

REAL TIME IMAGE PROCESSING FOR MEDICAL INFRARED IMAGING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CEMİL KIZILÖZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE

IN
ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet ERKMEN
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Nevzat G. GENÇER
 Supervisor

Examining Committee Members

Prof. Dr. Cengiz BEŞİKÇİ (METU, EEE)

Prof. Dr. Nevzat G. GENÇER (METU, EEE)

Assist. Prof. Dr. Yeşim SERİNAĞAOĞLU (METU, EEE)

Assist. Prof. Dr. Çağatay CANDAN (METU, EEE)

Dr. İpek ZIRAMAN (NUMUNE, RADIOLOGY)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Cemil KIZILÖZ

 iv

ABSTRACT

REAL TIME IMAGE PROCESSING FOR MEDICAL
INFRARED IMAGING

Kızılöz, Cemil
M.S., Deparment of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Nevzat G. Gençer

December 2005, 95 pages

This thesis focuses on Medical Infrared Imaging. It deals with the implementation of

an infrared imaging system that can be used as a thermograph. A user interface

program is also designed in order to control the imaging system.

The system is implemented using Very High Speed Integrated Circuit Description

Language (VHDL). Digitizing the data is implemented by Field Programmable Gate

Array. Non-uniformities at the detector data are corrected by the two-point correction

algorithm. To obtain absolute temperature readings, another system calibration

process is also performed. Real-time histogram equalization algorithm and a real-

time convolution operation are implemented using the VHDL. Tests of these

implementations are performed by comparing the results with the numerical values.

A user interface program is developed to allow the operator select any filter type and

measure the temperature of any point in the object. Previous studies showed that an

infrared system should detect a temperature difference of 500°mK if it is to be used

for biomedical applications. Using a black body system with a precise temperature

control, it is shown that this specification is satisfied. Clinical evaluations for a few

 v

patients reveal that the implemented medical infrared system can be used for

biomedical applications.

Keywords : Medical Infrared Imaging, Thermography.

 vi

ÖZ

KIZILÖTESİ KAMERA İLE GERÇEK ZAMANLI
MEDİKAL GÖRÜNTÜ İŞLEME

Kızılöz, Cemil

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nevzat G. Gençer

Aralık 2005, 95 Sayfa

Bu tez, medikal amaçlı kullanılabilen bir kızılötesi görüntüleme sistemi çalışmasıdır.

Termograf olarak kullanılabilecek bir kızılötesi kameranın tasarımı üzerine

çalışmalar yapılmıştır. Bir arayüz programı da tasarlanarak sistemin çalışması kontrol

edilmiştir.

Bu tez çerçevesinde, sistem Çok Yüksek Hızlı Entegre Devre Donanım Tanımlama

Dili (VHDL) kullanılarak Alan Programlanabilir Kapı Dizinleri (FPGA) üzerinde

geliştirilmiştir. Dedektörlerin eşdeğer olmama problemi iki noktalı düzeltme

algoritması kullanılarak çözümlenmiştir. Bir başka düzeltme algoritması ile gerçek

değerli sıcaklık ölçümlerinin yapılabilmesi sağlanmıştır. Gerçek zamanlı dağılım

eşleme algoritması ve gerçek zamanlı katlama operasyonu da sistem üzerinde

gerçekleştirilerek çeşitli filtreleme uygulamaları yapılmıştır. Bu algoritmaların test ve

simülasyonları hesaplanan değerlerle karşılaştırılarak gerçekleştirilmiştir.

Kullanıcının denek üzerinde nokta sıcaklık ölçümü yapabilmesi ve uygulanacak filtre

türünü seçebilmesi için bir arayüz programı tasarlanmıştır. Eski çalışmalar, 500 °mK

hassasiyetinde kameraların medikal amaçla kullanmak için yeterli olduğunu

 vii

göstermektedir. Sistem kalibrasyonu yapıldıktan sonra, karacisim ile gerçekleştilen

testler ile sistemin medikal amaçlı kullanılabilecek kadar hassas olduğu görülmüştür.

Birkaç hasta üzerinde gerçekleştirilen klinik çalışmalar ile sistemin medikal amaçlı

olarak kullanılabileceği gösterilmiştir.

Anahtar Kelimeler : Medikal Kızılötesi Görüntüleme, Termografi.

 viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Dr. Nevzat G.

Gençer for his encouragement, valuable comments and continued support throughout

this study.

I am also thankful to Dr. İpek Zıraman for her contribution to the study through the

clinical applications.

Special thanks to ASELSAN Inc. Microelectronics, Guidance and Electro-Optics

division for providing technical support and laboratory environment in which we

could develop our design.

I am also thankful to all my friends in ASELSAN and METU who have helped me

throughout this thesis.

Finally, I would like to thank my family for their patience and moral support.

 ix

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ... vi

ACKNOWLEDGEMENTS.. viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xii

TABLES... xii

LIST OF FIGURES .. xiii

FIGURES .. xiii

CHAPTERS...1

1 INTRODUCTION...1

1.1 Overview ..1

1.2 Infrared Basics ...1

1.2.1. Infrared and Dedector Physics...2

1.2.2 Thermographic Evaluations...4

1.2.3 Direct Infrared Imaging...6

1.2.4 Tau Imaging ..7

1.2.5 Dynamic Area Thermography ...8

1.3 FPGA Structure...9

1.4 Aims ..11

1.5 Organization of the Thesis..12

2 NON-UNIFORMITY CORRECTION and IMAGE PROCESSING........13

2.1 Non-uniformity Correction ..13

 x

2.2 Image Processing...15

2.2.1 Histogram Equalization...16

3 FILTERING ..20

3.1 Introduction ...20

3.2 Structure ..21

3.2.1 The RS232 Communication Block..22

3.2.2 The FIFO Controller Block ...23

3.2.3 Convolution Block ..24

3.3 Implementation ...26

3.3.1 The Impulse Response...26

3.3.2 Laplacian Filter ...27

3.3.3 The LOG Filter..29

3.3.4 The Sobel Filter...30

3.3.5 The Prewitt Filter ..32

3.4 Simulations...33

4 TEMPERATURE MEASUREMENT...38

4.1 Introduction ...38

4.2 Formulation ...38

4.3 Temperature Calibration and Data Collection ..40

4.4 Test of Equipment ...41

4.5 Structure ..44

4.5.1 RS232 Communication Block ...46

4.5.2 Mouse Implementation..46

4.5.3 Temperature-Measuring Block..47

5 CLINICAL APPLICATIONS ...48

5.1 Introduction ...48

5.2 Case I ..48

5.3 Case 2..51

5.4 Case 3..52

5.5 Case 4..53

5.3 Handicaps of the System...54

6 CONCLUSION AND FUTURE WORK ..55

REFERENCES..57

 xi

APPENDIX-A VHDL Code for Filtering Block...60

APPENDIX B FPGA Suppliers ...87

APPENDIX C Communication Block VHDL Codes...88

 xii

LIST OF TABLES

TABLES

Table 1-1 IR Thermography Applications ... 5

Table 3-1 Impulse Response Filter Coefficients .. 26

Table 3-2 Laplacian Filter Coefficients ... 28

Table 3-3 LOG Filter Coefficients ... 29

Table 3-4 Sobel Filter Coefficients .. 31

Table 3-5 Prewitt Filter Coefficients ... 32

Table 3-6 Coefficients.. 34

Table 3-7 Inputs and Outputs of Convolution ... 35

Table 4-1 Measured Temperatures... 43

 xiii

LIST OF FIGURES

FIGURES

Figure 1-1 Block diagram of basic infrared imaging system 2

Figure 1-2 Atmospheric Transmittance ... 3

Figure 1-3 IO Blocks and Logic Resources in a FPGA Structure.............................. 10

Figure 1-4 Configurable Logic Block Structure in a FPGA with Three Function

Generators Eleven Multiplexers and Two Flip Flops .. 11

Figure 2-1 Raw Detector Data ... 13

Figure 2-2 Normalized Image .. 15

Figure 2-3 Low Contrast Detector Data... 16

Figure 2-4 Low Contrast Detector Data Histogram ... 17

Figure 2-5 Histogram Equalized Image ... 17

Figure 2-6 The Histogram of the Equalized Image.. 18

Figure 2-7 Histogram Equalization Mapping Function ... 18

Figure 2-8 FPGA Structure for the Histogram Equalization Algorithm.................... 19

Figure 3-1 The User Interface Program ... 21

Figure 3-2 Filtering Structure... 22

Figure 3-3 Communication Block Structure .. 23

Figure 3-4 FIFO Implementation Convolution Block.. 25

Figure 3-5 Input of the Impulse Response Filter.. 27

Figure 3-6 Output of the Impulse Response Filter Same as Input 27

Figure 3-7 Input of the Laplacian Filter ... 28

Figure 3-8 Output of the Laplacian Filter Showing the Edges at the Input Image..... 29

Figure 3-9 Input of the LOG Filter... 30

Figure 3-10 Output of the LOG Filter Showing the Edges at the Input Image 30

Figure 3-11 Input image of the Sobel Filter... 31

 xiv

Figure 3-12 Output image of the Sobel Filter Showing the Edges at the Input Image

.. 32

Figure 3-13 Input image of the Prewitt Filter .. 33

Figure 3-14 Output Image After the Prewitt Filter Showing the Edges at the Input

Image.. 33

Figure 3-15 Line Delays and Coefficient Signs for Convolution Operation 36

Figure 3-16 Coefficients and Convolution Operation Input and Output Signals....... 37

Figure 4-1 Calibration Data Average ... 40

Figure 4-2 Temperature Difference of 200 mK Between Two Black Bodies............ 42

Figure 4-3 Temperature Difference of 500 mK Between Two Black Bodies............ 42

Figure 4-4 Measured Temperature... 44

Figure 4-5 Temperature Measurement Structure Block Diagram.............................. 45

Figure 5-1 Right Wrist Temperature Measurement ... 49

Figure 5-2 Left Wrist Temperature Measurement ... 49

Figure 5-3 Right Leg Temperature Measurement.. 50

Figure 5-4 Left Leg Temperature Measurement .. 50

Figure 5-5 Temperature Measurement of the Surgery Area 51

Figure 5-6 Temperature Measurement of the Non-Surgery Area 51

Figure 5-7 Temperature of the Breast with Cancer Risk ... 52

Figure 5-8 Temperature of the Normal Breast ... 52

Figure 5-9 Normal Arm Temperature .. 53

Figure 5-10 Fastened Arm Temperature .. 53

Figure 5-11 Released Arm Temperature.. 54

 1

CHAPTERS

1 INTRODUCTION

1.1 Overview

Any object whose temperature is above –273C (0˚K) emits infrared radiation which

can not be sensed by human eye [24], [25]. To convert thermal infrared radiation into

visible light, infrared (IR) or thermal imaging systems are employed. A pathological

tissue has a metabolic rate which is different from the other parts of the body,

yielding temperature differences of about 500 mK on the body surface [22]. Recently

developed cooled infrared systems can detect temperature differences of 10mK.

Uncooled infrared cameras are capable of measuring temperature differences of

100˚mK. Thus, infrared imaging systems may find a use in biomedicine. Depending

on the application, it is possible to prefer uncooled systems due to their lower cost.

In this study, the performance tests of an uncooled infrared imaging system are

investigated. The system is also assessed by exploring clinical applications in the

Radiology department of the Numune hospital in Ankara.

1.2 Infrared Basics

Figure 1-1 is the block diagram of a basic thermal imaging system. The IR Imager

part is the optical system that collects the infrared radiation and sends to the IR

detector. The IR detector part converts the radiated infrared power into electrical

signals. These electrical signals must be processed before it is monitored. Front-end

electronics is the interface between the processing and the detector parts. This part is

responsible for producing the analog signals of the detector and digitizing the

detector output. The system calibration and digital signal processing algorithms (to

 INTRODUCTION

 CHAPTER 1

 2

enhance the details in the image) are performed at the digital signal processing part.

The output of that part is sent to a standard monitor.

Figure 1-1 Block diagram of basic infrared imaging system

1.2.1. Infrared and Dedector Physics

Infrared radiation is radiated electromagnetic energy. It is same as visible light or

radio waves. However, its oscillation frequency is different than the other wave

types. IR extends from 0.7 µm to 1000 µm range of the electromagnetic spectrum.

However, the whole spectrum cannot be used for IR imaging due to the transmission

limits of the atmosphere. Atmosphere absorbs the radiated power at some regions of

the spectrum. IR detectors are designed in order to operate where the transmission is

maximum. The 0.7-1.1 µm range (NIR –Near Infrared), the 1.5-1.8 and 2.0-2.4 µm

range (SWIR - Short Wavelength Infrared), the 3-5 µ range (MWIR - Medium

Wavelength Infrared) and the 8-14 µm range (LWIR - Long Wavelength Infrared) are

the regions where the transmission is maximum and detectors are designed to

operate. Figure 1-2 shows the atmospheric transmittance of these regions [26].

Infrared detectors can be divided into two groups according to their operating

conditions, namely, cooled and uncooled infrared detectors.

Digital
Signal

Processing

Front-End

Electronics

IR

Detector

IR

Imager

Standard

Monitor
NTSC

PAL

IR Energy

 3

Figure 1-2 Atmospheric Transmittance

Cooled infrared detectors typically operate at a temperature of 70 K, 80 K or 110 K.

Operating temperature is determined by the detector material. In cooled type

detectors, the incoming radiation is absorbed by the detector to produce electron and

hole pairs which leads to charge on the detector. However, without cooling, electron

hole pair production due to own temperature of the detector material is very high.

Hence a cooling mechanism is needed. Indium antimonide, indium arsenide,

HgCdTe, lead sulfide, lead selenide are some of the metarials that are used as cooled

detector materials [26].

Uncooled infrared detectors operate at room temperature. But in most cases a thermal

stabilization process at room temperature is required. The radiated infrared power

leads to some electrical changes at detector material. In case of microbolometers, the

resistance of the material changes when exposed to infrared radiation. This change is

due to the increase at the temperature of the detector. Vanadium oxide and

amorphous silicon are the materials that are mostly used for uncooled infrared

detector production [26].

[26]

 4

Cooled detector are more sensitive detectors. However, they need cooling

mechanisms, they are bigger and more expensive with respect to uncooled detectors.

On the other hand uncooled detectors are less sensitive but, they are cheaper smaller

and can operate at room temperature.

1.2.2 Thermographic Evaluations

Infrared imaging systems provide information about the surface temperature of an

object. An pathology in a living tissue makes metabolic rate changes at that part of

the body, for example, the number of blood vessels is increased to support the growth

of a tumor. This may increase the surface temperature and can be detected by an

infrared system. Advantage of an IR imaging system is that it imposes no radiation

on the object. It detects the naturally emitted radiation. So it is safe to use on any

person, including applications on pregnant women.

A list of the illnesses that IR imaging can be used is given in Table 1-1 [23].

