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abstract

BASIS IN NUCLEAR FRÉCHET SPACES

Erkurşun Nazife

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Zafer NURLU

Co-Supervisor: Prof. Dr. Aydın AYTUNA

February 2006, 46 pages

Existence of basis in locally convex space has been an important problem in

functional analysis for more than 40 years. In this thesis the conditions for the

existence of basis are examined. This thesis consist of three parts. The first part

is about the exterior interpolative conditions. The second part deals with the

inner interpolative conditions DN(Q), Ω(P), T (P ,Q) for seminorm systems P

and Q on a nuclear Fréchet space. These are sufficient conditions on existence

of basis. In the last part, it is shown that for a regular nuclear Köthe space the

inner interpolative conditions are satisfied and moreover another type of inner

interpolative conditions are introduced.

Keywords: Basis, Nuclear Fréchet Space, Interpolative conditions.
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öz

NÜCLEER FRÉCHET UZAYLARINDA TABAN

Erkurşun Nazife

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Zafer NURLU

Ortak Tez Yöneticisi: Prof. Dr. Aydın AYTUNA

Şubat 2006, 46 sayfa

Fonksiyonel analizde, lokal konveks uzaylar için tabanın varlıg̃ı 40 yıldan

fazla süredir önemli bir problemdir. Bu tezde tabanın varlıg̃ı için gerekli koşullar

incelenmiştir. Bu tez 3 bölümden oluşmaktadır. İlk bölüm dışsal interpolasyon

koşulları hakkında bir incelemedir. İkinci bölümde nükleer Fréchet uzayları üze-

rindeki içsel interpolasyon koşulları, DN(Q), Ω(P), T (P ,Q) ile ilgilenilmiştir.

Bu koşullar tabanın varlıg̃ı için yeterli koşullardır. Son bölümde, düzenli nükleer

Köthe uzayı için içsel interpolasyon koşullarının sag̃landıg̃ı gösterilmiş ve son

olarak da interpolasyon koşullarının farklı bir versiyonundan bahsedilmiştir.

Anahtar Kelimeler: Taban, Nükleer Fréchet Uzayları, İnterpolasyon Koşulları
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chapter 1

introduction and preliminaries

In this chapter, we will give some basic definitions, notations and theorems

about Fréchet spaces which will be used in this thesis. For undefined standart

concepts and well-known results we refer the reader to [7], [11], [15] and [18].

1.1 Introduction

The locally convex spaces appearing in analysis roughly divides into two

classes. The first class is normed spaces. Its theory belongs to classical func-

tional analysis. The second class is nuclear locally convex spaces which were

introduced by A. Grothendièck in 1951. These two classes have a trivial intersec-

tion in the sense that only finite dimensional locally convex spaces are normable

and nuclear.

Grothendièck disclosed a theory of nuclear Fréchet spaces and posed some

important questions in the 1950’s. One of the important questions is the exis-

tence of a basis in a nuclear Fréchet space. B. S. Mitiagin and N. M. Zobin in

1975 answered this question negatively; they constructed a nuclear Fréchet space

without basis.

Another important problem which was posed in 1970 by Pelczyński [19] is

whether complemented subspaces of nuclear Fréchet spaces with a basis always

have a basis, i.e., whether they are isomorphic to Köthe spaces.
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On the other hand the existence of basis was proved for many concrete spaces

[1],[2],[13],[17] and for many others it is still an open problem. Sufficient con-

ditions for existence of basis were obtained by a method called the ” dead-end

space method ” by various authors. Dead-end space refers to a Hilbert space

being continuously and densely embedded in a nuclear Fréchet space and was

first introduced in 1971 by B.S.Mitiagin and G.M.Khenkin [13]

In this thesis, we will first discuss the interpolative conditions which depend

on a given dead-end space (Exterior interpolative conditions) and describe the

” dead-end space ” method. In the second part we will introduce some inner

interpolative conditions (depending only on the seminorm system of the NFS)

and show that they are sufficient for the existence of basis.

Finally, we will prove that for a regular nuclear Köthe space, the inner inter-

polative conditions introduced above are satified.

1.2 Some Definitions and Preliminaries

1.2.1 Locally Convex Spaces

There are basically two ways to describe a locally convex structure on a given

vector space. First is with neighbourhooods, second is with seminorms.

Definition 1.1. A vector space E over the scalar field K equipped with a Haus-

dorff topology for which;

addition + : E× E → E

and

scalarmultiplication · : K× E → E
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are continuous is called a Topological Vector Space. (TV S)

Definition 1.2. A locally convex space is a topological vector space in which

each point has a neighbourhood basis consisting of convex sets.

Lemma 1.1. A locally convex space E has a base U of neighbourhoods of the

origin with the following properties;

C1 : If U ∈ U and V ∈ U, then there exists W ∈ U with W ⊂ U ∩ V .

C2 : If U ∈ U and α 6= 0, αU ∈ U.

C3 : Each U ∈ U is absolutely convex and absorbing, i.e., for each x ∈ E,

there is some λ > 0 with x ∈ λU

Conversely given a nonempty set U of subsets of a vector space E with the

properties C1−C3, there is a topology making E a locally convex space admitting

U as a base of neighbourhoods.[See 15]

The relation between seminorms and zero neighbourhoods is discussed below.

Definition 1.3. Let E be a locally convex space. A collection U of zero neigh-

bourhoods in E is called a fundamental system of zero neighbourhoods if for every

zero neighbourhood U , there exists V ∈ U and ε > 0 with εV ⊂ U

A family (pα)α∈I of continuous seminorms on E is called a fundamental system

of seminorms if the sets

Uα = {x ∈ E; (pα(x)) < 1} , α ∈ I

form a fundamental system of zero neighbourhoods.
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Lemma 1.2. Let E be a K vector space and (pα)α∈I be a family of seminorms

on E satisfying

1. For every x ∈ E with x 6= 0, ∃k ∈ I with (pk(x)) > 0

2. For every i, j ∈ I, ∃m ∈ I and C > 0 with max (pi(x)) , (pj(x)) ≤

C. (pm(x)) ∀x ∈ E.

Then there exists a unique locally convex space topology on E for which (pα)α∈I

is a fundamental system of seminorms and E is a locally convex space.

Moreover every locally convex space E has a fundamental system of seminorms

which satisfies 1 and 2.[ See 11]

One can generate now locally convex spaces from given ones. The method

mentioned below is one way of doing this.

Definition 1.4. A K vector space E with a family of locally convex spaces

(Ei)i∈I and linear maps πi : E → Ei is called a projective system, if for each

x ∈ E, x 6= 0, there exists an i ∈ I with πi(x) 6= 0. For every projective system

(pi : E → Ei)i∈I , the seminorm system {p : p = maxi∈M pi ◦ πi , M ∈ ε(I), pi is

continuous seminorm on Ei, i ∈ M , ε(I) is a bounded subset of I} induces a

locally convex topology on E which is called the projective topology of system,

i.e.,

the projective topology is the coarsest topology on E for which all the maps

πi are continuous.

Definition 1.5. Let (Ek, ‖·‖k) be a family of locally convex spaces. For i ≤ j

where i, j ∈ I, let ιi,j : Ej → Ei be a continuous linear map. The subspace

of ΠiEi, E = {x = (xi) ∈ ΠiEi : ιi,j(xj) = (xi) whenever i ≤ j} is called the

5



projective limit of (Ei, ‖·‖) with respect to the mappings ιi,j and it is shown by,

E ∼= limproj
←

Ei

Definition 1.6. Let E be a K vector space and p be a continuous seminorm on E.

