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Yarman-Vural

Supervisor

Examining Committee Members
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ABSTRACT

AUTOMATIC IMAGE ANNOTATION BY ENSEMBLE OF VISUAL

DESCRIPTORS

Akbaş, Emre

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş Tünay Yarman-Vural

July 2006, 51 pages

Automatic image annotation is the process of automatically producing words to de-

scribe the content for a given image. It provides us with a natural means of semantic

indexing for content based image retrieval. In this thesis, two novel automatic image

annotation systems targeting different types of annotated data are proposed. The

first system, called Supervised Ensemble of Visual Descriptors (SEVD), is trained

on a set of annotated images with predefined class labels. Then, the system auto-

matically annotates an unknown sample depending on the classification results. The

second system, called Unsupervised Ensemble of Visual Descriptors (UEVD), assumes

no class labels. Therefore, the annotation of an unknown sample is accomplished by

unsupervised learning based on the visual similarity of images. The available auto-

matic annotation systems in the literature mostly use a single set of features to train

a single learning architecture. On the other hand, the proposed annotation systems

utilize a novel model of image representation in which an image is represented with

a variety of feature sets, spanning an almost complete visual information comprising

color, shape, and texture characteristics. In both systems, a separate learning entity is

trained for each feature set and these entities are gathered under an ensemble learning

approach. Empirical results show that both SEVD and UEVD outperform some of

the state-of-the-art automatic image annotation systems in equivalent experimental

setups.
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ÖZ

GÖRSEL TANIMLAYICI TOPLULUKLARIYLA

OTOMATİK GÖRÜNTÜ AÇIKLAMA

Akbaş, Emre

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş Tünay Yarman-Vural

Temmuz 2006, 51 sayfa

Otomatik görüntü açıklama, verilen bir görüntü için o görüntünün içeriğini açıklayan

kelimelerin otomatik olarak üretilmesi süreci olarak tanımlanmaktadır. Otomatik

görüntü açıklama, içerik tabanlı görüntü erişimi için doğal bir anlamsal indeksleme

yöntemi sağlar. Bu çalışmada, değişik tipteki açıklamalı görüntü veritabanları üzerinde

çalışan iki farklı otomatik görüntü açıklama sistemi önerilmektedir. Eğitmenli Görsel

Tanımlayıcı Topluluğu olarak adlandırılan ilk sistem, açıklamalı ve sınıflara bölünmüş

bir görüntü veritabanı üzerinde eğitilir. Verilen bir görüntünün otomatik açıklaması, o

görüntünün sınıflandırma sonuçlarına bağlı olarak yapılır. Eğitmensiz Görsel Tanımlayıcı

Topluluğu adlı diğer sistem, açıklamalı görüntü veritabanının sınıflara bölünmüş ol-

masını gerektirmez. Otomatik açıklama, görsel benzerlik tabanlı eğitmensiz öğrenmeye

dayanır. Mevcut otomatik görüntü açıklama sistemleri tek bir öznitelik grubu kulla-

narak tek bir öğrenme mimarisini eğitir. Önerilen sistemler ise bir görüntünün aynı

anda birden fazla öznitelik grubuyla gösterildiği yeni bir gösterim modeli kullanır.

Bu gösterim modelinde, öznitelik grupları; renk, şekil ve doku uzaylarını mümkün

olduğunça çok kapsamalıdır. Önerilen iki sistemde de her öznitelik grubu için bir

öğrenme modülü eğitilmekte ve bu modüller topluluk öğrenmesi yaklaşımlarıyla bi-

raraya getirilmektedir. Deneysel sonuçlar, önerilen sistemlerin literatürdeki bazı en

gelişmiş teknikleri geride bıraktığını göstermiştir.
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CHAPTER 1

INTRODUCTION

Automatic annotation of images can be defined as the process of automatically pro-

ducing words for images. The relation between words and images depends on the

purpose of the application or the content of the image database. For instance, in a

museum application, the artist’s name, the period, and other historical information

of a piece of art may be associated with its image as annotation words. In this thesis,

general-purpose natural images are of interest and annotation of a word intends to

describe its content. Figure 1.1 depicts an image annotation example in the sense that

it is used in this study.

Automatic annotation is important for providing us with the capability of index-

ing images semantically. This capability enables content-based access to large image

databases and makes their organization easier. Together with the high pace of tech-

nology development, the wide and the increasing use of emerging technologies result

in increasing amounts of digital media being produced everyday. The more data is

produced, the more effortful it gets the content-based organization of this data. Since

elephant, wild life, animal, grass, tree, landscape

Figure 1.1: An annotation example taken from [1].
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manual annotation is a labor intensive process, it becomes quite expensive as the size

of the database gets larger.

Automatic image annotation is closely related to the problem of image retrieval

where the aim is to search for images in large image databases. Today, this problem is

attacked by Internet search engines and content-based image retrieval (CBIR) systems

in many different ways. The Internet search engines such as Google1 retrieve images

in response to word queries by analyzing the text, on the web page, adjacent to the

image and the image caption [2]. On the other hand, CBIR systems mostly rely on

visual similarity of images measured by a (dis)similarity metric in a predefined fea-

ture space. They generally employ query-by-example or query-by-sketch [3]. However,

both type of systems are quite näıve for properly retrieving images by their content.

Internet search engines retrieve irrelevant images when the caption and adjacent text

of an image is not related with the image content. On the other hand, CBIR systems

utilize low degree of supervision if visual similarity alone is used to capture semantic

similarity. Automatic image annotation can be considered as a “weak” supervised

learning process for image content. Therefore, it is a remedy, rather than an ultimate

solution, for content based image retrieval. The output of the automatic image an-

notation systems can be used as indices of images, which can be enhanced by further

learning paradigms.

As a promising tool for image retrieval, automatic image annotation may have

diverse application areas including web searching, digital libraries, e-commerce, edu-

cation, military applications, etc.

1.1 Related Work

The research on CBIR has increased drastically since late 1990s [4]. The trends show

that CBIR will be a popular research area for quite a while. Being one of the active

research topics in CBIR, the problem of automatic image annotation seems to be no

exception to this trend.

The systems proposed for automatic image annotation can roughly be reviewed in

two categories:

1. Studies that explore relations between a set of words and a set of image regions,

1 http://www.google.com
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2. Studies that directly treats the problem as a supervised learning task.

The methods proposed in the first category are based on image segmentation

and implements a bottom-up procedure. Images are first segmented into regions.

Then, features are extracted from these regions. Sometimes the extracted feature

vectors are quantized. Finally, the relation between quantized feature vectors and

annotation words are modeled using statistical learning. Annotation is performed on

the segmented regions, where the features of each region is fed to the previously trained

system to output words for that image. Some of the representative work employing

the approach above are given in [5], [6], [7].

The methods pertaining to the second category, treats the automatic annotation

problem as a supervised learning task. This approach is applicable to the images with

predefined class labels. The general approach is to divide the automatic annotation

process into two steps: image classification and annotation, where annotation is based

on the results of the classification step. Most of the available systems share a common

approach as follows: Given a set of images with predefined class labels, first features

are extracted from the whole images, and the system is trained by the features and

predefined class labels. Then, an unseen image is annotated by feeding the extracted

features to the trained system which, in turn, predicts the most likely top n classes

for the given image. Automatic annotation of the given image can be achieved in two

different ways, depending on the dataset: if some annotation words are provided for

each class, then the image is annotated by a subset of words pertaining to the top

n classes. If no annotation words are provided other than the class labels, the given

image is annotated with the class labels of top n classes. Representative work in this

category include [1] and [8].

1.2 Motivation Behind the Proposed Systems

The available automatic image annotation systems mostly focus on developing a novel

learning model rather than image representation. A large variety of algorithms and

methods were used such as co-occurrence statistics [9], Expectation Maximization

[5], Hidden Markov Models [1], statistical relevance models [6], [7], [10], graph-based

approaches [11], latent space models [12], etc. In the available systems, image rep-

resentation did not get as much attention. Although various features were used, in

3



most of the studies no emphasis was given to the selection of features or the design

of the feature space. No justification or reasoning was given for the image representa-

tion. In short, the available systems do not explicitly address the problem of feature

space design nor they evaluate the effect of representation on the overall performance.

However, we believe that representation is at least as important as the learning model.

It is a very challenging task to design a feature space such that the content of

the image is properly represented with low-level visual features. A feature set which

represents an object class well, may fail to represent other classes. For example, if one

is searching for images of “sky”, dominant color features may work best, but if it is the

images of “zebras”, which are in question, texture features should be used [13]. This

problem worsens as the number of classes increase. Unfortunately, the problem of

automatic annotation of large image databases contains hundreds or even thousands

of classes.

In summary, the “best” feature space for a problem domain is not given. The image

database at hand and each class may be “best” represented with different combinations

of various features. To address this issue, an automatic annotation system should be

capable of utilizing a large variety of feature sets concurrently.

How this can be done is the next question. Although there are many ways to

design a feature space, the problem of redundancy, data normalization and curse of

dimensionality should be avoided as much as possible. An elegant way of getting rid

of these problems is to train a separate learning architecture for each feature set, and

then combine them using ensemble learning techniques.