 5

Table 1-1 IR Thermography Applications

A Thermographic Evaluation is recommended
for any of the following indications:

Altered Biokinetics
Arteriosclerosis

Brachial Plexus Injury
Biomechanical Impropriety

Breast Disease
Bursitis

Carpal Tunnel Syndrome
Causalgia

Compartment Syndromes
Cord Pain/Injury

Deep Vein Thromosis
Disc Disease

Disc Syndromes
Dystrophy

External Carotid Insufficiency
Facet Syndromes

Grafts
Headache Evaluation

Herniated Disc
Herniated Nucleus Pulposis

Hyperaesthesia
Hyperextension Injury
Hyperflexion Injury

Inflammatory Disease
Internal Carotid Insufficiency
Lumbosacral Plexus Injury

Ligament Tear
Lower Motor Neuron Disease

Malingering
Median Nerve Neuropathy

Morton's Neuroma
Myofascial Irritation

Nerve Impingement
Nerve Pressure

Nerve Root Irritation
Nerve Stretch Injury

Nerve Trauma
Neuropathy

Neurovascular Compression
Neuralgia
Neuritis

Neuropraxia
Neoplasia

(melanoma, squamous cell, basal)
Nutritional Disease

Peripheral Nerve Injury
Peripheral Axon Disease

Raynaud’s
Referred Pain Syndrome

Reflex Sympathetic Dystrophy
Ruptured Disc

Somatization Disorders
Soft Tissue Injury
Sprain/Strain

Stroke Screening
Synovitis

Sensory Loss
Sensory Nerve Abnormality
Superficial Vascular Disease

Skin Abnormalities
Thoracic Outlet Syndrome

Temporal Arteritis
Trigeminal Neuralgia

Trigger Points

[23]

 6

The clinical evaluations are mostly focused on the diagnosis of breast cancer, pain

level recognition, applications during coronary bypass surgery, detecting diabetic

foot, imaging burn trauma, nerve pressure and nerve trauma [23].

First studies on medical IR Imaging started on late 60’s and early 70’s. Since the

technology was not developed enough, and the staff used for evaluations were not

qualified, earlier studies on the biomedical applications of Infrared Imaging were not

successful. After 70’s, for about a decade, there were no studies on medical IR

imaging [1], [2]. Investigations on IR imaging continued for military purposes.

However, in the last 5-10 years, due to recent advances in the detector technologies,

investigators started to work for medical IR applications. It was observed that it is

possible to get results comparable to mammography [3].

Currently, there are three main approaches used in the diagnosis of illnesses: Direct

Infrared Imaging, Tau Imaging and Dynamic Area Thermography. Apart from them,

there are also methods that utilize the symmetry in the human body (like subtracting

left half of the body from the right half [8], [11]). In the next sections, these

approaches will be introduced.

1.2.3 Direct Infrared Imaging

Direct Infrared Imaging is the simplest test method used by medical infrared imaging

applications. An IR camera is placed in front of the subject and direct temperature

outcomes are investigated. The outcomes are 1) the average temperature differences,

2) hot spots, and 3) asymmetries.

For the average temperature difference analysis, the body of the patient is divided

into four segments. The average temperatures of these parts are investigated. It was

shown that normal breast quadrants has a temperature difference ranging from

0.14°C to 0.29°C [22]. It was also claimed that 0.5°C is the best threshold for

 7

detecting cancer in tissues. Differences of 1°C represent the high risk category for the

breast cancer. It was claimed that choosing the threshold as 0.5°C results in an

increase in false positives [16]. A threshold value of 1°C, however, eliminates the

false positives.

Another abnormality used for diagnosis is the hot spots in the image. Hot spots are

the high local temperature differences in the image. Local changes of 1°C up to 2°C

are considered as hot spots. It was shown that when the results of infrared system are

combined with mammography [14], the sensitivity rate of the imaging system

increases from 85 % to 95 % [7], [17].

Temperature map of human body is almost symmetric. Asymmetric thermographs are

considered as abnormal. Temperature differences of 0.5°C up to 1°C are the

temperature values that lead to asymmetric images [7], [14].

At some studies, the patient is first taken to a cold environment. The abnormalities

in the temperature distribution after that cold period are also not desired.

In the Direct Infrared Imaging approach, output of the imaging system is investigated

considering an a priori determined threshold value. This threshold value varies

among different studies. Most commonly used threshold value is 0.5°C. If

temperature of some part of tissue is higher then the threshold value, it is considered

as an illness sign. Asymmetries and hot spots are also two other subjects that direct

infrared imaging method takes into account.

1.2.4 Tau Imaging

Tau imaging method discusses the heating responses of body by taking subject

temperature measurements at cold and hot environments. Usually, the object is

placed at a cold environment (actually 10°C -15°C) for a specific period. Thereafter,

the temperature is increased slowly. Images, which are usually captured with a period

 8

of 30 seconds, are stored. The stored images are subtracted from each other and

heating response of the subject is discussed [13]. Like Direct Imaging method,

temperature differences, hot spots and asymmetries are considered as abnormal

findings. It was claimed that, 80% true positive rate can be achieved by this imaging

approach [13]. It was also reported that, in some patients, although abnormalities

were not recognized by the Direct Infrared Imaging approach, they can be detected by

Tau imaging [9]. Hence, Tau imaging method increases the true positive rate. When

heating responses of body is discussed, better results were obtained [18], [21].

1.2.5 Dynamic Area Thermography

Dynamic Area Thermography (DAT) analysis gives the best result among the three

approaches, but it needs more sensitive and fast processing cameras.

NO is a substance that is related with the development of the cancerous tissue.. It

causes heat changes on the body surface. The frequency of these changes gives

information about the existence of NO [4]. It was reported that “Independent

observations had shown that skin temperature is modulated in a periodic manner, and

this modulation is a function of neural modulation of blood flow. As NO functions as

a chemical messenger in neuronal modulation, it is expected that this modulation will

be altered in the presence of cancer-associated extravascular NO. The modulation of

skin temperature can be monitored and quantitatively assessed by DAT.“ [4]. This

method requires the Fast Fourier Transform of the time sequence of each pixel. To

ensure correct temperature measurement for each pixel, 1000 images must be taken

in 10 seconds. The Fourier Transform of the images are analyzed. This transform

gives information about the frequency change of each pixel, as NO value for each

pixel is reached [4]. Using this approach, the abnormalities in the frequency are

investigated. Up to 90% sensitivity, 95% specificity values can be reached [5] [6].

 9

1.3 FPGA Structure

Field programmable gate array (FPGA) is a general purpose integrated circuit.

Application specific integrated circuit (ASIC) performs similar functions but it can

not be reprogrammed. FPGA can be reprogrammed after it has been deployed into a

system. It is programmed by an FPGA system designer.

Programming is performed by downloading configuration data (bit stream) into static

on-chip random-access memory. The configuration data is the product of compilers.

These compilers translate the high level abstractions produced by the FPGA system

designer into a something equivalent, but low level, and executable code. There are

many compilation tools in the industry. Most popular of them are Precision,

Leonardo Spectrum and XST .

FPGAs are high performance signal processing devices. They provide to construct

highly parallel architectures for processing signal. FPGA performance is originated

from this ability. Microprocessor or DSP processor performance is limited to the

clock rate at which the processor can run. However, the FPGA performance is

limited to the amount of parallelism employed to implement the algorithms of a

signal processing system. FPGAs can now operate with clock frequencies of up to

500 MHz. Although this may seem to be slow, FPGAs operate with parallelism.

FPGA and DSP represent two very different approaches to signal processing. Each

one is good for different tasks. There are many high-sampling-rate applications that

FPGA can do easily, while DSP can not. Equally, there are many complex software

problems that FPGA cannot address. As a result, an ideal system often splits the

work between FPGAs and DSPs.

FPGAs are implemented with a regular, flexible programmable architecture of

configurable logic blocks (CLBs), interconnected by versatile routing resources

(routing channels), and surrounded by programmable input/output blocks (IOBs), as

seen in Figure 1-3. This implementation is a basic structure.

 10

Most of the logic in FPGA is implemented by configurable logic blocks. Internal

structure of CLBs changes with FPGA family and FPGA manufacturer. Basic

diagram of CLB for XC4000 family Xilinx FPGA that is used in this thesis is shown

in Figure 1-4. There are two 4-input function generators (Function generator is called

as look-up table (LUT) in some documents.) which are labeled as F and G in Figure

1-4 The third function generator (H) is also provided. H function generator has three

inputs as shown in Figure 1-4

Each CLB contains two storage elements (d type flip-flops (ff)) that can be used to

store function generator outputs and direct inputs coming from outside the CLB as

shown in Figure 1-4. Well known FPGA producers are listed in Appendix B.

Figure 1-3 IO Blocks and Logic Resources in a FPGA Structure

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

CLB

CLB

CLB

CLB
Configurable

Logic Block

Routing

Resources

Input /Output

Block

 11

Figure 1-4 Configurable Logic Block Structure in a FPGA with Three Function

Generators Eleven Multiplexers and Two Flip Flops

1.4 Aims

During this thesis study, an uncooled military infrared camera is developed in

Aselsan AŞ. The author of this thesis study has taken part in this development period

and tested the systems’s specifications for biomedical applications. Specific goals of

this thesis study are listed below:

 To implement a two-point calibration using VHDL,

 To design data capture communication blocks for the calibration,

 To implement a real-time offset correction algorithm,

 To calibrate the system for absolute temperature measurements,

 To implement a real-time Histogram Equalization algorithm using VHDL,

 To implement a convolution block to apply various filters to the image.

Q

Q
SET

C LR

D

x3

x4

fx2

x1

F

Function

G enerator

(LU T)

x3

x4

gx2

x1

G

Function

G enerator
(LU T)

x3

hx2

x1
H

Function

G enerator
(LUT)

y

x2

x1

M U X

y

x2

x1

M U X
x3

x4

yx2

x1

M UX

y

x2

x1

M UX

x3

x4

yx2

x1

M U X

y

x2

x1

M U X

y

x2

x1

M U X

Q

Q
SET

C LR

D

y

x2

x1

MU X

y

x 2

x 1

M UX

y

x2

x1

M UX

y

x2

x1

M U X

FF

FF

M
U

X

M
U

X

M
U

X

M

U
X

M

U
X

M

U
X

M
U

X

M

U

X

M

U
X

M

U
X

M

U

X

 12

 To assess the performance of the resulting system for biomedical applications,

 To explore possible biomedical applications in a clinical environment.

1.5 Organization of the Thesis

This thesis consists of six chapters. Chapter I provides the background information

on infrared imaging systems, FPGA structure and the current status of the medical

infrared imaging. Chapter II explains non-uniformity correction and image

processing applications. Chapter III focuses on the filtering structure. And also shows

functional and timing simulations. Chapter IV describes the approaches adapted in

order to measure true temperature. Chapter V deals with the clinical applications and

shows experimental results . Finally, chapter six concludes the overall work and

outlines the directions of future work.

 13

CHAPTER 2

2 NON-UNIFORMITY CORRECTION and IMAGE

PROCESSING

2.1 Non-uniformity Correction

Output of the focal plane array detectors are not uniform. Although each pixel of the

array behaves in a similar way, the output of detector without non-uniformity

correction is not meaningful. When the temperature of the scene increased, the output

of each detector pixel also increases. However, the increase at each pixel is not same

due to pixel size and noise effects. Figure 2-1 shows the raw output of the detector

used in this study.. This image reveals severe non-uniformity in the response of the

detectors. (In addition to horizontal and vertical stripe like artifacts due to production

procedure of the detector.)

Figure 2-1 Raw Detector Data

NON-UNIFORMITY CORRECTION and

IMAGE PROCESSING

50 100 150 200 250 300

50

100

150

200

 14

Thus, the output of each pixel has to be normalized to have same response for an

uniform radiation. This is achieved by a correction algorithm. In order to perform

non-uniformity correction, the detector data when exposed to two different

temperature scenes are measured and gain and offset coefficients for any pixel are

calculated.

Non-uniformity correction procedure is as follows.

• Camera is placed in front of a uniform scene at a low temperature value T1.

Temperature values for any pixel of the camera Tp1(i,j) are measured.

• Temperature of the uniform surface is increased to a higher value (T2) and

Temperature values for any pixel Tp2(i,j) are recorded..

• Gain Gp(i,j) and offset Op(i,j) values of any pixel are calculated.

The temperature of the corrected pixel Cp(i,j) is obtained as follows:

Cp(i,j)= Tp(i,j)*Gp(i,j)+Op(i,j),

Non-uniformity correction is performed so that the corrected pixel values, when

exposed to a radiation from the scene of T1, are mapped to the average of the pixels

at temperature T1. The corrected pixel, when exposed to a radiation of the scene of

T2, are mapped to the average of the pixels at temperature T2. The relevant

expressions related to these operations are given below,

),(),(*),(1
*

),(1
,

jiOpjiGpjiTp
ji

jiTp
ji

+=

∑

),(),(*),(2
*

),(2
,

jiOpjiGpjiTp
ji

jiTp
ji

+=

∑

Thus we obtain,

 15

input data

50 100 150 200 250 300

50

100

150

200

Gp(i,j)=
),(2),(1

*

),(2

*

),(1
,

jiTpjiTp

ji

jiTp

ji

jiTp
jiij

−

−

∑∑

Op(i,j)=),(*),(1
*

),(1

jiGpjiTp
ji

jiTp
ij

−

∑

Normalized form of the image in Figure 2.1 is shown at Figure 2-2.

Figure 2-2 Normalized Image

2.2 Image Processing

The normalized output of the detector is a low-contrast image. This image has to be

processed in order to show the details in the object. This low contrast image is due to

the high precision in the analog-to-digital (AD) converters. For example, a 12 bit AD

converter has 4096 digital output levels. When detector data is sampled, it has 400 or

500 digital levels. However, since it is scaled over 4096 levels, the image is low-

 16

o r i g i n a l d a t a

contrast and the details on the image cannot be observed (although the image carries

this information). In fact, the human eye is sensitive to about 200 levels. Thus, it is

sufficient to display images using 8 bits. In this study, details on the image are

enhanced by transferring the low-contrast 12 bit image to 255 level (8 bit) images.

The Histogram Equalization technique can be applied to solve this problem. Details

of that algorithm are explained in the following sections.

2.2.1 Histogram Equalization

Histogram equalization is an algorithm to enhance the details on the image. For low-

contrast images, the algorithm starts by analyzing the histogram of the image which

shows the number of pixels at each gray level. Figure 2-3 shows a sample low-

contrast image. Figure 2-4 shows the histogram of this data.

Figure 2-3 Low Contrast Detector Data

The algorithm first calculates the histogram of the low-contrast image, and finds an

inverse function which flats the histogram of the output image. According to the

mapping function, lowest histogram value is mapped to “0” digital level and highest

histogram value is mapped to “255” digital level. The levels between lowest and

highest values are mapped with respect to the histogram value. If the histogram value

 17

1 0 s e g m e n t e q u a l m o d e c ik i s i

is higher they are mapped to a wider area, as there are lots of information in this area.

If the histogram value is lower, the image data is mapped to a smaller area, as there is

less information in this area.

Figure 2-4 Low Contrast Detector Data Histogram

Figure 2-5 Histogram Equalized Image

Figure 2-5 shows the output image after histogram equalization. Figure 2-6shows the

output histogram and Figure 2-7 shows the mapping function. The timing simulations

of the algorithm and the camera output (Figure 2-5) have the same values pixel by

pixel.

 18

Figure 2-6 The Histogram of the Equalized Image

Figure 2-7 Histogram Equalization Mapping Function

Figure 2-8 shows the FPGA architecture designed to implement the Histogram

Equalization algorithm. Top level block consists of 4 blocks. Statistics block receives

 19

IO P

STA TISTIC S

C O EFFIC IEN T

FIN D ER
G A IN

FIN DER

C O M PRESSIO N

D PR A M

1kx18
DPR A M

4kx18

IM AGE DATA

IM AGE DATA VALID

VBLAN K

LINE SAM P LING R ATE

PIXEL SAM PLIN G RATE

EN ABLE CO M PRESSION

DATA IN

ADDR

EN

W E

CLK

D ATA OU T

ENABLE G AIN FIND ER

O PTIM IZED D ATA

VBLAN K SY NC

DATA VA LID SYNC

the image data and calculates the histogram of the image and stores it to a

dpram4kx18. The coefficient-finder and gain-finder blocks calculate the inverse

mapping function using the saved histogram information, and write the coefficients

to a dpram1kx18. Compression block maps the input image to an 8-bit output image

according to the mapping coefficients which are present at dpram1kx18.

