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ABSTRACT

THREE DIMENSIONAL HYPERBOLIC GRID GENERATION

DINCGEZ, Umut Can
M.Sc., Department of Mechanical Engineering
Supervisor: Prof. Dr. M. Haluk AKSEL
Co-Supervispor: Dr. A. Ruhsen CETE

April 2006, 137 pages

This thesis analyzes procedure of generation of hyperbolic grids formulated by
two constraints, which specify grid orthogonality and cell volume. The
procedure was applied on a wide range of geometries and high quality two and
three dimensional hyperbolic grids were generated by using grid control and
smoothing procedures, which supply grid clustering in all directions and

prevent grid deformation (grid shock), respectively.

Keywords: Hyperbolic Grid Generation, Two Dimensional, Three

Dimensional, Grid Control and Smoothing
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UC BOYUTLU HIiPERBOLIK AG URETIiMi

DINCGEZ, Umut Can
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. M. Haluk AKSEL
Tez Yardimc1 Yoneticisi: Dr. A. Ruhsen CETE

Nisan 2006, 137 sayfa

Bu tezde ag1 meydana getiren egrilerin kesisme noktasinin birbirine dik olmasi
ve ag elemanlarinin hacimlerinin 6nceden belirlenmesi esasina dayanan
hiperbolik ag iiretim teknigi incelenmistir. Bu teknik bir¢ok degisik geometriye
uygulanmus, yliksek kalitede iki ve {i¢ boyutlu hiperbolik aglar elde edilmistir.
Yiiksek kalitedeki bu aglarn elde ederken, ag cizgilerinin her yonde
sikistirllmasint saglayan ag kontrol metodu ve ag cizgilerinin bozulmasini

onleyen yumusatma metodu kullanilmistir.

Anahtar Kelimeler: Hiperbolik Ag Uretimi, ki Boyutlu, U¢ Boyutlu, Ag

Kontrolii, Yumusatma
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CHAPTER 1

INTRODUCTION

1.1 General

In order to solve the governing partial differential equations (PDE) of fluid
mechanics numerically, approximations to the partial differentials are made.
By the help of these approximations, partial derivatives are converted to finite
difference expressions. These finite difference expressions are used to rewrite
the partial differential equations as algebraic equations and these algebraic
equations are solved at discrete points within the domain of interest. So, in
order to solve these equations, a set of grid points within the domain and the

boundaries should be specified.

In order to identify grid points easily, the computational domain has
rectangular shape in general and the grid points are placed along the grid lines

within the computational domain.

If the physical domain is rectangular in shape, generation of a grid is easy since
there is no need any effort to convert the physical domain to rectangular
computational domain. Therefore, the specification of boundary conditions is

easy and grid points can be specified on the boundaries of physical domain.

However, the majority of the physical domains of interest are nonrectangular.
Therefore, imposing a rectangular computational domain on such a physical
domain requires interpolations for the implementation of boundary conditions.

Since the boundary conditions have the greatest effect on the solution of the
1



equations, these kinds of interpolations can cause inaccuracies especially at the
places of greatest sensitivity. Besides this, if the grid spacing near the
boundaries is unequal, more complications with the finite difference equations
occur since approximations with unequal step sizes should be used. Also,
difficulties in programming can occur since these kind of finite difference
equations changes from node to node. To overcome such difficulties, a
transformation from physical space to computational space should be
introduced. This transformation is accomplished by specifying a generalized
coordinate system which will map the nonrectangular grid system in the
physical space to a rectangular uniform grid spacing in the computational

space. [1]

The critical point is identifying the location of grid points in the physical
domain, that is identifying the x and y coordinates of a grid point in the
physical space corresponding to the same grid point in the computational
space. Some constraints should be regarded while determining the grid points.
Grid lines of the same family can not cross each other, which is known as one
to one mapping in literature. In addition to this, some properties like smooth
grid point distribution with minimum grid line skewness, orhogonality of grids
and clustering of grid points in regions where high flow gradients occur are
required. However, all these requirements can not be achieved by any

particular grid generation technique.

The grid system may be categorized as fixed or adaptive. A fixed grid system
is generated prior to the solution of the governing equations of fluid motion
and remains fixed independent of the solution. [1] On the other hand, an
adaptive grid system evolves as a result of the solution of the equations of fluid
motion. As an example to the adaptive grid system, grid points may move

toward regions of high gradients such as in the neighborhood of a shock wave.

[1]



Detailed information about grid generation techniques is given under the title

“Grid Generation Techniques”.

1.2 Grid Generation Techniques

Grid generation schemes can be classified into two, which are structured grid
generation and unstructured grid generation schemes. In structured grid
generation schemes, the physical space is transformed to the computational
space. This computational space has rectangular boundaries and uniform step

sizes.

In unstructured grid generation scheme, there is no need to the transformation
and this type of grid is imposed on the physical space directly. Various types of
elements may be used, but triangular elements are the most popular elements to
construct the grid system. An example to unstructured grid generated by

triangular elements is shown in Figure 1.1.

Figure 1.1 Unstructured grid with triangular elements



More detailed information about unstructured and structured grid generation

techniques is given under the following headings.

1.2.1 Unstructured Grid Generation Techniques

Unstructured meshes have been developed mainly for the finite element
method. There is a large range of shapes for finite elements. These are
tetrahedra, prisms, blocks and triangles and there can be arbitrary connectivity
between these shapes leading to unstructured meshes. Among these shapes,
triangles in two dimension and tetrahedra in three dimensions are the only

shapes that can be used to generate unstructured meshes fully automatically.

There are several methods for unstructured grid generation. The most common
methods are Advancing Front and Delaunay Triangulation. Brief information

about these two methods is given below.

1.2.1.1 Advancing Front Method

In this method, the boundary is discretized first. This discretization is done by
fitting the boundary with polygons in two dimensions. This is known as initial
front. Then, by adding triangles or tetrahedral into the domain, with at least one
edge or face on the front, initial front is updated. This procedure is shown in
Figures 1.2, 1.3, 1.4, 1.5 and 1.6. This update process continues until the front
is empty. When the front is empty, mesh generation is completed. This requires
that the domain should be bounded but for unbounded domain, the front can be
advanced until it is at some large distance from the object. As the algorithm
progresses, the front will advance to fill the remainder of the area with

triangles.



(g New element

Original Front Boundary

Figure 1.2 Discretization of boundary and adding a new element

&

Original Front

Boundary

Figure 1.3 Sketch after the new element is added



(g New elerrint‘

Original Front Boundary

Figure 1.4 Sketch showing addition of another element

(3

Original Front

Boundary

Figure 1.5 Sketch after another element is added



! g New Front

Original Front Boundary

Figure 1.6 Sketch after all the elements are added and original front is updated

1.2.1.2 Delaunay Triangulation

This method has two phases; placement of mesh vertices and triangulation. If

the mesh vertices are placed well, the triangulation phase can be simple.

In the first phase, vertices are placed along the domain boundary and then new
points are added to the interior of the domain. There are some methods to insert

the point to interior point set, but the methods will not be given here.

The second phase is known as Delaunay Triangulation. It is defined by empty
circle condition, i.e., the triangle is a valid triangle if and only if there is no
other point within its circumcircle. An example to the invalid triangle is given

in Figure 1.7.



Circumcircle of
Invalid Triangle

Invalid Triangle

Figure 1.7 An example to an invalid triangle

1.2.2 Structured Grid Generation Techniques

A wide variety of grid generation techniques have been developed and many of
these methods currently in use are documented [2]. Grid generation techniques
can be divided into three subsections. These are conformal mapping technique,
algebraic grid generation technique and partial differential equation techniques.
Partial differential equation techniques can be subdivided into three, which are
elliptic grid generation technique, parabolic grid generation technique and
hyperbolic grid generation technique. Detailed information about these
techniques, advantages and disadvantages of them are given in the following

sections.

1.2.2.1 Conformal Mapping

In this technique, each point in the two dimensional plane is defined by a

complex value v=x+iy, where x and y are Cartesian coordinates. So, the
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location of each point is characterized by a complex number rather than real
numbers. If any grid in the complex plane v is considered, it is seen that the
shape, location or orientation of the grid is changed by the conformal

transformation.

The idea behind the conformal transformation is that if the original grid lines
are orthogonal, the transformed grid lines will be orthogonal too. In literature,

conformal mapping is defined as mapping that preserves angles.

This technique is most often applied to fluid dynamic problems. For example,
numerical conformal mapping has been applied for the calculation of transonic
flow over airfoils [3]. Such a mapping greatly simplifies the boundary
conditions and ensures that the nonlinear partial differential equations in the
computational plane are slightly more complicated than in the physical domain.
Numerical conformal mapping has been found particularly useful in two
dimensional incompressible, irrotational free surface flow problems [4, 5].
Normally, the partial differential equations are less distorted and the Laplace

equation remains particularly unchanged under conformal mapping. [4]

Application of conformal mappings is limited to two dimensional problems and
reasonable knowledge about complex variables is needed. Its main
disadvantage is that, construction of numerical conformal mapping usually
requires the solution of a nonlinear integral equation and the determination of

mapping functions is a difficult task.

1.2.2.2 Algebraic Grid Generation Techniques

The simplest grid generation technique is the algebraic method, advantage of
which is the speed with which a grid can be generated. The grid points in the

computational domain and those in the physical domain are related with each

9



other by using algebraic equations. These equations are derived by using an
interpolation scheme between the specified boundary grid points [1]. Interior

grid points can be generated by using these algebraic equations.

In many grid generation techniques, the metrics and Jacobian of transformation
should be evaluated before solving any transformed partial differential
equations. However, when an algebraic model is used, the metrics may be
calculated analytically in many instances[1]. This brings a very big advantage
when compared with other methods. This is because in other methods metrics
are computed numerically and this can introduce some errors into the system of
equations. Besides this, numerical computation of metrics requires additional

time.

In flow problems, accurate computation of flow gradients in regions where
large gradients occur needs many grid points in these regions. Instead of using
uniform grids with smaller step sizes in the physical domain, grid points may
be clustered in these regions. Advantage of this is reducing total number of grid
points and increasing the efficiency. Some examples of such algebraic

expressions with clustering options are provided in [1].

For many applications, algebraic models provide a reasonable grid system with
continuous and smooth metric distributions. However, if grid smoothness,
skewness and orthogonality are of concern, grid systems generated by solving

partial differential equations must be used [1].

As mentioned earlier, partial differential equation techniques include elliptic,
parabolic and hyperbolic grid generation techniques. For the time being,
consider the elliptic grid generation technique briefly. In this technique, elliptic
partial differential equations are solved in order to generate grids in the
physical domain. The difference between algebraic model and elliptic grid

generation technique is that a system of partial differential equations is solved
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instead of algebraic equations. However, to start such a method, an initial guess
of coordinates of grid points is needed. While making this initial estimate,
algebraic methods can be used. Therefore, algebraic equations can be used both
for generating grid points and for determining initial grid point distribution of

elliptic grid generation technique.

Advantages and disadvantages of algebraic grid generation technique are given

below.

Advantages

1) Itis very fast when compared to other grid generation techniques.
2) Numerical errors can be avoided since metrics may be computed
analytically.

3) Grid point clustering can be applied to different regions easily.

Disadvantages

1) In this technique, propagation of discontinuity at the boundary to
interior domain is possible.

2) Skewness and smoothness of grids can not be controlled easily.

1.2.2.3 Partial Differential Equation Techniques

In these methods, in order to determine the location of grid points in the
physical space, a system composed of partial differential equations is solved.
The computational domain transformed from physical domain is rectangular in
shape and has uniform grid spacing. These methods include elliptic, parabolic
and hyperbolic system of partial differential equations which are explained in

the following sections.
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1.2.2.3.1 Elliptic Grid Generation Technique

Among the other partial differential equation techniques, elliptic grid
generation method is the most extensively used method. It is used for two
dimensional problems in general, but it can be extended to three dimensional

problems.

In order to use elliptic grid generation method, all the physical boundaries of
domain should be specified. There are three types of domain on which elliptic
grid generation technique can be applied. These are known as simply

connected domain, doubly connected domain and multiply connected domain.

Simply connected domain can be defined as the domain which can be reducible
to a point. So, for a simply connected domain, there should be no objects
within the domain. An example of a simply connected domain and the
corresponding computational domain are given in Figures 1.8 and 1.9

respectively.