The studies reviewed during this study mostly utilize a single set of features to

train a single learning architecture. The feature set either contains only color or

texture features, or is a concatenation of various color and texture features.

1.3 The Proposed Systems

In the light of the discussion above, we propose two novel automatic image anno-

tation systems targeting different types of annotated data. Both systems tackle the

problem of image representation. The first system, called Supervised Ensemble of

Visual Descriptors (SEVD), is trained on a given set of images with predefined class

labels. This system automatically annotates a given image depending on the result

4



of a classification step. The other system, called Unsupervised Ensemble of Visual

Descriptors (UEVD), assumes no class labels and annotates a given image by statis-

tically analyzing the annotation words of the images which are similar to the query

image with respect to different visual characteristics.

The proposed systems bears some superiorities compared to the available systems.

Firstly, the images in the dataset are represented by a variety of MPEG-7 visual de-

scriptors [14], which covers an almost complete domain of low level visual information

comprising color, texture and shape. Unlike the available systems, the features are

not concatenated to form a high-dimensional feature space [5], [6], [7], [10]. They are

integrated under an ensemble learning paradigm. While this approach enables diverse

coverage of visually meaningful features, it avoids the curse of dimensionality and

normalization problems. Redundancy of the feature space is handled in the ensemble

learning architecture where the features that do not contribute to discriminate a cer-

tain class are weighted by a relatively small value compared to the features which are

essential to label that class.

The integrated image representation and ensemble learning model used in both of

the systems is one of the main contributions of this work. Unlike the available au-

tomatic annotation methods, images are represented with different visual descriptors

concurrently. The selection of these visual descriptors intend to span the color, shape,

and texture domains, as much as possible.

The success of the systems is observed in the experiments, where the performance

of the state-of-the-art ALIP[1] is significantly superseded by SEVD. Similarly, UEVD

outperforms many models such as [9], [5], [6], [7], [15].

1.4 Thesis Outline

The thesis is organized as follows: in Chapter 2, a literature survey on available au-

tomatic image annotation methods is provided. Chapter 3 elaborates on the detailed

description of the proposed systems and the main contributions of this study. In

Chapter 4 after describing the experimental setup, empirical results are given and

discussed by comparing them to the results reported in the literature. Finally, Chap-

ter 5 concludes the thesis by presenting a summary, main conclusions along with a

discussion about the future directions of this study and automatic image annotation

5



in general.
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CHAPTER 2

RELATED WORK ON AUTOMATIC IMAGE

ANNOTATION

The problem of annotating images automatically has gained popularity in content-

based image retrieval (CBIR) research, since late 1990s. It has been studied under

several names including: automatic linguistic indexing [1], automatic captioning [16],

[11], semantic annotation [7], learning a lexicon for image vocabulary [5], content-

based soft annotation [8] and image-to-word transformation [9].

Prior to studies in automatic annotation, there has been some research on semi-

automatic annotation. One prominent example is a work by Picard and Minka [17] in

which an interactive method, to annotate images semi-automatically, was proposed.

In this method, first, the user labels a portion of an image with a word. This label is

then propagated to the other images having similar portions with the initial image.

Similarity is measured by a texture model which is dynamically selected from multiple

texture models. Then, the user corrects the returned results by giving relevance

feedback to the system.

The research on automatic image annotation can be reviewed in roughly two cat-

egories as mentioned by Monay and Perez [12]:

1. Studies that explore relations between a set of words and a set of image regions,

2. Studies that directly treats the problem as a supervised learning task.

Majority of the relevant publications belong to the first group. In the following sec-

tions, the studies in the first and second groups are explained briefly, and a discussion

on these studies is provided at the end of the chapter.

7



2.1 Exploring the relation between image regions and words

The general framework of the methods in this category is outlined in Algorithm 1. It

is worth to mention that most of the variations among the studies in this category

originate from the “modeling” at step 4.

Algorithm 1 The general content-based image annotation procedure used by the

studies that explore the relation between image regions and words.

Require: A set of images along with their annotation words.

Ensure: A model to predict words for a given image.

1: Segment the images into regions (or grids) using a segmentation algorithm.

2: Extract features from the regions (or grids).

3: Quantize (cluster) feature vectors into blobs.

4: Model the relation between blobs and annotation words.

The idea of assigning a word to an image region, perhaps being the most intuitive

approach, was explored by Mori et al. [9] and Duygulu et al. [5]. The scheme

proposed by Mori et al., also known as the co-occurrence model, obeys the general

procedure outlined in Algorithm 1. Specifically, the co-occurrence model first utilizes

the following unsupervised training:

1. The images are segmented into regular grids, where each grid in each image

inherits the annotation words of that image,

2. Features are extracted from the grids, and are quantized so that each region is

represented by a single symbol/number, referred to as a blob (or cluster),

3. The co-occurrence statistics between the blobs and words are modeled in a simple

way: each cluster is represented by the most likely word. P (w|c), the likelihood

of word w given a region represented by blob c is simply approximated by mc/nc,

where mc is the number of regions in blob c, annotated with word w, and n is

the total number of regions in blob c.

To automatically annotate a previously unseen image, the image is segmented into

regular grid-regions and features are extracted from these regions. Then, the relative

frequency of words for each region are computed, and the most plausible N (say 5)
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words from the combination of words of all regions are selected to annotate the given

image. Mori et al. used a 96-dimensional feature vector consisting of 4 × 4 × 4 cubic

RGB color histogram and an 8-directions×4-resolutions histogram of intensity after

Sobel filtering.

Duygulu et al. [5] took a different point of view, known as the Translation Model,

to tackle the same problem. They segmented the images into regions (not regular

grids) by using the Normalized Cuts algorithm. To model the relation between the

blobs and the words, they adapted a machine translation approach by constructing

a probability table, linking individual blobs to individual words. They employed the

k-means algorithm to form blobs and Expectation Maximization for construction of

the probability table. A 33-dimensional feature vector consisting of region color and

standard deviation, region average orientation energy, region size, location, convexity,

first moment, and ratio of region area to boundary length squared was used. They

tested the system on a dataset of 5000 images from the Corel Stock Photo library.

This dataset is known as the “5000-image Corel dataset” in the literature.

Jeon et al. [6] started a new trend by attacking an important problem of the trans-

lation and co-occurrence models. They noted that assuming a one-to-one correspon-

dence between blobs and words – as in the Translation Model and the co-occurrence

model – can give rise to many errors, since it is not the individual region itself, but

the context which gives the meaning. Instead of assigning a word for each blob, they

proposed the cross-media relevance model (CMRM) to assign words to entire images

by learning the joint distribution of blobs and words for images. CMRM outperformed

the Translation Model [5] using the same segmentation and clustering algorithms and

features on the same dataset. CMRM also outperformed the co-occurrence model [9].

Following the trend started by CMRM [6], a couple of models, which eliminate

the clustering step (the 3rd step in Algorithm 1) were proposed. Lavrenko et al. [7]

adapted the CMRM and proposed the Continuous Relevance Model (CRM) to directly

model continuous features instead of using blobs by using non-parametric kernel-based

density estimation. Since this approach avoided clustering errors, CRM outperformed

CMRM in the same experimental setup.

Another work eliminating the clustering step is proposed by Blei and Jordan

[18]. They developed the correspondence latent Dirichlet allocation model (Corr-LDA)

which is a latent variable model to effectively model the joint distribution of words
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and images. Since they used their own dataset and features, the performance of the

model cannot be compared with the previous work.

Feng et al. proposed the Multiple-Bernoulli Relevance Model (MBRM) [10] for

improving the CRM model in two ways: 1) by replacing the Normalized Cuts with a

regular grid segmentation, 2) by replacing the multinomial model to generate words

by a Bernoulli process. The first approach brought a significant reduction in computa-

tional time, and increased the annotation performance which is also increased by the

second approach. A 30-dimensional feature space containing 18 color and 12 texture

features was used. They reported the performance of MBRM on two datasets: first is

the 5000-image Corel dataset which was also used in the Translation Model, CMRM

and CRM, the other is a subset of news videos from Trec Video dataset. On the first

dataset, MBRM outperformed all of the previous models: Translation Model, CMRM

and CRM.

Barnard et al. [19] studied a variety of models, including Hofmann’s hierarchi-

cal clustering/aspect model, the translation model, and a multi-modal extension to

mixture of latent Dirichlet allocation (MoM-LDA).

Monay and Perez [12] employed two latent space models, namely Latent Semantic

Analysis (LSA) and Probabilistic LSA (PLSA) to model the relation between words

and feature vectors. Although they used very simple features (normalized RGB his-

tograms) and a very simple segmentation (only 3 regions: center, lower half, upper

half), they got comparable results with complex, fully generative probabilistic models

[19].

In [20] Jin et al. studied the annotation part of the problem. They proposed a

coherent language model which takes into account the word-to-word correlation and

showed that this model is able to automatically determine the number of words to be

used for annotation. They, also, proposed an active learning method to significantly

reduce the required number of annotated image examples. The effectiveness of their

system was demonstrated on the 5000-image Corel dataset.

