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ABSTRACT 
 
 

A DYNAMIC THEORY FOR LAMINATED COMPOSITES 

CONSISTING OF ANISOTROPIC LAYERS 
 

 
 
 

Yalçın, Ömer Fatih 

 Ph.D., Department of Engineering Sciences 

 Supervisor : Prof. Dr. Doğan Turhan 

 Co-Supervisor : Prof. Dr. Yalçın Mengi 

 

March 2006, 134 pages 
 
 
In this thesis, first a higher order dynamic theory for anisotropic thermoelastic 

plates is developed. Then, based on this plate theory, two dynamic models, 

discrete and continuum models (DM and CM), are proposed for layered 

composites consisting of anisotropic thermoelastic layers. Of the two models, CM 

is more important, which is established in the study of periodic layered composites 

using smoothing operations. CM has the properties: it contains inherently the 

interface and Floquet conditions and facilitates the analysis of the composite, in 

particular, when the number of laminae in the composite is large; it contains all 

kinds of deformation modes of the layered composite; its validity range for 

frequencies and wave numbers may be enlarged by increasing, respectively, the 

orders of the theory and interface conditions.  CM is assessed by comparing its 

prediction with the exact for the spectra of harmonic waves propagating in various 

directions of a two-phase periodic layered composite, as well as, for transient 

dynamic response of a composite slab induced by waves propagating 

perpendicular to layering. A good comparison is observed in the results and it is 
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found that the model predicts very well the periodic structure of spectra with 

passing and stopping bands for harmonic waves propagating perpendicular to 

layering. In view of the results, the physical significance of Floquet wave number 

is also discussed in the study. 

 
 
 
Keywords: layered composites, continuum and discrete models, Floquet 

periodicity condition, Floquet wave number, spectra. 
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ÖZ 
 
 

ANİZOTROP KATMANLARDAN OLUŞAN BİLEŞİK CİSİMLER İÇİN 

BİR DİNAMİK TEORİ 

 
 
 
 

Yalçın, Ömer Fatih 

 Doktora, Mühendislik Bilimleri Bölümü 

 Tez Yöneticisi : Prof. Dr. Doğan Turhan 

 Ortak Tez Yöneticisi : Prof. Dr. Yalçın Mengi 

 

Mart 2006, 134 sayfa 
 
 
Bu tezde ilk olarak anizotrop termoelastik plakalar için yüksek mertebeli bir 

dinamik teori geliştirilmiştir. Daha sonra, bu plaka teorisine dayanarak, anizotrop 

termoelastik katmanlardan oluşan tabakalı cisimler için ayrık ve sürekli model 

(AM ve SM) olmak üzere iki dinamik model sunulmuştur. Bu modellerden, 

periyodik tabakalı bileşik cisimler için düzleştirme operasyonları uygulanarak 

geliştirilen SM daha önemlidir. SM'nin dayandığı özellikler sayılacak olursa: 

arayüzey ve Floquet şartlarını doğal olarak içermekte ve özellikle bileşik cisimdeki 

tabaka sayısı arttıkça bileşik cismin analizini kolaylaştırmaktadır; tabakalı bileşik 

cismin tüm şekil değiştirme modlarını içermektedir; frekanslar ve dalga sayıları 

için geçerlilik alanı, sırasıyla teorinin ve arayüzey şartlarının mertebelerinin 

artırılmasıyla sağlanabilir. SM'nin geçerliliği, iki fazlı periyodik tabakalı bileşik 

cisimlerde değişik yönlerde yayılan harmonik dalgaların tafyları (spektrumları) 

için ve aynı zamanda bileşik bir levhada tabakalara dik yayılan dalgaların neden 

olduğu geçici dinamik tepki için verdiği çözümlerin kesin çözümlerle 

karşılaştırılması ile yapılmıştır. Sonuçlarda iyi bir uyuşma gözlenmiş ve modelin 
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tabakalara dik yönde yayılan harmonik dalgaların geçiş ve durduruş bantlarını da 

içeren tayflarının periyodik yapısını çok iyi tahmin ettiği bulunmuştur. Elde edilen 

sonuçların ışığında, Floquet dalga sayısının fiziksel önemi de çalışma kapsamında 

tartışılmıştır. 

 
 
 
Anahtar Kelimeler: tabakasal bileşik cisimler, sürekli ve ayrık modeller, Floquet 

periyodiklik şartı, Floquet dalga sayısı, tayf 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

 Due to their importance in many fields of engineering, such as aerospace, 

automotive, structural engineering etc., various continuum models (CM) are 

proposed in literature for the analysis of periodic layered composites. CM’s treat 

the composite material as homogeneous and simplify the analysis when the 

number of laminae in the composite is large, whereas the exact treatment involves 

writing the field equations in each lamina and considering the continuity 

conditions at interfaces.  

 Among these CM’s, effective modulus theories, effective stiffness theories, 

mixture theories, etc. may be cited. CM’s proposed in literature were assessed by 

using a criterion, which involves the comparison of CM prediction for dispersion 

spectra of various waves propagating in layered composites with the exact or with 

the ones obtained by other methods, such as, by finite element method. The 

interaction between the layers of the composite is induced by reflection and 

refraction of waves, giving rise to geometric dispersion. Geometric dispersion 

depends upon the mechanical properties, geometric arrangements and nature of the 

material interfaces. Validity of an approximate theory for elastodynamic modeling 

can be decided by comparing the approximate dispersion curves with the exact or 

experimental ones. 

 In this study, a higher order CM is developed for periodic layered composites. 

The formulation of the CM is based on a higher order plate theory for anisotropic 

thermoelastic plates which is developed as the first stage of this study.  The 

technique employed in developing the approximate theory is a more systematic 

and improved version of that used in conjunction with isotropic plates and shells 

[1-4]. This plate theory has an important property: it contains, as field variables, 

not only generalized variables representing the weighted averages of 
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displacements and stresses, but also face variables (FV) denoting displacements 

and tractions defined on the faces of the plate. The appearance of FV’s in the plate 

theory played, for the reasons stated below, a crucial role in establishing a 

consistent model for layered composites: it permits satisfying correctly the 

interface conditions, thus, accommodating the dispersive properties of layered 

composites. This property of the approximate theory eliminates the discrepancies 

which may exist between the displacement (or temperature) distributions assumed 

over the thickness of the plate and its lateral boundary conditions; thus, it 

improves, without using any correction factors, the geometric dispersion 

characteristics of the waves propagating in a plate. This is a superior feature of the 

proposed theory to the existing theories in literature (see for example, Refs.[5-7]), 

where some correction coefficients are introduced to remedy the discrepancies 

which may exist between the assumed displacement distributions over the 

thickness of the plate and the lateral boundary conditions. Appearance of FV’s, 

further, facilitates performing the smoothing operations in a systematic manner in 

the formulation of CM. 

 The CM model developed in this study for periodic layered composites may 

be viewed as a mixture theory with higher order microstructure. Its formulation 

involves the use of the following steps: writing the equations of the above 

mentioned plate theory for each lamina; expressing the interface conditions in 

terms of FV’s of the plate theory; finally, using smoothing operations for the field 

variables which appear in the equations of the composite body. The originality of 

the proposed CM and its contribution to existing literature lie along the following 

lines: 

1) Triclinic anisotropy (most general anisotropy with no elastic symmetry) is 

assumed for the layer material so that the model may be used in the analyses 

of variety of layered composites, such as, fiber-reinforced and particulate 

composites. 

2) The number of laminae in the unit cell of periodic layered composite is 

arbitrary. The model contains two-phase composite as a special case. 
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3) The orders of the theory and continuity conditions in the model are kept 

arbitrary. The region of validity of the model may be enlarged in wave 

number-frequency space by increasing these orders. Prediction of the model 

approaches that of exact as the orders get larger. 

4) The model holds for all kinds of deformation modes, such as, those induced 

by waves propagating perpendicular or parallel or obliquely to layering. 

5) The model contains inherently the Floquet wave conditions for the waves 

propagating in periodic layered composites. This property of the model 

enables it to predict correctly the filtering behavior of layered composites for 

the waves normal to layering. 

6) Thermal effects are included in the formulation of the model. 

 The CM is assessed by using the spectral criterion stated previously, which 

involves the comparison of model prediction with the exact for harmonic waves 

propagating in an infinite layered composite. The comparison is given in the study 

for two-phase angle-ply composite laminates and a good match with the exact is 

observed for the waves propagating in various directions in the composite. The 

number of modes accommodated by the model increases with the order of theory; 

its prediction in wave number direction improves with the order of continuity 

conditions. 

 It is proved in the study that the CM contains asymptotically the Floquet 

periodicity conditions as the order of continuity conditions get larger.  

 The spectral criterion is tested in the study by considering transient shear 

waves in a composite slab, where the prediction of the model is found to agree 

quite well with the exact even for lower order theory and continuity conditions. 

1.1 Literature Survey 

Dynamic behavior of plates 

 Approximate plate theories are usually derived by expanding the displacement 

or stress fields of 3D elasticity theory in terms of the thickness coordinate. Among 

these theories, the first order shear deformation theories of Mindlin [5] and 

Reissner [8] can be mentioned as pioneering works, where the material is treated 
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as isotropic. Later, various higher order theories [9-12] were proposed to improve 

their prediction in the dynamic analysis of plates. Reddy’s third order shear 

deformation theory [12] has been widely accepted and it is variationally consistent; 

however, this theory assumes that transverse shear stresses vanish at the top and 

bottom of the plate. For extensive review of the approximate plate theories one 

may refer to Refs.[13-15]. 

 The dynamic behavior of anisotropic plates has been the subject of many 

researches; but, the emphases in these works were, for some special wave modes, 

on the investigation of dispersion characteristics of harmonic waves propagating in 

plates of infinite extent by using mostly the exact theory of elasticity.  

 Solie and Auld [16] constructed exact plate wave solutions by using the 

method of partial waves in cubic solids (i.e., materials with three independent 

elastic constants). Green and Milosavljevic [17] and Rogerson and Kossovitch [18] 

examined harmonic waves in a transversely isotropic plate (i.e., plate material with 

five independent elastic constants) propagating in the direction of  transverse 

isotropy axis. In a similar study, Kline et al. [19] considered arbitrary propagation 

directions in a fiber-reinforced composite (represented by transversely isotropic 

plate). 

 In a more detailed study, Nayfeh and Chimenti [20] provided an exact formal 

solution of the guided waves for the most general case: triclinic plates. From that 

case, they moved to a special case of monoclinic symmetry (with one plane of 

symmetry) and determined the dispersion equation of plate waves exactly. Their 

solution included also higher symmetry materials. Numerical examples for 

different symmetry cases are presented and dispersion curves for each case are 

provided. A similar study was performed by Li and Thompson [21] for a 

monoclinic plate with some additional analytical expressions for the oscillations of 

lower symmetric and antisymmetric modes. Recently, a theoretical framework for 

the wave propagation in general anisotropic plates was developed by Shuvalov 

[22]. In this approach, the propagator matrix method and Stroh’s formalism are 

utilized and real forms for general dispersion equations are derived. Shortly after, 
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Alshits et al. [23] extended the previous study to analyze the asymptotic behavior 

of the dispersion branches using short-wavelength approximation. 

 Chimenti [24] reviewed the vast literature on theoretical and experimental 

work on guided waves in plates. In the books of Nayfeh [25] and Liu and Xi [26], 

a comprehensive coverage of the wave propagation in anisotropic medium is 

presented, including coupled wave motion in layered anisotropic plates, elastic 

waves in fluid loaded solids, piezoelectric effects, transient waves etc., together 

with some review of the literature on relevant subjects. 

 Recently appeared works of Verma and Hasebe [27] and Al-Qahtani and Datta 

[28] incorporate the thermal effects, in the context of generalized thermoelasticity, 

with the elastic wave propagation in anisotropic plates. In the former, exact 

methods (for transversely isotropic and triclinic plates) and a semianalytic finite 

element are presented, and their predictions for thermoelastic waves propagating in 

a transversely isotropic plate are compared. In the latter, an exact treatment is 

developed for thermoelastic waves in general anisotropic plates. Dispersion curves 

for some special cases (monoclinic, orthotropic, transversely isotropic and cubic 

plates) are given for coupled waves. 

Dynamic behavior of layered composites 

 The CM’s proposed in literature may be categorized as effective modulus, 

effective stiffness and mixture theories. In what follows these models are reviewed 

briefly. 

 The simplest of CM’s is the effective modulus theory [29,30]: it is proposed 

for periodic layered composites with isotropic layers and replaces the composite 

material with homogeneous transversely isotropic or orthotropic material (i.e., 

material with three orthogonal planes of symmetry) with effective elastic moduli. 

This model has a major shortcoming: it disregards the dispersive characteristics of 

the layered composite induced by reflections and/or refractions of waves at layer 

interfaces. To remedy this drawback of effective modulus theory, various 

dispersive theories are developed in literature for two-phase periodic elastic or 

viscoelastic layered composites.  
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 In [31] by Sun et al. a dispersion theory, namely the effective stiffness theory, 

is proposed for two phase periodic layered composites where the layer properties 

are assumed to be isotropic. The construction of the theory is based on polynomial 

expansion of displacements of each layer about the midplanes of the layers. An 

interface compatibility equation is introduced to satisfy the displacement 

conditions at the interfaces of adjacent layers. The strain and kinetic energies of 

the layers are written in terms of displacement expansions. Smoothing the 

resulting expansions and application of Hamilton’s principle yield the 

displacement equations of the theory. Sve [32] considered waves propagating in an 

arbitrary angle with the layering through an exact treatment and compared his 

results with those of the effective stiffness theory. The effective stiffness theory is 

improved by Drumheller and Bedford [33,34] for laminated composites by 

including “the evaluation of displacements and stresses, particularly interface 

stresses”. These theories are not capable of predicting the periodic and banded 

structure of spectra for harmonic waves propagating perpendicular to layering. To 

remedy this, some matching coefficients are introduced in [35], where the 

coefficients are determined through matching frequencies with the exact values at 

the ends of first Brillouin zone. However, it is obvious that this matching 

procedure requires information about the exact properties of spectra. It is to be 

noted that the prediction of an approximate theory for the waves perpendicular to 

layering in layered composites is a good test for its reliability. 