A

v
>

B n A

Figure 1.8 An example to a simply connected domain
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Figure 1.9 Computational domain of Figure 1.8

Doubly connected domain has one configuration within the domain. So, this
domain can not be reducible. However, a doubly connected domain may be
converted to simply connected domain by adding branch-cut. This branch-cut
extends from a point on the boundary configuration within the domain to a
point on the boundary of the domain. As an example, doubly connected region
with branch-cut is given in Figure 1.10, unwrapping of doubly connected
region is given in Figure 1.11 and computational domain is given in Figure

1.12.

Multiply connected domain has more than one configuration within the
domain. This type of domain can be converted to a simply connected domain
by adding several branch-cuts. One branch-cut is added like in doubly
connected domain, that is, it extends from a point on the boundary of
configuration within the domain to a point on the boundary of the domain.
Other branch-cuts are added between the boundaries of configurations within
the domain. As an example, physical domain for a multiply connected region,
unwrapping of a multiply connected region and the corresponding

computational domain are given in Figures 1.13, 1.14 and 1.15 respectively.

13



X

Figure 1.10 An example to a doubly connected region with branch-cut

X

Figure 1.11 Unwrapping of Figure 1.10
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Figure 1.12 Computational domain of Figure 1.10
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Figure 1.13 An example to a multiply connected region with branch-cuts
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Figure 1.14 Unwrapping of Figure 1.13
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Figure 1.15 Computational domain of Figure 1.13
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Advantages and disadvantages of elliptic grid generation technique are given

below.

Advantages

1) Distribution of generated grid points is smooth.
2) There are many options available for grid clustering and surface
orthogonality.

3) It can be extended to three dimensional problems.

Disadvantages

1) It needs more computational time when compared to algebraic or
hyperbolic grid generation technique.
2) Forcing function used in this technique can not be specified easily.

3) Metrics should be calculated numerically.

1.2.2.3.2 Parabolic Grid Generation Technique

The idea behind using parabolic grid generation technique is to combine the
benefits of elliptic and hyperbolic systems. One of the benefits of the elliptic
system is its diffusive nature, that is; a boundary discontinuity does not
propagate into the domain. However, a boundary discontinuity may propagate
into the domain when hyperbolic grid generation technique is used. When the
relative computation time is compared, hyperbolic grid generation is much
faster than elliptic grid generation. Since the parabolic grid generation
technique is combination of two, it has a diffusive nature and needs less
computer time when compared with elliptic grid generation. Parabolic system

includes second order derivatives, which result in natural diffusion of
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propagation of discontinuities and uses marching schemes to solve parabolic
partial differential equations which reduces computational time.
Much work needs to be done for perfection and robustness of this technique,

especially in relation to the specification of control functions [1].

1.2.2.3.3 Hyperbolic Grid Generation Technique

For open domains, where the outer boundary can not be prescribed, hyperbolic
partial differential equations are used [1]. It is computationally faster than other
partial differential equation techniques since it uses a marching scheme. Its
main advantages are its speed and orthogonality of grid lines. A major
disadvantage of this system is that the outer boundary can not be defined,
however this is not a critical problem for external aerodynamic problems. The
grid can be marched out away from the body beyond a reasonable range. The

details of hyperbolic grid generation technique are given throughout the study.

1.3 Review of Literature

The numerical generation of a boundary fitted coordinate system has been
attracting many researchers studying on various branches of science and
engineering. The idea behind the numerical generation of boundary fitted
coordinate system is to transform an arbitrary shaped physical domain into a
simple canonical domain, such as rectangle or a unit circle. So, the problems
under consideration are modified in terms of the new coordinates and their
solution can be obtained more easily. The easiness of the solution stems from
the simpler boundary conditions in the canonical domain. After the problem is
solved in canonical domain, it is transformed back to the original physical

domain.
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Most of the Computational Fluid Dynamics (CFD) problems are solved by
finite difference techniques. In most of them, defining boundary conditions is
complicated. So, the domain transformation can simplify the definition and
CFD coding. The numerical generation of boundary fitted coordinate system is

also an important tool for finite element grid generations.

There are three ways to generate boundary fitted coordinate system. First one is
algebraic transformations. The second is constructing boundary fitted
coordinate systems using partial differential equations which include elliptic,
parabolic and hyperbolic equations. Chu [6] seems to be the first to apply this
method in finite difference solution of two dimensional flow problems. Then,
Mastin and Thompson [7] extended this idea to three dimensional problems.
Sparis [8] used biharmonic equations for boundary fitted coordinate system
generation as a third way. With this method, the mesh point location on the
boundary and the angle of intersection of coordinate lines with the boundary
can be controlled completely. There have been many investigations on
controlling the distribution of coordinate lines and generating orthogonal
systems. A very comprehensive survey about this subject was presented by

Thompson et. al. It contains nearly four hundred references.

A procedure for generating body-fitted orthogonal grids has been advanced by
Graves [9] which has been originated from a scheme developed some years
earlier by McNally [10]. According to the procedure given in [9], normals are
created from the initial distribution of points on the body surface to an adjacent
level line. Then, normals are projected to another adjacent level line. This
procedure continues until normals are completely formed between all of the

level lines between the body and outer boundary.

The notion of using hyperbolic equations to construct grids has been proposed
by Steger and Chausee in 1980[11]. In that approach, an initial surface is

propagated outward by using volume and orthogonality constraints. This
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technique has three limitations. Discontinuities in the initial data are
propagated, crossing grid lines may occur and boundaries other than an initial
surface may not be specified.

The first two of these may be overcome by numerical techniques as
demonstrated by Kinsey and Barth [12]. A partial solution to the third problem

was achieved by Nakamura who considered parabolic-hyperbolic schemes.

In order to construct meshes in two dimensional regions, a method which
applies a hyperbolic grid generation scheme was developed by Cordova and
Barth in 1988 [13]. Actually, this approach uses the theory developed by Steger
and Chausee [11] and the algorithm outlined by Kinsey and Barth [12]. This
method brings improvements to local grid control. This was achieved by using
a new method to compute the volume source term and adding angle control
source term to the equations. These new approaches prevented propagation of

initial discontinuities and formation of grid shocks.

Three dimensional body fitted coordinates using hyperbolic partial differential
equations were first generated by Steger and Rizk [14]. This method works
well for bodies with sharp edges and bodies which are concave. Further
enhancements to the three-dimensional hyperbolic grid generation were made
by Chan and Steger [15]. High quality three dimensional grids were generated
by applying metric correction procedures, local treatment of severe convex

corners, and new extrapolation treatments of floating and axis boundaries.

1.4 Present Study

This thesis analyzes procedure of hyperbolic grid generation formulated from
two constraints, which specify grid orthogonality and cell-volume. Throughout
this study, all derivations are investigated for two and three dimensional

hyperbolic grid generation.
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In Chapter 1, brief information about grid generation and grid generation
techniques are given. Also, a literature survey about mesh generation is

presented.

In Chapter 2, the governing equations of hyperbolic grid generation technique
are introduced and derivation of these governing equations for two dimensional
and three dimensional hyperbolic grid generation is given. The governing non-
linear equations are linearized and equations are rearranged in order to ease the
numerical solution of the system. Also, linearization procedure for nonlinear

two dimensional and three dimensional equations is discussed in this chapter.

In Chapter 3, the solution algorithm for the solution of the linearized system is
explained. Solution algorithm includes cell volume specification procedure,
which is one of the critical factors affecting the grid quality, for two and three
dimensional hyperbolic grid generation. Besides, it includes implementation of

boundary conditions for two and three dimensional mesh.

In Chapter 4, procedure of smoothing and clustering grids is presented.
Clustering method in ¢ and # directions for two dimensional hyperbolic grid
generation is explained.

In Chapter 5, various application results, that is examples from two
dimensional and three dimensional grids produced by the hyperbolic grid

generator are given.

Finally, conclusion of this study is given in Chapter 6.
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CHAPTER 2

HYPERBOLIC GRID GENERATION TECHNIQUE

2.1 Two Dimensional Hyperbolic Grid Generation Technique

For open domains, where the outer boundary can not be prescribed, hyperbolic
partial differential equations may be developed to provide the required grid
generators. Since a marching procedure is used to solve such a system,

computationally they are faster [1].

The mathematical development is based on two constraints. First one depends
on orthogonality of the grid lines at the surface and in the interior domain.
Mathematically, if two lines are orthogonal with each other, multiplication of
their slopes should be equal to -1. The slope of constant ¢ and # lines are
determined as follows. The physical and computational domains for O-type
grids are shown in Figures 2.1 and 2.2 respectively and the physical and
computational domains for C-type grids are shown in Figures 2.3 and 2.4

respectively. In these figures x-y coordinate system (physical space) and £ -7

coordinate system (computational space) are shown.
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Figure 2.1 Physical domain of an O-type grid
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Figure 2.2 Computational domain of Figure 2.1
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Figure 2.4 Computational domain of Figure 2.3
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Along a line of constanté, the differential d& is zero. Considering a 2-D

problem, it is possible to write,

dé = fxdx+§ydy (2.1)
so that
& S 2.2)
del. £
Similarly, for lines of constant7,
dn=mn.dx+n,dy 2.3)
so that
dyl . (2.4)
dx|,. 7,
The orthogonality condition can now be imposed as,
Ay (2.5)
dx e dx e

Now using Equations (2.2) and (2.4), the above equation takes the following

S

sn.+én, =0 (2.7)

At this point, it is useful to give Jacobian of transformation for clear

form.

or

understanding. This transformation procedure is given below.

2.1.1 Jacobian of Transformation

Relations between the physical and computational spaces can be defined as

follows,

E=E(x,y) (2.82)
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n=nxy) (2.8b)
The chain rule for partial differentiation yield the following expression,

9 _9 a g 9

—+—— 29
ox odx 9o oJx I (&3)
The partial derivatives will be denoted using the subscript notation, i.e,
d&/dx=¢ . In this case, Equation (2.9) can be written as
O g 9 p. 9 (2.10)
ox o& on
and similarly,
i (2.11)

7’55

In Equations (2.10) and (2.11), terms such as &, &, 77, and 7 appear. These

terms are defined as the metrics of transformation and can be approximated by
using finite difference equations.

For example,

g -2ale

= Ay (2.12)

The above expression indicates that the metrics represent the ratio of arc

lengths in the computational space to that of the physical space.

By using Equations (2.8a) and (2.8b), the following differential equations are

obtained.
d§=¢ dx+§ dy 2.13)
dn=mn.dx+ndy 2.14)

which can be written in matrix form as,

I s
dn| |m. n, |dy '
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Reversing the role of independent variables, i.e,

x=x(&.n) (2.16)

y=y(¢n) 2.17)
the following equations can be written,

dx = x.d + x,dn (2.18)

dy=y.dé+y,dn (2.19)
or in matrix form,

dx X X, |l d

s L)

If equation (2.20) is solved for BU} matrix, the following result is obtained.

{dﬂ:—l {y" _xﬂ}{d’c} (2.21)
dn| x:y,—X,y:|~Ye Xg | dy

If the above equation and equation (2.15) are equated each other, following

relation is obtained.

C el 7L e
Me My ldy] xey,—x,9: | =Y Xe |dy
From the above relation, the following transformations are obtained.
£ =1y, (2.23)
§, =—J-x, (2.24)
N, =—J (2.25)
n,=J x; (2.26)
where
Je__
XeVn = Veky

is the Jacobian of transformation.
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In literature, the Jacobian J is regarded as the ratio of the areas in two
dimension or volumes in three dimensions in the computational space to that of

the physical space.

Equation (2.7) is rearranged using Equations (2.23) through (2.26) and the
following equation is obtained.

XX, +yey, =0 (2.27)

This equation is the governing equation related to the orthogonality constraint.

As an alternative, the orthogonality condition can be obtained from the vector
approach. By the definition of position vector, 7, the orthogonlity condition
can be obtained from the dot product of vectors defining change in & and 7
directions.

r: 1, =0=x:x, +y,y,=0 (2.28)

These definitions are shown in Figure 2.5.

Reference point

Figure 2.5 Definition of position vectors
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The second constraint must include some geometrical consideration. To
achieve this objective, two approaches, i.e cell area approach & arc length
approach, can be found in literature. In the first approach, the Jacobian of
transformation is specified. Various schemes can be used for this purpose
which will be discussed briefly in the following chapters. In the second
approach, the arc length from one grid point to the next is prescribed. This
procedure will be referred to as the arc length approach. In this thesis, the first

approach was used.

