the double 

porosity medium conceptual model with pseudo-steady state transfer of 

water between the fractures and blocks, were solved analytically in the 

Laplace plane first, and inverted to the real plane by using a numerical 

inversion technique: Stehfest algorithm. The solutions are presented for 

a set of aquifer parameters in terms of piezometric head vs. time and 

piezometric head vs. distance.  
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Ferris’ equations are used to make comparisons between the 

homogeneous and fractured cases as well as between semi-infinite and 

finite cases.  

According to the graphs plotted, it is seen that as time goes to 

zero or infinity; the flow behaviour is same in both fractured and 

homogeneous cases, as they approach each other asymptotically. The 

reason behind this is: The discharge taken from the stream is a 

disturbance to the system, the flow from blocks to the fractures start to 

occur after a certain period time. In the first instance there will only be 

flow in fractures without the flow from blocks to the fractures. So during 

this short period of time the blocks can not respond to the disturbance. 

This makes the behaviour similar to that of the homogeneous case –

where there are no blocks-. On the right hand side of the Figure 5.3 and 

5.6 the graph for the homogeneous case shows this limit case, where 

the fractured flow graphics approach to this graph for short time. There 

is also another limit defined at the left hand side of the Figures 5.3 and 

5.6. This is for a hypothetical homogeneous aquifer which has the 

storage capacity equal to that of the blocks plus the fractures, whereas 

having the transmissivity coefficient the same as the fractures. The 

fractured case graphs approach to this limit case as time goes to 

infinity. The reason behind is as the discharge is taken from the stream 

for long periods the system finds a second form of equilibrium where 

the blocks and fractures act as one member, both of them having the 

same pressure. Since there is no pressure difference between the 

fractures and blocks there can’t be any flow between them which is the 

same behaviour that can be observed in an homogeneous aquifer. 

It is also observed from the figures that, the fractured aquifers 

have always less drawdown then the homogeneous aquifers. The 

reason behind is there is flow from the blocks to the fractures which 

keeps the piezometric head level in the fractures higher then the 
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piezometric head in the homogeneous aquifer. As explained in the 

previous paragraph this is not true for very short and very long times. 

From Figure 5.6 it can also be seen that the flow behaviour in 

semi-infinite and finite fractured aquifers are exactly the same for quite 

some time. A critical time can be observed from the graph at which the 

effect of the boundary in the finite fractured aquifer starts to appear and 

these two graphs starts to differ from each other. The finite fractured 

aquifer has always more drawdown then the semi-infinite fractured 

aquifer after this critical time. Because, in the semi-infinite fractured 

case there is always flow coming from the blocks to the fractures, since 

the length of the aquifer in infinite. Whereas in the finite aquifer there is 

an impervious boundary so there is limited amount of water which can 

feed the flow in the fractures. 
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APPENDIX A 

SUBROUTINE USED TO SOLVE THE STEHFEST 
ALGORITHM NUMERICALLY 

Function calculating the results of the Stehfest algorithm computations 

for predefined N,x,t : 

V i N,( ) 1−( )

N

2
i+





trunc
i 1+( )

2






min i
N

2
,





k

k

N

2




 2 k( )!⋅

N
2

k−




! k( )!⋅ k 1−( )!⋅ i k−( )!⋅ 2 k i−( )!⋅

∑
=

⋅:=

 

),( pxu is the analytical solution which found by using Laplace transform   

method  

 

 
 
 
 
 

 

 

 

Main p x, t,( )

Ri 1, i←

Ri 2, V i N,( )←

p2 i p⋅←

Ri 3, u x p2,( )←

Ri 4, Ri 2, Ri 3,⋅←

i 1 N..∈for

Sum

1

N

i

Ri 4,∑
=

←

R

Sum







:=  
Table2 p x, t,( ) X1 1, "i"←

X1 2, "Vi"←

X1 3, "u(x,p)"←

X1 4, "(Vi) * u(x,p)"←

stack X Main p x, t,( )1,( )

:=  

Table Table2
ln 2( )

4
2, 4,





:=  
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A.1: Sample Results of Stehfest Algorithm computations for 

particular t,x and N values. (t=4, x=2, ν =1, N=10) 

 

Table

"i"

1

2

3

4

5

6

7

8

9

10

"Vi"

0.083333

32.083333−

1.279 103
×

1.562367− 104
×

8.424417 104
×

2.369575− 105
×

3.759117 105
×

3.400717− 105
×

1.640625 105
×

3.28125− 104
×

"u(x,p)"

2.509924

0.888918

0.45483

0.272915

0.179375

0.125145

0.091097

0.068464

0.052756

0.04148

"(Vi) * u(x,p)"

0.20916

28.519463−

581.727374

4.263927− 103
×

1.511126 104
×

2.965393− 104
×

3.424426 104
×

2.32825− 104
×

8.655252 103
×

1.361059− 103
×









































=

 
 

 

For a particular point in time the results are found by using below 

functions; 

