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ABSTRACT

PERMANENT MAGNET DESIGN AND IMAGE
RECONSTRUCTION TECHNIQUE FOR MAGNETIC
RESONANCE IMAGING IN INHOMOGENEOUS MAGNETIC

FIELDS

Y TLER, Hiseyin
M. Sc., Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. B. Murat Eylbo Iu

September 2006, 170 pages

Recently,the use of permanent magnets as magnetic fieldesun biomedical applicatio
has become widespread. However, usage of permanaghets in magneticesonanc
imaging (MRI) is limited due to their inhomogeneousgnetic fielddistributions. In thi
thesis, shape and geometry optimization of a maignperformed. Moreover, placemerit o
more than one magnet is optimizex obtain desired magnetic field distribution pesific
region of space. However, obtained magnetic fiektridution can not be used ithe
conventional MRI image reconstruction techniqguesnggquently, an image reconstruc
technique for MRI in inhomogeneous magnetic figklsleveloped. Apart from these, si
any reconstruction technique requires signal dataMRI simulator in inhomogeneo
magnetic fields is constructed as a part of thesig Obtained results show that the th
developed in this thesis is valid. Consequently @RI devices that have perman
magnets as magnetic field sources can be condlrirctbe future.

Keywords: Magnetic Resonance Imaging, MRI in Inhgemeous Magnetic i€lds

Permanent Magnet Shape Optimization, MRI Simuldinage Reconstruction



Oz

HETEROJEN MANYET K ALANLARDA MANYET K
REZONANS GORUNTULEME C N KALICI MIKNATIS
TASARIMI VE GORUNTU OLU TURMA TEKN
GEL T R LMES

Y TLER, Hiseyin
Yuksek Lisans, Elektrik ve Elektronik MUhendisli i
Tez Yoneticisi: Prof. Dr. B. Murat Eyibo lu

Eylal 2006, 170 sayfa

Son zamanlarda, biyomedikal uygulamalar nda makysgtn kayna olarak kal c
m knat s kullan m artmt r. Ancak, manyetik rezonargoruntilemede (MRG) kal
m knat s kullan m, m knat slar n heterojen mankedianlar ndan dolay sndr.
Bu tezde, kal ¢ m knat slar rekil ve geometri eniyilemesi yap Imir. Elde edile
ekil ve geometrideki m knat slar n birden fazlas nuzaydaki yerlémleri de
eniyilenerek uzayn belli bir bélgesinde istenilenanyetik alan dalm elde
edimi tir. Ancak, elde edilen manyetik alan dan klinik MRG sistemlerind
kullan lan gorintt oluurma teknikleri icin uygurde ildir. Bu nedenle, heteroj
manyetik alanlarda MRG icin gorinti olurma teknii geli tirilmi tir. Bununle
beraber, herhangbir gorintl oluturma teknii sinyal bilgisini gerektirdiinden
heterojen manyetik alanlarda MRG benzetimi de yoetede yap Im tr. Elde
edilen sonuglar, bu tezde gailiilen kuramlarn doru oldu unu goéstermekted
Dolay s yla, ileride, geltirilen kalc m knat slar manyetik alan kaynaolarak
kullanan MRG sistemleri gelirilebilecektir.

Anahtar Kelimeler: Manyetik Rezonans Goéruntulemetdtojen Minyetik Alanlard
MRG, Kal ¢ M knat s ekil Eniyilemesi, MRG benzetimi, Gérintli Oturma
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CHAPTER 1

INTRODUCTION

1.1. Magnetic Resonance Imaging

Magnetic resonance imaging is a tomographic imageoipnique that utilizes the
response of the spinning atomic particle undeuverite of static and radio frequency
magnetic fields in order to form images that arérewrely rich in information
content.

Nuclear magnetic resonance (NMR) phenomenon wsisdiscovered independently
by Blochet al[1, 2] and Purcelet al [3] in 1946. This is followed by the discovery
of the chemical shift which enables the identifimat of the nuclei in different

chemical environments. Therefore nuclear magnetisomance has become a

powerful tool for chemistry to investigate the sture of the solids and liquids.

The discovery of NMR phenomenon and the discoveriepectroscopic techniques
are followed by the discoveries related with imaggihe spin distribution in tissues.
The principle of using gradient fields to spatiayncode spin distribution in

measured spin response was proposed by Lauterbuan by Mansfield and

Grannell [5] in 1973. The first whole body imagepisblished by Damadiagt al [6]

in 1977. Their pioneering research triggers the ettgpment of many other

discoveries such as the fast imaging methogd,,; tontrast imaging etc.



1.2. Objective of the study

The proposed imaging techniques for conventionalRNivhaging (MRI) systems
require homogeneous distribution of strong, exterastatic magnetic field. This
obligatory requirement arises from the fact thaenttcal spinning frequency
throughout the object being imaged can be pertunbedcontrolled manner easier.
However, to create homogeneous distribution ofngfrand static magnetic field
requires large and expensive coils which resthietdize of object being imaged and
require high running cost. On the other hand, riégethe usage of high gradient
magnetic fields for separation and localization basome widespread due to the fact
that inhomogeneous magnetic field systems have neawantages over the
commercial resistive or superconductive magneesys{7].

The presence of magnetic field gradients allowsrd@nation of transverse and
longitudinal relaxation and translational diffusiatich are vital parameters used in
NMR and MRI systems [7]. The main advantages oh lggadient magnetic fields
over the homogenous magnetic fields are size astl e to the fact that high
gradient magnetic fields can be obtained using peamt magnets. Contrary to the
resistive and superconductive magnets used in coomthesystems, permanent
magnets do not require any running cost, and tre @i the magnet is small so that
the magnetic field source itself can be moved an abject, allowing unlimited
object size. On the other hand, the usage of pe¥ntamagnets is restricted to be
used in near surface applications due to their grgklient magnetic fields.

Magnetic field distribution of permanent magnets && altered by changing their
surfaces. Therefore, the first object of this stislyo develop a method to design

permanent magnets structures.

Since the magnetic field in a region of space Basissuperposition principle for

linear media, more than one magnet can be usedetdecdesired magnetic field.
Magnetic field distribution due to more than onegmet can be altered by changing
positions of magnets. Therefore, the second aithisfstudy is to develop a method



to determine locations of more than one magnetbtain desired magnetic field

distribution.

Permanent magnet surface optimization and placemientore than one magnet
have been studied by researchers. The attemptdétéonodesired magnetic field
distribution are given in introduction section didpter 2.

The use of inhomogeneous magnetic field sourc@dR requires development of
novel image reconstruction techniques; because ertional technigques require
homogeneous magnetic field distribution. Since ghgsical principle behind MRI

allows usage of high gradient magnetic fields, ffedknt mathematical model of
MRI system is needed to form images from acquirigdats. Since the usage of
inhomogeneous magnetic field distribution in MRyuges much more complicated

models, image reconstruction requires high commutatost.

To be able to observe the signal shape and chaslice when the atomic particles
are under the influence of inhomogeneous magnétidsf in the ideal case, a
computer simulator should be constructed. Howethes,requires a relation between
measured signal and the object being imaged. Ti&ion can be developed by
extending the conventional MRI formulation usingwnecoordinate system.
Therefore, the third objective in this study is develop and construct an MRI

simulator in inhomogeneous magnetic fields.

Several MRI simulators for educational and reseapirposes have been
constructed, so far. These simulators are shoxiiyaened in introduction section of
Chapter 3.

In this study to be able to construct images fréve MRI simulator developed in
inhomogeneous magnetic fields requires developroEnew image reconstruction
techniques. Since any image reconstruction teclenigguires a mathematical model
of the system, the fourth aim of this study is gvelop a mathematical model of
MRI in inhomogeneous magnetic fields system. Cousetly, the final aim is to
develop an image reconstruction technique whichemakse of the model of the

system.



In literature, it is not possible to find many werkvhich aim to develop a novel
reconstruction technique for MRI in inhomogeneowgnetic fields. However, there
are some attempts to correct image artifacts duaagnetic field inhomogeneities.
The aim to modify the signals obtained in a conwgratl image reconstruction
technique. On the other hand, there are some NMRcete constructed using
permanent magnets as magnetic field sources. Mergthere have been attempts to
obtain images using these devices by the convailtiamage reconstruction
techniques. Therefore, the main constraint on cocison of these devices is to
obtain magnetic fields as homogeneous as possibiese works are also

summarized in the introduction section of Chapter 3

1.3. Outline of the study

As described above, there are five objectives im $kudy. These five aims can be
grouped into two; first one is the permanent magiesign (objectives one and two)
and the second one is the construction of an MRlukitor in inhomogeneous
magnetic fields (objective three) and the develapn an image reconstruction

technique (objectives four and five).

In Chapter 2, permanent magnet design procedudedsribed. In its subsections,
firstly, the motivation behind such a study, objeet and an outline of previous
works are given. Secondly, the theory of magneid fcalculation is given. Thirdly,

used methods are introduced. Fourthly, implememadetails are given. Lastly,

obtained results are demonstrated

In Chapter 3, the construction of an MRI simulaiorinhomogeneous magnetic
fields and the development of an image reconstindgchnique are described. In its
subsections, firstly, the motivation behind sucstuady, objectives and an outline of
previous works are given. Secondly, theory of thenutator and image

reconstruction technique are given. Thirdly, impseration details of the simulator



and image reconstruction technique are given. Rbyrobtained results are given
for both homogeneous and inhomogeneous magndticcises are given.

Finally, Chapter 4 is the conclusion chapter.

Since the thesis is divided into two main parts, idferences of each part are given
at the end of each chapter.

1.4. References

[1]. F. Bloch, “Nuclear induction”, Physical RevieWol. 70, pp. 460-474, 1946.

[2]. F. Bloch, W. W. Hansen, and M. Packard, “Thelear induction experiment”,
Physical Review, Vol. 70, pp. 474-485, 1946.

[3]. E. M. Purcell, H. C. Torrey, and R. V. PoufiResonance absorption by nuclear
magnetic moments in a solid”, Physical Review, \68, pp. 37-38, 1946.

[4]. P. C. Lauterbur, “Image formation by inducemtdl interactions - Examples
employing nuclear magnetic-resonance”, Nature, Y42, pp. 190-191, 1973.

[5]. P. Mansfield and P. K. Grannell, “NMR 'diffid@n’ in solids”, Journal of
Physics C: Solid State Physics, Vol. 6, pp. 422;426 3.

[6]. R. Damadian, M. Goldsmith, and L. Minkoff, “Niin cancer: XVI. FONAR
image of the live human body”, Physiological Chdamisand Physics, Vol. 9,
pp. 97-100, 1977.

[7]. Gareth P. Hatch, “Magnet design consideratitorsdevices and particles for
biological high-gradient magnetic separation (HGMS§)stem”, Journal of
Magnetism and Magnetic Materials, Vol. 225, pp.-268, 2001.



CHAPTER 2

PERMANENT MAGNET DESIGN

2.1. Introduction

Magnetic resonance imaging is based on physicaigghenon of nuclear magnetic
resonance, which is related to magnetic propertbésatoms’ nucleus. For
paramagnetic materials, magnetization of microscpgirticles becomes observable
in macroscopic level only when sufficient number miclei is aligned to strong

external magnetic field [1].

In commercial nuclear magnetic resonance (NMR) madnetic resonance imaging
(MRI) systems, large and expensive magnets are ueecdbbtain a highly
homogeneous magnetic field in order to observenaste phenomena throughout
the object being imaged. On the other hand, regetite use of high gradient
magnetic fields, for separation and localizatioas lbecome widespread due to the
fact that inhomogeneous magnetic field systems hagsay advantages over the

commercial resistive or superconductive magneesys{7].

In NMR and MRI systems, magnetic field gradients @ asset for spatial resolution
[7]. Their presence allows determination of tramsgeand longitudinal relaxation
and translational diffusion which are vital paraemstused in NMR and MRI
systems. The main advantages of high gradient niagredds over the homogenous
magnetic fields are size and cost due to the faat high gradient magnetic fields
can be obtained using permanent magnets. Contrarythé resistive and



superconductive magnets used in commercial systparsjanent magnets do not
require any running cost, and their sizes are sallghmt the magnetic field source
itself can be moved on the object, allowing unleditobject size. Moreover, some
permanent magnets can produce up to 1.2 T of patawn fields allowing to use

them in applications which require high magnetedds. On the other hand, the use
of permanent magnets is restricted to be usedansweface applications due to their

highly inhomogeneous magnetic fields.

The magnetic field distribution of permanent magnsta function of construction
material, geometry, and initial magnetization ahagnet [2, 3]. Hence, the magnetic
field distribution can be changed by fine tuningttbanicro and macro level
properties of magnet. Since magnetization and niegmeaterials are related to
production of bulk magnet, it is assumed that them@ameters are fixed and leave
them out of scope of this work. Another importagéson to leave these parameters
out of scope of this work is due to the fact thasinot possible to reach a unique
magnetization distribution which generates a speaifagnetic field distribution [2].
Consequently, in the first part of this work itasned to obtain permanent magnet
geometry which yields desired magnetic field préiper

Geometry optimization of permanent magnets is stlidhy researchers previously.
In [7] and [8], it is assumed that the surfacehaf nagnet is flat, and the geometry is
optimized for the height and the side lengths ef ttegnet. However, this kind of
optimization is not adequate to design permanengneid for NMR and MRI
applications. Since the magnetic field distributgenerated by a permanent magnet
IS not unique, manufacturability becomes the mgtartant constraint. In previous
works, manufacturability is defined as regularig; [LO, 11, 12]. In [9], a novel
method is presented which makes use of finite ektnreethod (FEM) to calculate
magnetic field distribution. Changes in geometry performed by moving the mesh
elements under the application of artificial forc€kis idea guarantees the continuity
of surface, and manufacturability is indirectly @wesl. In [10], the surfaces are
parameterized using spline functions adaptivelyd #rve number and locations of
control points are generated automatically to avagiged surfaces. In [11], an
analytical solution of magnetic field of permanemgnets is developed. The surface

7



is described by equipotential lines of scalar poaéérfunction, scalar magnetic
potential. The use of equipotential lines of patdrfield assures continuity of the
surface since any equipotential line of a poteritiaction should be continuous. In
[12], an inverse methodology is followed. From tklesired magnetic field
distribution, they try to obtain a magnet surfac@ich generates the desired
magnetic field. In that work, analytical solutiorertved in [11] is used. Scalar

magnetic potential is calculated from desired mégtield to obtain the surface.

In the first part of this work it is aimed to desig permanent geometry which can be
jagged or not to generate a magnetic field withrddsproperties in some specific
region of space. Contrary to previous works, mattufability is not equated to
continuity of the surface, since some discontinusuaces can be manufactured

easier than continuous ones.

In the second part of this work, placement of mben one permanent magnet with
surfaces obtained in the first part is tried todpimized. The placement of more
than one permanent magnet in space has been spréMadusly. It is accepted that
Halbach magnet arrangement is the one that procvm@®geneous magnetic field
distribution [13]. However, these arrangementsdeeeloped for 2D problems and
they produce homogeneous magnetic fields in theriort of closed structures. In
[14], a Halbach array is designed to produce homeges magnetic field inside a

tube like 3D structure.

In the second part of the study, it is aimed toigifesn optimum arrangement of
permanent magnets which does not form a closedairfo that the structure is

open, produces a magnetic field with desired prtogeer

Geometry optimization of permanent magnets andepi@nt of more than one
magnet in space to obtain desired magnetic fiedttidution problem is very hard to
solve by standard nonlinear programming algorithimese algorithms require near
optimum initial solution, gradient or Hessian mwatof optimization function, a line

search algorithm, and a nearly convex optimizafiomction. The most important
restriction of these algorithms comes from thaahgolution requirement. Since it is

8



not possible to predict a near global optimum sotufor such problems directly, an
algorithm which can carry the solution towards giebal optimum is needed. In
fact, evolutionary algorithms like “Genetic Algdmhs” which belong to “Weak
Methods” in Atrtificial Intelligence community arée best tools to solve these kinds

of problems [15].

Although genetic algorithms provide a means to geser to global optimum
solution, they should not be used to reach glop#hwm points in a finite number
of iterations (generations). When it is thoughtt ttiee solution is close enough to
global optimum one, a gradient based optimizatigoréghm should be utilized to
reach it. In this work, these algorithms are callé®dear Global Optimum
Algorithms”.

In this chapter, a new method to design permanegnet structures for generation
of magnetic fields with desired properties is diémad. Firstly, the theory of
magnetic field calculations is given. Secondlyatletof genetic algorithms and their
operations and near global optimum algorithms arescdbed. Thirdly,

implementation details are given. Fourthly, obtdinesults are demonstrated.

Finally, this chapter is concluded.

2.2. Theory

In this part, calculation of magnetic field distritibon of permanent magnet using

scalar magnetic potentials is described in detail.

Magnetic field distribution in space can be caltedausing two different potentials:
vector magnetic potentials, and scalar magnetieratls. Vector magnetic potential
arises from the fact that magnetic field is soldagii.e., the divergence of magnetic

induction is 0. Using the identities of vector cdics:

N>xB =0 (2.1)
N N"A) =0 (2.2)
B=N" A (2.3)



for any vector field,A A is defined as vector magnetic potential [6].
The definition implies that, magnetic vector poiahexists whenever a magnetic

induction exists.

On the other hand, for current free regions,

N° B= ngJL:O: 0 (2.4)

Hence, using the null identity of vector calculBsan be defined as:
N°NV,)=0 (2.5)

B=-nNV, (2.6)

for any scalar field/,. V, is defined as the scalar magnetic potential [6].

Since permanent magnets create magnetic field atithocurrent source, magnetic
scalar potential can be used to calculate magriezid distribution. General

formulation of scalar magnetic potential is given[#]. Here a slightly modified

version is given. Before giving the formula of tlsealar magnetic potential,
definition of magnetic moment should be made.

Amperé’s theorem states that any current carryoup Ican generate a magnetic
field. Hence, any magnetic material can be conedleas a combination of
infinitesimally small current carrying loops, magirthese loops being the most

elementary elements of magnetism [2].

By defining Ids asdm, dmcan be used as the elementary unit of magnetisiesids
of infinitesimally small current loop:
dm= Ids (2.7)

This term is defined as the magnetic dipole morfignt

Magnetic induction at any point in the space due turrent carrying loop can be

found using Biot-Savart law;

R
IR

dB=8 (101" =) (2.8)
4p

where Ris defined as distance vector;
10



R=r-r' (2.9)
wherer 'is the position vector of source points, ands the position vector of field
points.

Hence, the change in scalar vector potentigl, described by (2.6), when the field

point is moved by an amount afd , the change in scalar magnetic potential is given
by;

ov, =L B = 99X R .10
& 4R
The same change in potential should be observed wWieefield point is fixed and

the source point is displaced by an amount @fl - The area swept by such a

displacement is:

ds=-(dd d) (2.11)

Subtended solid angle by ardais given by:

~ 1
W =- N(W) ds (2.12)
WWly=. R
N(W) = T (2.13)
dWz_R>(a’d3’dI):_ dd>(dI3’F§ (2.14)
IR IR
Substituting (2.14) in (2.10) yields:
pv, =1 9R _ Lgy, (2.15)
w[Rl
Using (2.15) and (2.7):
o dmxR (2.16)
s40|R]

The detailed version of derivations can be foun]n

In macroscopic level, magnetic dipole moments cainbe observed but magnetic
intensity can be observed. Magnetic intensity fingd as:

11



m
M=— 2.17
v (2.17)

where M is magnetic intensitymis magnetic dipole moment, anlis the volume

where magnetic dipole moments are distributed. ¢Jsms definition m can be

written as:
dm= MdV (2.18)
Substituting (2.18) into (2.16) and using (2.13)lgs:
= M_><R3 = i M x ﬁ(i) dv (2.19)
o] % R

Using the vector identity:
~ M ~ 1 1 -
NG—) =M xN-—) +— NK (2.20)
X LIl

and the divergence theorel,turns out to be:

1 - M N xVi

V. =-— Nx(=dV - ———dV (2.21)
. R v

oM. My (2.22)
w AT

The magnetic field distribution can be calculatsihg (2.22) and (2.6).

To be able to say that any function is a scalar maag potential, uniqueness of
scalar magnetic potential in terms of its formwati (i.e., equation (2.22)), and

boundary conditions should be shown.