In the first approach, the definition of the Jacobian of transformation (inverse
of Jacobian function defines cell area in 2-D or cell volume in 3-D) is used as

the second hyperbolic equation, i.e.

Xy, =%, y: =F(&.m) (2.29)
where F(£,77) denotes the cell area function. Thus, the system of hyperbolic
equations which is to be solved for the grid point distribution in the physical
space,

XX, + ey, =0 (2.30a)

Xey, =%, y: =F(&.1) (2.30b)
In order to solve this hyperbolic system, the reciprocal of the Jacobian of

transformation, i.e. F, must be provided. As mentioned before, various schemes

for this purpose will be discussed in next chapter.

2.2 Three Dimensional Hyperbolic Grid Generation Technique

The body surface is chosen to coincide with ¢ (x, v, z) =0 and the surface grid

line distributions of & = const and 7 = const are user specified [14].
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The outer boundary is not specified; however it is sufficient if the outer
boundary is far from the inner boundary. Selecting ¢ as the marching
direction, partial differential equations are solved in order to obtain surfaces of

constant£, 77 and ¢ to form a non-singular mesh system.

The set of governing equations (2.30) of two dimensional hyperbolic grid
generation technique are rewritten here for better understanding of the three
dimensional grid generation equations.

XXy, + ey, =0 (2.30a)

Xy, =%, y: =F(&.m) (2.30b)

As it is explained before, one of the above equations is related with the
orthogonality and the other is cell area constraint. In three dimensions,
however, there are three orthogonality relations and one cell volume constraint.
Therefore, there are four equations available to find the three unknowns X, y, z

at any point. So, one equation is redundant. Since ¢ is selected to be the
marching direction, the orthogonality relations that involve ¢ should be used.

This leads to the governing equations below.

F. -fg ) (2.31)
F =0 (2.32)
(x y,2)
—J =AY (2.33)
A& )

In an open form, Equations (2.31) to (2.33) can be written as,
Xy Xe + Y,V +2,2, =0 (2.35)

XeVpZe ¥ XeVely ¥ X, VeZe = XeVpZy =X Vely =X Yp2e =AV (2.36)
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Equations (2.34) and (2.35) represent orthogonality relations between ¢ and
¢ and between 77 and ¢, respectively and equation (2.36) is the cell volume

constraint.

The system of these partial differential equations is nonlinear and should be
linearized. The linearization procedure for two and three dimensional equations

is given below.

2.3 Linearization of 2-D Hyperbolic Grid Generation Equations

To linearize the equations, Newton’s iterative scheme is used. A nonlinear term
1s approximated according to the following formula.

AB=A""'B* + B*"'A* — A*B* (2.37)
where the level k is the known state and level k+1 is the unknown state. For the
following notations, superscript k+/ is dropped. Therefore, any variable
without a superscript denotes the unknowns at the k+/ level. Linearization of

the terms in Equations (2.30a) and (2.30b) are given one by one.
Linearization of Equation (2.30a);

With the aid of Equation (2.37), the following relations can be obtained.

XpX, = x§x$ +xﬂx’g§ —x:ﬁx; (2.38)

YeVy = VeVy ¥ VoY= ViVy (2.39)
When these linearized terms are substituted into the Equation (2.30a);

xfx],; +x,7x'gf —x'gx,'; + yéry,']< + yny]g - y'gy,'; =0 (2.40)
is obtained. If Equation (2.30a) is written for level k;

XX, + Ve, =O:>x§x,’;+y§y,’; =0 (2.41)
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is obtained. When this equation is substituted into the Equation (2.40); the

linearized form of Equation (2.30a) is obtained.

XeXp + X, X5+ yeyy +Y,vE=0 (2.42)

Linearization of Equation (2.30b);

With the aid of Equation (2.37), the following relations can be obtained.

XYy = XYy + Yy Xp = XEY, (2.43)

X, Vg =% Ve + Ve XV (244)
When these linearized terms are substituted into the Equation (2.30b);

x§y$ +y,7x§ —xiﬁy; —xﬂy’; —yfxg +x,’;y§ =F(&,n) (2.45)
is obtained. If Equation (2.30b) is written for level &,

Xy, —X,y: = F(E) = xty, —xyyi = F¥(E.) (2.46)

is obtained. When the above equation is substituted into the Equation (2.45);

the linearized form of Equation (2.30b) is obtained as,

X yh 4y, xb—x, vk —yoxl = F(Em+FH (&) (2.47)

2.4 Linearization of 3-D Hyperbolic Grid Generation Equations

Let x°, y°, z° represent a nearby known state so that,

x=x"+Ax (2.48)
y=y"+Ay (2.49)
z=72"+Az (2.50)

where Ax, Ay and Az are small. When Equations (2.48), (2.49) and (2.50) are

substituted into Equations (2.34), (2.35) and (2.36), linearization procedure is

required. Linearization of Equation (2.34) is given in detail as follows.
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Linearization of x:x, term;

ox Ox
xgx; :gi (251)
*ety = a(x +Ax)'a(x +Ax) (2.52)
S a¢
xexp = (32 + Ax, g +Ax, ) (2.53)
XpXp = XpXp + X Axp + xzAx, + Ax.Ax, (2.54)

Since, Axf and Ax, are small, the term Ax Ax, is neglected and Equation

(2.54) takes the following form.

XpXp = XX + X Ax, + Xx2Ax, (2.55)

Linearization of y.y, term;

dy o
YeYe zéﬁ (2.56)
aly’ +Ay) dly’ +A
YoV = (v - y) (ya; y) 2.57)
YeVe = (yé’ +Ayg)-(y2 +Ay;) (2.58)
Ye¥e = VEVE+ VAV + YiAY + Ay Ay, (2.59)

Since, Ay, and Ay, are small, the term Ay.Ay, can be neglected and
Equation (2.59) takes the following form.

YeVe = VEVe + YAy + yiAy, (2.60)

Linearization of z £2pterm;
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dz 0z

Lely :Eﬁ (261)
dz” +Az) d\z° +Az

Z27, = € Y ). (Zag ) (2.62)

LeZ = (ZE +AZ¢)'(Z2 +AZ;) (2.63)

Lelp = Zgzg + Zz&g + ZgAZé‘ +AZ§AZ§ (264)

Since Az: and Az, are small, the term Az Az, can be eliminated and the
above equation takes the following form;

Lglp = Zgzz + ZzAZ§ + ZEAZ; (265)
When these three linearized terms are substituted into Equation (2.34), the

linearized form of this equation is obtained as follows.
Fe Ty = XZX[ + XPAX: + XZAX, + Y2y + YAV + YIAY, +272]
+ 2707, + 22Az, (2.66)
In the above equation, the term x:x; +y;y; +2z:z; is zero from Equation

(2.34). Therefore, the final form of the linearized equation of Equation (2.34) is

as follows.

XpAx, +x7AX: + YAy + YAy, + 2Az, + 2247, =0 (2.67)

Linearization of Equation (2.35) and (2.36) can be done, similarly. Linearized

terms and final linearized form of Equations (2.35) and (2.36) are given below.

Result of Linearization of x:x, term;

X, X=X, X7 + X Ax, +x, Ax, (2.68)

Result of Linearization of 'y, y, term;
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VYo = VpYe + YAy, + ¥, Ay, (2.69)

Result of Linearization of z:z,term;

Lglp = Zgzz + ZzAZ§ + ZEAZ; (270)
When these three linearized terms given in Equations (2.68), (2.69), (2.70) are

substituted into Equation (2.35), the linearized form of Equation (2.35) is

obtained as follows.

r, Ty =X, X; +x§Ax,7 +x,7Ax; + Y, Vet ygAyn + ynAyg +2:2;

+27Az;, +2:Az, =0 (2.71)
In the above equation, the term x,x; +y,y; +z:z; is zero from Equation

(2.35). Therefore, the final linearized form of Equation (2.35) is,
XA, +x7Ax, + yiAY, + y Ay, + 2Az: + 27z, =0 (2.72)

Linearization of Equation (2.36) is more complex, since there are products of

three terms, however the linearization procedure is the same.

Result of Linearization of x;y,z, term;

XeYyZe =XeVp2e + Yy 2pAxe + X272 Ay, + X2y, Az, (2.73)

Result of Linearization of x;y.z, term;

XpVeZ, =XpYVezy +VezAx, + X727, Ay + X7 Y2 Az, (2.74)

Result of Linearization of x,y .z term;
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X,YrZe =Xy ViTe + YrziA, + X, 2iAy + X y Az, (2.75)

Result of Linearization of x;y,z, term;

XeYeZy =XeVeZy + Y2, AXe +x22, Ay, + X2y Az, (2.76)

Result of Linearization of x,y:z, term:

X, Vel =X, Vezp + V2P AX, + X, 20 Ay + X VEAZ, (2.77)

Result of Linearization of x;y,z. term;

XpYpZe = XpYpZe + V2o, +x72: Ay, + X7y, Az, (2.78)

When Equations (2.73), (2.74), (2.75), (2.76), (2.77) and (2.78) are substituted
into the Equation (2.36), the following form of Equation (2.36) is obtained.

AV =Xy, 20 + Y20 A% + X2 Ay, + Xy, Az + X0 Y2, + Ve 2, Axp + X2, Ay,
+x§y§Az,7 TX, Vo2 +y§z§Ax,7 +x,7Z§Ay§ +xﬂy§Az§ XY 2y _yCZﬂAxé
—Xe2, AV = Xe Y Az, =X Ve Zp = Ve 2 AN — Xy 2 Ay =X VAT, — XL Y, 2
= Yp2gAx, —xpzeAy, —x;y, Az,

(2.79)

Notice that,

XeVpZe tXpVeZy t X, VeZe =X Ve 2y =X, VeZe =X Yy 2e = AV,

(2.80)
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Therefore, the final linearized form of Equation (2.36) is as follows.

YpReAxe + Xp2e Ay, + Xpy ATy + Yz Axp + X2 Ay + X0 YEAZ, + Yz AX,
XAV Xy Ve ATy = Y2 Ay = X2y Ay = Xe YAz, — Ve Axy — X2 Ay,
=X, VelAz, = Y,z A, — x; 22 Ay, —xpy, Az, = AV —AV,

(2.81)
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CHAPTER 3
SOLUTION ALGORITHM

3.1 Two Dimensional Hyperbolic Grid Generation Algorithm

The linearized form of the system of hyperbolic equations (2.30) which is to be
solved for the grid point distribution in the physical space can be written in a
compact form as,

[A]R, +[B]R, = H (3.1)

X k k k k 0
R:{ } A= x’i yﬂk B= x§k yi H = k
y Yoo X, -y X F+F

If the eigenvalues of [B]'[A] are real, the system given in Equation 3.1 is
hyperbolic. Noting that,
" 1 X; o =Y
B]" =5 H{k k (3.2)
(xg) +()’§) Ye o Xe

and

[c1=[81"[4]=

(3.3)

k _k

1
: xiyh+akyt = (xkal - ytyk)

Wt + ()

Kk ko k ko k ko k
{xéfxn_yéfyﬂ XeYp T X, Ve

The eigenvalues of [C] are,

LR L (3.4)
ﬁ
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It is recognized that the eigenvalues are always real; however, it is required that

() + (k) =0 (3.5)

In order to obtain finite difference form of Equation (3.1), some numerical

approximations are needed. Therefore, for the approximation of 7 and &

derivatives, first order backward difference and second order central difference
approximations are used respectively. Thus, Equation 3.1 can be rewritten as
follows.

[A] Ri+1,j _Ri—l,j +[B]Ri,j _Ri,j—l - H
A7

IAE (3.6)

i.j

If both sides of the above equation are multiplied by inverse of B matrix, the

following equation is obtained.

R .. —R. . R.. — R. .
[B]_I[A] i+l,j i-1,j +[I]”/—”/_1:[B]_1Hi»

2AE An g G0

where [I] is the identity matrix. In this equation, [B]" and [A] matrices are

evaluated at (j-1) grid line, that is at known state. If the above equation is

rearranged, following equation is obtained.

1 Ri, 1 _ R,‘, i—
_E[C]i,]‘—l Ri—l,j + A7; +E[C]i,j—l Ri+1,j = [B]i,;—l Hi,j + Ajnl

(3.8)
More simplification can be done by taking A{=An =1 and by using

following definitions.