 Based on classical mixture theories [36,37] several dispersive theories are 

proposed in literature for layered composites, where the layer material is assumed 

to be isotropic (see, e.g., Refs.[38-42]). Though formwise they are simple, these 

theories have some shortcomings: the parameters or constants appearing in them 

require either the solution of some microstructure boundary value problems or 

matching with the exact of some spectral properties of waves propagating in 

layered composites; they accommodate only limited number of modes and not 

capable to predict the filtering property of the composite for the waves 

perpendicular to layering. 
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 Higher order models are developed by Mengi et al. [43] and Delph and 

Hermann [44] for layered composites which accommodates, through matching in 

the latter, the banded and periodic structure of spectra for waves perpendicular to 

layering. However, the layer material in these studies are taken as isotropic, which 

makes the use of these models not suitable for the analyses of layered composites 

of practical importance, such as, fiber-reinforced and particulate composites. 

 Through the expansion of displacements and stresses in each lamina, higher 

order  CM’s are proposed in [45,46] for some special waves, namely, for 

compressive waves propagating parallel and perpendicular to layering. In these 

works, the layer material is assumed to be isotropic. These models are further 

examined in detail in the works of Hegemier [47] and Hegemier et al. [48]. 

 A multi-scale mixture theory with microstructure is presented in [49,50] for 

two phase layered composites with orthotropic layer properties. This theory has 

rather lengthy and complicated equations and is assessed in [50] by considering 

only the first mode of spectra; no information is given with regard to higher modes 

and its ability to predict the filtering property of layered composites. In another 

study , Nayfeh and Gurtman [51] extended the mixture theory of Hegemier et al. 

[48] to study both transversely and horizontally polarized shear motions in 

laminated waveguides.  

 A different approach is used in a two part paper by Mengi [1,43] for two phase 

periodic thermoelastic layered composites, where the layer property is taken as 

isotropic. This procedure permits to account for the continuity conditions at layer 

interfaces; it starts by writing, for each layer, the governing equations of a single 

layer established in Part 1, and completes the formulation by adding the continuity 

conditions to these equations and using a smoothing operation. This model can 

capture the banded and periodic structure of spectra for waves perpendicular to 

layering. Later, this theory is extended to viscoelastic layered composites by 

Mengi and Turhan [2] and was appraised by applying it to a transient wave 

propagation problem in [52]. The same theory is also extended to viscoelastic 

cylindrical laminated composites by Mengi and Birlik [3] and in [53] it is assessed 

for axially symmetric elastic waves propagating in a closed circular cylindrical 
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shell. The present thesis work may be considered as a generalization of the work in 

[43] to the case in which the layer material is anisotropic (with triclinic properties) 

and the number of laminae in unit cell of the periodic layered composite is 

arbitrary. This generalization is important since it permits using the theory in the 

analysis of layered composites of practical importance, such as, fiber-reinforced 

and particulate composites. 

 For the sake of completeness, a short literature review will be given for the 

exact treatment of laminated composites. That treatment involves writing the exact 

field equations in each layer of the composite and satisfying the continuity 

conditions at the interfaces. To facilitate this analysis, the matrix transfer method, 

which is first introduced by Thomson [54], is employed. In this method, a system 

of equations for the layered media is constructed from the field equations of each 

layer in view of appropriate interface conditions.  

 Liu et al. [55]  used this technique for the investigation of dispersion relations 

of Lamb waves in anisotropic laminates. In the works of Nayfeh [25,56,57] matrix 

transfer method together with linear orthogonal transformations is utilized for the 

study of harmonic waves in layered anisotropic media. 

 Braga and Herrmann  [58]  and Ting and Chadwick [59] applied the matrix 

transfer method together with Stroh formalism to the analysis of Floquet waves in 

anisotropic periodically layered media. The former study gives a very detailed 

analysis of the Floquet wave characteristic equation with stop and pass bands 

(Brillouin zones). For the composite medium with periodic structures, such as a 

laminated medium or a fibrous composite, displacements and stresses under 

harmonic waves can be represented by periodic functions. This representation is 

given in [59] within the framework of the Floquet (or Bloch) theory, which is 

commonly being used in crystal lattice studies. 

 Kohn et al. [60] employed the Floquet theory to the study of the propagation 

of harmonic elastic waves through periodically layered composite. They developed 

variational principles in the form of integrals over single cell of the composite and 

solved the resulting variational equations by the Rayleigh-Ritz procedure. At the 

end, dispersion relations for some simple illustrative cases were analyzed and 
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satisfactory results for phase velocities and stress profiles were obtained. A 

detailed discussion of this approach is given in [61,62]. Nemat-Nasser [63] and 

Minagawa and Nemat-Nasser [64] used a more general variational principle and 

obtained improved results. 

 More detailed surveys on the relevant approximate and exact methods can be 

found in [25,26,35,60,65,66]. 

1.2 Organization of the Thesis 

 Contents of this study are presented in seven chapters. A higher order 

approximate theory for anisotropic plates is developed in Chapter 2. The theory is 

assessed in Chapter 3 by comparing the dispersion curves of harmonic waves in a 

fiber-reinforced plate, as well as mode shapes at some cut-off frequencies, with 

those of exact. Based on this plate theory, two models, namely discrete and 

continuum models, are constructed in Chapter 4 for two-phase periodic layered 

composites. In Chapter 5, the two-phase continuum model is extended to a 

periodic composite with a unit cell having arbitrary number of laminae. Chapter 6 

is devoted to the assessment of two-phase continuum model. Within the 

framework of the study, an interpretation is given for the Floquet wave number. 

Finally, Chapter 7 contains some conclusions. 
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CHAPTER 2 
 
 

A DYNAMIC THEORY FOR TRICLINIC ANISOTROPIC PLATES 
 
 
 

 In this chapter, an approximate dynamic theory is developed for plates made 

of a triclinic thermoelastic material by employing a procedure used in [1] in 

conjunction of isotropic plates. This theory will be used in the subsequent chapters 

to construct approximate theories for layered composites. A plate which is referred 

to an ix -cartesian coordinate system, where 31xx -plane coincides with the 

midplane of the plate, is considered. It is assumed that the plate has a thickness of 

2h. The equations governing the linear dynamic thermoelastic behavior of the plate 

are 

equations of motion : 

 iijij ub &&ρ=+τ∂  (2.1) 

constitutive equations: 

 θβ−∂=τ ijnmijmnij uC  (2.2) 

energy equation: 

 jiij0vii uTcrq && ∂β+θ=+∂−  (2.3) 

modified Fourier’s law: 

 θ∂−=+τ jijii kqq&  (2.4) 

where  

τij : stresses 

bi  : body forces 

ρ  : mass density 

ui  : displacements 

Cijkl  : elastic coefficients 

βij  : thermal coefficients related to thermal  

            expansion coefficients αij  by  βij = Cijkl αkl 
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θ  : temperature deviation from reference temperature 

qi  : heat flux 

r  : rate of heat generation per unit volume  

cv  : specific heat per unit volume at constant deformation 

T0 : absolute temperature of the reference configuration 

τ : retardation time for heat flux 

kij  : coefficients of heat conduction 

and i∂  stands for ( ix/ ∂∂ ) and dot denotes time derivative. In writing Eqs.(2.1-

2.4), the indicial notation together with summation convention is used where the 

range of indices is from 1 to 3. The modified Fourier’s law in Eq.(2.4) is obtained 

by adding the term “ iq&τ ” to the left hand side of regular Fourier’s equation. This 

modification permits having a finite speed for thermal waves [67]. 

 For the development of the approximate theory, a modified version of 

Galerkin’s method is used, where a set of distribution functions 

{ }K ,2 ,1 ,0n);x( 2n =φ  with h/xx 22 =  is chosen for the description of the 

distribution of the field variables over the thickness of the plate. It is assumed that 

φn’s form a complete set in the sense that a given function f(x2) in the interval 

hxh 2 ≤≤−  can be represented in terms of φn’s as 

 ∑
=

∞→
φα==

N

0n
2nn2N22N

N
)x()x(fth                wi)x(f)x(f   lim  

where αn’s are some constants and N f  defines the approximation obtained by 

retaining (N+1) terms in the series. Further, it is assumed that φn’s are ordered such 

that  

 K0,1,N  ;   EE N1N =≤+  

where NE  is the error associated with the approximation N f  defined by 

 ∫
−

−=
h

h

2NN dx ff E  

Finally, without loss of generality, it is assumed that φn is an even function of  2x  

for even n, and odd function of  2x  for odd n. It goes without saying that there are 
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no preconditions of orthogonality for the functions φn’s. 

 To develop mth order approximate theory, the elements { 0φ , K,1φ , ;mφ  1m+φ , 

}2m+φ  of the set are retained, where the inclusion of the last two elements 1m+φ , 

2m+φ  is necessary for establishing constitutive equations for FV’s. This explains 

why the terminology "modified Galerkin's method" is used for the method 

employed in the study. 

2.1  Weighted Integrated Forms of Field Equations 

 To develop mth order theory, the operator 

 ∫
−

φ•=
h

h

2nn dx)(
h2

1
L       (n = 0…m) (2.5) 

is applied to Eqs.(2.1−2.4), which gives 

equations of motion : 

 n
i

n
i

n
i2

n
i

n
i ub)R( &&ρ=+τ−+τ∂ αα  (2.6) 

constitutive equations: 

 n
ij

n
k

n
kk2ij

n
kkij

n
ij )uS(CuC θβ−−+∂=τ αα  (2.7) 

energy equation: 

 )uS(T  uTcr))qQ(q( n
j

n
jj20

n
jj0

n
v

nn
2

nn &&& −β+∂β+θ=+−+∂− αααα  (2.8) 

modified Fourier’s law: 

  )(kkqq nn
2i

n
i

n
i

n
i θ−Ψ+θ∂−=+τ αα
&     (2.9) 

where it is assumed that the range of Latin subscripts i, j, k, etc. is from 1 to 3, and 

Greek subscripts α, β, etc., take the values 1 and 3 only. The field variables 

appearing in the above equations are defined by 

 )r,b,,q,,u(f           with)f(Lf iiijin
n θτ==  (2.10) 

 ),q,,u(f   with   f c
h

1
f nn

2
n
i2

n
i

nj
m

0j
nj

n θτ== ∑
=

 (2.11) 

where cnj coefficients relate j2nn   toxd/d φφ=φ′  by 
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 j

m

0j
njn c φ=φ′ ∑

=

  (2.12) 

 and 

 ),Q,R,S(F   with  
h2

 )1(F
F nnn

i
n
i

nn

* n
n Ψ=

φ
=  

      
n oddfor     ffF

neven for     ffF
F
* n







+=

−=
=

−++

−+−

 (2.13) 

  ,),q,,u( f  , ff 2i2ih2x θτ== =m
m ),Q,R,S(F ii

mmmmm Ψ=  

In view of Eqs.(2.10-2.13), it is observed that the equations of approximate theory, 

Eqs.(2.5-2.9), contain two types of variables:  

 ),θ,q,τu(f nn
i

n
ij

n
i

n =   

representing weighted averages of displacements etc., which are called generalized 

variables (GV) and  

 























=

=

=

=

=

−+

−+

−+

−+

θθΨ

qqQ

 ττR

uuS

 F

22

i2i2i

iii

m

m

m

m

m

m

m

m

m  

are defined on the flat faces of the plate, which are called face variables (FV). 

 It is easy to see that the number of available equations in Eqs.(2.5-2.9) 

together with prescribed lateral boundary conditions of the plate is [13(m+1)+8]. 

On the other hand the number of unknown variables ( n
iu , n

ijτ ,  n
iq , nθ , m

iS , m

iR , 

mQ , mΨ ) in Eqs.(2.5-2.9) is [13(m+1)+16]; thus, 8 equations will be needed for 

the completion of the approximate theory, which will come from constitutive 

equations of FV’s. 
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2.2  Constitutive Equations for FV’s 

 To establish these equations, ui and θ are expanded in terms of φn as 

 kk

2m

0k

i
ki )b,a(),u( φ=θ ∑

+

=

 (2.14) 

where the coefficients i
ka  and kb  are some functions of αx  (α = 1, 3) and time 

“t”. To relate these coefficients to GV’s and FV’s of the approximate theory, the 

operator Ln (n = 0…m) and the operations )  , uuS( iii
−+−+ θθ=Ψ= mm

mm  are 

applied to Eq.(2.14) which gives 

 

),S(
2

1
)b,a( )1(

)p,0,2,n(          ),u()b,a(d

i

2p

,..2,0k
k

i
kk

nn
i

2p

,..2,0k
k

i
knk

++
+

=

+

=

Ψ=φ

=θ=

∑

∑ K

 (2.15) 

and 

 

),S(
2

1
)b,a( )1(

)p,1,3,n(          ),u()b,a(d

i

2p

,..3,1k
k

i
kk

nn
i

2p

,..3,1k
k

i
knk

−−
+′

=

+′

=

Ψ=φ

′=θ=

∑

∑ K

 (2.16) 

where 1mp  ,mp −=′=  for even m, and mp =′ , 1mp −=  for odd m, and  

 dnk = dkn = Ln(φk ) 

Solutions of Eqs.(2.15) and (2.16) determine i
ka  and kb  with the form 

 

2p,,3,1kfor         ),S(f),u(f)b,a(

2,p,2,0 kfor        ),S(f),u(f)b,a(

i

p

,..3,1j
2p,k

jj
ikjk

i
k

i

p

,..2,0j
2p,k

jj
ikjk

i
k

+′=Ψ+θ=

+=Ψ+θ=

−−
′

=
+′

++

=
+

∑

∑

K

K

 (2.17) 

where the coefficients fkj (k,j = (0…(m+2)) may be evaluated when the distribution 

functions φn are selected. 