A norm is defined on E/Np by (‖x+Np‖)p := p(x) whereNp :={x ∈ E : p(x) = 0)

is a closed linear subspace of E.

Then Ep := ̂(E/Np, ‖·‖p) is called the local Banach space for the seminorm p.

For the canonical map ιp : E → Ep, ιp(x) := x+Np we have ‖ιp(x)‖p = p(x) for

all x ∈ E.

Remark 1.1. The following are well-known,

(a) Every locally convex space E is the projective limit for a suitable projective

system of Banach spaces. Actually E is isomorphic to a subspace of a

suitable product of Banach spaces.

(b) If (pα)α∈I is any fundamental system of seminorms for E, the projective

topology τ on E is the projective topology of the system (ια : E → Eα)α∈I

where Eα is the local Banach space for the seminorm pα.

The dual of a locally convex space is defined below.

Definition 1.7. Let (E,E′) be a dual pair where E ′ is the topological dual of E.

If U is a subset of E, the subset of E′

{y ∈ E′ : sup |y(x)| ≤ 1, x ∈ U}

is called the polar of U and is denoted by U◦.
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Proposition 1.1. For every absolutely convex zero neighbourhood U in a locally

convex space E,

‖x‖U = sup {|y(x)| : y ∈ U◦} for all x ∈ E

Hence if U is a fundamental system of zero neighbourhoods in a locally convex

space E, {‖x‖U}U∈U is a fundamental system of seminorms in E.

Also we can define the dual seminorm of ‖x‖k by ‖x‖∗k on dual of E, that is

‖f‖∗k = sup {|f(x)| : ‖x‖k ≤ 1} ∀f ∈ E′

1.2.2 Fréchet Spaces

Definition 1.8. A complete metrizable locally convex space E is called a Fréchet

space.

In a Fréchet space, a fundamental system of seminorms is a countable system

of continuous seminorms generating the topology.

We can assume without loss of generality that the seminorm systems consid-

ered are increasing. Because we can modify the fundamental system of seminorms

(|·|n)n∈N as ‖·‖n = (max1≤j≤n |·|j)n∈N and hence ‖x‖n ≤ ‖x‖n+1 ∀x ∈ E, n ∈ N

and clearly (|·|n)n and (‖·‖n)n generate the same topology.

Definition 1.9. A matrix A = (ak
j )j,k∈N of nonnegative numbers is called a Köthe

matrix if it satisfies the following conditions :

(i) For each j ∈ N there exists a k ∈ N with ak
j > 0.

(ii) ak
j ≤ ak+1

j for all j, k ∈ N.

7



For 1 ≤ p <∞ we define

λp(A) :=

x ∈ KN : ‖x‖p
k :=

(
∞∑

j=1

∣∣xja
k
j

∣∣p)1/p

<∞ for all k ∈ N


For p = ∞ and p = 0

λ∞(A) :=

{
x ∈ KN : ‖x‖∞k := sup

j∈N
|xj| ak

j <∞ for all k ∈ N
}
,

c0(A) :=

{
x ∈ λ∞(A) : lim

j→∞
|xj| ak

j = 0 for all k ∈ N
}

The seminorms ‖·‖p
k are called canonical seminorms.

For every Köthe matrix A, the spaces λp(A), 1 ≤ p ≤ ∞ and c0(A) are Fréchet

spaces.

Definition 1.10. A Köthe space with a Köthe matrix A = (ak
n)n,k∈N is called

regular if,

ak
n

ak+1
n

≥
ak

n+1

ak+1
n+1

, ∀ k, n

Definition 1.11. A locally convex space E is said to be nuclear, if for each

absolutely convex zero neighbourhood U ∈ E there exists an absolutely convex

zero neighnourhood V and a measure µ on the σ∗-compact set V ◦, so that

‖x‖U ≤
∫

V ◦
|y(x)| dµ(y) for all x ∈ E

Definition 1.12. A seminorm p on K vector space E is called a Hilbert seminorm

if there exists a semiscalar product 〈·, ·〉 on E with p(x) =
√
〈x, x〉, ∀x ∈ E.

Remark 1.2.

8



1. Every nuclear space E has a fundamental system of Hilbert seminorms.[See

11]

2. If p is a Hilbert seminorm on E then the local Banach space Ep is a Hilbert

space.

Definition 1.13. Let E and F be Banach spaces and let T : E → F be a linear

map. T is nuclear, if there exist sequences (aj)j∈N in E′ and (bj)j∈N in F such

that

T (x) =
∑
j∈N

aj(x)bj,∀x ∈ E (1.1)

and

∑
j∈N

‖aj‖ ‖bj‖ <∞ (1.2)

The result below combines the concepts of local Banach spaces and nuclear

maps.

Proposition 1.2. E is nuclear if and only if for each continuous seminorm p on

E, there exists a continuous seminorm q ≥ p so that the map

ιpq : Eq → Ep (1.3)

x+Nq → ιpq(x+Nq) = x+Np (1.4)

is nuclear.

A practical way to check nuclearity of Köthe spaces is given below.
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Theorem 1.1 (Grothendièck-Pietsch Criterion). A Köthe space is nuclear if and

only if for every k ∈ N there exists p ∈ N such that
∑∞

n=1
ak

n

ap
n
<∞.

Remark 1.3. If a Köthe space is nuclear, then all seminorm systems {‖·‖p
k}k are

equivalent for 1 ≤ p ≤ ∞ and p = 0.

In the rest of the work, we show λ1(A) where A = (ak
n)(k,n) by Λ(ak

n) and call

it a Köthe space.

Λ(ak
n) =

{
x = (xn)n∈N : ‖x‖k :=

∞∑
n=1

|xn| ak
n <∞,∀k ∈ N

}
(1.5)

Proposition 1.3. For a nuclear Köthe space Λ(ak
n), there exists a permutation

σ and a subsequence (pk) at N such that if bkn = apk

σ(n) then

∑
n

sup
j≥n

bkj

bk+1
j

<∞ (1.6)

and Λ(ak
n) = Λ(bkn) [See 5]

1.2.3 Bases in Locally Convex Spaces

Definition 1.14. A sequence (xn)n∈N of elements in a locally convex space E is

called a basis if for each element x ∈ E there is a uniquely determined sequence

of scalars (αn)n∈N such that

x =
∞∑

n=1

αnxn

The linear forms x∗n on E defined by αn = 〈x, xn〉 = x∗n(x) are called coordinate

functionals relative to the basis (xn).

Definition 1.15. A basis (xn)n∈N is called an absolute basis if for each continuous

seminorm p on E there exists a continuous seminorm q and a positive constant

10



C satisfying
∞∑

n=1

|x∗n(x)| p(xn) ≤ Cq(x) ∀x ∈ E

Theorem 1.2. (Dynin-Mitiagin Theorem)Every basis in a NFS is absolute.

Remark 1.4. We get from the Dynin-Mitiagin Theorem that each nuclear Fréchet

space E with basis can be identified with a nuclear Köthe space Λ(an,k). Ab-

soluteness of a basis in a nuclear Fréchet space which has an increasing semi-

norm system implies that any nuclear Fréchet space with a basis (en)n and semi-

norm system (‖·‖k)k is canonically isomorphic to the nuclear Köthe space Λ(an,k)

where an,k = ‖en‖k for k = 1, 2, 3..., via the map T : E → Λ(an,k) defined by

T (x) = (αn)n∈N where x =
∑

n αnxn. The converse is trivially true since a

nuclear Köthe space is a nuclear Fréchet space with basis.