Figure 2-8 FPGA Structure for the Histogram Equalization Algorithm

 20

CHAPTER 3

3 FILTERING

3.1 Introduction

Convolution is the basics for the image processing applications. Edge finding,

smoothing, or some other applications can be implemented by FIR filters. Thus a

convolution operation to apply FIR filter is implemented through this thesis work.

Convolution operation is performed by scanning a finite size and shape window (FIR

filter) across the image. The output pixel is the weighed sum of the pixels on the

scanning window. The applied filter in this thesis work is a 5x5 filter. A user

interface program is designed to send the filter coefficients to the system. The filter

coefficients can be updated in real-time by the developed interface program. A scene

of the interface program is shown in Figure 3-1. Using this interface, the type of the

filter can be chosen through a combo-box. The filtering operation is applied to the

image produced by the system. In the rest of this chapter, first the convolution block

design is explained in the structure part. The output and the simulation results are

then explained in the simulation part.

 FILTERING

 21

Figure 3-1 The User Interface Program

3.2 Structure

Convolution operation is performed by the hardware implemented in the FPGA by

the VHDL. The filter coefficients (the 5x5 matrix) are sent to the system by the

interface program. The communication is performed through the RS232 protocol at

115200 baud rate. The convolution operation hardware can be divided to 3 main

blocks. First part is the communication block, which performs the transmission of the

coefficients to the coefficient RAM. Second part is the FIFO implementation part

which creates the necessary delay at the incoming video stream. Third block takes

care of the convolution process. Figure 3-2 is the block diagram of the filtering

hardware.

 22

Figure 3-2 Filtering Structure

3.2.1 The RS232 Communication Block

The RS232 communication block receives the commands sent from the interface

program. It consists of three blocks, an 8-bit asynchronous receiver block, an 8-bit

asynchronous transmitter block and a controller block. The implemented RS232

protocol is as follows: First the start and command bytes are sent to the system. Then

the parameters of the commands with a checksum are sent to the hardware. The

receiver block decodes the incoming bytes and sends them to the controller block.

The controller block decodes the command, checks if it is a valid command or not,

and enables the transmitter block to send whether the command received is a valid

message or not. The filter coefficients are received by this communication block. The

received filter coefficients are stored at the where the image-processing coefficients

are stored. That RAM is not accessible by communication block for all the times.

The image processing coefficients are calculated for each field, at the vertical

blanking time (time interval between the two fields). The controller block cannot

reach to the coefficient RAM while the image-processing coefficients are being

calculated. Controller block checks the status of the RAM and stores the filter

coefficients after the image processing coefficients are calculated. When coefficients

are written to the RAM, the controller block enables the transmitter block to send the

Comm

Block Coefficient

FIFO
Other Blocks

Conv Block

 23

acknowledge signal. The RS 232 transmitter and receiver blocks’ VHDL codes are

presented at Appendix C. Figure 3-3 explains the communication block.

Figure 3-3 Communication Block Structure

3.2.2 The FIFO Controller Block

In order to implement a 5x5 filter, 5-line delay is needed. Figure 3-15 shows 5 line

delayed structure signals. Five FIFOs are implemented using RAMs. According to

video control signals, the incoming video signal is written to FIFOS. For this

purpose, 5 FIFO structures are cascaded. The FIFO controller block is responsible for

writing the image stream and read the image data at correct time instants. The output

of each FIFO introduces one line delay, which enables us to implement the filter. For

each FIFO structure, read operation is one clock before the write operation (actually

write operation is one clock delayed), in order to read the correct data and then write

new data to the same location. This structure helps to use all locations of the RAM

efficiently.

Transmitter Receiver Coefficient

Check

message

Write

Coeff

Check

Ram Status

Send

Acknowledg

e

 24

3.2.3 Convolution Block

The ordinary convolution equation is

 c[m,n] = a[m,n]⊗ h[m,n]

 = [] []∑∑
−

=

−

=

−−
1

0

1

0

,,
J

j

K

k

knjmakjh = [] []kjaknjmh
J

j

K

k

,,
1

0

1

0
∑∑

−

=

−

=

−−

which means that the filter window is scanning the image. Scanning is obtained by

the FIFO structure. Control timings are arranged so that the last five output of each

FIFO is the scanning row of the image. At each rising edge of the clock signal, five

pixels disappear and five new pixels appear (one pixel from each FIFO representing

each line data), as five lines are stored at five FIFOs. So the scanning operation is

performed. Convolution block receives the delayed line information, reads the

coefficients from the coefficient RAM and performs the convolution operation. The

coefficients are read at the correct time instants (at start of each field) when the RAM

is not used for image processing purposes. Each line is also delayed in order to have

5 pixels at the same time from each line. Each coefficient is multiplied with the

corresponding pixel value. In order to have a fast operation output, sum of each line

is first calculated. And then the sum of lines are added together. This operation

shortens the delay due to the reduced addition operation. If we need faster operation

we should add two products at each time. This would perform a faster operation, but

meantime it would increase the time needed to have the first pixel output. In our case,

first output is generated at the 8th clock rising edge, second and third pixel values are

generated at the following clock rising edges (9th and 10th clock rising edges). This

can be seen at the simulation part (Table 3-7). The hardware structure of the

convolution block is explained in Figure 3-4. The VHDL code for these blocks are

presented at Appendix A.

 25

 ……….

 ….

Figure 3-4 FIFO Implementation Convolution Block

Line 5
FIFO 4

Line 4

Line 4
FIFO 3

Line 3

Line 3
FIFO 2

Line 2

Line 2
FIFO 1

Line 1

Line 2 c

l

k

A

Line 3 c

l

k

F

Line 4 c

l

k

K

Line 5 c

l

k

P

c

l

k

c

l

k

c

l

k

B C D

c

l

k

c

l

k

c

l

k

G H I

c

l

k

c

l

k

c

l

k

L M N

c

l

k

c

l

k

c

l

k

R S T

c

l

k

E

c

l

k

J

c

l

k

O

c

l

k

U

S_1_1

A C_1_1 B C_1_2 U C_5_5

S_1_1

X X

S_5_5 S_1_2

X

S_1_2 S_1_3 S_1_4 S_1_5 S_5_1 S_5_2 S_5_3 S_5_4 S_5_5

S_1 S_2

+ +

out

 26

3.3 Implementation

Several filtering applications can be performed by the system. The user interface

program can choose the filter type through a combo box. Corresponding filter

coefficients are sent to the camera. The output image, which is produced after

convolution is sent to the display. As always, in order to have the original image an

impulse response filter is applied. In order to show the edge effects, the Laplacian,

LOG, Sobel, and the Prewitt operators can be selected. Apart from these operators,

any filter can be applied by user interface program as the filter coefficients can be

modified manually.

3.3.1 The Impulse Response

The impulse response of the system is the original video signal. The default filter

coefficients are set to the impulse response coefficients and the original image is

introduced. The impulse response filter coefficients are seen in Table 3-1.

Table 3-1 Impulse Response Filter Coefficients

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

The input and output image in case of the impulse response filter is shown in Figure

3-5 and Figure 3-6.

 27

Figure 3-5 Input of the Impulse Response Filter

Figure 3-6 Output of the Impulse Response Filter Same as Input

3.3.2 Laplacian Filter

The Laplacian operator is a high-pass operator. It is useful to examine the edges in

the image. Laplacian filter coefficients can be seen in Table 3-2.

 28

Table 3-2 Laplacian Filter Coefficients

0,01 0,01 0,01 0,01 0,01

0,01 0,1667 0,6667 0,1667 0,01

0,01 0,1667 -3 0,1667 0,01

0,01 0,1667 0,6667 0,1667 0,01

0,01 0,01 0,01 0,01 0,01

The input and output image in case of a Laplacian filter is shown at Figure 3-7 and

Figure 3-8.

Figure 3-7 Input of the Laplacian Filter

 29

Figure 3-8 Output of the Laplacian Filter Showing the Edges at the Input Image

3.3.3 The LOG Filter

The LOG operator consists of two operators. First a Gaussian operation (low pass) is

performed and then a laplacian (high pass) operation is applied. The Gaussian

operation reduces the noise in the image as it is a low-pass operation and the

Laplacian operation enhances the edge structures in image. The LOG filter

coefficients are shown in Table 3-3. The input and output image for a LOG filter is

shown in Figure 3-9 and Figure 3-10.

Table 3-3 LOG Filter Coefficients

0,0448 0,0468 00,0564 0,0468 0,0448

0,0468 0,3167 0,7146 0,3167 0,0468

0,0564 0,7146 -4,9048 0,7146 0,0564

0,0468 0,3167 0,7146 0,3167 0,0468

0,0448 0,0468 00,0564 0,0468 0,0448

 30

Figure 3-9 Input of the LOG Filter

Figure 3-10 Output of the LOG Filter Showing the Edges at the Input Image

3.3.4 The Sobel Filter

The Sobel operator is a high-pass filter operator. It can show the edges in the image.

The Sobel filter coefficients are shown in Table 3-4.

 31

Table 3-4 Sobel Filter Coefficients

0 0 0 0 0

0 1 0 -1 0

0 2 0 -2 0

0 1 0 -1 0

0 0 0 0 0

The input and output images of a Sobel operator is shown at Figure 3-11 and Figure

3-12.

Figure 3-11 Input image of the Sobel Filter

 32

Figure 3-12 Output image of the Sobel Filter Showing the Edges at the Input Image

3.3.5 The Prewitt Filter

The Prewitt operator is another high-pass operator, it is nearly same with sobel

operator. It is also used to see the edge effects at the image. Prewitt filter coefficients

are shown in Table 3-5. The input and output images for the Prewitt filter is shown at

Figure 3-13 and Figure 3-14.

Table 3-5 Prewitt Filter Coefficients

0 0 0 0 0

0 1 0 -1 0

0 1 0 -1 0

0 1 0 -1 0

0 0 0 0 0

 33

Figure 3-13 Input image of the Prewitt Filter

Figure 3-14 Output Image After the Prewitt Filter Showing the Edges at the Input

Image

3.4 Simulations

Figure 3-15 and Figure 3-16 show the coefficients and the simulation results of the

implementation. All sign signals are ‘0’ apart from coefficient_3_3_sign and

coefficient_5_1_sign, which are ‘1’. Which means that all the multiplication results

will be added, only the multiplication result at the intersection of the third row and

 34

the third column and intersection of the fifth row and the first column will be

subtracted. Figure 3-16 shows the coefficients and the convolution input and output.

The detailed explanation of the operation is presented by Table 3-6 and Table 3-7.

Coefficients are 18 bits. First bit is the sign bit, following four bits are the decimal

part of the number, and the following bits are the rational part of the coefficient.

Table 3-6 shows the simulated coefficients and their rational equivalents.

Table 3-6 Coefficients

coefficient number sign coefficient value rational value

1_1 0 00000000000000000 0

1_2 0 00000000000000000 0

1_3 0 00010000000000000 1

1_4 0 00100000000000000 2

1_5 0 00000000000000000 0

2_1 0 00000000000000000 0

2_2 0 00000000000000000 0

2_3 0 00000000000000000 0

2_4 0 00000000000000000 0

2_5 0 00000000000000000 0

3_1 0 00000000000000000 0

3_2 0 00000000000000000 0

3_3 1 00010000000000000 -1

3_4 0 00000000000000000 0

3_5 0 00000000000000000 0

4_1 0 00000000000000000 0

4_2 0 00000000000000000 0

4_3 0 00000000000000000 0

4_4 0 00000000000000000 0

4_5 0 00000000000000000 0

 35

4_5 0 00000000000000000 0

5_1 1 00000100000000000 -0,25

5_2 0 00000000000000000 0

5_3 0 00000000000000000 0

5_4 0 00000000000000000 0

5_5 0 00000000000000000 0

The above table shows that coefficient_1_3, coefficient_1_4, coefficient_3_3 and

coefficient_5_1 are non-zero. When we consider the values and signs, for the first

output pixel value, two times first lines fourth pixel value will be added, first lines

third pixel value will be added, third lines third pixel value will be subtracted and

one fourth of the fifth lines first pixel value will be subtracted. Table 3-7 shows the

inputs and outputs of the convolution.

Table 3-7 Inputs and Outputs of Convolution

line1 8309 8264 8257 8260 8256 8309 8204 8193 8266 8192 8288 8192

line2 8266 8243 8269 8195 8280 8197 8315 8251 8248 8376 8235 8305

line3 8273 8309 8258 8314 8199 8297 8220 8306 8307 8264 8309 8239

line4 8270 8277 8271 8260 8311 8235 8308 8292 8272 8282 8215 8303

line5 8208 8260 8294 8282 8291 8289 8208 8193 8260 8261 8381 8264

output 14522 14484 14605 14343

Output1=8282*2+8294-8258-8309/4=14522,75

Output2=8291*2+8282-8314-8264/4=14484

Output3=8289*2+8291-8199-8257/4=14605

Output4=8208*2+8289-8297-8260/4=14343

These results are also shown at Figure 3-16. Simulation results show that convolution

block results are successful.

Table 3-6 (cont’d)

 36

Figure 3-15 Line Delays and Coefficient Signs for Convolution Operation

 37

Figure 3-16 Coefficients and Convolution Operation Input and Output Signals

 38

CHAPTER 4

4 TEMPERATURE MEASUREMENT

4.1 Introduction

Infrared imaging is the remote sensing of infrared radiation emitted from objects. The

collected energy is displayed on the screen. The true temperature is possible with

specific detector types. Microbolometers are one of the detectors that can be used to

measure the true temperature. However, some detector types, such as pyroelectrics,

cannot be used to measure true temperature. In this work we have used a

microbolometer that let us to have a DC bias and give a prediction about the absolute

temperature. The radiation emission physics is explained in the Formulation section.

For a true temperature measurement, a calibration process has to be performed for the

system. The graphs and the calibration process is explained in the Temperature

calibration and data collection section. The system blocks implemented to measure

absolute temperatures are explained in the Structure part of this chapter.

4.2 Formulation

Any object whose temperature is above 0 ˚K radiates infrared energy. The amount of

radiated energy is a function of the object's temperature and its relative efficiency of

thermal radiation, namely, its emissivity. The amount of radiated thermal power is

determined by the following equation:

 W = E * B * T4 Watt cm-2 (1)

 TEMPERATURE MEASUREMENT

 39

where W is the spectral radiant exitance (radiation), E is the emissivity, B is the

Stefan Boltzmann Constant (5.67x10-12 Watt cm-2 °K-4), and T is the

Temperature (°K).

Radiated power is proportional to the body's temperature, raised to the 4th power.

The emissivity value is a distinct property for each material and it changes from

object to object. For biomedical applications, human skin emissivity is an important

parameter. The emissivity value of the human skin is nearly 0.98. Hence, in some

papers human skin is called a perfect radiator (The emissivity value of a perfect

radiator is 1.).

In the system designed for this thesis work, the incoming radiation is scaled and

shifted for non-uniformity correction purposes, and also due to input requirements of

the ADC used in the system. For these reasons, the input data is shifted and scaled.

Hence, the above equation has to be modified before calculations, that is

 W’=A1*W+B1 Watt cm-2

due to ADC requirements where A1 and B1 are constants,

W’’=A2*W+B2 Watt cm-2

due to normalization requirements. Here A1,B1 and A2, B2 are constants to be

determined.