Boundary conditions of scalar magnetic potentiaé alerived from ordinary
magnetostatic boundary conditions. Therefore, aticgiship between magnetic

induction, B, and magnetic fieldH , in whole space (inside and outside of the
magnet) should be defined. Interior of ferromagnéibdy contains some aligned
dipole moments, which contributes to the exteriaagnmet field, H. This fact is
represented by relation:

Outside the magnetic mediuM is 0 and (2.23) becomes:
12



B=mH (2.24)
Then, generally scalar magnetic potential is wmits:
H=-NV, (2.25)
to make the definition valid inside the ferromagnétody. Then, using divergence
free nature oB :
NxB =mN&V H) 6 (2.26)
Inside the magnetic body the differential equatbscalar potential becomes:
-NxH =RV, =NM (2.27)
Outside the magnetic body:
N3, =0 (2.28)
Using the continuity of tangential componentifand normal component @&, the

boundary conditions for the scalar magnetic po#tiatie obtained as:

Vin: = Vi (2.29)
™ ™
Mn .~ Tout — g xfj (2.30)
fin in

Any function satisfying the equations from (2.2@) (2.30) is a solution of these
equations and it is unique. Proof of this statengegtven in [3].

To be able to calculate magnetic field from scatagnetic potential using (2.22),
some assumptions about magnetic intensity distabutf magnet should be made.
That follows from the fact that magnetic field isen by:

H=1fg M

B
—xds - ——dV (2.31)
o s|] v A

If magnetic field intensity is assumed to be umianside the volume of permanent
magnet, volume term in (2.31) can be dropped. Issagssume that magnetic field

intensity of a permanent magnet is defined as:
M =My (2.32)
where €, is the direction parallel to the height of magaed M, is the magnitude of

magnetic field intensity. Therefore, using the fd#wat gradient operator in (2.31)

13



operates on field points,, whereas the integral operates on source painig2.31)

can be written as:

1. M 1 1
H=—N —xs =— N—= M xs (2.33)
v s/ s A
Using (2.13), (2.33) can be rewritten as:
-.1 R
= 4/75HRH3MXdS (2.34)

where R in terms of coordinates of source point and oke@m point is defined as:

R=(x- X)&+ (¥ V¢ (2 ¥, (2.35)

Surface integral in (2.34) operates on the wholéasa of the permanent magnet.

The surface of the permanent magnet is represeaged functionz¢= z{x, ¢).

Since, z¢ may or may not be a continuous function, the fimmcspace of surfaces
can not be restricted. Consequently, a methodolyich covers all possible
surfaces, like spline function parameterizationfioite element meshes should be
followed. In this work, finite element meshes gemerated. To calculate magnetic

field superposition principle is used.

Triangular elements are chosen to partition the alonof surface functionz¢. A

sample of mesh is shown in Figure 2.1.

Figure 2.1: A sample that shows the elements’
projection on domain of surface

Since the mesh segments of domain is represent&dpoynts which are not on the
same line the equation of the plane passing thrdlugge 3 points can be found. This
14



equation can be used to calculate the valuetsfz€x, &) when x¢andydare known

and fixed. This methodology will increase the magnéeld calculation accuracy.
On the other hand, linear interpolation paramefardriangular mesh segments can

also be found to calculate surface function value.

To find linear interpolation parameters, a sligidifferent method which makes use

of the vector algebra is used. A clearer plot ofesh element is given in Figure 2.2.

P,

4

I:)0 > P]_

Figure 2.2: A triangular element with
edge points specified

Vectors BB and B)F, are defined as shown in Figure 2.2, so that amyt peside

the triangle can be expressed as a linear combmati these vectors as shown in
Figure 2.3.

P1

sh,P,
Figure 2.3: Representation of any point inside the
element as linear combination gk andrp,

15



SinceP is restricted to be inside the triangéeandt can not take every value. They
are restricted to satisfy:
Of£s+t£1l (2.36)

Then R,P can be written as:

RP=URR +s BB (2:37)

For the problem at handtandytare assumed to be known for every pamtinside
the triangle.z¢ value ofP is given by:

20=276t{z7¢ )& st z €3 (2.38)
s andt are found from equations o%¢andyd, by solving 2 equations with 2
unknowns:

xC=xGtxx ¢x)&sgx Ly (2.39)

yo= Yol ty, Gy) &sty Ly (2.40)

Area of a surface element in a mesh is given by:

ds=->(RR’ RR) (2.41)

The magnetic field due to a source poR{ix¢ y ¢z)at point(x, y, 2) is given by:

He (X, z)=|vIO (e x)er (¢ Vg (2 zje“q{e)a' pog) (2.42)

P (x- x)2+ (y Y)* (z 2

Using the superposition principle, total magneteddf at point(x, y, z)is found by

the vector sum of individual magnetic fields duestmurce points, wherei =1.N

and N is the number of source points in the whole surfaesh.

2.3. Method

In this section, used algorithms are explainedataidl Firstly, a general description

of genetic algorithms is given. Secondly, operaiah genetic algorithms used in

16



this work are described. Finally, the overall aldon which is expected to converge
to near global optimum points is explained.

2.3.1. Genetic Algorithms

Genetic algorithms are a class of optimizationsgarch) technique inspired from the
evolutionary biology. These techniques are stoahastnature, and they simulate
main concepts of evolutionary biology such as nomatselection and crossover.
Consequently, they try to do what nature does doviduals to transform species to
better ones in the sense of survival [16].

Mathematically genetic algorithms are simulationfs a0 population of abstract
representations of solutions which aim to evolva teetter solution. Typically, these
algorithms require two things [17]:

1. An abstract representation of a solution,

2. A fitness function to evaluate them
These two requirements are an asset of genetiaithigs, but not enough to
guarantee an evolution. Evolution of populatiorgemetic algorithms is guaranteed
by selection, mutation and crossover operations. firet operation is used to inherit
the solution to the next generation. Mutation anossover operations are used to
introduce diversity of a population of solution$€Ee operations are performed for

all generations.

A typical genetic algorithm steps are shown in FégR.4. The first step of genetic
algorithms is to define an abstract representatifosplutions. This representation of
solutions is called a “Chromosome”. Chromosomesrathing but a sequence of
numbers, which have number of elements equal todimension of the solution
space. Each element of a chromosome is called a€'Gesenes can be real
numbers, floating numbers or binary numbers depgndin the representation of

solutions.

17



Fitness function gives a measure of fitness of mmsomes. In other words, it
assigns a value to the abstract representatiorsoluéion.

define an abstract representation ofusioins
(form chromosomes)
define a fitness function
generate initial population
evaluate fitness function (population)
i=1
while i£ maximum iteration number
find and hold the elitist chromosome
(best solution in the population)
perform crossover operation
perform mutation operation
perform selection for next generation
evaluate fitness function (population)
add the elitist chromosome to negngratiorn
i++

end

Figure 2.4: Genetic algorithm steps

Transformation from solution to chromosome is ahlléEncoding” and
transformation from chromosome to solution is ahlléDecoding”. When
chromosomes are sequences of real numbers theiggatggrithm is called “Real
Coded Genetic Algorithm”; when the chromosomessagiences of binary numbers
the genetic algorithm is called “Binary Coded Genetlgorithm”. The type of
encoding is determined according to the problenthis work, both, binary and real

coded genetic algorithms are used.

After defining chromosomes and fithess functiore tiext step is to generate the
initial population. Initial population is usuallyonstructed randomly. However,
sometimes some chromosomes with higher fithesadded to it, to be able increase

the convergence rate of the genetic algorithm. Jike of the initial population is

18



defined according to the problem and it is presgmilethe end of simulation. After

creating initial population, the fithess of the ptation is calculated. To guarantee
monotonic increase or decrease, the elitist chromesof the population is stored to
directly pass it to the next generation. Afterttbiep, genetic algorithm operations

are repeated.

As in crossover during mitosis in biology two chrmsomes come side-by-side, and
exchange their genes. This structure defines theergeé nature of crossover

operation. At the beginning of the simulation akability of crossover occurrence
is defined for a chromosome. The usual procedurat any crossover follows,

begins with the determination of chromosomes thi#ittake part in crossover. The

procedure continues with random selection of twoogiosomes among selected
ones that will exchange their genes. These twoncbsomes are called “Parents”.
After that, a random gene is selected as the hindmbreaking point (also called

“Crossover Point”) after which the parent chromosemwill exchange their genes.
Finally, the parents exchange the genes and affgpthromosomes are created.
Whether the parent chromosomes cease to existnbinae to exist depends on the
problem.

The mutation operation is also an analogue of nmutain genetics. Since the
mutation in genetics has a variety of forms, inegnalgorithms, this operation is
not uniquely defined. However, generally, as inssaver operation at the beginning
of simulation, a probability of mutation is defineg@enes or chromosomes that will
have mutation operation constitute a set of gemehimmosomes called “Mutation
Pool”. After that, selected genes or chromosomes imuposed to the indicated
mutation operation. As in crossover, whether themachromosomes cease to exist

or continue to exist depends on the problem.

Chromosomes for next generation are obtained blyiagpthe selection generation.
There is a variety of selection procedures, big tustomary to use roulette wheel
that has slots sized according to fitness valueshmbmosomes which enter to
selection mechanism. Then, a shot is made to salebtomosome. This procedure

of selection is the most frequently used one bexafsSchema Theorem. This
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theorem states that the chromosomes with abowrage fithess receive
exponentially increasing trials in subsequent gatn@ns of genetic algorithms [16].

The details of selection procedure are given irt segtion.

2.3.2. Genetic Algorithm Operations

As previously stated, in this work, binary coded asal coded genetic algorithms
are used. The genetic algorithm operations vargrdatg to genetic algorithm type
and according to problem. In this work, one typ®pération has been used for real
coded genetic algorithms and for binary coded gersgorithms’ operations one
type of crossover and three kinds of mutation hlbgen used. Only one type of

selection operation is used.

2.3.2.1. The Crossover Operation of a Real CodeaukeGe Algorithm

The chromosomes in real coded genetic algorithmsageiences of real numbers.
Therefore, by just exchanging genes of chromosowh@ss not increase the
population diversity. Crossover operation of readed genetic algorithms is
modified. This modified crossover is known as “Antetic Crossover”. In figure 2.5

arithmetic crossover is shown. In Figure 2.5, X &ndre parents, and,and 2 are

offspring. The crossover is performed at tfigene of the parent chromosomes.

In arithmetic crossover, when the parents are exgihg their genes, genes are
multiplied with a random number between 0 and lis hhultiplication is performed
according to rules given below:

Z;; =axX; 1 -a) %y
Z,=(1-axX,+axy,
Z, =(1- ap< X, +axy
Z,,=axX, {1 -3 %,

wherea is any random number in the interval [0,1].
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X4 Y3 Z Z,,

X2 Y3 Z, Z,)

X Y Z; Z>

Figure 2.5: Real coded genetic algorithm

However, this multiplication with random number sas the chromosomes to
converge to an average value of a population asgdmerations are performed.
Convergence to average value is prevented by addiugdary chromosomes to
population. This procedure is known as “Boundarytéfion”, and will be explained

in real coded mutation section.

An example of real coded genetic algorithm crossoperation is given on the next

page.

2.3.2.2. The Mutation Operation of a Real Codedd&erAlgorithm

As described previously, mutation operations cagraie on genes or chromosomes.
Since the chromosomes of real coded genetic dfgoriare composed of real

numbers, choosing mutation that operates on chromes is more convenient.
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Chromosomes length N
Select chromosomes for crossover
selected chromosome setG; {C,, C,, C,

Select two of selected chromosomes ranigand remove them from the S

parents =¢, C, }

1.2 2.2
2.1 1.1
C, = ,C =
* 29 '8 1.9
1.22 1.11
1.45 2.54

Select crossover point
crossover point & -2

Generate a random number in interval [0, 1]
a=0.1

Perform the multiplicatin and form offspring

}

1.20 2.20 1.20
2.10 1.10 2.10
0.1x + 0.9x 0.9 x
O = 2.90 190 '@ = 2.90
1.22 1.11 1.22
0.9x + 0.1x 0.1x
1.45 2.54 1.45
2.10 1.30
1.20 2.00
O = , =
Y 2.00 < 2.80
1.121 1.209
2.431 1.559

Continue till the selectioget is empty

2.20
1.10
+0.1 x

1.90

1.11
+ 0.9 x
2.54

An example of the crossover operation of a reakdagknetic algorithm
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A mutation operation that operates on chromosomesld start with the selection of
chromosomes that are supposed to undergo a mutgtienation. Preceding part of
mutation procedures is problem dependent. For ghidblem, mutation has been
implemented such that a new chromosome with rangleme distribution is added to
the mutating chromosome with some weight. The newwraosome consists of genes
of real number whose values are between -1 and Ipré&vent extreme boundary
exceeding of genes, new chromosomes’ genes arg@heaaltwith a number which is

5% to 10% of original chromosomes’ gene valuesotlmer words, the weight is

chosen so that it is 5% to 10% of variable’s (tlagiable which is represented by
chromosome) interval length of definition. Finallyhe genes of the output
chromosome are checked for boundary exceeding.bifumdary exceeding occurs
for a gene, that genes value is moved to near lasynth Figure 2.6, these concepts

are shown.

v
+
v

X R X exR Y

Figure 2.6: Real coded genetic algorithm mutatiparation

In Figure 2.6, X shows a chromosome that is safefte mutation; R is the random

chromosome whose elements are in the intgrid]; Y, which is given

by X + exR, is the output.
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The determination oé is critical for the mutation operation. ReferritogFigure 2.6,

if the genes of X are in the intervpd, b], then eis calculated bye=k xb -3a),
wherek s in the rangg0.05,0.10.

An example of the mutation operation of a real codenetic algorithm is given

below:

Chromosomes' genes interval[1, 3]
Definee
e=0.05%x(3-1)= 0.1
Select chromosomes for mutation
selected chromosome setG; {C,,C, }
Select one of selected chromosomes rarigand remove it from thee§
mutation chromosome € }
1.2
2.1
X=C, =
2.9
1.22
Form a random chromosome
0.12
-0.21

0.02
-0.22
Generate the output chromosome

1.20 0.12 1.212
2.10 -0.21 2.079

Y = + 0.1x
2.90 0.02 2.902
1.22 -0.22 1.198

Check the output chromosome's genes for boundaseelings
Continue till the skected chromosome set is empty

An example of the mutation operation of a real cbgenetic algorithm
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As stated earlier, another mutation which preveots/ergence to average value of a
population is boundary mutation. Boundary mutatiakes its name from the fact
that it forces certain components of relocated rlosomes to take values at the
boundary of the feasible region. Therefore, newoetasomes with genes that have
only 2 values, upper boundary and lower boundaryasfable, are created. The
number of genes that have upper boundary or loveemdary is random and

determined randomly.

2.3.2.3. The Crossover Operation of a Binary Co@edetic Algorithm

The first crossover operation for the binary codedetic algorithm is the customary
one. It is the direct analogue of crossover in sioThe operation associated with
this crossover operation are as in for the crogsoperation ones in real coded
genetic algorithm, which is described above, excapttiplication with a random

number part. The operations associated with tlossaver operation are illustrated

in the example shown in the next page.

2.3.2.4. Mutation Operation of a Binary Coded Genétgorithm -1-

The first mutation operation is the customary oibis mutation operation is

performed on genes rather than chromosomes.

Before starting to describe this operation it sHdoé noted that the probability of
mutation in this operation is defined for individggenes rather than chromosomes.
This operation begins with the formation of the atigin pool. This pool is the set of
chromosomes whose genes will be candidates of mmtathen a sequence of
random numbers between 0 and 1 is generated sedblatgene in the mutation pool
has a corresponding number. Then, genes whosemandmber is less than or equal
to mutation probability toggles its value. An exdenpf the steps of this mutation

operation is given.
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Select chromosomes for crossover
selected chromosome setG{C,,C,,C, }

Select two of selected chromosomes ranlyand remove them from the ¢
parents =¢; C }

1 0
1 0
0 1
G, = » G =
1 0
0 1

Select crossover point
crossover point = 2
Form offspring

1 0
1
1

O = G =
0 1
1 0

Continue till the selection set is empty

An example of the crossover operation of the biraged genetic algorithm
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Probability of mutation = 0.05

Chromosomes length = N

Form mutation pool
Mutation pook{C, C, G, G}

Take one chromosome from pool end remove it frooi po
Taken chromosome =,C

Create N uniformly distribetd random numbers between 0O af
Random Numbers{ 0.01,0.21,0.30...,0.05}0.51

Determine genes for mutation and toggle their \&alue

0 0.01 0 001 1

1 0.21 1 021 1

0 0.99 0 099 0
G= ,R= ® ® Y=

0 0.05 0 005 1

1 0.51 1 051 1

Repeat till mutation poolis empty

An example of the mutation operation of the binesged genetic
algorithm -1-

2.3.2.5. Mutation Operation of a Binary Coded Genétgorithm -2-

The second mutation operation used operates omadsames rather than genes. In
the previous mutation operation, the number ofrig @s alters during mutation. In

some problems a mutation operation which presaruesber of 1s and Os is needed.
The simplest idea is to perform usual mutation emeck and correct the number of
1s and Os. However, this kind of check and comecteduces population diversity

which mutation operation assures. Therefore, sihisemutation operation operates
on a single chromosome and preservation of 1s ansl fkeeded, an operation on the
chromosome itself is used.
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This operation starts with the selection of chroomess for mutation. Then, two
genes from selected chromosome are determinedel@hgents of the chromosome
genes between the determined genes are extraaied tre chromosome. The
reduced chromosome is called “Intermediate ChromeSand the extracted part of
genes is called “Mutation Genes”. Then, again aegéom the intermediate
chromosome is selected. The mutation genes aretedséo the intermediate
chromosome of the selected. This forms the outhttmosome. Note that for this
operation mutation probability is defined for chrmsomes. An example of the steps

of this operation is given on the next page.

2.3.2.6. Mutation Operation of a Binary Coded GenAtgorithm -3-

The third mutation operation used also operatexhopnmosomes. This operation
also preserves number of 1s and Os. The operatiars swith selection of
chromosomes for mutation. Then, two sets of indexesconstructed. The first set
contains indices of Os on the mutating chromosamereas, the second set contains
indices of 1s of the same chromosome. Then, onmegle from each set is
determined. Then, the determined element of eatls saterchanged. Number of
elements that will be interchanged depends on tbklgm. Finally, from the index
sets output chromosome is formed. This operatioillustrated in the following

example.
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Chromosomes length = N
Number of 1s in chromosomes 5 N
Number of 0s in chromosomes 3 N
Select chromosomes for mutations
selected chromosome set 3{C,,C,,C, C }
Select one of selected chromosomesloanly and remove it from the 9
selected chromosome ={C }

form the sets of indices

§={1,3, ,N-L setof Os

S {2 N setls
Select one element from easét

S elementno= 2

S elementno= N
Interchange the elements of sets

$={LN, N-}
s{2 B
Form the output from the sets
0
1
1
Y =

0
0

Continue till sected chromosome set is empty

An example of mutation operation for the binary eddenetic algorithm -
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Probability of mutation = 0.05

Chromosomes length = N

Select chromosomes for mutations

selected chromosome set Z{C,,C,,C,C }

Select one of selected chromosomes randomly anoveinfrom the set
selected chromosome ={C }

Select two genes from selected chromosome randomly
selected genes ={2,3}
Form intermediate chromosome and mutation genes

0

Inetermediatelromosome = 0
1

) 1
Mutation genes B

Determine a gene in intermediate chromosome randoml
selectedgene=(N-2)-1
Paste mutation genes after determined gene andif@output chromoson

0 0
0 0
Y = ®
1 1
0 0
1 1

Continue till the selection set is empty

An example of mutation operation for the binary@ddenetic algorithm -2-
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2.3.2.7. Selection Operation

The selection operation used can be thought asnalaion of roulette wheel as
stated previously. This operation can also be thbag the game of dart. As in the
roulette, the dart board has slots proportionathi fithness of chromosomes. To
perform a selection, a dart spear is thrown witlenoting any specific slot on board.
Consequently, a probability proportional to theesif each slot on the dart should be

defined to perform selection properly.

Let us defind~ as the fitness of chromosoniein the population composed of

N chromosomes. Then, the selection probability ohed@womosome is defined as

follows:

I:total = Fn (2 43)

p = F—' (2.44)

total

However, slots are not defined by just finding @bitities, since a slot is defined as

an interval with a starting poirqi . The starting slot (i.e. interval is defined as) :

4= 7 (2.45)
Since uniformly distributed real random numbens ba generated in computers, to
simulate a dart spear throw the uniformly distrdgsltandom number generators can
be used. Therefore, a real random numberbetween 0 and 1 is generated to
simulate dart spear throw. After that, by checking interval it falls into using the

standing points of the interval,, <r £q, which slot has been hit is found. When

there is a hit in thé" interval, thei"™ chromosome is put to the next generation.