 Finally, Eq.(2.14) is inserted into the right hand sides of equations 

 θβ−∂+∂=τ αα i2r2r2i2rri2i2 uCuC  

 θ∂−θ∂−=τ+ αα 222222 kkq q &   )31ri,   1,3;( K==α  
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and the resulting expressions are used in −+ ττ= i2i2iR m
m   ;  −+= 22 qqQ m

m  . This 

gives the constitutive equations of FV’s as, in view of Eqs.(2.17) and the 

definitions )  , uuS( iii
−+−+ θθ=Ψ= mm

mm , 

 ∑
′

=

+−−+
αα

+ Ψβ−γ+γ+∂=
p

,..3,1j
i2r

j
rjr2i2rri2i )Su(C

h

2
SCR  

 ∑
=

−++−
αα

− Ψβ−γ+γ+∂=
p

,..2,0j
i2r

j
rjr2i2rri2i )Su(C

h

2
SCR  

 ∑
′

=

−−+
αα

++ Ψγ+θγ−Ψ∂−=τ+
p

,..3,1j

j
j222 )(k

h

2
kQ Q &  

 ∑
=

++−
αα

−− Ψγ+θγ−Ψ∂−=τ+
p

,..2,0j

j
j222 )(k

h

2
kQ Q &  (2.18) 

where the coefficients mγγ  and j  may be computed from 

 

∑

∑

∑

∑

+′

=
+′

−

+

=
+

+

+′

=

+

=

φ′=γ

φ′=γ

φ′=γ

φ′=γ

2p

,..3,1k
k2p,k

2p

,..2,0k
k2p,k

2p

,..3,1k
kkjj

2p

,..2,0k
kkjj

)1(f

    )1(f

j oddfor    )1(f

jeven for    )1(f

 (2.19) 

2.3  Symbolic Description of the Approximate Plate Theory 

 To facilitate the discussions for the models which will be developed for 

layered composites in subsequent sections, the equations of the approximate plate 

theory will be written here symbolically as 

 m)0(n             0)P  ,Z  ,T  ,E  ,C  ,M( i
n
i

nn
ij

n
i K

mm ==  (2.20) 

where the first four equations represent, respectively, equations of motion 

(Eq.(2.6)), constitutive equations for GV's (Eq.(2.7)), energy equation (Eq.(2.8)), 

modified Fourier’s law (Eq.(2.9)) and the last two describe, respectively, the 

constitutive equations for the FV's mm QandR i  in Eqs.(2.18). It is worth to note 
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that the proposed theory reduces the dimension of the plate theory by "one" 

through the integration over its thickness; thus, both GV's and FV's would be  

functions of x1 , x3 and time "t" only. 

 The appearance of FV's in the approximate theory is crucial in construction of 

consistent dynamic models for layered composites accommodating their refractive 

properties at interfaces properly. 

2.4  Case of Orthogonal φn’s 

 As mentioned earlier, orthogonality is not a requirement for the constitutive 

relations in Eqs.(2.18). However, taking the distribution functions as orthogonal 

simplifies the computation of the constants appearing in these equations.  For this 

special case,  the expression  dnk = Ln(φk ) takes the form 

 kknnk dd δ=  (2.21) 

with δnk being Kronecker’s delta and 

 ∫
−

φ=
1

1

2
2
kk xd

2

1
d  (2.22) 

In Eq.(2.21), the underlined index implies that there is no summation over it. In 

view of  Eq.(2.21), the solutions of Eqs.(2.15) and (2.16) for i
ka  and kb  can be 

obtained as  

 )m0(k    , ),u(
d

1
)b,a( kk

i

k

k
i
k K=θ=  

 
(1)

 ),u(
d

(1)

2

),S(

)b,a(
2p

p

,..2,0k

kk
i

k

ki

2p
i

2p

+

=

++

++
φ









θ

φ
−

Ψ

=

∑
 (2.23) 

 
(1)

 ),u(
d

(1)

2

),S(

)b,a(
2p

p

,..3,1k

kk
i

k

ki

2p
i

2p

+′

′

=

−−

+′+′
φ









θ

φ
−

Ψ

=

∑
 

Comparison of these equations with Eqs.(2.17) gives, for fkj coefficients,  
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jk     with 2p  ,2p)j,k(for  

j k     with2p  ,2p)j,k(for  

m0j  ; 2p  ,2pkfor  

2p  ,2pj  ; m1kfor  

m1)j,k(for  

       

0

21

(1)d

(1)

0

d

1

f

kj

j

jk
k

kj

≠+′+=

=+′+=

=+′+=

+′+==

=



















φ

φ
−

δ

= K

K

K

 (2.24) 

Insertion of Eqs.(2.24) into (2.19) determines the constants jγ  and mγ  which 

appear in the constitutive equations of FV’s. These constants together with njc  

coefficients are given in Tables 2.1 and 2.2 when φn’s are Legendre polynomials 

(which form a complete orthogonal set), i.e., when  

 )x(P)x( 2n2n =φ  

where )x(P 2n  is the Legendre polynomial of order “n” defined by  

 n2
2n

2

n

n2n )1x(
xd

d

!n2

1
)x(P −=  (2.25) 

It may be noted that selection of Legendre polynomials for φn’s results in  

dn = 1/(2n+1), φn(1) = 1 and (1)nφ′ = (0, 1, 3, 6, 10) for n = (0…4), respectively. 

The dash in Table 2.2 indicates that the corresponding constant does not appear in 

the theory. 

 

 
 

Table 2.1 cnj coefficients (φn’s are Legendre polynomials) 
 

 0 1 2 3 4 

1 1 0 0 0 0 

2 0 3 0 0 0 

3 1 0 5 0 0 

4 0 3 0 7 0 

 

 

j 
n 
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Table 2.2 γj and γ± coefficients (φn’s are Legendre polynomials) 
 

order 
(m) γ0 γ1 γ2 γ3 γ4 γ+ γ− 

0 -3 − − − − 3/2 1/2 

1 -3 -15 − − − 3/2 3 

2 -10 -15 -35 − − 5 3 

4 -21 -42 -90 -63 -99 21/2 15/2 

 

2.5  Reduction of the Approximate Theory to Generally Orthotropic Plates 

 A generally orthotropic plate will be taken here, for illustrative purposes, as a 

fiber-reinforced plate with a ply angle θ as shown in  Fig. 2.1, where xi axes define 

the global coordinate system (the body coordinates); whereas (1,2,3)-axes denote 

the material frame (the principal material directions, i.e., the fiber direction and the 

directions normal to it). Constitutive equations in xi frame would be, in matrix 

form 

 θ−= β εCσ    

or  

 θ































β

β

β

β

−





























































=































τ

τ

τ

τ

τ

τ

ε

ε

ε

ε

ε

ε

0

0

2

2

2

C0C000

0C0CCC

C0C000

0C0CCC

0C0CCC

0C0CCC

13

33

22

11

12

13

23

33

22

11

6646

55352515

4644

35332313

25232212

15131211

12

13

23

33

22

11

 (2.26) 

where )uu( ijjiij
2

1
∂+∂=ε  are strain components. It may be noted that the first and 

last indices, “i” and “j”, in Cij in Eq.(2.26) are related to first two and last two 

indices, “pq” and “mn”, in Cpqmn in Eq.(2.2) by the following rule 

 1→11, 2→22, 3→33, 4→23, 5→13, 6→12 
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 On the other hand, nonzero components of the heat conduction coefficient 

matrix )k( ij=k  and thermal coefficient matrix )( ijβ=β  are , for the generally 

orthotropic plate in xi frame, (k11, k22, k33, k13) and (β11, β22, β33, β13). 

 The elastic, heat conduction and thermal coefficients of generally orthotropic 

plate in xi frame are related, through the ply angle θ, to the coefficients in material 

frame by the usual tensor transformation rules: 

 

mnjnimijmnjnimij

rsuvnvmuqsprpqmn

ˆaa       ,  k̂aak

ĈaaaaC

β=β=

=
  (2.27) 

with   

 



















θ−θ

θθ

==

0sincos

100

0cossin

)a( ijA  (2.28) 

being direction cosine matrix and overhead denotes the values of coefficients in 

material frame. The transformed coefficients in Eq.(2.26) are given in Appendix 

A. 

 The equations of the approximate theory for generally orthotropic plates can 

be derived from those of  triclinic anisotropic plates, Eqs.(2.6-2.9) and (2.18), by 

θ 
x3 

x1 

x2 , 3 

1 

2 

Figure 2.1 Fiber-reinforced layer 
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specializing them for the properties of orthotropic plates discussed above. The 

resulting equations in extended form are 

equations of motion: 

 n
ii

n
i2

n
i

n
i u b)R( &&ρ=+τ−+τ∂ αα  (2.29) 

constitutive equations: 

 

)uS(C)uS(CuCuC

)uS(CuCuCuCuC

)uS(C)uS(CuCuC

)uS(CuCuCuCuC

)uS(CuCuCuCuC
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n
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166
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2346
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2166
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n
225

n
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n
1355

n
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n
1115

n
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n
3

n
344

n
1

n
146

n
2344

n
2146

n
23

n
33

n
2

n
232

n
3333

n
1335

n
3135

n
1113

n
33

n
22

n
2

n
222

n
3323

n
1325

n
3125

n
1112

n
22

n
11

n
2

n
212

n
3313

n
1315

n
3115

n
1111

n
11

−+−+∂+∂=τ
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energy equation: 

 )uS(βT )u(Tcr))qQ(q( n
2
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n
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nn &&& −+∂β+θ=+−+∂− µααµαα  (2.31) 

modified Fourier’s law: 
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constitutive relations for FV’s: 
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  (2.33) 

where 1mp  ,mp −=′=  for even m, and mp =′ , 1mp −=  for odd m and the 

range of Latin subscripts i, j, k, etc. is from 1 to 3, and Greek subscripts α, µ, etc., 

take the values 1 and 3, only. 
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CHAPTER 3 
 
 

ASSESSMENT OF THE APPROXIMATE PLATE THEORY 
 
 
 

 To appraise the approximate theory developed in the previous chapter, 

dispersion curves, as well as displacement mode shapes at some cut-off 

frequencies, of the approximate theory will be compared with those of exact 

theory. For this purpose, guided axial waves propagating in x1-direction of the 

generally orthotropic plate shown in Fig. 2.1 are considered. With guided axial 

waves in x1-direction, it is meant that the waves carrying the displacement 

disturbances in that direction with the property: the in-plane displacement 

components u1 and u3 being symmetric and transverse displacement u2 being 

antisymmetric about midplane of the plate. It goes without saying that these waves 

are formed by wave components reflected at lateral boundaries of the plate with 

overall propagation direction in x1-direction. For the waves under consideration, 

the nonzero elements of generalized displacements and FV’s of the approximate 

theory would be ; ).. . ,2  ,0 n  ;  3,1(  u n ==αα  ; ).. . ,3  ,1  n(  u  n
2 = −+ =α 2α S  ;  )3,1(S  

and we note that 0R i =m  due to free flat faces of the plate. 

3.1 Dispersion Relations 

3.1.1 Approximate dispersion relations 

 Dispersion curves predicted by the approximate theory for guided axial waves 

can be obtained by assuming the form   

 )kxt(i 1Ae −ω   (3.1) 

for the nonzero field variables of the approximate theory and requiring that the 

equations possess a nontrivial solution. In Eq.(3.1) ω, k and A are, respectively, 

frequency, wave number (in x1-direction) and amplitude. The resulting frequency 

equations for 2nd order and 4th order theory together with relevant equations, for 
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isothermal case, are given below.  

2nd order approximate theory : 

 For the second order theory one has m=2 (n=0,1,2) and p=m=2, p′=m−1=1. 

After removing the vanishing generalized displacements and applying the 

boundary conditions on the flat faces of the plate, the equations of the 2nd order 

theory reduce to 

 
equations of motion: 
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 (3.2) 

 

constitutive equations: 
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constitutive equations of FV’s: 
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 (3.4) 

 To obtain the dispersion relation, equations of motion, Eqs.(3.2), are written in 

terms of generalized displacements by using the constitutive equations in 

Eqs.(3.3). Substituting the trial solution of the form in Eq.(3.1) into the resulting 

equations and constitutive equations of FV’s, Eqs.(3.4), a system of 8 

homogeneous algebraic equations with the coefficients dependent on ω and k is 

obtained. Equating the determinant of the coefficient matrix to zero, which is the 

condition for having a nontrivial solution, the frequency equation (dispersion 

relation) relating ω and k is found. Each pair (ω, k) satisfying the dispersion 

relation gives a plane wave solution. The frequency equation is given below in 

determinant form: 
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 It should be noted here that, mth order approximate theory accommodates 

2(m+1) dispersion curves in the spectra. 
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4th order approximate theory : 

 In a similar manner as in 2nd order theory, the dispersion relations for 4th order 

theory are obtained from the governing equations 

equations of motion: 

 0
1

0
111 u&&ρ=τ∂  
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constitutive equations of FV’s: 
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 The frequency equation for this order is given in Appendix B.  

3.1.2 Exact dispersion relations 

 Here, the dispersion relations will be obtained through the use of exact 

elasticity equations for the axial waves propagating in x1-direction of the plate in 

Fig. 2.1. Lateral surfaces of the plate is free of forces (i.e., 0
hxi2

2

=τ
=m

). The 

displacements u1 and u3 would be symmetric and u2 would be antisymmetric about 

midplane of the plate, and the displacements are assumed to be independent of x3, 

so that ui = ui (x1 , x2, t) and 0)(3 =⋅∂ . Then, the equations of the elasticity theory 

yield: 
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equations of motion: 

 1212111 u&&ρ=τ∂+τ∂  

 2222121 u&&ρ=τ∂+τ∂  (3.9) 

 3232131 u&&ρ=τ∂+τ∂   

constitutive equations: 
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 For harmonic waves propagating in x1-direction, one has for displacements: 

)tkx(i
ii

1eu~u ω−= , where  )x(u~u~ 2ii =  are displacement amplitudes. In accordance 

with the assumed displacement shapes, one can write for iu~  , 
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 (3.11) 

where λ is the wave number in x2-direction and Ai are some constants. Substitution 

of this form of displacements to the equations of motion yields the eigenvalue 

problem: 
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 (3.12) 

or 0AD = . To have a nontrivial solution of this set of equations, determinant of 

the coefficients must vanish (i.e., det D=0). This determines the eigenvalues λi and  

the corresponding eigenvectors Ai  in terms of ω and k (i=1…3).  
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 The solution for u~  can be obtained by using superposition principle as 

∑
=

=
3

1r
rB~u φφφφ r , where Br are arbitrary constants and φφφφ r are shape functions of the 

form (in view of Eq.(3.11)): 
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Thus, u~  can be written explicitly as  
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 On the other hand, the substitution of )tkx(i
2ii

1e)x(u~u ω−=  into the 

constitutive equations in Eqs.(3.10) gives for i2τ : )tkx(i
i2i2

1e~ ω−τ=τ , where i2
~τ  are 

stress amplitudes defined by 
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   (3.15) 

with iu~  being given in Eqs.(3.14). 

 The free lateral boundary conditions of the plate imply that 0~
hxi2

2

=τ
=m

. 