Hence, the overall equation is

W’’=A2*(A1*E*B*T4+B1)+B2 Watt cm-2

W’’=A2*A1*E*B*T4+A2*B1+B2 Watt cm-2

As B and E are constant for same kind of objects then

W’’=A3*T4+B3 Watt cm-2 (2)

 40

Thus absolute temperature can be calculated as

T=((W’’-B3)/A3)
1/4 °K (3)

Calculation of A3 and B3 are explained at the Calibration and Data Collection

section.

4.3 Temperature Calibration and Data Collection

To perform a calibration process, a blackbody is used. A blackbody is a system,

whose surface temperature can be adjusted manually. For the manually adjusted

temperature value, the output surface of the blackbody becomes uniform. Using such

a test system, measurements are obtained for temperatures in the range of 19 °C to 50

°C (292 °K to 323 °K). The measurement results, taken from the blackbody system,

are shown at Figure 4-1.

15 20 25 30 35 40 45 50
1600

1800

2000

2200

2400

2600

2800

Figure 4-1 Calibration Data Average

 41

Figure 4-1 is the data taken in order to calculate the coefficients in equation (2).

Equation (2) is a fourth order equation with two unknowns. So, we need two

equations in order to calculate the unknowns. We have chosen 19 °C and 50 °C for

the calculation:

 W’’(19)=1657 and W’’(50)=2634

 W’’(T1)=A3*(T1+273)4+B3

 W’’(T2)=A3*(T2+273)4+B3

 A3=(W’’(T2)-W’’(T1))/((T2+273)4-(T1+273)4)=2,70293408*10-7

 B3=W’’(T2)-A3*(T2+273)4=308

Hence the true temperature can be calculated as

 T=(W’’-308)/ 2,70293408*10-7 in Kelvins

4.4 Test of Equipment

The value that a thermograph can measure has to be tested before it is used for

biomedical applications. As it is explained at part 1.1.3 there are threshold values for

biomedical applications. In a number of studies, 500˚ mK was chosen as a threshold

value, while some others use greater threshold values. To check whether the

developed system satisfies this condition, a temperature measurement test is

perfromed. The test is done using a system with two blackbodies, one of which has a

hole on the surface. The temperature of the first blackbody is assigned to a value. The

temperature of the second black body (with the hole) is adjusted to a temperature

slightly different from the first blackbody and the image is examined. First blackbody

is seen through the hole of the second blackbody. The image taken from the test

system shows that infrared camera can show temperature differences lower than 500˚

mK. This verifies that the uncooled infrared camera developed during this thesis

study can be used for biomedical purposes. Figure 4-2 shows the image with

 42

temperature difference of 200˚ mK, and Figure 4-3 shows the image with

temperature difference of 500˚ mK.

Figure 4-2 Temperature Difference of 200 mK Between Two Black Bodies

Figure 4-3 Temperature Difference of 500 mK Between Two Black Bodies

A second test is also performed to see whether the infrared imaging system can

measure the true temperature values. For that test, the blackbody system at different

 43

environments are used. Temperatures from 20°C to 40°C are measured. The results

of this test is shown in Table 4-1 and Figure 4-4.

Table 4-1 Measured Temperatures

Black Body measured temp measured temp measured temp measured temp

20 24,2 23,8 16,9 21,4

21 25,2 24,8 17,9 22,4

22 26,1 25,9 18,8 23,4

23 27,2 26,9 19,8 24,5

24 28,2 27,8 20,9 25,5

25 29,1 28,8 21,9 26,5

26 30,1 29,8 22,9 27,4

27 31,1 30,9 23,9 28,4

28 32,2 31,9 24,8 29,6

29 33,2 32,8 25,9 30,5

30 34,2 33,8 27 31,4

31 35,1 34,8 27,9 32,5

32 36,2 35,9 28,9 33,4

33 37,2 36,8 29,9 34,4

34 38,2 37,9 30,8 35,5

35 39,2 38,8 31,9 36,6

36 40,3 39,8 32,9 37,4

37 41,3 40,8 33,9 38,4

38 42,2 42 34,8 39,5

39 43,2 42,8 35,9 40,5

40 44,2 43,9 36,9 41,5

 44

Figure 4-4 Measured Temperature

Results show that the measured temperature is relatively correct. It shows that the

output changes when the environment changes, but the measured temperature is only

shifted, but not scaled. Once the system is calibrated according for different

environments, it should give the correct temperature values.

4.5 Structure

Temperature measurement is done by means of an interface program. The interface

program sends the position of the measurement point through the RS232 channel

with 115 200 baud rate. An FPGA implementation is done in order to get the position

and send the measured temperature. To understand the position a “mouse image” is

also implemented on the scene.

When the user moves the mouse on the user interface program, the position of the

mouse is sent to the camera. Camera moves the implemented mouse image to the

position sent from the interface program. When a “click” event occurs on the

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

true temperature

m
e
a
s
u

re
d

 t
e
m

p
e
ra

tu
re

Series1

Series2

Series3

Series4

 45

interface program, the measured temperature is sent to the interface program. The

structure of these events is explained in Figure 4-5.

Figure 4-5 Temperature Measurement Structure Block Diagram

 46

4.5.1 RS232 Communication Block

RS232 communication block receives the commands sent from the interface

program. The same communication block, which is designed for filter coefficients, is

used for the temperature measurement blocks.

 The receiver block decodes the incoming bytes and sends them to the controller

block. The controller block decodes the command, checks if it is a real command or

not, and enables transmitter block to send whether the command received is valid or

not. If the command is a valid command it decodes the position of the mouse and

send this position to the pic and the temperature-measuring block. The mouse image

is written to a symbology RAM by means of PIC. As, PIC is not fast enough, only

address and data of the mouse image is adjusted by the PIC. The bus control signals

of the symbology RAM are controlled by the symbology controller block at the

FPGA.

When a temperature measurement command is received the controller block requests

a measurement from the temperature measuring block and sends an acknowledge to

the block when it receives the measurement. Then the controller block enables the

transmitter block to send the measured temperature. The temperature is also sent with

the same protocol. A start byte, a reply command, the measured temperature and the

checksum are sent to the interface program.

4.5.2 Mouse Implementation

Implementing a mouse image using FPGA is not a good approach, as an FPGA

should be used for more intelligent works. Instead, addressing of the mouse image is

implemented by a PIC and also with a symbology controller block at the FPGA. PIC

introduces the correct data address bus for the symbology, according to the

 47

coefficient information sent by the transmission controller block. Symbology

controller block produces the RAM bus controller signals to write the symbology on

the RAM. This RAM is a dual port RAM. This block also reads the symbology

information from the RAM and combines it with the image and displays the mouse

icon on the display. For any pixel of the icon, it decides whether to send a white

image, black image or a transparent image.

4.5.3 Temperature-Measuring Block

Temperature-measuring block is enabled by the transmission controller block. It is

enabled when a temperature measurement request is done. This block has two

counters. One counter counts the columns and the other one counts the rows from the

incoming video signal. When the requested position is reached, the measured

temperature is sent to the transmission controller block and tells that the measured

temperature is ready.

 48

 CHAPTER 5

5 CLINICAL APPLICATIONS

5.1 Introduction

For biomedical applications of the designed uncooled infrared imaging system, data is

collected at the Ankara Numune Hospital. Data taken from different patients are

examined. For clinical applications, a black body is also taken to the hospital. Before

the clinical applications, the system is calibrated to obtain true temperature

measurements.

First case was a patient with rheumatism in her hands and legs. Second one was a

breast cancer patient after surgery. The third case was also a breast cancer patient. In

the fourth case, the blood pressure is purposely changed using a measuring device and

the resulting temperature differences are recorded.

Patients are examined with the Direct Infrared Imaging method, as uncooled system is

only suitable for this method. Due to uncontrollable experiment environment we could

not examine using the Tau Imaging Method and due to system’s limited RAM sources

we could not implement DAT Imaging Method.

5.2 Case I

The first case was a patient with rheumatism in her hands and legs. As the problem is

symmetric, there was no difference with respect to asymmetry analysis. Right and left

hands were nearly the same, but there was a temperature increase at both hands. The

measured temperature values were approximately 38°C. Also there was an

 CLINICAL APPLICATIONS

 49

other region at the right hand of the patient with higher temperature value, namely

39,4°C. This part is the most problematic part at this hand. Figure 5-1 and Figure 5-2

show the measurements taken from two wrists.

Figure 5-1 Right Wrist Temperature Measurement

Figure 5-2 Left Wrist Temperature Measurement

The same patient has a problem in her legs, too. Both legs have problems, however, an

asymmetry can be observed at the legs. Temperature values were also measured on the

two legs (Figure 5-3 and Figure 5-4).

 50

Figure 5-3 Right Leg Temperature Measurement

Figure 5-4 Left Leg Temperature Measurement

 51

5.3 Case 2

The second patient was a woman after breast cancer surgery. There was a problem

with the surgery area. Thus, temperature measurements were specifically obtained for

these areas. Figure 5-5 and Figure 5-6 show the temperature values of the surgery and

non-surgery areas.

Figure 5-5 Temperature Measurement of the Surgery Area

Figure 5-6 Temperature Measurement of the Non-Surgery Area

 52

5.4 Case 3

In this case, the right breast of the patient has a cancer risk. However, the temperature

of the risk area is measured cooler with respect to the normal side. The biopsy result of

the patient is not reached yet. The lower temperature measurement may be due to non-

heating tumor inside the breast or a skin problem. Temperature measurement of the

breast with cancer risk is shown in Figure 5-7 and the temperature measurement of the

normal breast is shown in Figure 5-8.

Figure 5-7 Temperature of the Breast with Cancer Risk

Figure 5-8 Temperature of the Normal Breast

 53

5.5 Case 4

In this case, the temperature values the patient’s arms are measured. In order to

introduce a change, one arm is fastened by a blood temperature measuring device and

temperature is measured. Then the arm is released and its temperature is measured

again. Quick temperature changes are observed at the finger tips. These steps can be

seen at Figure 5-9, Figure 5-10 and Figure 5-11.

Figure 5-9 Normal Arm Temperature

Figure 5-10 Fastened Arm Temperature

 54

Figure 5-11 Released Arm Temperature

5.3 Handicaps of the System

Direct Imaging Method is based on temperature measurement of the object. Hence

system is affected by anything affecting the temperature of the object. So

measurements must be taken with great care. Object should be taken to the

measurement environment 20 minutes before the test in order to obtain correct

measurements. Clothes should not be let to heat symmetric parts of the body. Patient

should not be let to touch the measurement area in order not to increase the

temperature.

 55

CHAPTER 6

6 CONCLUSION AND FUTURE WORK

In this thesis study an uncooled medical infrared imaging system is designed and

implemented. Results show that this system can be used for biomedical applications. A

user interface program was also designed to control the imaging system. Work done

throughout this study can be summarized as below:

• The output of the detector data is not suitable for imaging applications as it is.

In order to obtain an image, non-uniformity correction algorithms are

implemented.

• A histogram equization algorithm is implemented in order to show the details

of the object.

• A convolution operation is also implemented. An interface program is also

designed to control the filter outputs.

• Medical systems require 500°mK measurement sensitivity. Black body tests

have shown that system can be used for biomedical applications.

• System is tested in the Ankara Numune Hospital for four cases.. The outputs

are saved by means of the interface program.

Results show that different applications of the uncooled microbolometer for

biomedical purposes should be investigated. In this thesis study, we could only

consider the Direct Infrared Imaging Method. Tau Imaging Method and the DAT

Method should be considered as a future work.

In order to consider the DAT Method, some changes in the system are required. This

system is designed for a microbolometer. As DAT Method requires a more sensitive

dedector, design and implementation of a front end electronic is needed. There will be

no system change need for calibration, normalization and image processing algorithms

used in the digital part. System is capable of storing images. As DAT

 CONCLUSION AND FUTURE WORK

 56

analysis needs storing 1000 images in 10 seconds. A bigger RAM should be replaced

with the one employed in this design and can be used in order to store images.

The system needs to be calibrated for different environments. Actually system has a

flag in front of the detector. As flag’s temperature is not known, calibration is made by

a black body. By using a thermistor, flag’s temperature can be measured and real time

calibration can be made possible.

The tests at the hospital showed that the data storage time is too long. In a revised

system, a USB interface should be used for the data transfer.

 57

REFERENCES

[1] J. R. Keyserlingk, P.D. Ahlgren, E. Yu, N. Belliveau, M. Yassa, “Functional

Infrared Imaging of the Breast”, 2000

[2] Jonathan F. Head, Fen Wang, Charles A. Lipari, Robert L. Elliot, “The

Important Role of Infrared Imaging in Breast Cancer”, 2000

[3] Jonatthan F. Head, Robert L. Helliot, “Infrared Imaging: Making Progres in

fulfilling Its Medical Promise”, 2002

[4] Michael Anbar, Cheryl Brown, Lorin Milescu, John Babalola, Laura

Gentner, “The Potential of Dynamic Area Telethermography in Assessing

Breast Cancer”, 2000

[5] Michael Anbar, “Modalities and Clinical Applications of Dynamic Infrared

Imaging”, 2001

[6] Michael Anbar, Lorin Milescu, Cheryl Brown, Aleksey Naumov, Emily

Bachman, Khaldoon AlDulaimi, Christine Geronimo, Terry Button,

“Diagnosis of Breast Cancer with Infrared Dynamic Area

Telethermography(DAT)”, 2000

[7] Hisasi Usuki, Hajimr Matea, Hisao Wakabayashi, Fuminori Goda, Yukihiko

Karasawa, Atsushi Misawa, Seiji Mori, Keichi Okano, “Stardardization of

Thermographic Brest Cancer Dedection- Role of Finding Qualitative

Finding And Quantative Findings”, 2000

[8] Junji Wakamiya, Kunuhiko Mabuchi, Iwao Fujimasa, Shinichi Nakagawa,

Hitshi Miyake, Kimiyoshi Arimura, Mitsuhito Osame, Akihiro Igata, Yukio

 58

Takizawa, “Data-processing Method for Standardisation of Thermographic

Diagnosis”, 2000

[9] A. Meria, L. Di Donota, G. L. Romani, “Tau Image: A diagnostic Imaging

Technique Based on the Dynamic Digital Thermography”, 2000

[10] Hisashi Usuki, Tadashi Ikeda, Yoshiaki Igarashi, Takao Yokoe, Hiroshi

Sonoo, Kazuaki Asaishi, Hisaki Fukushima, “Efficacy of Thermographic

Examination for Minimum Breast Cancer”, 2001

[11] C. L. Herry, M. Frize, “Digital Processing Techiniques for the Assesment of

Pain with Infrared Thermal Imaging”, 2002

[12] A. S. Boyd, S. K. Maloney, “Digital Infrared Thermal Imaging As

Biofeedback Tool: Monitoring Chemotherophy Response in a young Female

with Breast Cancer Mediastinal Secondaries”, 2002

[13] Yasuhiko Ohashi, Isao Uchida, “Applying Dynamic Thermography In the

Diagnosis of Breast Cancer”, 2000

[14] Jong Keyserlingk, Paul Ahlgren, Maram Yassa, Normand Belliveau,

“Overwiew of Functional Imaging as a Part of a multi-imaging strategy for

breast Cancer Dedection and Therapeutic Monitoring”, 2002

[15] A. Merla, V. Romano, F. Zulli, R. Saggini, L. Di Donato, G. L. Romani,

“Total Body Infrared Imaging and Postural Disorders”, 2002

[16] Monique Frize, Christophe Herry, Roger Roberge, “Processing of Thermal

Images to Dedect Breast Cancer: Comparison with Previous Work”, 2002

[17] Phani Teje Kuruganti, Hairong Qi, “Asymetry analysis in Breast Cancer

Dedection Using ThermalInfrared Images”, 2002

 59

[18] A. Nowakowski, M. Kaczmarek, J. Ruminski, “Syntetic Pictures in

thermographic Diagnosis”, 2002

[19] J. F. Head, C.A. Lipari, R. L. Elliot, “Detection of Mean Temperatures of

Normal Whole Breast and Breast quadrants by Infrared Imaging and Image

Analysis”, 2001

[20] A. Nowakowski, M. Kaczmarek, J. Wtorek, J. Siebert, D. Jagilak, K.