It should be noted that this operation allows useiect the number of chromosomes
that will be carried to next generation, since inenber of dart spear throw depends
on the user. The number of selections depends enptbblem, and should be

determined by the programmer.
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2.3.3. Near Global Optimum Algorithm

As stated previously, genetic algorithms do notrgotee a hit to a global optimum
solution. When it is thought that the fithess @fodution is close enough to the global
optimum value, it is convenient to use another rlgm to reach a global optimum
solution quickly.

The selection of such an algorithm depends on tbblgm. However, for problems
with very large solution spaces, and for optimi@atifunctions that are not
continuous or that do not havé and 29 derivatives, Steepest Descent or Newtonian
like algorithms can not be utilized. Moreover, ginthese algorithms require line
search techniques, and since function evaluaticossly for the problem at hand,

these algorithms are not suitable for the presestilpm.

The suitable algorithms that can be used are tleetlat do not require line search
and ' or 2" derivatives of the cost function. Although there ts of algorithms in

this class, “Cycling Coordinates” is one of the glest and straightforward.

Cycling coordinates algorithm searches for incr§aselecrease) in the direction of
each orthonormal basis vector of the solution spdte direction of search is

determined by one function evaluation, and step siz algorithm is determined

using additional function evaluations. After thepssize is determined, the solution
is updated.

The update equation for this algorithm is:

X1 = % TS (2.46)
where k is the iteration numbere, is the j™ orthonormal basis vector iN
dimensional solution space, is a constant which determines the step size lamd t

search direction. Note thpis an integer frorh..N . It is determined according to:

. modk ,N) if k1 nN .
| = _ for an integer 1 (2.47)
1 otherwise

The operations associated with the algorithm aogvahin Figure 2.7.

32



Initialize;
k=1,
=%
while k £ iteration No
j = modk N );
if j=0
=1
endif
dg1=4o;
X1 = Xtk 18
if FunctionValueg,; ) < FunctionValug( )
1= 4o
Xl = X tak18;;
endif
I =2
while FunctionValueX,,; ) > FunctionValug(
agi = Ayq;
Xerr = X Hag i€
i=i+1
endwhile
I R
k=k+1,
endwhile

Figure 2.7: Cycling Coordinate algorithm
evaluation steps

In the initialization section of the algorithm, tiilai solution and initial step size,

are entered. In the direction determination parthef algorithm, the direction of
increase is checked. This is due to the fact that given algorithm is for a

maximization problem.

The convergence rate of this algorithm is not higit,excluding the time needed for
function evaluations of other nonlinear programmahgprithms, this algorithm will

converge faster.
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2.4. Implementation

In this section, implementation details of the peoto are given. Firstly, the parts of
the problem are clarified. Secondly, fitness fumectderivations and implementation

details of each part are given. Finally, evolutodrthe solution is given.

2.4.1. Problem Definition

The problem of generating magnetic field with degirproperties is the most
important step for all types of devices whose opanadepends upon magnetic field
distribution. For a system that uses permanent stagfor the generation of
magnetic fields, a methodology for optimizationpgrmanent magnet structures to
obtain desired magnetic field distribution in somegion of space should be

developed.

Magnetic field distribution and strength of magodigeld of a permanent magnet is a
function of magnetization and geometry of the magisestated previously. This can
also be rephrased as; induction between a souct@ &arget point is a function of

properties of the media and the source. Therefwarce distribution and source
strength are the parameters related to the sotltechange the magnetic field’s

distribution and strength at a target point. Altbbwa single source (single magnet
for this case) can be used, multiple sources cam la¢ used to obtain the desired

strength and magnetic field distribution at taqgeits.

In this work, many unit magnets will be used to erate remote magnetic field with
desired properties. This can be thought as a fadrgsoblem:
1. Determination of the shape of unit magnets that bel used as a unit
source of magnetic field.
2. Optimization of the shape parameters to determiaetly the shape of
the unit magnet.
3. Optimization of the surface of the unit magnet whibas a shape

determined in previous steps.
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4. Optimization of placement of these unit magnets ispecific region to
generate a magnetic field with desired propertiesme region of space.

The first three steps determine exactly the unigmess that are used in the final step.
Therefore, in these steps problem should be defoethat the objective to generate
magnetic field with desired properties will be ashd in smaller number of

iterations in the final step.

The first step is not studied in this work. The mgeometry of unit magnets is
assumed to have square prism shape. Second steptuthed in [7] and [8].
However, in this work, the results of [8] are usé&brrectness of the fitness function
is checked by trying to obtain the same result&dTénd fourth parts of the problem
are the main objectives of this work.

As stated previously, permanent magnet structuse® la drawback that does not
allow them to be used in applications that requiigh field strength in deeper
regions (points of space far away from the surffamagnet). Therefore, the natural
aim of the third step of the problem is to genemasgnetic field that does not scatter
through outer regions (outer regions will be ddsati later). The dual of this
objective is to localize the magnetic energy incgpdue to a permanent magnet.
Therefore, the main problem of the third step ismtaximize magnetic energy in

some region of space by adjusting the surface gineigc energy source

The final step of this process is the most vitaé aince it directly aims to generate
the magnetic field in a region of interest. In thisp, resultant magnet of third step is
used as an input and the problem is extended ty magnets as magnetic energy
source. Placement of a unit magnet in some regiabtain optimized results with
respect to previously defined requirements of thablem implies optimization of
three independent variables. These variables arldation of centre of the magnet,
the azimuth and elevation angles of the magnet.

The elevation angle of unit magnets directly detees the effective pole of magnet

on the region of interest. Therefore, this paramess be defined as a two state
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variable instead of defining this parameter as @ticoous variable; one state for
N pole facing the region of interest and one stateSpole facing the region of
interest. In this case, the elevation angle paramist named as the orientation
parameter. Consequently, the fourth step’s objedsvoobtain a desired magnetic
field distribution by adjusting locations, azimudngle and orientation of unit

magnets

The implementation details and fitness functionv@gions of these problems are

given in the next sections.

2.4.2. Determination of Unit Magnets

As stated previously, the shape of magnets is etetrohined in this work. The results

of [8] is directly used.

In [8], the shape of magnet is taken as squarenpaisd side length and height is
tried to be optimized in the sense of maximum magrield strength transferred to

deeper regions of space. In Figure 2.8, resulf8]adre visualized.

Figure 2.8: Unit magnet and its dimensions
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As shown in Figure 2.8, the unit magnet shapevsrgby ratioD =0.75. In Figure
a

2.8, theN pole is the top side of the prism withzvalues, and theSpole is the

bottom side of the prism withzvalues.

Any surface can be describeddy f(x ). Therefore,zdetermines the surface of
any geometrical object. Consequently, in this pathe problem the distribution of

zis sought. To make the problem feasible and sotyablrange ok should be
defined.

h=3,a=4 are taken as a test case. The magnet’'s centtadedpto the origin of

laboratory frame of reference, as shown in Figu8 Phen, the program is allowed
to adjust the surface of poles by changing h variable £5%of its original value,
1.5. In other words zis defined in the rangg.425,1.575.

Magnetic energy in free space is given by:

E= BxHdv (2.48)

\%
Using the definition of magnetic induction, a forador energy in terms of the

magnetic field strength is obtained.

E=m HxHdv= p|H| dv (2.50)
\Y \Y

Since the main drawback of permanent magnets’ niamgfields is the rapid

decrease in the magnetic field strength when tkd point is moved away from the
surface of the magnet, the natural objective ismaximize the magnetic field
strength in the region of interest. This corresgotalthe maximization of magnetic
energy due to the fact that maximization of magngéld strength is equivalent to
maximization of square of magnetic field strengiice magnetic field strength is
non-negative function. Therefore, by comparing dleéinition of magnetic energy,

(2.50), with maximization function of square of magjc field strength, this problem

37



can be defined amaximize the magnetic energy in the specific regioapace by

changing z variable

This definition of problem implies minimization aghagnetic energy in regions
exterior to the desired region of space. Therefthe, problem should contain a
minimization part. This part of the problem candbated asninimize the magnetic
energy in exterior to the regions of region of et

Magnetic energy of a permanent magnet, generallyivien by:

E= M >Bdv (2.51)

Vmagnet
For magnets placed in free space, (2.51) is matlifie

=1 [M] dv (2.52)
m

Vmagnet

The magnetic energy in the space due to a permanagnhet can not exceed
magnet’s total energy which is given by (2.51) §2%2). In (2.51) and (2.52) the
integrals are evaluated in the volume of magnegérdiore, the energy of magnet is a
function of magnet's volume when the magnetizatimcttor of the magnet is
assumed known and constant. Consequently, the eolinthe magnet should be

constant during the optimization procedure.

The resultant definition of the problem becomes:

By adjusting the z variable maximize the magnetgrgy in the region of interest
while minimizing the magnetic energy in the regi@derior to the region of
interest, keeping the volume of the magnet constant

Before giving the mathematical representation a@$ fbroblem, let us define the
regions of space. From now on, the region of istenell be abbreviated by ROI. In
Figure 2.9, average magnet and ROI (a), and mag@k,and exterior regions (b)
are shown. In Figure 2.10, ROI and exterior regiam@sshown in 2D as the top view
of Figure 2.9(b).
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(a (b)

Figure 2.9: (a) Magnet (blue) and ROI (green);
(b) Magnet (blue), ROI (green) and exterior regi(nesl)

Exterior7 | Exterior6 | Exteriorb

Exterior8 ROI Exterior4

Exteriorl | Exterior2 | Exterior3

Figure 2.10: Region definitions in 2D

Any optimization problem including maximization andnimization objectives can

be combined mathematically as:

N
F=aoFnx- aF

i=1

min (2-53)
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N
where a;s are some constants, satisfyingz; =1, andNis the number of
i=0

minimization or constraining functions.

For the problem at handr,,«is defined by:

Foa = |H[av (2.54)

max
VRol

Similarly, the objectives of the problem to be miked can be defined as:

Foing = i [H] av (2.55)
i::]'Voute[
Since the volume of the magnet is desired to bedfixanother function that
guarantees this fix in the volume is required. Ttamistraint is imposed on the
problem as a penalty using the square norm funct@msequently, the second

minimization function takes the form shown in (2.56

F

miny

=K (VO B Vmagnet)2 (2.56)

The resultant objective function of the problengiien below (2.57).
2 8 2 2
F=a, |H] dv- ay [H[ dv 2, K(V  Vragney (2.57)
VRol =1 Voutey
where K is any positive constant that reflects the impartaof the constant volume

constraint.

To maximize F , real coded genetic algorithm has been used. femmsomes of
this algorithm arezvalues of each node of surface grid shown in FigRuk

Therefore, the chromosome consists of theoordinates ofP’s in expression

(2.42).

2.4.3. Placement of Unit Magnets in Space

Magnetic field properties generated at a region pzce is a function of source

strength, source location, distribution of sourcasd properties of medium.
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Assuming linear isotropic free space as mediuminopation of magnetic field
generated by permanent magnets requires optimizafitocations and distributions

of permanent magnets.

The problem of the placement of a unit magnet inegion of space contains
optimization of three different variables. The fficsie is the point where the centre of
the magnet will be placed. The second one is tigéeaat which the magnet will be

rotated (azimuth angle). The third is the orienaibf the magnet.

2.4.3.1. Variable Definitions

To determine the point at which the centre of thagnet will be placed is the
problem of determination of a point in 3D spacewdwer, since the magnets should
not be placed on the top of one another, determmatf the center point in the 2D
place and leaving the other spatial variable aghe&nocoptimization variable is a

better treatment.

In the plane magnet placement region can be defseal grid. Each segment of the
grid is centered at a point at which the centrarof magnet can be placed. The grid

is shown in Figure 2.11.

A
iy
B L T T
a¢255 32
? Ay
9 10
toE 2 8

Figure 2.11: Magnet Placement Region (MPR) in 2D
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From now on magnet placement region is abbreviateMPR. As shown in Figure
2.11, each unit magnet can be placed in a segntanohws a square with side length

a. a should be chosen so that the magnet can be rotaeate the grid segment.

Since the unit magnets are in square prism sfaape/zé should be satisfied to
ensure the rotation of magnets inside a grid wheeres the side length of a unit
magnet. The numbers shown in Figure 2.11 are thaulbers of each location.
Since this is a placement problertf, @ordinate variable (for this problem it is the z-
coordinate) should be found. In Figure 2.12, MPBhigwn in 3D.

Magnet Placement region in 30

Figure 2.12: Magnet Placement Region (MPR) in 3D

Figure 2.12 shows only the grid of MPR, but not 8fevariable. In figure 2.13,
magnet placement region with two unit magnets pldweving the same but opposite

zvalues is shown.

Z variable variation limits

Figure 2.13z limits
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As it is shown in Figure 2.13, the variation of/ariable is not limited to discrete
levels; it is a continuous variable. Top view andesview of magnets shown in

Figure 2.13 are given in Figure 2.14:

-0 ; )
-10 0 10
#
Top view Side view

Figure 2.14: Top and side views of z limits

As shown in Figure 2.13 and in Figure 2.1Zis in the interval[0,1.5]. In both

figures, the unit magnets shown have side lengtfts leeights as defined in the

previous section.

For the placement problem, a unit magnet can laewtn a grid. Since the rotation
of unit magnets around their principle axis chantdpesmagnetic field distribution,
angle of rotation is another variable of the prahlén Figure 2.15, angles of rotation

for two unit magnets are shown. In Figure 2.15¢ghtoagnet is rotate% degrees

and green one is rotat% degrees.

Another variable which changes the magnetic figktridbution in a region is the
orientation of the unit magnets (by the orientatadra magnet, pole facing to the
ROI is meant), due to the fact that the magnestdfin a region due to more than

one magnet is the superposition of magnetic figjdaerated by each magnets.
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Therefore, the magnetic field strength increaseteareases according to the relative

alignment of magnets.

Top view 3D view

Figure 2.15: Different Angles of rotation

Consequently, two variables that vary in discrégps and two variables that vary
continuously are at hand. If in a grid region thesr@a magnet then the value of the
placement variable is 1, otherwise it is 0. Theghgiwhere the centre of the magnet
is placed, can be changed continuously. The rotatigle is also allowed to change
continuously which is a direct consequence of fifeceof rotation angle of magnet

on the magnetic field distribution. Lastly, the emation variable is also discrete

since it can only take two states representing lvpae of the magnet points ROI.

Placement variable is associated with a grid regisrshown in Figure 2.11. This
variable is used to represent existence of a uagmat in a grid segment. Therefore,
a string of Os and 1s can be formed to represeatemie unit magnets are placed in

MPR. In Figure 2.16, formation of strings is shown.
In Figure 2.16, No is the id number of a grid segin®alue shows whether a grid

segment contains a unit magnet or not (1 if it am%, O if not), Position is the

coordinate of grid segments’ centre.
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No Value| Position

1 1 (X Y1)
2 1 (%0 Y2)

31 |0 (%1 Ya)
32 |1 (%21 Ya2)

Figure 2.16: Placement Strings

Center positions of the grid segments are determined MR is created. These
values are stored to be used while fitness functionatuated. It is the Value row
that represents the variable of the placement problé@.efore, the chromosomes
of genetic algorithm are composed of the Value rowigiire 2.16.

Orientation variable represents which pole of magadéacing ROI. Therefore, it is

also a two state variable where 0 means S pole faddlg Rmeans N pole facing

ROI. As in placement variable, a string of Os and Isorsstructed to represent the
orientation of each unit magnet.

Height and rotation angle variables are real valtidderefore, these variables are
represented by real valued strings (sequences). Thesvia the strings should be in
the feasible range of corresponding variables.

2.4.3.2. Region Definitions

As in the previous section, ROI with respect to MPRusthde defined. In Figure
2.17, MPR and ROI are shown to illustrate how theoreg are in 3D space. In
Figure 2.18, ROl and MPR when MPR is filled withtumiagnets is shown.
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i 0 il 40

Figure 2.17: MPR (green object) and ROI (red objec8D

_éD 10 0 o 20 a0
Figure 2.18: ROI (green object) and MPR (red
object) with unit magnets (blue objects)
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Since ROI affects the solution directly, the sizetafhiould be determined to obtain
good results. However, it is also possible to keep RQicgeritly large so that the
solution is not satisfactory but enables us to determinmréion of it so that
magnetic field distribution in that portion has theided properties.

2.4.3.3. Fitness Function Derivation

Since the aim is to generate a magnetic field disiobuwith desired properties in a
specific region, magnetic field properties should bindd mathematically. As in

the previous section, it is aimed to obtain maximum gtrenof magnetic field in the

ROI. Remaining properties of the magnetic field ia ROI can vary according to
the requirements of the problem. In general, the probtan be defined as the
maximization of magnetic field energy in a specific ioag subject to some

constraints on the solution space of the problem. Mathealig, these can be

expressed as:

maximize H I-dev - Fhin

VRol
where H is the magnetic field intensity, afg], is a function that represents other

requirements which varies according to the requirenudritee problem.

For this problem, the objective function is given as:

2 N
F=a, |H| dv- @R, (2.58)

VRol

where F is defined according to problem requirements.

min;_;

For F to represent a maximization function for magneticfigistribution that will
be used in Magnetic Resonance Imaging (MRI), some @ntstrto be minimized
related to either magnetic field strength or magnééld components should be
defined.
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The dependence on magnetic field strength is dueedatt that, magnetic field
distribution in MRI generates level surfaces of Larm@qfiencies. This can be

shown as:

w= g (2.59)

S, ={ Yw=g[B(x)} (2.60)

On the other hand, dependence on magnetic field coemp® can be explained by
the fact that when a magnetic field generated hasdhee magnitude but different
direction, for a sample containing nonzero suscegihilue will produce a counter
magnetic field that changes the overall magnetic faékkdribution, and the shape

of §, . This is one of the most vital problems in MRI due @ fitact that for imaging

modalities it is assumed that the frequencies at eacth @@ known. However, one
can assume existence of paramagnetic materials in thwn refjinterest and applied
magnetic field strength is not so high to take the rad$eto the saturation region.
These assumptions will enable us to safely assume thag iheno change in
orientation of magnetic fields due to some interactimnsiaterials inside the ROI.

Therefore, only the shape &, surfaces (i.e., magnetic field strength distribution)

IS optimized.

Since the physical limits of change of direction of metg field that satisfy
assumptions are not exactly known, it is assumed thaireidn requirements can
be satisfied easily, by adding some extra minimizatiarctfans to (2.58). In this

work, magnetic field strength distribution in ROl ith to be optimized.

A proper mathematical definition of the problem shooédmade. As stated earlier,
the magnetic field strength in ROI should be maximizdugjesti to some constraints
on the magnetic field distribution. As a test case,alinariation of isosurfaces of
magnetic field strength is chosen. This statement impglieglérivatives of strength
of magnetic field to be constant and second derivativebe identically zero. In a
more formal way:

“HHH:C '”HHH:C M:C (2.61)
X Y 9z ’
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=
N
T
=
T
=
T

=0, =0, =0 (2.62)

T2|[H TH °IH
0, =0, =0 (2.63)
xTy x1z 14Ty

Therefore, for this part, the problem can be defiteechaximize magnetic energy

while keeping the variation of strength of magnestdfconstant in ROI.

Expressions (2.61) to (2.62) should be defined as mintimizéunctions. This can
be achieved by introducing barrier and penalty fioms. Penalty and barrier
functions are defined usimgaxandmin functions when the limits of linear variation

are defined. Before giving these functions, let useédfmits of variation:

|
CxMIN £ ﬂX £CxMAX
TiiH
CyMIN £ x £CyMAX (2.64)
TiH
CzMIN£ ﬂX £CZMAX
Therefore, the barrier functions of these limits are:
2
= i - ﬂHHH ; M_
P.= min C,,, ,0 + min o 10
Ix
2
P=mn C Ll 0 + min T C 0 (2.65)
y YMAX ﬂy ' ﬂy ‘ YMIN ~ ? :
- |mlH] 1]
P,= min C,,. q ,0 + min C,un -0
z

Since the second derivatives of magnitude of magfietd components are desired

to be identically O, penalty functions of those siaints are defined as:

49



] s
P, = max 1,0 Py = max ,0
x ixTy
2
] s
P, = max .0 P, = max ,0 (2.66)
0% 91z
2 2 2
P, = max ! HHH 0 P, = max ! HHH 0
7z 2 1 yz !
1z fiyfz
Therefore, minimizations functions in (2.58) candedéined as:
I:minl = Px + I:)y + Pz
(2.67)
I:min2 = R(x + I:)yy + Pzz+ ny+ I:)yz+ Px
(2.58) can be written as:
F= (alHHH2 ~aF. -afF. v (2.68)
VRoI

2.4.3.4. |ldentification Systems

To keep the track of variables during function ewatibn, two types of identification
numbering systems have been used. First one iseadynumbers to grid segments;

second one is to give id numbers to unit magneft®sd numbering systems are

visualized in Figure 2.19:

Segment Value Position Unit
No No
1 0 (X1, Y1)

2 1 (X, y,) |1
31 0 (X310 ¥a1)

32 1 (X320 ¥35) | 16

Figure 2.19: Segment No and Unit No
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Figure 2.19 is an example of numbering systemS3fogrid segments and 16 unit

magnets.