An interesting graph-based approach was explored in [11]. The automatic anno-

tation problem was set as a graph problem where images, their captions and regions

constitute nodes. A “region” node is linked to other region nodes that are close

enough. Then, by employing a random walk algorithm, the images which do not have

captions are annotated by the captions of other images.
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Another study worth to mention, used the maximum entropy method to model the

relation between quantized features extracted from grid regions and words [15]. In this

study, quantized feature vectors extracted from the grid regions are called visterms.

The originality of this work is that while using maximum entropy to model the relation

between words and visterms, unigram and bigram visterm predicates are added to the

system as constraints, thus enhance the model. Unigram predicates capture the co-

occurrence statistics of a visterm and a label, and the bigram predicates capture the

co-occurrence statistics of two visterms and a label. This method was reported to

outperform the Translation Model and had comparable performance with the CMRM

in an equivalent experimental setup.

Finally, many variations on the Translation Model [5] were proposed in [16].

2.2 Annotation as supervised learning

There are a few studies which directly treats the automatic annotation problem as a

supervised learning task. This scarcity may be due to the attractive trend started by

the co-occurrence model [9], the Translation Model [5], and the relevance models [6],

[7], [10].

In [8] Chang et al. proposed a method, called Content-based soft annotation

(CBSA), to label images with semantic words. The procedure starts with labeling

the training images, each with only one word. There are K distinct semantic words

in total. Then, an ensemble of K binary classifiers, one for each semantic word, are

trained so as to determine the confidence score of each word given an image. As

binary classifiers, they used Support Vector Machines (SVM) and Bayes Point Ma-

chines (BPM). Given a test image, each of the K classifiers produce a confidence score

for its semantic word. A 144-dimensional feature vector including color histograms,

color means and variances, two shape characteristics: elongation and spreadness and

texture (extracted using discrete wavelet transform) features was used. Using their

own datasets, they reported classification and soft-annotation results in which BPM

outperformed SVM.

Yavlinsky et al. [21] followed the approach of Olivia and Torralba [22] who demon-

strated that images can be classified as ‘street’, ‘buildings’, or ‘highways’ using appro-

priate low-level global features. Yavlinsky et al. used relatively simpler global features
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than those used in [22]. They did not segment the images and used non-parametric

density estimation instead of quantizing (clustering) the feature vectors. Although

using global features and no segmentation, their system showed comparable annota-

tion performance with the CRM [7] on the 5000-image Corel dataset. They tested

their system, and showed its effectiveness on another dataset collected from the Getty

Image Archive1, which they claim to be more challenging than the 5000-image Corel

dataset.

Recently, Li and Wang proposed a system for automatic linguistic indexing of

pictures by a statistical modeling approach which they call as Automatic Linguistic

Indexing of Pictures (ALIP). [1]. ALIP assumes that a set of images with predefined

classes are given. In addition, each class is associated with a set of annotation words.

The system first, extracts wavelet features from the images at multiple resolutions.

Then a separate 2-dimensional Multiresolution Hidden Markov Model (2D MHMM)

is trained on the features of images for each class. To annotate a previously unseen

image, its features are extracted, fed to all of the trained 2D MHMMs and the most

likely top 5 classes corresponding to the most likely top 5 2D MHMMs are determined.

Then, a subset of the words pertaining to these top 5 classes are selected using a

statistical significance criteria to annotate the given word. Li and Wang tested and

showed the effectiveness of ALIP on a 60,000-image database selected from the Corel

Stock Photo library.

2.3 Discussion

In this section, a criticism of the studies described above is given. The available

systems are analyzed in terms of the major steps in automatic annotation.

2.3.1 Segmentation

It is well known that the majority of the work in automatic image annotation utilize

segmentation. They either use Normalized Cuts algorithm to produce arbitrarily

shaped regions or segmentation into regular grids. While choosing between the two

alternatives is an open problem, whether to apply segmentation at all is a more crucial

issue. Although the usage of segmentation has been a trend in automatic image

1 http://creative.gettyimages.com
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annotation literature, there is no theory or rule saying that segmentation is a must

and it is useful.

We can find rough answers to the questions stated above by examining the available

empirical results in the literature. As an example, Jeon et al. [15] and Feng et al.

[10] used regular grid segmentation instead of employing Normalized Cuts, and they

report enhanced results. This findings support the use of “regular grid segmentation”

instead of “regions” produced by Normalized Cuts.

Another interesting finding suggests that segmentation may not be necessary at

all. Yavlinsky et al. in [21] showed that they achieved comparable performance with

the Continuous Relevance Model (CRM) without doing any segmentation and using

only simple global features. In the same flavor with Yavlinsky, Olivia and Torralba

[22] report promising results without using segmentation.

Another problem of segmentation is its inefficiency in terms of computational

complexity. Using segmentation may inhibit producing real-time automatic annota-

tion systems. In [10], they report a significant reduction in computational time after

replacing the Normalized Cuts with regular grid segmentation.

Furthermore, segmentation is a context-dependent task. The optimal segmenta-

tion method depends on what we are looking for.

An alternative to segmentation may be to utilize local features like Scale-Invariant

Feature Transform (SIFT) [23] or C2 [24]. To the best of the author’s knowledge, the

usage of these local features in automatic annotation studies is in its infancy.

2.3.2 Quantization of feature vectors

Based on the empirical study in the literature, we can conclude that quantization,

or clustering feature vectors give rise to errors and this decreases the annotation

performance. Examples include the CMRM [6] and CRM [7]. In the former, feature

vectors were clustered by k-means, whereas in the later a non-parametric density

estimation was employed. CRM outperformed CMRM in an equivalent experimental

setup.

2.3.3 Image Representation

An important observation is that none of the studies described above considered “the

image representation” to be more important than the learning model (classification,
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clustering, statistical models, etc.) Worse yet, no emphasis were given on the repre-

sentation in majority of the publications.

In all of the work studied here, a single set of features was used to represent an

image or an image region. This feature set was formed by either using only color [12],

[21] or texture [1] features, or concatenating different color and texture features [5],

[6], [7], [10] in a single feature vector.

2.3.4 Datasets

Although there are several popular datasets for automatic image annotation, the most

widely used dataset is that of [5], which is made available via Internet2 by Kobus

Barnard. This dataset consists of 5000 images from the Corel Stock Photo library.

Other authors used images from the same library such as Li and Wang [1].In spite

of its widespread use, the Corel Stock Photo library is no longer available from The

Corel Corporation and due to its license restrictions, it is not easy to access it.

An alternative dataset was used in [21] where 7500 medium-sized thumbnails of

images are selected from the Getty Image Archive. This dataset is available via

Internet3 and can be an alternative to the 5000-image Corel dataset.

2 http://kobus.ca/research/data/eccv 2002/index.html
3 http://mmir.doc.ic.ac.uk/www-pub/civr2005
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CHAPTER 3

AUTOMATIC IMAGE ANNOTATION BY ENSEMBLE

OF VISUAL DESCRIPTORS

In this chapter, the proposed automatic image annotation systems, are presented. The

proposed method attacks the annotation problem by supervision, when a training set

is available. When there is no training set, the automatic annotation is formulated as

a unsupervised learning problem.

The first system, proposed in this study is called Supervised Ensemble of Visual

Descriptors (SEVD). The system assumes a given training set together with a set of

predefined class labels. Automatic annotation of a given image is preceded by an

image classification step. On the other hand, the second system, called Unsupervised

Ensemble of Visual Descriptors (UEVD), assumes an image database which has no

class labels. Therefore, the annotation is based on unsupervised learning.

While the classification-based system, SEVD, is proposed as an alternative to

the state-of-the-art image annotation system ALIP1 [1], the clustering-based system,

UEVD, can be considered as an alternative to the systems which utilize segmentation

and model the joint probability between regions and words2.

The proposed systems share two important properties. Firstly, the images in the

dataset are represented by a variety of MPEG-7 descriptors, which covers a wide range

of low level visual descriptors comprising color, texture and shape. Secondly, they both

utilize simple non-parametric models – k-nearest neighbor modules – gathered under

an ensemble learning paradigm.

The major contribution of this thesis is a unified approach for image representation

and learning using ensemble of visual descriptors.

1 Described in Section 2.2
2 Described in Section 2.1
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In the following sections, first the image representation model is described, then

the architectures of SEVD and UEVD follow, in Sections 3.2 and 3.3, respectively.

Notation used throughout this chapter is given in Table 3.1 (on page 19) for ease of

readability.

3.1 Image Representation Model

In this section, the image representation model used in the proposed automatic anno-

tation systems is described. The model utilizes low level visual descriptors. However,

the problem of dimensional curse, redundancy and normalization are nicely avoided

by combining these descriptors under an ensemble learning architecture.

3.1.1 Rationale

“Image representation” is an open research problem in computational vision. The dif-

ficulty of the problem basically comes from the discrepancy between the sophisticated

human visual system, and the lack of mathematical tools to model the complex phe-

nomenon behind it. The research on this topic covers a great variety of fields ranging

from designing low-level image-processing techniques to sophisticated feature selection

and combination methods. Although many feature extraction and image representa-

tion schemes have been and are continually being proposed, there is no ultimate rule

or method to design the “best” feature space given a pattern recognition problem.

An important observation is that a feature set, which represents an object class

well may fail to represent other classes. For example, if one is looking for images of

“sky”, merely dominant color features may be sufficient, but if you are looking for a

“zebra”, then texture features should be relied on [13].