[aal=-lcl. . (3.9
[BB]=[1] (3.10)
[cc]= %[C],.J_1 (3.11)
[DD]=[B].[H] , +R. (3.12)
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Thus, Equation (3.8) takes the following form.
[AA]R,_, ; +[BBIR, , +[CC]R,,, =[DD],, (3.13)

i-1,j i+1,j

In order to solve this equation to find R,

Lj?

that is the coordinates of grid points

at j grid line, a block tridiagonal system should be solved. This block-

tridiagonal system is given below.

[BB], [cc], 1T R, ] [ [pD], ]
[A4], [BB], [cc], R, [DD],
al,, (88l [ccl,. ||k, .| |[oDL,
I [AAl,.., [BBl,. ||R,. ]| |[DD],.
(3.14)

Before solving this system, the right hand side matrices which are affected by

boundary conditions should be updated according to the following formula.

[DD], =[DD], —[AA], R, (3.15)

[pD],, , =[DPD],,, -[CC], R, (3.16)

im—1 im—1

With the known grid point distribution at the surface and boundaries, xs'i and

yé‘ terms can be calculated easily. At boundaries, forward or backward

difference approximations are used. For the internal grid points, xs'i and y’si are

computed by central difference approximation.

In order to calculate x',; and y,'; by using difference approximations, the grid

point distribution on the next level line in the marching direction is needed.

Since the aim is to find the grid point distribution on the next level line and this
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distribution is not known, difference approximations for x,’,‘ and y,’,‘ can not be

used. However, when Equations (2.41) and (2.46) are solved simultaneously,

the following expressions for x,'; and y',; terms are obtained.

k mk
e YeF 3.17
R, o
xiEFk

! (xﬁ) +()’§)

After block matrices are formed using the above equations, the block
tridiagonal system can be solved by any standard technique. Such a procedure

is presented in reference [1].
3.2 Three Dimensional Hyperbolic Grid Generation Algorithm
The linearized form of the governing equations was given in Equations (2.67),

(2.72) and (2.81). The system of these linearized equations can be written in

matrix form as follows.

A(F-F),+B,(F-7),+C,(F-F), = f (3.19)

where,

I e Y¢ % |
A = 0 0 0

_(yﬂZJ_y;“Zn) (xg“zn_xﬂZJ) (xﬂy;—xgy”)_

i 0 0 0 |
B, = Xy Ye 2

_(y;zg» - yfza) (xg“za _xzzg“) (x:yé ‘xg“y;)_
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Ag Ve Ze

C,= Xy Yy y

(yfzn_ynzf) (xﬂzg—xfz,z) (xéyn_xnyf),,
l(ﬁiéi]_
9£ 3¢ ), .
- or or
) ||
AV —AV,

Notice that
(F=7,), = A7, (3.20)

(F-7,), = A7, (3.21)
(F=7), = A% (3.22)

where A7 = (Ax,Ay,Az)" and the first, second and third rows of these matrices

correspond to the first orthogonality, second orthogonality and the volume

constraints, respectively.

If Equation (3.19) is rewritten in explicit form as,

A=Al +Br,—Br, +Cr,—Cr,, = f (3.23)

If the above equation is rearranged such that the unknown values are on the left

hand side and known values are on the right hand side, it is possible to obtain

A7 +B7y +C, 7y = [+ AT + B, +C,Tp =& (3.24)

o'on

In order to obtain the final form of matrix system, ¢ should be derived. The

derivation is given in detail as follows.
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Xe Ye s Ag
Ay = 0 0 0

(y”z; _y§zﬂ) (x§zﬂ _xnzg“) (xnys“ _xg“yﬂ) , L%
XeXe ¥ Ve Ye +202¢
0
xg“(ynzg - y;Zn)Jr yf(xfzn ‘an;)Jr Z«f(xnyC _x;yn) )

(3.25)
The first row of the column vector is equal to zero as indicated by Equation

(2.34) and the third term of this column vector is equal to AV as indicated by
Equation (2.36). Therefore,

C 0
A= 0 (3.26)
LAV,
0 0 0 X,
B, = X¢ Ye < 1Y
_(Y§Z§ _yézs“) (xézs“ ‘xgzé) (x;y§ _xiyi) , L],
0
= XXy T Ve Yy T202 (3.:27)

xn(y§Z§ TVl )T Yy X2, ‘x:Z¢)+ Zn(xéyé _xéy:)

o

Since, Ly Ty =XeXy + Yy, +2,2, = 0 , the second row of the column vector

is equal to zero and the third row is AV, as indicated by equation (2.36).

Therefore,
0
B,r,,=| 0 (3.28)
AV
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Xg Ve L Xy
Clpr = Xy Y 4y Ve
_(yfzﬂ _yﬂzf) (xnzf _xfzn) (xfyn _xnyf) , L%,

XeXp ¥ Ve Vo +2:2,
= XpXe T VYo 2,2,
| X¢ (yg“zn - ynZ§)+ y;(xnzg“ —xfzn)+ Z;(xéyn _xﬂyé) )

(3.29)

First and second row of this column vector are both equal to zero as indicated
by Equation (2.34) and (2.35) respectively and the third term of the column

vector is equal to AV, as indicated by Equation (2.36). Therefore,

0
C,r,=| 0 (3.30)
AV

o

Now, e matrix takes the following form:

0 0 0 0 0
e= 0 +| 0 |[+| O |[+] O |= 0 (3.31)
AV—AV | |AV. | |AV, | |AV, | |AV+2AV,

Recall that, the equation system (3.24),
A;r.+B,r, +C,r, =¢ (3.24)

In order to find x, y, z values in the ¢ direction, the term r, should be
calculated. Then, both sides of Equation (3.24) should be multiplied by C,' in
order to isolate r; .

C,'A,i-+C,'B,i, +F, =C,'¢ (3.32)
In order to simplify the above equation, 7 can be defined as,

F=T, +AF (3.33)
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If Equation (3.33) is substituted into Equation (3.32), then the following

equation is obtained.

C,'A,(F, +AF), +C)'B,(F, + A7), +7, =C,'¢ (3.34)
If equation (3.34) is expanded and rearranged, it is possible to obtain
C,'A;+C,'A(AF), +C,'B,F, +C,'B,AF, +r, =C,'¢ (3.35)

C,'A,(Ar); +C,'B,(AF), +F, =C,'é-C,'B,F,, —~C,'A, 7, (3.36)

C;'A, (A7) +C;'B,(AF), +7, =C;'{e = B,7,) — AT} (3.37)
0 0 0
C,'A,(AF), +C,'B, (AF), +F, =C,' 0 -0 |- 0
AV +2AV, | |AV, | |AV,
(3.38)
Finally, Equation (3.34) takes the following form.
C,'A,(AF): +C,'B,(AF), +7, =C,'g (3.39)
where
0 0 0 0
g= 0 - 0 |- 0 |=| 0

Since, the marching direction is the { direction, the following definition can be
used.
F=T,+r, >7r—1,=AF =7, (3.40)

If Equation (3.40) is substituted into equation (3.39), the following equation is

obtained.

C,'A (7). +C,'B,(7) +7 =C'g (3.41)

o

In the above equation, central differences in the ¢ and # directions, and
backward difference in the marching direction  can be employed by using the

following operators.
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1
5§¢i,j = E (¢i+1,j - ¢i—1,j ) (3.42)
1
57]¢i,j = E (¢i,j+1 - ¢i,j—1 ) (3.43)
V=g ~9.) (3.44)

where & ‘s 5,7 and V , defines the central difference in ¢, central difference in 7

and backward difference in { direction for an arbitrary variable ¢, respectively.

In this case, Equation (3.41) can be written in following form,
Ck_lAké‘{ (Fkﬂ - Fk )+ Ck_lBk577 (Fkﬂ - Fk )+ I(?kﬂ - ’7k ) = Ck_lg’kﬂ (3.45)

where the subscripts k and k+/ denote the known and unknown levels in the
direction. To reduce the inversion cost, the difference equations are

approximately factorized as in [14]
(r+¢.'B,S, 1 +C0 A8 N =)=l (3.46)
so that 7, is obtained by solving sequences of one-dimensional like block

tridiagonal systems,

(I + Ck_lBk 577 )Jlﬁ—l = Ck_lgkﬂ (3.47)
(1+C'AB NV 7y = dy, (3.48)
Fk+1 :Fk +V{;:k+l (349)

The coefficient matrices A, B, C contain derivatives in &, n and {. The
derivatives in ¢ and # directions are obtained by central differencing, while the

derivatives in ¢ are obtained from the following formulation,

X¢ Yeln = Yple
A

Yo |= 4 ZpXy = ZpXg (3.50)
detC

4 XeYp =Xp Ve
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3.3 Cell Volume Specification for Two Dimensional Grids

J. F. Thompon, Z. U. Warsi and C. W. Mastin suggest employing concentric
circles to determine F (¢, #) distribution. According to this procedure, a circle
whose perimeter is equal to perimeter of inner boundary of the physical domain
is defined. Then, by using an algebraic function, a set of concentric circles at
various radii is specified. The same grid point distribution is applied to the
inner circle (whose perimeter is that of the inner boundary) and the other grid
points can be determined by rays emanating from the origin and passing from
the grid points of inner circle as shown in Figure 3.1. After the grid point
distribution is determined, inverse of Jacobian of transformation, i.e. cell area
function F, can be computed for this grid point distribution. The manner in

which concentric circles are specified is used for grid line clustering.

Figure 3.1 Sample algebraic grid by concentric circles
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A second approach to determine F' is discussed in reference [16]. In this
procedure, the length of the inner boundary is drawn as a straight line with the

same grid point distribution. Then parallel grid lines (constant #) are created to
produce a nonuniform grid spacing in a rectangular domain. After this
procedure, the Jacobian is calculated to provide the cell area function. This

procedure is illustrated graphically in figure 3.2 and 3.3.

PHYSICAL
GRID

Figure 3.2 Physical grid created on boundary curve ab

SPECIFIED
CONTROL
VOLUME
GRID

/777777 7777777777777 7777

»
»

<&
<4

sh _sa

Figure 3.3 Sample algebraic grid by parallel grid lines
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One simple and popular way to specify the cell volume, i.e. F distribution, is
suggested in reference [14] and in thesis this procedure was used. The

procedure is explained below.

Marching

distance, As* i+1

i

%, Grid pointA
" chord length, Ac

Figure 3.4 Topology for the cell area specification

AV, =Ac; As, (3.51)
where Ac, ; defines the grid point chord length and As, ; is the marching

distance. The grid point chord length Ac, ; is given by

Lo - .
Ac; = =7 +[7 = 7)) (3.52)
Marching distance As,; can be taken as constant or determined by using

different functions which match the required criteria for generated grids [14].

If exponential function is used, As,; can be defined by the following
formulation.

As,; =As (1+¢)” (3.53)
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where As, is the initial grid spacing in the marching direction and &£ is the

ratio of successive spacing in the marching direction. These two parameters are

input given by the user.

3.4 Cell Volume Specification for Three Dimensional Grids

In order to calculate cell volumes, the method used for the calculation of cell
area in two dimensional hyperbolic grid generation is extended to three

dimensional hyperbolic grid generation.

In this method, the specified volume at each point is set equal to the computed

surface area element times a user specified arc-length [14].

Specifically,
AV

i,j,k+1

= As.

i,j.k

AS, . (3.54)

where As is the user specified arc-length and AS is the surface area. AS can

be found as follows.

1. - - - ] - - - - ]
AS;jx = AW = ”i—l,j,k“" Tk ri,j,k‘ 1w~ ri,j—l,k‘""ri,jﬂ,k - ri,j,k‘

(3.55)

As can be a constant or can be an exponential function used for clustering in

the marching direction.

3.5 Boundary Conditions and Implementation for Two Dimensional Grids

In this part, boundary conditions for two dimensional hyperbolic C-type grid

and O-type grids are considered.
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3.5.1 C- Type Grids

At boundaries where i =1 and i =im, x is held constant and y is floated using

the equations as follows,

X = X (3.56)
Yijer = Y1y —As()) (3.57)
Kim,jt = Xim, j (3.58)
Yim js1 = Yim; TAs(J) (3.59)

Physical and computational spaces for C-type mesh are shown in Figure 3.5

and figure 3.6 respectively.

3.5.2 O - Type Grids

At boundaries where i =1 and i =im , y is held constant and x is floated using

the equations as follows,

Xp = X FAs()) (3.60)
Yijar = Vi (3.61)
Xip ju1 = Xi,; +AS()) (3.62)
Yimjs1 = Yim.j (3.63)

Physical and computational spaces for O-type mesh are shown in Figure 3.7

and 3.8 respectively.