Roszak, J. Topolewics, W. Stojek, “Thermographic and Electrical

Measurements for Cardiac Surgery Inspectation”, 2001

[21] Arcangelo Merla, Luigi Di Donato, Silvano Di Luzio, Gian Luca Romani,

“Quantifying the Relevance and Stage of Disease with Tau Imagee

Technique”, 2002

[22] J. F. Head, C.A. Lipary, R. L. Elliot, “Determination of Mean Temperatures

of Normal Whole Breast and Breast Quadrants by Infrared Imaging and

Image Analysis”, 2002

[23] Meditherm, “Indications for a Thermographic Evaluation”,

http://www.meditherm.com/therm_page3.htm

[24] Thermal Camera Corp., “Infrared Thermography Applications”,

http://www.thermalcamera.co.uk/thermography_applications.htm

[25] Academy of Infrared Training Inc., “Learn About Thermography”,

http://www.infraredtraining.net/thermographer.htm

[26] Colbert Infrared Services Inc., “IR Info/ Facts”,

 http://www.colbert-infrared.com/ir_info_facts.htm

 60

APPENDIX-A VHDL Code for Filtering Block

VHDL Code for Filtering Block

--
-- VHDL Architecture fpga2.filter_controller.arch
--
-- Created:
-- by - kiziloz.YTSD_VHDL (kavak)
-- at - 17:20:41 12/10/04
--
-- using Mentor Graphics HDL Designer(TM) 2003.3 (Build 60)
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY filter_controller IS
 PORT(
 line_1_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_1_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_1_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_1_clk_read : OUT std_logic;
 line_1_clk_write : OUT std_logic;
 line_1_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_1_en_write : OUT std_logic;
 line_1_en_read : OUT std_logic;
 line_1_we_write : OUT std_logic;
 line_1_we_read : OUT std_logic;
 line_2_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_2_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_2_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_2_clk_read : OUT std_logic;
 line_2_clk_write : OUT std_logic;
 line_2_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_2_en_write : OUT std_logic;
 line_2_en_read : OUT std_logic;
 line_2_we_write : OUT std_logic;
 line_2_we_read : OUT std_logic;
 line_3_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_3_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_3_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_3_clk_read : OUT std_logic;
 line_3_clk_write : OUT std_logic;
 line_3_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_3_en_write : OUT std_logic;
 line_3_en_read : OUT std_logic;

 APPENDIX-A

 61

 line_3_we_write : OUT std_logic;
 line_3_we_read : OUT std_logic;
 line_4_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_4_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_4_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_4_clk_read : OUT std_logic;
 line_4_clk_write : OUT std_logic;
 line_4_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_4_en_write : OUT std_logic;
 line_4_en_read : OUT std_logic;
 line_4_we_write : OUT std_logic;
 line_4_we_read : OUT std_logic;
 line_5_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_5_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_5_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_5_clk_read : OUT std_logic;
 line_5_clk_write : OUT std_logic;
 line_5_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_5_en_write : OUT std_logic;
 line_5_en_read : OUT std_logic;
 line_5_we_write : OUT std_logic;
 line_5_we_read : OUT std_logic;
 hblank : IN std_logic;
 vblank : IN std_logic;
 filter_coefficient_dout : IN std_logic_vector (17 DOWNTO 0);
 filter_coefficient_addr : OUT std_logic_VECTOR (9 DOWNTO 0);
 filter_coefficient_clk : OUT std_logic;
 filter_coefficient_din : OUT std_logic_VECTOR (17 DOWNTO 0);
 filter_coefficient_en : OUT std_logic;
 filter_coefficient_we : OUT std_logic;
 image_data : IN std_logic_vector (15 DOWNTO 0);
 video_clk : IN std_logic;
 reset : IN std_logic;
 sum : OUT std_logic_vector (41 DOWNTO 0)
);

-- Declarations

END filter_controller ;

--
ARCHITECTURE arch OF filter_controller IS

 signal line_1_dout_read_delay_1 : std_logic_vector(17 downto 0);
 signal line_1_dout_read_delay_2 : std_logic_vector(17 downto 0);
 signal line_1_dout_read_delay_3 : std_logic_vector(17 downto 0);
 signal line_1_dout_read_delay_4 : std_logic_vector(17 downto 0);
 signal line_2_dout_read_delay_1 : std_logic_vector(17 downto 0);
 signal line_2_dout_read_delay_2 : std_logic_vector(17 downto 0);
 signal line_2_dout_read_delay_3 : std_logic_vector(17 downto 0);
 signal line_2_dout_read_delay_4 : std_logic_vector(17 downto 0);
 signal line_3_dout_read_delay_1 : std_logic_vector(17 downto 0);
 signal line_3_dout_read_delay_2 : std_logic_vector(17 downto 0);
 signal line_3_dout_read_delay_3 : std_logic_vector(17 downto 0);

 62

 signal line_3_dout_read_delay_4 : std_logic_vector(17 downto 0);
 signal line_4_dout_read_delay_1 : std_logic_vector(17 downto 0);
 signal line_4_dout_read_delay_2 : std_logic_vector(17 downto 0);
 signal line_4_dout_read_delay_3 : std_logic_vector(17 downto 0);
 signal line_4_dout_read_delay_4 : std_logic_vector(17 downto 0);
 signal line_5_dout_read_delay_1 : std_logic_vector(17 downto 0);
 signal line_5_dout_read_delay_2 : std_logic_vector(17 downto 0);
 signal line_5_dout_read_delay_3 : std_logic_vector(17 downto 0);
 signal line_5_dout_read_delay_4 : std_logic_vector(17 downto 0);

 signal multiplier_1_1_out : std_logic_vector(35 downto 0);
 signal multiplier_1_2_out : std_logic_vector(35 downto 0);
 signal multiplier_1_3_out : std_logic_vector(35 downto 0);
 signal multiplier_1_4_out : std_logic_vector(35 downto 0);
 signal multiplier_1_5_out : std_logic_vector(35 downto 0);
 signal multiplier_2_1_out : std_logic_vector(35 downto 0);
 signal multiplier_2_2_out : std_logic_vector(35 downto 0);
 signal multiplier_2_3_out : std_logic_vector(35 downto 0);
 signal multiplier_2_4_out : std_logic_vector(35 downto 0);
 signal multiplier_2_5_out : std_logic_vector(35 downto 0);
 signal multiplier_3_1_out : std_logic_vector(35 downto 0);
 signal multiplier_3_2_out : std_logic_vector(35 downto 0);
 signal multiplier_3_3_out : std_logic_vector(35 downto 0);
 signal multiplier_3_4_out : std_logic_vector(35 downto 0);
 signal multiplier_3_5_out : std_logic_vector(35 downto 0);
 signal multiplier_4_1_out : std_logic_vector(35 downto 0);
 signal multiplier_4_2_out : std_logic_vector(35 downto 0);
 signal multiplier_4_3_out : std_logic_vector(35 downto 0);
 signal multiplier_4_4_out : std_logic_vector(35 downto 0);
 signal multiplier_4_5_out : std_logic_vector(35 downto 0);
 signal multiplier_5_1_out : std_logic_vector(35 downto 0);
 signal multiplier_5_2_out : std_logic_vector(35 downto 0);
 signal multiplier_5_3_out : std_logic_vector(35 downto 0);
 signal multiplier_5_4_out : std_logic_vector(35 downto 0);
 signal multiplier_5_5_out : std_logic_vector(35 downto 0);

-- coefficient_read signals

 signal coefficient_1_1 : std_logic_vector(17 downto 0);
 signal coefficient_1_2 : std_logic_vector(17 downto 0);
 signal coefficient_1_3 : std_logic_vector(17 downto 0);
 signal coefficient_1_4 : std_logic_vector(17 downto 0);
 signal coefficient_1_5 : std_logic_vector(17 downto 0);
 signal coefficient_2_1 : std_logic_vector(17 downto 0);
 signal coefficient_2_2 : std_logic_vector(17 downto 0);
 signal coefficient_2_3 : std_logic_vector(17 downto 0);
 signal coefficient_2_4 : std_logic_vector(17 downto 0);
 signal coefficient_2_5 : std_logic_vector(17 downto 0);
 signal coefficient_3_1 : std_logic_vector(17 downto 0);
 signal coefficient_3_2 : std_logic_vector(17 downto 0);
 signal coefficient_3_3 : std_logic_vector(17 downto 0);
 signal coefficient_3_4 : std_logic_vector(17 downto 0);
 signal coefficient_3_5 : std_logic_vector(17 downto 0);
 signal coefficient_4_1 : std_logic_vector(17 downto 0);
 signal coefficient_4_2 : std_logic_vector(17 downto 0);
 signal coefficient_4_3 : std_logic_vector(17 downto 0);

 63

 signal coefficient_4_4 : std_logic_vector(17 downto 0);
 signal coefficient_4_5 : std_logic_vector(17 downto 0);
 signal coefficient_5_1 : std_logic_vector(17 downto 0);
 signal coefficient_5_2 : std_logic_vector(17 downto 0);
 signal coefficient_5_3 : std_logic_vector(17 downto 0);
 signal coefficient_5_4 : std_logic_vector(17 downto 0);
 signal coefficient_5_5 : std_logic_vector(17 downto 0);
 signal state_coef_read : std_logic_vector(4 downto 0);

-- assign sync signals ---

 constant wait_between_hblank_counter_limit : std_logic_vector(8 downto 0):="000011111";
 constant hblank_counter_limit : std_logic_vector(8 downto 0):="111111111";
 constant wait_between_hblank : std_logic_vector(2 downto 0):="000";
 constant wait_for_vblank : std_logic_vector(2 downto 0):="001";
 constant wait_for_5line : std_logic_vector(2 downto 0):="010";
 constant latch_hblank_vblank : std_logic_vector(2 downto 0):="011";
 constant send_5line : std_logic_vector(2 downto 0):="100";
 constant count_hblank_between_hblanks : std_logic_vector(1 downto 0):="00";
 constant count_hblank_wait_for_hblank_high : std_logic_vector(1 downto 0):="01";
 constant count_hblank_wait_for_hblank_low : std_logic_vector(1 downto 0):="10";

 signal vblank_5line_delay : std_logic;
 signal hblank_5line_delay : std_logic;
 signal hblank_5line_delay_delay1 : std_logic;
 signal hblank_counter : std_logic_vector(8 downto 0); -- max dec320=0x140
 signal number_hblank : std_logic_vector(2 downto 0); -- to count 5 hblank
 signal assign_sync_state : std_logic_vector(2 downto 0);
 signal next_assign_sync_state : std_logic_vector(2 downto 0);
 signal vblank_5line_delay_buf : std_logic;
 signal next_number_hblank : std_logic_vector(2 downto 0);
 signal number_hblank_state : std_logic_vector(1 downto 0);

--
-- add multiplication signals---
 signal line_1_sum : std_logic_vector(38 downto 0);
 signal line_2_sum : std_logic_vector(38 downto 0);
 signal line_3_sum : std_logic_vector(38 downto 0);
 signal line_4_sum : std_logic_vector(38 downto 0);
 signal line_5_sum : std_logic_vector(38 downto 0);
-- signal sum : std_logic_vector(41 downto 0);
--
--
-- read_line_data signals---
 signal hblank_line_counter : std_logic_vector(8 downto 0); -- max dec320=0x140
 signal ram_1_dout_read : std_logic_vector(17 downto 0);
 signal ram_2_dout_read : std_logic_vector(17 downto 0);
 signal ram_3_dout_read : std_logic_vector(17 downto 0);
 signal ram_4_dout_read : std_logic_vector(17 downto 0);
 signal ram_5_dout_read : std_logic_vector(17 downto 0);
 signal line_1_read : std_logic_vector(17 downto 0);
 signal line_2_read : std_logic_vector(17 downto 0);
 signal line_3_read : std_logic_vector(17 downto 0);
 signal line_4_read : std_logic_vector(17 downto 0);
 signal line_5_read : std_logic_vector(17 downto 0);

 64

--
--
-- multiplex_line_data signals---
-- signal line_1_read : std_logic_vector(17 downto 0);
-- signal line_2_read : std_logic_vector(17 downto 0);
-- signal line_3_read : std_logic_vector(17 downto 0);
-- signal line_4_read : std_logic_vector(17 downto 0);
-- signal line_5_read : std_logic_vector(17 downto 0);
 signal number_hblank_delay1 : std_logic_vector(2 downto 0);
 signal number_hblank_delay2 : std_logic_vector(2 downto 0);
 signal number_hblank_delay3 : std_logic_vector(2 downto 0);
 signal number_hblank_delay4 : std_logic_vector(2 downto 0);
 signal number_hblank_delay5 : std_logic_vector(2 downto 0);
--
-- assign_write_line_data_address signals --
 signal address_counter_write_data : std_logic_vector(8 downto 0);
 signal address_counter_write_data_delay1 : std_logic_vector(8 downto 0);
 signal address_counter_write_data_delay2 : std_logic_vector(8 downto 0);
 signal hblank_delay1 : std_logic;
 signal hblank_delay2 : std_logic;
 signal hblank_delay3 : std_logic;
 signal hblank_delay4 : std_logic;
 signal hblank_delay5 : std_logic;
 signal hblank_delay6 : std_logic;
 signal image_data_delay1 : std_logic_vector(15 downto 0);
 signal image_data_delay2 : std_logic_vector(15 downto 0);
 signal image_data_delay3 : std_logic_vector(15 downto 0);
 signal image_data_delay4 : std_logic_vector(15 downto 0);
 signal image_data_delay5 : std_logic_vector(15 downto 0);
 signal image_data_delay6 : std_logic_vector(15 downto 0);
--
--
 component multiplier18
 port (
 clk: IN std_logic;
 a: IN std_logic_VECTOR(17 downto 0);
 b: IN std_logic_VECTOR(17 downto 0);
 o: OUT std_logic_VECTOR(35 downto 0));
 end component;

BEGIN

delay_line_data:process(video_clk,reset)

begin

 if reset='0' then

 line_1_dout_read_delay_1 <= (others=>'0');
 line_1_dout_read_delay_2 <= (others=>'0');
 line_1_dout_read_delay_3 <= (others=>'0');
 line_1_dout_read_delay_4 <= (others=>'0');
 line_2_dout_read_delay_1 <= (others=>'0');
 line_2_dout_read_delay_2 <= (others=>'0');
 line_2_dout_read_delay_3 <= (others=>'0');
 line_2_dout_read_delay_4 <= (others=>'0');
 line_3_dout_read_delay_1 <= (others=>'0');