Now we denote the class of power series spaces which is important because

many spaces appearing in analysis are isomorphic to power series spaces.

Definition 1.16. Let (rk)k∈N and α = (αn)n∈N be increasing such that

limk→∞ rk = r and limn→∞ αn = ∞. Then the Köthe space Λ(A) where A =

(exp(rkαn))k,n is called a power series space and is denoted by Λr(α);

Λr(α) :=

{
x ∈ KN : ‖x‖k :=

∑
j∈N

|xj| exp(rkαj) <∞,∀k

)
(1.7)

If r < ∞, Λr(α) is called a power series space of finite type and if r = ∞,

Λr(α) is called a power series space of infinite type.

It is clear that a power series space is independent of the choice of the sequence

(rk)k∈N as long as (rk) converges to r. Hence we can take

• for r = 0 , rk = − 1
k

11



• for r = ∞, rk = k

It is not difficult to show that for r < ∞ Λr(α) is isomorphic to Λ0(α). So

basically there are two types of power series spaces, namely the ones with r = 0

and others with r = ∞. From the Grothendièck-Pietsch criterion, we can obtain;

• Λ∞(α) is nuclear if and only if sup
n∈N

log n

αn

<∞

• Λ0(α) is nuclear if and only if lim
n→∞

log n

αn

= 0.

1.3 Spectral Decomposition

In this section a special representation of compact operators between Hilbert

spaces is shown.

Let H be a Hilbert space and T is a linear, compact and selfadjoint operator

and let (λn)n∈N0 be the sequence of eigenvalues of T . Then (λn)n∈N0 is a real null

sequence and there exists an orthonormal system (en)n∈N0 , so that

T =
∞∑

n=0

λn 〈., en〉 en (1.8)

where the series converges in norm.[11]

Let’s consider two Hilbert spaces H and G and T ∈ K(H,G) be a compact

operator.

Now TT ∗ is a compact and self adjoint operator from H to H. By above, there

exists a decreasing null sequence (sn)n∈N0 and an orthonormal system (en)n∈N0 in

H such that

TT ∗ =
∞∑

n=0

s2
n 〈·, en〉 en (1.9)
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Let’s define fn = s−1
n Ten for n ∈ N0 with sn > 0. Then for n,m ∈ N0 with

sn > 0, sm > 0;

〈fn, fm〉 =
1

sn

1

sm

〈Ten, T em〉

=
1

sn

1

sm

〈TT ∗en, em〉

=
s2

n

snsm

〈en, em〉

= δnm

If N = {n ∈ N0 : sn > 0} is a finite set, then we extend the orthonormal

system (fn)n∈N to an orthonormal system (fn)n∈N0 in G.

For y ∈ H with y⊥en for all n ∈ N0 we have,

‖Ty‖2 = 〈Ty, Ty〉 = 〈TT ∗y, y〉 = 0 by(1.1)

Thus from the definition of (fn)n∈N0 we have in either case, for each x ∈ H,

Tx = T

(
x−

∞∑
n=0

〈x, en〉 en

)
+ T

(
∞∑

n=0

〈x, en〉 en

)

=
∞∑

n=0

〈x, en〉Ten

=
∞∑

n=0

sn 〈x, en〉 fn

Hence we obtain that the series
∑∞

n=0 sn 〈·, en〉 fn converges to T in norm.

There exists a decreasing null sequence (sn)n∈N0 in [0,∞[ and orthonormal

13



systems (en)n∈N0 in H and (fn)n∈N0 in G so that

T =
∞∑

n=0

sn 〈·, en〉 fn (1.10)

where the series converges in the operator norm.

This representation of T is referred to as a Schmidt representation of T .
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chapter 2

exterior interpolative

conditions

In this chapter, first we state and prove an interpolation lemma, then we

define and examine some exterior interpolative conditions

2.1 Interpolation Lemma

In this secton we introduce the interpolation lemma of Djakov.

Theorem 2.1. Suppose E and F are linear spaces, | · |0 ≤ | · |1 ≤ | · |2 are semi-

norms on E, U2 ⊂ U1 ⊂ U0 are the corresponding unit balls, and ‖ · ‖0 ≤ ‖ · ‖1 ≤

‖ · ‖2 are seminorms on F. If there exists null sequences (rn)(n∈N), (sn)(n∈N) and

sequences (Rn)(n∈N), (Sn)(n∈N) which diverge to infinity satisfying

(1) U1 ⊂ snU0 + SnU2 , ∀n ∈ N

(2) ‖ · ‖1 ≤ Rn ‖·‖0 + rn ‖·‖2 , ∀y ∈ F, ∀n ∈ N

(3)
∑

n snRn ≤ C and
∑

n Sn+1 rn ≤ C, for some C > 0

Then for any T : E → F linear with ‖Tx‖i ≤ Ci |x|i for some Ci > 0, i = 0, 2

we have;

‖Tx‖1 ≤ 2C(C0 + C2) |x|1 ∀x ∈ E (2.1)

15



Proof. Let x ∈ U1 , then by (1) there exists xn ∈ snU0 and yn ∈ SnU2 ∀n ∈ N

such that x = xn + yn

For n = 1 we may choose x1 = x and y1 = 0 without loss of generality

s1 = 1. Since

x = xn + yn = xn+1 + yn+1 (2.2)

xn+1 − xn = yn − yn+1 ∀n ∈ N (2.3)

yn =
n−1∑
k=1

yk+1 − yk (2.4)

xk+1− xk ∈ (sk+1 + sk)U0 and yk − yk+1 ∈ (Sk+1 + Sk)U2 because U0 and U2

are absolutely convex.

Since Sn ↗∞ and sn ↘ 0, xk+1 − xk ∈ 2skU0 and yk − yk+1 ∈ 2Sk+1U2

‖Tyk+1 − Tyk ‖1 ≤ Rk ‖Tyk+1 − Tyk ‖0 + rk ‖Tyk+1 − Tyk ‖2 (2.5)

≤ RkC0 | yk+1 − yk |0 + rkC2 | yk+1 − yk |2 (2.6)

≤ RkC02sk + rkC22Sk+1 (2.7)

≤ 2C0Rksk + 2C2rkSk+1 (2.8)

Thus ;

‖Tyn ‖1 ≤
n−1∑
k=1

‖Tyk+1 − Tyk ‖1 (2.9)

≤
n−1∑
k=1

(2C0Rksk + 2C2rkSk+1 ) (2.10)

≤ 2C0

∞∑
k=1

Rksk + 2C2

∞∑
k=1

rkSk+1 (2.11)

≤ 2C(C0 + C2) ∀n (2.12)
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If we prove ‖Txn ‖1 → 0 as n→∞, then ‖Tx ‖1 ≤ 2C(C0 + C2).