Grid segments’ numbering is not allowed to changend the run of the program
whereas unit numbering is allowed to change. ID Ioemni in unit numbering system
is always the first occurrence of 1 in the binatgsing of placement variable.
Therefore, the units are numbered according tor thesitions in the placement
strings. Grid numbering system is used to repregenplacement variable, whereas

unit numbering system is used in the represenmbother variables.

2.4.3.5. Fitness Function Evaluation

Since the orientation, the height of centre of neagrand the angle of rotation are
identified using unit magnet numbering system.,ititkkces of 1s in placement strings
are needed to be able to calculate the magnelicifidROI. After finding the indices
of 1s in placement string, the centre points of Mi@Bments are used from table that
was previously stored. After that, for each 1 ia ghacement string, corresponding
height, rotation angle and orientation value anentb from corresponding strings.
These values are used to calculate the magnelit ifieROI due to a single unit
magnet. This procedure is repeated for the numbemid magnets and magnetic

fields of all unit magnets are added to obtainttiial magnetic field.

In, the magnetic field calculations it is assumbdt tthe magnet is placed at the
origin. Therefore, the centre points of unit magrmirface grid segments should be
modified. Translation of origin from one point tmaher requires translation of

every point that is defined referencing to thetfinsgin. This translation is given by:

X %

XZ Y%= % (2.69)
z Z '

X =% +X
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whereX, is the coordinate of the new origin referenceth®previous onex is the

original point,i is the new point referencing to the previous aoridiherefore, only

two vectors are added to find the centers of uagmets’ surface grid segments.

To find the effect of rotation of magnets in azimubefore moving them to

placement grid segmentgx, y) values of centre points of unit magnets’ surface g
segments are multiplied by the rotation matrixaiationR (2.70).
cosf - sif

R= (2.70)
sinf cog

wheref is the angle of rotation.

In the theory part, it is assumed that a unit mégré pole is facing to the ROI.

Therefore, when orientation is not 1, centre pogaftS pole of unit magnet surface
grid segments should be interchanged with the ohdbe N pole. Moreover, the

direction of magnetization should be reversedef $hpole of the magnet is facing to
the ROI .

After finding the centre points of unit magnet s grid segments, the magnetic
field is calculated using (2.41) for all nodes hretgrid of unit magnet’s surface.
Afterwards, the same procedure is repeated famatlmagnets in a chromosome and

the results are added to obtain the fithess wafitleat chromosome.

The derivatives of magnetic field magnitude in @I are found by using central
differences between pixels. To find the neighbonoixgels (voxel in 3D case), the
neighboring pixels’ indices are stored while consting the ROI at beginning of the
program. By using this convention, it is only nedde take differences of the values

of magnitude of magnetic fields in the pixels andd® by the pixels size.
After calculating the magnetic field magnitude ‘eduand its first and second

derivatives as explained, the only remaining the¢p add them up to obtain each

part of (2.68) to find the fitness of a chromosome.
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2.4.3.6. Used Genetic Algorithms

Four variables that should be optimized have beefimed. Two of them (grid
placement and orientation) are two state variabidgreas the other two (rotation
angle and height of centre of magnet) are contisu@riables which can take any
value in the range specified. This definition ofighles leads us to three different
procedures of optimization; a procedure for optatian of real variables and two
procedures for optimization of discrete variablekhough these variables are not
independent when the solution of the problem ugerggtic algorithms is considered,
it is quite safe to assume that these variablegdependent.

A real coded genetic algorithm has been implemetdedptimize the real valued
variables. For optimization of binary coded chroomss, two types of algorithms
are needed due to the different nature of varialilegresented by these

chromosomes.

Since the number of units is fixed, the genetioatgm of the placement variable
should not be able change number of 1s in a chromesduring crossover or
mutation operations. In this work, for placementialale genetic algorithm, usual
crossover (described in secti@gr8.2.3 with number of 1s correction in the resultant
chromosomes has been implemented. As a mutatioratope the permutation

mutation operation (described in secti.2.5 has been implemented.

Usual binary coded genetic algorithm operationsehlaeen used for the orientation
variable optimization, since the number of magméts specific orientation does not

have to be fixed during the evolution of the algon. Therefore, the crossover is the
one that was explained in the sectib.2.3 The mutation operation of the binary

coded genetic algorithm is the one described itige2.3.2.4
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2.4.4. Solution Steps

In this section the steps of the solution are givearst, surfaces of unit magnets are
determined. After that, the steps of placementrof mnagnets problem solution are

given.

As stated previously, genetic algorithms do notrgniee convergence to a global
optimum, but they provide a method to get closeit.tdhis fact leads us to use
genetic algorithms till the solution gets closer @oglobal optimum solution.
Afterwards, local optimum finding algorithms haveelm used. These two steps are

followed in both parts of the solution. In the negttions, these steps are explained.

2.4.4.1. Determination of Unit Magnets’ Solutioe &t

Real coded genetic algorithm, which is explainedvimusly, is summarized in
Figure 2.20.

initialize;

generate initial population

evaluate fitness function (population)

i=1

while i£ maximum iteration number
find and hold the elitist chromosome
perform real coded genetic algorithmssover operation
perform real coded genetic algorithm mutatipemtion
evaluate fitness function for new chromosomes
add B boundary chromosomes to chrgoroes that are in selection
perform selection for next generation
add the elitist chromosome to next generation
i=i+1

end

Figure 2.20: Real coded genetic algorithm steps
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The rate of change of the elitist chromosome’sBtvalue is used to determine the
termination generation number of the genetic atgori If it is small enough to
terminate the genetic algorithm, user passes thistethromosome of the last
generation of the real coded genetic algorithm ke ftcycling coordinates

optimization algorithm.

2.4.4.2. Solution Steps of Placement of Unit Magjnet

As stated previously, four genetic algorithms aeefggmed at the same time for the
optimization of placement of unit magnets probl@rhe steps of genetic algorithm

are shown in Figure 2.21.

initialize;
create initial population
calculate fitness of initial population
i=1;
while i £ iterNo
FOR HEIGHT, ANGLE, ORIENTATION AND PLEEMENT PARAMETERS
perform crossover and create mutation pool
perform mutation
ENDFOR
calculate fitness of offsprings of crossover agiens
calculate fitness of mutated chromosomes
eleminate 2 chromosomes with worst fitness freat coded chromosomes
create 2 boundary chromosomes for real codedradeas
place generated chromosomes in the place of edted ones
calculate fitness of voundary chromosomes
perform selection for next generation
add the previous population's elitist chromosooneext generation
endwhile

Figure 2.21: Evaluation of genetic algorithm
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After the genetic algorithm, the output of genetigorithm phase is transferred to
near global optimum algorithm. For this part of greblem, two kinds of near global

optimum algorithms are implemented. First algoritisrshown on Figure 2.22.

initialize;
while i £ iterNo
find ellitest chromosome
perform cycling coordinate on height parameter
perform cycling coordinate on rotation angle pagter
add obtained chromosome to population
peform GA operations on placement andeatation paramete
calculate fitness values of chromosomes
perform selection for next generation
end

Figure 2.22: Evaluation of the first near optimulgoaithm

Algorithm shown in Figure 2.22 does not converga Enough due to the fact that
four variables are not independent. This phenomearambe understood better by
defining dependent variables. It is obvious thaghe rotation angle, and orientation
variables are all independent of each other. Howeahese three variables are all
dependent to the placement variable. In other wandsntation, height and rotation
angle of unit magnets should be changed accordirthe places of unit magnets.
Therefore, for example, if the placement ordermf ehromosome is changed and a
better fitness for that chromosome is obtainedetéeb fitness is not assured while
changing the height of the same chromosome. Tarobtdetter fithess value it is
required to run another optimization algorithm. Bpecific height, orientation, and
rotation angle strings of chromosomes, the genatgorithm operations for the

placement variable should preserve the other thegble values associated with
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unit magnets. This idea leads us to define anatiear global optimum algorithm
which takes into account the relation between em

The second near global optimum algorithm implem@rtkes into account the

remarks made. It fixes three variables (heightatroh angle, and orientation

variables) to unit magnets’ ids. Therefore, when filace of a unit magnet is
changed, the unit ids are also changed. If a chamdke order of unit magnets

occurred, the unit magnets’ variables, associat#ld & specific unit magnet, are
preserved. This algorithm preserves the numberndf magnets in MPR. Another

important point that should be clarified is theependence of height, rotation angle
and orientation variables. Since the algorithmtia aub global optimum one, by just
adjusting the places of these values the globahoph of whole problem can be

reached. However, to guarantee the assumptiorobbbptimum of these variables,
cycling coordinate method is performed for the hemnd rotation angle variables.

The main difference of this algorithm from the poes one is in the operations of
genetic algorithm used for the optimization of fflacement variable. Permutation
mutation has been used as crossover operation ri@ss$cin section2.3.2.5.
Therefore, just one chromosome is needed for thesower operation. Mutation
operation described in secti@mB.2.6is used. However, since the elitist chromosome
has relatively high fitness value, only it can Isediin the placement operations. On
the other hand, it is quite possible for the dlitttromosome to be at a local optimum
near to a global optimum. To prevent this kind dlaions, more than one
chromosome with high fitness values obtained fromdenetic algorithm is used as

an input for this algorithm. This algorithm is showigure 2.23.

As it is summarized in Figure 2.23, an improvemarthe fitness value is expected
after performing the placement operations. Due MIis tfact, an offspring
chromosome which has a fithess value better tharparents and additional
chromosomes is expected. If there is no improverfmnsome specific steps, it is
concluded that global optimum value is reached.tA@oimportant point that should
be clarified is the fact that in this algorithm thieentation variable is not imposed to

any operations. That is due to the fact that thentation of unit magnets affects the
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magnetic energy in ROl more than other variabldseré&fore, orientation variable
converges to its global optimum distribution fastédran other variables.
Consequently, it is assumed that this variable dlesady converged during the

genetic algorithm phase.

initialize;
while i £ iterNo
find M elitist chromosomes from population
find maximum fitness valued M chromosome
while offspring maximum fitnes§  old maximum figse
perform placement parametgrerations on M selected chromosot
calculate fitness of created offsprings
find maximum fitness of offsprings
end
perform Cycling Coordinate algorithnm dneight and angle paramete
update the population
end

Figure 2.23: Evaluation of the second near glopahaum algorithm

2.5. Results

In this section, the results obtained for each pathe problem are given. First, the
obtained results are shown for the unit magnetrogtation part. The results of the

placement of unit magnets are shown.

2.5.1. Results of Unit Magnet Determination Part

First of all, the undefined parameter values shanddlefined. As stated previously,
the magnets, shown in Figure 2.8, used in this waskdimensions of:
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a=4
h=3

units. Weighting coefficients in equation (2.57¢ ahosen to be:
a,=0.25
a; =0.25
a, =0.5
K =2000
The variable zis chosen to be in the interv#il.425,1.575. xandyvalues are
discretized with step lengths 0.1 and 0.1, respelgti Therefore, the solution space
is 1641 dimensional. The parameters of the reaéa@apbnetic algorithm are chosen
as:
mutation probability = 0.1
e of mutation operation = 0.0:

In 1000 generations of the genetic algorithms, fiheess values of the elitist

chromosomes are shown in Figure 2.24.
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Figure 2.24: The evolution of elitist fithess
values through generations

After 1000 generations of the genetic algorithne, tlagnet’s surface takes the form

shown in Figure 2.25.

59



hagnet surface after 1000 iterations
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Figure 2.25: Obtained magnet surface after 100@tgealgorithm generations

Surface shown in Figure 2.25 seems to be highlygdg To eliminate high

frequency changes on the surface, it has beeng#aseigh an ideal low pass filter
that has cutoff frequen%. After this operation the surface becomes contisuas

shown in Figure 2.26.

Surface shown in Figure 2.26 and the decreasecinatie of increase in elitist fithess
values show that the genetic algorithm has brodightsolution near to a global
optimum. Therefore, the elitist chromosome of 10@@neration is transferred to the

cycling coordinates method.

In the cycling coordinates method, the fitness fiamcof the genetic algorithm is

used. Initial step sizeg,, is chosen ag, = 0.001%. Since the solution space is 1641

dimensional, a full search cycle in the directiafisall basis vector of the solution
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space necessitates 1641 iterations. 1 cycle meéhs iterations of the cycling
coordinates method.

Filtered magnet surface
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Figure 2.26: Filtered version of surface shown Fege125

The fitness value variation in one cycle of itevas is shown in Figure 2.27.
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Figure 2.27: Fitness value variation in
one cycle of iterations
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Figure 2.27 shows that the algorithm has not cayeatr yet. Therefore, this
algorithm should continue to run. The surface aftee cycle of iterations of this

algorithm is shown in Figure 2.28 in the followipgge.

Surface after 1 cycle iterations
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Figure 2.28: Surface after 1 cycle of iterations

After running this algorithm for 11 cycle iterat®more, a sufficiently good surface
is obtained. The variation of fitness values incytles of iterations is shown in
Figure 2.29. The surface after 11 cycles of iteratiis shown in Figure 2.30. As it is
shown in Figure 2.29, the algorithm has converged.

The surface obtained after 1000 genetic algoritlemegations and 12 cycles of the

cycling coordinates method, shown in Figure 2.80nanufacturable.
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Figure 2.29: Fitness value variation in 11 cycles

Figure 2.30: Obtained surface after 11 cyclesevhiion

In the preceding figures, each run of algorithmeats the initial solution as the last
solution of the step described before it. For examie initial solution of 11 cycle

run is the surface shown in Figure 2.28.
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The fitness function parts of magnet surfaces shiowfigures 2.25, 2.26, 2.28 and
2.30 are given in Table 2.1.

Table 2.1: Fitness function parts of obtained sig$a

Fig.No Finax Firin1 Finin2 F
2.25 885.6343| 697.6812| 1.52E-06| 46.98676
2.26 882.6575( 698.4116| 2.03E-05| 46.04118
2.28 896.852| 693.3342( 4.74E-05| 50.83208
2.30 906.0211| 685.1394| 7.58E-06| 55.21284

In Table 2.1Fig.No means the figure numbdt.part is the fithess function value of
the solution. As shown in Table 2.1, the fithessi®@as not affected drastically when
the surface is filtered. Compared to the magnesarafter the genetic algorithm
phase, the maximization part of the fithess iseased by 2.3% and minimization

part is decreased by 1.8% and total fitness isas®d by 17.51%.

In Figure 2.31, some surfaces are shown:

Figure 2.31: Some known surfaces
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The fitness parts of these geometries are showalite 2.2.

Table 2.2: Fitness function parts of known surfaces

ID I:max I:minl I:min2 F

1 855.9116] 713.8035 0| 35.52703
2 873.3326] 696.5576 0| 44.19375
3 849.6079| 738.2065 0| 27.85035
4 847.2713| 740.5302| 0.000004| 26.68126
5 870.1086 692.2395 0.000004| 44.46329
6 862.3746 715.7831 0 36.64788

In Table 2.2]D field represents numbers shown above the subfigarEigure 2.31.
Therefore, the average surface had@xrof 1. Comparing the best magnet surface
with average magnet surface, the maximization @fatie fithness has been increased
by 5.85%, and minimization part has decreased 0%%. Fitness function value is
increased by 55.41%. Therefore, the obtained ress#tisfactory as long as increase

in the fithess function is concerned.

Magnetic field distribution of magnet with surfasieown in Figure 2.30 is shown in
Figure 2.32.

In Figure 2.32, arrows show the magnetic field ctie, and the colored parts show

the magnetic field strength on the planes 0, y=0and z=2.35.

To compare the change in the magnetic field digtiam, side views of the magnetic
field distributions of the average magnet and thsuitant magnets are shown in

Figure 2.33 and Figure 2.34, respectively.
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Figure 2.32: Magnetic field distribution of bestuigmn in ROl and outer regions

Figure 2.33: Magnetic field distribution of soluticn ROI

66



Figure 2.34: Magnetic field distribution of averagagnet in ROI

When the preceding two figures are compared, thgnetec field strength shows
slower variation with respect to z (magnetic fiedttength is higher in deeper
regions) in the first figure. Therefore, the magnehergy in ROl has increased.

As stated previously, to check the fithess fungtglmape parameters of the average
magnet is optimized. There are two parametersdixsdribe the shape of the magnet,
aandh. When the volume of the magnet is fixed, these paeameters become
dependent due to imposition of holonomic constraintthe principle coordinate
system of the problem. Therefore the unknown ofpifuolem can be defined as the
ratio of h to a. Then, the problem is defined asdximizing magnetic energy in the
ROI while minimizing magnetic energy in the outgions by changing the ratio of

hto a”.
This problem is solved by using the steepest désadgorithm. The volume of the

magnet has been fixed to 1000 units and the irsid® length has been chosen as 10

units. In other words, the optimization procedwrstarted with ratio 1.
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For the steepest descent algorithm, the derivatiep size is chosen d9“, the

accuracies of search, linear search and variabl&®t, 10°and10’, respectively.

After 6 iterations, the program has converged éovdlue 0.7466, which is very near

to the one obtained in [8].

2.5.2.Results of Placement of Unit Magnets Part

Before starting to present the unit magnet arramgesn obtained, undefined

parameters of the methods used should be defined.

As a test case, 16 unit magnets with surfaces shiovangure 2.30 are aimed to be
placed in 32 grid regions. Each unit magnet has leidgth,a, 4 units and height,
3 units. MPR is created so that there are 8 gndsne direction and 4 grids in the

other, as shown in Figure 2.12.

The height of MPR segmenth,, is defined to be in the rang@,1.5]. The rotation

angle is defined in the interv&lﬁ,ﬁ] .
4 4

Real coded genetic algorithms use 0.1 as the roataiobability. For real coded
genetic algorithms, number of boundary mutation.idMutation operatione of

height of MPR segments is taken as 0.075. Mutaipmratione of angle of rotation
is taken asZ . The mutation probabilities of placement and dagaon parameters
36

are taken as 0.25 and 0.05, respectively.

Weighting coefficients in equation (2.68) are chrosebe:

a; =04
a, =0.3
a;=0.3

The boundaries in (2.64) are chosen as:
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Con =-0.5Cpax= 0.5
Cpun = -0.5,C = 0.
CleN = _Z’CZMAX: 0

yMIN

Region of interest (ROI) for this part of the pretnl is defined by the intervals:

x1 { 8v2,8/2]
yl { 8v2,8/2].
z1 [3.5,6.5]

The differential changes in ROI are taken as:

dx=1

dy=1.

dz=1
For these parameters, the variation of the elftisess in 350 generations of the
genetic algorithm is shown in Figure 2.35.

Figure 2.35: The variation of elitist fitness
in 350 genetic algorithm iterations

The variation of the fitness of the elitist chrorao® has a staircase shape in some
regions. This is due to the fact that, more thaa ganetic algorithm is running.
When a change in one variable occurs, the otheablas are trying to reach and

keep up that fitness value.
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Since the fitness function is defined by the equm{i2.68), the maximum height
variable is expected. Since the ROI is definedha middle of MPR, all magnets
should be placed just below the ROI to maximize riegnetic energy. Since the
maximum energy stored in the MPR occurs when thgnetaarrangement is united

in the sense of all unit magnets are touching eshpbr, all the angles should be

either% or - % Minimization parts of (2.68) will be effective dhe orientation

variable more than the other variables. Since finaaation in the magnitude of the
magnetic field is desired, equal number of unit nedg with each possible

orientations is expected.

The magnet arrangement after 350 genetic algorganerations is shown in Figure
2.36 and 2.37. The chromosomes of each variablghanen in Table 2.3.