 65

 line_3_dout_read_delay_2 <= (others=>'0');
 line_3_dout_read_delay_3 <= (others=>'0');
 line_3_dout_read_delay_4 <= (others=>'0');
 line_4_dout_read_delay_1 <= (others=>'0');
 line_4_dout_read_delay_2 <= (others=>'0');
 line_4_dout_read_delay_3 <= (others=>'0');
 line_4_dout_read_delay_4 <= (others=>'0');
 line_5_dout_read_delay_1 <= (others=>'0');
 line_5_dout_read_delay_2 <= (others=>'0');
 line_5_dout_read_delay_3 <= (others=>'0');
 line_5_dout_read_delay_4 <= (others=>'0');

 elsif Rising_edge(video_clk) then

 line_1_dout_read_delay_1 <= line_1_read;
 line_1_dout_read_delay_2 <= line_1_dout_read_delay_1;
 line_1_dout_read_delay_3 <= line_1_dout_read_delay_2;
 line_1_dout_read_delay_4 <= line_1_dout_read_delay_3;
 line_2_dout_read_delay_1 <= line_2_read;
 line_2_dout_read_delay_2 <= line_2_dout_read_delay_1;
 line_2_dout_read_delay_3 <= line_2_dout_read_delay_2;
 line_2_dout_read_delay_4 <= line_2_dout_read_delay_3;
 line_3_dout_read_delay_1 <= line_3_read;
 line_3_dout_read_delay_2 <= line_3_dout_read_delay_1;
 line_3_dout_read_delay_3 <= line_3_dout_read_delay_2;
 line_3_dout_read_delay_4 <= line_3_dout_read_delay_3;
 line_4_dout_read_delay_1 <= line_4_read;
 line_4_dout_read_delay_2 <= line_4_dout_read_delay_1;
 line_4_dout_read_delay_3 <= line_4_dout_read_delay_2;
 line_4_dout_read_delay_4 <= line_4_dout_read_delay_3;
 line_5_dout_read_delay_1 <= line_5_read;
 line_5_dout_read_delay_2 <= line_5_dout_read_delay_1;
 line_5_dout_read_delay_3 <= line_5_dout_read_delay_2;
 line_5_dout_read_delay_4 <= line_5_dout_read_delay_3;

 end if;
end process;

filter_coefficient_clk <= video_clk;
read_coefficients : process(video_clk,reset)

begin
 if reset='0' then
-- coefficient_1_1 <= (others=>'1');
-- coefficient_1_2 <= (others=>'1');
-- coefficient_1_3 <= (others=>'1');
-- coefficient_1_4 <= (others=>'1');
-- coefficient_1_5 <= (others=>'1');
-- coefficient_2_1 <= (others=>'1');
-- coefficient_2_2 <= (others=>'1');
-- coefficient_2_3 <= (others=>'1');
-- coefficient_2_4 <= (others=>'1');
-- coefficient_2_5 <= (others=>'1');
-- coefficient_3_1 <= (others=>'1');
-- coefficient_3_2 <= (others=>'1');
-- coefficient_3_3 <= (others=>'1');

 66

-- coefficient_3_4 <= (others=>'1');
-- coefficient_3_5 <= (others=>'1');
-- coefficient_4_1 <= (others=>'1');
-- coefficient_4_2 <= (others=>'1');
-- coefficient_4_3 <= (others=>'1');
-- coefficient_4_4 <= (others=>'1');
-- coefficient_4_5 <= (others=>'1');
-- coefficient_5_1 <= (others=>'1');
-- coefficient_5_2 <= (others=>'1');
-- coefficient_5_3 <= (others=>'1');
-- coefficient_5_4 <= (others=>'1');
-- coefficient_5_5 <= (others=>'1');
 coefficient_1_1 <= (others=>'0');
 coefficient_1_2 <= (others=>'0');
 coefficient_1_3 <= "000000000000000001";
 coefficient_1_4 <= "000000000000000001";
 coefficient_1_5 <= (others=>'0');
 coefficient_2_1 <= (others=>'0');
 coefficient_2_2 <= (others=>'0');
 coefficient_2_3 <= (others=>'0');
 coefficient_2_4 <= (others=>'0');
 coefficient_2_5 <= (others=>'0');
 coefficient_3_1 <= (others=>'0');
 coefficient_3_2 <= (others=>'0');
 coefficient_3_3 <= "000000000000000001";
 coefficient_3_4 <= (others=>'0');
 coefficient_3_5 <= (others=>'0');
 coefficient_4_1 <= (others=>'0');
 coefficient_4_2 <= (others=>'0');
 coefficient_4_3 <= (others=>'0');
 coefficient_4_4 <= (others=>'0');
 coefficient_4_5 <= (others=>'0');
 coefficient_5_1 <= (others=>'0');
 coefficient_5_2 <= (others=>'0');
 coefficient_5_3 <= (others=>'0');
 coefficient_5_4 <= (others=>'0');
 coefficient_5_5 <= (others=>'0');
 state_coef_read <= (others=>'0');
 filter_coefficient_addr <= (others=>'1');
 filter_coefficient_en <= '1';
 filter_coefficient_we <= '1';

 elsif rising_edge(video_clk) then
 case state_coef_read is
 when "00000" =>
 filter_coefficient_addr <= (others=>'1');
 filter_coefficient_en <= '1';
 filter_coefficient_we <= '1';
 if ((vblank_5line_delay='0')and(vblank='0')) then
 state_coef_read <= state_coef_read + 1;
 end if;

 when "00001" =>
 filter_coefficient_addr <= ("00000"&state_coef_read);
 filter_coefficient_en <= '0';
 filter_coefficient_we <= '1';
 state_coef_read <= state_coef_read + 1;

 67

 when "00010" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_1_1 <= filter_coefficient_dout;

 when "00011" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_1_2 <= filter_coefficient_dout;

 when "00100" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_1_3 <= filter_coefficient_dout;

 when "00101" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_1_4 <= filter_coefficient_dout;

 when "00110" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_1_5 <= filter_coefficient_dout;

 when "00111" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_2_1 <= filter_coefficient_dout;

 when "01000" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_2_2 <= filter_coefficient_dout;

 when "01001" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_2_3 <= filter_coefficient_dout;

 when "01010" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_2_4 <= filter_coefficient_dout;

 when "01011" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_2_5 <= filter_coefficient_dout;

 when "01100" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_3_1 <= filter_coefficient_dout;

 when "01101" =>

 68

 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_3_2 <= filter_coefficient_dout;

 when "01110" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_3_3 <= filter_coefficient_dout;

 when "01111" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_3_4 <= filter_coefficient_dout;

 when "10000" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_3_5 <= filter_coefficient_dout;

 when "10001" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_4_1 <= filter_coefficient_dout;

 when "10010" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_4_2 <= filter_coefficient_dout;

 when "10011" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_4_3 <= filter_coefficient_dout;

 when "10100" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_4_4 <= filter_coefficient_dout;

 when "10101" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_4_5 <= filter_coefficient_dout;

 when "10110" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_5_1 <= filter_coefficient_dout;

 when "10111" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_5_2 <= filter_coefficient_dout;

 when "11000" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;

 69

 coefficient_5_3 <= filter_coefficient_dout;

 when "11001" =>
 filter_coefficient_addr<= "00000"&state_coef_read;
 state_coef_read <= state_coef_read + 1;
 coefficient_5_4 <= filter_coefficient_dout;

 when "11010" =>
 filter_coefficient_addr<= (others=>'1');
 state_coef_read <= state_coef_read + 1;
 coefficient_5_5 <= filter_coefficient_dout;
 filter_coefficient_en <= '1';
 filter_coefficient_we <= '1';
 when "11011" =>
 filter_coefficient_addr <= (others=>'1');
 filter_coefficient_en <= '1';
 filter_coefficient_we <= '1';
 if ((vblank='1')) then
 state_coef_read <= (others=>'0');
 end if;
 when others =>
 filter_coefficient_addr <= (others=>'1');
 filter_coefficient_en <= '1';
 filter_coefficient_we <= '1';
 if ((vblank='1')) then
 state_coef_read <= (others=>'0');
 end if;

 end case;
 end if;
end process;

assign_sync: process(video_clk,reset)
begin
 if reset='0' then
 vblank_5line_delay <= '0';
 hblank_5line_delay <= '0';
 assign_sync_state <= wait_for_vblank;
 number_hblank <= (others=>'0');
 next_assign_sync_state <= wait_for_vblank;
 vblank_5line_delay_buf <= '1';
 next_number_hblank <= (others=>'0');
 number_hblank_state <= count_hblank_between_hblanks;
 hblank_5line_delay_delay1 <= '0';
 elsif rising_edge(video_clk) then
 hblank_5line_delay_delay1 <= hblank_5line_delay;
 case assign_sync_state is
 when wait_for_vblank =>
 if ((vblank='1')and(hblank='1')) then
 number_hblank <= number_hblank + 1;
 assign_sync_state <= wait_for_5line;
 end if;
 when wait_for_5line =>
 if number_hblank="101" then
 next_assign_sync_state<= latch_hblank_vblank;

 70

 next_number_hblank <= (others=>'0');
 number_hblank_state <= count_hblank_between_hblanks;
 else
 next_assign_sync_state<= wait_for_vblank;
 next_number_hblank <= number_hblank;
 end if;
 if ((vblank='1')and(hblank='0')) then
 assign_sync_state <= next_assign_sync_state;
 number_hblank <= next_number_hblank;
 end if;
 when latch_hblank_vblank =>
 hblank_5line_delay <= hblank;
 vblank_5line_delay <= vblank;
 if vblank='0' then
 assign_sync_state <= wait_between_hblank;
 hblank_counter <= (others=>'0');
 number_hblank <= (others=>'0');
 vblank_5line_delay <= '1';
 end if;
 case number_hblank_state is
 when count_hblank_between_hblanks =>
 if number_hblank = "101" then
 number_hblank <= "001";
 else
 number_hblank <= number_hblank +1;
 end if;
 number_hblank_state <= count_hblank_wait_for_hblank_high;
 when count_hblank_wait_for_hblank_high =>
 if hblank='1' then
 number_hblank_state<= count_hblank_wait_for_hblank_low;
 end if;
 when count_hblank_wait_for_hblank_low =>
 if hblank='0' then
 number_hblank_state<= count_hblank_between_hblanks;
 end if;
 when others =>
 number_hblank_state<= count_hblank_between_hblanks;
 end case;
 when wait_between_hblank =>
 hblank_counter <= hblank_counter +1;
 hblank_5line_delay <= '0';
 if hblank_counter=wait_between_hblank_counter_limit then
 hblank_counter <= (others=>'0');
 number_hblank <= number_hblank +1;
 assign_sync_state <= send_5line;
 end if;
 when send_5line =>
 hblank_counter <= hblank_counter + 1;
 hblank_5line_delay <= '1';
 if number_hblank="101" then
 next_assign_sync_state<= wait_for_vblank;
 vblank_5line_delay_buf<= '0';
 next_number_hblank <= (others =>'0');
 else
 next_assign_sync_state<= wait_between_hblank;
 vblank_5line_delay_buf<= '1';
 next_number_hblank <= number_hblank;

 71

 end if;
 if hblank_counter=hblank_counter_limit then
 hblank_counter <= (others=>'0');
 assign_sync_state <= next_assign_sync_state;
 vblank_5line_delay <= vblank_5line_delay_buf;
 hblank_5line_delay <= vblank_5line_delay_buf;
 number_hblank <= next_number_hblank;
 end if;
 when others =>
 assign_sync_state <= wait_for_vblank;

 end case;
 end if;
end process;

line_1_clk_read <= video_clk;
line_2_clk_read <= video_clk;
line_3_clk_read <= video_clk;
line_4_clk_read <= video_clk;
line_5_clk_read <= video_clk;

read_line_data: process(video_clk,reset)
begin
 if reset='0' then
 line_1_addr_read <= (others=>'0');
 line_1_en_read <= '1';
 line_1_we_read <= '1';
 line_2_addr_read <= (others=>'0');
 line_2_en_read <= '1';
 line_2_we_read <= '1';
 line_3_addr_read <= (others=>'0');
 line_3_en_read <= '1';
 line_3_we_read <= '1';
 line_4_addr_read <= (others=>'0');
 line_4_en_read <= '1';
 line_4_we_read <= '1';
 line_5_addr_read <= (others=>'0');
 line_5_en_read <= '1';
 line_5_we_read <= '1';
 hblank_line_counter <= (others=>'0');
 elsif rising_edge(video_clk) then -- adress portlari birlestirilebilir, we_pini disarida birlenebilir
 if vblank_5line_delay='1'then
 if hblank_5line_delay = '1' then
 hblank_line_counter <= hblank_line_counter + 1;
 line_1_en_read <= '0';
 line_1_addr_read <= '0'&hblank_line_counter;
 ram_1_dout_read <= line_1_dout_read;
 line_2_en_read <= '0';
 line_2_addr_read <= '0'&hblank_line_counter;
 ram_2_dout_read <= line_2_dout_read;
 line_3_en_read <= '0';
 line_3_addr_read <= '0'&hblank_line_counter;
 ram_3_dout_read <= line_3_dout_read;
 line_4_en_read <= '0';
 line_4_addr_read <= '0'&hblank_line_counter;
 ram_4_dout_read <= line_4_dout_read;
 line_5_en_read <= '0';

 72

 line_5_addr_read <= '0'&hblank_line_counter;
 ram_5_dout_read <= line_5_dout_read;
 else
 line_1_en_read <= '1';
 line_2_en_read <= '1';
 line_3_en_read <= '1';
 line_4_en_read <= '1';
 line_5_en_read <= '1';
 hblank_line_counter <= (others=>'0');
 end if;
 else
 line_1_addr_read <= (others=>'0');
 line_1_en_read <= '1';
 line_1_we_read <= '1';
 line_2_addr_read <= (others=>'0');
 line_2_en_read <= '1';
 line_2_we_read <= '1';
 line_3_addr_read <= (others=>'0');
 line_3_en_read <= '1';
 line_3_we_read <= '1';
 line_4_addr_read <= (others=>'0');
 line_4_en_read <= '1';
 line_4_we_read <= '1';
 line_5_addr_read <= (others=>'0');
 line_5_en_read <= '1';
 line_5_we_read <= '1';
 hblank_line_counter <= (others=>'0');
 end if;
 end if;
end process;

 line_1_clk_write <= video_clk;
 line_2_clk_write <= video_clk;
 line_3_clk_write <= video_clk;
 line_4_clk_write <= video_clk;
 line_5_clk_write <= video_clk;

assign_write_line_data_addr: process(video_clk,reset)
begin
 if reset='0' then
 line_1_addr_write <= (others=>'0');
 line_5_addr_write <= (others=>'0');
 line_4_addr_write <= (others=>'0');
 line_3_addr_write <= (others=>'0');
 line_2_addr_write <= (others=>'0');
 hblank_delay1 <= '0';
 hblank_delay2 <= '0';
 hblank_delay3 <= '0';
 hblank_delay4 <= '0';
 hblank_delay5 <= '0';
 hblank_delay6 <= '0';
 image_data_delay1 <= (others=>'0');
 image_data_delay2 <= (others=>'0');
 image_data_delay3 <= (others=>'0');
 image_data_delay4 <= (others=>'0');
 image_data_delay5 <= (others=>'0');
 image_data_delay6 <= (others=>'0');