Following the observation above, we propose an image representation model which

combines a variety of color, shape and texture features under an ensemble learning

architecture in order to span the color, shape, and texture domains as much as possi-

ble. One may ask that using such a representation elicits the curse of dimensionality

problem. Fortunately, the ensemble learning scheme proposed in this study avoids

this problem by employing each descriptor under a separate learner.

In order to improve classification (or retrieval) performance, using multiple de-

scriptors for image representation has been proposed before in many studies such as

16



[25], [13], [26]. In this thesis, the emphasis is on spanning the color, shape and texture

characteristics of images as much as possible.

3.1.2 An abstract view

Consider N images and M feature extraction algorithms D1(·), D2(·), ..., DM (·) yield-

ing M distinct descriptors for a given image. These feature extraction algorithms

transform an image I into a feature vector d, through Di(·) as:

d = Di(I) (3.1)

The dimension of d depends on the feature extraction algorithm.

We extract M descriptors from each of the N images. Therefore, the representation

of the jth image is a set of vectors:

Rj = {dij}, i = 1, 2, . . . ,M (3.2)

where dij denotes the feature vector extracted from the jth image by using the ith

feature extractor. In short, dij = Di(Ij).

Note that, in this representation model there is practically no upper limit on the

number of descriptors, nor there is any need for normalization of the incompatible

features. Since each descriptor is utilized separately in the learning architecture,

we can increase the number and type of the descriptors without any constraints, as

long as the computational time allows us to remain within the limits of the machine

performance.

3.1.3 MPEG-7 Visual Descriptors

In this study, the representation model described above is realized by using a subset of

MPEG-7 Visual Descriptors, namely Color Layout, Color Structure, Scalable Color,

Homogeneous Texture and Edge Histogram. However, it is evident that any other set

of descriptors can be used, depending on the application domain.

MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture Experts

Group) which aims to describe the multimedia content that supports some degree of

interpretation of the information meaning, which can be passed onto, or accessed by, a

device or a computer code [14]. MPEG-7 Visual Descriptors have been used in several

CBIR systems [25], [27].
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The aforementioned visual descriptors are selected by preliminary empirical study.

The Dominant Color and Region Shape descriptors are not utilized in this thesis since

they demonstrated poor classification performance on a controlled dataset.

The descriptors are selected so that color, shape and texture characteristics of

images are reflected to the representation as much as possible. Unfortunately, it is

not easy to extract shape information from a complex image which contains multiple

objects in a natural scene. In this sense, although it is classified in the category of

texture descriptors in the MPEG-7 standard, we consider the Edge Histogram as a

shape descriptor.

The detailed descriptions and extraction schemes of MPEG-7 descriptors are given

in [28]. In this study, we suffice to provide a brief explanation (compiled from [14])

for each descriptor:

Color Layout effectively represents the spatial distribution of colors in YCrCb

color space by using discrete-cosine transformation (DCT).

Color Structure captures both color content (similar to a color histogram) and

information about the structure of this content by sliding a structuring element of

8x8 pixels over the images. Unlike the color histogram, this descriptor can distinguish

between two images in which a given color is present in identical amounts, but the

locations of the structure of the groups of pixels having that color is different in the

two images.

Scalable Color is a color histogram in HSV Color Space, which is encoded by a

Haar transform.

Homogeneous Texture contains Gabor wavelet coefficients extracted by using

5 different scales and 6 orientations.

Edge Histogram represents the spatial distribution of four directional edges and

a non-directional edge.

3.2 Supervised Ensemble of Visual Descriptors: SEVD

Supervised Ensemble of Visual Descriptors (SEVD) is based on classification of the im-

ages prior to annotation. For the classification task, an ensemble learning technique

called stacked-generalization is used. Stacked-generalization combines the decisions

of many individual classifiers under a meta-level learner so that the final decision
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Table 3.1: Notation for the description of the image representation model, SEVD and
UEVD.

Image Representation:
Ii : the ith image
N : number of images
M : number of descriptors
Di(·): feature extraction algorithm for the ith descriptor
dij : feature vector extracted from the jth image by using

the ith descriptor. Formally, dij = Di(Ij)
Rj : representation of the jth image. Contains M feature vectors:

Rj = {dij}, i = 1, 2, . . . ,M

Classification-based System: SEVD
C : number of classes
Ai : set of annotation words for class i
Fi(·): classifier for the ith descriptor
fij : C-dimensional class-membership vector of the jth image

for the ith descriptor. Formally, fij = Fi(dij)
yj : concatenated class-membership vector for image j.

(i.e. yj = [f1j f2j . . . fMj ]T )

Clustering-based System: UEVD
Gi(·): clustering module for the ith descriptor
gij : list of images which are in the same cluster with the jth

image in the ith clustering module
Wi: set of annotation words for the ith image
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Figure 3.1: The architecture of SEVD.

is superior to all of the individual decisions. Proposed by Wolpert in [29], stacked-

generalization is a multi-layered architecture in which each layer (except the bottom-

most and topmost layers) receive the predictions of the previous layer and passes

its output to the successive layer. However, many studies ([30], [31], [32]) utilized

two-layered stacked generalization successfully for several classification tasks.

As discussed by Wolpert [29], stacked-generalization is “black-art” since it is not

clearly understood under which conditions it outperforms other ensemble methods

such as majority voting, weighted voting, etc. Although this is an open research

question, the following statement by Dietterich [33] about the study of Hansen and

Salamon [34] may be an explanation:

“A necessary and sufficient condition for an ensemble of classifiers to

be more accurate than any of its individual members is if the classifiers are

accurate and diverse. An accurate classifier is one that has an error rate

of better than random guessing. Two classifiers are diverse if they make

different errors on new data points.”

SEVD utilizes a two-layered stacked-generalization architecture as illustrated in

Figure 3.1. There is a separate level-0 classifier for each visual descriptor and a meta-

level classifier to combine the decisions of the level-0 classifiers. The system is trained

in two steps. First, level-0 classifiers are trained using their own descriptors. Then,

these classifiers are fed with the same samples on which they were trained. The

output of the level-0 classifiers in response to training samples constitute the training

set for the meta-level classifier. Thus, the meta-level classifier learns the successes

and failures of the level-0 classifiers on the training set.

After the system is trained, a given image is automatically annotated by SEVD
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Figure 3.2: The organization of the dataset appropriate for SEVD.

as follows. The trained system determines the most likely top k classes for the given

image, then among the words pertaining to these k classes, a set of words are selected

using a statistical significance criteria defined by a binomial distribution on words.

SEVD is trained on a dataset of annotated images with predefined class labels.

An illustration of the training dataset is given in Figure 2 for clarification. Note that,

the output of the training stage reveals both annotation and class labels.

One may question the existence of such a dataset in real life. In fact, manual

annotation of large datasets are tedious and labor intensive. This process become

more practical, if the user is provided a set of class labels which is used to manually

annotate a small set. Therefore, images are grouped into classes and each class is

associated with some words describing the content of the images in that class as

accurately as possible. One example for this type of datasets is the Corel Stock Photo

library.

SEVD is not specific or fine-tuned for any classification algorithm. Therefore, in

the following subsections, an abstract model of SEVD’s two-layered stacked-generalization

architecture is described first. Then, a realization of the system is provided in Section

3.2.2.
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3.2.1 An abstract view of SEVD

Given a training set S = {(I1, l1), (I2, l2), . . . , (IN , lN )} consisting of N images and C

classes, where Ii denotes the ith image, li is the class label of Ii and li ∈ {1, 2, 3, . . . , C}.

Also provided is a set of annotation words Aj = {wj1, wj2, . . . , wjm} for each class j

where j = 1, 2, 3, . . . , C.

In our context, a classifier is defined as a transformation F (·) which takes a vector

v as input and outputs a vector u. v is a feature vector whose size depends on the

descriptor used, and u = [u1 u2 . . . uC ]T is a C-dimensional class-membership vector.

ui ∈ [0, 1] denotes the membership value of feature vector v being a member of class

i.

3.2.1.1 Training the system

The training of a stacked-generalization system is a bit complicated since it requires

the separate training of level-0 classifiers and training of the meta-level classifier using

the output of the level 0 classifiers.. Specifically, the procedure is as follows. For

each sample in the training set, the separate level-0 classifiers are trained on all of

the training samples except the current one. Then, this sample is fed to the trained

level-0 classifiers, which, in turn, produce class-membership vectors for the current

training sample. After repeating these steps for all of the training samples, the meta-

level classifier is trained on the class-membership vectors produced by the level-0

classifiers.

SEVD has M level-0 classifiers corresponding to M visual descriptors and one

meta-level classifier.

The training process is formally described in Algorithm 2.

3.2.1.2 Testing and Automatic Annotation

Given an image I outside the training set, the assignment of I to some of the predefined

classes by the trained SEVD is quite straightforward. First, we extract M feature

vectors from image I. Then, each of the M feature vectors are fed to the corresponding

level-0 classifier and the class-membership vectors are obtained. These membership

vectors are concatenated into a single vector and this vector is fed to the meta-level

classifier. The meta-level classifier predicts the most likely top k classes for image I.
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Algorithm 2 Training of SEVD.