‖Txn‖1 ≤ Rn ‖Txn‖0 + rn ‖Txn‖2 (2.13)

≤ C0Rn |xn)|0 + C2rn |xn)|2 (2.14)

≤ C0Rnsn + C2rn |x− yn|2 (2.15)

≤ C0Rnsn + C2rn |x|2 + C2rn |yn|2 (2.16)

≤ C0Rnsn + C2rnSn + C2rn |x|2 (2.17)

By (3) since series converge then the general terms rnSn and Rnsn go to zero,

so

‖Txn‖1 → 0 as n→∞ (2.18)

Thus

‖Tx‖1 ≤ ‖Txn‖1 + ‖Tyn‖1 ≤ 2C1(C0 + C2) (2.19)

�

2.2 Exterior Interpolative Condition

An exterior interpolative condition is one which involves a dead-end space. A

dead-end space is a Hilbert space H∞ which is continuously and densely imbed-

ded in (E,P). First we will define an exterior interpolative condition involving

a dead-end space H∞ and then we will prove that if E satisfies such an exterior

interpolative condition, then E has a basis. Exterior interpolative type condi-

tions are used first by Mitiagin-Khenkin. We will use in this section, an exterior

interpolative condition of Djakov [5].
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Definition 2.1 (DN(P ,∞)). We say that (E,P) has the property DN(P ,∞)

if the following is satisfied;

There exist | · |0 ∈ P and sequences (rn(k))(n∈N) , (Rn(k))(n∈N) so that for all k,

there exists l > k with

‖x ‖k ≤ Rn(k) ‖x ‖0 + rn(k) ‖x ‖∞ , ∀n ≥ l

where x ∈ H∞ and the sequences (rn(k))(n∈N) , (Rn(k))(n∈N) converges to zero

and diverges to infinity respectively as n→∞.

Definition 2.2 (Ω(P ,∞)). We say (E,P) has the property Ω(P ,∞) if the fol-

lowing is satisfied;

There exist | · |0 ∈ P and sequences (sn(k))(n∈N) , (Sn(k))(n∈N) so that for all k,

there exists l > k with

Uk ⊂ snU0 + SnU∞, ∀n ≥ l

where the sequences (sn(k))(n∈N) , (Sn(k))(n∈N) converges to zero and diverges to

infinity respectively as n→∞.

Now we can state the exterior interpolative condition which was mentioned

in the beginning of the Section 2.1.

Definition 2.3 (T (P ,Q,∞)). We say that E has the property T (P ,Q,∞) where

P and Q are fundamental systems of seminorms for E if the following conditions

hold;

1. There exists | · |0 ∈ P ∩ Q so that (E,P) has the properties Ω(P ,∞) and

DN(Q,∞).
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2. For all k there exists q such that

∑
n

sn(q)Rn(k)<∞ and
∑

n
Sn+1(q)rn(k)<∞

where the sequences (rn(k))n , (Rn(k))n , (sn(q))n , (Sn(q))n are coefficients in the

properties DN(Q,∞) and Ω(P ,∞) respectively.

All of these three conditions together is called an exterior interpolative con-

dition since they depend not only on the fundamental systems of seminorms but

also on the dead-end space H∞.

The following remark from literature shows how exterior interpolative condi-

tion can be applied to find a basis.

Remark 2.1. DN implies DN(P ,∞) and ΩB implies Ω(P ,∞). To prove this

recall that a NFS satisfies the properties;

i) DN in case,

∃p ∈ N, ∀k ∈ N, there exist n ∈ N, 0 < θ < 1 and C > 0 with,

‖x‖k ≤ C ‖x‖1−θ
p ‖x‖θ

n , ∀x ∈ E (2.20)

and if B ⊂ E is a bounded set, E is said to have the property;

ii) ΩB, in case;

∀k ∈ N there exist n ∈ N, ∃C > 0 with

‖y‖∗n
2 ≤ C ‖y‖∗k ‖y‖

∗
B , ∀y ∈ E∗ (2.21)
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[See 16]

The property ΩB is equivalent to

For each p ∈ N and each 0 < α < 1 there exist q ∈ N and D > 0 with

‖y‖∗q ≤ D‖y‖∗p
1−α‖y‖∗B

α
,∀y ∈ E∗ (2.22)

[Lemma 29.16 of Vogt [11]].

On the other hand the property DN trivially implies:

∃p ∈ N, ∀k ∈ N there exist 0 < θ < 1 and C > 0 with

‖x‖k ≤ C ‖x‖1−θ
p ‖x‖θ

B , ∀x ∈ E (2.23)

Since trivially for a, b, t > 0 and s < 1

min[at+ bt1−1/s] =
1

s
(
1

s
− 1)s−1a1−sbs (2.24)

We get ∀k ∈ N, ∃0 < θ < 1 and C1 > 0 with

‖x‖k ≤ C1 ‖x‖1−θ
p ‖x‖θ

B (2.25)

≤ t ‖x‖p + t1−
1
θ ‖x‖B ∀t > 0. (2.26)

,i.e. , (E,P) has the property DN(P ,∞).

On the other hand for all 0 < α < 1, ∃q ∈ N, D′ > 0 with

‖y‖∗q ≤ D′‖y‖∗p
1−α‖y‖∗B

α
(2.27)

≤ r ‖y‖∗p + C2r
1− 1

α ‖y‖∗B ,∀y ∈ E∗and∀r > 0 (2.28)
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Hence

Uq ⊂ rUp + C3r
1− 1

αB for appropriate C3 > 0 and q ∀r > 0 (2.29)

So (E,P) has the property Ω(P ,∞) where the dead-end space H∞ is EB.

Moreover if we choose t to be n+1 and r to be 1/n3 then we get Rn(k) = n+1,

sn(q) = 1/n3 and

�
∑

n

Rn(k)sn(q) =
∑

n

n+ 1

n3
<∞

�
∑

n

rn(k)Sn+1(q) =
∑

n

(n+ 1)1−1/θC2(
1

(n+ 1)3
)1−1/α

=
∑

n

C2(n+ 1)−(2+1/θ−3/α)

If 2 + 1
θ
− 1

α
> 1, i.e. α > 3θ then the series above are convergent by p-test.

Hence we get the property T (P ,Q,∞).

�

Remark 2.2. The conditions DN(P ,∞) and Ω(P ,∞) are strictly weaker than

the conditions DN and ΩB. Because in Chapter 3 Remark (3.2) it is shown that

every nuclear Köthe space satisfy the conditions DN(P ,∞) and Ω(P ,∞). But

a nuclear Fréchet space satisfying the conditions DN and ΩB is isomorphic to a

power series space of finite type.[[11] page 373]

�

The conditions DN and ΩB mentioned in Remark are exactly the exterior inter-

polative conditions used by Mitiagin-Henkin to prove the existence of basis.
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Their argument goes as follows:

The imbedding ι : H∞ ↪→ E0 is compact and we can choose a common

orthonormal system (fn)(n∈N) and (xn)(n∈N) in H∞ and E0 respectively such that

ι : H∞ ↪→ E0 (2.30)

ι(x) = x =
∞∑

n=0

αn 〈x, fn〉∞ xn ∀x ∈ H∞ (2.31)

for the decreasing null sequence (αn)n∈N[See Introduction]. If it can be shown

that
∑

n αn 〈x, fn〉∞ xn converges in each ‖·‖k, then this series converges to x in

E and hence (xn)(n∈N) will be a basis for E.

From DN(P ,∞) property, fix ‖·‖0 ∈ P. Then ∀k ∈ N there exist 0 < δk <

1 and and C > 0 such that;

‖xn‖k ≤ C ‖xn‖1−δk

0 ‖xn‖δk

∞ (2.32)

Since ‖xn‖0 = 1 and ‖xn‖∞ =
∥∥∥ fn

αn

∥∥∥
∞

= 1
αn
‖fn‖∞ = 1

αn
then we have,

‖xn‖k ≤ C(
1

αn

)δk (2.33)

On the other hand from Ω(P ,∞) property, ∀s, ∀γs with 0 < γs < 1 and fix ‖·‖∗0
such that;

‖fn‖∗s ≤ D‖fn‖∗0
1−γs‖fn‖∗∞

γs (2.34)

Since ‖fn‖∗∞ = 1 and ‖fn‖∗0 = sup‖x‖0≤1 |〈x, αnfn〉0| = αn sup‖x‖0≤1 |〈x, xn〉0| = αn

we have,

‖fn‖∗s ≤ D(αn)1−γs (2.35)
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Thus ∀k ∈ N, ∃s ∈ N such that,

∥∥∥∥∥∑
n

αn 〈x, fn〉∞ xn

∥∥∥∥∥
k

≤
∑

n

αn ‖fn‖∗s ‖x‖s ‖xn‖k (2.36)

≤
∑

n

αnC
1

αδk
Dα1−γs ‖x‖s (2.37)

≤ C∗
∑

n

α2−(δk+γs) ‖x‖s (2.38)

If we can choose suitable δk and γs such that 0 < δk + γs < 1 and since E is

NFS then
∑
α2−(δk+γs) converges and so

∑
n αn 〈x, fn〉∞ xn converges to x for the

Hilbert space E0.

