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ABSTRACT

BASIS IN NUCLEAR FRECHET SPACES

Erkursun Nazife
M.Sc., Department of Mathematics
Supervisor: Prof. Dr. Zafer NURLU
Co-Supervisor: Prof. Dr. Aydin AYTUNA

February 2006, 46 pages

Existence of basis in locally convex space has been an important problem in
functional analysis for more than 40 years. In this thesis the conditions for the
existence of basis are examined. This thesis consist of three parts. The first part
is about the exterior interpolative conditions. The second part deals with the
inner interpolative conditions DN(Q), Q(P), 7 (P, Q) for seminorm systems P
and Q on a nuclear Fréchet space. These are sufficient conditions on existence
of basis. In the last part, it is shown that for a regular nuclear Kothe space the
inner interpolative conditions are satisfied and moreover another type of inner

interpolative conditions are introduced.

Keywords: Basis, Nuclear Fréchet Space, Interpolative conditions.
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OZ

NUCLEER FRECHET UZAYLARINDA TABAN

Erkursun Nagzife
Yiiksek Lisans, Matematik Bolimu
Tez Yoneticisi: Prof. Dr. Zafer NURLU
Ortak Tez Yoneticisi: Prof. Dr. Aydin AYTUNA

Subat 2006, 46 sayfa

Fonksiyonel analizde, lokal konveks uzaylar icin tabanin varligi 40 yildan
fazla stiredir 6nemli bir problemdir. Bu tezde tabanin varlig: i¢in gerekli kosullar
incelenmistir. Bu tez 3 boliimden olugsmaktadir. Ilk boliim digsal interpolasyon
kogullar1 hakkinda bir incelemedir. Ikinci béliimde niikleer Fréchet uzaylar ize-
rindeki igsel interpolasyon kosullari, DN(Q), Q(P), 7 (P, Q) ile ilgilenilmigtir.
Bu kosullar tabanin varhgi icin yeterli kogullardir. Son boliimde, diizenli niikleer
Kothe uzay: igin igsel interpolasyon kosullarinin saglandigi gosterilmis ve son

olarak da interpolasyon kosullarinin farkli bir versiyonundan bahsedilmigtir.

Anahtar Kelimeler: Taban, Niikleer Fréchet Uzaylar, Interpolasyon Kosullari
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In this chapter, we will give some basic definitions, notations and theorems
about Fréchet spaces which will be used in this thesis. For undefined standart

concepts and well-known results we refer the reader to [7], [11], [15] and [18].

1.1 Introduction

The locally convex spaces appearing in analysis roughly divides into two
classes. The first class is normed spaces. Its theory belongs to classical func-
tional analysis. The second class is nuclear locally convex spaces which were
introduced by A. Grothendieck in 1951. These two classes have a trivial intersec-
tion in the sense that only finite dimensional locally convex spaces are normable
and nuclear.

Grothendieck disclosed a theory of nuclear Fréchet spaces and posed some
important questions in the 1950’s. One of the important questions is the exis-
tence of a basis in a nuclear Fréchet space. B. S. Mitiagin and N. M. Zobin in
1975 answered this question negatively; they constructed a nuclear Fréchet space
without basis.

Another important problem which was posed in 1970 by Pelczyniski [19] is
whether complemented subspaces of nuclear Fréchet spaces with a basis always

have a basis, i.e., whether they are isomorphic to Kothe spaces.



On the other hand the existence of basis was proved for many concrete spaces
[1],[2],[13],[17] and for many others it is still an open problem. Sufficient con-
ditions for existence of basis were obtained by a method called the ” dead-end
space method 7 by various authors. Dead-end space refers to a Hilbert space
being continuously and densely embedded in a nuclear Fréchet space and was
first introduced in 1971 by B.S.Mitiagin and G.M.Khenkin [13]

In this thesis, we will first discuss the interpolative conditions which depend
on a given dead-end space (Exterior interpolative conditions) and describe the

” method. In the second part we will introduce some inner

7 dead-end space
interpolative conditions (depending only on the seminorm system of the NFS)
and show that they are sufficient for the existence of basis.

Finally, we will prove that for a regular nuclear Kéthe space, the inner inter-

polative conditions introduced above are satified.

1.2 Some Definitions and Preliminaries

1.2.1 Locally Convex Spaces

There are basically two ways to describe a locally convex structure on a given

vector space. First is with neighbourhooods, second is with seminorms.

Definition 1.1. A vector space E over the scalar field K equipped with a Haus-

dorff topology for which;

addition + : EXE — E

and

scalar multiplication - : K x E — E



are continuous is called a Topological Vector Space. (T'V'S)

Definition 1.2. A locally convex space is a topological vector space in which

each point has a neighbourhood basis consisting of convex sets.

Lemma 1.1. A locally conver space E has a base U of neighbourhoods of the

origin with the following properties;

Cl :IfU € UandV € U, then there exists W € U with W C UNYV.
C2 :IfUeUanda#0,aU € U.

C3 : Fach U € U 1is absolutely convexr and absorbing, i.e., for each x € E,

there is some A > 0 with x € \U

Conversely given a nonempty set U of subsets of a vector space E with the
properties C'1 —C3, there is a topology making E a locally convex space admitting
U as a base of neighbourhoods.[See 15]

The relation between seminorms and zero neighbourhoods is discussed below.

Definition 1.3. Let E be a locally convex space. A collection U of zero neigh-
bourhoods in E is called a fundamental system of zero neighbourhoods if for every
zero neighbourhood U, there exists V' € U and € > 0 with eV C U

A family (pa),; of continuous seminorms on E is called a fundamental system

of seminorms if the sets

Uy ={x € E;(pa(x)) <1},a €1

form a fundamental system of zero neighbourhoods.



Lemma 1.2. Let E be a K vector space and (py) be a family of seminorms

ael

on E satisfying

1. For every x € E with x # 0, 3k € I with (px(z)) >0

2. For every i,j € I, 3m € I and C > 0 with max(p;(x)), (pj(z)) <
C. (pm(z)) Vo € E.

Then there exists a unique locally convex space topology on B for which (Pa) ,e;
1 a fundamental system of seminorms and E is a locally convex space.
Moreover every locally convex space B has a fundamental system of seminorms

which satisfies 1 and 2.[See 11]

One can generate now locally convex spaces from given ones. The method

mentioned below is one way of doing this.