Require: Training set S = {(Rj , lj)}, j = 1, 2, . . . , N where Rj = {dij} , i =

1, 2, . . . ,M

Ensure: Trained SEVD which is composed of trained classifiers: Fi(·), i = 1, 2, . . . ,M

and Fmeta(·)

1: for each image j (from 1 to N) do

2: Train Fi(·) on S − (Rj , lj) for each descriptor i = 1, 2, . . . ,M

3: Feed dij in Rj to each trained Fi(·) and obtain the class-membership vectors fij

by fij = Fi(dij) for i = 1, 2, . . . ,M

4: Obtain the combined class-membership vector yj = [f1j f2j . . . fMj ]T

5: Discard trained Fi(·)s

6: end for

7: Train Fmeta(·) with {(yj , lj)}, j = 1, 2, . . . , N

8: Train Fi(·) on S for each descriptor i = 1, 2, . . . ,M

A formal description of the procedure above is given in Algorithm 3.

3.2.1.3 Automatic Annotation

Given an image I and the most likely top k classes for it, the image is annotated as

follows:

1. Form a frequency list of words for all of the words pertaining to these k classes,

2. For each word in the list, compute the probability of appearing at least j times

in the annotation of k randomly selected classes,

3. Apply a threshold to the probabilities computed in the previous step and select

the words with probabilities under this threshold.

This scheme of selecting words was proposed in [1].

Probability of a word w appearing at least j times in the annotation of k randomly

selected classes is:

Pw(j, k) =
k∑

i=j

I(i ≤ m)

(
m
i

)(
n−m
k−i

)(
n
k

) (3.3)
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Figure 3.3: SEVD in operation: the whole procedure to annotate a given image
automatically.

where I(·) is an indicator function that is equal to 1 when its argument is true, and 0

otherwise [1]. n is the total number classes, in our case it is C, and m is the number

of classes that are annotated with word w.

Equation (3.3) is approximated by:

Pw(j, k) =
k∑

i=j

(
k

i

)
pi(1− p)k−i =

k∑
i=j

k!
i!(k − i)!

pi(1− p)k−i (3.4)

where p = m/n gives the ratio of classes annotated with word w to all classes. The

words with Pw(j, k) lower than a certain threshold T are chosen to annotate the given

image I.

Note that this scheme of word selection favors the “rare” words. For example, let us

assume that in the annotation of top k classes there are the words “people” and “car”.

Further assume that considering all the training set, the word “people” is included

in the annotation of 100 classes but the word “car” is included in the annotation of

only 10 classes. In such a situation, the word selection scheme described above, favors

the word “car” more than the word “people”. Because, the probability of word “car”

being included in the annotation of top k classes by chance is lower than that of word
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“people”.

The procedure of categorizing and automatically annotating a given image is de-

picted in Figure 3.3 and formally given in Algorithm 3.

Algorithm 3 SEVD’s algorithm to automatically annotate the given image.

Require: An image I, trained SEVD, M feature extractors, a threshold T , and a

scalar k

Ensure: Annotation words for image I

1: Extract feature vectors di = Di(I) from image I for i = 1, 2, . . . ,M

2: Feed each feature vector di to the ith level-0 classifier Fi(·) of SEVD and obtain

class-membership vector fi = Fi(di(I)) for i = 1, 2, . . . ,M

3: Concatenate feature vectors: y = [f1 f2 . . . fM ]T

4: Feed y to Fmeta(·)

5: Fmeta(·) computes the most likely top k classes

6: for each word w in the annotation of k classes do

7: Compute Pw(j, k) where j is the frequency of word w in the annotation of k

classes

8: end for

9: Select words w such that Pw(j, k) < T

3.2.2 Realization of the System

In this study, we are not interested in any specific classification algorithm and we want

to show the effectiveness of the proposed image representation model and stacked-

generalization. For this reason, the classifier to be chosen should be as simple as

possible.

As the level-0 and meta-level classifiers, we choose fuzzy k-nearest neighbor method

which is:

• simple to implement,

• a non-parametric method, so it does not assume any distributions over the data,

• suitable to use with stacked-generalization in terms of computational time. In

the training phase of stacked-generalization (Algorithm 2 step 2), to compute the
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class-membership vector of each training sample, level-0 classifiers are trained.

Since this training is repeated for each sample, we need a classifier which can be

trained quickly. k-NN classifier fits here perfectly since it is trained in constant

time. (Actually there is no training, only the data itself is enough.)

The parameters of the proposed system such as the threshold T and number of

top classes k to be predicted by Fmeta(·) are determined experimentally and discussed

in Chapter 4.

3.2.2.1 Fuzzy k-Nearest Neighbor Rule

Given a set of training points S with known classes, the k-NN rule simply assigns a

label to a query point q, by finding the closest k points to q in S and selecting the

label as that of the most frequent one among the k points.

Fuzzy k-NN is an intuitive extension to the classical k-NN rule, proposed by Keller

et al. in 1985 [35]. Instead of classifying the query point q to a single class, fuzzy

k-NN produces a class-membership vector whose elements represent the degree of

membership to the corresponding classes. Furthermore, in the computation of these

membership values, k nearest neighbor points are inversely weighted with respect to

their distances to q. In this sense, the classical k-NN conducts a majority voting over

the class labels of the k nearest neighbors, whereas fuzzy k-NN conducts a weighted

voting.

A formal definition of fuzzy k-NN can be given as follows: Let q be the query

point and S is a set of N points with known class labels (training set) T = {(xi, li)|i =

1, 2, . . . , N} where xi is a point and li its label, li ∈ {1, 2, . . . , C}. The class-membership

vector y(q) for q is computed as:

y(q) = [y1(q) y2(q) . . . yC(q)]T (3.5)

yi(q) =

∑K
j=1 yi(xj)‖q − xj‖

−2
p−1∑K

j=1 ‖q − xj‖
−2
p−1

, i = 1, 2, . . . , C (3.6)

where the points xj for j = 1, 2, . . . , k are the k nearest neighbors of q and p is a

scaling factor to adjust the effect of the distance between q and xj on the weights.

The term yi(xj) denotes the membership of the training point xj in class i.
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The output of the fuzzy k-NN for each descriptor in the level-0 provides a very

convenient feature vector, which somehow measures the effect of that particular de-

scriptor to recognize a particular class. Additionally, combining the output of all the

fuzzy k-NN classifiers yield a relatively compact feature vector compared to a feature

vector obtained by concatenating all the descriptors under the same vector space. Fi-

nally, this feature space weights the descriptors according to their relative importance

of recognizing a particular class. The meta-level fuzzy k-NN receives this vector as an

input to give the final label of the image.

3.3 Unsupervised Ensemble of Visual Descriptors: UEVD

In most of the practical problems, the given image database does not contain prede-

fined classes, but only annotation words for each image. For this type of the data

SEVD cannot be directly utilized. An adaptation of SEVD for unsupervised learning

is necessary . UEVD is designed to learn such databases.

The basic idea behind UEVD is to employ several clustering modules each of which

works on a separate descriptor. The system attempts to cluster images with respect

to a similarity metric in different visual characteristics. By doing this, images which

have common annotation words, are expected to coincide in the same cluster or on a

combination of clusters over all descriptors.

After the unsupervised training is completed, UEVD automatically annotates a

given image by first determining the clusters of the given image in each visual de-

scriptor. Then a subset of the words pertaining to images which are members of the

clusters to which the image belongs to, are selected using a binomial model as used

in SEVD.

UEVD is not specific or fine-tuned for any clustering algorithm. Therefore, in the

following subsections, an abstract model of UEVD is described. Then, a realization

of the system is provided in Section 3.3.2.

3.3.1 An abstract view of UEVD

Assume a set of N annotated images S = {(I1,W1), (I2,W2), . . . , (IN ,WN )} is given,

where Ii denotes an image and Wi is the set of annotation words for image Ii.

In our context, a clustering algorithm is defined as a transformation G(·) which
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takes feature vector and outputs the list of elements of the clusters to which the feature

vector is assigned.

3.3.1.1 Clustering

After extracting the feature vectors from the images as described in Section 3.1.2, the

images in the database are clustered using Algorithm 4.

Algorithm 4 Training of UEVD.

Require: Data set S = {(Rj ,Wj)}, j = 1, 2, . . . , N where Rj = {dij} , i = 1, 2, . . . ,M

Ensure: Trained UEVD composed of clustering modules: Gi(·), i = 1, 2, . . . ,M

1: for each descriptor i (from 1 to M) do

2: Train Gi(·) on {dij | j = 1, 2, . . . , N}

3: end for

3.3.1.2 Automatic Annotation

A given image I is automatically annotated by UEVD as follows:

1. Extract M feature vectors from I using M feature extractors,

2. Determine the clusters of each of the M feature vectors in the corresponding

clustering modules,

3. For each clustering module, determine the images which are in the same cluster

as I,

4. A fixed number of words are selected from the words pertaining to all of the

images which are in the same clusters as I. The word selection is based on the

following equation:

Pw(j, k) =
(

k

j

)
pj(1− p)k−j =

k!
j!(k − j)!

pj(1− p)k−j (3.7)

where Pw(j, k) expresses the probability of word w appearing j times in the

annotation of k randomly selected images. p = Nw/N is the ratio of the number

of images annotated with word w to the total number of images.