The condition is true for all k, i.e., the series converges to x in any Ek and so

in E. Hence (xn) is a basis in E.

�

More generally Djakov [5] proved that for a fixed dead-end space H∞ and

a NFS with a fundamental system of seminorms, the interpolative condition

DN(P ,∞), Ω(P ,∞) and T (P ,P ,∞) is sufficient for existence of basis. To see

this;

Fix a NFS, E, a Hilbert space H∞ which is continuously and densely imbedded

in E such that E satisfies the exterior interpolative condition

The imbedding P : H∞ ↪→ E0 can be given by Px =
∑∞

n=1 αn 〈x, en〉∞ fn

where (en)n and (fn)n are orthonormal basis in H∞ and E0 respectively.

Define the family of operators

PN(x) =
N∑

n=1

αn 〈x, en〉∞ fn (2.39)

=
N∑

n=1

〈Px, fn〉0 fn ∀N ∈ N and x ∈ H∞ (2.40)
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Then,

1. PN(P−1(U0)) ⊂
{∑N

n=1 αn 〈z, fn〉0 fn : z ∈ U0

}
⊂ U0

2. If x =
∑∞

n=1 xnen in H∞,

P

(
N∑

n=1

xnen

)
=

∞∑
j=1

αj

〈
N∑

n=1

xnen, ej

〉
∞

fj (2.41)

=
N∑

n=1

αnxnfn = PN(x) (2.42)

so PN(U∞) =
{∑N

n=1 αnxnfn : ‖x‖∞ ≤ 1
}
⊂ P (U∞)

Therefore the family of operators (PN)N∈N is equicontinuous both in E0 and

H∞.

The same family of operators is equicontinuous in E by the interpolation

lemma. Since PN(x) → P (x) for x ∈ H∞ and H∞ is dense in E, by the Banach-

Steinhaus Theorem [, page 98] the convergence is obtained on the whole of E.

Hence we have limN→∞ PN(x) = P (x) = x for any x ∈ E, i.e. (fn)n is a basis in

E.

�
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chapter 3

inner interpolative conditions

In this chapter we will give some definitions and the main theorem of this

thesis about the inner interpolative condition implying the existence of basis.

3.1 Definitions

Let (E,P) be a nuclear Fréchet space. This section introduces the inner inter-

polative condition, DN(Q), Ω(P), T (P ,Q) for the given fundamental systems

of seminorms P and Q where DN(Q), Ω(P) are generalization of the well-known

DN -type and Ω-type invariants of Vogt and T is a compability condition. Later

we will see that these conditions are sufficient conditions for the existence of a

basis in E.

Suppose P = {‖·‖k}
∞
k=0 and Q = {|·|k}

∞
k=0 are increasing seminorm systems

on a vector space E.

Let P and Q be as above;

Definition 3.1. If ‖·‖0 = |·|0 and there exists k0 and σ : N → N non-decreasing

function with σ (k + 1) ≤ k and |·|k ≤ Mk ‖·‖σ(k) for all k ≥ k0 and for some

Mk ≥ 1, then we will call the seminorm systems P and Q a σ −matched system

and denote by (P ,Q, σ).

Also, whenever P and Q are fundamental systems of seminorms, we will call

(P ,Q, σ) an equivalent σ −matched system.
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Note that in the notation of σ − matched system, (P ,Q, σ), the order is

important.

Remark 3.1. Let P and Q be equivalent increasing seminorm systems on E. We

shall show that there exists an equivalent increasing seminorm system P̃ obtained

from P by passing to a subsequence and σ̃ so that we have the σ̃−matched system(
P̃ ,Q, σ̃

)
:

First, we may assume that ‖·‖0 = |·|0. Otherwise we may include the small-

est seminorm in the systems to both seminorm systems. Clearly these systems

generate the same topology.

For all k, there exists k′ such that Uk′ ⊂ CkVk for some Ck > 1 where Uk′ and

Vk are the unit balls for the seminorms ‖·‖ and |·| respectively.

Define σ(k) = k′. Without loss of generality we can choose σ strictly increas-

ing.

Construct a new seminorm system P̃ by

Ũk−1 = Uσ(k) for all k where σ(k) = k′

Then as σ is increasing the new seminorm system is also increasing and Ũk−1 ⊂

CkVk ∀k. If we define σ̃ : N → N by σ̃ (k) = k−1 then the condition in Definition

3.1 are satisfied, we have
(
P̃ ,Q, σ̃

)
.

Hence for two equivalent seminorm systems P ,Q one can find a map σ̃ : N →

N increasing and a refinement of P̃ of P so that we have
(
P̃ ,Q, σ̃

)
.

�

Now, we define the properties DN(P), and Ω(P) where P is a fundamental

system of seminorms on E.
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Definition 3.2. A NFS E with an increasing system of seminorms P = {‖·‖k}
∞
k=0

is said to have:

i) DN(P) case:

For all k there exists l > k, Al ∈ R+ and positive real number sequences

(rn (k, l))n and (Rn (k, l))n such that

‖x‖k ≤ Rn (k, l) ‖x‖0 + rn (k, l) ‖x‖l , ∀x ∈ E,∀n ≥ Al,

where rn (k, l) converges to 0 and Rn (k, l) diverges to ∞ as n→∞

ii) Ω(P) case:

For all q there exists p > q, Bp ∈ R+ and positive real number sequences

(sn (q, p))n and (Sn (q, p))n such that

Uq ⊂ sn (q, p)U0 + Sn (q, p)Up,∀n ≥ Bp

where sn (q, p) converges to 0 and Sn (q, p) diverges to ∞ as n→∞.

Remark 3.2. Let Λ(ak
n) be a nuclear Köthe space and let P denote the natural

fundamental system of seminorms for Λ(ak
n).[See Introduction]

Fix q, let x = (xn)∞n=1 ∈ Uq so ‖x‖q =
∑∞

n=0 a
q
n |xn| ≤ 1.

Let’s take XN = (x1, x2, · · · , xN , 0, 0, · · · ) and YN = (0, 0, ..., yN+1, yN+2, ...).

