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ABSTRACT

A DYNAMIC THEORY FOR LAMINATED COMPOSITES
CONSISTING OF ANISOTROPIC LAYERS

Yalcin, Omer Fatih
Ph.D., Department of Engineering Sciences
Supervisor  : Prof. Dr. Dogan Turhan

Co-Supervisor: Prof. Dr. Yal¢cin Mengi

March 2006, 134 pages

In this thesis, first a higher order dynamic theory for anisotropic thermoelastic
plates is developed. Then, based on this plate theory, two dynamic models,
discrete and continuum models (DM and CM), are proposed for layered
composites consisting of anisotropic thermoelastic layers. Of the two models, CM
is more important, which is established in the study of periodic layered composites
using smoothing operations. CM has the properties: it contains inherently the
interface and Floquet conditions and facilitates the analysis of the composite, in
particular, when the number of laminae in the composite is large; it contains all
kinds of deformation modes of the layered composite; its validity range for
frequencies and wave numbers may be enlarged by increasing, respectively, the
orders of the theory and interface conditions. CM is assessed by comparing its
prediction with the exact for the spectra of harmonic waves propagating in various
directions of a two-phase periodic layered composite, as well as, for transient
dynamic response of a composite slab induced by waves propagating

perpendicular to layering. A good comparison is observed in the results and it is

v



found that the model predicts very well the periodic structure of spectra with
passing and stopping bands for harmonic waves propagating perpendicular to
layering. In view of the results, the physical significance of Floquet wave number

is also discussed in the study.

Keywords: layered composites, continuum and discrete models, Floquet

periodicity condition, Floquet wave number, spectra.
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ANIZOTROP KATMANLARDAN OLUSAN BILESIiK CISIMLER iCIN
BiR DINAMIK TEORIi

Yalcin, Omer Fatih
Doktora, Miihendislik Bilimleri Bolumii
Tez YOneticisi : Prof. Dr. Dogan Turhan

Ortak Tez Yoneticisi : Prof. Dr. Yal¢in Mengi

Mart 2006, 134 sayfa

Bu tezde ilk olarak anizotrop termoelastik plakalar icin yliksek mertebeli bir
dinamik teori gelistirilmistir. Daha sonra, bu plaka teorisine dayanarak, anizotrop
termoelastik katmanlardan olusan tabakali cisimler i¢in ayrik ve siirekli model
(AM ve SM) olmak {iizere iki dinamik model sunulmustur. Bu modellerden,
periyodik tabakali bilesik cisimler i¢in diizlestirme operasyonlari uygulanarak
gelistirilen SM daha onemlidir. SM'nin dayandigi ozellikler sayilacak olursa:
araylizey ve Floquet sartlarin1 dogal olarak icermekte ve ozellikle bilesik cisimdeki
tabaka sayist arttik¢a bilesik cismin analizini kolaylastirmaktadir; tabakal1 bilesik
cismin tiim sekil degistirme modlarini icermektedir; frekanslar ve dalga sayilari
icin gecerlilik alani, sirasiyla teorinin ve arayiizey sartlarinin mertebelerinin
artirllmasiyla saglanabilir. SM'nin gecerliligi, iki fazli periyodik tabakali bilesik
cisimlerde degisik yonlerde yayilan harmonik dalgalarin tafylari (spektrumlart)
icin ve ayni zamanda bilesik bir levhada tabakalara dik yayilan dalgalarin neden
oldugu gecici dinamik tepki icin verdigi c¢oziimlerin kesin c¢oziimlerle

karsilagtirilmasi ile yapilmistir. Sonuglarda iyi bir uyusma gézlenmis ve modelin
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tabakalara dik yonde yayilan harmonik dalgalarin gecis ve durdurus bantlarin1 da
iceren tayflarinin periyodik yapisini ¢ok iyi tahmin ettigi bulunmustur. Elde edilen
sonuglarin 15181nda, Floquet dalga sayisinin fiziksel 6nemi de ¢aligma kapsaminda

tartisilmistir.

Anahtar Kelimeler: tabakasal bilesik cisimler, siirekli ve ayrik modeller, Floquet

periyodiklik sarti, Floquet dalga sayisi, tayf
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CHAPTER 1

INTRODUCTION

Due to their importance in many fields of engineering, such as aerospace,
automotive, structural engineering etc., various continuum models (CM) are
proposed in literature for the analysis of periodic layered composites. CM’s treat
the composite material as homogeneous and simplify the analysis when the
number of laminae in the composite is large, whereas the exact treatment involves
writing the field equations in each lamina and considering the continuity
conditions at interfaces.

Among these CM’s, effective modulus theories, effective stiffness theories,
mixture theories, etc. may be cited. CM’s proposed in literature were assessed by
using a criterion, which involves the comparison of CM prediction for dispersion
spectra of various waves propagating in layered composites with the exact or with
the ones obtained by other methods, such as, by finite element method. The
interaction between the layers of the composite is induced by reflection and
refraction of waves, giving rise to geometric dispersion. Geometric dispersion
depends upon the mechanical properties, geometric arrangements and nature of the
material interfaces. Validity of an approximate theory for elastodynamic modeling
can be decided by comparing the approximate dispersion curves with the exact or
experimental ones.

In this study, a higher order CM is developed for periodic layered composites.
The formulation of the CM is based on a higher order plate theory for anisotropic
thermoelastic plates which is developed as the first stage of this study. The
technique employed in developing the approximate theory is a more systematic
and improved version of that used in conjunction with isotropic plates and shells
[1-4]. This plate theory has an important property: it contains, as field variables,

not only generalized variables representing the weighted averages of



displacements and stresses, but also face variables (FV) denoting displacements
and tractions defined on the faces of the plate. The appearance of FV’s in the plate
theory played, for the reasons stated below, a crucial role in establishing a
consistent model for layered composites: it permits satisfying correctly the
interface conditions, thus, accommodating the dispersive properties of layered
composites. This property of the approximate theory eliminates the discrepancies
which may exist between the displacement (or temperature) distributions assumed
over the thickness of the plate and its lateral boundary conditions; thus, it
improves, without using any correction factors, the geometric dispersion
characteristics of the waves propagating in a plate. This is a superior feature of the
proposed theory to the existing theories in literature (see for example, Refs.[5-7]),
where some correction coefficients are introduced to remedy the discrepancies
which may exist between the assumed displacement distributions over the
thickness of the plate and the lateral boundary conditions. Appearance of FV’s,
further, facilitates performing the smoothing operations in a systematic manner in
the formulation of CM.

The CM model developed in this study for periodic layered composites may
be viewed as a mixture theory with higher order microstructure. Its formulation
involves the use of the following steps: writing the equations of the above
mentioned plate theory for each lamina; expressing the interface conditions in
terms of FV’s of the plate theory; finally, using smoothing operations for the field
variables which appear in the equations of the composite body. The originality of
the proposed CM and its contribution to existing literature lie along the following
lines:

1) Triclinic anisotropy (most general anisotropy with no elastic symmetry) is
assumed for the layer material so that the model may be used in the analyses
of variety of layered composites, such as, fiber-reinforced and particulate
composites.

2) The number of laminae in the unit cell of periodic layered composite is

arbitrary. The model contains two-phase composite as a special case.



3) The orders of the theory and continuity conditions in the model are kept
arbitrary. The region of validity of the model may be enlarged in wave
number-frequency space by increasing these orders. Prediction of the model
approaches that of exact as the orders get larger.

4) The model holds for all kinds of deformation modes, such as, those induced
by waves propagating perpendicular or parallel or obliquely to layering.

5) The model contains inherently the Floquet wave conditions for the waves
propagating in periodic layered composites. This property of the model
enables it to predict correctly the filtering behavior of layered composites for
the waves normal to layering.

6) Thermal effects are included in the formulation of the model.

The CM is assessed by using the spectral criterion stated previously, which
involves the comparison of model prediction with the exact for harmonic waves
propagating in an infinite layered composite. The comparison is given in the study
for two-phase angle-ply composite laminates and a good match with the exact is
observed for the waves propagating in various directions in the composite. The
number of modes accommodated by the model increases with the order of theory;
its prediction in wave number direction improves with the order of continuity
conditions.

It is proved in the study that the CM contains asymptotically the Floquet
periodicity conditions as the order of continuity conditions get larger.

The spectral criterion is tested in the study by considering transient shear
waves in a composite slab, where the prediction of the model is found to agree

quite well with the exact even for lower order theory and continuity conditions.

1.1 Literature Survey

Dvynamic behavior of plates

Approximate plate theories are usually derived by expanding the displacement
or stress fields of 3D elasticity theory in terms of the thickness coordinate. Among
these theories, the first order shear deformation theories of Mindlin [5] and

Reissner [8] can be mentioned as pioneering works, where the material is treated



as isotropic. Later, various higher order theories [9-12] were proposed to improve
their prediction in the dynamic analysis of plates. Reddy’s third order shear
deformation theory [12] has been widely accepted and it is variationally consistent;
however, this theory assumes that transverse shear stresses vanish at the top and
bottom of the plate. For extensive review of the approximate plate theories one
may refer to Refs.[13-15].

The dynamic behavior of anisotropic plates has been the subject of many
researches; but, the emphases in these works were, for some special wave modes,
on the investigation of dispersion characteristics of harmonic waves propagating in
plates of infinite extent by using mostly the exact theory of elasticity.

Solie and Auld [16] constructed exact plate wave solutions by using the
method of partial waves in cubic solids (i.e., materials with three independent
elastic constants). Green and Milosavljevic [17] and Rogerson and Kossovitch [18]
examined harmonic waves in a transversely isotropic plate (i.e., plate material with
five independent elastic constants) propagating in the direction of transverse
isotropy axis. In a similar study, Kline et al. [19] considered arbitrary propagation
directions in a fiber-reinforced composite (represented by transversely isotropic
plate).

In a more detailed study, Nayfeh and Chimenti [20] provided an exact formal
solution of the guided waves for the most general case: triclinic plates. From that
case, they moved to a special case of monoclinic symmetry (with one plane of
symmetry) and determined the dispersion equation of plate waves exactly. Their
solution included also higher symmetry materials. Numerical examples for
different symmetry cases are presented and dispersion curves for each case are
provided. A similar study was performed by Li and Thompson [21] for a
monoclinic plate with some additional analytical expressions for the oscillations of
lower symmetric and antisymmetric modes. Recently, a theoretical framework for
the wave propagation in general anisotropic plates was developed by Shuvalov
[22]. In this approach, the propagator matrix method and Stroh’s formalism are

utilized and real forms for general dispersion equations are derived. Shortly after,



Alshits et al. [23] extended the previous study to analyze the asymptotic behavior
of the dispersion branches using short-wavelength approximation.

Chimenti [24] reviewed the vast literature on theoretical and experimental
work on guided waves in plates. In the books of Nayfeh [25] and Liu and Xi [26],
a comprehensive coverage of the wave propagation in anisotropic medium is
presented, including coupled wave motion in layered anisotropic plates, elastic
waves in fluid loaded solids, piezoelectric effects, transient waves etc., together
with some review of the literature on relevant subjects.

Recently appeared works of Verma and Hasebe [27] and Al-Qahtani and Datta
[28] incorporate the thermal effects, in the context of generalized thermoelasticity,
with the elastic wave propagation in anisotropic plates. In the former, exact
methods (for transversely isotropic and triclinic plates) and a semianalytic finite
element are presented, and their predictions for thermoelastic waves propagating in
a transversely isotropic plate are compared. In the latter, an exact treatment is
developed for thermoelastic waves in general anisotropic plates. Dispersion curves
for some special cases (monoclinic, orthotropic, transversely isotropic and cubic

plates) are given for coupled waves.

Dvynamic behavior of layered composites

The CM'’s proposed in literature may be categorized as effective modulus,
effective stiffness and mixture theories. In what follows these models are reviewed
briefly.

The simplest of CM’s is the effective modulus theory [29,30]: it is proposed
for periodic layered composites with isotropic layers and replaces the composite
material with homogeneous transversely isotropic or orthotropic material (i.e.,
material with three orthogonal planes of symmetry) with effective elastic moduli.
This model has a major shortcoming: it disregards the dispersive characteristics of
the layered composite induced by reflections and/or refractions of waves at layer
interfaces. To remedy this drawback of effective modulus theory, various
dispersive theories are developed in literature for two-phase periodic elastic or

viscoelastic layered composites.



In [31] by Sun et al. a dispersion theory, namely the effective stiffness theory,
is proposed for two phase periodic layered composites where the layer properties
are assumed to be isotropic. The construction of the theory is based on polynomial
expansion of displacements of each layer about the midplanes of the layers. An
interface compatibility equation is introduced to satisfy the displacement
conditions at the interfaces of adjacent layers. The strain and kinetic energies of
the layers are written in terms of displacement expansions. Smoothing the
resulting expansions and application of Hamilton’s principle yield the
displacement equations of the theory. Sve [32] considered waves propagating in an
arbitrary angle with the layering through an exact treatment and compared his
results with those of the effective stiffness theory. The effective stiffness theory is
improved by Drumbheller and Bedford [33,34] for laminated composites by
including “the evaluation of displacements and stresses, particularly interface
stresses”. These theories are not capable of predicting the periodic and banded
structure of spectra for harmonic waves propagating perpendicular to layering. To
remedy this, some matching coefficients are introduced in [35], where the
coefficients are determined through matching frequencies with the exact values at
the ends of first Brillouin zone. However, it is obvious that this matching
procedure requires information about the exact properties of spectra. It is to be
noted that the prediction of an approximate theory for the waves perpendicular to
layering in layered composites is a good test for its reliability.

Based on classical mixture theories [36,37] several dispersive theories are
proposed in literature for layered composites, where the layer material is assumed
to be isotropic (see, e.g., Refs.[38-42]). Though formwise they are simple, these
theories have some shortcomings: the parameters or constants appearing in them
require either the solution of some microstructure boundary value problems or
matching with the exact of some spectral properties of waves propagating in
layered composites; they accommodate only limited number of modes and not
capable to predict the filtering property of the composite for the waves

perpendicular to layering.



Higher order models are developed by Mengi et al. [43] and Delph and
Hermann [44] for layered composites which accommodates, through matching in
the latter, the banded and periodic structure of spectra for waves perpendicular to
layering. However, the layer material in these studies are taken as isotropic, which
makes the use of these models not suitable for the analyses of layered composites
of practical importance, such as, fiber-reinforced and particulate composites.

Through the expansion of displacements and stresses in each lamina, higher
order CM’s are proposed in [45,46] for some special waves, namely, for
compressive waves propagating parallel and perpendicular to layering. In these
works, the layer material is assumed to be isotropic. These models are further
examined in detail in the works of Hegemier [47] and Hegemier et al. [48].

A multi-scale mixture theory with microstructure is presented in [49,50] for
two phase layered composites with orthotropic layer properties. This theory has
rather lengthy and complicated equations and is assessed in [50] by considering
only the first mode of spectra; no information is given with regard to higher modes
and its ability to predict the filtering property of layered composites. In another
study , Nayfeh and Gurtman [51] extended the mixture theory of Hegemier et al.
[48] to study both transversely and horizontally polarized shear motions in
laminated waveguides.

A different approach is used in a two part paper by Mengi [1,43] for two phase
periodic thermoelastic layered composites, where the layer property is taken as
isotropic. This procedure permits to account for the continuity conditions at layer
interfaces; it starts by writing, for each layer, the governing equations of a single
layer established in Part 1, and completes the formulation by adding the continuity
conditions to these equations and using a smoothing operation. This model can
capture the banded and periodic structure of spectra for waves perpendicular to
layering. Later, this theory is extended to viscoelastic layered composites by
Mengi and Turhan [2] and was appraised by applying it to a transient wave
propagation problem in [52]. The same theory is also extended to viscoelastic
cylindrical laminated composites by Mengi and Birlik [3] and in [53] it is assessed

for axially symmetric elastic waves propagating in a closed circular cylindrical



shell. The present thesis work may be considered as a generalization of the work in
[43] to the case in which the layer material is anisotropic (with triclinic properties)
and the number of laminae in unit cell of the periodic layered composite is
arbitrary. This generalization is important since it permits using the theory in the
analysis of layered composites of practical importance, such as, fiber-reinforced
and particulate composites.

For the sake of completeness, a short literature review will be given for the
exact treatment of laminated composites. That treatment involves writing the exact
field equations in each layer of the composite and satisfying the continuity
conditions at the interfaces. To facilitate this analysis, the matrix transfer method,
which is first introduced by Thomson [54], is employed. In this method, a system
of equations for the layered media is constructed from the field equations of each
layer in view of appropriate interface conditions.

Liu et al. [55] used this technique for the investigation of dispersion relations
of Lamb waves in anisotropic laminates. In the works of Nayfeh [25,56,57] matrix
transfer method together with linear orthogonal transformations is utilized for the
study of harmonic waves in layered anisotropic media.

Braga and Herrmann [58] and Ting and Chadwick [59] applied the matrix
transfer method together with Stroh formalism to the analysis of Floquet waves in
anisotropic periodically layered media. The former study gives a very detailed
analysis of the Floquet wave characteristic equation with stop and pass bands
(Brillouin zones). For the composite medium with periodic structures, such as a
laminated medium or a fibrous composite, displacements and stresses under
harmonic waves can be represented by periodic functions. This representation is
given in [59] within the framework of the Floquet (or Bloch) theory, which is
commonly being used in crystal lattice studies.