Since 2321
~ and ~ ττ  are antisymmetric and 22

~τ  is symmetric about the midplane of 

the plate, these boundary conditions are needed to be satisfied only at hx 2 += , 

i.e., 0~
hxi2

2

=τ
+=

 , which yields, in view of Eqs.(3.15) and (3.14), 
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 (3.16) 

or  0BE = . For the system of equations given above, to have a nontrivial solution, 

determinant of E must vanish, which gives the exact spectrum. The resulting 

dispersion equation is transcendental and can not be solved analytically; therefore, 

a numerical search and find algorithm is used in the determination of exact 

dispersion curves.  

3.2 Dispersion Curves 

 Approximate and exact dispersion curves are compared in Figs. 3.1-3.8. The 

dispersion curves in the figures are obtained for graphite fabric-carbon matrix 

composite with the properties [15]: 

 E1 = 173.058,  E2 = 33.095,  E3 = 5.171 

 G12 = 9.377,  G13 = 8.274,  G23 = 3.241 (3.17) 

 ν12 = 0.036, ν13 = 0.25, ν23 =0.171        (moduli are in GPa) 

The expressions relating ijĈ  to the elastic properties given in Eq.(3.17) are, for the 

orthotropic representation of the fiber-reinforced composite,  
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1

EĈ
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subject to the following reciprocal relation: 
j

ji

i

ij

EE

ν
=

ν
 [15].  

 The nondimensional frequency ω  and wave number k  which appear in the 

figures are defined by 

 k
π

h2
k       , 

G
c   with  

c

h2 13
s

s

=
ρ

=ω
π

=ω  

 Figs.(3.1,3.2) and (3.3,3.4) give, respectively, the comparison for dispersion 

curves when θ = 0° and 90°, that is, when the waves propagate parallel and 

perpendicular to fiber direction. For these directions, the wave motion in x1x2-

plane and in out-of-plane (x3) direction would be uncoupled; this is the reason why 

the spectra for these uncoupled wave motions are given separately. Figs. (3.5,3.6) 

and (3.7,3.8) contain, respectively, the spectra for inclined guided axial waves 

when θ = 30° and 60°, where it is to be noted that the wave motion in x1x2-plane 

and in out-of-plane (x3) direction would be coupled. From the figures, it may be 

observed that exact and approximate dispersion curves compare very well, and that 

as the order of the theory increases, the comparison improves and the number of 

dispersion curves, that is, the frequency range accounted for by the approximate 

theory also increases. 
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Figure 3.1 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=0°  ( wave motion in x1x2-plane ) 
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Figure 3.2 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=0° ( wave motion in out-of-plane (x3) direction ) 
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Figure 3.3 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=90° ( wave motion in x1x2-plane ) 
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Figure 3.4 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=90° ( wave motion in out-of-plane (x3) direction ) 

 

 

 



 

 35 

 

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

_
k 

    _    
ω

2
nd

 thickness
stretch         

coupled (out−of−plane)
 − axial shear

1
st

 thickness stretch

G

F

Approximate Theory (2nd
 order)

Exact Theory

out−of−plane shear 
and axial (uncoupled)

 

 

Figure 3.5 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=30° ( the order of the approximate theory = 2) 
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Figure 3.6 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=30° ( the order of the approximate theory = 4) 
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Figure 3.7 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=60° ( the order of the approximate theory = 2) 
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Figure 3.8 Comparison of dispersion curves for guided axial waves in x1-direction 

when θ=60° ( the order of the approximate theory = 4) 

 



 

 39 

3.3 Mode Shapes 

 Mode shapes are very important for understanding the propagation of waves in 

plates. In what follows, the displacement mode shapes of approximate and exact 

theories at some cut-off frequencies (at k=0) in Figs. (3.1, 3.2, 3.5) will be 

obtained and compared.  

3.3.1 Approximate mode shapes 

 Approximate mode shapes are obtained for uncoupled )0( o=θ  and coupled 

)
2

,0(
π

≠θ o  cases separately. Procedure for obtaining the modes of 2nd order theory 

is explicitly given below. 

Uncoupled case (θθθθ = 0°°°°): 

 In order to determine the mode shapes, the system of algebraic equations 

associated with Eqs.(3.2) and (3.4) is reconsidered, which can be obtained after the 

substitution of trial solution, Eq.(3.1), into them. Setting k = 0 and θ = 0° in these 

equations yields 

  

 

 

 

 

 

 

 

 

  

 (3.19) 

where A1, A2,…,A8 are the amplitudes in Eq.(3.1) associated to the unknowns 0
1u , 

2
1u , +

1S , 1
2u , −

2S , 0
3u , 2

3u  and +
3S , respectively. As seen from Eq.(3.19) this system 

of equations can be separated into three uncoupled subsystems as 
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 for axial modes:  0=
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 for thickness mode: 0=
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 for out-of-plane modes:  0=
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It is obvious that the frequencies making the determinant of the matrices aa, bb 

and cc zero determine the cut-off frequencies for the modes indicated in Eqs.(3.20-

22). Solutions for the amplitudes of GV’s and FV’s can be obtained after  

substituting these cut-off frequencies into the associated uncoupled system. The 

displacement distributions can then be evaluated from Eq.(2.14): 

 k

2m

0k

i
ki au φ= ∑

+

=

 

where φk’s are chosen as Legendre polynomials and i
ka  coefficients are related to 

GV’s and FV’s by Eq.(2.23). Cut-off frequencies, normalized nonzero variables 

for each cut-off frequency and the resulting displacement expressions are 

presented below: 
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Axial modes:  

 cut-off frequencies: 
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Thickness mode: 

 cut-off frequency: 
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Out-of-plane modes:  

 cut-off frequencies: 
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 variables: 
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Coupled case: 

 For this case, the system of algebraic equations associated with  Eqs.(3.2) and 

(3.4), after setting k = 0 and )
2

,0(
π

≠θ o , will be 
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 (3.29) 

From this equation it is obvious that, axial modes and out-of plane modes are 

coupled and thickness modes are uncoupled from them. After separating Eq.(3.29) 

into subsystems, resulting equations would be  
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 for thickness mode: 0=
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 for axial – (out-of-plane) modes: 
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 (3.31) 

where the submatrices ff and gg are marked in Eq.(3.31) for a later use. 

 In view of Eqs.(3.30,31), the cut-off frequencies, the displacement 

distributions and nonzero variables appearing in them would be, for each mode, 

Coupled axial – (out-of-plane) modes: 

 cut-off frequencies: 
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Thickness mode: Since this mode is uncoupled from the coupled axial – (out-of-

plane) modes, it remains the same as that presented previously for o0=θ . 

3.3.2 Exact mode shapes 

 Exact mode shapes are again obtained for uncoupled (θ = 0°) and coupled 

)
2

,0(
π

≠θ o  cases separately at the cut-off frequencies. 

Uncoupled case (θθθθ = 0°°°°): 

 For 0k =  and θ = 0°, eigenvalue problem in Eq.(3.12) takes the form 
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Thus, for the eigenvalues λk’s and their corresponding eigenvectors Ak , one has 

 

ρ

ω
=λ

ρ

ω
=λ

ρ

ω
=λ

55

3

22

2

66

1
C

i,
C

i,
C

i  (3.35) 

  



















=



















=



















=

1

0

0

,

0

1

0

,

0

0

1

321 AAA  (3.36) 

where “i” is the imaginary number. 

Substituting these into Eqs.(3.14) and using the identites 

 )xsin(i)xisinh(and)xcos()xicosh( ==  

one obtains the displacement amplitudes as 
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where  
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To determine the cut-off frequencies kω  and the corresponding Bk vectors, 

Eq.(3.16) is utilized, which reduces to, for 0k =  and θ = 0°, 
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Which will have a nontrivial solution when the diagonal elements of the 

coefficient matrix vanish, that is 

 0)hsinh(or0)hcosh(or0)hsinh( 321 =λ=λ=λ  

It may be noted that, the exact theory generates infinitely many cut-off frequencies 

and mode shapes. The resulting frequencies and corresponding displacement 

distributions are as follows: 
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Axial modes: ( ),2,1,0j(jh
~

0)hsinh( 11 K=π=λ⇒=λ  ) 

 cut-off frequencies: 

 ),2,1,0j(
h

C

j

66

j K=
ρ

π=ω  (3.39) 

 solution of Eq.(3.38):   

 0BB,0B 321 ==≠  

 displacement distributions: 

 

0u~u~

),1,0j()x
h

j
cos(u~

32

21

==

=
π

= K

 (3.40) 

 

Thickness modes: ( ),2,1j(
2

1j2
h

~
0)hcosh( 22 K=π

−
=λ⇒=λ   )  

 cut-off frequencies: 

 ),2,1j(
h

C

2

1j2
22

j K=
ρ

π
−

=ω  (3.41) 

 solution of Eq.(3.38):   

 0BB,0B 312 ==≠  

 displacement distributions: 

 

0u~u~

)2,1j()
h

x

2

1j2
sin(u~

31

2
2

==

=π
−

= K

 (3.42) 

 

Out-of-plane modes: ( ),2,1,0j(jh
~

0)hsinh( 33 K=π=λ⇒=λ  ) 

 cut-off frequencies: 

 ),2,1,0j(
h

C

j

44

j K=
ρ

π=ω  (3.43) 
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 solution of Eq.(3.38):   

 0BB,0B 213 ==≠  

 displacement distributions: 

 

0u~u~

),1,0j()x
h

j
cos(u~

21

23

==

=
π

= K

 (3.44) 

Coupled case: 

 For this case, eigenvalue problem in Eq.(3.12) takes the form 

 0

A

A

A

C0C

0C0

C0C

3

2

1

22
44

2
46

22
22

2
46

22
66

=





































ρω+λλ

ρω+λ

λρω+λ

 (3.45) 

Whose eigenvalues and their corresponding eigenvectors would be 

     
)CCC(2

)CC(
2
464466

4466
2

2
1

−

∆++ρω−
=λ ,   

ρ

ω
=λ

22

2
C

i ,   
)CCC(2

)CC(
2
464466

4466
2

2
3

−

∆−+ρω−
=λ  

  (3.46) 
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
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1
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a

A,

0

1

0
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a

0

1

A

3
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1

1  (3.47) 

where 

 )CCC(4)CC( 2
464466

422
4466

42 −ωρ−+ωρ=∆  

 
22

366

2
346

322
144

2
146

1
C

C
a,

C

C
a

ρω+λ

λ
−=

ρω+λ

λ
−=  

With these eigenvalues and eigenvectors one obtains the displacement amplitudes 

from Eqs.(3.14) as 

 )xcosh(aB)xcosh(Bu~ 23332111 λ+λ=  

 )xsinh(Bu~ 2122 λ=  (3.48) 

 )xcosh(B)xcosh(aBu~ 23321113 λ+λ=  
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Consequently, as in uncoupled case, the cut-off frequencies and mode shapes can 

be obtained from nontrivial solutions of Eq.(3.16). This reduces to, when k = 0 and 

in view of Eqs.(3.47), 

( ) ( )

( ) ( )

0

B

B

B

)hsinh(aCC0)hsinh(aCC

0)hcosh(C0

)hsinh(CaC0)hsinh(CaC

3

2

1

33346441116646

2222

33463441166146

=





































λλ+λλ+

λλ

λλ+λλ+

 

  (3.49) 

Coupled axial – (out-of-plane) modes: 

 cut-off frequencies: are obtained from  

  
( ) ( )

( ) ( )
0

)hsinh(aCC)hsinh(aCC

)hsinh(CaC)hsinh(CaC

33346441116646

33463441166146
=

λλ+λλ+

λλ+λλ+
 (3.50) 

 solution of Eq.(3.49):   

 
( )
( ) )hsinh(aCC

)hsinh(aCC
B,1B,0B

3334644

1116646
312

λλ+

λλ+
−===    (for 0≠ω )  (3.51) 

 displacement distributions: may be found from Eqs.(3.48) by substituting the 

frequencies and their corresponding solutions, for B vector. 

 Indeterminacy appearing in Eq.(3.51) for 0=ω  may be avoided by canceling 

“ 2ω ” terms in a1 and a3. This gives two possible displacement distributions for 

0=ω  

 0u~,1u~ 31 ==  

 1u~,0u~ 31 ==  

Thickness mode: This mode is uncoupled from axial – (out-of-plane) modes and 

it remains the same as that of uncoupled case. 

 In Fig. 3.9, the displacement distributions over the thickness of the plate at 

some cut-off frequencies (at 0k = ), predicted from exact and 2nd order 

approximate theories, are compared, where iu  denotes normalized displacements. 

The figure shows that the comparisons are very good, which is achieved in spite of 

our using relatively lower order theory, that is, 2nd order theory.  
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Figure 3.9 Comparison of mode shapes at cut-off frequencies: (a) axial mode (at 

point A in Fig. 3.1) (b) 1st axial shear mode (at point B in Fig. 3.1) (c) 1st thickness 

stretch mode (at point C in Fig. 3.1) (d) 1st out-of-plane shear mode (at point D in 

Fig. 3.2) (e) 2nd out-of-plane shear mode (at point E in Fig. 3.2) (f) 1st coupled 

(out-of-plane)-axial shear mode (at point F in Fig. 3.5) (g) 2nd coupled (out-of-

plane)-axial shear mode (at point G in Fig. 3.5) 
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CHAPTER 4 
 
 

APPROXIMATE DYNAMIC MODELS FOR A PERIODIC LAYERED 

COMPOSITE WITH TWO ALTERNATING LAMINAE 

 
 
 

 In this chapter, two dynamic models, discrete and continuum models, based on 

the approximate plate theory presented in Chapter 2, are proposed for a periodic 

layered composite with two alternating laminae. In Chapter 5, the continuum 

model will be extended to a more general layered composite with a unit cell 

containing arbitrary number of laminae. 

 The formulation is presented in general terms: the material of laminae is taken 

as triclinic elastic with no material symmetry, thermal effects are included, the 

order of the approximate theory is kept arbitrary, etc.  

 In the formulation of the models, the layered composite is referred to an xi 

global coordinate system in which x1x3 plane is parallel to layering (see Fig. 4.1). 