Then x = XN + YN , ∀n ∈ N.
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Choose p > q such that (aq
n

ap
n
)n∈N ∈ `1. Then,

‖XN‖p =
N∑

n=1

ap
n |xn|

≤
N∑

n=1

ap
n

aq
n
aq

n |xn|

≤ sup
1≤n≤N

{
ap

n

aq
n

} N∑
n=1

aq
n |xn|

≤ sup
1≤n≤N

{
ap

n

aq
n

}
‖x‖q

≤ sup
1≤n≤N

{
ap

n

aq
n

}

and

‖YN‖0 =
∞∑

n=N+1

a0
n |xn|

≤
∞∑

n=N+1

a0
n

aq
n
aq

n |xn|

≤ sup
n≤N+1

{
a0

n

aq
n

} ∞∑
n=N

aq
n |xn|

≤ sup
n≥N+1

{
a0

n

aq
n

}
‖x‖q

≤ sup
n≥N+1

{
a0

n

aq
n

}

So we obtain, ∀q ∃ p > q such that

Uq ⊂ sup
n≥N+1

{
a0

n

aq
n

}
U0 + sup

1≤n≤N

{
ap

n

aq
n

}
Up
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and we may choose

sN(q, p) = sup

{
a0

n

aq
n

: n ≥ N + 1

}
, SN(q, p) = sup

{
ap

n

aq
n

: 1 ≤ n ≤ N

}

Since E is a nuclear Köthe space, sN(q, p) converges to zero and SN(q, p) diverges

to infinity as n→∞. So we obtain the condition Ω(P).

On the other hand let x ∈ E. Then ∀k, ∃ l > k with (ak
n

al
n
)n∈N ∈ `1

‖x‖k =
∑

n

ak
n |xn|

=
∑
n≤N

ak
n |xn|+

∑
n≥N+1

ak
n |xn|

=
∑
n≤N

ak
n

a0
n

a0
n |xn|+

∑
n≥N+1

ak
n

al
n

al
n |xn|

≤ sup

{
ak

n

a0
n

: 1 ≤ n ≤ N

} ∑
1≤n≤N

a0
n |xn|

+ sup

{
ak

n

al
n

: n ≥ N + 1

} ∑
n≥N+1

al
n |xn|

≤ sup

{
ak

n

a0
n

: 1 ≤ n ≤ N

}
‖x‖0 + sup

{
ak

n

al
n

: n ≥ N + 1

}
‖x‖l

where RN(k, l) = sup
{

ak
n

a0
n

: 1 ≤ n ≤ N
}

and rN(k, l) = sup
{

ak
n

al
n

: n ≥ N + 1
}
.

So we arrive at the condition DN (P).

�

Definition 3.3. Fix a NFS E and a fundamental system of seminorms P and Q

which are σ−matched. Suppose P and Q have the properties DN(Q) and Ω(P),

then E is said to have the property (T (P ,Q)) for (P ,Q, σ) if the following hold;

For all k, there exists q such that
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•
∑

n

sup
p∈In

{sn(q, p− 1)Rn(k, p− 1)} <∞ and

•
∑

n

sup
p∈In

{
Sn+1(q, p− 1)rn(k, p− 1)n3

}
<∞

where (rn (k, p))n , (Rn (k, p))n , (sn (q, p))n and (Sn (q, p))n are coefficients in the

properties DN(Q) and Ω(P), respectively, and In = {p : n ≥ max(Ap, Bp)}.

We will refer to this condition together withDN(Q) and Ω(P) as a compatible

inner interpolative condition.

3.2 Main Theorem

Now we will state the main theorem of this thesis.[20]

Theorem 3.1. Let E be a NFS and let P and Q be fundamental system of semi-

norms forming a σ−matched system (P ,Q, σ)on E. If E satisfies a compatible

inner interpolative conditions then E has a basis.

Proof. Suppose (P ,Q) are equivalent σ − matched systems which satisfy the

hypothesis of the Theorem such that E has the properties Ω(P), DN(Q) and

T (P ,Q). Moreover, there exists σ : N → N nondecreasing for all k, there exists

k0 with σ(k + 1) ≤ k and Uσ(k) ⊂MkVk for all k ≥ k0.

We require a technical lemma to proceed to the proof, wherein we construct a

Hilbert space and a dead-end space which is densely embedded in E with certain

properties. The construction method uses the method in [Lemma 1.1 and Lemma

1.2 [16]] for equivalent σ −matched seminorm system (P ,Q, σ).

Lemma 3.1. For arbitrary sequences (φk)k, (ψk)k of positive real valued functions

on R+, (Ak)
∞
k=1, (Bk)

∞
k=1 and (Mk)

∞
k=1 of positive numbers there exists (nk) ⊂ N

strictly increasing sequence such that for all k ≥ k0,
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(1) nk+1 ≥ ψk(nk);

(2) nk ≥ 1, nk ≥Mk, Ak, Bk;

Moreover for any positive sequence (εk)k with
∑

k εk ≤ 1, there exists a

hilbertian compact ball B in E such that for all k ≥ k0

(3) Uσ(k) ⊂MkB + U0/φk(nk) ⊂ nkB + U0/φk(nk);

(4) B ⊂ nk−1

εk−1
Uσ(k);

(5) The Hilbert space HB = {x ∈ E : ‖x‖B <∞} is dense in E and ‖·‖B is a

continuous hilbertian seminorm in E.

Proof. Since E is separable, there exists a total sequence {ξn : n ∈ N} where

ξn ∈ Un for all n. We proceed by induction on k > k0.

Since E is nuclear, the inclusion map Eσ(k) ↪→ E0 is a compact map, since

Uσ(k) ⊂ MkUk and Uσ(k) is U0-precompact. Thus we can find a finite set Nk =

{aj : j ∈ Ik} ⊂ Uk which also contains ξk so that

Uσ(k) ⊂
⋃
j∈Ik

{Mkaj + U0/φk(nk)} , i.e.

Uσ(k) ⊂ MkNk + U0/φk(nk).

Now let nk be an integer greater then

max
{
‖x‖σ(k+1) ;x ∈ Ni, 1 ≤ i ≤ k;ψk−1(nk−1);nk−1 + 1;Mk;Ak;Bk; 1

}
Thus by induction we obtain finite sets Nk0 , · · · , Nk; · · · and a sequence (nk)

satisfying for all k = k0, k0 + 1, · · ·

1. nk ≥ ψk−1(nk−1);
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2. nk ↗ and nk ≥Mk, Ak, Bk;

3.
⋃k−1

i=k0
Ni ⊆ nkUσ(k+1)

If we denote
⋃

iNi by {xn}, we have for all k ≥ k0,

Uσ(k) ⊂MkNk + U0/φk(nk) ⊂ nk {xn}+ U0/φk(nk)

Clearly Ni ⊂ Ui ⊂ Uk, for i ≥ k.
⋃

i<k Ni ⊂ nkUσ(k+1) because σ(k + 1) ≤ k.

Hence {xn} ⊂ nkUσ(k+1). Therefore we get a total null sequence, {xn} such that

‖xn‖σ(k+1) ≤ nk for all n and for all k ≥ k0.

We now proceed exactly as in Lemma 1.2 in [16] to obtain a hilbertian compact

ball B from the total null sequence {xn} and a sequence (εn) so that for all k ≥ k0,

xn ⊂ B ⊂ nk−1

εk−1
Uσ(k). Thus ‖·‖B is a continuous seminorm in E. EB is dense in

E, since B contains a total sequence. Hence we complete the proof of the lemma.

�

Now to prove the theorem, we define

φp(n) = max
1≤t≤n

{
max
q≤p−1

St+1(q, σ(p))

st(q, σ(p))

}
.