Recall Equation (3.13) and note that the boundary conditions affect [DD]2 and
[DD]imfl according to Equations (3.15) and (3.16). R, and R, matrices at all j

m

levels can be calculated by using Equations (3.56) through (3.63). After the
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calculation of R, and R, matrices, [DD]2 and [DD]imfl matrices are updated

m

as given by Equations (3.15) and (3.16).

o g

I’L,L 8=

s
(el |
£ =0

N\

L. -
\ 77 = nmax
© d
Figure 3.5 Physical space for C-type mesh
d e f g
n =T ax
E=0 [ﬁ= G max
g
n=0
a 77 77 a
b c b

Figure 3.6 Computational space for C-type mesh
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Figure 3.7 Physical space for O-type mesh

£=0/ = Sonax

Figure 3.8 Computational space for O-type mesh
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3.6 Boundary Conditions and Implementation for Three Dimensional
Grids

In literature, it is seen that five types of implicit boundary conditions can be
implemented to the grid generation code at the ¢ and # boundaries (except for
the axis condition, which is only implemented in ¢). These five types of
implicit boundary conditions are discussed in Reference [15]. Throughout this

t

section, coordinate increments A7 =7,,, — 7, are represented by (Ax,Ay,Az)

3.6.1 Periodicity Boundary Condition

All derivatives at the end points in the periodic direction are evaluated by
“wrapping around”. A periodic block tridiagonal solver should be used in order

to solve the system.

3.6.2 Constant Cartesian Plane Boundary Condition

If a £ or # boundary is restricted to an x=constant, y=constant or z=constant
plane, then this value is enforced and the other variables are “floated”. For
example, for x=constant plane at ;=1 boundary, x is held constant and y and z

are floated using the following condition.

Ax 0
Ay| =|ay (3.64)
Az Az

i=1 i=2
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3.6.3 Symmetry Plane Boundary Condition

Conventional reflection planes are used to impose symmetry about any x=0,
y=0 and z=0 plane and values are updated implicitly. For example, to update a
reflected plane at i=1 for a symmetry condition about x=0 corresponding to

1=2, x reflects odd and y and z reflect even as,

Ax - Ax
Ay| =| Ay (3.65)
Az Az

This condition is illustrated in Figure 3.9.

x =0 plane

v

Figure 3.9 Illustration of symmetry plane boundary condition
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3.6.4 Floating Edge Boundary Condition

An entire £ or n boundary can be floated using the simple hyperbolic equation

r; =0 or 7, =0 to update a boundary plane. This is essentially a zeroth

order extrapolation of Ar from the adjacent interior value.

As shown in Figure 3.10, there is not any change for 7, and 7, in ¢ direction,
ie, r; =0 and 7, =0. So, these two simple hyperbolic equations provide

the orthogonality between ¢ and ( directions and between 7 and

¢ directions.

_ i=2
7
- n j=2
, ./ L k=2
i=1 i=2
k=2 k=2
i=2
k=1
i=1 i=2
Jj=1 Jj=1
¢
n
S

Figure 3.10 Sketch illustrating 7, and 7, vectors
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3.6.5 Axis Boundary Condition

The axis point can not be included in a normal calculation, because at the axis
point a whole line contracts to one point which makes the determinant of B~' A
zero. This makes the governing equation not well posed. Therefore, these
points must be user specified and can not be obtained by calculation for the

initial surface. [18]

As stated at the beginning of this section, the information about these five types
of boundary conditions is taken from Reference [15] and more detailed

information can be found in Reference [15].

3.6.6 Implementation of Boundary Conditions

In this thesis, a floating type boundary condition is used and it is applied in
both ¢ and 7 sweeps.

3.6.6.1  sweep implementation

During the solution procedure, the terms at j=1 should be implemented to form

n sweep matrix containing the unknown interior elements.

If Equation (3.47) is written at j=2 station, the discretized equation is obtained
as follows.

-1 _ ~ - 1 _ - -
7'(C IB)i,Z,k di,l,k+1 +1 'di,z,k+1 +§' (C IB)i,Z,k di,3,k+1 = Ci,é,kgi,z,kﬂ

(3.66)
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So, zeroth order mixed derivative for vector d with respect to # and { at the
boundary should be calculated and implemented to the system. Calculation and
implementation are given in detail as follows.

0d 9 (ad
~919%1_) (3.67)
04on ai(anJ

If g—d is expanded by using second order forward difference at j=1 station, the
n

following equation is obtained.

a[(_ 3, +4d,,—d )/ 2] ~0
F1e -

Then, expanding the above equation by using the first order backward

(3.68)

difference for { derivative, the following equation is obtained.

- 3dj=1,k+1 + 4dj=2,k+1 - dj=3,k+1 _ - 3dj=1,k + 4dj=2,k - dj=3 k

—=0 (3.69
5 5 (3.69)
Rearranging the above equation, it is possible to obtain
- 1( - - - - -
djzl,k+l = 5 (4dj:2,k+1 - dj:3,k+1 + 3dj:1,k - 4dj:2,k + dj:3,k ) (3.70)

If Equation (3.70) is substituted into Equation (3.66), the following equation is

obtained as,

—

(1 _g(c_lB)i,z.k jji,z,ul +§(C_IB)i,2,k dispn =

- (.. - ~ ~
Ci,i,k 8inkn T 6 (C IB)i,Z,k (Sdi,l,k —4d,,, +d;5, ) (3.71)
For the boundary j=jm, the same procedure of calculation and implementation
is applied. Again, zeroth order mixed derivative for vector d with respect to 7

and ¢ at the boundary j=jm should be calculated and implemented to the

system. Noting that
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0°d _ i[a—d] =0 (3.72)

If g_g" is expanded by using second order backward difference at j=jm station,

the following relation is obtained.

8[(3& j=jm ~ 4‘?/:/1111 +d j=jm2 )/ 2] _
Cle

Then, expanding the above equation by using first order backward difference

0 (3.73)

for { derivative, the following equation is obtained.

3d

j=jmk+l 4djm1,k+1 + dij,k+1 _ 3dj=jm,k - 4djm1,k + djmz,k -0 (3.74)
2 2
Rearranging the above equation it is possible to obtain
- 1( - - - - -
jmjmk+l = 5 T okl T @ = jmo kel j=jmk T = jmik Jj=jm2.k
d : (4d d +3d 4d . vd_ )
(3.75)

If this equation is substituted into Equation (3.47) at j=jm-1 station, following

equation is obtained.

2 - 2 -
- 5 (C_lB)i,jm—l,k di,jm—2,k+1 + (1 + g (C_lB)i,jm—l,k jdi,jm—l,kﬂ =

_ - 1¢._ -
Ci,}m—l,k 8 jm—t k1 — g (C IB)i,jm—l,k (Sdi,jm,k - 4di,jm—l,k + di,jm—Z,k ) (3'76)

3.6.6.2 & sweep implementation

During the solution procedure, the terms at i=1 should be implemented to form

¢ sweep matrix containing the unknown interior elements.

If Equation (3.48) is written at i=2 station, the discretized equation can be

obtained as follows.
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1 1

_E(C_IA)Z,,;J( (Vg“’j)l“,-,kﬂ + I(Vg“?‘)zyj,kﬂ +§(C_1A)2,j,k (Vg“’j)&j,kﬂ = jz,j,k+l

(3.77)

Therefore, zeroth order mixed derivative for vector (V :r ) with respect to ¢ and

{ at the boundary should be calculated and implemented to the system. Noting

that
*(V,7) 2 [a(vﬁ)j_o 478
9gog 9 d¢ '
av,7) _ : .
It is expanded by using second order forward difference at i =1

station, the following relation is obtained.

ola(v,7), +l5,7) 7,70
a¢

Then, expanding the above equation by using first order backward difference

(3.79)

for { derivative, the following equation is obtained.

_3(V§;)z’=l,k+1 + 4(V§;:)i=2,k+1 B (VJF)izs,kH " 3(V§7)i:1,k B 4(V§F)i:2,k + (fo)i:&k
2 2
=0
(3.80)

Rearranging the above equation, it is possible to obtain

- 1 - - - - -
(Vé“r)izl,k+1 = 5(4(V§r)i—2,k+l - (V§r)i:3,k+1 + S(Vé“r)izl,k - 4(V§r)i:2,k + (Vé“r)iza,k)
(3.81)
If this equation is substituted into Equation (3.77), following equation can be

obtained as,
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2( - 2( . -
(I_E(C IA)Z,j,k j(vé“r)z,j,ku +_(C IA)Z,j,k (V§r)3,j,k+1 -

I . i} 4
dy +g(C‘1A)2, LBV F) e F) L +.F) ) (3.82)

For the boundary at i=im, the same procedure of calculation and
implementation can be applied. Again, zeroth order mixed derivative for vector

(V :r ) with respect to ¢ and { at the boundary i=im should be calculated and

implemented to the system. Noting that

az(vg?):i(a(vgf)}o 383
dgdg  df\ 9¢

o(v,7) . . . >
If Y is expanded by using second order backward difference at i=im

station, the following equation is obtained.

ooty ), ~4lv,7), + ), )2
a¢

Then, expanding the above equation by using first order backward difference

(3.84)

for { derivative, the following relation is obtained.

3(V§7)im,k+1 _4(V§;)iml,k+1 + (Vé”;)imz,kﬂ 3(V§F)im,k _4(V§F)im1,k + (VJF)imz,k

2 2
=0 (3.85)

Rearranging the above equation, it is possible to obtain

- 1 - - - -
(V§r)im,k+1 = 5 (4(Vé“r)i:im1,k+1 - (Vé“r)i:imz,kﬂ + 3(V§r)i:im,k - 4(V§r)i:im1,k )

+ %(VfF)i—imZ,k (3.86)

If Equation (3.86) is substituted into Equation (3.48) at i=im-1 station,

following equation is obtained as,
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2( - 2( . -
Lt ORI BN VR S R o B

- 1 - - -
it j s _E(C_lA)iml,j,k (3(V§’”)im,k _4(V§’”),»ml,k + (V;r)imz,k) (3.87)

As explained before, after calculating (V é,?) terms, grid points can be found by

using Equation (3.49).
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CHAPTER 4

SMOOTHING AND CLUSTERING

4.1 Smoothing for Two Dimensional Grid Generation

In hyperbolic grid generation technique, the derivatives in ¢ and # directions
are calculated by numerical approximations. So, artificial dissipation terms
must be added in order to control oscillations due to odd-even uncoupling of

grid points [1]

The form and magnitude of the added dissipation are very important for grid
quality. Artificial dissipation terms (damping function) prevent propagation of
slope discontinuities from the initial data onto the domain. However, these
terms cause deformation of orthogonality. So, there is a trade-off between the
grid smoothness and deformation of orthogonality because of the addition of

artificial numerical dissipation terms.

In this study, in order to get rid of propagation of discontinuities, the right hand
side of the Equation (3.13) is modified with fourth order artificial dissipation
terms.

[AA]R,

-1, +[BBIR, . +[CCIR.., , = [DD], , + dissipation 4.1

i+l,j

where
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dissipation = ,B(AV);RLJ.
= BAV),[(AV),R,,]
= ,B(AV)(;[RMJ —2R ;+R._]
zﬂ[(RH—Z,j - 2Ri+l,j +R,; )—2(R

— 2Rl.,j +R_, )+ (Ri,j — 2Rl._1,j + R,»_z,,- )]

i+1,j i-1,j

= ﬂ(RHZ,j - 4Ri+1,j + 6Ri,j - 4Ri—1,j + Ri—z,j) 4.2)
For stability, the maximum value of # can be taken as 0.125.

So, the right hand side of equation (4.1) can be rearranged as follows,

[AA]Ri—l,j + [BB]Ri,j + [CC]Ri+l,j = [DD]i,_j 4.3)

where

iJ

[DD], . = {[DD]i,j }1,1 +:5(xi+2,j _4'xi+1,j +6'xi,j _4xi—1,j + 'xi—2,j)
{[DD]i,j }2,1 +ﬁ(yi+2,j _4y1'+1,j +6yi,j _4yi_1,‘,~ + Vi)

and there is no change for the other coefficient matrices.