The x2(x) axis in the figure (perpendicular to layering) is used to distinguish a 

lamina in the composite by specifying x2(x) coordinate of its midplane. The two 

different phases of the layered composite are indicated by circled numbers "1" and 

"2" in the figure. Without loss of generality, it is assumed that the equations of the 

approximate theory for a lamina are written at its midplane, that is, at 
α

= kxx , 

where 
α

kx  denotes the x coordinate of the midplane of a lamina pertaining to α 

phase (α = 1, 2) of kth pair of the composite (see Fig. 4.2). A typical field variable 

of the periodic composite defined discretely at midplanes of laminae will be 

designated by 
αα

)x(f k
2 , which belongs to α phase of the pairs k=1,2,... of the 

composite; here, x1, x3 and t dependencies of 
α

f  are disregarded for notational 

convenience (see Fig. 4.3). 
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Equations of discrete and continuum models are presented in the following 

subsections. 

4.1 Discrete Model (DM) 

 This model can be established by writing the equations of the approximate 

theory, Eq.(2.20), for each lamina of the composite and the continuity conditions 

at interfaces. The equations of DM for the two phase periodic composite take the 

form 

 m)0n  ;  1,2(             0)P  ,Z  ,T  ,E  ,C  ,M( kxxi
n
i

nn
ij

n
i K

mm

==α=α

=

αααααα

 (4.1) 

which are to be written for the pairs k = 1, 2, … , together with the continuity 

conditions (CC) [see Fig. 4.3]: 

 for the interface following the layer 1: 

 )x (f)x (f
k

22
k

11 −+
=  (4.2)  

 for the interface following the layer 2: 

 )x (f)x (f
1k

11
k

22
+−+

=  (4.3) 

Figure 4.3  Description of smoothing operation 
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)x(f
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)x(f
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smoothing 
(interpolating) 

function for 
1

f  

discrete values  

of 
1
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x2 (x) 

x1 
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with )  ,q  ,  ,u(f 2i2i θτ=  and k = 1, 2,… In Eq.(4.1), the superscript α denotes the 

phase, m stands for the order of the approximate theory and mf  give the values of f 

at upper and lower faces of the layer. The continuity conditions in Eqs.(4.2) and 

(4.3) may be expressed in terms of FV's appearing in the approximate theory by 

using the relations, in view of Eqs.(2.13), 

 
2

FF
f   ,   

2

FF
f

−α+α

−α
−α+α

+α −
=

+
=  (4.4) 

with )  ,Q  ,R  ,S(F
mmmmm

ααααα

Ψ=  being FV's. The CC’s in Eqs.(4.2) and (4.3) can be 

written explicitly in terms of the FV’s 
m

α

F  as 

 
 for the interface following the layer 1: 
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+=− i
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i
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 for the interface following the layer 2: 
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 The equations of DM in Eqs.(4.1−4.3) are to be supplied by boundary 

conditions (bc). For a boundary portion parallel to layering , bc's can be expressed 
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in terms of FV's. For example bc's at the top boundary of the composite in Fig. 4.1 

involve specification of one member or combination from the pairs  

 ) q  , (  ;  )   ,u ( 2

22

2i

2

i

2 ++++
θτ  (4.5) 

which, in view of Eqs.(4.4), can be expressed in terms of FV's. On the other hand, 

bc's on side boundary dictates that one member or combination is prescribed from 

the pairs  

 m)0(s           )qn  ,(  ;  )n  ,u( s
ii

ss
jij

s
i K=θτ  (4.6) 

where n is outer unit normal of side boundary (see Fig. 4.1). 

4.2 Continuum Model (CM) 

 The use of this model may be suggested when the number of laminae in the 

composite is very large. For establishing CM, a smoothing operation (SO) is 

employed, where a field variable ) x (f
kαα

 of DM defined discretely at midplanes of 

laminae is replaced by a continuous function of x, )x(f
α

, which interpolates 

discrete 
α

f  values at midplanes of laminae, that is, at 
k

xx
α

=  (see Fig.4.3). Thus, 

the smoothed variable )x(f
α

 is now defined for all x; but, it has physical meaning 

only at midplanes of α phase, that is, at 
k

xx
α

= . 

 Now, in view of SO, the equations of CM are obtained from those of DM. It is 

observed that SO leaves Eq.(4.1) unchanged since the field variables appearing in 

it are defined at the midplane 
k

xx
α

=  of the same lamina belonging to α phase of 

kth pair. For the sake of completeness, this equation will be restated here: 

 m)0n  ;  1,2(           0) P  ,Z  ,T  ,E  ,C  ,M ( i
n
i

nn
ij

n
i K

mm

==α=
αααααα

 (4.7) 

which, in view of SO, holds for any x. 

 Now concentrate on deriving smoothed forms of CC's in Eqs.(4.2) and (4.3), 

where Eq.(4.2) representing the CC for the interface following layer 1 will be 

considered first. It is to be noted that the left and right hand sides of this equation 
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are defined at the midplanes of two different (successive) laminae, namely, they 

are defined at 
k1

xx =  and 
k2

x  representing the midplanes of layers 1 and 2 of kth 

pair (see Fig. 4.2). Therefore, in view of the idealization implied by SO, to obtain 

the smoothed form of CC in Eq.(4.2), it is necessary to write it at a common point 

M ( kxx = ), which will be taken in the present study as a point lying in the 

interval ) x , x ( k
2

k
1

; thus, one can write for 
k

1

x  and 
k

2

x  : 

 ∆+=∆−= 2
kk

2

1
kk

1

pxx    ;  pxx  (4.8) 

where 

 21 hh +=∆  (4.9) 

is half of the thickness of unit cell and αp  are nondimensional interpolation factors 

satisfying 

 1p0       with  1pp 21 <<=+ α  (4.10) 

When Eqs.(4.8) are inserted into (4.2), both sides are expanded about kxx =  by 

Taylor's formula and kx  is replaced by x, in view of SO, one obtains the smoothed 

form of CC in Eq.(4.2) as 

 
−++−

=
2

2

1

1 fEfE  (4.11) 

which holds for any "x", where 
−

1E  and 
+

2E  are operators defined by 

 

1,2)(          
!2

1)exp(E

!2
1)exp(E

2

2

=α+
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−
χ

+χ−=χ−=

α
αα

+

α

α
αα

−

α

L

L

 (4.12) 

with 

 
x

p
∂

∂
∆=χ αα  (4.13) 

 Smoothed form of the second CC in Eq.(4.3) for the interface following layer 

2 may be obtained from Eq.(4.11) by interchanging the indices "1" and "2"; it is 

 
−++−

=
1

1

2

2 fEfE  (4.14) 
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where the operators 
−

2E  and 
+

1E  are already defined in Eqs.(4.12) and (4.13). It 

may be noted that 
m

α

f  in Eqs.(4.11) and (4.14) are related to the FV's 
m

α

F  

appearing in the approximate theory by Eqs.(4.4). Through the insertion of these 

equations into Eqs.(4.11) and (4.14), one can write the smoothed form of CC’s in 

terms of the FV’s 
m

α

F  as, after some manipulations, 
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where αs  and αc  are the operators defined by 

  

α
α

α

α
α

αα

χ=+
χ

+=

χ=+
χ

+χ=

cosh
!2

1c

sinh
!3

s

2

3

L

L

 (4.16) 

It may be noted that the CC’s given in Eqs.(4.11,4.14) or in Eqs.(4.15) have an 

invariant form with regard to the layer indices 1 and 2, i.e., they remain unchanged 

when the indices 1 and 2 are interchanged.  

 Regarding the constants 1p  and 2p  appearing in CM equations, the numerical 

results presented in Ref.[43] indicated that the best match between exact and 

approximate dispersion curves for waves propagating in isotropic elastic layered 
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composites is obtained when 5.0pp 21 == .  Hence, in this study, 5.0pp 21 ==  is 

chosen in numerical analyses, which corresponds to taking point M in Fig. 4.2 at 

the midpoint of the interval [
k1

x , 
k2

x ]. 

 The order of CC's is determined by the number of terms kept in the expansions 

in Eqs.(4.12); it will be called pth order in the study when (p+1) terms are retained 

in the expansions. Thus, for zeroth order CC one has 1E =
α

m
, which will be exact 

only when the interpolating values of 
m

α

f  have uniform distributions in x2 (x) 

direction; which is the case, for example, for harmonic plane waves propagating 

parallel to layering in an infinite layered composite; otherwise, it would be 

approximate.  

Boundary Conditions 

 Governing equations of CM are composed of Eqs.(4.7), (4.11) and (4.14). For 

a finite layered composite, these equations should be considered together with bc's 

to be prescribed on the boundary of the composite. 

 Side bc's can be obtained by writing Eqs.(4.6) for both phases of the 

composite; this yields, in view of idealization implied by CM: one member or 

combination from the pairs 

  1,2) ; m0(s         )qn  ,( ; )n  ,u(
s

ii
ss

jij
s
i =α=θτ

αααα

K  (4.17) 

is specified at each point of side boundary. 

 On the other hand, the bc’s of CM for a portion of boundary parallel to 

layering may be expressed in terms of FV’s. For example, the top bc’s for the 

composite body in Fig. 4.1 would be: one member or combination from the pairs 

  1,2)() q  , (   ; )   ,u (
22ii =αθτ
+

α+α
+

α
+

α

 (4.18) 

be specified at the points of the midplane of the top layer. It is to be noted that the 

bc’s in Eq.(4.18) may be expressed in terms of FV’s of the approximate theory by 

using Eqs.(4.4).  
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Floquet Periodicity Condition 

 The proposed CM contains inherently the Floquet periodicity condition (FPC) 

induced by the periodic structure of the layered composite. This can be verified by 

writing CC's of CM in Eqs.(4.11) and (4.14) at point kxx =  in Fig. 4.2: 

 

)x(fE)x(fE

)x(fE)x(fE

k
1

1
k

2

2

k
2

2
k

1

1

−++−

−++−

=

=
 (4.19) 

or, explicitly as 

 

)x(fe)x(fe
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where it is noted that 1pp 21 =+ . 

 Through the use of Taylor's expansion formula, one obtains, for the 

configuration in Fig. 4.2 (that is, for the case in which layer 2 follows layer 1), 
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where, as indicated before, 
k

x
α

 denotes the midplane of layer α. When Eqs.(4.21) 

are inserted into (4.20), one gets 
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which represent, respectively, for the configuration in Fig. 4.2, the continuity 

condition between layers 1 and 2, and the FPC with the period d = 2∆. The usual 

form of FPC may be obtained from the second of Eqs.(4.22) in wave number 

space, as 

 )x(fe)x(f
k11

dik22 −
κ

+
=   with ∆= 2d  (4.23) 
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where "i" is imaginary number and κ is Floquet wave number representing the 

wave number associated with harmonic function interpolating FV's at the points  

(along x axis) with increment "d". This point will be clarified further in numerical 

examples to be presented in Chapter 6. 

 Up to this point, the discussions are given for the case in which layer 2 follows 

layer 1. For the opposite situation, that is, when layer 1 follows layer 2, it is 

obvious that the physical interpretations of the equations in Eqs.(4.20) are to be 

reversed, that is, in this case the second of Eqs.(4.20) represents the continuity 

condition between layers 2 and 1, while the first gives FPC. 
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CHAPTER 5 
 
 

CONTINUUM MODEL FOR A PERIODIC LAYERED COMPOSITE 

WITH A UNIT CELL CONTAINING ARBITRARY NUMBER OF 

LAMINAE 

 
 
 

 CM is developed for a two-phase layered composite in Chapter 4 and here this 

model is extended to a q-phase composite. For the discussions, we refer to Fig. 5.1 

showing the unit cell of a periodic layered composite with arbitrary number ("q") 

of phases. The equations of CM for the layered composite under consideration are 

composed of two groups of equations. The first group comes from the equations of 

the approximate plate theory written for each lamina of the composite. Smoothed 

(continuum) form of these equations are given by Eq.(4.7), where the number of 

phases should be taken now as "q", that is, by 

 m)0q  ;  n1(γ          0) P  ,Z  ,T  ,E  ,C  ,M ( i
n
i

nn
ij

n
i KK

mm

===
γγγγγγ

 (5.1) 

 The second comes from continuity conditions (CC). To obtain the smoothed 

form of CC's, they are written in discrete form first, which are (see Fig. 5.1): 

 

)x(f)x(f

)1q(1,)x(f)x(f

1k11k
qq
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+−+

+γ
−

+γγ+γ

=

−=γ= K
 (5.2) 

where 
m

γ

f  stands for a typical member of )q,,,u(
2i2i
mmmm θτ  for γ-phase and 

k
x
γ

 

denotes x2 coordinate of midplane of layer γ of the kth unit cell. It is to be noted 

that the two sides of Eqs.(5.2) are defined at different points; to use them in CM, 

their left and right sides should be expressed at common points. These common 

points are marked in Fig. 5.1 as γM  together with their x2 coordinates as 

)q1(x
k

M K=γ
γ

. It may be noted that  ))1q(1(M −=γγ K  represent, respectively, 
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Figure 5.1  Typical unit cell of a periodic layered composite with arbitrary number 

of phases 
 

 

 

the common points for CC's with )1q(1 −=γ K  in the first of Eqs.(5.2) and qM  is 

that for the CC in the second. From the figure, it is clear that for the x2 coordinates 

of midplanes of laminae, one can write 
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where  
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α  are interpolation factors satisfying  
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 )q1(,1pp 21 K=γ=+
γγ

 (5.5) 

(for geometric descriptions of γ
αγ∆ pand , see Fig. 5.1). 

 When Eqs.(5.3) are inserted in (5.2) and the variables appearing in it are 

expanded by Taylor's formula about k
Mxx

γ

=  )q,,1( K=γ , one obtains the 

smoothed form of CC's as 

 

−++−

−+γ+γ+γ−γ

=

−=γ=

1

2

qq

1

q

1

21

fEfE

)1q(1,fEfE K

 (5.6) 

where 
m

α

γ

E  are operators defined by 

  )q1;2,1()pexp(E x Km
m

=γ=α∂∆= γα

γ

α

γ

 (5.7) 

Eqs.(5.6) constitute the CC's to be used in CM and hold, in view of the idealization 

by SO, for any "x". 

 It is very easy to show that the first of Eqs.(5.6) represent, for the 

configuration of unit cell in Fig. 5.1, the CC's at interfaces following the layers "1" 

up to (q-1), while the second of Eqs.(5.6) yields the Floquet periodicity condition 

(FPC): 

  )x(fe)x(f
k

11
dk

qq
x −∂+

=  (5.8) 

or, in wave number space, 

  )x(fe)x(f
k11

dik
qq

−κ
+

=  (5.9) 

where "d" is the period of periodic layered composite (see Fig. 5.1).  