 73

 address_counter_write_data<= (others=>'0');
-- address_counter_write_data_delay1 <= (others=>'0');
-- address_counter_write_data_delay2 <= (others=>'0');
 elsif rising_edge(video_clk) then
-- address_counter_write_data_delay1 <= address_counter_write_data;
-- address_counter_write_data_delay2 <= address_counter_write_data_delay1;
 hblank_delay1 <= hblank;
 hblank_delay2 <= hblank_delay1;
 hblank_delay3 <= hblank_delay2;
 hblank_delay4 <= hblank_delay3;
 hblank_delay5 <= hblank_delay4;
 hblank_delay6 <= hblank_delay5;
 image_data_delay1 <= image_data;
 image_data_delay2 <= image_data_delay1;
 image_data_delay3 <= image_data_delay2;
 image_data_delay4 <= image_data_delay3;
 image_data_delay5 <= image_data_delay4;
 image_data_delay6 <= image_data_delay5;
 line_1_addr_write <= '0'&address_counter_write_data;
 line_2_addr_write <= '0'&address_counter_write_data;
 line_3_addr_write <= '0'&address_counter_write_data;
 line_4_addr_write <= '0'&address_counter_write_data;
 line_5_addr_write <= '0'&address_counter_write_data;
 if hblank_delay4 = '1' then
 address_counter_write_data <= address_counter_write_data +1;
 else
 address_counter_write_data <= (others=>'1');
 end if;
 end if;
end process;

multiplex_line_data: process(video_clk,reset)
begin
 if reset='0' then
 line_1_read <= (others=>'0');
 line_2_read <= (others=>'0');
 line_3_read <= (others=>'0');
 line_4_read <= (others=>'0');
 line_5_read <= (others=>'0');
 line_1_din_write <= (others=>'0');
 line_2_din_write <= (others=>'0');
 line_3_din_write <= (others=>'0');
 line_4_din_write <= (others=>'0');
 line_5_din_write <= (others=>'0');
 line_1_we_write <= '1';
 line_2_we_write <= '1';
 line_3_we_write <= '1';
 line_4_we_write <= '1';
 line_5_we_write <= '1';
 line_1_en_write <= '1';
 line_2_en_write <= '1';
 line_3_en_write <= '1';
 line_4_en_write <= '1';
 line_5_en_write <= '1';
 number_hblank_delay1 <= (others=>'0');
 number_hblank_delay2 <= (others=>'0');
 number_hblank_delay3 <= (others=>'0');

 74

 number_hblank_delay4 <= (others=>'0');
 number_hblank_delay5 <= (others=>'0');
 elsif rising_edge(video_clk) then
 number_hblank_delay1 <= number_hblank;
 number_hblank_delay2 <= number_hblank_delay1;
 number_hblank_delay3 <= number_hblank_delay2;
 number_hblank_delay4 <= number_hblank_delay3;
 number_hblank_delay5 <= number_hblank_delay4;
 if hblank_delay5 ='1' then
 case number_hblank_delay4 is
 when "001" =>
 line_1_read <= line_1_dout_read;
 line_2_read <= line_2_dout_read;
 line_3_read <= line_3_dout_read;
 line_4_read <= line_4_dout_read;
 line_5_read <= line_5_dout_read;
 line_1_din_write <= "00"&image_data_delay5;
 line_1_we_write <= '0';
 line_2_we_write <= '1';
 line_3_we_write <= '1';
 line_4_we_write <= '1';
 line_5_we_write <= '1';
 line_1_en_write <= '0';
 line_2_en_write <= '1';
 line_3_en_write <= '1';
 line_4_en_write <= '1';
 line_5_en_write <= '1';
 when "010" =>
 line_1_read <= line_2_dout_read;
 line_2_read <= line_3_dout_read;
 line_3_read <= line_4_dout_read;
 line_4_read <= line_5_dout_read;
 line_5_read <= line_1_dout_read;
 line_2_din_write <= "00"&image_data_delay5;
 line_1_we_write <= '1';
 line_2_we_write <= '0';
 line_3_we_write <= '1';
 line_4_we_write <= '1';
 line_5_we_write <= '1';
 line_1_en_write <= '1';
 line_2_en_write <= '0';
 line_3_en_write <= '1';
 line_4_en_write <= '1';
 line_5_en_write <= '1';
 when "011" =>
 line_1_read <= line_3_dout_read;
 line_2_read <= line_4_dout_read;
 line_3_read <= line_5_dout_read;
 line_4_read <= line_1_dout_read;
 line_5_read <= line_2_dout_read;
 line_3_din_write <= "00"&image_data_delay5;
 line_1_we_write <= '1';
 line_2_we_write <= '1';
 line_3_we_write <= '0';
 line_4_we_write <= '1';
 line_5_we_write <= '1';
 line_1_en_write <= '1';

 75

 line_2_en_write <= '1';
 line_3_en_write <= '0';
 line_4_en_write <= '1';
 line_5_en_write <= '1';
 when "100" =>
 line_1_read <= line_4_dout_read;
 line_2_read <= line_5_dout_read;
 line_3_read <= line_1_dout_read;
 line_4_read <= line_2_dout_read;
 line_5_read <= line_3_dout_read;
 line_4_din_write <= "00"&image_data_delay5;
 line_1_we_write <= '1';
 line_2_we_write <= '1';
 line_3_we_write <= '1';
 line_4_we_write <= '0';
 line_5_we_write <= '1';
 line_1_en_write <= '1';
 line_2_en_write <= '1';
 line_3_en_write <= '1';
 line_4_en_write <= '0';
 line_5_en_write <= '1';
 when "101" =>
 line_1_read <= line_5_dout_read;
 line_2_read <= line_1_dout_read;
 line_3_read <= line_2_dout_read;
 line_4_read <= line_3_dout_read;
 line_5_read <= line_4_dout_read;
 line_5_din_write <= "00"&image_data_delay5;
 line_1_we_write <= '1';
 line_2_we_write <= '1';
 line_3_we_write <= '1';
 line_4_we_write <= '1';
 line_5_we_write <= '0';
 line_1_en_write <= '1';
 line_2_en_write <= '1';
 line_3_en_write <= '1';
 line_4_en_write <= '1';
 line_5_en_write <= '0';
 when others =>
 line_1_read <= line_1_dout_read;
 line_2_read <= line_2_dout_read;
 line_3_read <= line_3_dout_read;
 line_4_read <= line_4_dout_read;
 line_5_read <= line_5_dout_read;
 line_5_din_write <= "00"&image_data_delay5;
 line_1_we_write <= '0';
 line_2_we_write <= '1';
 line_3_we_write <= '1';
 line_4_we_write <= '1';
 line_5_we_write <= '1';
 line_1_en_write <= '0';
 line_2_en_write <= '1';
 line_3_en_write <= '1';
 line_4_en_write <= '1';
 line_5_en_write <= '1';
 end case;
 end if;

 76

 end if;
end process;

add_multiplications: process(video_clk,reset)
begin
 if reset='0' then
 line_1_sum <= (others=>'0');
 line_2_sum <= (others=>'0');
 line_3_sum <= (others=>'0');
 line_4_sum <= (others=>'0');
 line_5_sum <= (others=>'0');
 sum <= (others=>'0');
 elsif rising_edge(video_clk) then
 line_1_sum <= ("000"&multiplier_1_1_out) + ("000"&multiplier_1_2_out) +
("000"&multiplier_1_3_out) + ("000"&multiplier_1_4_out) + ("000"&multiplier_1_5_out);
 line_2_sum <= ("000"&multiplier_2_1_out) + ("000"&multiplier_2_2_out) +
("000"&multiplier_2_3_out) + ("000"&multiplier_2_4_out) + ("000"&multiplier_2_5_out);
 line_3_sum <= ("000"&multiplier_3_1_out) + ("000"&multiplier_3_2_out) +
("000"&multiplier_3_3_out) + ("000"&multiplier_3_4_out) + ("000"&multiplier_3_5_out);
 line_4_sum <= ("000"&multiplier_4_1_out) + ("000"&multiplier_4_2_out) +
("000"&multiplier_4_3_out) + ("000"&multiplier_4_4_out) + ("000"&multiplier_4_5_out);
 line_5_sum <= ("000"&multiplier_5_1_out) + ("000"&multiplier_5_2_out) +
("000"&multiplier_5_3_out) + ("000"&multiplier_5_4_out) + ("000"&multiplier_5_5_out);
 sum <= ("000"&line_1_sum) + ("000"&line_2_sum) + ("000"&line_3_sum) +
("000"&line_4_sum) + ("000"&line_5_sum);
 end if;
end process;

M_1_1 : multiplier18 port map
 (clk => video_clk,
 a => line_1_dout_read_delay_4,
 b => coefficient_1_1,
 o => multiplier_1_1_out);

M_1_2 : multiplier18 port map
 (clk => video_clk,
 a => line_1_dout_read_delay_3,
 b => coefficient_1_2,
 o => multiplier_1_2_out);

M_1_3 : multiplier18 port map
 (clk => video_clk,
 a => line_1_dout_read_delay_2,
 b => coefficient_1_3,
 o => multiplier_1_3_out);

M_1_4 : multiplier18 port map
 (clk => video_clk,
 a => line_1_dout_read_delay_1,

 77

 b => coefficient_1_4,
 o => multiplier_1_4_out);

M_1_5 : multiplier18 port map
 (clk => video_clk,
 a => line_1_read,
 b => coefficient_1_5,
 o => multiplier_1_5_out);

M_2_1 : multiplier18 port map
 (clk => video_clk,
 a => line_2_dout_read_delay_4,
 b => coefficient_2_1,
 o => multiplier_2_1_out);

M_2_2 : multiplier18 port map
 (clk => video_clk,
 a => line_2_dout_read_delay_3,
 b => coefficient_2_2,
 o => multiplier_2_2_out);

M_2_3 : multiplier18 port map
 (clk => video_clk,
 a => line_2_dout_read_delay_2,
 b => coefficient_2_3,
 o => multiplier_2_3_out);

M_2_4 : multiplier18 port map
 (clk => video_clk,
 a => line_2_dout_read_delay_1,
 b => coefficient_2_4,
 o => multiplier_2_4_out);

M_2_5 : multiplier18 port map
 (clk => video_clk,
 a => line_2_read,
 b => coefficient_2_5,
 o => multiplier_2_5_out);

M_3_1 : multiplier18 port map
 (clk => video_clk,
 a => line_3_dout_read_delay_4,
 b => coefficient_3_1,

 78

 o => multiplier_3_1_out);

M_3_2 : multiplier18 port map
 (clk => video_clk,
 a => line_3_dout_read_delay_3,
 b => coefficient_3_2,
 o => multiplier_3_2_out);

M_3_3 : multiplier18 port map
 (clk => video_clk,
 a => line_3_dout_read_delay_2,
 b => coefficient_3_3,
 o => multiplier_3_3_out);

M_3_4 : multiplier18 port map
 (clk => video_clk,
 a => line_3_dout_read_delay_1,
 b => coefficient_3_4,
 o => multiplier_3_4_out);

M_3_5 : multiplier18 port map
 (clk => video_clk,
 a => line_3_read,
 b => coefficient_3_5,
 o => multiplier_3_5_out);

M_4_1 : multiplier18 port map
 (clk => video_clk,
 a => line_4_dout_read_delay_4,
 b => coefficient_4_1,
 o => multiplier_4_1_out);

M_4_2 : multiplier18 port map
 (clk => video_clk,
 a => line_4_dout_read_delay_3,
 b => coefficient_4_2,
 o => multiplier_4_2_out);

M_4_3 : multiplier18 port map
 (clk => video_clk,
 a => line_4_dout_read_delay_2,
 b => coefficient_4_3,
 o => multiplier_4_3_out);

 79

M_4_4 : multiplier18 port map
 (clk => video_clk,
 a => line_4_dout_read_delay_1,
 b => coefficient_4_4,
 o => multiplier_4_4_out);

M_4_5 : multiplier18 port map
 (clk => video_clk,
 a => line_4_read,
 b => coefficient_4_5,
 o => multiplier_4_5_out);

M_5_1 : multiplier18 port map
 (clk => video_clk,
 a => line_5_dout_read_delay_4,
 b => coefficient_5_1,
 o => multiplier_5_1_out);

M_5_2 : multiplier18 port map
 (clk => video_clk,
 a => line_5_dout_read_delay_3,
 b => coefficient_5_2,
 o => multiplier_5_2_out);

M_5_3 : multiplier18 port map
 (clk => video_clk,
 a => line_5_dout_read_delay_2,
 b => coefficient_5_3,
 o => multiplier_5_3_out);

M_5_4 : multiplier18 port map
 (clk => video_clk,
 a => line_5_dout_read_delay_1,
 b => coefficient_5_4,
 o => multiplier_5_4_out);

M_5_5 : multiplier18 port map
 (clk => video_clk,
 a => line_5_read,
 b => coefficient_5_5,
 o => multiplier_5_5_out);

 80

END arch;

-- VHDL Entity fpga2.filter.symbol
--
-- Created:
-- by - kiziloz.YTSD_VHDL (kavak)
-- at - 18:12:02 12/23/04
--
-- Generated by Mentor Graphics' HDL Designer(TM) 2003.3 (Build 60)
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY filter IS
 PORT(
 hblank : IN std_logic;
 image_data : IN std_logic_vector (15 DOWNTO 0);
 reset : IN std_logic;
 vblank : IN std_logic;
 video_clk : IN std_logic;
 sum : OUT std_logic_vector (41 DOWNTO 0);
 coef_en : IN std_logic;
 coef_we : IN std_logic;
 coef_addr : IN std_logic_vector (9 DOWNTO 0);
 coef_din : IN std_logic_vector (17 DOWNTO 0);
 coef_clk : IN std_logic
);

-- Declarations

END filter ;

--
-- VHDL Architecture fpga2.filter.struct
--
-- Created:
-- by - kiziloz.YTSD_VHDL (kavak)
-- at - 18:12:03 12/23/04
--
-- Generated by Mentor Graphics' HDL Designer(TM) 2003.3 (Build 60)
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ARCHITECTURE struct OF filter IS

 -- Architecture declarations

 -- Internal signal declarations
 SIGNAL addrb : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL clkb : std_logic;

 81

 SIGNAL dina : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL dina1 : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL dina2 : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL dina3 : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL dina4 : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL dinb : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL enb : std_logic;
 SIGNAL filter_coefficient_addr : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL filter_coefficient_clk : std_logic;
 SIGNAL filter_coefficient_din : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL filter_coefficient_dout : std_logic_vector(17 DOWNTO 0);
 SIGNAL filter_coefficient_en : std_logic;
 SIGNAL filter_coefficient_we : std_logic;
 SIGNAL line_1_addr_read : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_1_addr_write : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_1_clk_read : std_logic;
 SIGNAL line_1_clk_write : std_logic;
 SIGNAL line_1_din_write : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL line_1_dout_read : std_logic_vector(17 DOWNTO 0);
 SIGNAL line_1_en_read : std_logic;
 SIGNAL line_1_en_write : std_logic;
 SIGNAL line_1_we_read : std_logic;
 SIGNAL line_1_we_write : std_logic;
 SIGNAL line_2_addr_read : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_2_addr_write : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_2_clk_read : std_logic;
 SIGNAL line_2_clk_write : std_logic;
 SIGNAL line_2_din_write : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL line_2_dout_read : std_logic_vector(17 DOWNTO 0);
 SIGNAL line_2_en_read : std_logic;
 SIGNAL line_2_en_write : std_logic;
 SIGNAL line_2_we_read : std_logic;
 SIGNAL line_2_we_write : std_logic;
 SIGNAL line_3_addr_read : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_3_addr_write : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_3_clk_read : std_logic;
 SIGNAL line_3_clk_write : std_logic;
 SIGNAL line_3_din_write : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL line_3_dout_read : std_logic_vector(17 DOWNTO 0);
 SIGNAL line_3_en_read : std_logic;
 SIGNAL line_3_en_write : std_logic;
 SIGNAL line_3_we_read : std_logic;
 SIGNAL line_3_we_write : std_logic;
 SIGNAL line_4_addr_read : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_4_addr_write : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_4_clk_read : std_logic;
 SIGNAL line_4_clk_write : std_logic;
 SIGNAL line_4_din_write : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL line_4_dout_read : std_logic_vector(17 DOWNTO 0);
 SIGNAL line_4_en_read : std_logic;
 SIGNAL line_4_en_write : std_logic;
 SIGNAL line_4_we_read : std_logic;
 SIGNAL line_4_we_write : std_logic;
 SIGNAL line_5_addr_read : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_5_addr_write : std_logic_VECTOR(9 DOWNTO 0);
 SIGNAL line_5_clk_read : std_logic;
 SIGNAL line_5_clk_write : std_logic;