Then φp(n) ↗ with respect to n. Hence for all m,

St+1(q, σ(p))

φp(m)
≤ st(q, σ(p)),∀t ≤ m (3.1)

Also choose ψp(n) = 2n2
2p. Now by Lemma, ∃(np) ↗ and a compact hilbertian

ball B satisfying the properties listed above. Since np > ψp−1(np−1) = 2n2
p−12p−1

we get that np−1 ≥ 1 and without loss of generality we can choose np+1 ≥

Ap+1, Bp+1, Mp+1 and Ap, Bp are increasing sequences. This modification does

32



not change the proof of lemma. Moreover we may choose εp = 1/np which satisfies∑
p≥k0

εp ≤ 1 in Lemma 3.1. Hence we have for all p ≥ k0

B ⊂ n2
p−1Uσ(p) (3.2)

Uσ(p) ⊂ np−1B + U0/φp(np) (3.3)

Then by Ω(P) and (3.3), we have for all n ≥ Bp

Uq ⊂ sn(q, σ(p))U0 + Sn(q, σ(p))Uσ(p)

⊂ sn(q, σ(p))U0 + Sn(q, σ(p))np−1B +
Sn(q, σ(p))

φp(np)
U0

⊂
[
sn(q, σ(p)) +

Sn(q, σ(p))

φp(np)

]
U0 + Sn(q, σ(p))np−1B

For x ∈ Uq, we may find sequences (xn) and (yn) so that x = xn + yn for all

n ≥ Bp with

• xn ∈
[
sn(q, σ(p)) + Sn(q,σ(p))

φp(np)

]
U0,

• yn ∈ Sn(q, σ(p))np−1B.

Hence,

• yn − yn+1 ∈ 2Sn+1(q, σ(p))np−1B because Sn(q, σ(p)) is increasing with re-

spect to n;

• xn−xn+1 ∈ 2
[
sn(q, σ(p)) + Sn+1(q,σ(p))

φp(np)

]
U0 because sn(q, σ(p)) is decreasing

with respect to n.

As B is a hilbertian ball and EB ↪→ E ↪→ E0 is nuclear and so compact, we can

find a common orthonormal basis in EB and E0. Then consider the imbedding
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Pm, m ∈ N as in interpolation lemma. So by the Banach-Steinhaus Theorem it

suffices to show the continuity of these imbeddings on E. Clearly ‖Pm‖0 < C0

and ‖Pm‖B < CB where C0 ≤ 1 and CB ≤ 1 because Pm is a projection with the

common orthonormal basis. Define C = maxC0, CB.

By the property DN(Q), ∀t > Ap,∀n > Bp;

|Pmyn − Pmyn+1|k ≤ Rt(k, σ(p)) |Pmyn − Pmyn+1|0

+rt(k, σ(p)) |Pmyn − Pmyn+1|σ(p)

By applying (3.2),

|Pmyn − Pmyn+1|k ≤ Rt(k, σ(p)) |Pmyn − Pmyn+1|0

+rt(k, σ(p))n2
p−1 |Pmyn − Pmyn+1|B

≤ Rt(k, σ(p))C ‖yn − yn+1‖0

+rt(k, σ(p))n2
p−1C ‖yn − yn+1‖B

≤ 2CRt(k, σ(p))

[
sn(q, σ(p)) +

Sn+1(q, σ(p))

φp(np)

]
+2Crt(k, σ(p))n3

p−1Sn+1(q, σ(p)).

Let i = 0, · · · , np − np−1. In particular, we can take n and t to be np − i. Since

np ≥ Ap+1, Bp+1, we get ,

∣∣Pmynp−i − Pmynp−i+1

∣∣
k
≤ 2CRnp−i(k, σ(p))

[
snp−i(q, σ(p))+

Snp−i+1(q, σ(p))

φp(np)

]
+2Crnp−i(k, σ(p))n3

p−1Snp−i+1(q, σ(p)).
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By (3.1), we have

snp−i(q, σ(p))+
Snp−i+1(q, σ(p))

φp(np)
≤ snp−i(q, σ(p))+snp−i(q, σ(p)) ≤ 2snp−i(q, σ(p)).

Then,

∣∣Pmynp−i − Pmynp−i+1

∣∣
k
≤ 4CRnp−i(k, σ(p))snp−i(q, σ(p))

+2Crnp−i(k, σ(p))Snp−i+1(q, σ(p))(np−1 − i)3

Thus,

∣∣Pmynp−1 − Pmynp

∣∣
k
≤

np−np−1−1∑
i=0

∣∣Pmynp−i − Pmynp−i+1

∣∣
k

≤ 4C

np−np−1−1∑
i=0

{
Rnp−i(k, σ(p))snp−i(q, σ(p))

+rnp−i(k, σ(p))Snp−i+1(q, σ(p))(np−1 − i)3
}
.

Therefore, we get

∞∑
p=k0

∣∣Pmynp−1 − Pmynp

∣∣
k
≤ 4C

∞∑
p=k0

∑np−np−1−1

i=0

{
Rnp−i(k, σ(p))snp−i(q, σ(p))

+rnp−i(k, σ(p))Snp−i+1(q, σ(p))(np − i)3
}

≤ 4C
∑∞

m=nk0−1−1
{Rm(k, σ(p))sm(q, σ(p))

+rm(k, σ(p))Sm+1(q, σ(p))m3
}
.

To prove the sum is finite, we must show that σ(p) ∈ Im.
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By the construction of np,

m ≥ np−1 ≥ max(Ap, Bp) ≥ max(Ap−1, Bp−1) ≥ max(Aσ(p), Bσ(p))

Therefore σ(p) ∈ Im = {t : m ≥ max(At, Bt)}.

Hence
∑∞

p=k0

∣∣Pmynp−1 − Pmynp

∣∣
k
<∞. We can choose xnk0

= x and ynk0
= 0.

Since ynp =
∑p−1

l=k0
ynl+1

− ynl
,

∣∣Pmynp

∣∣
k
≤

p−1∑
l=k0

∣∣Pmynl
− Pmynl+1

∣∣
k

≤
∞∑

l=k0

∣∣Pmynl
− Pmynl+1

∣∣
k
< 4C <∞,∀p.

Therefore, if we can show that
∥∥Pmxnp

∥∥
k
→ 0 as p→∞, we get ‖Pmx‖k < C for

x ∈ Uq. Now again by the property DN(Q), for all t > Ap,

∣∣Pmxnp

∣∣
k
≤ Rt(k, σ(p))

∣∣Pmxnp

∣∣
0
+ rt(k, σ(p))

∣∣Pmxnp

∣∣
σ(p)

≤ Rt(k, σ(p))
∣∣Pmxnp

∣∣
0
+ rt(k, σ(p))n2

p−1

∣∣Pmxnp

∣∣
B

≤ CRt(k, σ(p))
∥∥xnp

∥∥
0
+ Crt(k, σ(p))n2

p−1

∥∥xnp

∥∥
B
.

Recall that xnp ∈
[
snp(q, σ(p)) +

Snp+1(q,σ(p))

Φp(np)

]
U0, by (3.1) xnp ∈ 2snp(q, σ(p))U0.

Moreover, xnp = x− ynp and ynp ∈ Snp(q, σ(p))np−1B.
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Hence, in particular choosing t = np, we get,

∣∣Pmxnp

∣∣
k
≤ 2CRnp(k, σ(p))snp(q, σ(p))

+Crnp(k, σ(p))n2
p−1

∥∥x− ynp

∥∥
B

≤ 2CRnp(k, σ(p))snp(q, σ(p)) + Cn2
p−1rnp(k, σ(p)) ‖x‖B

+2Cn3
p−1rnp(k, σ(p))Snp(q, σ(p))

As p→∞,
∣∣Pmxnp

∣∣
k
→ 0.

Therefore,

|Pmx|k =
∣∣Pmxnp + Pmynp

∣∣
k

≤
∣∣Pmxnp

∣∣
k
+
∣∣Pmynp

∣∣
k

≤ ∞,∀p.

Thus |Pmx|k ≤ ∞ for x ∈ Uq.