Kohn et al. [60] employed the Floquet theory to the study of the propagation
of harmonic elastic waves through periodically layered composite. They developed
variational principles in the form of integrals over single cell of the composite and
solved the resulting variational equations by the Rayleigh-Ritz procedure. At the

end, dispersion relations for some simple illustrative cases were analyzed and



satisfactory results for phase velocities and stress profiles were obtained. A
detailed discussion of this approach is given in [61,62]. Nemat-Nasser [63] and
Minagawa and Nemat-Nasser [64] used a more general variational principle and
obtained improved results.

More detailed surveys on the relevant approximate and exact methods can be

found in [25,26,35,60,65,66].

1.2 Organization of the Thesis

Contents of this study are presented in seven chapters. A higher order
approximate theory for anisotropic plates is developed in Chapter 2. The theory is
assessed in Chapter 3 by comparing the dispersion curves of harmonic waves in a
fiber-reinforced plate, as well as mode shapes at some cut-off frequencies, with
those of exact. Based on this plate theory, two models, namely discrete and
continuum models, are constructed in Chapter 4 for two-phase periodic layered
composites. In Chapter 5, the two-phase continuum model is extended to a
periodic composite with a unit cell having arbitrary number of laminae. Chapter 6
is devoted to the assessment of two-phase continuum model. Within the
framework of the study, an interpretation is given for the Floquet wave number.

Finally, Chapter 7 contains some conclusions.



CHAPTER 2

A DYNAMIC THEORY FOR TRICLINIC ANISOTROPIC PLATES

In this chapter, an approximate dynamic theory is developed for plates made

of a triclinic thermoelastic material by employing a procedure used in [1] in

conjunction of isotropic plates. This theory will be used in the subsequent chapters

to construct approximate theories for layered composites. A plate which is referred

to an Xx,-cartesian coordinate system, where X,x,-plane coincides with the

midplane of the plate, is considered. It is assumed that the plate has a thickness of

2h. The equations governing the linear dynamic thermoelastic behavior of the plate

are
equations of motion :
d,T; +b, =pii
constitutive equations:
T = Cijmnamun _Bije
energy equation:
~9,q,+r=c 0+T, B; 9.4,
modified Fourier’s law:
Tq;, +q; = _kijaje

where

Tij :stresses

b; : body forces

p  :mass density

u; : displacements

Giju : elastic coefficients

Bi :thermal coefficients related to thermal

expansion coefficients o; by Bij= Ciji O

10
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0 :temperature deviation from reference temperature

gi : heat flux

r :rate of heat generation per unit volume

¢y : specific heat per unit volume at constant deformation

Ty : absolute temperature of the reference configuration

T  :retardation time for heat flux

kij : coefficients of heat conduction
and 9, stands for (d/0x;) and dot denotes time derivative. In writing Eqgs.(2.1-
2.4), the indicial notation together with summation convention is used where the
range of indices is from 1 to 3. The modified Fourier’s law in Eq.(2.4) is obtained
by adding the term “7t q,” to the left hand side of regular Fourier’s equation. This
modification permits having a finite speed for thermal waves [67].

For the development of the approximate theory, a modified version of
Galerkin’s method is used, where a set of distribution functions
{(l)n (X,);n=0,1, 2,...} with X, =x,/h 1is chosen for the description of the
distribution of the field variables over the thickness of the plate. It is assumed that
On’s form a complete set in the sense that a given function f(x;) in the interval

—h <x, <h can be represented in terms of ¢,’s as
N
liNH_lm fy(x,)="1(x,) with fN(xz):ZOLHq)n(iz)
n=0

where o,’s are some constants and f, defines the approximation obtained by

retaining (N+1) terms in the series. Further, it is assumed that ¢,,’s are ordered such
that
Ey,<E, ;: N=0,1,...

where E is the error associated with the approximation f, defined by

h
Ey = [|f—fy|dx,

-h

Finally, without loss of generality, it is assumed that ¢, is an even function of X,

for even n, and odd function of X, for odd n. It goes without saying that there are

11



no preconditions of orthogonality for the functions ¢,’s.

To develop m™ order approximate theory, the elements {(I)0 I PR ) I

.., of the set are retained, where the inclusion of the last two elements ¢

m+l ?

0., 1s necessary for establishing constitutive equations for FV’s. This explains

why the terminology "modified Galerkin's method" is used for the method

employed in the study.

2.1 Weighted Integrated Forms of Field Equations

To develop m™ order theory, the operator
1 h
L =—|(®)¢ dx n=0...m 2.5
e j (®99,dx, ) (2.5)

is applied to Eqgs.(2.1-2.4), which gives

equations of motion :

0y Toi +(RY =7T3) +b =pii} (2.6)
constitutive equations:
Ti[; = Cijakaaui +Cij2k (SE _ﬁE ) _Bijen (27)

energy equation:

— (0,9 +(Q" —q2)+1" =c, 6" +T,B, 0

oj”a

ul +TB,;(S] -u))  (2.8)

modified Fourier’s law:

14! +q) =—k,,0,0" +k,(¥"—0") (2.9)
where it is assumed that the range of Latin subscripts 1, j, k, etc. is from 1 to 3, and
Greek subscripts o, B, etc., take the values 1 and 3 only. The field variables

appearing in the above equations are defined by

f"=L,(f) with f=(u;,7;,q,,6,b,1) (2.10)
fr =%2cnj fi with f" =", T5,q5,0") (2.11)
=0

where ¢, coefficients relate ¢/, =d¢, /dX, to ¢ ; by

12



0, = icnﬂ)j 2.12)
and

p=E00 G e R QN

F =
F'=f"+f" foroddn

. F =f"—f~ forevenn
(2.13)

f :(ui,TZi’qz’e)’ F$ :(S+’R?,Q;’lp;)

i

f7=f

Xp=*%h >

In view of Egs.(2.10-2.13), it is observed that the equations of approximate theory,

Egs.(2.5-2.9), contain two types of variables:

f"= (u.“,rg,qf,en)

1

representing weighted averages of displacements etc., which are called generalized

variables (GV) and

are defined on the flat faces of the plate, which are called face variables (FV).

It is easy to see that the number of available equations in Eqs.(2.5-2.9)
together with prescribed lateral boundary conditions of the plate is [13(m+1)+8].
On the other hand the number of unknown variables (u, t;, qi, 6", ST, R,
QF, W) in Egs.(2.5-2.9) is [13(m+1)+16]; thus, 8 equations will be needed for
the completion of the approximate theory, which will come from constitutive

equations of FV’s.

13



2.2 Constitutive Equations for FV’s

To establish these equations, u; and 0 are expanded in terms of ¢, as

m+2
(u,,0)= > (ay,b,) 9, (2.14)

k=0
where the coefficients a, and b, are some functions of x, (o = 1, 3) and time
“t”. To relate these coefficients to GV’s and FV’s of the approximate theory, the
operator L, (n = 0...m) and the operations (S] =u] Fu;, ¥" =0"F07) are

applied to Eq.(2.14) which gives

p+2 )
Yd,(al,b)=(ul.0")  (1=02,....p)
k=0,2,..
(2.15)
p+2 i 1 . .
Z¢k (D (ay,by) ZE(Si P
k=0,2,..
and
p+2 '
> d,(alb)=@"8"  (m=13,...p)
k=1,3,..
(2.16)
p'+2 i 1 . )
Z¢k(1) (ay.by) ZE(Si )
k=1,3,..
where p=m, p"=m-1 forevenm, and p’=m, p=m-1 for odd m, and
dnk = dkn = Ln(q)k)
Solutions of Egs.(2.15) and (2.16) determine ai( and b, with the form
(ai(’bk): szj(ulj,ej)+fk,p+2(sr—’\ll+) fOr kzO,2,---,p+2
i=0,2,..
J (2.17)

. p, . .
(a,b)= D f.(u},0)+f, ,S7, W) for k=13...p"+2

=13,..
where the coefficients fi; (k,j = (0...(m+2)) may be evaluated when the distribution
functions ¢, are selected.
Finally, Eq.(2.14) is inserted into the right hand sides of equations
1, =C,, 9,1, +C,,.0,u, —f,0

2ior o r

q, +1d, =—k,,0,0-k,0,0  (x=13; i,r=1...3)

2007 o
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and the resulting expressions are used in R} =15, F1;, ; Q¥ =q} Fq; . This
gives the constitutive equations of FV’s as, in view of Eqgs.(2.17) and the

definitions (S} =u Fu;, ¥* =0"F07),

+ + 2 4 j -Q- +
R =C,,9,S; +EC212r( Z’Yjui +7S,)—B,¥
j=1,3,..
_ -2 - iy et _
R =C,,9,S, +EC212r( ZYjur +7'S)—By¥
=0,2,..
+ Nt + 2 o j -\U-
Q" +1Q" =—k,,0,¥ —Ekzz(zvjeuylp )
j=13,..
- ~N— -2 Z j N+
Q +1Q =k, 0 ¥ —szz( Dy (2.18)

=0,2,..

where the coefficients y; and ¥" may be computed from

p+2

Y, = kajq);(l) for even j
k=0,2,..
p+2

Y= Y fi;0, (1) forodd j
k=1,3,..
p+2

Y = D £t

k=0.2..
p+2
Y = sz,p'+2¢k ey

k=13,..

(2.19)

2.3 Symbolic Description of the Approximate Plate Theory

To facilitate the discussions for the models which will be developed for
layered composites in subsequent sections, the equations of the approximate plate
theory will be written here symbolically as

M?, Ci, E", T", Z[, P")=0 (n=0...m) (2.20)

ij?

where the first four equations represent, respectively, equations of motion
(Eq.(2.6)), constitutive equations for GV's (Eq.(2.7)), energy equation (Eq.(2.8)),
modified Fourier’s law (Eq.(2.9)) and the last two describe, respectively, the

constitutive equations for the FV's R;_r andQ¥ in Egs.(2.18). It is worth to note

15



that the proposed theory reduces the dimension of the plate theory by "one"
through the integration over its thickness; thus, both GV's and FV's would be
functions of x; , x3 and time "t" only.

The appearance of FV's in the approximate theory is crucial in construction of
consistent dynamic models for layered composites accommodating their refractive

properties at interfaces properly.

2.4 Case of Orthogonal 0,’s

As mentioned earlier, orthogonality is not a requirement for the constitutive
relations in Eqs.(2.18). However, taking the distribution functions as orthogonal
simplifies the computation of the constants appearing in these equations. For this

special case, the expression dykx = L,(¢x ) takes the form

d, = SHKdK (2.21)
with &, being Kronecker’s delta and
|
d =2 jl 02dx, (2.22)

In Eq.(2.21), the underlined index implies that there is no summation over it. In
view of Eq.(2.21), the solutions of Egs.(2.15) and (2.16) for aik and b, can be
obtained as

(ai(’bk) :dl(uf,ek), k =(0...m)

k

((S?APU_ 3 qn;l(l)(u?’ek)J
Labon) = 02k 223
(al,b ) "o (2.23)
SLY) LoD, ko
b [ D2y (“i’e)j
Ay050p0) =
P 0. (1)

Comparison of these equations with Eqs.(2.17) gives, for f; coefficients,

16



1 N —
d_sb for (k,j)=1...m
LS
0 for k=1...m; j=p+2, p'+2
1 1 ’ .
fi;=9- ¢i( : for k=p+2, p’+2; j=0...m (2.24)
diq)k(l)
1/2 for (k,j)=p+2, p'+2 withk=]j
0 for (k,j)=p+2, p'+2 withk #j

Insertion of Egs.(2.24) into (2.19) determines the constants Y; and v" which
appear in the constitutive equations of FV’s. These constants together with ¢,

coefficients are given in Tables 2.1 and 2.2 when ¢,’s are Legendre polynomials
(which form a complete orthogonal set), i.e., when
0, (X;) =P, (x,)
where P (X,) is the Legendre polynomial of order “n” defined by
qr

P, (x2)= 2" n!dx?

X:-1" (2.25)

It may be noted that selection of Legendre polynomials for ¢,,’s results in
d, = 1/(2n+1), ¢u(1) = 1 and ¢ (1)= (0, 1, 3, 6, 10) for n = (0...4), respectively.

The dash in Table 2.2 indicates that the corresponding constant does not appear in

the theory.

Table 2.1 c,; coefficients (¢,’s are Legendre polynomials)

N[0 1T 2 3 4
1 1 0 0 0 0
2 0 3 0 0 0
31 0 5 0 0
4 0 3 0 7 0

17



Table 2.2 y; and ¥* coefficients (¢, s are Legendre polynomials)

order + _
(m) Yo T Y oY T Y
0 -3 - - - - 32 112
1 3015 - - - 32 3
2 -10 -15 35 - - 5 3

4 21 42 90 -63 -99 2172 1572

2.5 Reduction of the Approximate Theory to Generally Orthotropic Plates

A generally orthotropic plate will be taken here, for illustrative purposes, as a
fiber-reinforced plate with a ply angle 0 as shown in Fig. 2.1, where x; axes define
the global coordinate system (the body coordinates); whereas (1,2,3)-axes denote
the material frame (the principal material directions, i.e., the fiber direction and the
directions normal to it). Constitutive equations in x; frame would be, in matrix
form

c=Cs—0

or

Tll Cll ClZ Cl3 O ClS O 8ll Bll

122 ClZ C22 C23 O CZS O 822 l322
133 Cl3 C23 C33 O C35 O 833 l333

= - e (2.26)
T, |0 0 0 C, 0 C,ll2es] | O

Tl3 CIS C25 C35 0 CSS 0 2813 Bl3

W] [0 0 0 C, 0 Cgl2e,] |0

1 . .
where €; =—(d;u; +9;u;) are strain components. It may be noted that the first and
2

[13%4] [13%4]

last indices, “1” and “j”, in C;; in Eq.(2.26) are related to first two and last two

indices, “pq” and “mn”, in Cyqmn in Eq.(2.2) by the following rule

1—-11,2-22,3-33,4-23,5->13,6—>12

18



X2,3

Figure 2.1 Fiber-reinforced layer

On the other hand, nonzero components of the heat conduction coefficient

matrix k = (k;) and thermal coefficient matrix B=(B;) are , for the generally

OI'thOtI'OpiC plate in Xi frame, (k]], k22, k33, k13) and (B]l, [322, [333, [313).
The elastic, heat conduction and thermal coefficients of generally orthotropic
plate in x; frame are related, through the ply angle 0, to the coefficients in material

frame by the usual tensor transformation rules:

Cogm = apraqsamuanvérsuV
R R (2.27)
ky=aga k., Bij =aimajn[3mn
with
sin@ cos6 O
A=@y)=| 0 0 1 (2.28)

cos® —sin® O

being direction cosine matrix and overhead denotes the values of coefficients in
material frame. The transformed coefficients in Eq.(2.26) are given in Appendix
A.

The equations of the approximate theory for generally orthotropic plates can

be derived from those of triclinic anisotropic plates, Eqs.(2.6-2.9) and (2.18), by
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specializing them for the properties of orthotropic plates discussed above. The

resulting equations in extended form are

equations of motion:

0,T,; +(R!—T3)+b, =piif (2.29)

o ol

constitutive equations:
1, =C,0,u; +C,50,u; +Cd,u; +C;0,u; +C,(S; —u;)—p,,6"
15, =C,0,u] +C0,u; +C,s9,u; +C,,0,u; +C,,(S; —u3)—P,,0"
T3, =C0,u;) +Cy0,u; +Cy50,u] +Cy0,5u; +Co, (S, —us) —B4,0"
(2.30)
15, =C,0,u; +C,0,u; +C  (S) —u})+C,, (S —u3)
T, =C50,u] +Cy0,u; +Cd,u; +C,,0,u; +C,(S; —u;,)—p,,0"
T, =Ce0,u; +C,05u; +C (S) —u )+ C, (S5 —13)
energy equation:

— (45 +(Q" =) +1" =¢,0" + T, (B,, 9,u) + T, (S —u3)  (2.31)

modified Fourier’s law:

14" +q" = —k,,0,0"
o (n=0..m) (2.32)
T4y +q; =k, (P" -67)

constitutive relations for FV’s:

N N N 2 & 2 &
Ry =C40,S; +C,0,S; +Cf H( Z'Yjuf +7S)+Cy H( Z'Yju% +7°S3)

=1.3... =1.3...

- - - 2 % j +Q+ 2 > j +Q+
Ry =C0,S; +C,9,S; +Cqq E( Z'Yjuf +Y'57)+Cy H( Z'Yju% +Y'S3)

j=0,2,.. j=0,2,..

+ + + + + 2 i j -Q— +
Rz :C218151 +CZSaIS3 +Czsa3sl +sza3S3 +C22 H( ZYjqu +v Sz)_BzzlP

=1.3,..

_ _ _ _ _ 2 3 L o+ _
Rz :CZIaISI +Czsals3 +Czsa3sl +C23azs3 +C22 H( ZYjqu +v Sz)_BzzlP

=0,2...
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+ + + 2 v j -Q- 2 o j -Q-
R =Cy 0,8 +C,,0,5] +Cyq H( ZYjuf +7S)+Cy, H( ZYJU% +7°S5)

j=1.3,.. j=1.3,..