In Figures 2.36 and 2.37 blue objects represertt magnets of whicls pole is
facing to the ROI, and green objects are represemtmagnets of whicN pole is
facing to the ROI. In Table 2.3, No representsNiRR segment number. Other four
columns show the chromosomes of placement, angdghh and orientation
variables. Some chromosomes do not have genesgdata@ies where magnet is not
placed, due to the fact that the identificationtays of these chromosomes is
different then the one used for placement chromesom

Figure 2.36: Top view of magnet placement
after 350 genetic algorithm generations
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Figure 2.37: Side view of magnet placement
after 350 genetic algorithm generations

Table 2.3: The chromosomes of obtained distribugitber 350 genetic
algorithm generations

No PlacementAngle Height Orient
1 1 40.584 0.74985 1
2 1 34.809 0.18792 0
3 1 38.872 1.4229 0
4 1 40.981 1.2986 1
5 1 43.327 1.25 1
6 1 39 1.2765 0
7 0 -- -- --
8 1 36.429 1.1062 1
9 0 -- -- --
10 0 -- -- --
11 1 37.943 1.4919 0
12 1 35.23 1.2664 1
13 1 44.514 1.2247 1
14 1 35.254 1.11 0
15 0 -- -- --
16 0 -- -- --
17 0 -- -- --
18 0 -- -- --
19 1 40.464 1.1032 0
20 1 35.19 1.2565 1
21 0 -- -- --
22 1 9.1035 1.3233 0
23 0 -- -- --
24 0 -- -- --
25 0 -- -- --
26 0 -- -- --
27 1 -4.7881 1.4068 0
28 1 35.706 1.3165 1
29 0 -- -- --
30 0 -- -- --
31 0 -- -- --
32 0 -- -- --




As shown in Figure 2.35, the rate of increase enfitmess of the elitist chromosome
is very small after 100 iteration. Therefore, after 350 generations of gje@etic

algorithms, 350 generation is transferred to the near global amtinalgorithm.

In the near global optimum algorithms, since theme2 16 unit magnets, the solution
space of real valued variables is 16 dimensionbaérdfore, one cycle of iterations

means 16 iterations. In the cycling coordinateshietpart of this algorithm, the

initial step sizeg,, is chosen as 0.015 for the height variable a?&dor the

orientation angle variable. For algorithms sumnetizn Figure 2.20 and Figure

2.22, cycling coordinate part is performed for agele of iterations.

As stated previously, two types of the near globatimum algorithms are
implemented for this part. The first algorithm does converge fast enough. This
fact is shown in the Figures 2.38, 2.39 and 2.40.

Figure 2.38: The variation of elitist fitness
after 120 iterations of near global optimum aldontl
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Figure 2.39: Top view of magnet placement
after 120 iterations of near global optimum aldaomt1

Figure 2.40: Side view of magnet placement
after 120 iterations of near global optimum aldomtl

Although the algorithm has been evaluated for 1@faiions, the placement has not
converged as can be seen in Figure 2.39 and Fiydfe The increase in fithness
function value shown in Figure 2.38 is due to angfgain height and rotation angle

parameters, which are optimized using cycling coates.

After concluding that this algorithm is not satistfary for the problem defined, 380
generation of genetic algorithm is transferred he £ near global optimum

algorithm which is summarized in Figure 2.22.
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In this algorithm, number of chromosomes that axpased to placement algorithm
operationsM, is chosen to be 5. Cycling coordinate parametegghe ones used in
the previous near global optimum algorithm. If flieess of the elitist chromosome
increases or if 20 iterations of placement openatiare performed, the program

passes to the next steps.

In 48 iterations of this algorithm, the variatiohfitness function value of the elitist

chromosome is shown in Figure 2.41.

Figure 2.41: The variation of elitist fitness
in 48 iterations of near global optimum algoritBm

Obtained magnet arrangement is shown in Figure &wWi2Figure 2.43, the values in

the chromosomes are given in Table 2.4.
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Figure 2.42: Top view of magnet placement
in 48 iterations of near global optimum algorithm 2

Figure 2.43: Magnet placement after 48 near global
48 iterations of near global optimum algorithm 2
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Table 2.4: The chromosomes of obtained arrangement

No Place Angle Height Orient
1 0 - - --
2 0 - - -
3 1 43.872 1.5 0
4 1 43.481 1.5 1
5 1 42 1.5 1
6 1 25.5 1.5 0
7 0 - - --
8 0 - - -
9 0 - - --
10 0 - - -
11 1 45 1.5 0
12 1 44 1.5 1
13 1 45 1.5 1
14 1 45 1.5 0
15 0 - - --
16 0 - - --
17 0 -- - --
18 0 - - --
19 1 42.464 1.5 0
20 1 38.69 1.5 1
21 1 -41.5 1.5 1
22 1 39.103 1.5 0
23 0 - - -
24 0 - - --
25 0 - - -
26 0 - - --
27 1 -14.288 1.5 0
28 1 45 1.5 1
29 1 43 1.5 1
30 1 45 1.5 0
31 0 - - -
32 0 - - --

Figure 2.42 and Figure 2.43 show that the placemkntore than one unit magnets

has converged just after 8 iterations Sfr&ar global optimum algorithm iterations.

Obtained magnet arrangement is the expected otiwowh the rotation angle of all

chromosomes is not the expected ones, other vasidlalve the values as expected.
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Table 2.5 is prepared to compare the fitness fanctf the obtained magnet
arrangement with the ones predicted. The prediet@dngements are shown in
Figures 2.44, 2.45 and 2.46.

Three arrangements in Figures 2.45, 2.46 and 2a4@ the same placement and
height variable values as in the obtained arrangeme

Figure 2.45: Predicted magnet arrangement 1

Figure 2.46: Predicted magnet arrangement 2
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Figure 2.47: Predicted magnet arrangement 3

Figure 2.45 shows an arrangement very similar #® dbtained one accept that
rotation angle is fixed tc% radians. Figure 2.46 shows an arrangement when uni

magnets with different orientation are placed iro tdifferent regions of MPR to
decrease the™and the ¥ derivatives of magnetic field magnitude. The agement
shown in Figure 2.47 is different than others. his tarrangement, the orientation
parameter is such that one row of the magnets avitked orientation are followed
by the magnets with the other orientation. In Tébkethe values of fithess function

of these magnet arrangements are shown.

Table 2.5: Fitness function parts of obtained

and predicted magnet arrangements
Fig.No Fmax Frmin1 Frmin2 F
2.42 7835.60 1731.00 2890.70 1747.80
2.45 7837.50 1726.50 2903.10 1746.10
2.46 6838.90 1426.60 2793.30 1469.60
2.47 8180.70 2054.00 3115.90 1721.30

TheFig.Nofield in Table 2.5 shows the figure number.
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The fitness function parts of the arrangementsiguriés 2.42 and 2.45 have higher
magnetic energy in ROl compared to arrangementgar€ 2.46 resulting in higher
fitness values. These two arrangements have vemjasiresults. Therefore, one of
them can be chosen as the output of this studyanfygment shown in Figure 2.46
has smaller minimization function parts. Therefahe, £ and 2¢ derivatives of the
magnetic field magnitude in ROl are smaller for sthearrangements. The
arrangement shown in Figure 2.47 has the highegtnmmation part in its fitness.
However, its minimization parts are higher than dteers. The fitness is smaller
than the fitness of the obtained arrangement. Cuesely, these arrangements have
been ignored.

The magnetic field distribution of magnet arrangetrafter 350 generations of the
genetic algorithm is shown in Figures 2.48 and 2I60Figure 2.48 and in Figure
2.50, the magnetic field distribution is shown wheoked from theyY axis and th&X
axis respectively. Similarly, the magnetic fielgstdibution of magnet arrangement
after 48 iterations of near global optimum algamtiis shown in Figures 2.49 and
2.51. In Figure 2.49 and in Figure 2.51, the magnild distribution is shown
when looked from th¥ axis and th&X axis respectively.

Figure 2.48: Magnetic Field distribution after 3j&herations of
genetic algorithm when viewed from Y axis
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Figure 2.49: Magnetic Field distribution after 48rations of
near global optimum algorithm when viewed from Ysax

Figure 2.50: Magnetic Field distribution after 3€nerations
of genetic algorithm when viewed from X axis

80



Figure 2.51: Magnetic Field distribution after 48rations of
near global optimum algorithm when viewed from Xsax

As it can be seen from the figures, magnetic fralagnitude has increased in the
deeper parts of the ROI while the variation of nmetgnfield with respect ta andy
is kept nearly constant in larger areas of the Rffdr 48 iterations of near global

optimum algorithm.

These magnetic field distributions show that, thigective of the study has been
reached.

2.6. Conclusion

In this part of the work, permanent magnet surfagEmization and optimization of
placement of more than one magnet to obtain a ntiagheld distribution with

desired properties have been performed. For thipgse, real and binary coded
genetic algorithms, and an optimization routine acihdoes not require gradient or
Hessian of the fitness function have been utiliZzEdese algorithms have been

recombined to form a complete method for the desigm permanent magnet which
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has a desired magnetic field distribution. The wigteh results of each step have been
presented.

Due to huge computing time requirements of magriiid calculations in computer

environment, scalar magnetic potential method lenlused to calculate magnetic
field distribution along with FEM like interpolato For each part of the problem,
variables of the fitness function that change tlagmetic field distribution have been
determined and optimized using the methods devdlah&ing this work. The

methods used for the parts of this work are sunmedrin Figures 2.20 and 2.23.
The unit magnets used in the placement of more dm@magnet in space have the
resultant surface of the surface optimization parthis part of the thesis, the work
done in [8] has also been verified. This verifioatihas proved that the fitness

functions used in this work have been chosen phpper

The surface of the unit permanent magnets has $ie®mn in Figure 2.30. Although
the resultant surface is discontinuous, it is gsii@able for manufacturing. This
validates the assumption made about manufactusalofi discontinuous surfaces.
The fitness function of the obtained magnet surfaes improved by 55.41%
compared to a flat surface. In the second parhisf work, 16 unit magnets with
surfaces shown in Figure 2.30 have been placeganesas shown in Figures 2.42
and 2.43 for the fitness function and method patareechosen as a test case. The
magnetic field distribution of obtained magnet ag@ament has been shown in
Figures 2.49 and 2.51. The obtained arrangemennkathe magnetic field property
requirements of the test case fithess function.ce&Sithe obtained results are

satisfactory, the developed methods are provee taabd.

To sum up, the task of designing permanent magnattsres generating magnetic
field with the desired properties in the regionriérest has been accomplished. The
resultant magnetic field distribution is used ie tRI simulator in inhomogeneous
magnetic fields. In the next chapter, the develagmef MRI simulator in
inhomogeneous magnetic fields is explained andntfage reconstruction technique

developed for MRI imaging in inhomogeneous magnietids is introduced.
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CHAPTER 3

MAGNETIC RESONANCE IMAGING SIMULATOR
AND IMAGE RECONSTRUCTION ALGORITHM IN
INHOMOGENEOUS MAGNETIC FIELDS

3.1. Introduction

Magnetic Resonance Imaging (MRI) is a tomograpmaging technique that
produces images of microscopic magnetic charatitrisof an object using
measured signals. Physically, MRI is based on NMBhpmenon observed by Felix
Bloch and Edward Purcell in 1946 [1]. This phenooredescribes the behavior of
paramagnetic materials under the influence of gtrand constant magnetic field,
when the spinning frequencies of the microscopitigles are imposed to external
RF energy. When the strong magnetic field is unilgrdistributed over the object,
the spinning frequencies of the same type of atarsll the same. Paul Lauterbour
developed an imaging method in 1973 [2], usingfélce that when external magnetic
field is not uniformly distributed the spinning épgencies of microscopic particles
vary in accordance with non-uniformity of magnetfield. Since then, different
techniques for image formation of magnetic propsrtdof objects using spatial

encoding in measured NMR signals have been dew@lope

The conventional imaging system is composed okthnain parts, a main magnet, a

gradient coil system, and a Radio Frequency (R&iesy.
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The main magnet’s function is to generate stromgjicstmain magnetic field &,).

Although the strength oB, directly effects the Signal to Noise Ratio (SNRyl @he
spatial resolution of the imaging system, it isited with RF energy level to which

the patient can be exposed. The ordes,ahagnitude ranges between 0.3T and 3T

for clinical application [3]. In these systemsgethomogeneity ofB,over the

imaging volume is very important, since the imagmgdalities in use assume
homogeneous magnetic field distribution. Thereftoegchieve almost uniform static
magnetic field (inhomogeneity 10ppm to 50ppm [4l}ese magnets are designed

and constructed with special methods.

The gradient coil system, traditionally, consiststtoee orthogonal gradient coils.
Each of these coils is designed to generate lipeanying spatial non-uniformity in
the magnetic field that the object is imposed toisTinear variation is supposed to
occur along a specific spatial coordinate axiscteteduring the system construction.
Using these three coils, spatial information aleagh coordinate axis is encoded in
measured NMR signals. This makes signal localingpiossible. The strength of the
magnetic fields generated by these coils are smalbenpared to static main
magnetic field. The gradient coils’ magnetic fiskdength is on the order of militesla
per meter (mT/m) [4].

The RF system consists of a transmitter coil amdcaiver coil or a single coil for
transmission and reception of RF energy. The trétesmpart of the system is
capable of generating a time varying magnetic figdd RF range used for
perturbation of spins in object. Since this peratidn is possible only when the
frequency of radiated RF energy and the spinnireguency of spins are in
resonance, the transmitter part of the system duimed to have a frequency
bandwidth which contains this frequency. To obtdia desired perturbation, the
magnetic field of the transmission part should bdagonal to the main magnetic
field. Therefore, since the main magnetic fieldeguired to be homogeneous, the
RF transmission system is required to generate gememus magnetic field. The

receiver part of the RF system is used for NMR a&igeception. In order not to
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decrease the signal strength, it should be capableniform reception from the
interior of the object being imaged.

When any of the magnetic fields (main magnetiadfigradient fields or RF field)
has nonuniform distribution, the image quality lesvdown. The correction methods
for these cases have been developed [5, 6, 7,.8n9p], a technique for the
correction of magnetic field inhomogeneities isaldgmed. In this method, a model
that describes the effect of inhomogeneity on tleasarement is developed. This
method requires two images of the same object waitbred gradient. Using the
model developed, the nonunformity properties of nedig fields are calculated and
imaging accuracy is increased. In [6], an iterativethod to reconstruct images is
introduced. Since inhomogeneity in main and gradimaagnetic field distribution
changes the frequency content of the acquired Isigaalinear mapping between
image reconstruction and frequency domain trajgadbisignals is developed. Since
the frequency content of signal is not uniformlyngded for this case, the frequency
domain trajectory of signals is not linear. Consauly, the inverse problem is
solved iteratively. In [7], a band selective sigmamoval technique is presented.
This technique is useful for applications requirinpomogeneous RF transmitter,
such as surface RF coil usage. In [8], a methodréonoving signal intensity
inhomogeneity is developed. The signal intensityomogeneity is thought to be
caused by surface RF receive coils. Obtained imagesused to estimate the
sensitivity map of surface RF coils. A wavelet sfamm is used for slowly varying
sensitivity pattern estimation. In [9], a method iftensity nonuniformity due to RF
field inhomogeneity in MRI data is presented. Instimethod, additive noise,
normalize local intensity gradients and smooth llaberivatives in the image are
estimated to construct relative nonuniformity mdjpen, true uniformity map is

constructed.

The systems which do not require uniform distribatof magnetic fields have been
investigated by a number of researchers. Althodgh analyses of the developed
systems are done generally on NMR experiments, ssffods are made on image

reconstruction.

87



The first method developed is known as stray-fieldging named as STRAFI, [10].
This method makes use of the large magnetic fieddignt outside of central region
of the main magnet in a conventional MRI systenth@ligh the sensitive area of
this method is restricted, it readily preservesaigit contrast while offering very

high spatial resolution.

The STRAFI method exploits the extremely large nedigrfield gradient outside the
central region of all high field superconducting RNhagnets. In this gradient, even
a short radio frequency pulse only excites nuateainarrow slice of the sample
orthogonal to the gradient direction, thus prowspatial localization of the NMR

measurement. By stepping the sample through thdiagma and repeating the
measurement at each position, it is possible ttdkaiprofile of the sample in the
gradient direction. By mechanical movement of thgect and with the use of

surface RF coils, 2D or 3D images have been caetstiwsing this method [11].

When the system is not required to have uniform metg field distribution,
obligations on main magnet are decreased. For deap@rmanent magnets can be
used as magnetic field sources. Using this fad¥obile NMR Surface Scanner
(NMR MOUSE) has been developed [12, 13]. This BCabased NMR console with
a permanent magnet probe. This design achieveahpldst and can investigate large
objects. Also it eliminates the usage of super oatidg magnet which is the most
expensive part of the conventional MR system.

The basic setup of the MOUSE composed of mainly pads: RF and electronic
systems, and the probe [12]. RF pulse generatiplification and signal detection
are done by a PC controlled low-field (1-64MHz) NMPBectrometer, a duplexer and
1kw amplifiers. The PC is also used for pulse seqeegeneration, and data
acquisition. The probe is composed of a permanemgnet and a solenoid RF coil.
Due to low weight, the probe can be positionedteahly. Sensitive depth range of
the system is 0-2mm. The sensitive area is 3.5n@1bmm for that depth. Since B1
and BO fields generated by NMR-MOUSE are inhomogasgusing the results of

[14], Hahn echoes, CPMG type pulse sequences adefossignal generation.
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Although the aim of NMR-MOUSE construction is to beed in separation and
classification of materials, NMR-MOUSE had beendua explorative studies on

in vitro biomedical samples [13, 15]. In [13], twbmensional image of a cross
section through a pork leg is obtained. In ordestitain an image of the pork leg the
NMR mouse is repositioned in a point-wise manneardkie cross section of interest.
Since the system is portable and has an open magigeeasy to make orientation

dependent studies. Also the transverse relaxaitio@ is measured by changing the
orientation of the pork tendon [13]. In [15], artiepy in tendon is investigated in

vivo. In [16], a gradient coil is added to NMR-MOBSo be able to construct 1D

images. In [17], results of [16] are used as asbasd another gradient coil is added
to the system. In [18], the inhomogeneity of maiagmetic field is redirected so that
the main magnetic field magnitude varies lineanlpne direction. In [18], as in [17],

two gradient coils are used for spatial encodimgl #he gradient in main magnetic
field is used as another gradient to be able tstcoct 3D images.

There are some theoretical studies on imaging orimogeneous main magnetic
field and on inhomogeneity limits. In [19], very tdi#ed theoretical study on
magnetic resonance in inhomogeneous magnetic fielgiesented. In that study, the
theoretical limits of main magnetic field inhomogéy is found using signal to

noise ratio (SNR) and specific absorption rate (édhcepts.

The imaging experiments using the developed sys{éfs15, 16, 17, 18] and the
theoretical study [19], all try to obtain a unifdgmsampled frequency domain
signals. Since MRI system which does not requimadgeneous magnetic fields can
not assume uniformly sampled frequency signalssettstudies are trying to obtain
limited imaging systems. On the other hand, in [Z@me imaging techniques for
MRI in inhomogeneous magnetic fields are developedhat study, the imaging

modality in MRI in inhomogeneous magnetic field aret restricted to the ones
using frequency content transformation For thisppee, a relation between
measured signal and object properties is derivéte feasibility of the derived

relation is investigated using the singular valoéshe matrix representation of this

relation.
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The works presented so far, do not aim to develogeaeralized image
reconstruction technique for MRI (except [20]).these works, the main aim is to
design a system which has a main magnet which gmsemagnetic field as
homogeneous as possible to be able construct imasges inverse Fourier approach.
This is due to the fact that inverse Fourier teghaes that are being used for
conventional NMR and MRI systems vyield high resolut images in short
computation time. However, under inhomogeneous etagnfields, frequency
bandwidth of measured signals not only change duiae gradient field, but also
change due to the magnetic field inhomogeneityrdfoee, MRI in inhomogeneous
magnetic fields requires some image reconstruatimadalities that do not require
homogeneous magnetic fields. Moreover, the teclnigioiould be able to fully
satisfy the obligatory constraints imposed by thgsical basis of MRI. Moreover,
the feasibility of the reconstruction techniqueddde examined in the sense that it
should be able to make use of all acquired dapedduce images.

Development of any image reconstruction technicupiires generation of test data
and construction of a forward problem solver. Thst frequirement is signal data
obtained from any source. The source may be a @ysystem or a simulator. In
this work, a MRI simulator in inhomogeneous magnélds to generate test data
has been developed. Since the physical principleigroscopic level of magnetic
resonance is the same for both inhomogeneous anddemeous external magnetic
fields, the construction steps are straightforwarden the imaging domain is

discretized.