28



Figure 3.4: UEVD in operation: the whole procedure to annotate a given image
automatically.

A fixed number of words having the lowest Pw(j, k) values are selected as the

annotation of the given image I.

The whole operation of UEVD is depicted in Figure 3.4 and formally given in

Algorithm 5.

The word selection scheme described above favors “rare” words over more frequent

ones. A discussion on this selection scheme is given in Section 3.2.1.3.

3.3.2 Realization of the System

In this study, we suffice to use k-nearest neighbors method instead of a well behaved

clustering algorithm, such as k-means. This is basically because of the convenience.

Our major goal in this study is rather to show the effectiveness of the proposed

image representation model and the ensemble learning approach. For this reason, the

clustering algorithm to be chosen for the realization of UEVD should be as simple as

possible.

We choose a k-nearest neighbor approach for the clustering task. In this approach,

a given sample is assumed to be clustered with its k-nearest neighbors. This approach

is both simple and easy to experiment with.
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Algorithm 5 UEVD’s algorithm to automatically annotate the given image.

Require: An image I, trained UEVD, M feature extractors, and a scalar n

Ensure: n annotation words for image I

1: Extract feature vectors di = Di(I) from image I for i = 1, 2, . . . ,M

2: Feed each feature vector to the ith clustering module and obtain gi, the list of

images which are in the same cluster as I for i = 1, 2, . . . ,M

3: Form a word-frequency list L from the words of the images included in gi, for

i = 1, 2, . . . ,M

4: for each word w in L do

5: Compute Pw(j, k), equation (3.7), where j is the frequency of word w in L, and

k is the total number of distinct images in gi, for i = 1, 2, . . . ,M

6: end for

7: Select n words having the lowest Pw(j, k) values.

The parameters of UEVD such as the number of words to produce for a given image

and specific parameters for the clustering modules are determined experimentally.

These issues are discussed in detail in Section 4.3.
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CHAPTER 4

EMPIRICAL STUDY

In this chapter, the experimental setup, in which SEVD and UEVD are tested, is

described. A thorough empirical analysis is done to show the strength and weaknesses

of the proposed systems.

For this purpose, SEVD is tested on a dataset of 60,000 manually annotated images

from Corel Stock Photo library. This database was created and used by Li and Wang

for the ALIP system [1]. SEVD is compared to ALIP in terms of classification and

automatic annotation performances. The results indicate that SEVD significantly

superseeds the performance of ALIP.

On the other hand, UEVD is tested on the 5000-image Corel dataset which was

first used by Duygulu et al. in [5]. This dataset was also used in many other studies

in the literature such as [6], [7], and [10]. The automatic annotation performance of

UEVD on this dataset is compared to the performances of the available methods. The

results show that UEVD outperforms many classical models such as the co-occurrence

model [9], the Translation Model [5], the maximum entropy model [15], CMRM [6], and

CRM[7]. However, the automatic annotation performance of MBRM [10] is superior

than that of the proposed UEVD.

Except the feature extraction phase, all algorithms/systems are implemented in

MATLAB language and experiments are carried out using MATLAB 7.1 on several

GNU/Linux 2.6 platforms.

4.1 Feature Extraction

In both SEVD and UEVD, a variety of MPEG-7 Visual Descriptors are used for

image representation. These descriptors are Color Layout, Color Structure, Scalable

Color, Homogeneous Texture, and Edge Histogram [14]. The rationale behind this
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representation model and a brief description for each descriptor are provided in Section

3.1.

The aforementioned MPEG-7 Visual Descriptor features are extracted from the

images by using the XM (eXpermantation Model) software. This software, freely

available via Internet, is provided by Stephan Herrmann [36] and is implemented in

C++.

The dimensions for each visual descriptor are as follows: Color Layout: 12 features,

Color Structure: 32 features, Scalable Color: 64 features, Homogeneous Texture: 62

features and Edge Histogram: 80 features.

4.2 Experiments on SEVD

As described in Section 3.2, SEVD is a stacked generalization system integrating an

ensemble of fuzzy k-Nearest Neighbor (fuzzy k-NN) classifiers. In the first layer,

there are 5 fuzzy k-NN classifiers corresponding to 5 descriptors. The predictions of

the classifiers in the first layer are ensembled in the second layer by a fuzzy k-NN

classifier. The fuzzy k-NN in the second layer predicts the most likely top K classes

for the given input. For the purpose of comparing SEVD to ALIP, K is taken as 5,

as done in [1].

After the most likely top 5 classes are determined for a given image, a subset of

words pertaining to these 5 classes are selected using the formula (3.4) described in

Section 3.2.1.3.

In order to show the effectiveness of SEVD, first it is compared to the ALIP system

proposed in [1]. Then, several systems, based on individual descriptors and majority

voting of descriptors are compared to SEVD. There are five individual descriptor based

systems each corresponding to one of the 5 MPEG-7 visual descriptors mentioned in

Section 3.1.2. Each of them consists of one fuzzy k-NN module. Majority voting

system combines the predictions of individual descriptors by the majority voting rule.

4.2.1 The dataset of SEVD

SEVD is tested on the manually annotated image dataset, which was created by

Li and Wang for the ALIP system [1]. This dataset contains approximately 60,000

images comprising 600 CD-ROMs published by the Corel Corporation. Each CD-
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Table 4.1: Some of the classes and their annotation words. Every image in a given
class is assigned the same set of words.

Class # Annotation Words
0 Africa, people, landscape, animal

50 wild life, young animal, animal, grass
100 painting, European
150 Canada, game, sport, people, snow, ice
200 fractal, man-made, texture
250 old, poster, man-made, indoor
300 Stmoritz, ski, snow, ice, people
350 wild life, art, animal
400 Canada, landscape, historical building

ROM contains about 100 images on a topic of interest, i.e. concept. Each concept

corresponds to a class. Li and Wang manually annotated all of the images by assigning

a set of words to each class. Therefore, every 100 image in a class are assigned the

same set of words. A list of some sample classes and their annotation words are given

in Table 4.1. On average, a class is assigned 3.6 words.

One can observe that the annotation words have no trivial purpose or limitations.

Semantically, they range from simple, or low-level words such as “snow”, “ice”, and

“grass” to complex or high-level words such as “England”, “old”, “wild life”, and

“Canada”. It is expected that the relationship between an image and its annotation

is that the words should describe what is visually observable in the image. However,

this is usually not the case for the manual annotation provided by Li and Wang.

There are words such as “success”, “science”, “fun”, “holiday”, “speed” which are

not visually observable. Furthermore, due to the manual annotation process, where

every image in a class is associated with the same set of annotation words, not all

the images in a class are properly described by the words given to that class. Li and

Wang consider these type of data as outliers [1].

Nonetheless, manual annotation of large image databases requires great physical

and mental effort and it is a subjective process which may differ from person to person.

Therefore, creating a database for automatic image annotation is a very challenging

task, which requires a systematic approach to reduce the “human subjectivity” of

the manual annotation process. However, the study of such a systematic approach is

beyond the scope of this thesis.
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Figure 4.1: Examples images from the “Africa” class. This class (so the images in this
class) are manually annotated with the following words: “Africa, people, landscape,
animal”.

Figure 4.2: Examples images from one of the “Europe” classes. This class (so the
images in this class) are manually annotated with the following words: “Europe,
house, landscape”.

In addition to the difficulties on the annotation part, the visual diversity of the

images presents another challenge: the images pertaining to the same class are not

all visually similar. This situation is depicted in Figures 4.1 and 4.2 in which some

example images from two classes are given.

For each class, the first 40 images having even id-numbers are selected as training

images and the rest constitutes the testing set. In total, there are 23960 training, and

35935 testing images. This training and testing configuration is the same as that of

the ALIP system [1]

4.2.2 Classification Performance of SEVD

The crucial parameter of a fuzzy k-NN classifier is the k value. For each descriptor,

the appropriate k value is found by applying leave-N -out cross-validation method,

where N corresponds to 10% of the training data. First, a broad range of k values
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Table 4.2: The k values found by cross validation on the training set for each descrip-
tor.

Col.Lay. Col.Str. Scal.Col. Hom.Text. Edge Hist.
184 200 174 385 112

Table 4.3: Classification performances of “individual descriptor based systems”, “en-
semble systems” and “ALIP”. Note that “top 5” predicted classes are used in the
evaluation of classification performance.

Classification Rate

Individual Descriptor Systems

Color Layout 15.56%
Color Structure 22.64%
Scalable Color 18.25%
Homogeneous Texture 11.28%
Edge Histogram 14.68%

Fuzzy k-NN Ensembles
Majority Voting 25.67%
SEVD 29.56%

ALIP 2D MHMM 26.90%

are tested and then search is narrowed down to the range, where the best hit rates

are obtained. For each fuzzy k-NN in the first level, leave-N -out cross validation is

applied 40 times and the k-value which gets the most of the votes is selected. The

k-values computed for each descriptor are given in Table 4.2. The objective function

of the cross-validation process is the number of hits, where a hit is said to occur if the

actual class is included in the top 5 predicted classes.