- - - 2 3 j +Q+ 2 Z j +Q+
Ry =C,09,S; +C,0,S; +C, H( ZYjuf +7°S)+Cy, E( Zyj‘u% +vY'S3)

j=0,2,.. i=0,2,..

N - 2 & S
Q" +1Q =—kzzg(znej+w )

j=1.3,..

- ~N— 2 > j N+
Q +1Q :—kzzH( Dy )

=0,2...
(2.33)

where p=m, p’=m-—1 for even m, and p’=m, p=m-—1 for odd m and the

range of Latin subscripts i, j, k, etc. is from 1 to 3, and Greek subscripts a, W, etc.,

take the values 1 and 3, only.
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CHAPTER 3

ASSESSMENT OF THE APPROXIMATE PLATE THEORY

To appraise the approximate theory developed in the previous chapter,
dispersion curves, as well as displacement mode shapes at some cut-off
frequencies, of the approximate theory will be compared with those of exact
theory. For this purpose, guided axial waves propagating in x;-direction of the
generally orthotropic plate shown in Fig. 2.1 are considered. With guided axial
waves in x;-direction, it is meant that the waves carrying the displacement
disturbances in that direction with the property: the in-plane displacement
components u; and uz being symmetric and transverse displacement u, being
antisymmetric about midplane of the plate. It goes without saying that these waves
are formed by wave components reflected at lateral boundaries of the plate with
overall propagation direction in x;-direction. For the waves under consideration,

the nonzero elements of generalized displacements and FV’s of the approximate

theory would be u;, (a@=13;n=0,2,..); u; (n=13,..); Si(x=13); S,

and we note that R} =0 due to free flat faces of the plate.

3.1 Dispersion Relations

3.1.1 Approximate dispersion relations

Dispersion curves predicted by the approximate theory for guided axial waves
can be obtained by assuming the form

Ae!T 3.1)

for the nonzero field variables of the approximate theory and requiring that the

equations possess a nontrivial solution. In Eq.(3.1) o, k and A are, respectively,

frequency, wave number (in x;-direction) and amplitude. The resulting frequency

equations for 2" order and 4™ order theory together with relevant equations, for
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isothermal case, are given below.

2™ order approximate theory :

For the second order theory one has m=2 (n=0,1,2) and p=m=2, p’=m—1=1.
After removing the vanishing generalized displacements and applying the
boundary conditions on the flat faces of the plate, the equations of the 2" order

theory reduce to

equations of motion:

9,7y, =piiy

9, Th _%Tlﬂ = pii}

9,71, _%1(2)2 = pii} (3.2)
9,7} =pii§

> 30 o
9,713 _HTB =puy

constitutive equations:
0 0 0 |
7)1 =Cp0,u; +C50,u3 + Clz(gsz)

2 2 2 I - 3 4
751 =Cy0,u; +C50,u3 +C12(£Sz _;‘12)

Ty =Cge01U, +C66(£sf _;ul ) +C46(£S;— _;‘13)

1
1
)5 =Cy59,u} +Cs50,u3 +Cy (Esz)

2 2 2 I - 3 1
Ti3 = Cy50,uj +Cs50,u3 +C s (Esz _Huz)

1 1 1 1
1 1 0 0
Ty; =Cue0 U, +C46(;ST _;ul )+C44(;S; _Hu3)
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constitutive equations of FV’s:
1 =Cg691S; +Coq %(You? +Y,u] 7S] )+Cyq %(Youg +Y,u5 +Y7ST)
5 =Cp9,St +C,59,87 +Coy %(ylulz +7°S;) (3.4)
3 =C460,5; +Cy %('You? +Y,u7 +Y°S1)+Cy, %('Youg +Y,u3 +Y°ST)

To obtain the dispersion relation, equations of motion, Egs.(3.2), are written in
terms of generalized displacements by using the constitutive equations in
Eqgs.(3.3). Substituting the trial solution of the form in Eq.(3.1) into the resulting
equations and constitutive equations of FV’s, Eqgs.(3.4), a system of 8§
homogeneous algebraic equations with the coefficients dependent on ® and k is
obtained. Equating the determinant of the coefficient matrix to zero, which is the
condition for having a nontrivial solution, the frequency equation (dispersion
relation) relating ® and k is found. Each pair (®, k) satisfying the dispersion
relation gives a plane wave solution. The frequency equation is given below in

determinant form:

pw’ —C, k> 0 0 (;;1 ik 0 —C.K* 0 0
~ T F o) (C‘2h+c“)ik pw? —C ok’ 0 —;Eg %ik T H ) (C25h+c46) ik 0 Sk
3C Z3(C,, +C,,) . , 'S 3C 3c
he : li1+ “ik o’ ~C, K %lk e h ~Cisk? e
2C 2C G, . 2C 2C 2, .
h66 ,YO 0 h66 "{3 Céélk h66 h46 ,YO h46 ,Y’-7 h46 ,Y 0
0 %y, 0 %y C,ik 0 0 C..ik
—C.K° 0 0 %ik 0 P’ —C K 0 0
3C ~3(Cyy +Cy). Cn.  -3C 3c,, . -3C,
thﬁ ( _;"‘ 46)1k ~C,k? 27;511( 2h246 h244 P’ —Cok’ 2h244
2C, 2C, : 2C v 2C, 2C, 2Cy, .
e 0 ey Cuik S a2ty Lu L
. e w Y L e Y
3.5

It should be noted here that, m™ order approximate theory accommodates

2(m+1) dispersion curves in the spectra.
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4™ order approximate theory :

In a similar manner as in 2™ order theory, the dispersion relations for 4™ order

theory are obtained from the governing equations

equations of motion:

aﬂ?lzpﬁ?
3 ..
811121 _HTIZI :Pu12
3 7
0T} —— Ty ——T3, =pii}
Tt Tt pu;
1 .1
0,7}, _HTzz =pu, (3.6)

1 5 .
alth _Hng _Hfgz = pu;

0 _ 0
d17)3 =pl;
2 3 _ o
01Tj3 —— T3 =piij
h
30 T3 4
0Tl ——Thy —— T3, =pil
1113 23 23 3
h h
constitutive equations:

1 .
T?l = Cllalu? +C1581u(3) +C12(Esz)

2 2 2 1 _ 3 1

1, =C,,0,u; +C,.d,uz +C,,(—S, —=u

1 19144 1591U3 12(2h 27, 2)
1. 3 7

Tfl :CllaluiL +C1581u§ +C12(Hsz _Hulz _Hug)

1 1 1 I ¢ 1 I 9
Ty, =Cge0 U, +C66(ZS;— _;ul )+C46(ES; —;u3)

1 1 5 1 1 5
sz :C66alu; +C66(EST _Hulo —Huf)+C46(ES§ _Hug _Hug)

1
0 0 0 -
Ty =Cpp0 u; +Cys0,uy +C22(£Sz)
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2 2 2 I - 3 4
Ty =Cpp0,uy +Cy50,u3 +C22(£Sz _;uz)

0 0 0 |

T3 =Cy50,u; +Cs50,u3 "‘Czs(isz)

2 2 2 | 1

T3 =C50,u; +Cs50,u3 +C s (Zsz _Huz

4 4 4 I -

T13 =Cy50,u; +Cs50,u3 +C s (ESZ ——Uu,——U,

1 =CLdul +C, (=St —Lu0) 40, (st —1u?)

23 460112 T e (051 = 4a( 93~ U3

3 3 1L+ 1 9 55 1L+ 1 9 55

Ty, =Cu0u;, +Cue (—S7 ——u; ——u;)+Cy(—S3 ——u; —=u3)

23 46012 T e (051 U~ 44( 93 — U3 TS
3.7

constitutive equations of FV’s:
_ _ 2 2
R =C0,S; +Cq ;(You? +Y,u; +74u) +77ST)+Cyq ;(YOUQ +Y,u3 +74ui +77°S3)
2 L
R; =C,0,S] +C»59,S; +Cy ;(Ylulz +Y5u3 +77S3)

_ _ 2 2
R; =C49,S; +Cyq ;(You? +qu12 +'y4uf +Y'S))+Cyy ;(Youg +qu§ +'y4u§ +7°S3)
(3.8)

The frequency equation for this order is given in Appendix B.

3.1.2 Exact dispersion relations

Here, the dispersion relations will be obtained through the use of exact

elasticity equations for the axial waves propagating in x;-direction of the plate in

Fig. 2.1. Lateral surfaces of the plate is free of forces (i.e., ’C2i| -, =0). The

X,=F
displacements u; and u; would be symmetric and u, would be antisymmetric about
midplane of the plate, and the displacements are assumed to be independent of x3,

so that u; = u; (X1 , X2, t) and d;(-) =0. Then, the equations of the elasticity theory

yield:
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equations of motion:
01Ty +0,Ty; =pi,
0,7, +09,T,, =pii, (3.9)
0173 +0,T,; =Py
constitutive equations:
T, =C0,u,+C,,0,u, +C,50,u,
Ty =Cy0,u, +Cp0,u, +Cy0,u;y
Ty, =Cp30,u; +C,30,u, +Cy50,u,
T,, =C,0,u;,+C, (0,u, +9,u,) (3.10)
T;; =C50,u, +Cys0,u, +Csi0,u;
T, = Cye0,u5 +Cy (Qu, +0,u,)
For harmonic waves propagating in x;-direction, one has for displacements:
u, =1,e'™ ™ where i, =1,(x,) are displacement amplitudes. In accordance
with the assumed displacement shapes, one can write for 4, ,
i, = A, coshAx,
i, =A,sinhAx, (3.11)
i; =A;coshAx,
where A is the wave number in x,-direction and A; are some constants. Substitution

of this form of displacements to the equations of motion yields the eigenvalue

problem:
Ceo)M + (po” —C, k?) ikM(C,, +Cy) C A —Csk? A,
ikM(C,, +Cg) CpA +(po* — Ck?) ikM(C,, +Cg) A, =0
C A —Csk? ikM(C o5 + Cy) C A +(pw® —Cssk?) || A,
(3.12)

or DA =0. To have a nontrivial solution of this set of equations, determinant of

the coefficients must vanish (i.e., det D=0). This determines the eigenvalues A; and

the corresponding eigenvectors A’ in terms of ® and k (i=1...3).
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The solution for @ can be obtained by using superposition principle as

3
u= ZBr ¢ ", where B, are arbitrary constants and ¢ " are shape functions of the
r=1

form (in view of Eq.(3.11)):

o, AjcoshA x,
05 |=| A} sinhA, x, (3.13)
035 Aj cosh A x,
Thus, U can be written explicitly as
i, = B,A|coshA,x, + B,A; coshA,x, +B;A; cosh A;x,
i, =B,A}sinhA,x, + B,AJ sinhA,x, + B;AJ sinhA;x, (3.14)
fi, = B;A} coshA,x, + B,A3 coshA,x, + B;A3 coshA,x,

i(kx;—ot)

On the other hand, the substitution of u; =u;(x,)e into the

i(kx,—ot)

constitutive equations in Eqs.(3.10) gives for T,,: T, = T ¢ , where 7T,, are

stress amplitudes defined by
T, =C 40,15 +C (ikti, +0,T,)
T,, =C,,ikil; +C,,0,1, + C,sikl, (3.15)
7,3 =C 0,105 +C ik, +0,U,)
with U; being given in Eqgs.(3.14).
The free lateral boundary conditions of the plate imply that 7T, x,<7h =0.

Since 7,, and T,; are antisymmetric and 7T,, is symmetric about the midplane of
the plate, these boundary conditions are needed to be satisfied only at x, =+h,

Le., Ty —_.p, =0, which yields, in view of Eqs.(3.15) and (3.14),
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C,oikA) +bsinhAh | {C,ikA2 + tsinhA,h | {C,eikA} + psinhAsh

CLAN, |CuA, | CuAd, B, |

(3.16)

or EB = 0. For the system of equations given above, to have a nontrivial solution,

determinant of E must vanish, which gives the exact spectrum. The resulting
dispersion equation is transcendental and can not be solved analytically; therefore,
a numerical search and find algorithm is used in the determination of exact

dispersion curves.

3.2 Dispersion Curves

Approximate and exact dispersion curves are compared in Figs. 3.1-3.8. The
dispersion curves in the figures are obtained for graphite fabric-carbon matrix
composite with the properties [15]:
E;=173.058, E,=33.095, Es=5.171
G12=9.377, G13=8.274, Gy3 =3.241 (3.17)
vi2 =0.036, vi3 = 0.25, vo3 =0.171 (moduli are in GPa)

The expressions relating éij to the elastic properties given in Eq.(3.17) are, for the

orthotropic representation of the fiber-reinforced composite,
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C,=E A » Cp =E,; A , C3=E A
~ 1-v,,v ~ Vi, +V,V 1-v,,v
Cyp =E, ; *,Cy=E, Alz %, Cy =E; X = (3.18)

Cuy =Gy, Css =Gy;, Cg =Gy
A=1-V)Vy =V3Vay = V3 Vi3 =2V, V3pVy5

V.. V.
subject to the following reciprocal relation: — = E—Jl [15].

i J
The nondimensional frequency @ and wave number k which appear in the

figures are defined by

o= 6 with c, = %, R=2hy
Tic p T

Figs.(3.1,3.2) and (3.3,3.4) give, respectively, the comparison for dispersion
curves when 6 = 0° and 90°, that is, when the waves propagate parallel and
perpendicular to fiber direction. For these directions, the wave motion in X;Xp-
plane and in out-of-plane (x3) direction would be uncoupled; this is the reason why
the spectra for these uncoupled wave motions are given separately. Figs. (3.5,3.6)
and (3.7,3.8) contain, respectively, the spectra for inclined guided axial waves
when 0 = 30° and 60°, where it is to be noted that the wave motion in x;x,-plane
and in out-of-plane (x3) direction would be coupled. From the figures, it may be
observed that exact and approximate dispersion curves compare very well, and that
as the order of the theory increases, the comparison improves and the number of
dispersion curves, that is, the frequency range accounted for by the approximate

theory also increases.
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thickness
| stretch

| 1% thickness stretch

~4 - Approximate Theory (2" order)

A ~5~ Approximate Theory (4th order)
& axial —o— Exact Theory

0 0.5 1 1.5 2 2.5 3

k

Figure 3.1 Comparison of dispersion curves for guided axial waves in x;-direction

when 6=0° ( wave motion in X;Xp-plane )
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2" out—of—plane shear

e |

1.5

0.5

% Approximate Theory (2nd order)

t
1% out-of-plane shear ~5~ Approximate Theory (4th order)
—6— Exact Theory

0 0.5 1 1.5 2 2.5 3

k

Figure 3.2 Comparison of dispersion curves for guided axial waves in x;-direction

when 6=0° ( wave motion in out-of-plane (x3) direction )
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2" thick.
stretch

1%t axial shear

e |

1.5

1% thickness stretch

05F i

% Approximate Theory (2nd order)

: —B= Approximate Theory (4th order)

axial —o— Exact Theory
O 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
k

Figure 3.3 Comparison of dispersion curves for guided axial waves in x;-direction

when 6=90° ( wave motion in x;X,-plane )
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| 2" out-of—plane shear

0.5

~4 - Approximate Theory (2" order)

st ~"~ Approximate Theory (4th order)
1> out—of-plane shear —e— Exact Theory

0 0.5 1 1.5 2 2.5 3

k

Figure 3.4 Comparison of dispersion curves for guided axial waves in x;-direction

when 0=90° ( wave motion in out-of-plane (x3) direction )
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3 .

2" thickness
stretch

coupled (out-of—plane)
— axial shear

1% thickness stretch
0.5f 4
out-of-plane shear LA : nd
/ and axial (uncoupled) ——— égzgct))?hmea;reyTheory (2 order)
0.5 1 1.5 2 2.5 3

k

Figure 3.5 Comparison of dispersion curves for guided axial waves in x;-direction

when 0=30° ( the order of the approximate theory = 2)
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3 .

2" thickness
stretch

coupled (out—of-—plane)
— axial shear

1.5

1st

thickness stretch

0.5 i
“ 8 Approximate Theory (4th order)
—o— Exact Theory
0 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
k

Figure 3.6 Comparison of dispersion curves for guided axial waves in x;-direction

when 0=30° ( the order of the approximate theory = 4)
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3 .
|

2" thick. /
stretch

e |

1% thickness stretch
05F i
% Approximate Theory (2nd order)
—&— Exact Theory
O 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

k

Figure 3.7 Comparison of dispersion curves for guided axial waves in x;-direction

when 0=60° ( the order of the approximate theory = 2)

37



1st

thickness stretch

0.5F i
“®° Approximate Theory (4th order)
—6— Exact Theory
O Il Il Il Il Il
0 0.5 1 1.5 2 25 3

k

Figure 3.8 Comparison of dispersion curves for guided axial waves in x;-direction

when 0=60° ( the order of the approximate theory = 4)
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3.3 Mode Shapes

Mode shapes are very important for understanding the propagation of waves in
plates. In what follows, the displacement mode shapes of approximate and exact
theories at some cut-off frequencies (at k=0) in Figs. (3.1, 3.2, 3.5) will be

obtained and compared.
3.3.1 Approximate mode shapes

Approximate mode shapes are obtained for uncoupled (6 =0°) and coupled
(CEZS ,g) cases separately. Procedure for obtaining the modes of 2" order theory

is explicitly given below.