 It is obvious that if the configuration of unit cell is taken as [2,3,…,q,1], then, 

Eq.(5.6)1 with γ = 2…(q-1) and Eq.(5.6)2 would represent the CC's at interfaces 

while Eq.(5.6)1 with γ = 1 would give FPC. 

 In view of discussions given above, it is clear that the governing equations of a 

periodic q-phase layered composite are given by Eqs.(5.1) and (5.6). These 

equations should be considered together with the conditions to be prescribed on 

the boundary of the composite and at initial time. 
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CHAPTER 6 
 
 

ASSESSMENT OF CONTINUUM MODEL (CM) 

 
 
 

 In Chapter 4, two different models were  proposed for periodic layered 

composites: discrete model (DM) and continuum model (CM). The use of DM in 

the analysis requires writing the governing equations in each layer and combining 

them using CC’s. But, this kind of procedure involves lengthy computations and 

appears to be of no practical use, especially when the numbers of the layers 

making up the composite is large. Therefore, for the assessment only the CM will 

be considered. 

 For the assessment of CM, the use of spectra of harmonic plane waves 

propagating in an infinite layered composite is chosen. This selection is done since 

a dynamic model is described and characterized completely by its spectrum; thus, 

the match of spectrum with the exact may be used as a criterion for the validity of 

the model. This criterion is checked at the end of this chapter by considering 

transient dynamic behavior of a composite slab induced by waves propagating 

perpendicular to layering.  

6.1 Spectral Assessment 

 The exact spectra for harmonic waves propagating in periodic layered 

composites are studied extensively in literature, which is reviewed in Chapter 1. 

The establishment of these spectra involve writing elasticity equations for each 

lamina, considering continuity conditions at interfaces and imposing Floquet 

periodicity conditions. 

 On the other hand, the establishment of the approximate spectra predicted by 

CM is very simple and straightforward. Since CM is a homogeneous model and 

contains inherently the Floquet periodicity conditions, the determination of 
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approximate dispersion relation (for harmonic waves with propagation direction 

parallel to x1x2-plane ) involves the insertion of 

 )txxk(i 21eA ω−κ+  (6.1) 

formwise for the variables of CM and imposing that the equations possess a 

nontrivial solution. In Eq.(6.1), A: amplitude, ω: angular frequency, k: wave 

number in x1-direction, κ: Floquet wave number (FWN) in x2 direction. For a real 

FWN κ, one can write  

 )tan(k φ=κ  (6.2) 

where φ is inclination angle of wave from x1-axis and each φ gives a different 

value of FWN. 

 In what follows, the dispersion relations of both approximate and exact theory 

are constructed for waves propagating perpendicular, parallel and obliquely to 

layering and the dispersion curves obtained from these relations are compared. The 

comparison involves also the displacement mode shapes at some selected points on 

dispersion curves. In the analyses, it is assumed that the layered composite is made 

of generally orthotropic laminae and thermal effects are neglected.  

6.1.1 Approximate dispersion relations 

 They will be presented for zeroth, first and second order theories. 

Shear waves propagating perpendicular to layering 

 For such waves, propagation is in the direction normal to layering and wave 

motion is parallel to layering. Due to their highly dispersive characteristics, the 

assessment of CM for these waves is crucial. To derive the dispersion relations, a 

trial solution of the form (which is obtained by putting k=0 in Eq.(6.1)) 

  )tx(i 2Ae ω−κ  (6.3) 

is assumed for the unknown field variables, where the FWN κ, if real, corresponds 

to the wave number of harmonic wave interpolating the actual distribution of a 

variable at discrete points along x2(x) axis with the increment “d”, “d” being the 

period of the layered composite in x2(x) direction. This point will be clearer after 

presenting numerical results in a later section of this chapter. 
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 The nonzero field variables of CM for the waves under consideration would be 
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which are functions of x2 and time “t” only.  

 In view of these conditions, the governing equations of CM would reduce to 

equations of motion: 
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constitutive equations for FV's: 

0th order 
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2nd order 
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continuity conditions:  ( with p1 = p2 = 0.5 )  

1st order 
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2nd order 
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 Substituting trial solutions of the form in Eq.(6.3) into the equations of motion, 

constitutive equations for FV's and continuity conditions, a system of 

homogeneous algebraic equations (SHAE) with the coefficients dependent on ω 

and κ is obtained. Equating the determinant of the coefficient matrix of SHAE to 

zero, the characteristic equation (dispersion relation), relating ω and κ, is found. 

Each pair (ω,κ) satisfying the dispersion relation gives a plane wave solution and 

corresponds to a propagation mode. The dispersion equation for zeroth order 

theory and first order CC is given in Appendix C. To facilitate the discussions 

involving the displacement mode shapes, the SHAE will be written symbolically 

as 

 0aM =  

where the column vector a contains field variables of CM in frequency-wave 

number space; thus, the frequency equation would be  

 0)det( =M  

Axial waves propagating parallel to layering 

 For this type of waves, which are on the average longitudinal, the displace-

ments 1u
α

 and 3u
α

 are symmetric and 2u
α

 are antisymmetric with respect to the 

midplanes of the layers. The nonzero components of generalized displacements 

and FV's are  
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 For these unknown variables assume a trial solution of the form (which is 

obtained by putting 0=κ  in Eq.(6.1)) 

 )tkx(i 1Ae ω−  (6.11) 

Thus, the variables are functions of x1 and time “t” only, hence, 0)(3 =⋅∂ . The 

governing equations of CM reduce to, for this case, 

equations of motion: 
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constitutive equations: 
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constitutive equations for FV's: 

0th order 
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2nd order 
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continuity conditions:   

 Continuity conditions assume a simpler form for the waves under considera-

tion. For such waves the field variables become independent of x2 and conse-

quently the terms which involve derivatives of x2 vanish. Thus, the operators in 

m
αE  in Eq.(4.12) reduce to 

  1EE == +
α

−
α  
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With this form of the operators, the continuity conditions, which are exact, become 
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 (6.17) 

 Following the procedure outlined in the previous section, the dispersion 

equation for the axial waves propagating parallel to layering can be determined 

through the substitution of Eq.(6.11) into (6.12-17). This equation is given in 

Appendix D for 1st order theory. 

Waves propagating obliquely to layering 

 For this case, the trial solutions of the field variables of CM would have the 

form of Eq.(6.1), that is, of the form 

 )txxk(i 21eA ω−κ+  

Here, only the second order theory and second order CC’s are considered. All of 

the field variables 

 
n
3

n
2

n

1 u  ,u  , u
ααα

     ( n = 0…m,  m = 2) 

and 

 
mm
ii R  , S

αα

 

would be nonzero and functions of x1, x2 and time “t” for oblique case; hence, 

0)(3 =⋅∂ . 

 The governing equations of the CM for such waves are as follows: 

equations of motion: 

 
n

1

n

21

n
1

n

111 uR
α

α

ααα

ρ=τ−+τ∂ &&     



 

 72 

 
n

2

n

22

n
2

n

121 uR
α

α

ααα

ρ=τ−+τ∂ &&  

 
n

3

n

23

n

3

n

131 uR
α

α

ααα

ρ=τ−+τ∂ &&    ( n = 0…m,  m = 2) (6.18) 

constitutive equations: 
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constitutive equations for FV's: 

2nd order 
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    (6.20) 

continuity conditions: 

 They are the same as those in Eqs.(6.10). 
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 The substitution of Eq.(6.1) into Eqs.(6.18-20) and (6.10) yields the frequency 

equation for oblique case, which is given in Appendix E. 

6.1.2 Exact dispersion relations 

 Exact solutions for the propagation of harmonic elastic waves in layered 

anisotropic media are already established in the literature. Exact treatments involve 

writing the exact field equations in each layer of the composite and satisfying the 

continuity conditions at the interfaces. To facilitate this analysis, the transfer 

matrix method, which is first introduced by Thomson [54], is employed. In this 

method, a system of equations for the layered media is constructed from the field 

equations of each layer by satisfying appropriate interface conditions. For the 

composite medium with periodic structure, as in our case, displacements and 

stresses under harmonic waves can be represented by periodic functions . This 

representation is implemented through the use of Floquet (or Bloch) theory (see 

[58,59,68]). 

 Here, a periodic layered composite with two alternating generally orthotropic 

laminae is considered. It is under the influence of plane harmonic waves with 

overall propagating direction in x1x2-plane at an angle φ with x1-axis (see Fig. 6.1).  
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 Propagation of these waves involves reflections and refractions at the 

interfaces. For such waves, the solution for the displacements would be of the form 

  )txkx(i
ii

21eûu ω−α+=  (6.21) 

where, iû  are amplitudes, ω is frequency and k and α are wave numbers in x1 and 

x2 directions, respectively. With this form of displacements, the wave propagation 

takes place in x1x2-plane; but, we note that, 0u3 ≠  due to anisotropy, and we also 

note that displacements are independent of x3, that is, 0)(3 =⋅∂ . 

 Now, we consider a typical layer of the composite, which is taken as generally 

orthotropic (Fig. 6.2a). The field equations for this single layer are 

stress equations of motion: 
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constitutive equations: 
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strain-displacement relations: 
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When the stresses in Eq.(6.23) are substituted into Eqs.(6.22), the displacement 

equations of motion may be obtained as 
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 (6.25) 

Substitution of the trial solution in Eq.(6.21) into Eq.(6.25) gives 
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 The characteristic equation would be 0)det( =B , which gives 
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Here, the coefficients ci (i = 0…3) are function of ω and k, which are given by 
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The roots of Eq.(6.27) would be of the form  
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where 2α=λ . 

Now, the normalized eigensolution of Eq.(6.26) can be obtained in the form 
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then, rj and pj are to be found from 
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= . From Eq.(6.30), one may deduce 
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The solution for u can be obtained by combining the solutions corresponding to 

each root αj  as 
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where )61j(A j K=  are some constants. 
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 To simplify the analysis, the common factor )tkx(i 1e ω−  is dropped in Eq.(6.31) 

and a new displacement variable u~  is introduced by 
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The solutions for the stresses i2τ  can be obtained by inserting Eq.(6.31) into 

(6.23), which gives 
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Here, again the common factor )tkx(i 1e ω−  is suppressed, which results in 
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where  
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When Eqs.(6.32) and (6.34) are combined, one obtains, in expanded form, 
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or in matrix form 

  AEUf )x()x(
~

22 =  

Tansfer matrix for a single layer 

 Eq.(6.36) can be used to relate, through a transfer matrix, the displacements 

and stresses at the top face of the layer, at x2=d, to those at its lower face, at x2=0 

(see Fig. 6.2a). To obtain this transfer matrix we proceed by writing Eq.(6.36) at 

x2=0 and x2=d: 

at x2=0: 

  AUAEUf == )0()0(
~

 (6.37) 

which yields 

 )0(
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at x2=d: 

  AEUf )d()d(
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Insertion of Eq.(6.38) into (6.39) leads to 
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where T(d) defined by 

 1)d()d( −= UEUT  (6.41) 

is the transfer matrix of the layer relating )d(
~
f  to )0(

~
f . 

Transfer matrix for unit cell 

 By applying Eq.(6.40) to each layer in the unit cell (see Fig. 6.2b) and 

invoking the continuity of the displacements ui and stress components i2τ  at layer 

interfaces, we can relate f
~

 at the top face of unit cell to that at its lower face. For 

that, one may proceed as follows: 
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and use the interface condition  
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is the 6x6 transfer matrix for the unit cell. 

 For the waves propagating obliquely to the layering, the Floquet wave 

number (FWN) can be related to the wave number in x1-direction by, if FWN is 

real, 

 φ⋅=κ tank     (see Fig. 6.1) (6.47) 

Floquet periodicity condition can be written for the periodic layered composite 

under consideration as 

  di
12

e)0(
~

)d(
~ κ= ff  (6.48) 

Combining Eqs.(6.45), (6.47) and (6.48), one obtains 

  0fIT =− φ )0(
~

)e(
1

d)tank(i*  (6.49) 

whose characteristic equation would be 

  0)edet( d)tank(i* =− φIT  (6.50) 

Eq.(6.50) is the desired exact dispersion equation relating ω, k and the FWN 

φ⋅=κ tank . 

Special case 1: propagation perpendicular to layering 

 In this case 
2

π
=φ  and k = 0.Therefore κ should be taken as it is and the 

dispersion relation between ω and κ is given by 
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  0)edet( di* =− κIT  (6.51) 

Special case 2: propagation parallel to layering 

 For such waves, 0=φ , thus κ = 0. The dispersion relation for this case 

becomes  

  0)det( * =− IT  (6.52) 

6.1.3 Dispersion curves 

 In obtaining dispersion curves, the two alternating laminae are assumed to be 

fiber-reinforced layered composites with the ply angles om30=θ , but with the 

same thicknesses, mass densities and material properties (in material coordinates): 

 E1 = 173.058,  E2 = 33.095,  E3 = 5.171 

 G12 = 9.377, G13 = 8.274, G23 = 3.241 (6.53) 

 ν12 = 0.036, ν13 = 0.25, ν23 =0.171        (moduli are in GPa) 

which represent graphite fabric-carbon matrix composite [15] (for the definition of 

material coordinates and ply angle, see Fig. 2.1). Ei, Gij and νij in Eqs.(6.53) 

denote, respectively, Young's and shear moduli, and Poisson's ratios of the 

orthotropic lamina under consideration. These material properties are related to the 

elastic coefficients ijĈ  by Eq.(3.18). The transformation relations for the elastic 

coefficients Cij in global coordinates are given in Appendix A. 

 The dispersion curves of CM are compared with the exact in Figs.6.3−6.7 for 

harmonic waves propagating in the two-phase layered composite described above. 

The nondimensional frequency ω , and wave numbers k  and κ  appearing in the 

figures are defined by  

  kh2;kh2k;
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h2
111
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s
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ρ

=ω=ω  (6.54) 

and nondimensional geometric properties of the unit cell are 
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The symbol "app(mn)" in the figures stands for the results obtained by CM, 

where the first digit "m" denotes the order of the approximate theory while the 

second digit "n" is the order of CC. 