Each fuzzy k-NN classifier in the first level outputs a class membership vector

of size equal to the number of classes to the fuzzy k-NN at the meta-level (second

level). Therefore, the length of the input vector for the fuzzy k-NN in the meta-level

is (# of descriptors) × (# of classes). The optimal k-value for the fuzzy k-NN in the

meta-level is determined by the same cross validation method that is used in the first

level. The best k-value turns out to be 150.

The results of the classification experiments are given in Table 4.3. The best

classification rate is achieved by the proposed SEVD method. This rate is followed

by ALIP, which is then closely followed by the majority voting of fuzzy k-NNs.

Two important observations can be drawn from these results. Firstly, the classi-

fication rates of individual descriptors are lower than that of the ensemble methods,

namely majority voting and SEVD. The second observation is the comparable per-
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formance of majority voting (25.67%) to the ALIP system (26.9%). While the first

observation suggests the effectiveness of the proposed image representation model, the

second observation supports the argument that representation is more important than

that of the learning model, because fuzzy k-NN and majority voting are relatively sim-

pler tools compared to the Multiresolution Hidden Markov Model (MHMM) used in

ALIP.

4.2.3 Automatic Annotation Performance

Annotation performance is measured by the “coverage percentage” defined by Li and

Wang, as the percentage of manually annotated words that are included in the set of

predicted words [1]. For example, assume that word1, word2, word3 and word4 are

predicted for a given image, whose manual annotation words are word1 and word5.

Then, the coverage percentage of this prediction is 50%, since one of the two manual

annotation words, word1, is predicted correctly. If word5 were also included in the

predicted words, then the coverage percentage would be 100%.

The measure of coverage percentage bears some problems. First, it does not impose

any penalty for incorrectly predicted words. Continuing from the example above,

consider two different predictions for the same image. In the first one, assume that

there are 50 words and these 50 words include word1 and word5, which means a 100%

coverage percentage. Assume that the other prediction has only two words: word1

and word5. This prediction has 100% coverage percentage, too. Apparently, while the

second prediction is more “valuable” than the first prediction, the coverage percentage

ignores this situation. Therefore, the performance measure should somehow include

the number of words. For example, assume a given image is manually annotated by

only 1 word, and another image is annotated with 50 words. Predicting the only word

correctly for the first image by chance has much higher probability than predicting

all of the 50 words exactly for the second image by chance. So, the second prediction

should be considered as more successful. The measure of coverage percentage treats

these two predictions equally successful.

In spite of the problems discussed above, we used coverage percentage to measure

the automatic annotation performance of SEVD for comparing it to ALIP.

A given image is automatically annotated by the method described in Section

3.2.1.3. To summarize, for a given image the most likely top 5 classes are determined.
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mean: 6.02 mean: 6.77

Figure 4.3: Histogram of number of words assigned to the images in the testing set
by SEVD for two different values of T .

Then, from the union of the annotation words of these 5 classes, those words whose

Pw(j, 5) value is lower than a threshold T , are selected as “predicted words”. Here, j

denotes the frequency of the word w, occurring in the union set and Pw(j, 5) denotes

the probability of word w occurring at least j times in the annotation of 5 randomly

selected classes (equation 3.4).

The value of threshold T determines the number of words to assign to a previously

unseen image. If T is small, few words, if T is large, a large number of words are as-

signed. First, we tested the annotation performance –in terms of coverage percentage–

of SEVD by using the threshold value used in [1] which is 0.0649. For this value of T ,

SEVD assigns 6.02 words for each test image, on average, with a standard deviation

of 1.84. The histogram of number of words assigned to each test image is given at the

left in Figure 4.2.3. The minimum, maximum and median of these numbers are 0, 15,

and 6, respectively. Two of the test images are annotated with zero words, to over-

come this problem, T is slightly increased to be just larger than the lowest Pw(j, k)

value of the words of these two images. This value of T is 0.0768. For T = 0.0768,

the histogram of the number of words assigned to the test images is given at the

right hand side of Figure 4.2.3. Mean, standard deviation, median, minimum, and

maximum values of these numbers are 6.77, 1.84, 7, 1, 15 respectively.

The automatic annotation performances of several systems for T = 0.0768 are

given in Table 4.4. The performance of SEVD significantly superseeds the perfor-

mance of ALIP. In addition, majority voting system and an individual descriptor
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Table 4.4: Automatic annotation performances (measured by coverage percentage)
of “individual descriptor based systems”, “ensemble systems” and “ALIP” for T =
0.0768.

Coverage Percentage

Individual Descriptor Systems

Color Layout 16.12%
Color Structure 20.02%
Scalable Color 15.98%
Homogeneous Texture 12.04%
Edge Histogram 16.69%

Fuzzy k-NN Ensembles
Majority Voting 22.18%
SEVD 27.30%

ALIP 2D MHMM 19.55%

(Color Structure) also outperform ALIP. These results indicate the effectiveness of

stacked-generalization and the proposed image representation model in automatic im-

age annotation.

Figure 4.4: Comparison of coverage percentage performances of SEVD and ALIP for
various threshold values T .

In order to compare the annotation performances of ALIP and the SEVD thor-

oughly, the graphics in Figure 4.4 are plotted. Here, the threshold value is varied

between 0.0768 and a value large enough to select all the words in the union of words

belonging to the top 5 classes. For all of the T values, SEVD outperforms ALIP. The

coverage percentage of SEVD is approximately 60% when all the words pertaining to
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the top 5 classes are used.

Some sample annotations by SEVD are given in Tables 4.5 and 4.6. The images

are selected from the testing set consisting of 35935 images. Readily seen from the

examples, SEVD assigns some extra “meaningful” words which describe the image’s

content but are not included in the manual annotation. The first image (at the upper-

left corner) in Table 4.5 is an example for this surprising behavior. For this image, in

addition to correctly predicting the manual words, SEVD assigns the word “castle”.

While this behavior can be observed in several other images, a good example worth

to see is the image at the third row and the first column of Table 4.6. The words

“female” and “woman”, assigned automatically by SEVD, are not included in the

manual annotation but accurately describe the image content. Unfortunately, this

is not always the case. The images in the last row of Table 4.6 are examples for

“inappropriate” automatic annotation.

4.3 Experiments on UEVD

As described in Section 3.3, UEVD consists of unsupervised clustering modules, each

corresponding to a separate visual descriptor. Since we are not interested in any

specific clustering algorithm in this study and for the sake of simplicity, we use k-

nearest neighbors instead of a clustering algorithm.

UEVD is tested on the 5000-image Corel dataset [5] and it is compared to the avail-

able methods such as [5], [6], [7], [9], [10] and [15], in terms of automatic annotation

performance. Unlike SEVD and ALIP, which use coverage percentage to measure the

automatic annotation performance, UEVD uses mean precision and recall of one-word

queries as do the available methods cited above.

4.3.1 The dataset for UEVD

The 5000-image Corel dataset has been used by many systems ([5], [6], [7], [10],

[15]) in automatic image annotation literature. The dataset consists of 5000 images

comprising 50 CD-ROMs from Corel Stock Photo library. Images are assigned 1 to 5

annotation words and there are 371 unique words in total. Sample images and their

annotation are given in Table 4.7. Apparently, the annotation words describe the

image content more accurately than those of the 60,000-image Corel dataset discussed
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Table 4.5: Example annotations by SEVD. The images are from the testing set.
Examples continue in Table 4.6.

SEVD: castle, his-
torical building,
ruin, landmark
Manual: ruin,
historical building

SEVD: cuisine,
food, indoor,
thing
Manual: cuisine,
food, indoor

SEVD: fashion,
people, cloth,
female
Manual: fashion,
people, cloth, fe-
male

SEVD: fish, ocean
animal, sub sea,
vegetable
Manual: sub sea,
fish, ocean animal

SEVD: rose,
flower, plant,
flora, perenial
Manual: rose,
flower, plant

SEVD: train,
landscape, man-
made, car, plane,
transportation
Manual: car, man-
made, landscape,
plane, transporta-
tion

SEVD: Europe,
house, landscape,
Finland, Paris,
Brazil
Manual: Europe,
house, landscape

SEVD: boat,
ocean, beach,
sail, travel, par-
adise
Manual: boat,
ocean, beach

SEVD: dessert,
food, indoor,
cuisine, dining,
barbecue
Manual: cuisine,
food, indoor

SEVD: fashion,
female, peo-
ple, cloth, face,
women
Manual: fashion, fe-
male, people, cloth,
face
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Table 4.6: Example annotations by SEVD. The images are from the testing set.