Uncoupled case (0 = 0°):

In order to determine the mode shapes, the system of algebraic equations
associated with Egs.(3.2) and (3.4) is reconsidered, which can be obtained after the
substitution of trial solution, Eq.(3.1), into them. Setting k = 0 and 6 = 0° in these

equations yields

P’ 0 0 0 0 0 0 o |
3C -3C A
e ;" P’ Th;’“ 0 0 0 0 0 1
A
2C 66 2C 66 2C 66 + :
0 Yo 0 Y, 0 0 0 0 0 0 A,
-C
0 0 0 p® ng 0 0 0 A,
2C 2C =0
0 0 0 h” T”y 0 0 0 A
0 0 0 0 0 PO’ 0 0 Ag
0 0 0 0 0 31(1:;4 PO — 23 f;“ A,
0 0 O O O 2C 44 ,Y 2C 44 2C 44 _A 8 |
| h '° h h |
(3.19)

where Aj, A,,...,Ag are the amplitudes in Eq.(3.1) associated to the unknowns uf,
ur, S7, ub, Sy, ul, us and S, respectively. As seen from Eq.(3.19) this system

of equations can be separated into three uncoupled subsystems as
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pw’ 0 0 "A
1
3C -3C
for axial modes: " 266 p(:)2 o 266 A, =0 (3.20)
2C 2C 2C A
h66 . hss Y5 hss vyt LA
‘aa
0w’ —-Cy A
2 4
for thickness mode: 2h =0 (3.21)
2C,, 2C, A
Y1 5
bb
pw’ 0 0 [Ag
3C -3C
for out-of-plane modes: h;M pm’ T;M A, =0 (3.22)
2Cy, 2Cy 2Cy, v [LAs
| h h > h
cc

It is obvious that the frequencies making the determinant of the matrices aa, bb

and cc zero determine the cut-off frequencies for the modes indicated in Eqgs.(3.20-

22). Solutions for the amplitudes of GV’s and FV’s can be obtained after

substituting these cut-off frequencies into the associated uncoupled system. The

displacement distributions can then be evaluated from Eq.(2.14):

u; = zaL 0,
k=0

m+2

where 0y’s are chosen as Legendre polynomials and a} coefficients are related to

GV’s and FV’s by Eq.(2.23). Cut-off frequencies, normalized nonzero variables

for each cut-off frequency and the resulting displacement expressions are

presented below:
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Axial modes:

cut-off frequencies:

aa,, aa
®, =0 and ®, = /M
paas;

variables:
aa —aa,, —aa,,S;
foro=e;  u'=1,S5=-"221 2 = T2 T
aa,, aa.,
aa
for =, u) =0, uy=1land S} =——3=
aa,;,

displacement distributions:

0
u (x,)=—"
1( 2) dO d2
u,=u, =0
Thickness mode:

cut-off frequency:

o, = bb, bb,,
\ pbb,,
variables:
for m=0, uy=1,S; __bb,
bb,,

displacement distributions:

Out-of-plane modes:

cut-off frequencies:
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(3.24)

(3.25)

(3.26)
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variables:

cc —CC, —CC ST
for(l)=0)1 ugzl,sr:_ 21,u12: 31 333
CC,, ccy,
cc
for m=w, u)=0, u;=1and S} =——=
CCyy

displacement distributions:

0 2 + 0 2
Uy(xy) =243, 4| 2B -2 By,
dy d, (3.28)

u, =u, =0

Coupled case:

For this case, the system of algebraic equations associated with Eqs.(3.2) and

(3.4), after settingk =0 and (6 #0° ,g) , will be

pw’ 0 0 0 0 0 0 0o |
3c266 o’ - 3c266 0 0 3c;16 0 3C 426 A,
2h h 2h* | A,
2C 2Cqs 2Cqs , + 2C 46 2Cy6 2Cu 4
0 0
h Yo h Y2 h Y h Yo h Y2 h Y A,
-C
2 22
2C 2C B
0 0 0 Ry T2y 0 0 0 As
h h
0 0 0 0 0 P> 0 0 Ag
3Cys 0 _ 3Cys 0 3Cy p0)2 —3Cy A,
h? 2h? h? 2h? A
2C6 2C 2Cu 4 2Cy, 2Cy, 2Cy .+ 8
0 0 ol
h Yo h Y2 h Y h Yo h Y2 h Y |

(3.29)
From this equation it is obvious that, axial modes and out-of plane modes are
coupled and thickness modes are uncoupled from them. After separating Eq.(3.29)

into subsystems, resulting equations would be
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i : 2h? _
for thickness mode: 2, , 2C,, - } 0
h 7 h
dd
for axial — (out-of-plane) modes:
| pe? 0 0 0 0 0
ff gog
0 et 0 ¥ 0 J 0 0.
3C 3C i -3C 3C
266 ;6 L’ 0 266 426
h h | 2h 2h
Cis  Cu |, o 3y —3Cu
h? h? i 2h? 2h?
2Css v 2Cys 1 2Cos v 2C6 v 2Css 2Cy5 , +
h " n " rn? h P h h
2C6 2Cy, ' 2C6 2C,, 2C 46 2C4
A N O T YL L W
ee

where the submatrices ff and gg are marked in Eq.(3.31) for a later use.

In view of Egs.(3.30,31), the cut-off frequencies,

(3.30)

(3.31)

the displacement

distributions and nonzero variables appearing in them would be, for each mode,

Coupled axial — (out-of-plane) modes:

cut-off frequencies:

w,=0

®; and , are obtained from det(ff) =0

variables:
for m=w
_uf_
uf
S
S5 ]

=—ff"
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for w=0, u) =0, u) =1

_lllz_ _3332—
2
u; g eey,
Sf ees,
_S;r_ | €€62
for m=ws 4 u, =0, u;=0, u;=1
u; ff,,
ST :—gg_l ffy,
S5 ff5,
displacement distributions:
0 2 + 0 2
S u u
ux =" M o p2n W W
1(x5) 4 0, 274, 4, o,
u, =0 (3.33)
0 2 + 0 2
us; U; S; u; uj
u,(x,)=—+—=2¢,+| >-—=2-—2
5 (%2) d, d, \E (2 d, d2j¢4

Thickness mode: Since this mode is uncoupled from the coupled axial — (out-of-

plane) modes, it remains the same as that presented previously for 6 =0°.

3.3.2 Exact mode shapes

Exact mode shapes are again obtained for uncoupled (6 = 0°) and coupled

(CES ,g) cases separately at the cut-off frequencies.

Uncoupled case (0 = 0°):

For k =0 and 0 = 0°, eigenvalue problem in Eq.(3.12) takes the form
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Cih +po° 0 0 A,
0 Cp, A +po° 0 A, |=0 (3.34)
0 0 CssA> +pa” || A,
Thus, for the eigenvalues Ax’s and their corresponding eigenvectors A", one has

0]

A= A, =i A, =i (3.35)
1Ces ICx Css
p p p
1 0 0

Al =|0], Ar=[1], AP=10 (3.36)
0 0 1

[13%4]

where “1” is the imaginary number.
Substituting these into Eqgs.(3.14) and using the identites
cosh(i x) =cos(x) and sinh(ix) =isin(x)
one obtains the displacement amplitudes as
i, =B, cos(A,x,) , 1,=iB,sin(k,x,), i, =B,cos(k;x,) (3.37)
where
K=

i

To determine the cut-off frequencies , and the corresponding B* vectors,

Eq.(3.16) is utilized, which reduces to, for k =0 and 6 = 0°,

C o)y sinh(A,;h) 0 0 B,
0 C.,A, cosh(A,h) 0 B, =0 (3.38)
0 0 C,4s sinh(A3h) || B,

Which will have a nontrivial solution when the diagonal elements of the
coefficient matrix vanish, that is

sinh(A;h)=0 or cosh(A,h)=0 or sinh(A;h)=0
It may be noted that, the exact theory generates infinitely many cut-off frequencies

and mode shapes. The resulting frequencies and corresponding displacement

distributions are as follows:
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Axial modes: (sinh(A,h)=0 = th =jn (j=0,1,2,...) )
cut-off frequencies:
C66

o, = i hp (=012,..) (3.39)

solution of Eq.(3.38):
B,#0,B,=B;=0

displacement distributions:

i = cos(%xz) (j=0,1,...)

(3.40)
u,=u,=0
. ~ 2j—1 .
Thickness modes: (cosh(A,h)=0 = A,h= 5 T (G=12,..) )
cut-off frequencies:
Con
2j—1 p )
O =——1— =12,... 341
i 5 0 (J ) (3.41)
solution of Eq.(3.38):
B,#0,B,=B;=0
displacement distributions:
i, —sin 2 n X2y (j=12..)
h (3.42)
u, =u,=0
Out-of-plane modes: (sinh(A;h)=0 = X3h =jn (j=0,12,...))
cut-off frequencies:
Cu
_. -
O, =T " (j=0,1,2,...) (3.43)
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solution of Eq.(3.38):
B,#0,B, =B, =0

displacement distributions:

i =COS(%X2) (j=0,1,..)

(3.44)
u=u,=0
Coupled case:
For this case, eigenvalue problem in Eq.(3.12) takes the form
C N\ +pw’ 0 C, N A,
0 C,,\ +pw’ 0 A, =0 (3.45)
C, N 0 C N +pw’ || A,

Whose eigenvalues and their corresponding eigenvectors would be

zz_pwz(cé6+c44)+\/z ;\’ :1 ® )\‘2 :_pmz(C66+C44)_\/Z
l 2(C66C44 _C4216) ? ﬁ ’ 2(C66C44 _Cié)
\ P
(3.46)
1 0 a,
A'=|0], A’=|1], A'=|0 (3.47)
a, 0 1
where

A= p2m4 (Cge + C44)2 —4p20)4 (CeCluy _Cié)

C46;\’21 C46;\’23

— , A, =———>———
C A +pw’ 7 C A +pw?

a,

With these eigenvalues and eigenvectors one obtains the displacement amplitudes
from Eqgs.(3.14) as
i, =B, cosh(A,x,)+B,a, cosh(A;x,)
u, =B, sinh(A,x,) (3.48)
U, =B,a, cosh(A,x,)+ B, cosh(A;x,)
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Consequently, as in uncoupled case, the cut-off frequencies and mode shapes can
be obtained from nontrivial solutions of Eq.(3.16). This reduces to, when k = 0 and

in view of Eqgs.(3.47),

(C,a, +Cg JA, sinh(A,h) 0 (Cpa, +C, A, sinh(A;h) | B,
0 C,,A, cosh(A,h) 0 B, [=0

(C, +Cya, A, sinh(A,h) 0 (C,, +C,a, A, sinh(A;h) || B,
(3.49)

Coupled axial — (out-of-plane) modes:

cut-off frequencies: are obtained from

(Cuea; +Cye )\, sinh(d;h)  (C, a5 +Cy JAy sinh(A;h)
=0 (3.50)
(Cys +Cyea; I\ sinh(d,h)  (C,, +C,ea5)hs sinh(A;h)

solution of Eq.(3.49):

(C,, +Ca, )\, sinh(A,h)
(C,, +C, a3\, sinh(A;h)

B,=0, B, =1, B, =- (for @#0) (3.51)
displacement distributions: may be found from Eqgs.(3.48) by substituting the
frequencies and their corresponding solutions, for B vector.

Indeterminacy appearing in Eq.(3.51) for @ =0 may be avoided by canceling
“m>” terms in a; and a3. This gives two possible displacement distributions for
w=0

u =1, ;=0

u, =0, u,=1
Thickness mode: This mode is uncoupled from axial — (out-of-plane) modes and
it remains the same as that of uncoupled case.

In Fig. 3.9, the displacement distributions over the thickness of the plate at
some cut-off frequencies (at k=0), predicted from exact and 2" order
approximate theories, are compared, where u; denotes normalized displacements.
The figure shows that the comparisons are very good, which is achieved in spite of

our using relatively lower order theory, that is, 2" order theory.
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(a) (b) (c)

1 1F 1

h h h

0 yd 0 o

U1
1 AH 1
1 0 1 -1 0 u, 1 1 0 u, 1
(d) (e)

1 1

h h

Figure 3.9 Comparison of mode shapes at cut-off frequencies: (a) axial mode (at
point A in Fig. 3.1) (b) 1% axial shear mode (at point B in Fig. 3.1) (c¢) 1*" thickness
stretch mode (at point C in Fig. 3.1) (d) 1* out-of-plane shear mode (at point D in
Fig. 3.2) (e) 2nd out-of-plane shear mode (at point E in Fig. 3.2) (f) 1* coupled
(out-of-plane)-axial shear mode (at point F in Fig. 3.5) (g) ond coupled (out-of-
plane)-axial shear mode (at point G in Fig. 3.5)
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CHAPTER 4

APPROXIMATE DYNAMIC MODELS FOR A PERIODIC LAYERED
COMPOSITE WITH TWO ALTERNATING LAMINAE

In this chapter, two dynamic models, discrete and continuum models, based on
the approximate plate theory presented in Chapter 2, are proposed for a periodic
layered composite with two alternating laminae. In Chapter 5, the continuum
model will be extended to a more general layered composite with a unit cell
containing arbitrary number of laminae.

The formulation is presented in general terms: the material of laminae is taken
as triclinic elastic with no material symmetry, thermal effects are included, the
order of the approximate theory is kept arbitrary, etc.

In the formulation of the models, the layered composite is referred to an Xx;
global coordinate system in which x;x3 plane is parallel to layering (see Fig. 4.1).
The x»(x) axis in the figure (perpendicular to layering) is used to distinguish a
lamina in the composite by specifying X»(x) coordinate of its midplane. The two
different phases of the layered composite are indicated by circled numbers "1" and

"2" in the figure. Without loss of generality, it is assumed that the equations of the

o
approximate theory for a lamina are written at its midplane, that is, at x =x ~,

where ;k denotes the x coordinate of the midplane of a lamina pertaining to o
phase (o = 1, 2) of k™ pair of the composite (see Fig. 4.2). A typical field variable

of the periodic composite defined discretely at midplanes of laminae will be
o o
designated by f (xzk), which belongs to o phase of the pairs k=1,2,... of the

o
composite; here, x;, x3 and t dependencies of f are disregarded for notational

convenience (see Fig. 4.3).
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Figure 4.3 Description of smoothing operation

Equations of discrete and continuum models are presented in the following

subsections.

4.1 Discrete Model (DM)

This model can be established by writing the equations of the approximate
theory, Eq.(2.20), for each lamina of the composite and the continuity conditions
at interfaces. The equations of DM for the two phase periodic composite take the

form

o n o n o n o n o T o T
Mi, Cij, E,Ti, Zi, P") |x:)?k =0 (=12 ; n=0...m) (4.1)
which are to be written for the pairs k = 1, 2, ... , together with the continuity
conditions (CC) [see Fig. 4.3]:
for the interface following the layer 1:

1 2

1 2
£ (x ) =f (x" (4.2)
for the interface following the layer 2:

f*(ik):%‘(§k+l) 4.3)
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with £ =(u;, Ty, q,, 0) andk =1, 2,... In Eq.(4.1), the superscript o denotes the

phase, m stands for the order of the approximate theory and f* give the values of f
at upper and lower faces of the layer. The continuity conditions in Eqgs.(4.2) and
(4.3) may be expressed in terms of FV's appearing in the approximate theory by

using the relations, in view of Eqgs.(2.13),

o o
£ = L f = (4.4)

o o -
, Q, ‘P+) being FV's. The CC’s in Egs.(4.2) and (4.3) can be
s
written explicitly in terms of the FV’s F ' as

for the interface following the layer 1:

2, 1 1 2
Si-S; =S+,
2 1 1 2
R/ —R; =R, +R;
2 1 1 2
Q,-Q, =Q, +Q,

1 1 1

[

2 —

1 1 2
TR R [ 8

for the interface following the layer 2:

1 2, 1_ 2_
S-S, =S, +S;
1, 2 1 2
R, —R; =R, +R;
1 2 1 2
Q -Q =Q,+Q
1 2 1 2

PN TR AR R

The equations of DM in Eqgs.(4.1-4.3) are to be supplied by boundary

conditions (bc). For a boundary portion parallel to layering , bc's can be expressed
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in terms of FV's. For example bc's at the top boundary of the composite in Fig. 4.1
involve specification of one member or combination from the pairs

2 2 2 2
(ui, 1) ; (87, q)) (4.5)

which, in view of Egs.(4.4), can be expressed in terms of FV's. On the other hand,
bc's on side boundary dictates that one member or combination is prescribed from
the pairs

(ui, n;7%) ;5 (6°, niqy) (s=0...m) (4.6)

where n is outer unit normal of side boundary (see Fig. 4.1).