Definition 1.4. A K vector space E with a family of locally convex spaces
(E;);c; and linear maps m; : E — E; is called a projective system, if for each
x € E, x # 0, there exists an ¢ € I with m;(z) # 0. For every projective system
(pi : E — E;j)ier, the seminorm system {p : p = max;ep piom, M € e(I), p; is
continuous seminorm on E;, i € M, €(I) is a bounded subset of I} induces a
locally convex topology on E which is called the projective topology of system,
1.€.,

the projective topology is the coarsest topology on E for which all the maps

m; are continuous.

Definition 1.5. Let (Ey, ||-||,) be a family of locally convex spaces. For i < j
where 4,5 € I, let v;; + E; — E; be a continuous linear map. The subspace

of ILE;, E = {2 = (z;) € ILE,; : 1;;(z;) = (x;) whenever i < j} is called the



projective limit of (E;, ||-||) with respect to the mappings ¢, ; and it is shown by,
E = limproj E;

Definition 1.6. Let E be a K vector space and p be a continuous seminorm on E.
A norm is defined on E/N,, by (|| + N,|), := p(x) where N,:={z € E : p(z) = 0)
is a closed linear subspace of E.

Then E, := (E/mH o) is called the local Banach space for the seminorm p.

For the canonical map ¢ : E — Eyp, i#(x) := z + N, we have ||P(z)|, = p(z) for

all z € E.

Remark 1.1. The following are well-known,

(a) Every locally convex space E is the projective limit for a suitable projective
system of Banach spaces. Actually E is isomorphic to a subspace of a

suitable product of Banach spaces.

(b) If (pa)acs is any fundamental system of seminorms for E, the projective
topology 7 on E is the projective topology of the system (1% : E — E,)aer

where E, is the local Banach space for the seminorm p,.

The dual of a locally convex space is defined below.

Definition 1.7. Let (E, E’) be a dual pair where E’ is the topological dual of E.
If U is a subset of E, the subset of E/

{y e E :suply(z)| <1,z € U}

is called the polar of U and is denoted by U°.



Proposition 1.1. For every absolutely convex zero neighbourhood U in a locally

convez space E,
lz|l; =sup{ly(z)| : y € U°} forallz € E

Hence if U is a fundamental system of zero meighbourhoods in a locally convex

space B, {||z]|; }cp @5 a fundamental system of seminorms in E.

Also we can define the dual seminorm of ||z|, by ||z||; on dual of E, that is

1/l = sup{|f ()] : [|lz]l, < 1}Vf € E

1.2.2 Fréchet Spaces

Definition 1.8. A complete metrizable locally convex space E is called a Fréchet

space.

In a Fréchet space, a fundamental system of seminorms is a countable system
of continuous seminorms generating the topology.

We can assume without loss of generality that the seminorm systems consid-
ered are increasing. Because we can modify the fundamental system of seminorms

([ )nen as |||, = (maxi<jcn [-];)nen and hence ||z, < |[z[|,,, Yz € E,n € N

n+1

and clearly (|-|,), and (||-|,,)» generate the same topology.

Definition 1.9. A matrix A = (af) jken of nonnegative numbers is called a Kothe

matriz if it satisfies the following conditions :

(i) For each j € N there exists a k € N with a} > 0.

(i) af < a?“ for all .k € N.



For 1 < p < oo we define
00 1/p
N(A) =Lz eKY: |z|p = (Z |g;ja§\p> <oo forall keN
j=1

Forp=ocand p=20

AP(A) = {x e KN ||z := sup |z a? < oo forall ke N} ,
jeN

co(A) == {x € X°(A) : lim |z;]af =0 for all k € N}
j—oo
The seminorms ||-||7 are called canonical seminorms.

For every Kéthe matrix A, the spaces \P(A), 1 < p < oo and ¢y(A) are Fréchet

spaces.

Definition 1.10. A Kothe space with a Kéithe matrix A = (ak), ren is called

regular if,
k k
a a
n n+1
- >
k1l = EL Vk,n
n n+1

Definition 1.11. A locally convex space E is said to be nuclear, if for each
absolutely convex zero neighbourhood U € E there exists an absolutely convex

zero neighnourhood V' and a measure y on the o*-compact set V°, so that

felly < [ 1] duts) for ait s € B

Definition 1.12. A seminorm p on K vector space E is called a Hilbert seminorm

if there exists a semiscalar product (-,-) on E with p(x) = /(z,z), Vz € E.

Remark 1.2.



1. Every nuclear space E has a fundamental system of Hilbert seminorms.[See

11]

2. If p is a Hilbert seminorm on E then the local Banach space B, is a Hilbert

space.

Definition 1.13. Let E and F be Banach spaces and let T': E — F be a linear
map. 1" is nuclear, if there exist sequences (a;) ey in E' and (b;)jey in F such

that

T(x)= Zaj(x)bj,Vx cE (1.1)

jEN

and

> llagl libsl) < oo (1.2)

jeN

The result below combines the concepts of local Banach spaces and nuclear

maps.

Proposition 1.2. E is nuclear if and only if for each continuous seminorm p on

E, there exists a continuous seminorm q > p so that the map

18 nuclear.

A practical way to check nuclearity of Kdthe spaces is given below.



Theorem 1.1 (Grothendieck-Pietsch Criterion). A K6the space is nuclear if and

k
an

only if for every k € N there exists p € N such that ) | % < oo.

Remark 1.3. If a Kothe space is nuclear, then all seminorm systems {||-|[}}, are

equivalent for 1 < p < oo and p = 0.

In the rest of the work, we show A'(A) where A = (a¥) () by A(ak) and call

it a Kothe space.

n=1

Aak) = {x = (zp)nen : ||2]|), = Z |z, af < 0o, VE € N} (1.5)

Proposition 1.3. For a nuclear Kothe space A(aF), there exists a permutation

o and a subsequence (py) at N such that if b¥ = ayl,) then

bk
ZSUpbk_il < o0 (1.6)
J

n J2n

and A(aF) = A(bF) [See 5]

1.2.3 Bases in Locally Convex Spaces

Definition 1.14. A sequence (z,)nen of elements in a locally convex space E is
called a basis if for each element = € E there is a uniquely determined sequence

of scalars (o, )nen such that
o
T = Z 0T,
n=1

The linear forms =¥ on E defined by «,, = (x,z,) = x}(x) are called coordinate

functionals relative to the basis (x,,).