Some MRI simulators have been constructed for edu and research purposes
[21 to 32]. [21] and [27 to 29] are general simaotatfor MRI. These simulators

require high computation time. Therefore, some &hous have been implemented
for parallel computing [23 and 24]. Simulators MKMR have also been developed,
[25 to 27]. These NMR simulators are developedpldse sequence design and for
educational purposes. In [22], object specificdfighapping is used to simulate
artifacts in the images. In [30], a simulator is¥eleped to investigate static field and
RF field imperfections. In [32], a simulator whidan exhibit nearly all imaging

artifacts is developed. This simulator combinespatiperties of other simulators.
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However, none of above aims to construct a simulédo MRI or NMR in
inhomogeneous magnetic fields. So far, [34] isahly attempt to construct an NMR

simulator in inhomogeneous magnetic fields.

In this chapter, the construction details of a nedigiresonance imaging simulator in
inhomogeneous magnetic fields are given and theeldpment of image
reconstruction technique for magnetic resonancegimga in inhomogeneous
magnetic fields is introduced. Firstly, theory dfet simulator and the image
reconstruction technique are given. Secondly, implatation details of the
simulator and the image reconstruction technigeegaren. Thirdly, obtained results
are given for both homogeneous and inhomogeneogsetia field cases. Finally,

this chapter ends with conclusion.

3.2. Theory

Nuclei with odd atomic weight possess an angulamermum. This fundamental
property of nuclei is called “Spin”. Since all magi charged particles create
magnetic field around themselves, microscopic akrgarticles create magnetic
field. This is the basic physical principle of ne&t magnetism. This microscopic

magnetic field is called the “Magnetic Moment”.

The angular momentum is related to magnetic momeéhtproportionality constant
gas shown below.

m= g (3.1)
This constant is known as the “Gyromagnetic Rati&/romagnetic ratio varies from
microscopic particle to particle. In above equationis magnetic moment,J is

angular momentum.

The magnetic property of atoms is represented liy gpantum numberS. In
guantum mechanics, spin quantum number can onlg thkcrete values. The
magnitude of magnetic moment is certain under amgition and related to the spin

quantum number. However, the direction of magmatienent is uncertain due to the
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uncertainty principle of quantum mechanics. Ondtieer hand, a component of the
magnetic moment can be determined by imposing fie ® an external static
magnetic field. In this case, the energy of spifixed, and that component of the
magnetic moment is aligned to the external magrfetld. However, the external
magnetic field can not change the fact that thdigharis spinning. Other two
components of the magnetic moment are still raatamd their exact magnitude can
not be determined. Therefore, the spins undemtfiieence of the external magnetic

field creates a magnetic moment that precessescibe external magnetic field.

The frequency of precession is known as the “LarRrequency”. Larmor frequency
of a spin is a function of the magnitude of theeexal magnetic field and is

represented by
= 9By (32)

where B; is the external magnetic field.

An ensemble of spins with the same spin quantumbeuns called a “Spin System”.

Total magnetic moment of a spin system is knowthas‘Magnetization”,M , and

is defined as the vector sum of all individual metg;mmoments of spins.

M= m (3.3)

i=1

where N is the number of spins in the spin system.

When all spins of a spin system is imposed to #meesexternal static magnetic field,
the magnitude and the component of the magnetic enbrparallel to external
magnetic field is certain. Moreover, total magnéuaf the components of magnetic
moment perpendicular to external magnetic fieldkm®wn. However, the angle

between these two components is a uniformly disted random variable that can
take any value betweeh p,p]. When the number of spins in the spin system
approaches to infinity, total number of perpendicutomponents of magnetic
moments of individual spins start to become deteistic due to the central limit
theorem. The angle between two components is adkfiserandom variable. As the

number of spins in the spin system approachesityfim the average observable
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perpendicular to the external magnetic field congms of magnetization tend to
zero. Therefore, macroscopic magnetization of tipen ssystem in thermal

equilibrium is defined as shown below.

V0 = I T NS(SHY)

3.4
3KT, (34)

where K is Boltzmann constaniis absolute temperature of the spin systéy,is
the number of spins in spin systert,is normalized Planck’s constanh(:zl),
19

Byis the external magnetic field anbll ®is the magnetization of spin system in

thermal equilibrium. Detailed derivation can beridun [4].

For S =% spin system, (3.4) becomes:

AKT,

S

B, (3.5)

Since a hydrogen atom’s nucleus consists of onlg proton, its spin quantum

number is%. Since in biological applications distribution bfdrogen atoms is

imaged, from now ors =% systems will be investigated.

As stated previously, angular momentum and magmetiment are related to each
other with gyromagnetic ratio. Torque created bygneic moment and angular
momentum should sum to zero. In classical mechatfics statement is expressed

as.:

dM ,

where B is the magnetic field at any time instant thatdpen system is imposed to.

B can be expressed as total magnetic field as sheVau.

B=8& + Byrer (3.7)
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where Byper represents other magnetic fields that effectssihia system. More

detailed derivation can be found in [4].

Equation (3.6) implies that whenevé and B are not parallel to each other, a

torque is created to make them parallel. This terquan not changeM
instantaneously. This relaxation process is knogvfiLangitudinal Relaxation” and

the time constant that represents this relaxatimcgss is generally called; .
Therefore, whenByer becomes 0, the component i (longitudinal component
of M, M) parallel to B, should relax to the thermal equilibrium magnetoat

MO,

Another relaxation process occurs for the compaehiM (transverse components
of M, M.) perpendicular toB,. This relaxation is known as “Transverse
Relaxation” and represents the loss of phase coberamong spins in the spin
system. Loss of phase coherence occurs du tmhomogeneity along the volume
of the spin system and due to spin-spin interastiorhis relaxation process is
represented by another time constaijt, The transverse components Mf should

decay to 0, when phase coherence among spins gpiheystem is lost.

When the relaxation terms are added to (3.6), Béxpation is obtained.

d—M:gM'B- M (M -MO)
dt T, T

(3.8)

The state of the spin systerivI((t)) is described by (3.8). However, a measurement

equation is needed to fully describe the spin syste

For homogeneous magnetic fields case, the relagtween state of spin system and
measurements is formulated in the next subsecAdso, in the next subsection,
utilization of measured data to obtain images igeflyr described. After that
subsection, a method to extend formulation of haenegus magnetic fields case to
inhomogeneous magnetic fields case is introducdier Ahat, derivation of a linear
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relation between initial magnetization and measer@s)is described. Finally, the
theory of developed image reconstruction technigyeesented.

3.2.1. Conventional MRI Formulation

In Bloch equation,gM ~ Bpart expresses the torque that tries to change the
magnetization state of a spin system. An externagmatic field with non-zero

perpendicular component thl should be applied to create that torque. As stated
previously, the external RF field should be in remmce with the spins to be effective

on them.

Applied RF field has the form shown below.
B, =2By(t)cosy; t+/ ) B, X+ B, y+ B,z (3.9)
where X, ¥ andzare the unit vectors of left handed orthogonalreefee frame. For

homogeneous,field distribution, B,is homogeneous and orthogonal Bg. When

B, is defined as in (3.10)3, takes the form:
By =Byz (3.10)
B, = 2B;(t)cosfy; t+/ X (3.11)

Equation (3.11) can be decomposed into two rotafieffls; one rotating in

clockwise and the other rotating in countercloclend&rection as:
B, = B (1) cosy t+/ x+simyty Jy+ } ® counterclockwis

(3.12)
cosgst+/ X- sim(tt/ ) }® clockwise

Since counterclockwise rotating part of the RFdfied in the opposite direction of
spin rotation direction (the spin rotation is imakwise direction), it produces

negligible effect. Therefore, the effective RFdieB,, is in the form:

B, = Br(f) cosa t+/ )X- sim sty )y (3.13)
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Bis the envelope of the magnetic field. It can bean§ shape, but it is usually
chosen to be in sinc shape, square shape or ttaarghape. WherB,field is in the

form shown in (3.10), RF field in (3.13) producemfzero torque due togM = B
part of the Bloch equation. Therefore, the maga&tin vectors of spins, due to

imposed RF field in duratiofize, are rotated by an angle af.

On the other hand, since and y components of magnetization vector of spins in
thermal equilibrium are rotating with the Larmoeduency,u, and the effective
rotating component of the RF field (equation (3)1B) rotating with frequencyy; ,

it is customary to define a rotating frame of refege.

The unit vectors of rotating frame of reference fargctions of time and expressed

as:
=cos@t x- sinft )y
37 sin(t)x + cosit y (3.14)
2'=7

where w is the frequency of rotating frame. Therefore, timtary transformation

matrix, T, , from laboratory frame to rotating frame is dedirses:

cosft) - sinfit) O

Tot = Sint) cosfmt) O (3.15)
0 0 1
The time derivative of any vector in the rotatingrhe, M, =T M, can be
expressed as:
sin(ut cos 0
dftam) |, S o) av
- w- cos@t) sinfst) OM+ T, ot (3.16)

0 0 0

in laboratory frame. The first term in (3.16) cam éxpressed as a skew symmetric
matrix product as shown below.
sinimt) cospt) O 0-10
-cosimt) singt) O0=- 1 0O OT, (3.17)
0 0 0 0O 0O
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The skew symmetric matrix in (3.17) is nothing brdss product matrix of the unit
vector Z2'. Consequently, the first term in (3.16) can beresged as:
sinimt) cospt) O
-w- cosit) sinpt) OM= w(-3') (TrotM) (3.18)
0 0 0

The derivative ofM can be expressed as:

v _d(TM)
Trot -

dt dt
The Bloch equation without relaxation terms is:

-w (-2 (T M) (3.19)

d(ToM)
dt
Then, the Bloch equation in rotating frame cany@essed as:

- (7o)’ (7.8 (20

dMm
Trot E = g(

Combining the magnetization terms in (3.21) yietds Bloch equation without

ToM) (T B* W (T M) (- 2) (3.21)

relaxation terms in the rotating frame.

dM , N
T =0(TaM) " (T B) VE'/ 2 (3.22)

The effective magnetic field in the rotating frarmelefined as:

W"l
Bet = Biot - 5 4 (3.23)

The Bloch equation including relaxation terms tusnsto be as:

~ A 0\
M M.K+M.y (M, - M%)z
ﬂ—mt:ngot' Bett - - vY ( : ) (3.24)

It T T

For static magnetic field as in (3.10) and for tase where the frequency of the

rotating frame equals to Larmor frequency of spins:

(T By) = B0 (3.25)

w=up = gBy (3.26)
dMm . W,

Toot ot = g(Trot M) By - E 26=0 (3.27)

In the rotating frameM is stationary when, only, static magnetic fieléjmplied.
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In the rotating frame, the RF field in the form13) turns out to be as shown in
equation (3.28).

TotB = BI() % (3.28)
When an RF pulse is applied to the spin systemtingtaaround B, in rotating

frame, only the torque due to the envelope of Rklfis effective. The frequency of
rotation caused by this torque is related to ttetammtaneous magnitude of the RF

pulse by:
i (t) = gBr (1) (3.29)
Consequently, after the RF pulse the magnetizatsmtor is rotated aroun8,;. The

angle of rotation is given by:

t

alty=g BJ(f)d (3.30)
0

After an a RF pulse, magnetization vector can be found usitgtion matrices.
When the RF field is irk¢ direction, the rotation matrix that represents ribtation

of the magnetization vector is given by:

1 0 0
Re¢@)= 0 com:a sim (3.31)
0 -sina cow

In order to spatially encode the spins in the spistem gradient fields are used.
These fields are in the direction Bf, but have magnitudes that vary almost linearly
with position as shown below:

Byradient = (GX 2 (3.32)

where G is the derivative of magnitude of gradient fielthwespect tox. When
such inhomogeneity is introduced, the Larmor fregies of spins vary linearly ix
direction. Consequently, the phase angle due tgthdient field can be calculated
using:

t

f(x,t)=g G()xd (3.33)
0
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After applying the gradient field for finite durati £, e, the magnetization vector

can be calculated using the rotation matrix aroanakis.

cosf k) - sif k) O
Rgradient(f(x)) = sinf (X) cas (X) 0 (3-34)
0 0 1

When no magnetic field other tha, is applied, the Bloch equation in rotating
frame has a solution given by:
Mo(t)  Myltg)e @ /T 0

Myeld) = Mydto)e 0T + 0 (3.35)
M ,(t) M (to)€ (GRS (1- g (t tO)/Tl) M°

The matrix form of the relaxation process is gitgn

e (t tg)/To 0 0
Mu®= 0 g (/T2 0 My () +
0 0 e (F)/h (3.36)
00 0
00 0 MO

0 0 (1-e®0m)

Signal detection in MR is based on the Faradaydaelectromagnetic induction and
the reciprocity principle. The Faraday law of intac states that time varying
magnetic flux through the receiver coil inducesottage that is equal to the rate of

change in magnetic flux through the coil. The diébecsensitivity of a receiver coil
is determined through the principle of reciprociyssume thatB, is the magnetic
field produced by a unit direct current flowing ahigh the coil. Then the magnetic

flux through the coil due td/ is given by:
F({t)= B,xMdv (3.37)

Vobj

Using the Faraday law, voltage induced is obtassed
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FO_ 1
it ait

Vobj

V(1) = - Bx Mdv (3.38)

Since B,and integral are not functions of time, then thevagive term can be taken

inside the integral and allowed to operateMn

V(1) = - BZX%—I\:I dv (3.39)

Vobj

To be able to obtain any information from measuwreltage, magnetization should
be time dependent, and its derivative should bgelanough. The time dependent
components of the magnetization vector are thestense components. Since the
measured voltage is around the Larmor frequencyg Woltage should be
demodulated. However, since the magnetization vedtas two transverse
components, the demodulator should be designedhab bioth components are

demodulated. Since the phase difference betweerctwponents of magnetization

is % the designed demodulator has to have two mudtipdarts with sinusoids that

are % degrees out of phase with respect to each othgurd-3.1 shows the

demodulator.

LP filter

X(1) cos(t ) (t)

LP filter

sin(ut) i

Figure 3.1: Demodulation system
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In Figure 3.1, the input signal is multiplied byawinusoids which ar% degrees

out of phase with respect to each other. Then, eadhiplication outputs are low
pass filtered. One of the outputs of low pass rBltes multiplied byi to obtain
imaginary part of the signal. Then, two demodulaseghals are added to obtain

complete complex signal.

Since the output of the demodulator system is ad danited signal, it can be
sampled according to the Nyquist criteria. The itketavill be given in the

implementation part.

3.2.2. Extension to Inhomogeneous Magnetic Fields

Although the formulation given above is only valiok magnetic fields that are
homogeneous throughout the object being imaged,ftimulation can be used in
inhomogeneous magnetic field case when the proldediscretized and a suitable

transformation is defined.

When the volume of the object being imaged is éts&oed into small volume
segments, the magnetic field variation in theseiwa segments can be ignored. In
other words, magnetic fields in these volume sedséroxels) are considered as
homogeneous magnetic fields. Therefore, the Blagraton, (3.8), is valid in each
voxel of the volume. However, since the directiamismagnetic fields vary from
voxel to voxel; a different reference frame forleacxel should be defined.

As in the homogeneous case, the local referenceefra defined referencing ;.

In homogeneous case, the laboratory frame is difaveording to direction 0B,
and it is taken ag direction of laboratory frame. In inhomogeneouse;daboratory
frame is not defined, but a global reference framesed to representB,. This

global reference frame can be considered as tlegerefe frame used by magnetic
field measurement device. The local reference feaare defined using a spherical

coordinate system.
101



Any point in a Cartesian coordinate systémyy, z) is represented byg,/,r) in
spherical coordinategq, f,r) are defined according to following expressions:
2+ 2
q:tan'l—x y
z

f =tan

1Y (3.40)
X
r= /X2 +y2 + 22
While defining local reference frame, the same me@thogy is followed. B, in each
voxel is used for calculation @f and 7 angles, and its direction is taken to b&in

direction. The angles are calculated using:

2 2
-1 Bx"'By

z (3.41)

Then, a transformation matrix from global referefregne to local reference frame is

defined as:

cosg cog cap sh - gn
Tspheric= - sinf cos 0 (3.42)
singcosf sig sih cgs

Since Tgpheric IS @ Unitary transformation its inverse is eqoats transpose.

f component of local coordinate frame is not defiegglicitly, but it is the unit

vector in the direction 0B,.

Fo B (3.43)
Y

Within each voxel, B, is in i direction. Other vectors in the local reference ar

expressed with respect to the direction Bf. In Figure 3.2, global and local

reference frames are shown.
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Figure 3.2: Global reference frame, vy, 2),
and local reference framg, 7,r).

Using the local reference frame, the Bloch equaexjuation (3.8)) can be used in
each voxel by the formulation derived for the hoergpus magnetic fields case.

3.2.3. MR Formulation in Inhomogeneous Magnetic Ras

The Bloch equation given in the form (3.8) can beressed in terms of

M,M® B,,B,T, and T,. This representation is based upon the fact thastverse
and longitudinal components dfl are defined referencing tB,. The longitudinal

component ofM is found by projection oM onto B;.

_ Mg, B
M = — (3.44)
Bl [
The remaining component &fl is the transverse componeM,, , defined below.
_ M>8, B
M. =M - 2 (3.45)
[Boll ]

Since M and B, are real valued vectors, the dot product is defiie 3.

Consequently, (3.44) and (3.45) can be expressadrasrix vector product.
U
M = BO—B‘; M ) (3.46)
Y
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BB

Ma = |
&)

M (3.47)

B in (3.8) can be decomposed as in (3.7). Usingatiditivity property of cross

product, cross product term in (3.8) can be exprkss:

gM”" B= gM" (By+BoruerF M BF M Boner (3.48)

Using the following property of cross product:

gM " By=- g8y M (3.49)
The cross product can be represented by a skew syimmatrix operator.
0 - BO,Z BO,y
-gBy M=-g B, 0 -ByM (3.50)
- BO,y BO,x 0

As stated previouslyByrer term represents the magnetic fields, other tBgnthe
spin system is exposed to. The cross product matiyByrer . Can be

considered as the input matrix to the system reptes by (3.8). Consequently, it is

suitable to leave this term out of terms relate@fowhich represents the system.

B, related terms in (3.8) can be collected to desiystem matrixA, .

0 - B0,2 BO,y

At):'g BO,Z 0 'BO,X'

il-BoBg
e v

2

BoB‘E (3.51)
=Y

1
T
(3.51) can be shown in more compact form as in2(3.5

T S - 3.52
SRR T Ay i (352

The input matrix,A, , is defined as follows:

A= - 9Bother (3.53)

Using (3.52) and (3.53), the Bloch equation caneveitten as:
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dm m°
—=(A+ M+— 3.54
The summation of system matrix and input matrix bancombined to obtain the

matrix, A. The constant term in (3.54) is callbd

A=A+ A (3.55)
_M°
T (3.56)

Since M and magnetic fields are functions of position|X (x, Y, z)), and time,
t, (3.54) can be rewritten as:

dM (X, 1)
dt

From now on, wherk is not specified explicitly, the derivations areen for one

= A(X, ) M(X, ) + () (3.57)

voxel (position is fixed t&).

When A is time invariant, (3.57) has an analytical salnti
M (t) = eI M(ty) + (At ) () At (3.58)

When A is time varying, one of the numerical methods barutilized to solve the

inhomogeneous differential equation shown in (3.57)

Whent t; in equation (3.58), forA, =0 case, exponential terms in (3.58) will
approach to O due to the fact that all eigenvabfegy, have negative real parts.
Consequently, (3.58) can be approximated to:

M) -A'b t (3.59)

On the other hand, whem» t, in equation (3.58), exponential terms approach to
In this case, (3.58) can be approximated to:

M) e 0IMmg), g (3.60)
Therefore, for long durations the inverseAyfis needed, whereas for short durations
the inverse ofA, is not needed. For the case t, it is required to be shown that
A, has an inverse. To be able to prove this, eigeegahnd eigenvectors @, are
needed.
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Proposition:

Eigenvalues ofA, are:

/= Ti
1

/, :-QHBOH-% (3.61)
. 1

fa=-v o +

Proof:

Eigenvalues of -gB,” are:

/1,1=0
l2=b By (3.62)
l1a=-7 |8

The eigenvectors associated with each eigenvaluegis,”  are:

By xBoy + Bo.| By BoxBoy~ 1Bos Bo|
By x Boy Boz - 1Box|By Boy B+ 1Boy By
&= Bo’y & = Bg,x + Bg,z 8= Bg,x + B(Z),z (3'63)
BO’Z BO,yBO,z' iBO,XHBOH BO,yBon+ iBO,X”BOH
1 1

Since - gB,” is a cross product matrix (i.e., it is a skew sy@tmm matrix), it is

obvious thatB, is an eigenvector associated with O eigenvaludisfmatrix. Since
the other two eigenvalues are nonzero and crostuptrg@roduces nonzero results

when it operates on vectors that have componetit®gonal toB,, the other two

eigenvectors should be orthogonalBg.
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1. 1 BB

- — iIs a rank 1 matrix. Consequently, it has only amenzero
T e[

eigenvalue. Eigenvalues of this matrix are:

11

A

/5,=0 (3.64)
/,3=0

The eigenvector associated with the nonzero eideeuvais matrix isB,. This part
of Ay is, infect, a projection operator onto the subspsmanned byB,. Therefore,

B, forms a basis for the range space of this méaiixce this part is a rank 1 matrix,
other eigenvectors form a basis for the null spdc¢his matrix. In other words, these
two eigenvectors are orthogonal By. Therefore,e, and e; in (3.62) are suitable

choices. Consequently, the eigenvectors in (3.62ak0 eigenvectors of this part.