4.2 Continuum Model (CM)

The use of this model may be suggested when the number of laminae in the

composite is very large. For establishing CM, a smoothing operation (SO) is

o o
employed, where a field variable f(x « ) of DM defined discretely at midplanes of

o
laminae is replaced by a continuous function of x, f(x), which interpolates

o o
discrete f values at midplanes of laminae, that is, at x = xk (see Fig.4.3). Thus,

o
the smoothed variable f(x) is now defined for all x; but, it has physical meaning

o
only at midplanes of o phase, that is, at x = x ‘)
Now, in view of SO, the equations of CM are obtained from those of DM. It is

observed that SO leaves Eq.(4.1) unchanged since the field variables appearing in

o
it are defined at the midplane x = x " of the same lamina belonging to o phase of

k™ pair. For the sake of completeness, this equation will be restated here:

(MP, CiLE", T/, Z7, PT)=0 (@=12:n=0..m) (47

which, in view of SO, holds for any x.
Now concentrate on deriving smoothed forms of CC's in Egs.(4.2) and (4.3),
where Eq.(4.2) representing the CC for the interface following layer 1 will be
considered first. It is to be noted that the left and right hand sides of this equation
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are defined at the midplanes of two different (successive) laminae, namely, they

1 2
are defined at x =x " and x | representing the midplanes of layers 1 and 2 of k™

pair (see Fig. 4.2). Therefore, in view of the idealization implied by SO, to obtain

the smoothed form of CC in Eq.(4.2), it is necessary to write it at a common point

M (x =x"), which will be taken in the present study as a point lying in the

1 2 1 2
. k k . k k
interval (X, X" ); thus, one can write for X and x

1 2
szxk—plA; xk=Xk+p2A 4.8)

where
A=h,+h, 4.9)
is half of the thickness of unit cell and p, are nondimensional interpolation factors
satisfying
p,+p,=1 with O<p, <1 (4.10)
When Egs.(4.8) are inserted into (4.2), both sides are expanded about x = x by

Taylor's formula and x¥ s replaced by x, in view of SO, one obtains the smoothed

form of CC in Eq.(4.2) as

1 2
E f =E;f 4.11)

n_n

which holds for any "x", where E, and E; are operators defined by

_ Xz
E, =exp(-Xq) =1-%q +7°,‘—-~-
' (4.12)
XZ
o =exptLa) =1%o + 55+ (@=12)
with
0
Yo =PuA=— (4.13)
ox

Smoothed form of the second CC in Eq.(4.3) for the interface following layer

2 may be obtained from Eq.(4.11) by interchanging the indices "1" and "2"; it is

2 1.
E,f =E'f (4.14)
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where the operators E, and E;r are already defined in Eqgs.(4.12) and (4.13). It

o o
may be noted that f* in Eqgs.(4.11) and (4.14) are related to the FV's F

F

appearing in the approximate theory by Eqs.(4.4). Through the insertion of these

equations into Eqgs.(4.11) and (4.14), one can write the smoothed form of CC’s in

o _—
terms of the FV’s F' as, after some manipulations,

2+ 1+ 2 1

where s, and c are the operators defined by

(4.15)

(4.16)

It may be noted that the CC’s given in Eqgs.(4.11,4.14) or in Egs.(4.15) have an

invariant form with regard to the layer indices 1 and 2, i.e., they remain unchanged

when the indices 1 and 2 are interchanged.

Regarding the constants p, and p, appearing in CM equations, the numerical

results presented in Ref.[43] indicated that the best match between exact and

approximate dispersion curves for waves propagating in isotropic elastic layered
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composites is obtained when p, =p, =0.5. Hence, in this study, p, =p, =0.5 is

chosen in numerical analyses, which corresponds to taking point M in Fig. 4.2 at

1, 2
. ) k k
the midpoint of the interval [x , x ].

The order of CC's is determined by the number of terms kept in the expansions
in Eqs.(4.12); it will be called p™ order in the study when (p+1) terms are retained

o _—
in the expansions. Thus, for zeroth order CC one has E' = 1, which will be exact

o _
only when the interpolating values of f  have uniform distributions in X, (x)
direction; which is the case, for example, for harmonic plane waves propagating
parallel to layering in an infinite layered composite; otherwise, it would be

approximate.
Boundary Conditions

Governing equations of CM are composed of Eqs.(4.7), (4.11) and (4.14). For
a finite layered composite, these equations should be considered together with bc's
to be prescribed on the boundary of the composite.

Side bc's can be obtained by writing Eqs.(4.6) for both phases of the
composite; this yields, in view of idealization implied by CM: one member or

combination from the pairs

o o
S S
(uj, n;Tj

) ;5 (8%, niqi) (s=0..m;a=1,2) (4.17)
is specified at each point of side boundary.

On the other hand, the bc’s of CM for a portion of boundary parallel to
layering may be expressed in terms of FV’s. For example, the top bc’s for the
composite body in Fig. 4.1 would be: one member or combination from the pairs

o

+ % o, o
(ui . TZi) ; (9 . q2 ) (OC=1,2) (418)
be specified at the points of the midplane of the top layer. It is to be noted that the

bc’s in Eq.(4.18) may be expressed in terms of FV’s of the approximate theory by
using Eqgs.(4.4).
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Floquet Periodicity Condition
The proposed CM contains inherently the Floquet periodicity condition (FPC)
induced by the periodic structure of the layered composite. This can be verified by
writing CC's of CM in Eqs.(4.11) and (4.14) at point x = x* in Fig. 4.2:
1 2
E f (x)=EJf (x")
(4.19)
2 1_
E,f (x)=E f (x")
or, explicitly as
1, 2_
e Py g (Xk) — eP22% ¢ (Xk)
(4.20)
&P £ (xk) = P £ ()
where it is noted that p, +p, =1.

Through the use of Taylor's expansion formula, one obtains, for the

configuration in Fig. 4.2 (that is, for the case in which layer 2 follows layer 1),
- ;1
FFxf) =P £ (x")
(4.21)

2 2+ 2
Frxy=e ™2 £ (x")

where, as indicated before, ;k denotes the midplane of layer a. When Eqs.(4.21)
are inserted into (4.20), one gets
=t (x5
(4.22)
£y =e® b (x5
which represent, respectively, for the configuration in Fig. 4.2, the continuity
condition between layers 1 and 2, and the FPC with the period d = 2A. The usual

form of FPC may be obtained from the second of Egs.(4.22) in wave number

Space, as

24 2 S . ‘
f(x )=e™f (x ) with d=2A (4.23)
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mnsn

where "i" is imaginary number and K is Floquet wave number representing the
wave number associated with harmonic function interpolating FV's at the points
(along x axis) with increment "d". This point will be clarified further in numerical
examples to be presented in Chapter 6.

Up to this point, the discussions are given for the case in which layer 2 follows
layer 1. For the opposite situation, that is, when layer 1 follows layer 2, it is
obvious that the physical interpretations of the equations in Eqs.(4.20) are to be
reversed, that is, in this case the second of Egs.(4.20) represents the continuity

condition between layers 2 and 1, while the first gives FPC.
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CHAPTER 5

CONTINUUM MODEL FOR A PERIODIC LAYERED COMPOSITE
WITH A UNIT CELL CONTAINING ARBITRARY NUMBER OF
LAMINAE

CM is developed for a two-phase layered composite in Chapter 4 and here this
model is extended to a g-phase composite. For the discussions, we refer to Fig. 5.1
showing the unit cell of a periodic layered composite with arbitrary number ("q")
of phases. The equations of CM for the layered composite under consideration are
composed of two groups of equations. The first group comes from the equations of
the approximate plate theory written for each lamina of the composite. Smoothed
(continuum) form of these equations are given by Eq.(4.7), where the number of

n"n_n

phases should be taken now as "q", that is, by

Yn Yl’l Yn Yn 'Yi 'Y¢
(Mi, Gy, E,Ti,Zi,P )=0 (y=1...q ; n=0...m) 5.1

The second comes from continuity conditions (CC). To obtain the smoothed
form of CC's, they are written in discrete form first, which are (see Fig. 5.1):

L+ Y _v%rl_ i _ |
x)=1f (x) , y=l.(@-D (5.2)

q+ q 11
£ (Xk)Zf (Xk+1)
¥ . F ¥ aF 7 Tk
where f stands for a typical member of (u; ,7,;,0 »q5 ) for y-phase and x

denotes x, coordinate of midplane of layer Y of the k™ unit cell. It is to be noted
that the two sides of Eqs.(5.2) are defined at different points; to use them in CM,
their left and right sides should be expressed at common points. These common

points are marked in Fig. 5.1 as M, together with their x, coordinates as

Y
x; (y=1...q). It may be noted that M, (y=1...(q—1)) represent, respectively,
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Figure 5.1 Typical unit cell of a periodic layered composite with arbitrary number
of phases

the common points for CC's with y=1...(q—1) in the first of Eqs.(5.2) and M is

that for the CC in the second. From the figure, it is clear that for the x, coordinates

of midplanes of laminae, one can write

Yo Y, Y LT S
X =Xy—pd, ; X =xy+p,A, fory=Il..(q-D
(5.3)
q 9, g 1 a, 49
szxll\(,[—plAq ; Xkﬂlel\(,ﬁpzAq
where
A,=h,+h,, for y=1..(q-D;A;=h,+h (5.4)

and p! (x=12;y=1...q) are interpolation factors satisfying
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Yoy
p,tp, =1, (y=1..9 (5.5)
(for geometric descriptions of A, and pl, see Fig. 5.1).

When Egs.(5.3) are inserted in (5.2) and the variables appearing in it are

Y
expanded by Taylor's formula about xzxf,[ (y=1,...,q), one obtains the

smoothed form of CC's as

Ei =E> f ,Y=1...(q=-1

(5.6)
q- qp g4 1_
Eif =E, f

YF
where Eq are operators defined by

YF

Y
o =exp(Fp,A9,) (=12 ;y=l.q@ (5.7

Eqs.(5.6) constitute the CC's to be used in CM and hold, in view of the idealization
by SO, for any "x".

It is very easy to show that the first of Eqgs.(5.6) represent, for the
configuration of unit cell in Fig. 5.1, the CC's at interfaces following the layers "1"
up to (g-1), while the second of Eqs.(5.6) yields the Floquet periodicity condition

(FPC):

£ 1 =e® (x5 (5.8)

or, in wave number space,

L (5.9)
where "d" is the period of periodic layered composite (see Fig. 5.1).

It is obvious that if the configuration of unit cell is taken as [2,3,...,q,1], then,
Eq.(5.6); with vy = 2...(g-1) and Eq.(5.6), would represent the CC's at interfaces
while Eq.(5.6); with y= 1 would give FPC.

In view of discussions given above, it is clear that the governing equations of a
periodic g-phase layered composite are given by Eqgs.(5.1) and (5.6). These
equations should be considered together with the conditions to be prescribed on

the boundary of the composite and at initial time.
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CHAPTER 6

ASSESSMENT OF CONTINUUM MODEL (CM)

In Chapter 4, two different models were proposed for periodic layered
composites: discrete model (DM) and continuum model (CM). The use of DM in
the analysis requires writing the governing equations in each layer and combining
them using CC’s. But, this kind of procedure involves lengthy computations and
appears to be of no practical use, especially when the numbers of the layers
making up the composite is large. Therefore, for the assessment only the CM will
be considered.

For the assessment of CM, the use of spectra of harmonic plane waves
propagating in an infinite layered composite is chosen. This selection is done since
a dynamic model is described and characterized completely by its spectrum; thus,
the match of spectrum with the exact may be used as a criterion for the validity of
the model. This criterion is checked at the end of this chapter by considering
transient dynamic behavior of a composite slab induced by waves propagating

perpendicular to layering.

6.1 Spectral Assessment

The exact spectra for harmonic waves propagating in periodic layered
composites are studied extensively in literature, which is reviewed in Chapter 1.
The establishment of these spectra involve writing elasticity equations for each
lamina, considering continuity conditions at interfaces and imposing Floquet
periodicity conditions.

On the other hand, the establishment of the approximate spectra predicted by
CM is very simple and straightforward. Since CM is a homogeneous model and

contains inherently the Floquet periodicity conditions, the determination of
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approximate dispersion relation (for harmonic waves with propagation direction
parallel to x;x,-plane ) involves the insertion of

Aol (kX k0, —00) 6.1)
formwise for the variables of CM and imposing that the equations possess a
nontrivial solution. In Eq.(6.1), A: amplitude, ®: angular frequency, k: wave
number in x;-direction, K: Floquet wave number (FWN) in X, direction. For a real
FWN x, one can write

K =k tan(¢) (6.2)

where ¢ is inclination angle of wave from x;-axis and each ¢ gives a different
value of FWN.

In what follows, the dispersion relations of both approximate and exact theory
are constructed for waves propagating perpendicular, parallel and obliquely to
layering and the dispersion curves obtained from these relations are compared. The
comparison involves also the displacement mode shapes at some selected points on
dispersion curves. In the analyses, it is assumed that the layered composite is made

of generally orthotropic laminae and thermal effects are neglected.

6.1.1 Approximate dispersion relations
They will be presented for zeroth, first and second order theories.

Shear waves propagating perpendicular to layering

For such waves, propagation is in the direction normal to layering and wave
motion is parallel to layering. Due to their highly dispersive characteristics, the
assessment of CM for these waves is crucial. To derive the dispersion relations, a
trial solution of the form (which is obtained by putting k=0 in Eq.(6.1))

A2 (6.3)
is assumed for the unknown field variables, where the FWN «, if real, corresponds
to the wave number of harmonic wave interpolating the actual distribution of a
variable at discrete points along x»(x) axis with the increment “d”, “d” being the
period of the layered composite in x»(x) direction. This point will be clearer after

presenting numerical results in a later section of this chapter.
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The nonzero field variables of CM for the waves under consideration would be

Op %y

u,,u3 (n=0..m, m=0,1,2)
and

— o — o — o —

S;,S: ; R{,R3

which are functions of x; and time “t” only.

In view of these conditions, the governing equations of CM would reduce to

equations of motion:

On Op On

Ri—Ta=p, i1 (n=0..m, m=0,1,2)

Opn Op 3

R3— 7T =p, U3

where
o_
Qn
Fi L forevenn
o
O+
% F ., %n  On Gn .
Fi = foroddn with F, =(S;,Ri) (1=1..3)
2h,
and
(S 1 m ocJ o o o
f :h—ZCm f (f =ui, T2i)
a =0
constitutive equations:
0(0 o o — o o —
Tol = Ces S1 + Cs6 S
21 oh, 66 1 oh, 46 93
IS SN R Y S
Tol = + — -
21 oh, 66 1 oh, 46 93 oh, 66 U1 o, 46 U3
w CaoSr + =1 Cya S5
Ty = +
23 oh, 46 D1 oh, 4493
I RF O S S N R B RO
Toz = +— — -
23 oh, 46 D1 oh, 4953 oh, 46 U1 oh, 44 U3
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constitutive equations for FV's:

0™ order

1* order

2™ order

o 4

R

o 4

R3

o

R

o _
R3

o4 2.« o o o
Ri =h—[ Ces (Y S1 )+Cas (Y"S3) ]

o4 2. oo o
R3 =h—[ Cas (Y S1 )+Cas (Y°S3) ]

o

o_
R

2 o o o o [04 [04
h—[ Cos (Yo u+7" St ) +Cas (Yo us+7S3) |

o

o _ 2 o [04 [04 [04 o o
R; :h_[ Cas (Yo ul+7" St ) +Cas (Yo ul+7*S3) |

o

“r 9o O R TP L al v S5
Ri :h_[ Cos (Y u+Y St )+Cas (Y, u3+7S3) |
o

o+

9 @ @ o« o o _
R3 =h—[ Cac (Y ui+7y S1 )+ Casa (Y, u3+7Y S3) ]
o

o _ o o o o o o
Ri =7 Cos (v ui+¥"S1)+Cas (v u3+7'S3) |

o

o _ o o o o o o
Ry =2 Cas (vp u] +77 S )+ Cas (Y ul+77S5) |

o

2 a o o 03 a o
=h—[ Cos (Y, u1+7Y St )+ Cas (Y, us+y S3) |

o

2 o (03 o o 0] o
=h—[ Cas (Y, w1 +7Y St )+ Caa (Y, ul 47 S3) |

o

h

o

2

o
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2 o [04 o o o (04 o o
== [ Cos (Yo ul+y,u;+y" S )+ Cas (Yg ul+7, us+y"S3) |

(6.6)

(6.7)

o (X,O (12 (X+ o (X,O (12 (X,+
:h—[ C46(Y0u1+Y2ul+Y+Sl )+C44(Y0u3+Y2u3+Y+S3) ] (6.8)



continuity conditions: (withp; =p>,=0.5)

1* order

2™ order

1 2 1-

2
%ast%aXST—SI—SI =0

2 1 P

A A +
=0 .S3+=0,S3-S3-S3 =0
5 9x93 T 5953753753

2 1 2_ 1_
sf—sf—%axsl+%axsl =0
2 1 2_ 1_
s§—s§—%8X53+%axs3 =0

1 2 1_

2
%ath%afo—Rl—RI =0

2 1 _ 1_
%aXR§+%aXR§—R3—R3 =0

1 _

2 1 2 _
RT—RT—%aXRH%aXRl =0

2 1 2 _ 1 _
R;—R;—%BXR3+%8XR3 =0

1 2 1_

2 2 2_ 2 1_
%ax sf+%ax Si -8 —sl—%axx Si —%axx Si =0

A~ 2+ A 1y 20 1. 42 2. A2 1
= +_ j— — [ _— =
50, 8,450, 85-53-83-2-0, 83-%-0,, 83 =0