Definition 1.15. A basis (x,,),en is called an absolute basis if for each continuous

seminorm p on E there exists a continuous seminorm ¢ and a positive constant

10



C satisfying
Z|x ) p(z,) < Cq(x) Ve € E

Theorem 1.2. (Dynin-Mitiagin Theorem)Every basis in a NFS is absolute.

Remark 1.4. We get from the Dynin-Mitiagin Theorem that each nuclear Fréchet
space E with basis can be identified with a nuclear Kothe space A(a,y). Ab-
soluteness of a basis in a nuclear Fréchet space which has an increasing semi-
norm system implies that any nuclear Fréchet space with a basis (ey), and semi-
norm system (||-||,.)x ts canonically isomorphic to the nuclear Kothe space A(ay, )
where anp = |ley]|, for k = 1,2,3..., via the map T : E — A(any) defined by
T(z) = (o)nen where x = Y onx,. The converse is trivially true since a

nuclear Kothe space is a nuclear Fréchet space with basis.

Now we denote the class of power series spaces which is important because

many spaces appearing in analysis are isomorphic to power series spaces.

Definition 1.16. Let (ri)reny and o = (au)neny be increasing such that
limg oo 7 = r and lim,, ., a,, = 0o. Then the Kothe space A(A) where A =

(exp(rray))kn is called a power series space and is denoted by A, («);

A (a) == {x e KV : |z, := Z |z| exp(rpa;) < oo,Vk) (1.7)
jEN
If r < 0o, Ar(a) is called a power series space of finite type and if r = oo,

A, () is called a power series space of infinite type.
It is clear that a power series space is independent of the choice of the sequence

(rk)ren as long as (ry) converges to r. Hence we can take

I =

o forr=0,7r,=—

11



o forr=o00,1, =k

It is not difficult to show that for r < co A,(«) is isomorphic to Ag(a). So
basically there are two types of power series spaces, namely the ones with » = 0

and others with r = co. From the Grothendieck-Pietsch criterion, we can obtain;

1
e A, () is nuclear if and only if sup < 00

neN Qp

logn

e Ao(a) is nuclear if and only if lim = 0.

n—oo (U,

1.3 Spectral Decomposition

In this section a special representation of compact operators between Hilbert
spaces is shown.

Let H be a Hilbert space and 7' is a linear, compact and selfadjoint operator
and let (\,)nen, be the sequence of eigenvalues of T'. Then (A, ),en, is a real null

sequence and there exists an orthonormal system (e,)nen,, so that

T=Y Ail.en)en (1.8)

where the series converges in norm.[11]

Let’s consider two Hilbert spaces H and G and T' € K(H, G) be a compact
operator.

Now T'T™ is a compact and self adjoint operator from H to H. By above, there
exists a decreasing null sequence (s, )nen, and an orthonormal system (e, )nen, in

H such that

o0

TT" = Zsi(-,e,ﬁ) en (1.9)

n=0

12



Let’s define f,, = s, 'Te, for n € Ny with s, > 0. Then for n,m € Ny with

Sp >0, 5, > 0;

11
ny Jm :__Tn7Tm
Unofnd = o (Ten, Ten)
11
= TT*’VH’VTL
Sn8m< €ns Em)

82

= San <en76m>

- 5nm

If N = {neNy:s, >0} is a finite set, then we extend the orthonormal
system (fy,)nen to an orthonormal system (f,)nen, in G.

For y € H with y_Le, for all n € Ny we have,
1Ty = (Ty, Ty) = (TT"y,y) = 0 by(1.1)

Thus from the definition of (f,,)nen, We have in either case, for each x € H,

Ty = T <a: — (x,en) en> +T (Z (x,e,) en>

n=0

Hence we obtain that the series >~ s, (-, e,) f,, converges to T in norm.

There exists a decreasing null sequence (s,)nen, in [0, 00[ and orthonormal

13



systems (€, )nen, in H and (f,,)nen, in G so that

T:ZSn<',€n> I (1.10)

where the series converges in the operator norm.

This representation of T is referred to as a Schmidt representation of 7.

14



CHAPTER 2

EXTERIOR INTERPOLATIVE

CONDITIONS

In this chapter, first we state and prove an interpolation lemma, then we

define and examine some exterior interpolative conditions

2.1 Interpolation Lemma

In this secton we introduce the interpolation lemma of Djakov.

Theorem 2.1. Suppose E and F are linear spaces, |- |, < |-]; < |-, are semi-
norms on E, Uy C Uy C Uy are the corresponding unit balls, and || - ||, < || - ||; <
| -1l are seminorms on F. If there exists null sequences (T)meny, (Sn)men) and

sequences (Ry)meny, (Sn)men) which diverge to infinity satisfying
(1) U; C s, Up+ S,Us, VYn €N
2) -l < Bull-llo+7allll,  VyeF, vneN
(3) >, Ry <Cand ) Spiirn <C, for some C >0

Then for any T : E — F linear with ||Tz||; < C; |x|, for some C; > 0,i= 0,2
we have;

ITz||, <2C(Co+Cy)|z|, VaeE (2.1)

15



Proof. Let z € U;, then by (1) there exists =, € s, Uy and y,, € S, Uy ¥n € N

such that = =ux,+y,

For n = 1 we may choose 1 = x

s; = 1. Since

Tyl — Tn = Yn — Ynt1 VN EN

r = Tn +yn = Tn+1 + Yn+1

n—1
Yn = Z Yk+1 — Yk
k=1

and y; = 0 without loss of generality

(2.2)
(2.3)

(2.4)

Tpa1 — T € (Spas + 8k) Up and yp — ypr1 € (Skrs + Sk) Uz because Uy and Up

are absolutely convex.