I : 1
T part of A, has three nonzero eigenvalues all equal{él_e.

2 2
[31=- %
/3= % (3.65)
l33= %

Since this part is the identity matrix, any vedtor * is an eigenvector of it.

Since all three parts ofy, have the same set of eigenvectors, the eigenvafuég

are sum of the eigenvalues of each part. This griwe proposition.

Since /, and/; have magnitudes much larger thi(due to the fact thaty is on

the order ofL0°), A, is ill conditioned. Therefore, the inverdy is nearly a rank 1

matrix. In this case, the pseudo inverse can bepated using singular value

decomposition concept.
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The singular value decomposition is based on tlee tteat any matrix of which
number of columns is greater than or equal to nundbegows can be written as
product of three matrices. If the dimensions ofarirA, are defined ad1~ N, A
can be written as a product oM~ N column orthogonal matriX , an N° N
diagonal matrixS, transpose of &~ N orthogonal matrixV [33]. Therefore, A

can be written as:

A=USV' (3.66)
For square matrices the inverseAfis given by:
Al=vsiU (3.67)
Since S is a diagonal matrix its inverse is given by:
1 0 0 0
Sia
0 =N 0 0
$,2
st= 0 0 (3.68)
0 0 1 0
SN-11N 1
0 0 0 1
SN,N

For a square matriX, the columns ofJ forms an orthonormal set of basis vectors
for the range space ok. The columns oV forms an orthonormal set of basis for
the null space ofA. S is a diagonal matrix whose elements are the emjars of
A.

Generally,U is formed from the eigenvectors A" andV is formed from the
eigenvectors ofA” A. All parts of the Ay matrix, defined in (3.52), have the same set

of eigenvectors defined in (3.62). The transposeach part also has the same set of

eigenvectors. Thereforé) andV are formed using the vectors in (3.62).

In equation (3.59), the inverse ofy matrix should be calculated. An approximate
inverse of A, can be found using singular value decompositiorsdtying singular

values with very small multiplicative inverse torae When this operation is
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performed on the eigenvalues given by (3.61), thétiplicative inverses of/, and
/5 should be set to zero. Therefore, after inversior(3.67) is performed, the

nonzero column of inverse will be, in (3.62). Consequently, the range space of
Aél is the span oB,. When the range space 951 is composed with null space of
it, a basis set for ® will be obtained. Thereforef;' is obtained only when two
vectors which are orthogonal t8, and to each other, are replaced with zero

columns of Ay*.

The eigenvalues ofy, implies that one component & relaxes throughB, with

time constanfT;, and other two components are rotating in a pfsrgeendicular to

B, and loosing their magnitude with time const@®t This mathematical conclusion

is in accordance with the physical fact, descripealiously. This shows us that the

model exhibits the physical basics of the system.

When an input magnetic field is applied to the eys(A, * 0), the eigenvalues of
the matrix A in (3.55) will be different than those in (3.6%).MRI pulse sequences,
applied inputs have a finite duration that is neitemall, nor large. Since none of the

assumptions about durations hold f8; * O case, it is more suitable to perform

matrix inversion using (3.67) directly.

Any image reconstruction technique needs a raidbietween the property being
imaged and signals measured. Therefore, an opéhatransfers the magnetization
from the initial state to the final state is need&Hese transformations are called
state transition functions, and for the finite dims®nal case they are called state

transition matricesF (t,t;) . A state transition matrix satisfies:

M(t) = F(t,to)M (o)
Fi(tty)=F (t.t)
F(to,t)= |

F(ty,to)=F (tatF (tyto)

(3.69)
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Using state transition matrix concept and sub#tigu(3.56), (3.58) can be rewritten

as:

(eAtto) ) A

M(t) = eNO)E (i, 0+ M© (3.70)

1

Consequently, the state transition matrix from0 to t is defined as:

(eA(t_ tO) - I) A- 1

F(t,0)= " 9F (,, 0 -
1

(3.71)

Therefore, for known input magnetic fieldsy, T, andT,, F (t,0) can be found.

(3.71) is only valid whenA is time invariant. WhenA is time varying, state

transition matrix cannot be found directly. In tiv@e varying A case,M° should

be known to find the state transition matrix usimgmerical methods. For the
reconstruction problemv® is not known. To be able to find a relation betwee

M (t) and M°, each orthogonal basis vector of is assigned am® and (3.57) is
solved for eachM®. The calculatedM (t) s are the columns of (t,ty) . Therefore,

to find F (t,ty), differential equation (3.57) is solved three tinfer each unit basis

vector of 3.

Since the state transition matrix is known at tiilne measurement is made, (3.57)

can be rewritten as:

dM(t) _ 1 Mo
s AF L0+ =1 M (3.72)

1

Measured voltage also satisfies (3.39). Substgun72) to (3.39) yields:

V() =-  B(Nx A(XHF (X t0)+ I MO(®) dx (3.73)

Vobj

1
T,(X)

After measuring the voltage, it is demodulated btam the low frequency content.
The demodulator is the same as the one shown urd-i§.1. However, the cutoff

frequency of the low pass filters should be chosecording to the bandwidth of
data; because the magnitude variation Byf field may be large causing large

variations in the Larmor frequencies of spins.
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3.2.4. Image Reconstruction Technique Formulation

If M°(X) is known for allxTW (W is the volume of the object being imaged), the

problem is to findV (t). On the other hand, ¥ (t) is known, the problem is to find

M °(X) , which is a function ofN, . The first problem is called as forward problem,

and the latter one is the inverse problem.

Forward problem can be solved by (3.73). Howeveelation betweerM °(X) and

V(1) is needed to solve the inverse problem. The laiven by (3.73) can not be
used directly to findV °(X) . The easiest way is to discretize the relatiod3Bwith

respect to time and position, so that a linearsfi@mation from M°(X) to V (t) is

obtained.

As in the previous discretization, the volume beintaged, W, is divided into
voxels, in each of which magnetic fields are asslitoebe uniform. LetP denote
number of voxels inV. Then, (3.73) can be rewritten as:

1
Tl (T(p)

P
V(1) =- Bz(yp)x A(Yp,t)F(Rp;t,O)+

p=1

I M°(%,) Dv (3.74)

where Dv is the volume of one voxel ariq, is the position of the centre gf- th

voxel. SinceB, and the bracketed term in (3.74) are both realegldot product is

the standard inner product in®. Consequently, (3.74) can be rewritten as:

P 1
= BT (%) AX,,)F (X,;t0 | (> :
V(1) 3 B (%,) A%y OF (Rt 0)* %) Dv M°(%) (3.75)
The bracketed term in (3.75) can be defined as:
T
F(Xp0t)= - B, (%,) A%y OF (%,: tO)+ T(%) | Dv (3.76)

3P

Since F(Yp,t) is a vector for eachx,, a vector in can be defined by

concatenating each (Z ,t), i =1,2,..P one under another as follows:
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T

T

N-rl‘< x

TN AN N
— ~ -

~— S N N

X X

F(t)= F, (3.77)

Similarly, another vector for the componentshof (Xp) can be defined as:

< Z L
XO NoOo <o Xo

<
o
I

(3.78)

Using (3.77) and (3.78), (3.75) can be written detgproduct of these two vectors.
V() =FT(H)MP° (3.79)

When time is discretized using time step (samptogation) that does not destroy

the frequency content of data, (3.79) can be writie
Vin=F[igM®=\(}), rmDt<tf(n+)Di (3.80)

wheren is defined usingDt <t £(n +1) Dx(Dt is sampling duration).

In MR, voltage is measured for finite durationtimhe. The measurement duration is

called “Acquisition Time”, T,,. If N samples are taken i, (3.80) can be

cq’

extended to contain all the acquired dataTip,. Defining a vectorV and a

matrixS, a linear relation betweel °® and measured voltage is obtained.

V(]
V(2]
V= (3.81)
VIN-1
V[N]
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F'[1]

F'[2]
S= (3.82)
FTIN-1]
FTIN]
V = SM° (3.83)

The inverse ofS should be found to determirid °. However, since both right and
left hand sides of (3.83) contain modulated data since demodulator is a linear
system, both sides can be demodulated. Left hatedcsin be demodulated directly
using the demodulator in Figure 3.1. However, rigl@nd side can not be
demodulated directly. However, since right hande sgl a matrix vector product,

right hand side of (3.83) can be rewritten as:

3P
sM®= M%s (3.84)

where M? is thei™ component of M® and § is thei™ column of S. Therefore,

the right hand side is demodulated by demodulaaah column ofS.

Let V denote the demodulated signal a8dlenote theS matrix with demodulated

columns.

The direction ofMO(ip) is known from (3.4). The number of unknowns can be
reduced using the direction df/lo(ip). Another matrix can be constructed to

represent the direction information to eliminate threction ofM 0(YIO) among the

unknowns.

M 0(Yp) is in the direction ofB,(X;) . Consequently, 8P" P direction matrix can

be constructed as follows:
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Box (%)

0 0
[B)]
By(%)
[Be)
Bp2 (%)
[B)
BO,X (7(2)
B
BO,y (7(2)
D= B (3.85)
B0,z (7(2)
B
0 0
Box (Xe)
B
By, (Xp)
B
0 0 BO,Z (T(P)
B
The unknown vector is defined as:
Moo
X = HMO(YZ)H (3.86)
M)
Using these definitions (3.83) can be rewritten as:
(SD)X =V (3.87)

SinceS does not have full rank for a single measurensaiving (3.87) iteratively is
more suitable than trying to compute the pseuderses of (SD). In the iterative

solution, initial solution of each measurement daith be taken as the solution of
previous measurement’s set of data.
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Any reconstruction technique that utilizes finiet ef data to reconstruct an image of
an infinite dimensional physical parameter, aimsfitml a solution in the least
squares sense. Similarly, iterative reconstrudiehniques also try to find a solution

in the least squares sense.

The problem of solving a linear set of equatiorssina(3.87), can be generalized as a
minimization problem:
N 2
Minimize |(SD) X - V|

Since S andV are complex valued the norm used in the objedtimetion above is
induced from the following complex inner product:

f(x)=((sp)x- V)" (D x- V) (3.88)
where H denotes complex conjugate transpose (tranjugatbervwnultiplication is
performed, (3.88) can be rewritten as:

f(x)=X"D'S"'sbx- X D & v V¥ spx ¥V (3.89)
where for real valued vector and matribD (and X), tranjugate is used as

transposition.

The gradient off (x) with respect toX is given by:

R(f(x))=2(D"s"spX-2(sD)" v (3.90)
As in any unconstrained optimization problem thadgent N(f (x)) should be

equal to 0 at a local optimum point. Then, the f@obis reduced to the solution of a

linear set of equations. However, for the probldrhamd, it is not possible to obtain

a minimum norm solution using one set of daf@Ys" sp and V" SD).

Therefore, an iterative method, like steepest de#sge conjugate gradient, will be
more suitable to extend the solution obtained usimg set of data to the next set of

data.
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3.3. Implementation

In this section, implementation details are given.

3.3.1. Implemented Pulse Sequence

In any MRI system, input magnetic fields shoulddmplied in an order to obtain
desired responses from the spin system. The ofdgymdication and the duration of

inputs is called a “Pulse Sequence”.

There is a variety of pulse sequences used in MRwever, the basic pulse
sequence is known as the “Spin Echo” pulse sequéndais work, the spin echo
pulse sequence is implemented as a test caseitp W&t the developed theory is

valid. Figure 3.3 shows the order of inputs ofspen echo pulse sequence.

|

:
&

Ll el it

] S e

-S> - - -

Ll
~

3 6 t7

a1

Figure 3.3: Implemented pulse sequence (orderpafttnand durations)
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In Figure 3.3, RF represents RF fieldG,. represents the magnitude of phase
encoding gradient field derivative with respectpimase encoding directiorG,.,

represents the magnitude of frequency encodingegrafield derivative with respect
to the frequency encoding directioSjgnal represents the measured signal and

represents time.

The signal is obtained after an application of appate input magnetic fields. As
shown in Figure 3.3, the signal is acquired onliwieen specific time instants. As
stated previously, the duration between these tmatants is known as the signal

acquisition time, Ty,

In this pulse sequence two RF pulses are appliest. RF pulse is required to rotate

M through the transverse plane; whereas the seaomdsaused for the reversal of

the direction ofM . The first RF pulse is named %s and second pulse is named as

p pulse. In order to obtain a pulse from the RF field applied to obtairgapulse,

from equation (3.30), the magnitude of the RF fi@i@scribed by the envelope

function) can be doubled. In this case, the dunatiof RF pulses become equal to

each other. The duration % pulse can be calculated using (3.30). Howevethim

study the envelope of the RF field is consideredbé in rectangular shape.

Consequently, (3.30) can be rewritten as:

a(t) :gHBlHt (3.91)

and the duration ol’% pulse can be calculated using:

Ta (3.92)

-_ P
"~ 208
The RF pulse is designed so that it has a frequbaogwidth,2Dw. A typical RF
envelope function in frequency domain is shownigufe 3.4.
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Typical RF pulse envelope function

|
|
|
|
1B 1
/Bla :
|
|
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|
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|

Figure 3.4: Typical RF pulse envelope
function in the frequency domain

Since the resonance condition imposes the factalatpins in the object should
have a precession frequency that is covered by iR$e’s bandwidth, RF pulse is
used to narrow the imaging domain in the objece ifhaging region imposed by RF

field’s bandwidth is given by:
W={Xus(%) T w;-D w w+D w) (3.93)
where w; (X) is the Larmor frequency in the poiit. This region is also called the

“Field of View” (FOV). By changing the center fregpcy of the RF pulse, FOV is
changed. Each FOV imposed by the RF pulse’s baridwschamed as “Slice”. If the
number of slices is greater than one (3.93) carWwetten as:

W ={X|m((®) T w,-D ww +D w) (3.94)

for the i slice. Hence, the whole imaging domain is the mwbW s.

W :Nslice W (395)

i=1

where n . is the number of slices. Consequently, althougleanventional MRI

slice
this pulse sequence only produces 2D images, ionioigeneous case it yields 3D

images.

The phase encoding gradient field’s magnitude igedafrom measurement to

measurement to obtain linearly independent measmtsmn The variation of the

magnitude is chosen properly to prevent aliasingthe images. Although the
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duration of the phase encoding gradient can beethasbitrarily, it is customary to

acq

chose it

The frequency encoding is applied two times in ghidse sequence. These two
frequency encoding gradient fields are appliedrioode spatial information in the

frequency encoding direction. The second one idiepdor T, duration. The

magnitude of the frequency encoding gradient carchiesen arbitrarily; but the

magnitude of it directly effects the duration afrsal detectionT, .. Consequently, it

should neither be too small nor too large.

In Figure 3.3, after acquiring the signal anoth&rgrilse is shown to signify that the

pulse sequence is repeated.

The time at which the maximum amplitude of signatws is known as “Echo

Time”, Tg. The duration that the spin system is let to réfa®ugh the initial state is

known as “Relaxation Time'Ty.

Certain instants of the time axis are labeled guFe 3.3.t; is the instant at which

the sequence starts with the application%fRF pulset; represents the end d%

RF pulse and the start of application of phase @&ingoand frequency encoding
gradients. The duration betwegnandt, is:
Tre =t~ 1o (3.96)

At t, gradients fields are closed. Consequently, thatour betweert; andt, is:

.
=t -y (3.97)
2

The middle of p pulse is att;. The p pulse is applied so that the middle of it is at

-%E. Consequentlyt; is equal to-%E. At t, the signal acquisition and frequency
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encoding start at the same tintg. is the end of signal acquisition and frequency
encoding. Consequently, the duration betwgeandt; is :

Tacq =6 = L (3.98)
At t; the maximum amplitude of the signal is obtaindis equal toTg. At t, the

current step of the pulse sequence is finishedtla@dext step starts. The duration

betweent, andt, is given by:

To be able to use this pulse sequerie, Tz, Grrg, DGpe, |B| and T, should

be determined.

Tz and Ty can be chosen so that the image is weighted Witbr T,. However,
since the aim of the reconstruction algorithmaiind M©, it is more suitable to
chooseTg aroundT,, and Tk larger thanT; so that in the image neithel; nor T,

is weighted.

Grro should be determined before the pulse sequenceppied. In the

homogeneous magnetic fields case, since this emgodhanges the frequency
content of the signal, the sampling duration ofslymal should be chosen according
to it. Sampling duration is determined by the datmuisition hardware of the

system. For known sampling duratio@gr, can be calculated by:

2p
Giro £E—— 3.100
FRQ ”,ﬂth ( )
where W, . is the width of object in frequency encoding dileec and Dt is the

sampling duration. This condition also satisfies Myquist criteria, when it is given

in the form:

e P (3.101)
Q\Nfrq G\ZRQ

for known Ggrq.
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Since the size of the image is determined priorcadlecting data, for a fixed

sampling durationT,

Yacq

Dt (3.102)

can be determined using:

Tog =N

frq

where N, _is the number of samples (the size of image inueegy encoding

frq

direction).

However, in inhomogeneous case the frequency cbufethe signal is not only

determined by the frequency encoding gradient, dsd from the width of the

inhomogneity ofB,. Therefore, in this case, (3.98) should be writien

D22 (3.103)
2Dw,

where D, is the half of frequency bandwidth of the sign@he frequency

bandwidth of the signal is:
20w, =g(max([B, (%) + Brg(R)) - min| B(H + Bag(H]))  (3.209)
for the points previously determined by RF pulaadwidth in (3.93)XTW , where

Bero IS the magnetic field of frequency encoding gratie

As stated previously, phase encoding gradientesl &g obtain linearly independent
solutions. Each step of the phase encoding grasliemgnitude should be chosen
carefully to obtain linearly independent measuretsiem conventional MRI, the
linearly independent measurements are guarantedtieb)Wyquist criteria. By the
Nyquist criteria, the phase introduced to spinshie spin system is at mo&p in

each measurement. Consequently, this conditiobeamritten as:

DG, £ 2 (3.105)
gvvpeTPE

where W, is the width of object in the phase encoding dicecand T is the

phase encoding duration. In MRI in inhomogeneougmetc fields, the same

condition is used.
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3.3.2. Generation Of Magnetic Fields

There are five magnetic fields required by the $atmr and the reconstruction

algorithm, By, By, B-rq, Bpg and B,.

The main magnetic fieldB,, is the magnetic field generated by the permanent

magnet arrangement obtained in Chapter 2. The maignetic field is used as a

reference in the generation of other magnetic sield

The RF field, B, is generated perpendicular By at all points in the object being

imaged. To obtain a perpendicular fields, is represented in spherical coordinates

by calculatingg and 7 angles using (3.41). These angles are used icallcalation

of transformation given in (3.42). In this represgion, B, has onlyf component.

Since B, should be in the form given in (3.13) and showdkrpendicular t@,, a

vector in spherical coordinates is created as :

B, cos(yst)
Bl,spheric(t) - Bﬂ =H81H B Sin(er t) (3.106)
Bl,r 0

Then, B, in the global frame is found using:

Bl = TsTphericB.L, spherit (3-107)

The magnitude oB; is determined prior to these operations.

Similarly, B, is created using the same procedure.