2, 1y A2 2, A2 e AL 2- AL -
Si —Sl+?8xxsl—?8xx 51—38x51+38x81 =0
2, 14 A2 2, A2 P -
-3 +— —_— - +—= =
S3-83+50,,83-5-0,5-50,8:+50,85 =0
1 2 _ 1_ AZ

2 2 _ 2 1_
%aXRH%aXRT—RI—Rl—?axle—%axle -0

1y

2 _ 1_ 2 2 _ 2 1_
%axR§+%axR3—R3—R3—%8XXR3—%8XXR3 =0
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R} R aRAzafz+ d.Ri+29 Ry =0
+— -= += =
P P T T O BT O

2 1 2 2
RQ—R§+%8XXR§——8 Ri-2 20 R3+A8 R3=0  (6.10)

Substituting trial solutions of the form in Eq.(6.3) into the equations of motion,
constitutive equations for FV's and continuity conditions, a system of
homogeneous algebraic equations (SHAE) with the coefficients dependent on ®
and x is obtained. Equating the determinant of the coefficient matrix of SHAE to
zero, the characteristic equation (dispersion relation), relating ® and x, is found.
Each pair (®,x) satisfying the dispersion relation gives a plane wave solution and
corresponds to a propagation mode. The dispersion equation for zeroth order
theory and first order CC is given in Appendix C. To facilitate the discussions
involving the displacement mode shapes, the SHAE will be written symbolically
as

Ma=0
where the column vector a contains field variables of CM in frequency-wave

number space; thus, the frequency equation would be

det(M) =0

Axial waves propagating parallel to layering

For this type of waves, which are on the average longitudinal, the displace-

o o o
ments u; and u3 are symmetric and uz are antisymmetric with respect to the

midplanes of the layers. The nonzero components of generalized displacements

and FV's are

Gp %y

u, , uz forevenn

o

us for odd n (n=0...m, m=0,1,2)
and

o_ o, o_ o

o o _
S;,S2,S3 ; Ry ,Rz2,Rs3
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For these unknown variables assume a trial solution of the form (which is

obtained by putting ¥ =0 in Eq.(6.1))

Ag!imeV (6.11)
Thus, the variables are functions of x; and time “t” only, hence, d5(-)=0. The
governing equations of CM reduce to, for this case,

equations of motion:

(xn (xn gn f).cn
d, T+ Ry =Ty =py U

(xn OCIl gn f)fn
0, Tia+ Ry— Ty =p,, iy

o o, o o

0, T3+ Ry—Ty; =p, i35 (n=0..m m=12) (6.12)

constitutive equations:

o, o ag o ag o 1 o-
’511=CualU1+C1581LI3+C12(I32)

o

-3 9%
Ill—Cua u1+C158 u3+C12(—Sz——u2)
(x h(x
oy 1 (XO o 1 (x+ 1 OL
’clz—nga u +C66(—Sl——u1)+C46(—S3——U3)
(X h(x (x h(x
o o o, o o, o 1 o_
Ty, =Ci120,u;+Cas 9, uy+Co2(—S,)
2h,,
% o Gy @ 0y @ 1 %
T;3 =Ci50,u; +Cs5 0, u3+Cas(—S,)
2h,,
Oy 1 ¢ 3 %4
113—C158 u1+Cssa U.3+C25( _S __U.Z)
2hg, o
o Oy 1 %y 1 %+ 1 %
Ty = C463 u2+C46(—Sl——u )+C44(—S3——u3) (6.13)
(X h(x h(x o
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constitutive equations for FV's:
0" order
o _ o o _ 2 o o o o o o
R, =C668182+h—[ Ces (Yo u+v" Si )+ Cas (Yo ud+y"S3) |
o
o o o o o 2 o o_
R> =C129,S, +Cas9, s§+h—czz (v S2)
o
o _ o o_ 2 o o o o o o
R; :c46als2+h—[ Cas (Yo u'+7"SI ) +Caa (You+v"S3) | (6.14)
o
1* order
o _ o o _ 2 o o o o o o
R; :C668152+h—[ Ces (Yo ul+7" St ) +Cas (Yo us+7*S3) |
o
o o o o o 2 o o o_
R> =C129, S, +Cas d, s§+h—c22 (Y, ub+7°S2)
o
o o

_ o_ 2 o O(O O(+ o O(O O(+
R3 =Cus 8182+h—[ Cas (You;+Y" S1 )+ Cas (Yous+7vy" S3) | (6.15)

o

2™ order

o _ o o _ 2 o o o o o o o o
R, :c66als2+h—[ Cos (Yo U+ ¥, ur+7" S )+Cas (Yo ul+ 1, us+7"S3) |
o
o o o o o 2 o o o_
R =C129,S; +Cas 9, s§+h—czz (Y, ub+7°S2)
o
o _ o o_ 2 o o o o o o o o
R; =C468182+h—[ Cas (Yo u + 7, ur+ 7" S1 )+ Caa (Yo ul+ 7, u3+7*S3) |

o

(6.16)

continuity conditions:
Continuity conditions assume a simpler form for the waves under considera-
tion. For such waves the field variables become independent of x, and conse-

quently the terms which involve derivatives of X, vanish. Thus, the operators in

Ei in Eq.(4.12) reduce to

“=Et =1

o o
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With this form of the operators, the continuity conditions, which are exact, become

2, 1,
Sl—Sl :0
2_ 1_
Sz+82:0
2, 1,
S3—S3 =0
2 _ 1 _
Ri+R; =0
2, 14
R2—-R2 =0
2 _ 1 _
R;+Rj3 =0 (6.17)

Following the procedure outlined in the previous section, the dispersion
equation for the axial waves propagating parallel to layering can be determined
through the substitution of Eq.(6.11) into (6.12-17). This equation is given in
Appendix D for 1% order theory.

Waves propagating obliquely to layering

For this case, the trial solutions of the field variables of CM would have the
form of Eq.(6.1), that is, of the form

Aei(k X+ KX,— 0t)

Here, only the second order theory and second order CC’s are considered. All of

the field variables

(Xn o (Xn
u,,uz,us (n=0...m m=2)

and

o

r %3
Si , Ri
would be nonzero and functions of x;, X, and time “t” for oblique case; hence,
0;()=0.
The governing equations of the CM for such waves are as follows:

equations of motion:

Op Opn Op Op

d; T+Ri1—Ta =p, 1is
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On On On
9, ’512+R2— Ty =Pg Us

op Op Onp 3

9, T3+ R3— Ty =p, lis (n=0..m, m=2) (6.18)

constitutive equations:

’C11 —C11a U1 +C158 U3+C12(SQ—UQ)

239 an On o oan On

T12 —Cssa u2+C66(Sl u; )+Cus6(S3—u3)

On On

’C13 —Clsa U2+C558 U3+C25(Sz—U2)

oy On Gn O  Gn oOn

T22 —C128 uj +C25 a uz+Cxn(S2—1u2)

Otn on

on on o on
T3 = C468 U2+C46(81 U )+ Cus(Sz—u3) (6.19)

constitutive equations for FV's:

2™ order

o4+ o o+ 2 o (xl o _ a ocl o
R =C668182+h—[ Ce6 (Y, u;+7Y St )+Cas (y,u3+y S3) |

o
o _ o o — 2 o o o o o o o o
R1 =Ces 9, S2+h_[C66 (Yo u?ﬂ(2 u12+y+ Sl+)+C46 (Yo u2+y2 u§+y+ S§ )]
o

oy o a, o a, D o o e
R2=C120,S,+C259,S; +h—C22 (Y, uz+vY S2)

o

o — o o — o o_ 2 o OCO (X2 o+

o

o+ o o 2 o o, o o @, o
R3 =C468152+h—[ Cas (Y, uj+7Y~ St )+Cas (7, us+77S3) |
o

o _ o o — 2 o (04 o [04 o (04 o (04
R3 =C4éalsz+h—[c46 (Yo ul+7, ur+7" S ) +Cas (Yo ul+ 7, us+7* S3)]

o

(6.20)

continuity conditions:

They are the same as those in Egs.(6.10).
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The substitution of Eq.(6.1) into Egs.(6.18-20) and (6.10) yields the frequency

equation for oblique case, which is given in Appendix E.

6.1.2 Exact dispersion relations

Exact solutions for the propagation of harmonic elastic waves in layered
anisotropic media are already established in the literature. Exact treatments involve
writing the exact field equations in each layer of the composite and satisfying the
continuity conditions at the interfaces. To facilitate this analysis, the transfer
matrix method, which is first introduced by Thomson [54], is employed. In this
method, a system of equations for the layered media is constructed from the field
equations of each layer by satisfying appropriate interface conditions. For the
composite medium with periodic structure, as in our case, displacements and
stresses under harmonic waves can be represented by periodic functions . This
representation is implemented through the use of Floquet (or Bloch) theory (see
[58,59,68]).

Here, a periodic layered composite with two alternating generally orthotropic
laminae is considered. It is under the influence of plane harmonic waves with

overall propagating direction in x;X,-plane at an angle ¢ with x;-axis (see Fig. 6.1).

K=k tan¢ — Floquet
wave number

|
X2 (X) g
(

>

X1 k — wave number
in x;-direction
X3

Figure 6.1 Wave propagation direction
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Propagation of these waves involves reflections and refractions at the

interfaces. For such waves, the solution for the displacements would be of the form

u, = ﬁi ei(kxl+0cx2—mt) (621)

where, 0, are amplitudes, ® is frequency and k and o are wave numbers in x; and

X, directions, respectively. With this form of displacements, the wave propagation

takes place in x;x»-plane; but, we note that, u; # 0 due to anisotropy, and we also
note that displacements are independent of x3, that is,d;(-) =0.

Now, we consider a typical layer of the composite, which is taken as generally

orthotropic (Fig. 6.2a). The field equations for this single layer are

stress equations of motion:
91 Ty +05 Ty =Pl
0;T;=pli; = 0;T +0, Ty, =pi, (6.22)

0, T3 +0, Ty3 = pii;

constitutive equations:

Ty Ci G C3 0 G5 0 | g
T Cip Cpp Gy 0 Cys 0 | &y
Tas | _ Ci3 Cy3 G35 0 G35 0 | €5 (6.23)
T |0 0 0 Cu 0 Cylo2ey

Ti3 Cis Cps G35 0 Css 0 )28,
T [0 0 0 Cku 0 Cgl2ep ]

X2

X2

X1

X3 X3

(a) (b)
Figure 6.2 (a) Typical single layer (b) unit cell used in exact analysis
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strain-displacement relations:

€1 =01U; ; € =0,U, ; €;=0

| | 1 (6.24)
82325(82113) ; 31325(81113) ; 81225(81‘12"'82“1)

When the stresses in Eq.(6.23) are substituted into Eqs.(6.22), the displacement
equations of motion may be obtained as
C1911u; +Cp015u, +C50,1us +Cyedynus + Cyg (91U, +dyu; ) = piiy
Cue01pu3 +Ces (9 Uy +015u,) +C 05U, +Cpdpu, +Chs0pus =pii,  (6.25)
Cy50,1u; +Cy50,u, +Cs50,u3 +Cuydpouy +Cuq(d)ou, +0dpu,) = piiy

Substitution of the trial solution in Eq.(6.21) into Eq.(6.25) gives

pw’> —C, k* —=Ca>  —(C,, +Cy)ak -Ck*-C,a? [0,
—(Cpp +Ce)ak P’ —Cek® = Cpa®  —(Cps +Cu)0k |G, =0 (6:20)
-C;5k? - C 0’ —(Cys +Cy)ok  po’ —Cssk* —Cy 0 | G,
T —~— —
B u
The characteristic equation would be det(B) =0, which gives
6 4 2 _
Colt” +c,0” +c,0” +¢53 =0 (6.27)

Here, the coefficients c; (i = 0...3) are function of ® and k, which are given by

Co = Cypy Cig —Cpy CyyCog

¢; =k’CHCy —po’Cis +k>C35Cq6 +p0°CyyCoq — 2k*C 5 (Cy5C +Clg
—C14C)+Cy (Chy (PO’ —Kk>Cy) +2k°C 5C 45 + Co (p00* —k*Cs5)

¢, = —k?pe’Cl; +k*C; C35 —p’0'Cyy + K2p’Cy Cyy — 2k*pe’Cy5C g
—2k*p®>C,sC 4 +2k*C,,C,sC s —k*p0°C3, +k*C,,Ci¢ +CP, (—k*pw?
+k*'Cy)+Cp(—p*0* +k*CL +k*pw’Cys + C, (kK 2po* —k*Css))
—p’0'Cgs =2k *C;5C5Co + kP’ CyyCos —k'CC1yCog

+ k2P0’ CssCo —2C,, (k*C 5 (Cps +Cue) +k*Cy (p”* —k*C5))
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¢y = (—pw® +k?C ) (K*'CL +po’ (—pw® +k*Cy) +C, (k2 po? —k*Css))  (6.28)
The roots of Eq.(6.27) would be of the form

o = A s =Ry s o =Ry

o == Ay 5 oy ==y ag=—yhy

where A =a’.
Now, the normalized eigensolution of Eq.(6.26) can be obtained in the form

il =|r (j=1...6) (6.29)

then, rj and p; are to be found from

. . o9-1 .
T. BJ BJ BJ

[ J]__[ %2 23] { 21} (6'30)
P; BJ23 B%3 B%l

. From Eq.(6.30), one may deduce

J

where B =B

mn

o=a

L=-1  P=bP
Iy,=-1; 5 P4q=DP;
I =—15 5 P =0DPs

The solution for u can be obtained by combining the solutions corresponding to

each root oy; as

u, 1
6 i(kx,+o wt)
— LRX + 0 X, —
u, _ZAJ I; e
=l
us; Pj

- (Z Ajdle' Jel(kxl oy (6.31)

=

where A i j=1...6) are some constants.
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To simplify the analysis, the common factor e'®*™®" is dropped in Eq.(6.31)

and a new displacement variable u is introduced by

6 .
~ A 10X
u=ZAjuJe %2
=1

(6.32)

The solutions for the stresses 7T,; can be obtained by inserting Eq.(6.31) into

(6.23), which gives

6 ) .

=1

123 C44ajpj+C46er+C46aJ

Here, again the common factor e

%/

6

~ . joiax

Tfi|=D Ajsle’ ™™
=

%,/

where

i(kx, —ot)

s) =| Ck+Cpor; +Cyskp,

is suppressed, which results in

When Eqgs.(6.32) and (6.34) are combined, one obtains, in expanded form,

1Mt 1 1 1 1 1][ewe

0
0
Tufi| |s1 siosiospos Sl. 0
0
0

€

0

105X,

0
0
0
0

0
0
el0%
0
0
0

€

0
0
0
iayx,
0
0

0
0
0

0
ei UsXo

0

0
0
0
0

0

ei X2
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(6.35)

> >

wn

> >

(6.36)



or in matrix form

f(x,)=UE(x,)A

Tansfer matrix for a single layer

Eq.(6.36) can be used to relate, through a transfer matrix, the displacements

and stresses at the top face of the layer, at x,=d, to those at its lower face, at x,=0

(see Fig. 6.2a). To obtain this transfer matrix we proceed by writing Eq.(6.36) at

x,=0 and x,=d:

at x,=0:
f(0)=UE0)A=UA
which yields
A=U"£(0)
at x,=d:

f(d)=UE®@W A
Insertion of Eq.(6.38) into (6.39) leads to
f(d)=(UEW) U™ £(0)
%(_J

T(d)
where T(d) defined by

T(d)=U E) U™

is the transfer matrix of the layer relating f(d) to f(O) .

Transfer matrix for unit cell

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

By applying Eq.(6.40) to each layer in the unit cell (see Fig. 6.2b) and

invoking the continuity of the displacements u; and stress components T,; at layer

interfaces, we can relate f at the top face of unit cell to that at its lower face. For

that, one may proceed as follows:

1 1 1

Layer 1 — f(d,)=T(,) £(0)

2 2 2
Layer2 — f(d) =T(d,) f(d,)
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and use the interface condition

2 1
f(d,)="fd,) (6.44)

which leads to

1

2 2 1 1
f(d)=T(d,) T(d,) £(0)

or

2 1
fd)=T" ) (6.45)

where

T = ’i“(dz) i‘(dl) (6.46)

is the 6x6 transfer matrix for the unit cell.
For the waves propagating obliquely to the layering, the Floquet wave
number (FWN) can be related to the wave number in x;-direction by, if FWN is

real,

k=k-tan¢ (see Fig. 6.1) (6.47)

Floquet periodicity condition can be written for the periodic layered composite

under consideration as

2 1
f(d)=f0)e™ (6.48)

Combining Eqgs.(6.45), (6.47) and (6.48), one obtains
. 1
(T" -1k F0)=0 (6.49)
whose characteristic equation would be
det(T" —Te'*®d)=0 (6.50)

Eq.(6.50) is the desired exact dispersion equation relating ®, k and the FWN

K=k -tan¢.