Since S,, /" oo and

Thus ;

I Ty — Ty |y

| Tyn Hl

IN

A\

IN

IA

IN

IN

IN

Ry, || TYpr1 — Tyg ”o + T || Ty — Ty ||2

R, Cy | Yr4+1 — Yk |o + 1 Cy | Yk+1 — Yk ’2

Rk0028k + TkCQ2Sk+1

2Cy Ry s, + 2057 S+

n—1

> 1 Tyer — Tur |,

k=1

n—1

Z(2CORk3k + 2C575,Sk+1)

k=1

2C) Z Rysi + 205 Z T Skt1

k=1

20(00 + Cg) Vn

16

k=1

Sn, \ O, Tp41 — Tk € 2. Up and Yk — Yp+1 € 25k+1 U,

(2.5

(
(2.7

Do
=)

)
)
)

(2.8)

(2.9)
(2.10)

(2.11)

(2.12)



If we prove || Tz, |; — 0 as n — oo, then || Tz ||, < 2C(Cy+ Cy).

[Tzally, < Bol|Tznllg + 7 [ T0l (2.13)
< CoRy|zn)|g + Corn |Tn)l, (2.14)
< CoRpsp + Cory |2 — ynly (2.15)
< CoRpsy + Cary |x]y + Comy [ynl, (2.16)
< CoRysp + Cory Sy + Camy |2 (2.17)

By (3) since series converge then the general terms r,,.S,, and R,s, go to zero,

S0
|Tx,||, = 0 as n — oo (2.18)
Thus
[Tzlly < N Tally + [ Tynll, < 2C1(Co + C) (2.19)
|

2.2 Exterior Interpolative Condition

An exterior interpolative condition is one which involves a dead-end space. A
dead-end space is a Hilbert space H,, which is continuously and densely imbed-
ded in (E,P). First we will define an exterior interpolative condition involving
a dead-end space H,, and then we will prove that if E satisfies such an exterior
interpolative condition, then E has a basis. Exterior interpolative type condi-
tions are used first by Mitiagin-Khenkin. We will use in this section, an exterior

interpolative condition of Djakov [5].

17



Definition 2.1 (DN(P,o0)). We say that (E,P) has the property DN (P, o)
if the following is satisfied;
There exist |- |, € P and sequences (1,(k))meny ; (Rn(k))meny so that for all k,

there exists | > k with

[zl < Ba(k) ||z [l + ra(k) |2 [lo, ¥ 21

where € Hy and the sequences (7,(k))men) » (Rn(k))men) converges to zero

and diverges to infinity respectively as n — oo.

Definition 2.2 (2(P,00)). We say (E,P) has the property Q(P, oo) if the fol-
lowing is satisfied;
There exist |-|, € P and sequences (5,(k))meny » (Sn(k))men) so that for all k,

there exists | > k with
U, C s, Up~+ S, Us, Yn>1
where the sequences (s,(k))men) 5 (Sn(k))men) converges to zero and diverges to

infinity respectively as n — oc.

Now we can state the exterior interpolative condition which was mentioned

in the beginning of the Section 2.1.

Definition 2.3 (7 (P, Q, c0)). We say that E has the property 7 (P, Q, co) where
P and Q are fundamental systems of seminorms for E if the following conditions

hold;

1. There exists |-|, € PN Q so that (E,P) has the properties Q(P,00) and
DN(Q, ).

18



2. For all k there exists q such that
> su(q)Ru(k) <00 and ZnSnH(q)rn(k) <0

where the sequences (7,,(k))n, (Rn(k))n, (52(¢))n, (Sn(q))n are coefficients in the

properties DN (Q, oc0) and (P, 0o) respectively.

All of these three conditions together is called an exterior interpolative con-
dition since they depend not only on the fundamental systems of seminorms but
also on the dead-end space H.

The following remark from literature shows how exterior interpolative condi-

tion can be applied to find a basis.

Remark 2.1. DN implies DN (P, 00) and Qp implies Q(P, o). To prove this

recall that a NFS satisfies the properties;

i) DN in case,

dp e N, Vk € N, there existn € N, 0 <0 <1 and C > 0 with,
Izl < Cll=ll, ™ Izl Yz € B (2.20)
and if B C E is a bounded set, E is said to have the property;

ii) Qp, in case;

Vk € N there exist n € N, AC' > 0 with

* 2 * * *
lyll,” < Cllylli Iyl Yy € E (2.21)
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[See 16]
The property Qp is equivalent to

For each p € N and each 0 < o < 1 there exist g € N and D > 0 with
* xl—a * Q *
lyll, < Dliyll, vl vy € E (2.22)

[Lemma 29.16 of Vogt [11]].
On the other hand the property DN trivially implies:
dp € N, Vk € N there exist 0 < 6 <1 and C > 0 with

1-60 10
[zl < Cllzll, ™ llzllp, Vo € E (2.23)
Since trivially for a,b,t >0 and s < 1
. 1-1/s 11 s—1 _1—s15
min[at + bt |==(—-=1)""a"% (2.24)
s's

We get Vk € N, 30 < 0 < 1 and Cy > 0 with

—0 0
Izl < Cillell,™ llelp (2.25)

< t|all, + 77 [l 5 VE > 0. (2.26)

Jji.e. , (E,P) has the property DN (P, c0).
On the other hand for all0 < o < 1, 3¢ € N, D’ > 0 with

* *1l—a * Qu
lyll, < Dlvll, “lyls (2.27)

< rllyll; + Cor'=a ||yl . Vy € E*andvr > 0 (2.28)
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Hence
U, CrU, + Csr'" o B for appropriate Cs > 0 andgq Vr > 0 (2.29)

So (E,P) has the property Q(P, o) where the dead-end space Hy, is Ep.
Moreover if we choose t to be n+1 and r to be 1/n® then we get R, (k) = n+1,
sn(q) = 1/n3 and

03 RuB)sala) = 30 P,

n

QZrn(k)SnH(q) = Z(n+1)l_1/602(ﬁ)1—1/a

— ZCQ(n+1)_(2+1/9_3/a)

If 2+ % — é > 1, i.e. a > 30 then the series above are convergent by p-test.

Hence we get the property T (P, Q, 00).
|

Remark 2.2. The conditions DN (P, 00) and Q(P,00) are strictly weaker than
the conditions DN and Qp. Because in Chapter 3 Remark (3.2) it is shown that
every nuclear Kothe space satisfy the conditions DN (P,00) and Q(P,o00). But
a nuclear Fréchet space satisfying the conditions DN and Qp is isomorphic to a

power series space of finite type.[[11] page 373]
[ |

The conditions DN and Qp mentioned in Remark are exactly the exterior inter-

polative conditions used by Mitiagin-Henkin to prove the existence of basis.
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Their argument goes as follows:
The imbedding ¢ : H,, — Eg is compact and we can choose a common

orthonormal system (fy,)men) and (2,)men) in Ho and Eq respectively such that

L : Hy — Eg (2.30)

x) =2 = f: an (T, fr)o Tn Vo € Hy (2.31)
n=0

for the decreasing null sequence (a;,)nen[See Introduction]. If it can be shown
that > o, (2, f,). Tn converges in each ||-||,, then this series converges to x in
E and hence (z,)men) Will be a basis for E.