�
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chapter 4

some remarks

4.1 Definition and Main Theorem

Sometimes we can work with only one fundamental system of seminorms, P

instead of a σ −matched system. So we can rephrase the compability condition

as follows:

Definition 4.1. Suppose a NFS E with a fundamental system of seminorms P

satisfies the properties DN(P) and Ω(P). E is said to have the property T (P) if

the following holds;

For all k, there exists q such that

∑
n

sup
p∈In

{sn(q, p− 1)Rn(k, p− 1)} <∞

and ∑
n

sup
p∈In

{
Sn+1(q, p− 1)rn(k, p− 1)n3

}
<∞

where (rn (k, p))n , (Rn (k, p))n , (sn (q, p))n and (Sn (q, p))n are coefficients in the

properties DN (P) and Ω(P), respectively, and In = {p : n ≥ max(Ap, Bp)}.

We can rephrase the main theorem for one fundamental system of seminorms

as;
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Corollary 4.1. Let (E,P) be a NFS. If E satisfies the properties DN(P), Ω(P)

and T (P) then E has a basis.

To prove this corollary, we can use similar steps as in the proof of main theorem

in Chapter 3.

Remark 4.1. In Chapter 3, we showed that every nuclear Köthe space satifies the

properties Ω(P) and DN (P). If a nuclear Köthe space is regular then it satisfies

the property T (P).

Proof. We have ∀q ∃p > q such that (aq
n

ap
n
)n∈N ∈ `1

Uq ⊂ sup
n≥N+1

{
a0

n

aq
n

}
U0 + sup

1≤n≤N

{
ap

n

aq
n

}
Up

and ∀k, ∃ p > k with (ak
n

ap
n
)n∈N ∈ `1

‖x‖k = sup

{
ak

n

a0
n

: 1 ≤ n ≤ N

}
‖x‖0 + sup

{
ak

n

ap
n

: n ≥ N + 1

}
‖x‖p

where sN(q, p) = sup
{

a0
n

aq
n

: n ≥ N + 1
}
, SN(q, p) = sup

{
ap

n

aq
n

: 1 ≤ n ≤ N
}
,

RN(k, p) = sup
{

ak
n

a0
n

: 1 ≤ n ≤ N
}

and rN(k, p) = sup
{

ak
n

ap
n

: n ≥ N + 1
}
.

for all k, ∃q with (ak
n

aq
n
)n∈N ∈ `1

i)
∑

n

sup
p∈In

{sn(q, p− 1)Rn(k, p− 1)}

≤
∑
N

sup
p∈In

{
sup

{
a0

n

aq
n

: n ≥ N + 1

}
sup

{
ak

n

a0
n

: 1 ≤ n ≤ N

}}
≤
∑
N

sup
p∈In

{
a0

N+1

aq
N+1

ak
N

a0
N

}
≤
∑
N

ak
N+1

aq
N+1

<∞
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ii)
∑

n

sup
p∈In

{
Sn+1(q, p− 1)rn(k, p− 1)n3

}
≤
∑
N

sup
p∈In

{
sup

{
ap−1

n

aq
n

: 1 ≤ n ≤ N + 1

}
sup

{
ak

n

ap−1
n

: n ≥ N + 1

}
N3

}

≤
∑
N

sup
p∈In

{
ap−1

N+1

aq
N+1

ak
N+1

ap−1
N+1

N3

}

≤
∑

n

{
ak

N+1

aq
N+1

N3

}
<∞

Hence every regular nuclear Köthe space satisfies the inner interpolative con-

dition.

�

4.2 Another Inner Interpolative Condition

In this section we will give another inner interpolative condition T ′(P).

In the rest of this section we use the notation ;

F = {β : N → N : β is increasing, onto and β(n) ≤ n, ∀n}

Suppose a NFS E with the increasing seminorm system P = {‖·‖k}
∞
k=0

satisfies

the properties DN(P) and Ω(P).

Definition 4.2. E is said to satisfy the property T ′β(P) for function β ∈ F if the

following hold;

For all k, there exists q and for all κ ∈ F with κ(n) ≤ β(n) ∀n ∈ N;

∑
n

sn(k, κ(n))Rn(q, κ(n)) <∞
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and ∑
n

Sn+1(k, κ(n))rn(q, κ(n))n3 <∞

where the sequences (rn(q, p))n, (Rn(q, p))n, (sn(k, l))n and (Sn(k, l))n are coeffi-

cients in the properties DN(P) and Ω(P).

Theorem 4.1. Let (E,P) be a nuclear Fréchet space. If there exists β ∈ F such

that the properties DN(P), Ω(P) and T ′β(P) hold then E has a basis.

Proof. Proof is similar to the proof of the Main Theorem in Chapter 3,

Fix β ∈ F . Let us consider the sequences Bk, A
β
k = max {n : β(n) = k}.

Choose φk(n) = max1≤t≤n

{
maxq≤k

St+1(q,k)
st(q,k)

}
and ψk(n) = 2n2

2k of positive real

valued functions on R+. Then there exists a strictly increasing sequence (nk)k

satisfying

nk+1 ≥ ψ(nk) (4.1)

nk−1 > Aβ
k (4.2)

We choose εk = 1
nk

. Then
∑

k εk ≤ 1 since εk = 1
nk

≤ 1

2n22k
. Then by

Lemma 3.1 there exists a compact hilbertian ball B so that ∀ k.

Uk ⊂ nk−1B + U0/φk(nk) (4.3)

B ⊂ n2
k−1 (4.4)
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Then by Ω(P) and (3.3), we have for all n ≥ Bp

Uq ⊂ sn(q, p)U0 + Sn(q, p)Up

⊂ sn(q, p)U0 + Sn(q, p)np−1B +
Sn(q, p)

φp(np)
U0

⊂
[
sn(q, p) +

Sn(q, p)

φp(np)

]
U0 + Sn(q, p)np−1B

and since B is a hilbertian ball and EB ↪→ E ↪→ E0 is nuclear and so compact,

we can find a common orthonormal basis in EB and E0. Then we consider the

projection Pm, m ∈ N and by the property DN(Q), ∀t > Ap,∀n > Bp;

‖Pmyn − Pmyn+1‖k ≤ Rt(k, p) ‖Pmyn − Pmyn+1‖0

+rt(k, p) ‖Pmyn − Pmyn+1‖p

Let i = 0, · · · , np−np−1. In particular, we can take n and t to be np− i. Since

np−1 ≥ Ap, Bp, we get ,

∥∥Pmynp−1 − Pmynp

∥∥
k
≤

np−np−1−1∑
i=0

∥∥Pmynp−i − Pmynp−i+1

∥∥
k

≤ 4C

np−np−1−1∑
i=0

{
Rnp−i(k, p)snp−i(q, p)

+rnp−i(k, p)Snp−i+1(q, p)(np−1 − i)3
}
.

Define κ : N → N by κ(n) = p for n ∈ [np−1, np). We have,

∞∑
p=k0

∥∥Pmynp−1 − Pmynp

∥∥
k
≤ 4C

∑∞

m=1
{Rm(k, p)sm(q, p)

+rm(k, p)Sm+1(q, p)m
3
}
.
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Since for m ∈ [np−1, np), κ(m) = p, we get

∞∑
p=k0

∥∥Pmynp−1 − Pmynp

∥∥
k
≤ 4C

∑∞

m=1
{Rm(k, κ(m))sm(q, κ(m))

+rm(k, κ(m))Sm+1(q, κ(m))m3
}
.

Since κ(n) ≤ β(n) ∀n ∈ N the sum is finite by the T ′β(P) condition. The rest

of follows as in the proof of the Main Theorem 3.1

�
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