Such numerical methods, though elegant are complex and time consuming.
Simple algebraic relations based on analytical geometry can also be used for

ensuring the orthogonality and providing required cell area. [17]

In this approach, the area of cell formed over the edge ab on I'j is obtained by

the following formula.
Ay =t +13, (1= cF)as() 4
where cf is cell size control factor, As;is the cell height or marching distance

and [ is the distance between two successive grid points along the profile. Since

this is a marching procedure, I, denotes the distance between grid points a

and b, [, denotes the distance between grid points d and e. The superscript
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denotes the level in the marching direction. See Figure 4.1. A suitable value for
cf (between O and 1) is selected to get an appropriate cell size distribution
within the domain. Same technique is used in Reference [11]. The difference
appears only in selecting the cell size control factor. Cell size control factor is
determined by a function in [11], while it is taken as constant in [17]. In this

study, it is taken as constant and given by the user.

Figure 4.1 Schematic diagram illustrating the modified cell area calculation

In this thesis, both of the above approaches, i.e. adding fourth order artificial
dissipation terms and approach given in [17], were used to obtain a good grid
quality. If these approaches are not used, a mesh like figure 4.2 may be
obtained. At this point, it is useful to note that these approaches should be used

when necessary.
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Figure 4.2 A mesh showing the propagation of a discontinuity generated from

a hyperbolic system of equations

Moreover, in many physical domains convex corners are usually met and in
order to provide extra robustness at convex corners, switching from solving the
hyperbolic grid generation equation to some other equations at the convex

corner point is required [15].

The exact location of the grid point in the next marching step out from a
convex corner is predicted in advance. The predicted point is located by
marching the grid a distance of As. The marching distance is scaled as

As = (As)sin(e, ) (4.5)

where a; is the half angle formed by the corner.
The scaling with size of the half angle causes the corner point to march out a

smaller distance than its neighbors, thus helping to bend the neighboring grid

lines towards the corner [15].
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Since the aim 1s making the corner point to march out a smaller distance than
its neighbors, this approach can be used more than once to bend the

neighboring grid lines towards the corner.
As = (As)fsin(ez, , I (4.6)

where n 1s the power and specified by the user arbitrarily.

4.2 Smoothing for Three Dimensional Grid Generation

In practice, numerical dissipation terms are added in ¢ and # directions since all

¢ and # derivatives are calculated by central differencing.

Typically, a combination of fourth and second order differences, which are
explicitly and implicitly included into the basic algorithm, is used. However, in

this study only second order differences are used for simplicity.

The formulation with these dissipation terms is given below.

1+c;'B.5, —¢,(AV), | 1+C' A8, —£,(aV), ] (7, - 7)) =

8 -l 0V, )+e, (V) | 7 )
where

(AV),F =7, —2F +F. (4.3)

(AV).F =7, —2F +7., (4.9)

In this study, €, =¢,, and &, =¢€, are applied for simplicity. Although

constant explicit and implicit smoothing parameters are used, they can be

scaled usingé,, = O.SHC _IA‘

. &, =0.5HC_IBH and ¢, =3¢,. For simplicity,
matrix norms HC ‘1AH and HC ‘1BH have been approximated by the square root

of the sum of the squared elements.
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4.3 Clustering in # Direction

Many functions can be used in order to control grid. Most common ones used
for this purpose are sinusoidal and exponential functions. In many applications,
grid control includes the surface clustering and the interior domain. In general,
most of the important actions take place along the body surface. Thus, surface

clustering is very important to investigate these actions.

One of the means of controlling the grids at the surface is to use an exponential
function for the marching distance, as suggested in [18],

As(j) = As,(1+€)™ (4.10)
where As(j) is the marching distance at j levels (n direction) and the values of
As; (initial grid spacing in the marching direction) and ¢ (the ratio of successive
spacing in the marching direction ) are the required parameters and specified

by the user.

For the clustering of interior grids in 7 direction, exponential function is used
as suggested in reference [18]. The input parameters for 7 clustering are intj,

Js, and sj which determine interval of stretching, level to be stretched and value

of stretching respectively.

In order to have a good grid control, the functions used for this purpose should
be continuous. Thus, in order to get a continuously changing marching function
at the interval of clustering, the ratio of successive spacing, € should be

recalculated as,

1

g:{—As(]s ‘m”)} . @.11)
S]

where As(js—int j) is the marching distance at the (js—int j) level in the

direction.
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Finally, the marching function is redefined as,
As(j)=sj(l+&)" for js—intj< j< s (4.12)

As(j)=sj(l+€)™" for js<j< js+int; (4.13)

4.4 Clustering in ¢ Direction

For ¢ clustering, various methods can be found in literature. The procedure of ¢

clustering, used in this thesis, is given below.

At the beginning, arc-length of the profile is calculated and normalized. Every
three points of the profile is used and formulations for x and y coordinates,
which are functions of arc-length, are derived as a function of arc length by
using cubic spline method. If number of points of profile is not a multiple of
three, this can be achieved by adding required number of points. For this
process, last two points are used and arithmetic mean of coordinates of these
last two points is calculated and coordinates of the new required points are

found.

After the derivation of cubic spline formulas for x and y coordinates as a
function of arc length, coordinates of any point on the profile can be calculated
by giving arc-length as input. After this work, clustering procedure is applied

to arc length. This procedure is given below.

The following series formulations can be introduced for this process.
a,=a, rc"’ (4.14)

S :al-(1—1"6"):1’c-an—a1

n

4.15
1-rc re—1 ( )

where S, denotes total arc length up to n™ grid point in the & direction and rc

denotes the clustering coefficient.
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From general series formulation, the following equations can be written.

Ax, = Ax, - rc"” (4.16)
S, =—Ax1(1'(_1;cr)c ) 4.17)

where Ax; denotes the arc length between first two grid points and Ax, denotes

the arc length between n™ and (n-1)" grid points.

Rearranging Equation (4.17), one can obtain

S S
A'xl A'xl
By using this equation, clustering coefficient is calculated by bisection root

finding method.

If Ax, and Ax, are given as input, two clustering coefficients rc; and rc;

should be calculated using the following equations and applying bisection root

finding method.
S S
re] ———rc, +——-1=0 (4.19)
A')Cl A'xl
S, S,
re, —Enrc2 + Ax -1=0 (4.20)

Using the coefficients rc; and rc;, S and §* are found and these two S,

values are blended using Hermitian polynomials. Hermitian polynomials used

for this procedure are given below.
H, (T)=21°-3T"+1 4.21)
H,(T)=-2T° +3T" (4.22)

Finally, S, is calculated using the following formula,
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S = H[;_ zzjx SO 4 H(%Jx §@ (4.23)

where N denotes number of grid points in & direction. This equation provides

clustering of arclength and since coordinates of grid points are function of

arclength, it provides clustering of grid points.
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CHAPTER 5

APPLICATIONS AND RESULTS

5.1 Two Dimensional Grid Generation Applications

In this section, two-dimensional hyperbolic grid generation code is applied to
different geometries in order to show robustness of the code. Also, the input

parameters used for the generation of grids are given.

5.1.1 O-Mesh around an Ellipse

An O-mesh around an ellipse centered at the origin and having a major axis of
2 units and minor axis of 0.2 units is generated for general purpose. This

profile and its enlarged view are shown in Figures 5.1 and 5.2 respectively. The

input parameters are given in Table 5.1.

Table 5.1 Input parameters for O-mesh around an ellipse

Parameters Values
Marching distance, As 0.05
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc | 0.02
Volume scaling coefficient, vsc 1.0
Number of points (&x7) 201x50
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Figure 5.1 O-mesh around an ellipse
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Figure 5.2 Enlarged view of Figure 5.1
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5.1.2 O-Mesh around a Circle

An O-mesh around a circle having a radius of 0.5 units and centered at the
origin is generated for general purpose, too. This profile and enlarged view of
it are given in Figures 5.3 and 5.4 respectively. The input parameters are given

in table 5.2.

Table 5.2 Input parameters for O-mesh around a circle

Parameters Values
Marching distance, As 0.03
Surface clustering coefficient, scc 0.05
Fourth order damping coefficient, dc | 0.02
Volume scaling coefficient, vsc 1.0
Number of points (&x7) 201x50
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Figure 5.3 O-mesh around a circle
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Figure 5.4 Enlarged view of Figure 5.3

5.1.3 Mesh around a convex corner

Hyperbolic grid generation around a convex corner is a difficult task and a
special treatment, which is explained in this study, at these points is needed.
So, mesh around a 90°convex corner is generated in order to show the
robustness of the code. For this case, code works satisfactorily so that there is
no need any special treatment in this region. Mesh around a convex corner and
enlarged view of it are given in Figures 5.5 and 5.6 respectively. The input

parameters are given in Table 5.3.
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Table 5.3 Input parameters for mesh around a convex corner

Parameters Values
Marching distance, As 0.02
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc | 0.02
Volume scaling coefficient, vsc 1.0
Number of points (&x7) 101x40
175 ]
1.5
1.25 &
> TF
0.75 :_ E gEses H
0.5F i
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0 0 0.5 1 1.5 2
X

Figure 5.5 Mesh around a convex corner
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Figure 5.6 Enlarged view of Figure 5.5

5.1.4 Mesh around a concave corner

Hyperbolic grid generation technique can fail for concave profiles since grid
lines overlap and cell volumes become negative as the solution proceeds. So,
mesh around a 90° concave corner, the most critical profile in order to test
robustness of code, is generated in order to show the robustness of the code.
Mesh around a concave corner and enlarged view of it are given in Figures 5.7

and 5.8, respectively. The input parameters are given in Table 5.4.

Table 5.4 Input parameters for mesh around a concave corner
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Parameters Values
Marching distance, As 0.007
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc | 0.05
Volume scaling coefficient, vsc 0.8
Number of points (&x7) 51x30
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Figure 5.7 Mesh around a concave corner
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005

Figure 5.8 Enlarged view of Figure 5.7
78




5.1.5 C-Mesh and O-Mesh around NACA0012 profile

C-mesh and O-mesh around NACAO0012 airfoil profile is generated since it is
the most common airfoil profile used in Computational Fluid Dynamics (CFD)
applications. In Figures 5.9 and 5.10, C-mesh around NACAOQOO012 profile and
its enlarged view are given, respectively. The input parameters for C-mesh are

given in Table 5.5.

Table 5.5 Input parameters for C-mesh around NACA0012

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.005
Fourth order damping coefficient, dc | 0.0
Volume scaling coefficient, vsc 1.0
Number of points (£x77) 351x100
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Figure 5.9 C-mesh around NACAO0012 profile
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Figure 5.10 Enlarged view of Figure 5.9

O-mesh around NACAOQO012 profile and enlarged view of it are given in Figures
5.11 and 5.12, respectively. The input parameters for O-mesh around

NACAO012 profile are given in Table 5.6.

Table 5.6 Input parameters for O-mesh around NACAO0012

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc | 0.07
Volume scaling coefficient, vsc 0.8
Number of points (&x7) 151x100
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5.1.6 C-Mesh and O-Mesh around NL.R7301 profile

C-mesh and O-mesh around an NLR7301 airfoil profile, which is a transonic
airfoil profile, are generated. In Figures 5.13 and 5.14, C-mesh around
NLR7301 and enlarged view of it are given, respectively. Input parameters for

C-mesh are given in Table 5.7.

Table 5.7 Input parameters for C-mesh around NLR7301

Parameters Values

Marching distance, As 0.01

Surface clustering coefficient, scc 0.005

Fourth order damping coefficient, dc | 0.03

Volume scaling coefficient, vsc 0.8

Number of points (&x7) 301x100
15

0.5

YiC

0.5

LFTT T

-05 0 0.5 1.5 2 25 3

Figure 5.13 C-mesh around NLR7301 profile
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Figure 5.14 Enlarged view of Figure 5.13

O-mesh around NLR7301 profile and enlarged view of it are given in Figures

5.15 and 5.16 respectively. Input parameters for O-mesh are given in Table 5.8.

Table 5.8 Input parameters for O-mesh around NLR7301

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc | 0.06
Volume scaling coefficient, vsc 0.8
Number of points (&x7) 79x80
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5.1.7 C-Mesh and O-Mesh around RAE2822 profile

C-mesh and O-mesh around RAE2822 profile are generated as another
example to transonic airfoils. C-mesh around RAE2822 and enlarged view of it
are given in Figures 5.17 and 5.18, respectively. Input parameters for C-mesh

around RAE?2822 profile are given in Figures 5.9.