From DN(P,o0) property, fix |-, € P. Then Vk € N there exist 0 < 0, <
1 and and C > 0 such that;

1-5 5
lznlle < Cllanlly™ llznlls (2.32)
Since ||z,||, =1 and ||z,| = i—’; = i | fullo = i then we have,
L s,
ol < C() (2.33)

On the other hand from Q(P, o) property, Vs, Vv, with 0 < v, < 1 and fix |||
such that;

1—s
1falls < Dllfully ™

Falls™ (2.34)

Since || fu[15, = 1 and || fullg = supyey <1 (s anfu)ol = nsup)y <1 (2, 20)o| = an
we have,

1falls < D(an)™ (2.35)
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Thus Vk € N, ds € N such that,

IN

D (2, fa)o T > anlfally Izl llzall, (2.36)

k

VAN

1 1
ZanCﬁDa |z, (2.37)

< O PO I (2.38)

If we can choose suitable §;, and =y, such that 0 < §; + v, < 1 and since E is
NFS then Y a?~@+7%) converges and so Y, a, (z, f,) . @ converges to x for the
Hilbert space E.

The condition is true for all k, i.e., the series converges to x in any Ej and so

in E. Hence (z,) is a basis in E.
|

More generally Djakov [5] proved that for a fixed dead-end space H,, and
a NFS with a fundamental system of seminorms, the interpolative condition
DN(P,0), Q(P,00) and 7 (P, P,00) is sufficient for existence of basis. To see
this;

Fix a NFS, E, a Hilbert space H,, which is continuously and densely imbedded
in E such that E satisfies the exterior interpolative condition

The imbedding P : Ho < Ej can be given by Pz = Y > a, (z,e,) [x
where (e,,), and (f,), are orthonormal basis in H,, and Eq respectively.

Define the family of operators

WE

PN(I) = On <5E7 €n>oo In (2.39)

1

3
Il

|
WE

(Px, fu)o fn VN €N and z € Hy (2.40)

1

3
I
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Then,

1. Py(PH(Up)) C {zfj:l (2 fudo fu i 2 € Uo} c Uy

2. If =5 xpe, in Hy,

n=1

N [e) N
P(anen> = Zaj <Z$n€n,€j> i (2.41)

N
= Z Ty fn = Py(x) (2.42)

50 Pu(U) = {0, anrafi + 2, < 1} € P(Tx)

Therefore the family of operators (Py)yen is equicontinuous both in Eq and
H..

The same family of operators is equicontinuous in E by the interpolation
lemma. Since Py(z) — P(z) for € Hy, and Hy, is dense in E, by the Banach-
Steinhaus Theorem [, page 98] the convergence is obtained on the whole of E.
Hence we have limy_., Py(z) = P(x) = x for any « € E, i.e. (f,), is a basis in

E.
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CHAPTER 3

INNER INTERPOLATIVE CONDITIONS

In this chapter we will give some definitions and the main theorem of this

thesis about the inner interpolative condition implying the existence of basis.

3.1 Definitions

Let (E,P) be a nuclear Fréchet space. This section introduces the inner inter-
polative condition, DN (Q), Q(P), 7 (P, Q) for the given fundamental systems
of seminorms P and Q where DN(Q), 2(P) are generalization of the well-known
D N-type and -type invariants of Vogt and 7 is a compability condition. Later
we will see that these conditions are sufficient conditions for the existence of a
basis in E.

Suppose P = {|[-||,} 1y and Q = {|-[,},—, are increasing seminorm systems
on a vector space E.

Let P and Q be as above;

Definition 3.1. If ||-||, = ||, and there exists ko and o : N — N non-decreasing
function with o (k+1) < k and ||, < My|-[|,, for all k > ko and for some
M, > 1, then we will call the seminorm systems P and Q a ¢ — matched system
and denote by (P, Q, o).

Also, whenever P and Q are fundamental systems of seminorms, we will call

(P, Q,0) an equivalent o — matched system.
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Note that in the notation of o — matched system, (P, Q, o), the order is

important.

Remark 3.1. Let P and Q be equivalent increasing seminorm systems on E. We
shall show that there exists an equivalent increasing seminorm system P obtained
from P by passing to a subsequence and ¢ so that we have the ¢ —matched system
(P.25):

First, we may assume that ||-||, = |-|,- Otherwise we may include the small-
est seminorm in the systems to both seminorm systems. Clearly these systems
generate the same topology.

For all k, there exists &’ such that Uy C C,V}, for some C), > 1 where Uy and
Vi, are the unit balls for the seminorms ||-|| and |-| respectively.

Define o (k) = k’. Without loss of generality we can choose o strictly increas-
ing.

Construct a new seminorm system P by
U1 = Uy forall k where o(k) = &’

Then as o is increasing the new seminorm system is also increasing and Uy_; C
CyVi Vk. If we define & : N — N by 6 (k) = k—1 then the condition in Definition
3.1 are satisfied, we have <75, Q, &).

Hence for two equivalent seminorm systems P, Q one can find amap 6 : N —

N increasing and a refinement of P of P so that we have (75, Q, 5).
|
Now, we define the properties DN (P), and Q(P) where P is a fundamental

system of seminorms on E.
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Definition 3.2. A NFS E with an increasing system of seminorms P = {||-||, },<,

is said to have:

i) DN(P) case:

For all k there exists | > k, A; € RT and positive real number sequences

(rn (K, 1)), and (R, (k,1)), such that
2l < B (B, 1) l2llg + 7 (B D [l Vo € B,V > Ay,

where 7, (k,l) converges to 0 and R, (k,[) diverges to oo as n — o0

ii) Q(P) case:

For all q there exists p > q, B, € RT and positive real number sequences

(sn(q,p)),, and (S, (q,p)), such that
Uq C Sn <Qap) UO + Sn (q,p) Up,Vn > Bp

where s, (¢,p) converges to 0 and S, (¢, p) diverges to co as n — 0.