SEVD: primate,
animal, grass,
wild cat, barn
yard, dog
Manual: primate,
animal, grass

SEVD: thing, in-
door, drink, tool
Manual: thing, in-
door

SEVD: micro im-
age, texture, nat-
ural, fractal
Manual: micro im-
age, texture, natural

SEVD: antique,
indoor, office,
interior
Manual: antique,
indoor

SEVD: fashion,
people, cloth, fe-
male, face, Asian,
woman
Manual: people,
cloth

SEVD: lion, an-
imal, wild life,
grass, tiger, tree,
wild cat
Manual: lion, ani-
mal, wild life, grass

SEVD: speed,
motorcycle, race,
sport, man-made,
plane, car
Manual: car, sport,
man-made

SEVD: orbit,
man-made, space,
ski, sky, sport,
war, plane, life,
balloon
Manual: balloon,
sky, man-made

SEVD: Europe,
historical build-
ing, church,
France, Rome,
Italy, Yemen
Manual: Europe,
historical building,
church

SEVD: rodeo,
horse, people,
sport, face,
Hongkong, speed,
motorcycle, race,
plane, New
Guinea, male
Manual: people,
face
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Table 4.7: Example images and their annotations from the 5000-image Corel dataset.
UEVD is tested on this database.

city, mountain,
sky, sun

garden, house,
lawn

cheese, market,
people, street

arch, sky, tower
birds, booby, nest field, foals, horses,

mare

athlete, people,
pool, swimmers indian, man,

people

cars, elephant,
road, sky
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Table 4.8: The k-values found by leave-1-out cross-validation on the training set for
each descriptor.

Col.Lay. Col.Str. Scal.Col. Hom.Text. Edge Hist.
13 11 17 15 11

in Section 4.2.1.

The dataset is divided into two parts: the training set consisting of 4500 images,

and the testing set consisting of 500 images. The same training and testing images

are used in all the systems, in this study, to make a reliable comparison of UEVD

with the available methods.

4.3.2 Automatic Annotation Performance

A given image is automatically annotated by UEVD as described in Section 3.3. To

summarize, after the extraction of the feature vectors, k nearest neighbors of the

image are determined for each visual descriptor, where k is found for each descriptor

experimentally. (See Table 4.8). Then, using the equation 3.7, top 5 words are selected

from the list of words pertaining to these nearest neighbor images. The number of

selected words is taken as 5 for the purpose of comparing UEVD to similar available

systems.

For each descriptor, the appropriate k value is found by leave-1-out cross-validation

on the training set. The k values computed for each descriptor are given in Table 4.8.

To measure the automatic annotation performance, as done in similar available sys-

tems, the problem is considered as an image retrieval task and mean recall-precision

values are computed for one word queries. Specifically, after all the images in the

testing set are automatically annotated with 5 words by UEVD, the annotation per-

formance is measured as follows. For each word, the images which are annotated with

that word are retrieved, then recall and precision are computed. Recall is the number

of correctly retrieved images divided by the number of relevant images in the testing

set. Precision is the number of correctly retrieved images divided by the number of

retrieved images. This process is repeated for each word and then the recall and pre-

cision values are averaged. Since there are 260 distinct words in the testing set, 260

one-word queries are possible. Therefore, we report mean recall and precision values

of 260 one-word queries, as done in similar available systems.
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Table 4.9: Automatic image annotation performances (measured by mean recall and
precision of one word queries) of several systems.

Model mean per-word
precision

mean per-word
recall

# of words
with recall>0

Co-occurrence [9] 0.03 0.02 19
Translation Model [5] 0.06 0.04 49
CMRM [6] 0.10 0.09 66
Max. Entropy [15] 0.09 0.12 -
CRM [7] 0.16 0.19 107
UEVD 0.20 0.21 125
CRM-Rect2[10] 0.22 0.23 119
MBRM [10] 0.24 0.25 122

The automatic annotation performances of UEVD and several other systems are

given in Table 4.9. The results indicate the effectiveness of UEVD, hence the proposed

image representation model, since it outperforms many systems.

Examples of some annotations by UEVD are given in Table 4.10. The images are

selected from the testing set consisting of 500 images. As SEVD, UEVD sometimes

assigns some extra “meaningful” words, which describe the image’s content, but are

not included in the manual annotation. For the second image (at the upper-right

corner) in Table 4.10, one of the predictions of UEVD is “clouds” which correctly

describes the image’s content but is not included in the manual words.

4.4 Execution Time

Being capable of operating in real-time is a desirable property for an automatic image

annotation system. In this section, we report the execution time for SEVD and UEVD

to annotate a given image. The time required for training is not reported here, since

it is a batch, off-line process. The execution times show that both SEVD and UEVD

are capable of operating online.

All time measurements below are taken on a 3.00 GHz Pentium IV PC running

GNU/Linux 2.6.

The time required for extracting the features (5 MPEG-7 visual descriptors) from

a typical 384×256 image is 3.17 seconds. Since both SEVD and UEVD use the same

2CRM-Rect is a variation of CRM where Normalized Cuts segmentation is replaced with regular

grid segmentation.
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Table 4.10: Example annotations by UEVD. The images are from the testing set.

UEVD: jet, plane,
sky, clouds, prop
Manual: jet, plane,
sky, smoke

UEVD: water,
sky, island, boats,
clouds
Manual: beach,
sand, sky, water

UEVD: flowers,
garden, vendor,
tree, plants
Manual: flowers,
garden, house,
window

UEVD: people,
street, shops,
buildings, display
Manual: buildings,
clothes, shops,
street

UEVD: tree, tiger,
cat, bengal, for-
est
Manual: bengal, cat,
forest, tiger

UEVD: bear, po-
lar, snow, face,
ice
Manual: bear, polar,
snow

UEVD: flowers,
petals, garden,
tiger, leaf
Manual: flowers,
tree, tulip

UEVD: field,
horses, mare,
foals, grass
Manual: horses,
mare, meadow

UEVD: water,
Scotland, moun-
tain, sky, hills
Manual: castle,
mountain, Scotland,
water

UEVD: water,
sand, beach, sky,
people
Manual: castle,
people, sand, sky
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image representation model, this 3.17 seconds is valid for both of the systems.

After features are extracted, SEVD annotates the given in 1.96 seconds, UEVD

achieves the same task in 1.22 seconds. So, the total time required for automatically

annotating a given image is 5.13 seconds for SEVD, 4.39 seconds for UEVD.

The time values reported above can be enhanced in two ways:

1. Both SEVD and UEVD are implemented in MATLAB. If they were implemented

in C and optimally compiled for the platform they are running on, the time values

should have been lesser.

2. The feature extraction and k-nearest neighbor modules of both systems can run

in parallel by assigning a separate CPU (or computer) for each visual descriptor.

This would significantly reduce the automatic annotation time.

Finally, while SEVD annotates a given image in approximately 6 seconds on a 3.00

GHz Pentium IV PC, ALIP system [1] achieves the same task in approximately 20

minutes on a 800 MHz Pentium III PC.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we propose a novel approach to automatic image annotation. The

approach is applicable to supervised and unsupervised image datasets, yielding two

systems. The main motivation behind these systems is to address the “image rep-

resentation” problem. A novel image representation model, which integrates a vari-

ety of visual descriptors spanning an almost complete visual information comprising

color, shape and texture. The proposed systems employ ensemble learning approach

to classify and annotate the images. The effectiveness of the proposed systems are

demonstrated by comparing them with the state-of-the-art systems in equivalent ex-

perimental setups.

The proposed automatic annotation systems – namely Supervised Ensemble of

Visual Descriptors (SEVD) and Unsupervised Ensemble of Visual Descriptors (UEVD)

– have shown superior annotation performances than most of the available systems in

the literature, such as [1], [5], [6], [7]. Empirical results suggest that using the proposed

image representation model under an ensemble learning approach is an effective scheme

in automatic image annotation. Additionally, both SEVD and UEVD are able to

operate online, which is a desirable property for an automatic annotation system.

In automatic image annotation study, the available datasets bear some problems.

On the annotation side: some of the provided manual annotation words do not describe

the content of the image (e.g. the word “Turkey” for an ordinary landscape image),

or they are too abstract or high-level to visually observe (e.g. “success”, “fun”). On

the image side: the images may be biased to some application domains, they do not

present the great visual variety of the nature.

However, creation of a “good” dataset requires a large number of images to be

selected and manually annotated. This, certainly, requires great physical and mental
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effort and after all it is a subjective process. Different persons would produce different

words for the same image. Therefore, creating a benchmark dataset for automatic

image annotation is a very challenging task.

Another problem in automatic image annotation studies is the evaluation of the

annotation performance. There seems to be two evaluation schemes: coverage per-

centage and mean recall-precision of one-word image retrieval queries. Coverage per-

centage measure has some inherent problems such as not penalizing the incorrectly

predicted words. We conclude that mean recall-precision is a better measure than

coverage percentage to measure the annotation performance.

For future work, the proposed systems SEVD and UEVD can be improved in

several ways:

• In this study, we only used global descriptors from the MPEG7 set. Different

visual descriptors can be incorporated into the image representation model. Es-

pecially, the use of local descriptors may boost the performance of both SEVD

and UEVD.

• The annotation part of both of the systems is quite näıve. Nothing is done

about the word-to-word relations. The systems’ performance can be boosted if a

coherent language model (as proposed in [20]) is incorporated into the automatic

annotation process.

• In this study, for the sake of simplicity, we use fuzzy k-NN for classification and

k-nearest neighbors for clustering. If these methods are replaced with their more

“powerful” counterparts, the annotation performance is likely to increase.

• As pointed out in [37], using Lp norm where 0 < p < 1 is better than using L2

norm in a high-dimensional space. This finding could be explored by changing

the norm used in SEVD and UEVD. Especially in SEVD, since the meta-level

classifier works in a very high-dimensional space ( # of descriptors × # of

classes), using Lp (0 < p < 1) norm may be beneficial.
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