Table 5.9 Input parameters for C-mesh around RAE2822

Parameters Values

Marching distance, As 0.01

Surface clustering coefficient, scc 0.005

Fourth order damping coefficient, dc | 0.0

Volume scaling coefficient, vsc 0.8

Number of points (&x77) 241x100
15

= -0.5 0 05 1 1.5 2 2.5
X/C

Figure 5.17 C-mesh around RAE2822 profile
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O-mesh around RAE2822 profile and enlarged view of it are given in Figures
5.19 and 5.20 respectively. Input parameters of O-mesh are given in Table

5.10.

Table 5.10 Input parameters for O-mesh around RAE2822

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.02
Fourth order damping coefficient, dc | 0.06
Volume scaling coefficient, vsc 0.8
Number of points (&x7) 141x70
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5.2 Two Dimensional Applications with Clustering Option

As one can notice from the input parameters given, surface clustering can be
applied and determined by surface clustering coefficient. The aim behind this is
to produce grids which can be used in Navier-Stokes’ solver. Surface clustering
is optional and left to the users’ preference. If surface clustering is not desired,

surface clustering coefficient should be taken as zero.

In addition, clustered grids in & and 7 directions can be generated by using

hyperbolic grid generation code. Two dimensional applications with clustering

option is given under the following headings.

5.2.1 O-Mesh around a Circle with Clustering in 7 Direction
O-mesh around a circle having a radius of 0.5 and centered at the origin with

clustering in 7 direction and its enlarged view are given in Figures 5.21 and

5.22, respectively. Input parameters are given in Table 5.11.

Table 5.11 Input parameters for O-mesh around a circle with clustering in 7

Parameters Values
Marching distance, As 0.04
Surface clustering coefficient, scc 0.0
Fourth order damping coefficient, dc 0.02
Volume scaling coefficient, vsc 1.0
Level to be stretched, js 25
Interval of stretching, int j 10
Value of stretching at the required level, sj | 0.004
Number of points (&x7) 201x50
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5.2.2 O-Mesh and C-Mesh around NACA0012 Profile with Clustering in 7

O-mesh around NACAO012 profile with clustering in 7 direction and the

enlarged view are given in Figures 5.23 and 5.24, respectively. The input

parameters are given in Table 5.12.

Table 5.12 Input parameters for O-mesh around NACA0012

with clustering in 7

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.0
Fourth order damping coefficient, dc 0.07
Volume scaling coefficient, vsc 0.8
Level to be stretched, js 70
Interval of stretching, int j 20
Value of stretching at the required level, sj | 0.004
Number of points (£x77) 159x150

C-mesh around NACAOO012 profile with clustering in 7 direction and its

enlarged view of it are presented in Figures 5.25 and 5.26, respectively. The

input parameters are given in Table 5.13.
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Table 5.13 Input parameters for C-mesh around NACA0012

with clustering in 7

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc 0.0
Volume scaling coefficient, vsc 1.
Level to be stretched, js 50
Interval of stretching, int j 15
Value of stretching at the required level, sj | 0.005
Number of points (£x7) 301x90
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Figure 5.25 C-mesh around NACAOQOO12 profile with clustering in # direction
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Figure 5.26 Enlarged view of Figure 5.25

5.2.3 C-Mesh around RAE2822 Profile with Clustering in 7

C-mesh around RAE2822 profile with clustering in 7 direction and enlarged

view of it are given in Figures 5.27 and 5.28 respectively. The input parameters

are given in Table 5.14.

Table 5.14 Input parameters for C-mesh around RAE2822 with clustering in 7

Parameters Values
Marching distance, As 0.02
Surface clustering coefficient, scc 0.005
Fourth order damping coefficient, dc 0.0
Volume scaling coefficient, vsc 0.8
Level to be stretched, js 35
Interval of stretching, int j 15
Value of stretching at the required level, sj | 0.005
Number of points (&x7) 291x70
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Figure 5.27 C-mesh around RAE2822 profile with clustering in # direction
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Figure 5.28 Enlarged view of Figure 5.27
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5.2.4 C-mesh and O-mesh around NACA0012 Profile with Clustering in &

C-mesh around NACAO0012 profile with clustering in & direction and its

enlarged view are given in Figures 5.29 and 5.30 respectively. The input
parameters are given in Table 5.15 and inputs of input_cluster.txt which is used

for clustering in & direction are given in Table 5.16.

Table 5.15 Input parameters for C-mesh around NACAOQO012 profile

with clustering in &

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.0
Fourth order damping coefficient, dc | 0.07
Volume scaling coefficient, vsc 0.8
Number of points (£x77) 231x100

Table 5.16 Input parameters of Input_cluster.txt

Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01
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Figure 5.30 Enlarged view of Figure 5.29
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O-mesh around NACAOQ012 airfoil profile with clustering in & direction and

its enlarged view are given in Figures 5.31 and 5.32, respectively. Input
parameters for this profile are given in Table 5.17 and input parameters of

input_cluster.txt are given in Table 5.18.

Table 5.17 Input parameters for O-mesh around NACA0012

profile with clustering in &

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.0

Fourth order damping coefficient, dc | 0.07

Volume scaling coefficient, vsc 0.8

Number of points (£x7) 131x100

Table 5.18 Input parameters for input_cluster.txt

Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01
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Figure 5.31 O-mesh around NACAOQO12 profile with clustering in ¢ direction

Figure 5.32 Enlarged view of Figure 5.31
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Besides, clustering in & or in 77 direction, clustering option can be applied for

both directions simultaneously. As an example to this, C-mesh and O-mesh

around NACAOQO012 profile with clustering in both directions are generated.

5.2.5 C-mesh and O-mesh around NACA0012 Profile with Clustering in
both £ and 7 Directions

C-mesh around NACAO0012 profile with clustering in both directions and its
enlarged view are given in Figures 5.33 and 5.34, respectively. The input
parameters are given in Table 5.19 and input parameters of input_cluster.txt are

given in Table 5.20. In Table 5.19, parameters used for 7 clustering are given

as well.

O-mesh around NACAOQOO12 profile with clustering in both directions and its
enlarged view are given in Figures 5.35 and 5.36, respectively. The input
parameters are given in Table 5.21 and input parameters of input_cluster.txt are

given in Table 5.22. In Table 5.21, parameters used for 7 clustering are given

as well.

Table 5.19 Input parameters for C-mesh around NACAOQO012 profile

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.0
Fourth order damping coefficient, dc 0.07
Volume scaling coefficient, vsc 0.8
Level to be stretched, js 40
Interval of stretching, int j 20
Value of stretching at the required level, sj | 0.004
Number of points (£x7) 231x100
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Table 5.20 Input parameters of Input_cluster.txt

Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01
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L L L L l
25
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Figure 5.33 C-mesh around NACAOQOO012 profile with clustering in both # and &

directions
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Figure 5.34 Enlarged view of Figure 5.33

Table 5.21 Input parameters for O-mesh around NACAO0O012 profile
with clustering in both £ and 7

Parameters Values
Marching distance, As 0.01
Surface clustering coefficient, scc 0.0
Fourth order damping coefficient, dc 0.07
Volume scaling coefficient, vsc 0.8
Level to be stretched, js 40
Interval of stretching, int j 20
Value of stretching at the required level, sj | 0.004
Number of points (£x77) 231x100
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Table 5.22 Input parameters of input_cluster.txt

Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01
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Figure 5.35 O-mesh around NACAOO12 profile with clustering in both # and

directions
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Figure 5.36 Enlarged view of Figure 5.35

5.3 Three-Dimensional Applications

In this section, three-dimensional hyperbolic grid generation code is applied to
different geometries. Most of these profiles are the extensions of two-
dimensional grid applications given in Sections 5.1 and 5.2. The input

parameters used for the generation of three dimensional grids are given as well.

5.3.1 Flat Plate

As a first profile, three dimensional grids for flat plate are generated since it is
a simple geometry. Mesh generated for flat plate and sections of this profile (on
x-z, y-z and x-y planes) are given in Figures 5.37 and 5.38, respectively. In the
three dimensional grid generation code, output of two dimensional grid

generation code is used as the input. Thus, the only input parameters used in
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this code are marching distance in ¢ direction and number of points in {

direction. Input parameters are given in Table 5.23.

Figure 5.37 Mesh generated for a flat plate

Figure 5.38 Sections of meshes on x-z, y-z and x-y planes
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Table 5.23 Input parameters for flat plate

Parameters Values
Marching distance, As 0.001
Number of points (&xnxd) | 101x10x30

5.3.2 O-Mesh around an Ellipse

In two dimensional grid generation applications, two dimensional O-meshes
around an ellipse having a major axis of 2 units and minor axis of 0.2 units and
centered at the origin was shown. Also, the parameters used in this generation
were given. As a three-dimensional application, these two dimensional O-
meshes are extended to three dimensional O-meshes. This profile and its
enlarged view are given in Figures 5.39 and 5.40, respectively. Input

parameters are given in Table 5.24.

Table 5.24 Input parameters for 3-D O-mesh around an ellipse

Parameters Values

Marching distance, As 0.003
Number of points (&xnmxd) | 201x50x30
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Figure 5.39 O-mesh around an ellipse

Figure 5.40 Enlarged view of Figure 5.39
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5.3.3 O-mesh around a Circle

For an O-mesh around a circle having a radius of 0.5 and centered at the origin,
the parameters used in the generation of two dimensional grids were given in
section 5.1.2. These meshes are extended to three dimensions. This profile and
its enlarged view are given in Figures 5.41 and 5.42, respectively. Input

parameters are given in Table 5.25.

Table 5.25 Input parameters for 3-D O-mesh around a circle

Parameters Values
Marching distance, As 0.01
Number of points (&xmxd) | 201x50x40
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Figure 5.41 O-mesh around a circle

107



Figure 5.42 Enlarged view of Figure 5.41

5.3.4 C-mesh and O-mesh around NACA(0012 Profile

Two-dimensional C-mesh around NACAOO12 profile is extended to three
dimensions. The input parameters for two-dimensional C-mesh were given in
Section 5.1.5. Input parameters for three-dimensional C-mesh are given in
Table 5.26. This profile and its enlarged view are given in Figures 5.43 and

5.44, respectively.

Table 5.26 Input parameters for 3-D C-mesh around NACAQ012 profile

Parameters Values
Marching distance, As 0.01

Number of points (&xmxd) | 251x50x45
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Figure 5.43 C-mesh around NACAQ0012 profile

Figure 5.44 Enlarged view of Figure 5.43
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Three-dimensional O-mesh around NACAQO012 profile and its enlarged view
are given in Figures 5.45 and 5.46, respectively. Input parameters are given in

Table 5.27.

5.27 Input parameters for 3-D O-mesh around NACAO0012 profile

Parameters Values

Marching distance, As 0.02
Number of points (Exzx¢) | 151x100x40

Figure 5.45 O-mesh around NACAO0O012 profile
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Figure 5.46 Enlarged view of Figure 5.45

5.3.5 C-Mesh and O-Mesh around NLR7301

Three-dimensional C-mesh and enlarged view of it are given in Figures 5.47
and 5.48, respectively. It should be noticed that the values of input parameters
used for two-dimensional C-mesh are different. So, all the parameters related

with two and three dimensional grids are given in Table 5.28.

Table 5.28 Input parameters for 3-D C-mesh around NLR7301 profile

Parameters Values
Marching distance in 7 direction 0.01
Surface clustering coefficient, scc 0.005
Fourth order damping coefficient, dc | 0.03
Volume scaling coefficient, vsc 0.8
Marching distance in ¢ direction 0.01
Number of points (&xrmx() 301x100x40
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Figure 5.47 C-mesh around NLR7301 airfoil profile
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Figure 5.48 Enlarged view of Figure 5.47
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Three-dimensional O-mesh and its enlarged view are given in Figures 5.49 and

5.50, respectively. Input parameters of this profile are given in Table 5.29.

Table 5.29 Input parameters for 3-D O-mesh around NLR7301 profile

Parameters Values
Marching distance in 7 direction 0.01
Surface clustering coefficient, scc 0.01
Fourth order damping coefficient, dc | 0.06
Volume scaling coefficient, vsc 0.8
Marching distance in ¢ direction 0.01
Number of points (Exrmxd) 141x80x60

QF A

Figure 5.49 O-mesh around NLR7301 profile
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Figure 5.50 Enlarged view of Figure 5.49

5.3.6 Mesh around a Convex Corner

Two dimensional grid for profile having convex corner is extended to three
dimensions. Three-dimensional mesh around a convex corner and its enlarged
view are given in Figures 5.51 and 5.52, respectively. Input parameters are

given in Table 5.30.