Remark 3.2. Let A(a*) be a nuclear Kothe space and let P denote the natural
fundamental system of seminorms for A(ak).[See Introduction]
Fiz q, let v = (v,)5%, € Uy so ||z, =302 af |zn] < 1.

Let’s take Xy = (z1,29, -+ ,xn,0,0,--+) and Yy = (0,0, ..., yn+1, YNit2, --.)-
Then x = Xy + Yy , Vn € N.
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q

Choose p > q such that (55 )nen € {1. Then,

and

n

I Xnll, =

IA

IN

IN

VAN

Yxlly =

IN

IN

IN

IN

q
n
a,
sup
n>N+1

i

ay

sup -
n>N+1 ( Qn

So we obtain, Vg 4 p > q such that

U, C sup
n>N+1

{a

0 aP
— 55Uy + su — 35U,
a% } 0 1§n£N { G% } P
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and we may choose

Sl

sn(¢,p) = sup {

n

p
:nZN—i—l}, SN(q,p):sup{a—Z:lgngN}

Since E is a nuclear Kothe space, sn(q,p) converges to zero and Sy(q,p) diverges

to infinity as n — o0o. So we obtain the condition Q(P).

k

On the other hand let x € E. Then Vk, 31 > k with (%+),en € 6

ar,

Izl = a2l
n

IA
w
=
gl
—N
@|@
so
—_
VAN
S
IA
=
——
S
s o
8
2

ak ak
< sup{a—gzlgngN} Hx\]o—i—sup{a—?:nZN+1}Hle

where Ry(k,l) = sup{Z—g 1<n< N} and ry(k,1) = sup{ﬁ:nZN—i—l}.

n an

So we arrive at the condition DN (P).

O

Definition 3.3. Fix a NFS E and a fundamental system of seminorms P and Q
which are o —matched. Suppose P and Q have the properties DN (Q) and 2(P),

then E is said to have the property (7 (P, Q)) for (P, Q, o) if the following hold;
For all k, there exists q such that
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° Z sup {s,(q,p — 1)Rp(k,p— 1)} < 00 and

n PEIn

o > sup {Sua(g,p— Dru(k,p— 1’} < 00

n PEIn

where (ry, (k,p)),, , (Rn (k,D)), , (50 (¢,p)), and (S, (¢,p)), are coefficients in the
properties DN (Q) and §2(P), respectively, and Z,, = {p : n > max(A4,, B,)}.

We will refer to this condition together with DN (Q) and Q(P) as a compatible

inner interpolative condition.

3.2 Main Theorem

Now we will state the main theorem of this thesis.[20)]

Theorem 3.1. Let E be a NFS and let P and Q be fundamental system of semi-
norms forming a o —matched system (P, Q,0)on E. If E satisfies a compatible

inner interpolative conditions then E has a basis.

Proof. Suppose (P, Q) are equivalent ¢ — matched systems which satisfy the
hypothesis of the Theorem such that E has the properties Q(P), DN(Q) and
T (P, Q). Moreover, there exists o : N — N nondecreasing for all k, there exists
ko with o(k 4+ 1) < k and U,y C M V;, for all k > k.

We require a technical lemma to proceed to the proof, wherein we construct a
Hilbert space and a dead-end space which is densely embedded in E with certain
properties. The construction method uses the method in [Lemma 1.1 and Lemma

1.2 [16]] for equivalent o — matched seminorm system (P, Q, o).

Lemma 3.1. For arbitrary sequences (¢y )k, (Vr)x of positive real valued functions
on RY, (Ar)2,, (Br)t, and (M), of positive numbers there exists (ny) C N

strictly increasing sequence such that for all k > kg,
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(1) ni1 > Yr(ng);
(2) ni > 1, > My, Ay, By,

Moreover for any positive sequence (ex)r with > , & < 1, there exists a

hilbertian compact ball B in E such that for all k > kg

(3) Usry C MyB + Us/br(ni) C ne B + Uy /dr(n);

(4) B C =10, 0);

(5) The Hilbert space Hg = {x € E: ||z|| 53 < oo} is dense in E and ||-||5 is a

continuous hilbertian seminorm in E.

Proof. Since E is separable, there exists a total sequence {&, : n € N} where
&, € U, for all n. We proceed by induction on k > k.

Since E is nuclear, the inclusion map E,) — Eq is a compact map, since
Usry € MUy, and U,y is Up-precompact. Thus we can find a finite set N =

{a; : j € I} C Uj, which also contains § so that

Usry C U {Mya; + Up/dr(ni)} ,i-e.
JEI,

Ug(k) C M.N;, + Uo/qbk(nk)
Now let ny be an integer greater then
max{||:n\|o(k+l) ;€ Ny 1 < < ksabp1(ni—1)i 1 + 1; Mig; Ay By; 1}

Thus by induction we obtain finite sets Ni,, -+, Ni;--- and a sequence (ny)

satisfying for all & = ko, ko + 1,---

L. ng > Yp_1(ng-1);
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2. ng /" and ng > My, Ay, By;
k—1
3. Ui:ko N; € npUg(rt1)

If we denote |J; N; by {z,}, we have for all k > k,
Us(iy C MpNi 4 Us/dr(n) C g {zn} + Uo/dr(n)

Clearly N; C U; C Uy, for i > k. |U,., Ni C nxUy@t1) because o(k + 1) < k.
Hence {z,} C ngUs(rs1). Therefore we get a total null sequence, {x,} such that
|nll, g1y < m for all noand for all & > ko.