 Fig.6.3 pertains to the results for the shear waves propagating perpendicular to 

the layering. The assessment of CM for this case is very crucial and important 

since the spectra for these waves have periodic structure along FWN (κ) axis, and 

possess stopping and passing bands along frequency (ω) axis. The figure shows 

that these properties of spectra are well predicted by CM and that increase in the 

order of the theory and CC improves this prediction in ω and κ directions, 

respectively. In fact, the prediction approaches the exact as the orders of the theory 

and CC go to infinity. It may be observed that the period in FWN direction in the 

figure is π, which corresponds to the nondimensional value of the period )
d

2( π  for 

the layered composite under consideration. 
2
π=κ  in the figure (

d
π=κ  in 

dimensional form) represents the cut-off value of FWN in (ω-κ) space. 

 For the sake of completeness, the performance of CM for the harmonic waves 

propagating parallel and obliquely to layering is assessed in Figs.6.4−6.7. Fig.6.4 

contains the spectra for the axial waves with propagation direction parallel to x1-

axis. With axial waves in x1-direction, it is implied that the waves carrying the 

displacement disturbances in that direction with the property: the in plane 

displacements u1 and u3 being symmetric and transverse displacement u2 being 

antisymmetric about midplanes of laminae. It is obvious that, in conjunction with 

the analysis of these waves by CM, the FWN κ in Eq.(6.1) should be taken as zero 

which reduces the order of CC to zero and implies the periodicity of displacement 

distributions in x2 (x) direction with the period "d". Fig.6.4 shows that the 

approximate dispersion curves compare very well with the exact and the 

comparison improves as the order of the theory increases.  
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A similar comparison may be observed in Figs.6.5−6.7 for oblique waves with 

inclined propagation direction of o15=φ , o45=φ , o75=φ  from x1 axis. In these 

figures, all propagation modes are included. It may be seen that as the inclination 

angle increases the shape of the dispersion curves approaches, as anticipated,  into  

periodic form. 
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Figure 6.3 Comparison of spectra for harmonic shear waves propagating in a two-

phase periodic layered composite in the direction perpendicular to layering  
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Figure 6.4 Comparison of spectra for axial harmonic waves propagating in a two-
phase periodic layered composite in the direction parallel to layering 
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Figure 6.5 Comparison of spectra for inclined harmonic waves propagating in a 

two-phase periodic layered composite (inclination angle with x1-axis: o15=φ ) 
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Figure 6.6 Comparison of spectra for inclined harmonic waves propagating in a 

two-phase periodic layered composite (inclination angle with x1-axis: o45=φ ) 
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Figure 6.7 Comparison of spectra for inclined harmonic waves propagating in a 

two-phase periodic layered composite (inclination angle with x1-axis: o75=φ ) 

 

 



 

 88 

6.1.4 Mode shapes 

 Displacement mode shapes of approximate and exact theory are compared as a 

part of spectral assessment. These comparisons are made at points A, B, C and D 

of the shear wave spectrum in Fig. 6.3, and at point A of the axial wave spectrum 

in Fig. 6.4. The procedures obtaining the approximate and exact mode shapes are 

outlined below briefly. 

6.1.4.1 Approximate mode shapes 

 At a given point P(ω,k,κ) of a dispersion curve of spectrum, the displacement 

mode shapes as predicted by CM are determined through the following steps: 

1. Through the solution of SHAE  

 0aM =  

determine the eigensolution a at point P; note that a contains the field 

variables of CM as indicated in Appendices C, D and E. 

2. Evaluate the displacement mode shapes for the unit cell from  

 k

2m

0k

i
ki au φ= ∑

+

=

αα

 (6.56) 

where we note that the coefficients i
ka

α

 are related to the field variables of 

CM by Eqs.(2.17). 

When 0≠κ , Eq.(6.56) should be multiplied by the factor xie κ , where “x” is the 

x2 coordinate of the midplane of the layer for which the displacement distribution 

is being evaluated. It should be noted that iu
α

 as determined from Eq.(6.56) is 

complex; in view of the properties of complex Fourier series the real part of 

Eq.(6.56) is to be considered for the evaluation of mode shapes. 

 As a sample, we give below the displacement expressions in Eq.(6.56) in 

extended form for the shear waves propagating perpendicular to layering when the 

order of theory is zero: 
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 (6.57) 

 

6.1.4.2 Exact mode shapes 

 To obtain the exact mode shapes at a point P(ω,k,κ) of the spectrum, the 

eigensystem in Eq.(6.49), that is,  

 0fIT =− φ )0(
~

)e(
1

d)tank(i*   

is to be solved for )0(
~1
f  at point P, where )0(

~1
f  contains the displacement and 

stresses at lower end of unit cell (see Fig. 6.2b). 

 Subsequently, the amplitudes are found from Eq.(6.38) for layer 1 as 

 )0(
~1111

fUA
−

=  (6.58) 

and the displacement and stress mode shapes for layer 1 from, in view of  

Eq.(6.36),  

 
1

2

11

2

1

)x()x(
~

AEUf =  (6.59) 

 Distributions for layer 2 may be found in an analogous manner as layer 1, but 

for that, displacement and stresses )d(
~

1

2

f  at the lower end of layer 2 are needed 
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(see Fig. 6.2b). This can be obtained from, in view of Eq.(6.42) and the continuity 

of f
~

 at interface,  

 )0(
~

)d()d(
~ 1

1

1

1

2

fTf =  (6.60) 

Amplitudes of the variables for layer 2 may be evaluated from, in view of 

Eq.(6.38), 

 )d(
~

1

2
122

fUA
−

=  (6.61) 

and the displacement and stress distributions for layer 2 are determined by 

 
2

2

22

2

2

)x()x(
~

AEUf =  (6.62) 

 The distributions in the next unit cell can be obtained by multiplying the 

distributions of the preceding unit cell by die κ  because of the Floquet periodicity 

condition. 

6.1.4.3 Comparison of mode shapes and physical significance of Floquet wave 

number 

 Exact and approximate displacement mode shapes are compared in Figs.(6.8-

6.11). 

 For the physical significance of FWN (κ), we refer to Fig. 6.8 showing the 

displacement mode shapes at point C of the spectrum in Fig. 6.3, where we note 

that 1=κ . In the figure, we first observe that the horizontal displacements u1 and 

u3 are coupled at point C, and that CM results (obtained by zeroth order theory, 

and first and second order CC's) match very well with the exact. The solid line in 

the figure represents the actual displacement distributions produced by multiple 

reflections and/or refractions of perpendicular shear wave components at 

interfaces. On the other hand, the dotted line is harmonic envelope (interpolating) 

curve connecting the displacement values at discrete interface points with the 

increment "d". The FWN is the wave number associated with this envelope curve. 

The wave length for the envelope curve is  

  π=
κ

π
=λ 2

2
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which is consistent with the results presented in Fig. 6.8. 

 Mode shapes at point D of the spectrum in Fig. 6.3 are compared in Fig. 6.9. 

We note that points D and C have the same FWN, 1=κ ; but, frequency of D is 

higher than that of C. The figure shows that the match of exact and approximate 

curves for point D (with higher frequency) is not as good as point C; however, it 

should be noted that this result is obtained by the lowest (zeroth) order theory and 

improvement should be expected when the order is increased.  

 Fig. 6.10 contains the displacement mode shapes at second and third cut-off 

frequencies, that is, at points A and B of spectrum in Fig. 6.3. Here, approximate 

and exact mode shapes compare quite well, in spite of our using lower order theory 

and CC. We note that at cut-off points A and B: 0=κ , which corresponds to 

infinite wave length. This, in view of physical interpretation of FWN, implies that 

displacement values at discrete points along x2 (x) axis with the increment "d" 

should have uniform distribution, which is in agreement with the results in Fig. 

6.10 (in view of periodicity of the actual displacement distributions with the period 

"d"). 

 For axial waves propagating parallel to layering, the displacement mode 

shapes at point A of the spectrum in Fig. 6.4 are given in Fig. 6.11. In this case, the 

continuity conditions are exact and the curves in the figure converge rapidly to the 

exact as the order of theory increases. Here, the FWN is zero, which gives rise to 

uniform distribution for envelope curves interpolating the displacement values at 

discrete points with period “d”. 
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Figure 6.8 Comparison of shear mode shapes at location C of spectrum in Fig.6.3 
for (a) 1st order (b) 2nd order continuity conditions ( κ  (nondimensional Floquet 

wave number) at point C is 1) 
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Figure 6.9 Comparison of shear mode shapes at location D of spectrum 
 in Fig.6.3 ( κ  (nondimensional Floquet wave number) at point D is 1) 
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Figure 6.10 Comparison of shear mode shapes at (a) second (b) third cut-off 
frequencies (at locations A and B in Fig.6.3, respectively) 
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Figure 6.11 Comparison of coupled (out-of-plane)-axial shear mode shapes at 
location A of spectrum in Fig.6.4  
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6.2 Check of Spectral Criterion for a Transient Case 

 In view of the spectral criterion stated previously and the results presented in 

Section 6.1, it is expected that CM should be capable to predict the dynamic 

behavior of a periodic layered composite body when it is subjected to transient 

inputs. For checking this, a two-phase layered slab of a finite thickness shown in 

Fig. 6.12 is considered. The composite slab is subjected on the left end to a 

uniform shear stress “s” with a stepwise time variation of intensity s0 as shown in 

the figure. This stress input generates transient shear waves propagating 

perpendicular to layering. The right face of the slab is free of tractions and on this 

face, the wave profiles for the particle velocity are obtained by using CM and 

exact theory. In the numerical analysis, the thermal effects are neglected. The 

equations of the exact theory are integrated exactly using the method of 

characteristics. On the other hand, since the equations of the approximate theory 

are not hyperbolic, they are integrated employing a different method, namely, the 

method of lines. The material of the layers constructing the slab are taken as 

orthotropic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Two-phase layered slab 
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6.2.1 Approximate formulation and solution 

 The prediction of CM is evaluated by choosing the orders of the theory and 

continuity conditions (CC) as low as possible, namely, zeroth order for the theory 

and first order for CC's. The governing equations of CM for shear waves 

propagating perpendicular to layering are given in Eqs.(6.4−6.10), which reduce 

to, for the transient problem under consideration (in view of 0)(3 =⋅∂ ) 

equations of motion: 

 0
11 uh2R

α

αα

−α

ρ= &&       (α=1,2) (6.63) 

constitutive equations for face variables: 

 α

−αα
−

+α

γ= h/SC2R 1661  

 α

+αα
+

αα−α

γ+γ= h/)SCuC(2R 166
0
16601   (6.64) 

continuity conditions: 
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  (6.65) 

where  66

1

C  and 66

2

C  represent, respectively, the shear moduli of layers 1 and 2 

associated with x1x2-plane. 

Boundary conditions 

 The left end of the slab is subjected to the shear stress s(t); accordingly, the 

exact boundary condition at the left end is 

 )t(s
1hx

21

1

−=τ
−=

     (6.66) 
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Using the relations in Eq.(2.13), the boundary condition in Eq.(6.66) can be 

written in terms of stress face variables as 

 s2)RR(
0x

1

1

1

1

−=−
=

−+
  (6.67) 

The latter boundary condition is written at 0x =  instead of 1hx −= , because the 

face variables in CM have physical meanings only at the midplanes of layers. In 

view of idealization implied by smoothing operations, implying that the two types 

of interfaces following layer 1 and 2 exist at the same point of the composite, the 

other boundary condition at the left end may be written as 

 s2)RR(
0x

1

2

1

2

−=−
=

−+
 (6.68) 

 With the use of the same procedure, the boundary conditions at the right end 

(traction free) of the slab can be found as 

 0)RR(
Hx1

1

1

1

=+
=

−+
 ;      0)RR(

Hx1

2

1

2

=+
=

−+
  (6.69) 

where H is the length between the midplanes of the first and last layers of the slab 

(see Fig. 6.12). 

Initial conditions 

 Since the slab is at rest initially, all of the field variables of the approximate 

theory should be zero at the initial time 0t = . 

 The formulation of the CM is now complete. Eqs.(6.63−65) constitute ten 

partial differential equations for the ten unknown variables 
m

1
0
1 S,u

αα

 and 
m

1R
α

. The 

unknowns can be determined uniquely by solving them subject to boundary 

conditions, Eqs.(6.67−69), and zero initial conditions. 

 The CM equations are integrated by method of lines. With the object of 

explaining this method, the solution domain Hx0 ≤≤  and 0t ≥  is referred to an 

x-t rectangular coordinate system in which x and t are chosen to be as horizontal 

and vertical axes, respectively. The solution domain is subdivided by a rectangular 

network with the space mesh size x∆  and time mesh size t∆ . The vertical and 

horizontal grid lines are numbered in increasing order (starting with zero) in the 

positive directions of x and t axes. Thus, the coordinates of a point located at the 
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intersection of ith vertical and jth horizontal grid lines become )tj,xi()t,x( ji ∆∆= . 

In the discussions that follow, the value of a function )t,x(f  at the nodal point 

)t,x( ji  is designated by fij .  

 For establishing the unknowns in the solution domain, the analysis is started 

from the first horizontal grid line 0tt 0 == , where the unknowns are known from 

the initial conditions. Using the values of unknowns along 0tt =  and a technique 

to be explained shortly, the unknowns along the next horizontal line 1tt =  are 

found. After the unknowns are determined along 1tt =  the same technique is used 

to find them along 2tt =  and so forth. 

 In order to explain the technique mentioned above, two consecutive horizontal 

grid lines, say 1jtt −=  and jtt = , are considered. The dependent variables are 

known at the nodal points along 1jtt −= . To establish them along jtt =  an 

iterative procedure is used. In the first cycle of iterations, Eq.(6.63) and 
0
1

0
1 vu

αα

=&  

are integrated with respect to time (i.e., along ),1,0i(xx i K== )from 1jtt −=  to 

jtt =  using rectangular and trapezoidal rules, respectively. This gives 
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where the number over the variables indicates the iteration number. Since 1

1

u
α

 

along jtt =  is determined, Eqs.(6.64) and (6.65) constitute eight ordinary 

differential equations in space (along jtt = ) for the remaining unknowns 

)S,R( 11

mm αα

=w . They are solved using the method of complementary functions to 

be discussed shortly. Having known now 
−α

1

1

R  along jtt = , Eq.(6.63) and 11 vu
αα

=&  
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are again integrated with respect to time from 1jtt −=  to jtt = , but this time using 

trapezoidal rule for both of them: 

 )RR(
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t
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The second cycle of iterations is completed using the improved 0

1

2

u
α

. The iterations 

are continued until a prescribed accuracy is achieved. 