Table 5.30 Input parameters for 3-D O-mesh around a convex corner

Parameters Values

Marching distance, As 0.01
Number of points (Exx¢) | 101x40x45
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Figure 5.51 Mesh around a convex corner
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5.4 Three Dimensional Applications with Clustering Option

In order to show clustering options, three dimensional C-mesh and O-mesh

around NACAO012 airfoil profile with clustering in & direction, in 77 direction
and in both & and 7 directions are generated. Details of these profiles are

given under the following headings.

5.4.1 C-Mesh and O-Mesh around NACA0012 with Clustering in &

Direction

C-mesh around NACAOQ0012 with clustering in & direction and its enlarged

view are given in Figures 5.53 and 5.54, respectively. Input parameters are

given in Table 5.31. Input parameters for & clustering are given in Table 5.32.

Table 5.31 Input parameters for 3-D C-mesh with clustering in &

Parameters Values
Marching distance in 77 direction 0.01
Surface clustering coefficient, scc 0.0

Fourth order damping coefficient, dc | 0.07

Volume scaling coefficient, vsc 0.8
Marching distance in ¢ direction 0.005
Number of points (&xnx() 231x100x40
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Table 5.32 Input parameters for & clustering of 3-D C-mesh

Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01

Figure 5.53 C-mesh around NACA 0012 profile with clustering in £ direction
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Table 5.34 Input parameters for & clustering of 3-D O-mesh around

NACAO0012 profile
Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01

Figure 5.55 O-mesh around NACAO0O012 profile with clustering in & direction
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Figure 5.56 Enlarged view of Figure 5.55

5.4.2 O-Mesh around NACA0012 with Clustering in 77 Direction

O-mesh around NACAO0012 with clustering in 77 direction and its enlarged

view are given in Figures 5.57 and 5.58, respectively. Input parameters,

including clustering in 77 parameters, are given in Table 5.35.

Table 5.35 Input parameters for 3-D O-mesh with clustering in 7

Parameters Values
Marching distance in 7 direction 0.01
Surface clustering coefficient, scc 0.0

Fourth order damping coefficient, dc 0.07
Volume scaling coefficient, vsc 0.8

Level to be stretched, js 60

Interval of stretching, int j 20

Value of stretching at the required level, sj | 0.005
Marching distance in ¢ direction 0.01
Number of points (&xmx() 151x100x40
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Figure 5.57 O-mesh around NACAOQO12 profile with clustering in 7 direction

Figure 5.58 Enlarged view of Figure 5.57
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5.4.3 O-mesh around NACAO0012 with Clustering in both & and 7

Directions

O-mesh around NACAOQ012 with clustering in both £ and 7 directions and

enlarged view of it are given in Figures 5.59 and 5.60, respectively. Input

parameters are given in Table 5.36. Input parameters used for clustering in &

direction are given in Table 5.37.

Table 5.36 Input parameters for O-mesh with clustering in & and 7

Parameters Values
Marching distance in 7 direction 0.02
Surface clustering coefficient, scc 0.005
Fourth order damping coefficient, dc 0.05
Volume scaling coefficient, vsc 0.8

Level to be stretched, js 60

Interval of stretching, int j 20

Value of stretching at the required level, sj | 0.005
Marching distance in ¢ direction 0.004
Number of points (Exrmxd) 161x100x50

Table 5.37 Input parameters for & clustering of 3-D O-mesh around
NACAOQ0012 profile
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Clustering Terminal | Spacing | Number of Points between Terminals
0 0.01 80
0.65 0.001
0.65 0.001 20
0.75 0.01
0.75 0.01 30
1.0 0.01
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Figure 5.59 C-mesh around NACAOQO012 profile with clustering

both in & and 7 directions
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Figure 5.60 Enlarged view of Figure 5.59

5.4.4 C-Mesh around a Tapered Airfoil

In all three-dimensional cases given in this thesis, output file of HYPERGEN2
is used as an input file of HYPERGEN3, that is, input file of HYPERGEN3
includes two-dimensional surface point distribution. Therefore, if three-
dimensional mesh around airfoils having tapered three-dimensional geometry
is desired, it can not be generated by using output file of HYPERGEN?2. Three-
dimensional surface point distribution should be used as an input for this
purpose. As an example to this situation, three-dimensional surface point
distribution of a tapered airfoil profile, whose cross-section is NACA0012
profile, is created and used as an input file of HYPERGEN3 in order to
generate three-dimensional C-mesh around this airfoil profile. In Figures 5.61
and 5.62, three-dimensional surface point distribution of a tapered airfoil and
enlarged view of Figure 5.61 are given, respectively. In Figures 5.63 and 5.64,
generated C-meshes around this profile and enlarged view of Figure 5.63 are
given, respectively. For this application, marching distance and number of

levels in the marching direction are selected as 0.02 units and 40, respectively.
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Figure 5.61 3-D Surface Point Distribution of a Tapered Airfoil

Figure 5.62 Enlarged view of Figure 5.61
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Figure 5.63 3-D C-mesh around a Tapered Airfoil

Figure 5.64 Enlarged view of Figure 5.63
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CHAPTER 6

CONCLUSION

In this study, two dimensional hyperbolic grid generation technique is
presented and extended to three dimensions. In order to generate two and three
dimensional grids, a computer program is written using finite difference
method. By the application of grid control techniques, high quality two
dimensional grids are generated. Two dimensional hyperbolic grid generation
technique is applied to the concave and convex geometries and the results show
the robustness of the code. In addition to these, clustering procedure is added to

the code and adjusted to be used without much effort by the user.

The output of the two dimensional hyperbolic grid generation code hypergen2
1s used as the input to the three dimensional hyperbolic grid generation
program hypergen3. This code is used in order to generate three dimensional

grids for different geometries.

For convex and concave regions, a different scheme should be used in order to
eliminate the oscillations generated from odd-even decouplings. In this study,
however, two dimensional grids is added on top of each other and by this way,
three dimensional grids are generated for concave and convex geometries. The

robustness of this code can be improved by using upwind scheme.

As a further study, hyperbolic grid generation technique can be used in order to
generate grids for multiple zone geometries. This can be accomplished by
adding an angle control source term to the equations and using a new algorithm
for computing the volume source term and using shooting techniques as

suggested in Reference [13].
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APPENDIX A

DESCRIPTION AND FLOW CHART OF TWO DIMENSIONAL
HYPERBOLIC GRID GENERATION PROGRAM CODE,
HYPERGEN2

The two dimensional grid generation computer code, hypergen2 has three parts

which are preprocessor, processor and postprocessor.

In preprocessor part, three input files are read. These are profil.dat, input.dat
and input_cluster.txt. Profil.dat file has coordinates of geometry of profile and
input.dat file has the values of lots of parameters used in grid generation
program. These parameters define mesh type, maximum marching level,
surface clustering coefficient, volume scaling coefficient, fourth order damping
coefficient, initial marching distance, wake length, number of points at wake,
coefficient which determines clustering in &, clustering in n or clustering in
both directions. Input_cluster.txt has parameters used for clustering in &

direction. This file is read if clustering in & direction is desired.

In processor part, two dimensional hyperbolic grid generation technique
described in thesis is applied, that is all linearized equations derived for two
dimensional grid generation are solved here. This part includes formation of
matrices, application of boundary conditions, smoothing procedure, grid
control and solution of the system, i.e. finding grid coordinates. There are two
main subroutines, and other several subroutines in these main subroutines, in
processor part of the program. These are BTDMS and body_cluster subroutines

used for solving block tridiagonal matrix system and clustering profile in &

131



direction respectively. Body_cluster is used if & clustering is needed and input

file of this subroutine is input_cluster.txt as explained before.

In postprocessor part, coordinates of all grid points are written on a file which
1s prepared according to TECPLOT format. So, after running the program, an
output file is created which can be opened in TECPLOT. All application results
given in this thesis are TECPLOT outputs.

Parameters that should be given by the user in Input.dat file are explained

below.

Jm : Maximum marching level normal to profile

scc : Surface clustering coefficient

vsc : Volume scaling coefficient which can take 1 as maximum value

cleta : Clustering in n direction. If clustering in m direction is desired, cleta
shold be 1 and if clustering in 1 direction is not desired, cleta should be O.

clxi : Clustering in & direction. If clustering in & direction is desired, clxi should
be 1 and if clustering in & direction is not desired, clxi should be 0.

dc : Fourth order damping coefficient. It can take 0.125 as maximum value due
to stability condition.

mt : Mesh type. If C-type grid is desired, mt should be 1 and if O-type grid is
desired, mt should be 0. Actually, it is the control variable which adjusts the
boundary conditions.

convex : Used if profile has convex corner. If there is a convex corner, this
parameter should be 1, if not it should be 0. This parameter is used if O-type
grid is chosen, that is if mt = 0.

c¢x : Power of sine function related with convex corner procedure. So, this
parameter is used if convex = 1 and mt = 0.

deltas(1) : Initial marching distance

132



Js : Used if cleta equals to 1. This parameter defines level to be stretched in
direction.

intj : Used if cleta equals to 1. This parameter defines interval of stretching in 1
direction.

sj : Used if cleta equals to 1. This parameter defines the value of stretching at
the required level in n direction, that is the minimum marching distance at
clustered regions.

wl : This parameter defines wake length and of course it is used if mt = 1 (C-
type grid).

np : Number of points at wake.

Parameters that should be given in the Input_cluster.txt file by the user are

explained below.

Clustering terminals, spacing and the desired number of points should be
given. In this file O and 1 should be given as clustering terminals in all &
clustering cases since the arclength is normalized and O and 1 defines the start
and end point of the geometry profile. Also, spacings at these terminals should
be equal. The terminals between 0 and 1 and the spacings are given by the user.
Since this input file is used for clustering in & direction, the spacings given for
the terminals between O and 1 should be less than the spacings given for O and

1 terminals.

Output of this two dimensional hyperbolic grid generation code, Hypergen2, is
also an input for three dimensional hyperbolic grid generation program code,
Hypergen3. Flow chart of the computer program Hypergen2 is given in Figure
A.l.
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Input data files
Profil.dat
Input.dat
Input_cluster.dat

PREPROCESSOR
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PROCESSOR

BTDMS

A

Output data file
Output.dat

POSTPROCESSOR

Figure A.1 Flow Chart of the Computer Program HYPERGEN2
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APPENDIX B

DESCRIPTION AND FLOW CHART OF THREE DIMENSIONAL
HYPERBOLIC GRID GENERATION PROGRAM CODE,
HYPERGEN3

The three dimensional hyperbolic grid generation program code, hypergen3 has

three parts which are preprocessor, processor and postprocessor.

In preprocessor part, input file given by the user is read. This input file is
output file of the hypergen2 and given without any changes. The parameters
which define mesh type, maximum marching level in 7 direction, surface
clustering coefficient, volume scaling coefficient, fourth order damping
coefficient, initial marching distance in 7 direction, clustering in & direction,
clustering in 7 or clustering in both directions are used in hypergen2.
Therefore, there is no need any parameter which controls the grid in
hypergen3. Grid control can be done in two dimensional grids and the
generated three dimensional grids have the properties of two dimensional grids

since output file of hypergen?2 is the input file of the hypergen3.

In processor part, three dimensional hyperbolic grid generation technique
described in thesis is applied, that is linearized form of equations, derived from
approximate factorization, is solved here. This part includes the calculation of

the terms in 77 sweep and & sweep and calculation of derivatives in &, 77 and
¢ directions. Also, this part includes formation of matrices, application of
boundary conditions for 77 and & sweep and solution of the system, that is

finding coordinates of grids. Also, there is a control parameter for convex
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profiles. In this part, there is only one subroutine which is used for solving

block tridiagonal matrix system.
In postprocessor part, coordinates of all grid points are written on a file which
1s prepared according to TECPLOT format. So, after running the program, an

output file is created which can be opened in TECPLOT.

Flow chart of three dimensional hyperbolic grid generation program code,

Hypergen3 is given in Figure B.1.
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PREPROCESSOR

Input data file

Input.dat
> Convex=1
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» BTDMS
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Output data file
POSTPROCESSOR > Output_dat

Figure B.1 Flow Chart of the Computer Program HYPERGEN?3

137