We now proceed exactly as in Lemma 1.2 in [16] to obtain a hilbertian compact
ball B from the total null sequence {z,} and a sequence (¢,) so that for all k > k,
T, C B C = Uy). Thus ||+ is a continuous seminorm in E. Ep is dense in

E, since B contains a total sequence. Hence we complete the proof of the lemma.

|
Now to prove the theorem, we define
¢p(n) = max { max Ser1(g,0(p)) :
1<i<n |a<p-1 s4(q,0(p))
Then ¢,(n) /" with respect to n. Hence for all m,
S
Sl 0] < (g, o(p)). vt < m (3.1)

Pp(m)

Also choose 1,(n) = 2’27, Now by Lemma, 3(n,) ,/ and a compact hilbertian
ball B satisfying the properties listed above. Since n, > ,_1(n,_) = 2"s-120"1
we get that n,_; > 1 and without loss of generality we can choose n,,1 >

Ay, By, Myyq and Ay, B, are increasing sequences. This modification does
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not change the proof of lemma. Moreover we may choose €, = 1/n,, which satisfies

ZkaO €p < 1in Lemma 3.1. Hence we have for all p > ky

B C n;_lUJ(p) (3.2)

Us(p) C np-1B + Up/dp(ny) (3.3)

Then by Q(P) and (3.3), we have for all n > B,

Uy C salq,0(p))Uo + Sulq,0(p))Usy)

C a0+ g, o)y 1B+ LDy,
e [stacoton + 22 CD v, o),

For z € U,, we may find sequences (x,) and (y,) so that = = x, + y, for all

n > B, with

= [Sn(q,a(p)) + S’;ngS”] Uo,

® Yn € Su(q,0(p))np-1B.
Hence,

® Yo — Ynt1 € 25,41(q, 0(p))ny—1 B because S,(q,0(p)) is increasing with re-

spect to n;
o r,— T, €2|8,(q,0(p))+ W] Up because s,,(q,0(p)) is decreasing

with respect to n.

As B is a hilbertian ball and Ez <— E <— E is nuclear and so compact, we can

find a common orthonormal basis in Ep and Ej. Then consider the imbedding
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P,,, m € N as in interpolation lemma. So by the Banach-Steinhaus Theorem it
suffices to show the continuity of these imbeddings on E. Clearly || Pn||, < Co
and || Pyl 3 < Cp where Cy < 1 and C < 1 because P, is a projection with the
common orthonormal basis. Define C' = max Cy, C5.

By the property DN(Q), Vt > A,,Vn > By;

|Pmyn - Pmyn+1|k; < Rt(kv U(p)) |Pmyn - Pmyn+1|0

+rt(k> U(p)) ‘Pmyn - Pmyn+1|g(p)
By applying (3.2),

|Pmyn - Pmyn+1’k < Rt(kv U(p)) |Pmyn - PmynJrl‘O
+Tt(k7 O'(p))n;—l ‘Pmyn - PmynJrl‘B

Rt(ka a(p))C Hyn - ?/n+1||o

IN

+Tt(k7 0'(])))71]2)_10 ||yn - yn—f—l”B

2C Rk o(p) |l o) + 22 L)

—{—207}(]6, O’(p))n;_lanrl(Q: U(p))

IA

Let i =0,---,n, —n,_1. In particular, we can take n and ¢ to be n, — 7. Since

Np Z Ap+17 Bp+17 we get )

Snp—it1(q,7(p))
bp(np)
+2Cry,—i(k, U(p))niflsnpﬂ”rl(q’ a(p))-

‘Pmynp—z - Pmynp—i—l—l ’k < ZCRnp—z(ka U(p)) Snp—i((L U(p))+
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By (3.1), we have

Snp_gpl(%;)a(p)) < Sn,-i(¢, 0(p))+8n,-i(q; 0 (p)) < 250,-i(q,0(p)).

Snp—i(¢,0(p))+

Then,

Pmynpfi - PmynpfiJrl ‘k < 4CRnp7i(ka O-(p))snp*x% U(p))

+2C7n,i(k, 0(p)) Sn, -i41(a, 0 (p)) (p1 — 0)°

Thus,

np—np—1—1

Pmynp,l - Pmynp‘k < Z ‘Pmynpfi - Pmynp7i+1|k
=0

np—np—1—1

aC Z {Bn,—i(k,0(p)sn,~i(q, 0 (D))

+1p,—i(k, 0(p))Sn,—iv1(q, 7(P)) (Np—1 — 2)3} :

IA

Therefore, we get

Z ‘Pmynp 1 mynp‘ < 402 an e 1 np—i(k7U(p))snp—i(Q>0<p))

p=Fko p=ko

+7ny—i(k, (D)) Snp—is1(q,0(p)) (ny — 1)}
402;:%_1_1 {Ruu(k, o(p))sm(a,0(p))
7 (k, 0 (D)) St (g, 7 (p))m?} .

IN

To prove the sum is finite, we must show that o(p) € Z,,.
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By the construction of n,,
m > n,_1 > max(Ap, B,) > max(Ay_1, Bp_1) > max(As ), Boy))

Therefore o(p) € Z,,, = {t : m > max(A;, By)}.
Hence Z;iko ’Pmynp,l — Pryn, {k < 0o. We can choose Tpyy = and Ynpy = 0.

Since =Sl —
ynp - l=ko ynl+1 ynlv

p—1
|Pmynp‘k < Z ‘Pmynz - Pmynz+1}k
I=ko

< Z ‘Pmym — Pmynm}k < 4C < 00, Vp.
I=ko

Therefore, if we can show that HPma:np Hk — 0 as p — oo, we get || Pz, < C for

x € U,. Now again by the property DN(Q), for all t > A,

’menp|k < Rt(k7 0(p)) ‘menp ’0 + Tt(k’ a(p)) ‘menPLT(p)
< Ry(k,o(p)) ‘Pmmnp ‘0 + 7 (k, U(p))nI%_1 ‘menp|B
< CRy(k,o(p)) Hxn,,HO +Cry(k,a(p))ng_, ||x”p||B :

Recall that 2, € |8, (q,0(p) + 2220520 Uy, by (3.1) 2, € 25, (0.0(9)Us,

Moreover, z,, = x — y,, and y,, € Sy, (¢, 0(p))ny-1B.
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Hence, in particular choosing t = n,,, we get,

|Potn, |, < 2CRn,(k,0(p))sn,(a.0(p))
+Crn, (k. 0P (|2 = Y, || 5
2C Ry, (k0 (p))sn, (0,0(p)) + Cry_y7, (k0 (p)) ||| 5

+2C13_ i1, (k,0(p))Sn, (0. 0(p))

IN

menp| — 0.

As p — o0, .

Therefore,

[Paly = [Pnn, + Pt |,

IN

|Pml‘”p‘k; + ‘Pmy”p{k

< oo, Vp.