Result Main
ln 2( )

4
2, 4,





2:=
 

Function computing the Laplace 

Domain Solution 
     Function inverting the solution in                

Laplace Domain to real domain 

 

  

Result2 Result
ln 2( )

4






⋅:=  
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APPENDIX B 

SUBROUTINES USED TO DRAW COMPARISON GRAPHS  

B.1: The subroutine written to plot dimensionless drawdown vs. 

dimensionless time for a constant dimensionless distance y. Where the 

drawdown is calculated using the numerical inversion method. 

zstehfest y( ) θ1 2←

zk 1− Main
ln 2( )
θk 1−

y, θk 1−,






2
ln 2( )
θk 1−
⋅←

θk θk 1− k 0.14⋅+←

k 2 50..∈for

z

θ








:=

 
 

B.2: The subroutine written to plot dimensionless drawdown vs. 

dimensionless distance for a constant dimensionless time. Where the 

drawdown is calculated using the numerical inversion method. 

 
z2stehfest θ( ) y1 0.1←

zk 1− Main
ln 2( )
θ

yk 1−, θ,





2
ln 2( )
θ

⋅←

yk yk 1− k 0.1⋅+←

k 2 50..∈for

z

y







:=
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APPENDIX C 

SUBROUTINES USED FOR COMPARISONS WITH 
FERRIS’ EQUATIONS 

C1: Subroutine to draw ),( yzD  vs. ),(2 θyu  for the finite fractured 

aquifer with constant discharge problem. (Numerical Solution) 

Solve1 y 3←

θ 0.05←

zk Main
ln 2( )
θ

y, θ,





2
ln 2( )
θ







⋅←

uk
y

2 θ
←

Dk

zk

Qd y⋅
←

θ θ 0.01k+←

k 1 400..∈for

z

u

D










:=
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C2: Subroutine to draw )(uD  vs. ),(2 txu  for finite homogeneous aquifer 

with constant discharge problem. (Numerical Solution) 

Solve2 x 60←

t 50←

zk Main4
ln 2( )

t
x, t,





2
ln 2( )

t






⋅←

uk x
S

4 T⋅ t⋅
⋅←

Dk

2 zk⋅

Qd x⋅
←

t t 29.58 k⋅+←

k 1 400..∈for

z

u

D










:=

 

C3: Subroutine to draw ),( yzD  vs. ),(2 θyu  for semi-infinite fractured 

aquifer with constant discharge problem. (Numerical Solution) 

 

Solve3 y 3←

θ 0.05←

zk Main2
ln 2( )
θ

y, θ,





2
ln 2( )
θ







⋅←

uk
y

2 θ
←

Dk

zk

Qd y⋅
←

θ θ 0.01k+←

k 1 400..∈for

z

u

D










:=
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C4: Subroutine to draw )(uD  vs. ),(2 txu  for semi-infinite homogeneous 

aquifer with constant discharge problem. (Exact Solution) 

 

Solve4 x 60←

t 50←

uk x
S

4 T⋅ t⋅
⋅←

Dk
e

uk( )2−

uk π⋅
1− erf uk( )+←

zk Qd x⋅ Dk⋅←

t t 29.58 k⋅+←

k 1 400..∈for

z

u

D










:=

 

C5: Subroutine to draw )(uD  vs. ),(2 txu  for semi-infinite homogeneous 

aquifer with constant discharge problem. (Numerical Solution) 

 

Solve5 x 60←

t 50←

zk Main3
ln 2( )

t
x, t,





2
ln 2( )

t






⋅←

uk x
S

4 T⋅ t⋅
⋅←

Dk

2 zk⋅

Qd x⋅
←

t t 29.58 k⋅+←

k 1 400..∈for

z

u

D










:=
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C6: Subroutine to draw )(uD  vs. ),(2 txu  for finite homogeneous aquifer 

with constant discharge. Max. storage limit case (Numerical Solution) 

 

Solve6 x 60←

t 50←

zk Main4
ln 2( )

t
x, t,





2
ln 2( )

t






⋅←

u1k
x

1 η+

S
4 T⋅ t⋅

⋅←

uk x
S

4 T⋅ t⋅
⋅←

Dk

2 zk⋅

Qd x⋅
←

t t 29.58 k⋅+←

k 1 400..∈for

z

u1

D










:=
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C7: Subroutine to draw )(uD  vs. ),(2 txu  for semi-infinite homogeneous 

aquifer with constant discharge. Max. storage limit case (Numerical 

Solution) 

 

Solve7 x 60←

t 50←

zk Main3
ln 2( )

t
x, t,





2
ln 2( )

t






⋅←

u1k
x

1 η+

S
4 T⋅ t⋅

⋅←

uk x
S

4 T⋅ t⋅
⋅←

Dk

2 zk⋅

Qd x⋅
←

t t 29.58 k⋅+←

k 1 400..∈for

z

u1

D










:=

 

 