Special case 1: propagation perpendicular to layering

In this case ¢ =§ and k = 0.Therefore k¥ should be taken as it is and the

dispersion relation between ® and K is given by
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det(T" —Ie*)=0 (6.51)

Special case 2: propagation parallel to layering

For such waves, ¢ =0, thus ¥ = 0. The dispersion relation for this case
becomes

det(T" -1)=0 (6.52)

6.1.3 Dispersion curves

In obtaining dispersion curves, the two alternating laminae are assumed to be
fiber-reinforced layered composites with the ply angles 6 =+30°, but with the

same thicknesses, mass densities and material properties (in material coordinates):

E;=173.058, E>=33.095, E3=5.171
G12=9.377, G13 =8.274, Gyp3 = 3.241 (6.53)

V2 =0.036, vi3 =0.25, vo3 =0.171 (moduli are in GPa)

which represent graphite fabric-carbon matrix composite [15] (for the definition of
material coordinates and ply angle, see Fig. 2.1). E;, Gj and v; in Eqs.(6.53)
denote, respectively, Young's and shear moduli, and Poisson's ratios of the

orthotropic lamina under consideration. These material properties are related to the
elastic coefficients éij by Eq.(3.18). The transformation relations for the elastic

coefficients Cj; in global coordinates are given in Appendix A.

The dispersion curves of CM are compared with the exact in Figs.6.3—6.7 for
harmonic waves propagating in the two-phase layered composite described above.
The nondimensional frequency @, and wave numbers k and X appearing in the

figures are defined by

_ 2h ]
0)=TI(D with ¢, =

C

S

. k=2h,k  (6.54)

and nondimensional geometric properties of the unit cell are
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h,=h, =05 ;A=h, +h, =1
(6.55)

d =d,=1; d=d, +d, =2

The symbol "app(mn)" in the figures stands for the results obtained by CM,
where the first digit "m" denotes the order of the approximate theory while the
second digit "n" is the order of CC.

Fig.6.3 pertains to the results for the shear waves propagating perpendicular to
the layering. The assessment of CM for this case is very crucial and important
since the spectra for these waves have periodic structure along FWN (x) axis, and
possess stopping and passing bands along frequency (®) axis. The figure shows
that these properties of spectra are well predicted by CM and that increase in the
order of the theory and CC improves this prediction in ® and ¥ directions,
respectively. In fact, the prediction approaches the exact as the orders of the theory

and CC go to infinity. It may be observed that the period in FWN direction in the

figure is 7, which corresponds to the nondimensional value of the period (%n) for

the layered composite under consideration. Ez% in the figure (K:% in

dimensional form) represents the cut-off value of FWN in (®-K) space.

For the sake of completeness, the performance of CM for the harmonic waves
propagating parallel and obliquely to layering is assessed in Figs.6.4—6.7. Fig.6.4
contains the spectra for the axial waves with propagation direction parallel to x;-
axis. With axial waves in x;-direction, it is implied that the waves carrying the
displacement disturbances in that direction with the property: the in plane
displacements u; and us being symmetric and transverse displacement u, being
antisymmetric about midplanes of laminae. It is obvious that, in conjunction with
the analysis of these waves by CM, the FWN «x in Eq.(6.1) should be taken as zero
which reduces the order of CC to zero and implies the periodicity of displacement
distributions in x; (x) direction with the period "d". Fig.6.4 shows that the
approximate dispersion curves compare very well with the exact and the

comparison improves as the order of the theory increases.
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A similar comparison may be observed in Figs.6.5-6.7 for oblique waves with
inclined propagation direction of ¢ =15, ¢ =45, ¢ =75" from x, axis. In these
figures, all propagation modes are included. It may be seen that as the inclination

angle increases the shape of the dispersion curves approaches, as anticipated, into

periodic form.
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exact
app22

Al

Figure 6.3 Comparison of spectra for harmonic shear waves propagating in a two-

phase periodic layered composite in the direction perpendicular to layering
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Figure 6.4 Comparison of spectra for axial harmonic waves propagating in a two-
phase periodic layered composite in the direction parallel to layering
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o |
1
i exact
Y 2 app21
________ app22
0 1 2 3

Figure 6.5 Comparison of spectra for inclined harmonic waves propagating in a

two-phase periodic layered composite (inclination angle with x;-axis: ¢ =157)
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Figure 6.6 Comparison of spectra for inclined harmonic waves propagating in a

two-phase periodic layered composite (inclination angle with x;-axis: ¢ =45")
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Figure 6.7 Comparison of spectra for inclined harmonic waves propagating in a

two-phase periodic layered composite (inclination angle with x;-axis: ¢ =75")
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6.1.4 Mode shapes

Displacement mode shapes of approximate and exact theory are compared as a
part of spectral assessment. These comparisons are made at points A, B, C and D
of the shear wave spectrum in Fig. 6.3, and at point A of the axial wave spectrum
in Fig. 6.4. The procedures obtaining the approximate and exact mode shapes are

outlined below briefly.

6.1.4.1 Approximate mode shapes

At a given point P(®,k,Kx) of a dispersion curve of spectrum, the displacement
mode shapes as predicted by CM are determined through the following steps:
1. Through the solution of SHAE
Ma=0
determine the eigensolution a at point P; note that a contains the field
variables of CM as indicated in Appendices C, D and E.
2. Evaluate the displacement mode shapes for the unit cell from

o m+2

ui =y a, 0, (6.56)

k=0

o,
where we note that the coefficients ai( are related to the field variables of
CM by Egs.(2.17).
When « # 0, Eq.(6.56) should be multiplied by the factor e'**, where “x” is the

X, coordinate of the midplane of the layer for which the displacement distribution

is being evaluated. It should be noted that 31 as determined from Eq.(6.56) is
complex; in view of the properties of complex Fourier series the real part of
Eq.(6.56) is to be considered for the evaluation of mode shapes.

As a sample, we give below the displacement expressions in Eq.(6.56) in
extended form for the shear waves propagating perpendicular to layering when the

order of theory is zero:
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1, 1 1+ 1

llll(Xz)ZZ_;q)o"‘S?lq)l"' %_3_; 0,

1113(X2)—111_§¢0 %q)l %_i_f 0,

1211(’(2)—121_3))(1)0 %_q)l %_E_i 0,
1213(x2)=§—§¢0+%¢1+ %—E—g o, . 1212=0 (6.57)

6.1.4.2 Exact mode shapes

To obtain the exact mode shapes at a point P(®,k,K) of the spectrum, the

eigensystem in Eq.(6.49), that is,

1
(T* _I ei(ktan(]))d)f(o) — 0

1 1
is to be solved for f(O) at point P, where f(O) contains the displacement and

stresses at lower end of unit cell (see Fig. 6.2b).

Subsequently, the amplitudes are found from Eq.(6.38) for layer 1 as

1 1 L
A=U f£(0) (6.58)
and the displacement and stress mode shapes for layer 1 from, in view of

Eq.(6.36),

1 11 1
f(x,)=UE(x,) A (6.59)

Distributions for layer 2 may be found in an analogous manner as layer 1, but

2
for that, displacement and stresses f(d,) at the lower end of layer 2 are needed
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(see Fig. 6.2b). This can be obtained from, in view of Eq.(6.42) and the continuity

of f at interface,

2 1 1
fd,)=Td, O (6.60)
Amplitudes of the variables for layer 2 may be evaluated from, in view of

Eq.(6.38),

2 2,2
A=U f(d,)) (6.61)
and the displacement and stress distributions for layer 2 are determined by
2 2 2 2
f(x,)=UE(x,) A (6.62)

The distributions in the next unit cell can be obtained by multiplying the

distributions of the preceding unit cell by e™ because of the Floquet periodicity

condition.

6.1.4.3 Comparison of mode shapes and physical significance of Floquet wave

number

Exact and approximate displacement mode shapes are compared in Figs.(6.8-
6.11).

For the physical significance of FWN (x), we refer to Fig. 6.8 showing the
displacement mode shapes at point C of the spectrum in Fig. 6.3, where we note
that K =1. In the figure, we first observe that the horizontal displacements u; and
u; are coupled at point C, and that CM results (obtained by zeroth order theory,
and first and second order CC's) match very well with the exact. The solid line in
the figure represents the actual displacement distributions produced by multiple
reflections and/or refractions of perpendicular shear wave components at
interfaces. On the other hand, the dotted line is harmonic envelope (interpolating)
curve connecting the displacement values at discrete interface points with the
increment "d". The FWN is the wave number associated with this envelope curve.
The wave length for the envelope curve is

2m
X

A="==27
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which is consistent with the results presented in Fig. 6.8.

Mode shapes at point D of the spectrum in Fig. 6.3 are compared in Fig. 6.9.
We note that points D and C have the same FWN, K =1; but, frequency of D is
higher than that of C. The figure shows that the match of exact and approximate
curves for point D (with higher frequency) is not as good as point C; however, it
should be noted that this result is obtained by the lowest (zeroth) order theory and
improvement should be expected when the order is increased.

Fig. 6.10 contains the displacement mode shapes at second and third cut-off
frequencies, that is, at points A and B of spectrum in Fig. 6.3. Here, approximate
and exact mode shapes compare quite well, in spite of our using lower order theory
and CC. We note that at cut-off points A and B: ¥ =0, which corresponds to
infinite wave length. This, in view of physical interpretation of FWN, implies that
displacement values at discrete points along X, (x) axis with the increment "d"
should have uniform distribution, which is in agreement with the results in Fig.
6.10 (in view of periodicity of the actual displacement distributions with the period
"d").

For axial waves propagating parallel to layering, the displacement mode
shapes at point A of the spectrum in Fig. 6.4 are given in Fig. 6.11. In this case, the
continuity conditions are exact and the curves in the figure converge rapidly to the
exact as the order of theory increases. Here, the FWN is zero, which gives rise to
uniform distribution for envelope curves interpolating the displacement values at

discrete points with period “d”.
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normalized displacement
o

exact envelope curve

nondimensional distance (x/d)

4

normalized displacement
o

exact envelope curve

nondimensional distance (x/d)

4

(a)

(b)

Figure 6.8 Comparison of shear mode shapes at location C of spectrum in Fig.6.3
for (a) 1% order (b) 2" order continuity conditions (X (nondimensional Floquet

wave number) at point C is 1)
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Layer ®‘ Layer ®‘
| [ |

normalized displacement

— exact
——————— app01
15k exact envelope curve _|

0 1 2 3 4

nondimensional distance (x/d)

Figure 6.9 Comparison of shear mode shapes at location D of spectrum
in Fig.6.3 (X (nondimensional Floquet wave number) at point D is 1)
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frequencies (at locations A and B in Fig.6.3, respectively)
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Figure 6.11 Comparison of coupled (out-of-plane)-axial shear mode shapes at
location A of spectrum in Fig.6.4
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6.2 Check of Spectral Criterion for a Transient Case

In view of the spectral criterion stated previously and the results presented in
Section 6.1, it is expected that CM should be capable to predict the dynamic
behavior of a periodic layered composite body when it is subjected to transient
inputs. For checking this, a two-phase layered slab of a finite thickness shown in
Fig. 6.12 is considered. The composite slab is subjected on the left end to a
uniform shear stress “s” with a stepwise time variation of intensity sy as shown in
the figure. This stress input generates transient shear waves propagating
perpendicular to layering. The right face of the slab is free of tractions and on this
face, the wave profiles for the particle velocity are obtained by using CM and
exact theory. In the numerical analysis, the thermal effects are neglected. The
equations of the exact theory are integrated exactly using the method of
characteristics. On the other hand, since the equations of the approximate theory
are not hyperbolic, they are integrated employing a different method, namely, the
method of lines. The material of the layers constructing the slab are taken as

orthotropic.

\_;?_ ______ N y /_________J__J

* Free
: 4
*

s(t) } /) fz(X)
o @ |0 @ @ © S
*

I O O A

Figure 6.12 Two-phase layered slab
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6.2.1 Approximate formulation and solution

The prediction of CM is evaluated by choosing the orders of the theory and
continuity conditions (CC) as low as possible, namely, zeroth order for the theory
and first order for CC's. The governing equations of CM for shear waves
propagating perpendicular to layering are given in Eqgs.(6.4—6.10), which reduce

to, for the transient problem under consideration (in view of d;(-)=0)

equations of motion:
o — o 0
Ri =2h,p, i, (0=1,2) (6.63)

constitutive equations for face variables:
o + o

o —
Ri1 =27 Ces S1 /h

o — a o o o4
Ri =2(yy Ces u,+7" Ces S1)/hy (6.64)

continuity conditions:
1+ 2 1-

2
A3 51423 s =81 +s
2 2

1= 24 14

2_
A5 51223 8 =51+,
2 2
2 1 _ 1
%ax Rf+%ax Ri =Ri +R;

2 _ 1_ 2 1
%ale—%axRI =Ri+R| (6.65)

1 2
where Ces and Ces represent, respectively, the shear moduli of layers 1 and 2

associated with x;x,-plane.

Boundary conditions

The left end of the slab is subjected to the shear stress s(t); accordingly, the

exact boundary condition at the left end is
1
To1| _ =—s(t) (6.66)

=—h,
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Using the relations in Eq.(2.13), the boundary condition in Eq.(6.66) can be

written in terms of stress face variables as
1y 1_
(R] _Rl )| - = —25 (667)

The latter boundary condition is written at x =0 instead of x =—h,, because the

face variables in CM have physical meanings only at the midplanes of layers. In
view of idealization implied by smoothing operations, implying that the two types
of interfaces following layer 1 and 2 exist at the same point of the composite, the

other boundary condition at the left end may be written as
2, 2_
(R, -R; )| W " —2s (6.68)
With the use of the same procedure, the boundary conditions at the right end
(traction free) of the slab can be found as
1, 1_ 2, 2._
(R1+R1)|X=H =0 ) (R1+R1)|X=H =0 (669)

where H is the length between the midplanes of the first and last layers of the slab
(see Fig. 6.12).

Initial conditions

Since the slab is at rest initially, all of the field variables of the approximate
theory should be zero at the initial time t =0.

The formulation of the CM is now complete. Eqs.(6.63—65) constitute ten

o o — o —
partial differential equations for the ten unknown variables u? , Sf and Rf. The

unknowns can be determined uniquely by solving them subject to boundary
conditions, Eqs.(6.67-69), and zero initial conditions.

The CM equations are integrated by method of lines. With the object of
explaining this method, the solution domain 0 < x <H and t =0 is referred to an
x-t rectangular coordinate system in which x and t are chosen to be as horizontal
and vertical axes, respectively. The solution domain is subdivided by a rectangular
network with the space mesh size Ax and time mesh size At. The vertical and
horizontal grid lines are numbered in increasing order (starting with zero) in the

positive directions of x and t axes. Thus, the coordinates of a point located at the
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intersection of i vertical and j™ horizontal grid lines become (x;,t ) =(Ax, jAt).
In the discussions that follow, the value of a function f(x,t) at the nodal point
(x;,t;) is designated by ;f .

For establishing the unknowns in the solution domain, the analysis is started

from the first horizontal grid line t =t, =0, where the unknowns are known from
the initial conditions. Using the values of unknowns along t=t, and a technique
to be explained shortly, the unknowns along the next horizontal line t=t, are
found. After the unknowns are determined along t =t, the same technique is used
to find them along t =t, and so forth.

In order to explain the technique mentioned above, two consecutive horizontal

grid lines, say t=t;, and t=t;, are considered. The dependent variables are
known at the nodal points along t=t,,. To establish them along t=t; an

o a
iterative procedure is used. In the first cycle of iterations, Eq.(6.63) and u' = v(l)

are integrated with respect to time (i.e., along x =x; (i=0,1,...))from t=t i1 to

t =t; using rectangular and trapezoidal rules, respectively. This gives

o0 _ 060 At o _
iV S V1+2h ijiaR1
ala
1 1
o0 ag At o 0.0 .