 82

 SIGNAL line_5_din_write : std_logic_VECTOR(17 DOWNTO 0);
 SIGNAL line_5_dout_read : std_logic_vector(17 DOWNTO 0);
 SIGNAL line_5_en_read : std_logic;
 SIGNAL line_5_en_write : std_logic;
 SIGNAL line_5_we_read : std_logic;
 SIGNAL line_5_we_write : std_logic;
 SIGNAL web : std_logic;

 -- Component Declarations
 COMPONENT filter_controller
 PORT (
 line_1_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_1_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_1_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_1_clk_read : OUT std_logic ;
 line_1_clk_write : OUT std_logic ;
 line_1_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_1_en_write : OUT std_logic ;
 line_1_en_read : OUT std_logic ;
 line_1_we_write : OUT std_logic ;
 line_1_we_read : OUT std_logic ;
 line_2_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_2_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_2_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_2_clk_read : OUT std_logic ;
 line_2_clk_write : OUT std_logic ;
 line_2_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_2_en_write : OUT std_logic ;
 line_2_en_read : OUT std_logic ;
 line_2_we_write : OUT std_logic ;
 line_2_we_read : OUT std_logic ;
 line_3_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_3_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_3_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_3_clk_read : OUT std_logic ;
 line_3_clk_write : OUT std_logic ;
 line_3_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_3_en_write : OUT std_logic ;
 line_3_en_read : OUT std_logic ;
 line_3_we_write : OUT std_logic ;
 line_3_we_read : OUT std_logic ;
 line_4_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_4_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_4_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_4_clk_read : OUT std_logic ;
 line_4_clk_write : OUT std_logic ;
 line_4_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_4_en_write : OUT std_logic ;
 line_4_en_read : OUT std_logic ;
 line_4_we_write : OUT std_logic ;
 line_4_we_read : OUT std_logic ;
 line_5_dout_read : IN std_logic_vector (17 DOWNTO 0);
 line_5_addr_read : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_5_addr_write : OUT std_logic_VECTOR (9 DOWNTO 0);
 line_5_clk_read : OUT std_logic ;
 line_5_clk_write : OUT std_logic ;

 83

 line_5_din_write : OUT std_logic_VECTOR (17 DOWNTO 0);
 line_5_en_write : OUT std_logic ;
 line_5_en_read : OUT std_logic ;
 line_5_we_write : OUT std_logic ;
 line_5_we_read : OUT std_logic ;
 hblank : IN std_logic ;
 vblank : IN std_logic ;
 filter_coefficient_dout : IN std_logic_vector (17 DOWNTO 0);
 filter_coefficient_addr : OUT std_logic_VECTOR (9 DOWNTO 0);
 filter_coefficient_clk : OUT std_logic ;
 filter_coefficient_din : OUT std_logic_VECTOR (17 DOWNTO 0);
 filter_coefficient_en : OUT std_logic ;
 filter_coefficient_we : OUT std_logic ;
 image_data : IN std_logic_vector (15 DOWNTO 0);
 video_clk : IN std_logic ;
 reset : IN std_logic ;
 sum : OUT std_logic_vector (41 DOWNTO 0)
);
 END COMPONENT;
 COMPONENT dpram_1kx18
 PORT (
 addra : IN std_logic_VECTOR (9 DOWNTO 0);
 addrb : IN std_logic_VECTOR (9 DOWNTO 0);
 clka : IN std_logic ;
 clkb : IN std_logic ;
 dina : IN std_logic_VECTOR (17 DOWNTO 0);
 dinb : IN std_logic_VECTOR (17 DOWNTO 0);
 douta : OUT std_logic_VECTOR (17 DOWNTO 0);
 doutb : OUT std_logic_VECTOR (17 DOWNTO 0);
 ena : IN std_logic ;
 enb : IN std_logic ;
 wea : IN std_logic ;
 web : IN std_logic
);
 END COMPONENT;

BEGIN

 -- Instance port mappings.
 I5 : filter_controller
 PORT MAP (
 line_1_dout_read => line_1_dout_read,
 line_1_addr_read => line_1_addr_read,
 line_1_addr_write => line_1_addr_write,
 line_1_clk_read => line_1_clk_read,
 line_1_clk_write => line_1_clk_write,
 line_1_din_write => line_1_din_write,
 line_1_en_write => line_1_en_write,
 line_1_en_read => line_1_en_read,
 line_1_we_write => line_1_we_write,
 line_1_we_read => line_1_we_read,
 line_2_dout_read => line_2_dout_read,
 line_2_addr_read => line_2_addr_read,
 line_2_addr_write => line_2_addr_write,
 line_2_clk_read => line_2_clk_read,
 line_2_clk_write => line_2_clk_write,

 84

 line_2_din_write => line_2_din_write,
 line_2_en_write => line_2_en_write,
 line_2_en_read => line_2_en_read,
 line_2_we_write => line_2_we_write,
 line_2_we_read => line_2_we_read,
 line_3_dout_read => line_3_dout_read,
 line_3_addr_read => line_3_addr_read,
 line_3_addr_write => line_3_addr_write,
 line_3_clk_read => line_3_clk_read,
 line_3_clk_write => line_3_clk_write,
 line_3_din_write => line_3_din_write,
 line_3_en_write => line_3_en_write,
 line_3_en_read => line_3_en_read,
 line_3_we_write => line_3_we_write,
 line_3_we_read => line_3_we_read,
 line_4_dout_read => line_4_dout_read,
 line_4_addr_read => line_4_addr_read,
 line_4_addr_write => line_4_addr_write,
 line_4_clk_read => line_4_clk_read,
 line_4_clk_write => line_4_clk_write,
 line_4_din_write => line_4_din_write,
 line_4_en_write => line_4_en_write,
 line_4_en_read => line_4_en_read,
 line_4_we_write => line_4_we_write,
 line_4_we_read => line_4_we_read,
 line_5_dout_read => line_5_dout_read,
 line_5_addr_read => line_5_addr_read,
 line_5_addr_write => line_5_addr_write,
 line_5_clk_read => line_5_clk_read,
 line_5_clk_write => line_5_clk_write,
 line_5_din_write => line_5_din_write,
 line_5_en_write => line_5_en_write,
 line_5_en_read => line_5_en_read,
 line_5_we_write => line_5_we_write,
 line_5_we_read => line_5_we_read,
 hblank => hblank,
 vblank => vblank,
 filter_coefficient_dout => filter_coefficient_dout,
 filter_coefficient_addr => filter_coefficient_addr,
 filter_coefficient_clk => filter_coefficient_clk,
 filter_coefficient_din => filter_coefficient_din,
 filter_coefficient_en => filter_coefficient_en,
 filter_coefficient_we => filter_coefficient_we,
 image_data => image_data,
 video_clk => video_clk,
 reset => reset,
 sum => sum
);
 I0 : dpram_1kx18
 PORT MAP (
 addra => line_1_addr_read,
 addrb => line_1_addr_write,
 clka => line_1_clk_read,
 clkb => line_1_clk_write,
 dina => dina,
 dinb => line_1_din_write,
 douta => line_1_dout_read,

 85

 doutb => OPEN,
 ena => line_1_en_read,
 enb => line_1_en_write,
 wea => line_1_we_read,
 web => line_1_we_write
);
 I1 : dpram_1kx18
 PORT MAP (
 addra => line_2_addr_read,
 addrb => line_2_addr_write,
 clka => line_2_clk_read,
 clkb => line_2_clk_write,
 dina => dina1,
 dinb => line_2_din_write,
 douta => line_2_dout_read,
 doutb => OPEN,
 ena => line_2_en_read,
 enb => line_2_en_write,
 wea => line_2_we_read,
 web => line_2_we_write
);
 I2 : dpram_1kx18
 PORT MAP (
 addra => line_3_addr_read,
 addrb => line_3_addr_write,
 clka => line_3_clk_read,
 clkb => line_3_clk_write,
 dina => dina2,
 dinb => line_3_din_write,
 douta => line_3_dout_read,
 doutb => OPEN,
 ena => line_3_en_read,
 enb => line_3_en_write,
 wea => line_3_we_read,
 web => line_3_we_write
);
 I3 : dpram_1kx18
 PORT MAP (
 addra => line_4_addr_read,
 addrb => line_4_addr_write,
 clka => line_4_clk_read,
 clkb => line_4_clk_write,
 dina => dina3,
 dinb => line_4_din_write,
 douta => line_4_dout_read,
 doutb => OPEN,
 ena => line_4_en_read,
 enb => line_4_en_write,
 wea => line_4_we_read,
 web => line_4_we_write
);
 I4 : dpram_1kx18
 PORT MAP (
 addra => line_5_addr_read,
 addrb => line_5_addr_write,
 clka => line_5_clk_read,
 clkb => line_5_clk_write,

 86

 dina => dina4,
 dinb => line_5_din_write,
 douta => line_5_dout_read,
 doutb => OPEN,
 ena => line_5_en_read,
 enb => line_5_en_write,
 wea => line_5_we_read,
 web => line_5_we_write
);
 I6 : dpram_1kx18
 PORT MAP (
 addra => filter_coefficient_addr,
 addrb => coef_addr,
 clka => filter_coefficient_clk,
 clkb => coef_clk,
 dina => filter_coefficient_din,
 dinb => coef_din,
 douta => filter_coefficient_dout,
 doutb => OPEN,
 ena => filter_coefficient_en,
 enb => coef_en,
 wea => filter_coefficient_we,
 web => coef_we
);

END struct;

 87

APPENDIX B FPGA Suppliers

FPGA Suppliers

Actel Corporation

Altera Corporation

AMI Semiconductor

Amphion Semiconductor, Inc.

Aptix Corporation

Atmel Corporation

Kawasaki LSI U.S.A., Inc.

Nallatech, Inc.

Pentek, Inc.

SiQUEST, Inc.

Tekmos, Inc.

Transtech Parallel Systems

Xilinx, Inc.

 APPENDIX B

 88

APPENDIX C Communication Block VHDL Codes

Communication Block VHDL Codes

RS232 Receiver Block VHDL Code

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY rs232_receiver IS

PORT(

 baudrate : IN std_logic_vector (7 DOWNTO 0);

 clk : IN std_logic;

 cs : IN std_logic;

 rst : IN std_logic;

 sin : IN std_logic;

 data_out : OUT std_logic_vector (7 DOWNTO 0);

 datavalid : OUT std_logic;

 receiving : OUT std_logic

);

END rs232_receiver ;

architecture arch_rs232_receiver of rs232_receiver is

constant wait_first : std_logic_vector(1 downto 0) := "00";

constant count_half : std_logic_vector(1 downto 0) := "01";

constant get_first : std_logic_vector(1 downto 0) := "10";

constant get_last : std_logic_vector(1 downto 0) := "11";

signal counter : std_logic_vector(7 downto 0);

 APPENDIX C

 89

signal count_8 : std_logic_vector(2 downto 0);

signal rcv_data : std_logic_vector(7 downto 0);

signal data_flag : std_logic;

signal rcv_state : std_logic_vector(1 downto 0);

begin

 process(clk, rst)

 begin

 if rst = '0' then

 rcv_state <= wait_first;

 counter <= (others => '0');

 count_8 <= (others => '0');

 rcv_data <= (others => '0');

 data_flag <= '1';

 receiving <= '0';

 elsif rising_edge(clk) then

 if cs = '0' then

 rcv_state <= wait_first;

 counter <= (others => '0');

 count_8 <= (others => '0');

 receiving <= '0';

 data_flag <= '1';

 else

 case rcv_state is

 when wait_first =>

 counter <= (others => '0');

 data_flag <= '1';

 if sin = '1' then

 rcv_state <= wait_first;

 else

 rcv_state <= count_half;

 end if;

 when count_half =>

 counter <= counter+1;

 if sin = '0' then

 90

 if counter = ('0'&baudrate(7 downto 1)) then

 counter <= (others => '0');

 rcv_state <= get_first;

 receiving <= '1';

 else

 rcv_state <= count_half;

 end if;

 else

 rcv_state <= wait_first;

 end if;

 when get_first =>

 counter <= counter+1;

 if counter = baudrate then

 counter <= (others => '0');

 rcv_data <= sin&rcv_data(7 downto 1);

 count_8 <= count_8+1;

 if count_8 = "111" then

 rcv_state <= get_last;

 end if;

 end if;

 when get_last =>

 counter <= counter+1;

 if counter = baudrate then

 counter <= (others => '0');

 receiving <= '0';

 if sin='1' then

 data_flag <= '0';

 end if;

 rcv_state <=wait_first;

 end if;

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

 91

 process(clk,rst)

 begin

 if rst='0' then

 data_out <=(others=>'0');

 datavalid <= '1';

 elsif rising_edge(clk) then

 datavalid <= '1';

 if data_flag='0' then

 data_out <= rcv_data;

 datavalid <= '0';

 end if;

 end if;

 end process;

END ;

--***

RS232 Transmitter Block VHDL Code

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY rs232_transmitter IS

PORT(

 baudrate : IN std_logic_vector (7 DOWNTO 0);

 clk : IN std_logic;

 cs : IN std_logic;

 data_in : IN std_logic_vector (7 DOWNTO 0);

 rst : IN std_logic;

 start_xmit : IN std_logic;

 sout : OUT std_logic;

 transmitting : OUT std_logic

);

 92

END rs232_transmitter ;

architecture arch_rs232_transmitter of rs232_transmitter is

signal xmitdt : std_logic_vector(7 downto 0);

signal xmit_stm : std_logic_vector(1 downto 0);

signal cnt1 : std_logic_vector(7 downto 0);

signal cnt_xmit_stop : std_logic_vector(2 downto 0);

constant WAITSTATE : std_logic_vector(1 downto 0) := "00";

constant STARTSTATE : std_logic_vector(1 downto 0) := "01";

constant DATASTATE : std_logic_vector(1 downto 0) := "10";

constant STOPSTATE : std_logic_vector(1 downto 0) := "11";

begin

 process(clk, rst)

 begin

 if rst = '0' then

 xmit_stm <= WAITSTATE;

 sout <= '1';

 cnt1 <= (others => '0');

 cnt_xmit_stop <= (others => '0');

 xmitdt <= (others => '0');

 transmitting <= '0';

 elsif falling_edge(clk) then

 if cs = '0' then

 xmit_stm <= WAITSTATE;

 transmitting <= '0';

 sout <= '1';

 cnt1 <= (others => '0');

 cnt_xmit_stop <= (others => '0');

 else

 case xmit_stm is

 --ready to transmit data 1 start,1 stop bit

 when WAITSTATE =>

 if start_xmit = '1' then

 xmit_stm <= STARTSTATE;

 xmitdt <= data_in;

 93

 end if;

 when STARTSTATE =>

 transmitting <= '1';

 sout <= '0';

 cnt1 <= cnt1+1;

 if cnt1 = baudrate then

 cnt1 <= (others => '0');

 xmit_stm <= DATASTATE;

 end if;

 when DATASTATE =>

 sout <= xmitdt(0);

 cnt1 <= cnt1+1;

 if cnt1 = baudrate then

 cnt_xmit_stop <= cnt_xmit_stop+1;

 xmitdt <= '0'&xmitdt(7 downto 1);

 if cnt_xmit_stop = "111" then

 sout <= '1';

 cnt_xmit_stop <= (others => '0');

 xmit_stm <= STOPSTATE;

 end if;

 cnt1 <= (others => '0');

 end if;

 when STOPSTATE =>

 cnt1 <=cnt1+1;

 if cnt1=baudrate then

 cnt1<=(others=>'0');

 xmit_stm<=WAITSTATE;

 transmitting<='0';

 end if;

 when others=>

 null;

 end case;

 end if;

 end if;

 end process;

END ;