Thus |Py,z|, < oo for z € Uj,.
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CHAPTER 4

SOME REMARKS

4.1 Definition and Main Theorem

Sometimes we can work with only one fundamental system of seminorms, P
instead of a 0 — matched system. So we can rephrase the compability condition

as follows:

Definition 4.1. Suppose a NFS E with a fundamental system of seminorms P
satisfies the properties DN (P) and Q(P). E is said to have the property T (P) if
the following holds;

For all k, there exists q such that

Z sup {Sn(qvp - 1)Rn(kap - 1)} < o0

. PEIn

and

> sup {Spa(q,p = Dra(k,p — 0’} < 00

. PEIn

where (1, (k,p)),,, (Rn (k,p)),,, (50 (q,p)), and (S, (q,p)), are coefficients in the
properties DN (P) and Q(P), respectively, and Z,, = {p : n > max(A,, B,)}.

We can rephrase the main theorem for one fundamental system of seminorms

as;
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Corollary 4.1. Let (E,P) be a NFS. If E satisfies the properties DN (P), Q(P)
and T (P) then E has a basis.

To prove this corollary, we can use similar steps as in the proof of main theorem

in Chapter 3.

Remark 4.1. In Chapter 3, we showed that every nuclear Kothe space satifies the

properties Q(P) and DN (P). If a nuclear Kothe space is reqular then it satisfies
the property T (P).

Proof. We have Vq Ip > ¢ such that (Z—%)neN €l

a’ aP
Uy C sup {—¢ ¢Uo+ sup ¢—7 ¢ U,
n>N+1 | Qn 1<n<N ( Gn

and Yk, 3 p > k with (%

GEUS

)neN € gl

a” a”
||:U||k:sup{a—g:1§n§]\7} ||x||0+sup{a—g:nzN—l—l}Hpr
where sy(q,p) = p{—% nZN—l—l} Sn(g,p) = sup —Zl 1§n§N},
R]\;(k,p):sup{m—g1 1<n SN} andrN(k,p):sup{Z—f’;‘:nZN—i-l}

for all k, 3q with (—%)neN €l

~.
~—

sup {SH(Q>p - 1)Rn<k7p - 1)}

pELn

al ak
sup{sup{—" nZN—i—l}sup{—g:lSnSN}}
pELy a an

q
n
0 k
a a
N41
sup{ + —év }
pELn aN—H N

k
AN

IN

M M M M

IN

T <00
a
N+1
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i)Y sup {Sni1(g;p = V)ra(k,p — )0’}
n pPELn
apP~t a®
SZ sup{sup{ ~ :1§n§N—|—1}sup{ flznZN—l—l}Ng‘}
N pELn an GJZ;L
-1k
< Z sup CL]]DV+1 AN41 N3
N N pELn a?\f—‘rl a?\/a»ll
ok
<3 {_;v+1Ns} < o0
. AN-t1

Hence every reqular nuclear Kothe space satisfies the inner interpolative con-

dition.

4.2 Another Inner Interpolative Condition

In this section we will give another inner interpolative condition 7’(P).

In the rest of this section we use the notation ;
F={0:N—N:[j is increasing, onto and ((n) <n, Vn}

Suppose a NFS E with the increasing seminorm system P = {||-||, },—, satisfies

the properties DN (P) and Q(P).

Definition 4.2. E is said to satisfy the property T5(P) for function 3 € F if the
following hold;
For all k, there exists q and for all k € F with k(n) < B(n) Vn € N;

Z sn(k,k(n))R,(q, k(n)) < oo

n
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and

Z Spi1(k, 5(n)) (g, k(n))n® < oo

where the sequences (ra(g,P))ns (Fu(d p))ns (n(k, D) and (Su(k, 1)) are coeffi-
cients in the properties DN (P) and Q(P).

Theorem 4.1. Let (E,P) be a nuclear Fréchet space. If there ezists § € F such
that the properties DN(P), U(P) and T5(P) hold then E has a basis.

Proof. Proof is similar to the proof of the Main Theorem in Chapter 3,

Fix 8 € F. Let us consider the sequences Bk,Af = max{n: B(n) = k}.

Choose ¢r(n) = maxj<i<y {maxqgk Stsj(lq(‘i’;“)} and Yy (n) = 2n*9k of positive real

valued functions on R*. Then there exists a strictly increasing sequence (ny)g

satisfying

ng_y > AP (4.2)

np — onZok

We choose ¢, = i Then ), e < 1 since ¢, = L < _L_ Then by

Lemma 3.1 there exists a compact hilbertian ball B so that V k.

U, C nkle+U0/¢k(nk) (43)

41



Then by Q(P) and (3.3), we have for all n > B,

Uy, C $u(q,p)Uo+ Su(q,p)U,

Sn(q,p)
C sp(q,p)Uy + Sp(q, p)n,—1B + ——U,
(¢,p)Uo (¢, P)np—1 o) L0
Sn(q,p)
c sulq,p) + 22222 Us + S, (g, p)ny_1 B
(¢,p) oo(m) | O° (¢, P)np—1

and since B is a hilbertian ball and Eg <— E — E is nuclear and so compact,
we can find a common orthonormal basis in Eg and E;. Then we consider the

projection P,,, m € N and by the property DN(Q), Vt > A,,Vn > B,;

”Pmyn - Pmyn-HHk S Rt(kap) ”Pmyn - Pmyn—f—lHO

+ri(k, p) | Prntn — Pmyn—HHp

Let i =0,---,n,—n,_1. In particular, we can take n and t to be n, —i. Since

ny—1 > Ay, By, we get |

np—np—1—1

Hpmynp—l B Pmynp”k < Z Hpmy”p*i o Pmynp*iJrlHk
1=0
np—np-1—1
S 4C Z {Rnpfi(kap)snpfi((bp)

=0
+Tnp_i(k7p)snp_i+1(Q’p) (np—l - 2)3} .

Define x : N — N by x(n) = p for n € [n,-1,n,). We have,

S Pty = Pt |l < ACY " {Rn(k,p)sm(a.p)

p=ko
+7 (K, D) Sy (g, p)m® } .
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Since for m € [ny_1,n,), K(m) = p, we get

> Pty = Pt |, < 4CD " ARk 5(m))sia(g, 5(m)

p=Fko

Since k(n) < B(n) Vn € N the sum is finite by the 7;(P) condition. The rest

of follows as in the proof of the Main Theorem 3.1
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