1

where the number over the variables indicates the iteration number. Since 31
along t=t i is determined, Eqs.(6.64) and (6.65) constitute eight ordinary

differential equations in space (along t=t;) for the remaining unknowns

o Ox
W= (R;,Sf). They are solved using the method of complementary functions to

1

o _ o o
be discussed shortly. Having known now R; along t=t;, Eq.(6.63) and u; = vi
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are again integrated with respect to time from t=t,; to t=t;, but this time using

trapezoidal rule for both of them:

2 1

oy a0 At R R
iV, ﬂ,j—l"ﬁm(i,j—lRl R )
ar o
5 2
o0 OLO At (XO @0 1
by =0+ 2 G Vy + V) i=0.L..) (6.71)

2

The second cycle of iterations is completed using the improved ﬁ? The iterations

are continued until a prescribed accuracy is achieved.
We explain now the method of complementary functions used to solve the

system of ordinary differential equations in space, Eqs.(6.64) and (6.65), for the

OF 27 . . . .
unknowns w=(R;,S;) along t=t;. In this method, first the solution w is

written in the form

4
w=w’+> B, w (6.72)
k=1

where [, ’s are some constants. The particular solution wP is governed by

Eqs.(6.64) and (6.65), and the complementary solutions w*’s are governed by the

o
same equations with u(l) =0. Further, w” and w" satisfy the conditions at x =0

indicated in Table 6.1. The solution in Eq.(6.72) satisfies then the governing
equations, Eqgs.(6.64) and (6.65), and the boundary conditions at x =0 given by

Eqgs.(6.67) and (6.68) exactly. The initial value problems associated with w” and

w" are solved by integrating the governing equations numerically subject to the

conditions at x =0 shown in Table 6.1. For integration, the trapezoidal rule
formula with the space mesh size Ax is employed. Having established w® and
w" along t=t ; the four constants B,, B,, B; and B, appearing in Eq.(6.72) are

determined so that the traction free boundary conditions in Eqs.(6.69) at x =H are

satisfied.
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Table 6.1 The conditions at x =0 for w? and w*

)
—
(=)
)
(=)

o
S
-
—_
o

6.2.2 Exact formulation and solution

In the exact formulation, equations of elasticity theory are applied to each
layer and the solutions are required to satisfy the continuity conditions at the
interfaces of the layers and the boundary conditions at the bounding surfaces.
Method of characteristics will be employed to obtain the solutions. Elasticity

equations for a typical layer of the problem under consideration are
stress equation of motion:
0,7, =P (6.73)
constitutive equation:
Ty1 =Ce6 051, (6.74)
Applying change of variables v, =u, and d,u, =7y, (or d,v, =%,) yields the

governing first order partial differential equations in matrix form as

AU, +BU, =0 (6.75)
or in expanded form as
p 0 Ofv 0 0 -1|v, 0
0O 1 Oy | + -1 0O Oy =0 (6.76)

0 0 1]t,), [-Ce 0 01, [0
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where comma denotes partial differentiation with respect to the subscript
following it. Since these equations are hyperbolic partial differential equations,
they can be transformed into a system of ordinary differential equations each of
which is valid along a different family of characteristic lines. These equations,
called the canonical equations, are suitable for numerical analysis because the use
of the canonical form makes it possible to obtain the solution by a step-by-step
integration procedure. The convergence and the numerical stability of the method
of characteristics are well established (e.g., see [69])
The characteristic lines, along which the canonical equations are valid, are
governed by the characteristic equation
det(B-AA)=0 (6.77)
where A =dx/dt. Eq.(6.77) yields the eigenvalues
A =c,A,=—, Ay =0 (6.78)

where ¢ = m is the shear wave velocity. The characteristic manifold is thus
composed of families of lines dx/dt=A; (i=1...3). dx/dt=A, =c and
dx/dt=A, =—c describe two characteristic families of straight lines with slopes
(c) and (—c), respectively, on the (x-t) plane; whereas, dx/dt=A; =0 defines

straight lines parallel to the t-axis, see Fig. 6.13. The canonical equations are given
by
U _

1A
dt

0 (6.79)

along the characteristic lines dx/dt =X, (i=1...3). In Eq.(6.79), d/dt describes
the total time derivative along a characteristic line and 1; is the left-hand

eigenvector corresponding to i eigenvalue A , of the eigenvalue problem

BT -LADL =0 (6.80)
The left-hand eigenvectors are found as
1 1 0
L= 0 |, L=l 0], 1= 1 (6.81)
—-1/c 1/c —1/Cy
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Figure 6.13 Network of characteristic lines on (x; —t) plane

When these eigenvectors are substituted into Eq.(6.79), the canonical equations

can be obtained explicitly as

pcdv, —=dt,, =0 along dx/dt=c
pcdv, +dt, =0 along dx/dt=-c
Cgedy, —dt, =0 along dx/dt=0 (6.82)

Canonical equations can be integrated easily by using a representative
network shown in Fig. 6.13, which is composed of characteristic lines for layer 1
and 2. Different types of integration elements appear in the network, which are
shown with thicker lines and marked with an explanatory label. Each layer of the
composite slab is divided into three sublayers for illustrative purposes and during
the integration along the characteristic lines of the integration elements,
coefficients of the related layers must be considered. These elements together with
the resulting integrated canonical equations are given in a tabular form in Table
6.2. The quantities pertaining to layers 1 and 2 in the integrated canonical

equations are denoted by overhead numbers 1 and 2, see Table 6.2.
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Table 6.2 Integration elements and the resulting integrated canonical equations

11 11

A p,c vi(A)— m(A) pcvi(A)— m(A )
11
1N plcvl(A)+1:12(A)—plcV1(A )+m(A )
1
C C 1 1 1 1 1 1
A Ay Ay Co6 ¥, (A)—T12(A) =Co6 7, (A3) —T12(A5)
A 22 22
p,c vi(A) - m(A) p,cVi(A))—- 1:12(A )
1 1 22 22
2 ) 0, ¢ VI(A)+T12(A) = py e vi(A,)+Ti2(A,)
C c 2 2 2 2 2 2
A As A Cos 7, (A) —T12(A) = Ce6 ¥, (A3) — T12(A3)
11 11
p;c vi(A)— ’Clz(A) p;c Vl(A )— TIZ(A )
1 1 1 1 1 1
A Ces 'YI(A)—le (A) = Ces 'YI(A3)—’512 (A3)
1 2
/N Vi(A) = vi(A)
1 2 1 2
c | cC T12(A) = T12(A)
Ay Az A, )2 22
P, C V1(A)+’C12(A) P, C V1(A )+’512(A )
2 2 2 2 2 2
Coo ¥, (A) —T12(A) = Coes ¥, (A3) —T12(A3)
22 22
P, C vi(A)— ’C12(A) pPyC V1(A )— le(A )
2 2 2 2 2 2
A Ces 'YI(A)—le (A) = Ces 'YI(A3)—’512 (A3)
1 2
Vi(A) = vi(A)
I
2 1 1 2
C c T12(A) = T12(A)
A1 A3 A2

11 11
pP;C V1(A)+T12(A) pP;C V1(A )+T12(A )

11 1 o1 1
Co6 V1 (A) = T12(A) = Co6 7, (A3) = T12(A3)
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Table 6.2 (cont’d)

A 1
— T12(A)=-s8
1 11 1 11 1
] pic Vi(A)+Ti2(A)=p,c vi(A,)+T12(A,)
¢ 1 1 1 1 1 1
Aj As Co6 ¥, (A) = T12(A) = Cos 7, (A3) —T12(A3)
A 2
T12(A)=0
@ 1 22 2 22 2
; Prc Vi(A)—Ti2(A)=p,c vi(A,)—Ti2(A)
¢ 2 2 2 2 2 2
Ay Aj Co6 ¥, (A) —T12(A) = Ces ¥, (A3) —T12(A3)

To obtain the solution in (x-t) plane, the analysis is started along the x-axis,
where the unknown variables are all zero because of the quiescent initial
conditions of the problem. Then, the governing equations in each element of the
network lying just above the x-axis are integrated. This establishes the unknown
variables at the points of the horizontal line t=At of the (x-t) plane. Having
determined the unknowns at t = At, the same procedure is used to establish them

at the times t = 2At, t = 3At, etc.

6.2.3 Numerical results

The numerical results are obtained for the composite slab with the layer

properties

=

Prjo; 2222

22 =66 _ 40 (6.83)
P h,
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The reason for selecting the properties of layers 1 and 2 in Eq.(6.83) very different
is to see the influence of refractive properties of interfaces on the transient
response of the composite slab.

The results in Figs.6.14 and 6.15 are presented in nondimensional form,

2 2 |2
where nondimensional time is defined by t=c t/h, with ¢=1Ces/p, being

shear wave velocity in layer 2 and bar being used to denote a nondimensional

quantity. The nondimensional rise time in the applied shear stress "s" (see

Fig.6.12) is taken as t* =1. The nondimensional velocity at the right end of the

slab is normalized by 2s,/pc, , where p is the mass density per unit volume of
the composite slab which is given by p=n,p, +n,p, with n, being volume
ratios given by n, =h, /A. ¢, 1s wave velocity as predicted by effective

modulus theory [29], which is defined by

(6.84)

1 2
where E; =Ce/n;, E, =Cess/n, and E=E, +E,. Examination of the figures,

which also include the prediction of effective modulus theory, reveals that

1. CM predicts the exact wave profiles closely not only around the head of the
pulse, but also, for larger times after the disturbance reaches the station

2. the prediction of CM improves, as expected, as the number of pairs in the
slab increases

3. CM is capable to predict the transient response of the slab with small
number of pairs; but, its use becomes advantageous and should be
suggested, in view of arguments given previously, when the number of the

pairs is large.
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Figure 6.14 The wave profile for the particle velocity at the free end of the slab

consisting of two pairs of alternating layers
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Figure 6.15 The wave profile for the particle velocity at the free end of the slab

consisting of four pairs of alternating layers
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CHAPTER 7

CONCLUSIONS

In this thesis, first, a higher order dynamic theory is developed for
anisotropic thermoelastic plates; then, two approximate models based on this plate
theory, namely discrete and continuum models, are proposed for periodic layered
composites. The models are general in the sense that: they accommodate all kinds
of deformation modes in the composite; dynamical and thermal effects are
included in the formulation; the lamina material is assumed to be triclinic with no
material symmetry. It is to be noted that the proposed models may also be used in
the analysis of viscoelastic layered composites through the use of the
correspondence principle [70].

In view of the assessments presented in Chapters 3 and 6, some of the
important features of the proposed plate theory and composite models are stated
below in itemized form.

1. The most important aspect of the plate theory is that it contains, in addition
to GV’s, also FV’s as field variables. This feature of the theory permits
satisfying the lateral boundary conditions of the plate correctly, thus, it
improves the prediction of the theory for the dispersion characteristics of
waves propagating in a plate. This is verified for a generally orthotropic
plate considered in Chapter 3.

2. The order of the proposed approximate plate theory is arbitrary and by
increasing it, the frequency range of the theory may be enlarged as
observed in Chapter 3; in fact, as the order increases the prediction of the
approximate theory approaches that of exact.

3. The form of the approximate plate theory is suitable for extending it to

laminated composites; for that, one needs to add only, to the equations of
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laminae, the interface conditions which can be written readily between the
FV’s appearing in the plate theory.

Of the two models proposed for layered composites, the continuum model
(CM) is more important, which is developed in the study for periodic
layered composites using smoothing operations. It is formwise a mixture
theory with higher order microstructure and has the property: it contains
asymptotically the Floquet periodicity conditions as the order of continuity
conditions get larger (for proof, see Section 4.2). To the author’s best
knowledge, for periodic anisotropic layered composites there is no CM
available in literature with this property.

The reflective and refractive properties of interfaces are well accounted for
by CM, which is due to accommodating in the model the interface
conditions correctly with the use of face variables appearing in the
approximate plate theory. This property together with that stated in item 4
permits, as verified in Fig. 6.3, the CM to predict the periodic structure of
spectra with passing and stopping bands for harmonic waves normal to
layering. The prediction of CM improves along frequency and wave
number axes with the orders of the theory and continuity conditions
respectively, approaching the exact asymptotically in the limit.

The physical significance of real Floquet wave number is discussed
through the use of some numerical results obtained in the study (see Figs.
6.8 and 6.9): it is the wave number of harmonic envelope curve
interpolating the displacement values at discrete points along the axis
perpendicular to layering with the increment "d" ("d" being the period of
periodic layered composite in the direction perpendicular to layering).

CM is assessed by comparing its prediction with the exact for the spectra of
harmonic waves propagating in various directions in a two-phase periodic
layered composite. Choosing the comparison of spectra as a criterion for
assessment may be justified on the basis that a dynamic model is described
completely by its spectrum. Good matches in Figs.(6.3-6.11) give an

indication for the reliability of CM in the analysis of periodic layered

110



composites. Figs. (6.14) and (6.15) verify, as example, the use of spectral
criterion for assessment.

As a future development of this research, layered composites with

delaminations may be considered. Handling these delaminations within the

framework of the proposed CM requires only some modifications to be made in

CC’s.
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APPENDIX A

TRANSFORMATION RELATIONS

The following transformation relations hold in the global x; coordinate
system which is obtained by rotating the material coordinate system (1,2,3) in

Fig.2.1 by an angle 0 in (1-2) plane.

Elastic coefficients (C;):

C,, =sin(®)*C,, +cos(8)? (25in(0)2C,, +cos(8)2C,, +4sin(0)2Cyy )

C,, =sin(8)’C,; +cos(8)>C,,

C,, = cos(8)?sin(8)2C,, + (3+cos(40))C,, /4 +cos(8)? sin()(C,, —4C, )

C,, = —sin(20)(~ 25in(8)2C,, —2c0s(20)C,, +C, +cos(20)C,, —4cos(20)C,, )/ 4
Cy= és3

C,, =cos(0)>C,, +sin(0)>C,,

C,s =cos(0) sin(e)(é13 - CB)

C,;, =cos(0)*C,, +sin(B)’ (2cos(9)zé12 +5in(8)°C,, + 4cos(9)2666)

C., =sin(20)(2cos(8)2C,, —2¢0s(20)C,, —C,, +cos(20)C,, — 4c0s(20)Cq, )/ 4
C,, =sin(8)>C,, +cos(0)*C.,

C,; =cos(0) sin(e)(é55 - 644)

C,, = (25in(20)2C,, — 45in(20)2C,, + C,, —cos(40)C,, +4C,, +4cos(d0)C, )/8
C,, =cos(8)’C,, +sin(8)’C.,

other C; =0

where C;; and Cij denote, respectively, the elastic coefficients in global and

material frames.
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Heat conduction and thermal coefficients (k; andf3;) :

k,, =k, sin>(0) +k,, cos(6)

ky =k
k,, =k, cos?(0) +k,, sin(0)

Ky, = (ky, —k,,)sin()cos(®) . other k; =0

B, = BH sin”(0) + [322 cos’(0)
Bzz :B33
B, =P, cos®(0)+p,, sin*(6)

B, = (B, —B,,)sin(0)cos(0) , other B;=0

where (k;;,B;;) with and without overhead denote them, respectively, in material

and global frames.
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APPENDIX B

FREQUENCY EQUATION FOR 4™ ORDER THEORY
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APPENDIX C

FREQUENCY EQUATION FOR SHEAR WAVES PROPAGATING

PERPENDICULAR TO LAYERING AS DETERMINED BY CM

(0™ order theory and 1* order CC)
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APPENDIX D

FREQUENCY EQUATION FOR AXIAL WAVES PROPAGATING
PARALLEL TO LAYERING AS DETERMINED BY CM
(1% order theory with exact CC)
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Frequency equation :
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where, for the sake of convenience, M is factorized as

20 Ly 201

2

1 1

M =

[Ml

i

M3 M4
Columns of the matrix M correspond to the following field variables respectively:

2. 1y 24 1o 2 14 24

u;,u;,us,usz,uz, U2,R1,R1,R2 R2,R3,R3, Sl,Sl,Sz S2,Ss3 S3J

Ly
a—>

M1, M2, M3 and M4 matrices are defined by

Ml=

M2 =

0

1
—Cisk?

0

1

h,

1

Ci2

—Ce6—

i 1
p10)2 -Cn K’

ik

0
p2w2 - (2:11 Kk’
0
2
—Ci5k?
0
2 2
—Ce6—Ci2 ik
h,
0O 0 O
0O 0 O
0.5
0O O n
0O 0 O
0.5
mn 0O O
0.5
0 e 0

1
—Ci5 k2
0
1
pl(,l)2 —Css Kk?
0
1 1
—C46—C>2s "
h,
0
0 0
0 0
0 0
0.5
Y 0
1
0 C“ 1k
0 0

124

0

2 2
~Cisk

0

2
pz(nz —Css k?

0
—C46—Ca2s ik
h,
1
Ci2
ik
0 2h,
0 0
1
0 =ik
2h,
0 0
¢
0 Cn
2h?
2
Ces -
E lk 0

0 0
0 0
0 0
0 0
1
p10)2 —Ces k? 0
2
0 P, — Ces k*
0 0 0
¢
12 :
Elk 0 0
0 0 0
¢
25 :
Elk 0 0
1
0 Seik 0
¢ ¢
22 246 1
o 0 2, ik

- 2_ 14 2,




M3=

M4 =

©S ©o -~ o oo o © o o o s

2
Ces Yo 0
0 0
0 0
1
0 Caa vy,
é%YO 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0
0 0 0 0
0 0 0
0 2 0 0
0 0 2t 0
0 0 0 =2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-1 1 0 0
0 0 1 1

0 0
2
C46 YO 0
1
0 CZZ Yl
0 0
0 0
2
C44 YO 0
0 0
0 0
0 0
0 0
0 0
0 0
1
Ces ’Y+ 0
2
0 Ces ¥"
le 20
h, Ci2 .
0 le
1
Ca y" 0
2
0 Cas ¥"
-1 1
0 0
0 0
0 0
0 0
0 0

125

o o o O

0

2

+

Cacy
2

h, Cas

1222 ik

2
Cay"
0

—_—

o o o




APPENDIX E

FREQUENCY EQUATION FOR WAVES PROPAGATING
OBLIQUELY TO LAYERING AS DETERMINED BY CM
(2" order theory and 2" order CC)

SHAE: Ma=0

Frequency equation : det(M)=0

where, for the sake of convenience, M is factorized as
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M2

M=| M4
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M9,

MO,

MO,

Columns of the matrix M correspond respectively, to the following field variables

Ly 29 1o 20 1y 24 2. 14 24 1 2_ 14 24 1- 2_ 14 24
a= u]’u]’u3’u3’u2 u2’ R17R1’R2 R2’R3’R3 Sl ’Sl ,SZ 82 S3 S3

The submatrices in the matrices M and M9 are defined by
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