 We explain now the method of complementary functions used to solve the 

system of ordinary differential equations in space, Eqs.(6.64) and (6.65), for the 

unknowns )S,R( 11

mm αα

=w  along jtt = . In this method, first the solution w  is 

written in the form  

 ∑
=

β+=
4

1k

k
k

p www   (6.72) 

where kβ ’s are some constants. The particular solution pw  is governed by 

Eqs.(6.64) and (6.65), and the complementary solutions kw ’s are governed by the 

same equations with 0u 0
1

=
α

. Further, pw  and kw  satisfy the conditions at 0x =  

indicated in Table 6.1. The solution in Eq.(6.72) satisfies then the governing 

equations, Eqs.(6.64) and (6.65), and the boundary conditions at 0x =  given by 

Eqs.(6.67) and (6.68) exactly. The initial value problems associated with pw  and 

kw  are solved by integrating the governing equations numerically subject to the 

conditions at 0x =  shown in Table 6.1. For integration, the trapezoidal rule 

formula with the space mesh size x∆  is employed. Having established pw  and 

kw  along jtt =  the four constants 1β , 2β , 3β  and 4β  appearing in Eq.(6.72) are 

determined so that the traction free boundary conditions in Eqs.(6.69) at Hx =  are 

satisfied. 
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Table 6.1 The conditions at 0x =  for pw  and kw  
 

 pw  1w  2w  3w  4w  

+
1

1

R  0 1 0 0 0 

−
1

1

R  0 0 1 0 0 

+
1

2

R  0 0 0 1 0 

−
1

2

R  0 0 0 0 1 

 

 

6.2.2 Exact formulation and solution 

 In the exact formulation, equations of elasticity theory are applied to each 

layer and the solutions are required to satisfy the continuity conditions at the 

interfaces of the layers and the boundary conditions at the bounding surfaces. 

Method of characteristics will be employed to obtain the solutions. Elasticity 

equations for a typical layer of the problem under consideration are  

stress equation of motion: 

 1212 u&&ρ=τ∂  (6.73) 

constitutive equation:  

 126621 uC ∂=τ  (6.74) 

Applying change of variables 11 uv &=  and 112u γ=∂  (or )v 112 γ=∂ &  yields the 

governing first order partial differential equations in matrix form as 

 0UBUA =+ xt ,,  (6.75) 

or in expanded form as 
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where comma denotes partial differentiation with respect to the subscript 

following it. Since these equations are hyperbolic partial differential equations, 

they can be transformed into a system of ordinary differential equations each of 

which is valid along a different family of characteristic lines. These equations, 

called the canonical equations, are suitable for numerical analysis because the use 

of the canonical form makes it possible to obtain the solution by a step-by-step 

integration procedure. The convergence and the numerical stability of the method 

of characteristics are well established (e.g., see [69]) 

 The characteristic lines, along which the canonical equations are valid, are 

governed by the characteristic equation 

 0)det( =λ− AB  (6.77) 

where dt/dx=λ . Eq.(6.77) yields the eigenvalues  

 0,c,c 321 =λ−=λ=λ  (6.78) 

where ρ= /Cc 66  is the shear wave velocity. The characteristic manifold is thus 

composed of families of lines )31i(dt/dx i K=λ= . cdt/dx 1 =λ=  and 

cdt/dx 2 −=λ=  describe two characteristic families of straight lines with slopes 

(c) and (−c), respectively, on the (x-t) plane; whereas, 0dt/dx 3 =λ=  defines 

straight lines parallel to the t-axis, see Fig. 6.13. The canonical equations are given 

by  

 0
dt

dT
i =

U
Al   (6.79) 

along the characteristic lines )31i(dt/dx i K=λ= . In Eq.(6.79), dt/d  describes 

the total time derivative along a characteristic line and il  is the left-hand 

eigenvector corresponding to ith  eigenvalue iλ  of the eigenvalue problem 

 0lAB =λ− i
T

i
T )(  (6.80) 

The left-hand eigenvectors are found as 
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Figure 6.13 Network of characteristic lines on (x2 – t) plane 

 

 
When these eigenvectors are substituted into Eq.(6.79), the canonical equations 

can be obtained explicitly as 

 cdt/dxalong0ddvc 121 ==τ−ρ  

 cdt/dxalong0ddvc 121 −==τ+ρ  

 0dt/dxalong0ddC 12166 ==τ−γ  (6.82) 

 Canonical equations can be integrated easily by using a  representative 

network shown in Fig. 6.13, which is composed of characteristic lines for layer 1 

and 2. Different types of integration elements appear in the network, which are 

shown with thicker lines and marked with an explanatory label. Each layer of the 

composite slab is divided into three sublayers for illustrative purposes and during 

the integration along the characteristic lines of the integration elements, 

coefficients of the related layers must be considered. These elements together with 

the resulting integrated canonical equations are given in a tabular form in Table 

6.2. The quantities pertaining to layers 1 and 2 in the integrated canonical 

equations are denoted by overhead numbers 1 and 2, see Table 6.2. 
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Table 6.2 Integration elements and the resulting integrated canonical equations 
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Table 6.2 (cont’d) 
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 To obtain the solution in (x-t) plane, the analysis is started along the x-axis, 

where the unknown variables are all zero because of the quiescent initial 

conditions of the problem. Then, the governing equations in each element of the 

network lying just above the x-axis are integrated. This establishes the unknown 

variables at the points of the horizontal line tt ∆=  of the (x-t) plane. Having 

determined the unknowns at tt ∆= , the same procedure is used to establish them 

at the times t2t ∆= , t3t ∆= , etc. 

6.2.3 Numerical results 

 The numerical results are obtained for the composite slab with the layer 

properties  

 40
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The reason for selecting the properties of layers 1 and 2 in Eq.(6.83) very different 

is to see the influence of refractive properties of interfaces on the transient 

response of the composite slab. 

The results in Figs.6.14 and 6.15 are presented in nondimensional form, 

where nondimensional time is defined by 2

2

h/tct =  with 266

22

/Cc ρ=  being 

shear wave velocity in layer 2 and bar being used to denote a nondimensional 

quantity. The nondimensional rise time in the applied shear stress "s" (see 

Fig.6.12) is taken as 1t =∗ . The nondimensional velocity at the right end of the 

slab is normalized by 00 c/s2 ρ  , where ρ is the mass density per unit volume of 

the composite slab which is given by 2211 nn ρ+ρ=ρ  with αn  being volume 

ratios given by ∆= αα /hn . 0c  is wave velocity as predicted by effective 

modulus theory [29], which is defined by 

 
E

EE
c 21

0
ρ

=  (6.84) 

where 166

1

1 n/CE = , 266

2

2 n/CE =  and 21 EEE += . Examination of the figures, 

which also include the prediction of effective modulus theory, reveals that  

1. CM predicts the exact wave profiles closely not only around the head of the 

pulse, but also, for larger times after the disturbance reaches the station 

2. the prediction of CM improves, as expected, as the number of pairs in the 

slab increases 

3. CM is capable to predict the transient response of the slab with small 

number of pairs; but, its use becomes advantageous and should be 

suggested, in view of arguments given previously, when the number of the 

pairs is large. 
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Figure 6.14 The wave profile for the particle velocity at the free end of the slab 

consisting of two pairs of alternating layers 
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Figure 6.15 The wave profile for the particle velocity at the free end of the slab 
consisting of four pairs of alternating layers 
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CHAPTER 7 
 
 

CONCLUSIONS 
 
 
 
 In this thesis, first, a higher order dynamic theory is developed for 

anisotropic thermoelastic plates; then, two approximate models based on this plate 

theory, namely discrete and continuum models, are proposed for periodic layered 

composites. The models are general in the sense that: they accommodate all kinds 

of deformation modes in the composite; dynamical and thermal effects are 

included in the formulation; the lamina material is assumed to be triclinic with no 

material symmetry. It is to be noted that the proposed models may also be used in 

the analysis of viscoelastic layered composites through the use of the 

correspondence principle [70].  

 In view of the assessments presented in Chapters 3 and 6, some of the 

important features of the proposed plate theory and composite models are stated 

below in itemized form. 

1. The most important aspect of the plate theory is that it contains, in addition 

to GV’s, also FV’s as field variables. This feature of the theory permits 

satisfying the lateral boundary conditions of the plate correctly, thus, it 

improves the prediction of the theory for the dispersion characteristics of 

waves propagating in a plate. This is verified for a generally orthotropic 

plate considered in Chapter 3. 

2. The order of the proposed approximate plate theory is arbitrary and by 

increasing it, the frequency range of the theory may be enlarged as 

observed in Chapter 3; in fact, as the order increases the prediction of the 

approximate theory approaches that of exact. 

3. The form of the approximate plate theory is suitable for extending it to 

laminated composites; for that, one needs to add only, to the equations of 
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laminae, the interface conditions which can be written readily between the 

FV’s appearing in the plate theory. 

4. Of the two models proposed for layered composites, the continuum model 

(CM) is more important, which is developed in the study for periodic 

layered composites using smoothing operations. It is formwise a mixture 

theory with higher order microstructure and has the property: it contains 

asymptotically the Floquet periodicity conditions as the order of continuity 

conditions get larger (for proof, see Section 4.2). To the author’s best 

knowledge, for periodic anisotropic layered composites there is no CM 

available in literature with this property. 

5. The reflective and refractive properties of interfaces are well accounted for 

by CM, which is due to accommodating in the model the interface 

conditions correctly with the use of face variables appearing in the 

approximate plate theory. This property together with that stated in item 4 

permits, as verified in Fig. 6.3, the CM to predict the periodic structure of 

spectra with passing and stopping bands for harmonic waves normal to 

layering. The prediction of CM improves along frequency and wave 

number axes with the orders of the theory and continuity conditions 

respectively, approaching the exact asymptotically in the limit. 

6. The physical significance of real Floquet wave number is discussed 

through the use of some numerical  results obtained in the study (see Figs. 

6.8 and 6.9): it is the wave number of harmonic envelope curve 

interpolating the displacement values at discrete points along the axis 

perpendicular to layering with the increment "d" ("d"  being the period of 

periodic layered composite in the direction perpendicular to layering). 

7. CM is assessed by comparing its prediction with the exact for the spectra of 

harmonic waves propagating in various directions in a two-phase periodic 

layered composite. Choosing the comparison of spectra as a criterion for 

assessment may be justified on the basis that a dynamic model is described 

completely by its spectrum. Good matches in Figs.(6.3-6.11) give an 

indication for the reliability of CM in the analysis of periodic layered 
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composites. Figs. (6.14) and (6.15) verify, as example, the use of spectral 

criterion for assessment.  

 As a future development of this research, layered composites with 

delaminations may be considered. Handling these delaminations within the 

framework of the proposed CM requires only some modifications to be made in 

CC’s. 
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APPENDIX A 

 

TRANSFORMATION RELATIONS 

 

 

 The following transformation relations hold in the global xi coordinate 

system which is obtained by rotating the material coordinate system (1,2,3) in 

Fig.2.1 by an angle θ in (1-2) plane.  

Elastic coefficients (Cij): 

( )66
2

22
2

12
22

11
4

11 Ĉ)sin(4Ĉ)cos(Ĉ)sin(2)cos(Ĉ)sin(C θ+θ+θθ+θ=  

23
2
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2

12 Ĉ)cos(Ĉ)sin(C θ+θ=  

( ) ( )6622
22

1211
22

13 Ĉ4Ĉ)sin()cos(4/Ĉ)4cos(3Ĉ)sin()cos(C −θθ+θ++θθ=  

( ) 4/Ĉ)2cos(4Ĉ)2cos(ĈĈ)2cos(2Ĉ)sin(2)2sin(C 6622221211
2

15 θ−θ++θ−θ−θ−=

3322 ĈC =  

23
2

13
2

23 Ĉ)sin(Ĉ)cos(C θ+θ=  

( )231325 ĈĈ)sin()cos(C −θθ=  

( )66
2

22
2

12
22
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4

33 Ĉ)cos(4Ĉ)sin(Ĉ)cos(2)sin(Ĉ)cos(C θ+θ+θθ+θ=  

( ) 4/Ĉ)2cos(4Ĉ)2cos(ĈĈ)2cos(2Ĉ)cos(2)2sin(C 6622221211
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2
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44 Ĉ)cos(Ĉ)sin(C θ+θ=  

( )445546 ĈĈ)sin()cos(C −θθ=  
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66 Ĉ)sin(Ĉ)cos(C θ+θ=  

other 0Cij =  

where ijC  and ijĈ  denote, respectively, the elastic coefficients in global and 

material frames. 
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Heat conduction and thermal coefficients )andk( ijij β : 

)(cosk̂)(sink̂k 2
22

2
1111 θ+θ=  

3322 k̂k =  

)(sink̂)(cosk̂k 2
22

2
1133 θ+θ=  

)cos()sin()k̂k̂(k 221112 θθ−=   ,  other 0k ij =  

 

)(cosˆ)(sinˆ 2
22

2
1111 θβ+θβ=β  

3322 β̂=β  

)(sinˆ)(cosˆ 2
22

2
1133 θβ+θβ=β  

)cos()sin()ˆˆ( 221112 θθβ−β=β   ,  other 0ij =β  

 

where ),k( ijij β  with and without overhead denote them, respectively, in material 

and global frames. 
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APPENDIX B 
 
 

FREQUENCY EQUATION FOR 4th ORDER THEORY 
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APPENDIX C 
 
 

FREQUENCY EQUATION FOR SHEAR WAVES PROPAGATING 

PERPENDICULAR TO LAYERING AS DETERMINED BY CM 

(0th order theory and 1st order CC) 
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 Frequency equation : ( ) 0det =M  
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APPENDIX D 
 
 

FREQUENCY EQUATION FOR AXIAL WAVES PROPAGATING 
PARALLEL TO LAYERING AS DETERMINED BY CM 

(1st order theory with exact CC) 
 
 

 SHAE : 0aM =  

 Frequency equation : ( ) 0det =M  

where, for the sake of convenience, M is factorized as 
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APPENDIX E 
 
 

FREQUENCY EQUATION FOR WAVES PROPAGATING  
OBLIQUELY TO LAYERING AS DETERMINED BY CM 

(2nd order theory and 2nd order CC) 
 
 
 

 SHAE : 0aM =  

 Frequency equation : ( ) 0det =M  

where, for the sake of convenience, M is factorized as 
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