B, = Ts1;_)heric (3.108)

osl‘la sl‘la
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Gradient fields are assumed to have homogeneoestidim distribution throughout
the object being imaged. Therefore, they are cdeatéhe global frame as:

0
Bero= O (3.109)
0
Boc= O (3.110)
Gpe Y

where the frequency encoding gradient's magnitualées linearly inx direction

and the phase encoding gradient’s magnitude vérearly in y direction. These

gradient fields can be used in regions where thgnmade of the magnetic field is
much larger than magnitudes of gradient fieldgheregions where this assumption

is valid, gradient fields’ effective component s the direction ofB,. Therefore,

gradient fields are modified using this fact.

T

Brro = —— Brro (3.111)
|8l
T
Boe =20 B (3.112)
Y

3.3.3. MRI Simulator In Inhomogeneous Magnetic Figs$

The constructed MRI simulator in inhomogeneous me#grfields makes use of the
magnetic fields generated and the pulse sequersceiloled previously.

The objects being imaged are created in the sioul@he objects being created are

composed of N,” N,” N, voxels. Ng, T, and T, distributions are created

randomly so that each slice of the object formwipresly defined shapes.

The magnetic fields are created in each voxel efoibject. The main magnetic field,
By, is created using the obtained magnet arrangeme@hapter 2. Each unit

magnet in the arrangement has a side lengiicof and a height oBcm. Then, the
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magnetic field is calculated using (2.42). Afteeating main magnetic field, other

magnetic fields are created as described in thaqare section.

Since measured signals from any MRI device areirmootis, an appropriate discrete
representation of these signals should be usedsWed signal is a band limited RF
signal modulated with a sinusoid with center fregpyeof bandwidth. To be able to
represent this signal appropriately, at least tam@es of the highest frequency
component of the signal is needed. This conditemmbe expressed as:

1

2gmax|8)

where Dt, is the sampling duration. Moreover, any continuaignal in the

Dt, £ (3.113)

simulator is represented in discrete time by thesehDt, .

In Figure 3.5, the simulator is given in pseudoectmm.

Get user Inputs

Initialize

While k £ Number of Slices
Find K" Slice
Slice Initialize
While jE Number of phase encodings

Apply% RF pulse

Apply Phase encoding gradient
Waitfor T, duration (Free relaxatio
Applyp RF pulse
Wait for T, duration (Free releian)
Acquire and Save the Signal
Wait for T; duration (Free relai@n)
jt++
end
K++

end
Figure 3.5: Simulator in pseudo code
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In Get wuser Input part, the simulator expects the user to define
IB|:|B.|-Grro:Te Tr: the number of phase encoding steps, the number of

frequency encodings, the size of the object in seompixels and the magnetic field
distribution in FOV.

In Initialize part, main magnetic field is loaded; the objedhemaged is created,;

other magnetic fields are created referencing tannmagnetic field and are
represented in the local reference frame as destrifter that,M° is calculated
using equation (3.4). Using, distribution and the number of slices enteredhsy t

user, RF field’s bandwidth and center frequencrescalculated. After that, (3.113)
is used to calculate the sampling duration for reigc time signal representation.
After converting all of the vectors in local refece frame, they are considered as

represented in the rotating frame of reference déisd conventional MRI.

In Find k™ Slicepart, equation (3.94) is used to find the cursdicke voxels.

In Slice Initializepart, using (3.92) g, using (3.102)T,.,and using (3.105PG.

are calculated. Afterwards, the steps of the phaseoding field’s magnitude
derivative with respect to the phase encoding toedor each phase encoding are

generated.

% RF pulse is applied using the matrix representatib this operation given in

(3.31). Although equation (3.31) is only valid f@RF field inc} direction of local
reference frame, it is easy to extend it for RdBan other directions. In this work,
RF field is assumed to be rfn direction, although the simulator can handle F¥lg
in other directions. The matrix representing RHdfiapplication is created for all
voxels in the current slice, and magnetization meof each voxel is multiplied with

a corresponding matrix.
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Phase encoding is applied for both phase encodedjent and frequency encoding
gradient for the same duration at the same timea Asatrix representation of the

T
phase encoding operation, (3.34), is used. Sifige is defined to be%, for

constant gradient field the phase angle introdigegradient fields are:

£(X) =9 |Brro() + BPE(—x)HT"";“ (3.114)

The phase angles calculated using (3.114) are taserkate matrices of the phase
encoding in (3.34) for each voxel in the currentcesl Similar to RF pulse
application, the matrix of each voxel is multipliedth the magnetization vector of

the same voxel.

Between the phase encoding gndRF pulse application the spin system is left for
relaxation. The matrix representation of the refi@xais given in (3.36). The matrix
representations of the phase encoding and RF agiplicoperations do not contain
any relaxation terms. Since the matrix represaatif free relaxation is composed
of two diagonal matrices, it commutes with any mmxatrConsequently, the
relaxations during phase encoding and RF fieldiegigbn can be concatenated with
free relaxation period. Hencg,, is:
-Te

2

For this period, the half ofp RF pulse duration is covered. Similar to other

Tua (3.115)

operations, this operation is performed for allr@f voxels in the slice.

The application ofp RF pulse is the same Wifg} pulse. After that, the spin system

is relaxed for T,, duration. This time relaxation duration is:

_Te  Tag

T, 3.116
w2 2 2 ( )

Signal acquisition part of the simulator is summediin Figure 3.6.
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While i £ SampleNo
Apply frequency encoding gradient for, t duratio
Relax forD § duration
Convert the magnetizations from lbitame to global rotating fran
Convert the magnetizatiorrsin rotating frame to static frame
Calculate derivative of magnetizations usingdBlequation
Calculate the voltage induced
Store the result of'i sample
i++

end

Save the resultant signal

Figure 3.6: Signal acquisition phase of the sinmulat

Application of the frequency encoding gradient @& different than the application
of the phase encoding gradient. Consequently,rdgpiéncy encoding is applied for

Dt, duration using the matrix representation of thagehencoding. The phase angle
introduced by the frequency encoding is given by:

£(%) =9 [Bero(¥)] Pl (3117)
After that, the system is relaxed f@t, duration as explained above. To be able to

calculate the voltage induced on the receiver ¢b#é, magnetization vector in each
voxel of slice should be represented in the glak&rence frame. To be able to
obtain magnetization vector in the global framestfiit should be converted to the
global rotating frame, then to the inertial glob@me. The conversion to the global
rotating frame is done by multiplying the magnei@a vectors of each voxel with

T
spheric

matrix (in (3.42)) of the same voxel. Similarlpetconversion to the inertial
frame is done by multiplying the obtained magnetmain the rotating frame by

TrIt (t) matrix at time instant given by:

Tacq

S D, (3.118)

t:TE-
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After that, the derivative of the magnetization teean the global inertial frame is
calculated using the Bloch equation, (3.8). Aftaicalating the derivative of
magnetization, the discrete form of (3.37) (given3.119)) is used to calculate the
voltage induced at the receiver coill.

. dM (X%, t)
VI[i] =- x__ VP 7
[i] p_le( Xp) &

(3.119)
t=ilt,

The procedure is repeated for all of the sampleg,in. The number of samples can

be calculated using:

SampleNe= round—=2 Sth (3.120)

a
After collecting all the samples, the obtained agé signal is stored to be used in the

reconstruction algorithm.

After acquiring the voltage induced, the simulat@its for the relaxation of spins to
the initial state forT,; duration. This duration is given by:

Tacq

2

Then, the same pulse sequence operations areedgentll of the phase encodings.

Twg =T - Tg-

(3.121)

The whole procedure is repeated for the total nurabslices.

3.3.4. MRI In Inhomogeneous Magnetic Fields Implem&tion

The same pulse sequence is implemented for magestimance in inhomogeneous
magnetic fields. The same magnetic fields are ussd in the simulator
implementation. The procedure is summarized agaduscode in Figure 3.7.

In Get user Inputpart in Figure 3.7, the simulator expects the usedefine
I8 |B): Grro: Te: Tr: T+ . the number of phase encoding steps, the number
of frequency encodings and the path of magnetikd fokstribution in FOV. The
relaxation time constantd; and T,, are just the estimated ones since the exact

distribution is not known.
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In Initialize part in Figure 3.7, main magnetic field is loade®l other magnetic

fields are created referencing to the main magrdid as in the simulator. Using
B, distribution and the number of slices entered®y user, RF field’s bandwidth

and center frequencies are calculated. After tttad, sampling duration for the
discrete time signal representation is used dsarsimulator.

Get user Inputs
Initialize
While k £ Number of Slices
Find K" Slice
Slice Initialize
While jE Number of phase encodings

Find transformation matrix f% RF puls@kgation

Fird transformation matrix for phase encoding
Find transformation matrix farefe relaxation for J; duratig
Find transformation matrix for ~ RF pulsebgation

Find transformatin matrix for free relaxation for,J;  duren

Acquire and Save the transformation frofh M

Find transformation matrix farefe relaxation for J; duratig

j++
end
k++

end

Figure 3.7: Pseudo code of MR in
inhomogeneous magnetic fields

In Find k™ Slicepart, equation (3.94) is used to find the cursice voxels.

In Slice Initializepart, T, Toeqand DG, are calculated. Afterwards, the steps of

the phase encoding field’s magnitude derivativehwéspect to the phase encoding
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direction for each phase encoding are generatddr Afat, the initial state transition
matrices for each voxel are created. The initiatestransition matrices are identity
matrices. Then, free relaxation durations are ¢aled. In this case, pulse sequence
operations contain relaxation terms. Consequerglgixation times are given by:

_Te ﬁ_ 3Tre
2 2 2

(3.122)

T
Te =Tr- Te- ‘;’q

Since the RF pulses yields time varyidgin (3.57), the transition matrices for RF
pulses are calculated using Runge-Kutta (4, 5)rahgo. This algorithm is provided
by MATLAB and is not implemented in this work. Agstribed previously, to find

the state transition matrix from° to M (t), equation (3.72) is solved three times

for the assignment of each unit vector ofas M °.

The state transition matricess (X; T+ {;,0), of % RF pulse are found as

described above. This pulse is assumed to be dpglig.

Gradient fields are assumed to be time invariatiii;iwork. Therefore, after turning
on these fields A in (3.57) is time invariant. Consequently, equat{8.71) is used

to find the state transition matrix after the apglion of gradient fields.

Between the phase encoding gndRF pulse application the spin system is left for
relaxation. In this duration no input is applied.dther words,A is time invariant

and equal toA,. Consequently, again (3.71) is used to find dtagetransition matrix

after the relaxation duratioi,, .

The state transition matrix after the applicatibnpoRF pulse is calculated with the
same procedure used% RF pulse. While calculating the state transiticaitnoes

after p pulse, the magnitude of RF field is doubled togk#ee duration constant.
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After p pulse, the spin system is relaxed f§f, duration. The state transition

matrix afterT,, is calculated using the same procedure as inrthaqus relaxation.

Calculation of S matrix in equation (3.83) is sunnized in Figure 3.8.

While i £ SampleNo
Calculate the state transition matsing (3.60
Calculatd= [ijusing (3.76)
Form " row ofS matrix fronF" [1]
i+ +

end

Save the resultant matri

Figure 3.8:Smatrix calculation steps

The state transition matrix is calculated using lsmaration approximation. This
assumption is valid since tig&matrix is calculated fobt, duration. F[i] is defined
in (3.77), but its components are calculated ug®g6). Then, theS matrix is
formed as in (3.82); i.6™" row of theS matrix is formed byF T [i] . All rows of theS

matrix is filled with FT and resultant matrix is saved to be used in thenstruction

algorithm.

After creating theS matrix, the spin system is relaxed fMy; duration. This duration

is very large compared to other intervals. Conseftijye large duration
approximation holds and the state transition magixalculated using (3.59). The

inverse of matrixA, which is equal tody, is calculated using the facts proven in the

theory part.

Then, the same pulse sequence operations are edfdeatthe total number of the

phase encodings. The whole procedure is repeatedl faf the slices.
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3.3.5. Image Reconstruction Technique Implementatio

The image reconstruction technique is a procedorsotve equation (3.87). The
steepest descent algorithm is used to solve thenization problem defined in the
theory part. The steps of the steepest descentithlgoare summarized in Figure
3.9.

=b-Ax
While i £ iterNo
(e

rr AT
Xa =% taf
F=Db-Ax

end

a; =

Figure 3.9: The steepest descent
algorithm

The steps of the reconstruction algorithm are sunze in Figure 3.10. In the

initialization part, the variables used in the aithon are initialized. For each slice,
W and By(%;), % TW, are loaded.By(X) is used to calculate the demodulator's
frequency and cutoff frequency of the low pasefilAfter that, jth phase encoding

of k™ slice data is loaded both from simulator and MRnimomogeneous magnetic
field parts. Then, both signals are demodulatedguthe procedure described in the

theory part. After that, the steepest descent ghgoris performed using, as the
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initial solution for previously defined steps. Tbitained solution of thg™ phase

encoding is used as the initial solution of theepest descent algorithm @f +1)"
phase encoding. After covering all of the phaseodimgs, the obtained solution is

inserted into the appropriate componentsi\b?(ij). The procedure is repeated for

all slices.

Initialize
While k £ Number of Slices

Load K" slice data

X =0

While jE Number of phase encodings
LoadS matrix of X slice'd"j phase encoding
Load signal data of'k slice® phase encodiny,
Demodulat§ and and obtgén avid
Perform the steepest descenbratigm for X, and obtain
X=X
jt++

end

k++

end

Figure 3.10: Pseudo code of the image
reconstruction technique

3.4. Results

In this section, obtained results are shown. Hing,results of the simulator and the
image reconstruction technique are shown for homegas magnetic fields case.
These results are shown to validate the theoryldped. Second, the results of both
the simulator and the image reconstruction techaigu inhomogeneous magnetic

fields are shown.
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3.4.1. Results Of Homogeneous Magnetic Fields Case

The constructed simulator and MR in inhomogeneoagmatic fields theory is
tested using homogeneous magnetic fields. Homogsnaagnetic field distribution
can be thought as a special case of the inhomogsneistribution of magnetic
fields. Moreover, the use of homogeneous magnegidsf as a test case provides a
basis to compare the performance of the image staation technique with the
conventional inverse Fourier technique.

The input parameters are chosen as shown in Tahle 3

Table 3.1: The chosen input values

Slice No =1 N, illmm ) HBoHZO-lT

Number of Phase Encoding = 1Ny =Himm | Te :5ms HBIH =1mT

Number of sampled\,, )=11 N, =imm | T =58 8 l=1T
dv = 1mnt &=

The object being imaged is created as a squaretageshown in Figure 3.11.
For the object shown in Figure 3.11, relaxatioreticonstants are chosen as:

T, =1s
T, =100ms

M® is calculated using the equation (3.4). The mageitdistribution of initial the

magnetizationHM OH Is shown in Figure 3.12
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The distributions of the gradient magnetic fieldsagnitude are shown in Figures
3.13 and 3.14. Although the magnitude of the phaseoding gradient is varied
during the evaluation of the pulse sequence, Fi@ui8 is given for unity phase

encoding gradient’s magnitude derivative.

1/Bpel/2distribution
1 L i
2 L i
3l | 10.008
4! i
5 | 10.006
> 6f 1
7t 1 | 10.004
8 L i
9 | 10.002
10} 1
11} 1
T ————— 0
1 2 3 4 5 6 7 8 9 10 11
X
Figure 3.13|B, | distribution
l/Bfrql/zdistribution x 10°
1 L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i
2 L i
3l | 10.8
4! i
51 i 10.6
> 6 ]
77 1 q04
8 L i
9 | 10.2
10} 1
11} 1
0

1 2 3 4 5 6 7 8 9 10 11

Figure 3.14>§“ BFRQ” distribution
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The reconstructed image using inverse Fourier igalens given in Figure 3.15.

e
= O

© 00 N oo o b~ WDN PP

Reconstructed image using inverse Fourier approach

x 10

1.5

0.5

1 2 3 4 5 6 7 8 9 10 11
X

Figure 3.15: The reconstructed image using invE@eier technique

The reconstructed image using the developed teaanggshown in Figure 3.16.

Reconstructed image using the developed reconstruction technique 5 10

e
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1—‘
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14
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1 2 3 4 5 6 7 8 9 10 11
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Figure 3.16: The reconstructed image using develtgehnique
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The error of reconstructed image with respectﬂlﬂ)ou distribution is calculated

using:

(Re{x |- Im°el)”

err(x,) = > ,p=1..P (3.123)
UGy

whereX , =HM O(YIO)Hr is the calculated magnitude M° at the p™ pixel of image;
HMO(Yp)H is the magnitude ofVi® at p" pixel of object being imaged. The

calculated magnitude d¥1° is in the modulus due to the fact that the recantbn

algorithm outputs complex numbers. The formulans/ walid for voxels at which

spins exist, i.e.,HM 0(XID)H is nonzero.

Similarly, the conventional image reconstructiooht@ique also aims to reconstruct

the magnitude oM ° distribution. Consequently, the same error fornuala be used
to find the error distribution in the image which feconstructed using inverse

Fourier technique.

In Figures 3.17 and 3.18, the error distributiohsegonstructed images are given for
the developed technique and the inverse Fouriéntque, respectively.

The error performance of the developed techniqueetter than the Fourier based
image reconstruction technique. This is due tofélee that the developed technique
Is iterative. When an iterative technique converggeshe solution, reconstruction
error decreases. Due to this fact, the same setat#, with an initial solution
obtained from previous sets of data, is used farentlean one time in the procedure.
Using this fact, the reconstruction technique haesnbrun three times with the same
set of data to obtain the image shown in Figuré.3.1
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Figure 3.17: Error distribution of the image
reconstructed with the developed technique
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Figure 3.17: Error distribution of the image
reconstructed with the developed technique
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To investigate the noise performance of the tealmighe developed technique is
tested with noisy data. Zero mean Gaussian whitgerie added to the measurement
vector, V , to create a noisy data. In Figures 3.18 and 3ii§jnal measurement
vector and noise added measurement vector for tlasepencoding are shown,
respectively. The noisy measurement shown in Figui® has a signal to noise
ration (SNR) of 10 dB.

White Gaussian noise has a constant power speetnaity function. In other words,
it contains all of the frequencies. Consequentlgces the added noise is white
Gaussian noise, low pass filter in the demodulator not completely remove the
noise from the measurement, but it increases the. NFigures 3.20 and 3.21, the
output of the demodulator for the original measwretrand the noisy measurement
are shown, respectively.

-6
x 10 Measurement vector
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Figure 3.18: Noiseless measurement vector
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Noisy measurement vector

x 10°

i

|

|

|

[ T = h

| | = | |

| | =— | |

| | — | |
\\\\\\ i R e

| | = | |

| | = | |

| | — | |
\\\\\\ e 2 e——_—snG

| | —— | |

| | = | |

| | =——— | |
\\\\\\ [ T

| | — | |

| | =——— | |

| | — | |

1 1 ——— 1 1

N — o — N ™

0 4000 5000 6000 7000 8000 900010000

1000 2000 3

00

sample No

Figure 3.19: Noisy measurement vector
SNR =10 dB

Demodulated measurement
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Figure 3.20: Demodulated noiseless measuremengrvect
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x 10° Demodulated noisy measurement
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Figure 3.21: Demodulated noisy measurement vector

All of the measurement vectors for all phase enuwgsgliare exposed to noise and
SNR value is kept constant at 10 dB. The reconsdutnage using the developed
techniqgue and the inverse Fourier technique isngive Figures 3.22 and 3.23,

respectively.
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Reconstructed image with noisy data x 10°

114

2,
112
4 110
> 6 18
16

8,
14
10+ 1 L 12

2 4 6 8 10
X

Figure 3.22: The image reconstructed with the dwpesd
technigue using noisy data
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Figure 3.23: The image reconstructed with the iser
Fourier technique using noisy data

Figure 3.22 shows that the developed techniquess sensitive to noise than the

conventional inverse Fourier technique.
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Although obtained results are encouraging for thkeomogeneous case, before
proceeding to inhomogeneous magnetic fields casegnstruction of images of
some other objects is required. The first objelsbva in Figure 3.24, is known as

the Shepp-Logan phantom.

For the chosen input values, given in Table 3.k image of the object is

reconstructed with the developed technique. Thgéemsishown in Figure 3.25.

The Shepp-Logan phantom

10+ B

2 4 6 8 10
X

Figure 3.24: The Shepp-Logan phantom
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Image of the Shepp-Logan Phantom

10+ 8

2 4 6 8 10

X
Figure 3.25: The reconstructed image of the Shepyah
phantom

Another object that is used for tests is shown FEd2126. The reconstructed image

of the object shown above is shown in Figure 3.27.
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10

10}

The strips object

Figure 3.26: An object of strips

Reconstructed image X 10'6

Figure 3.27: The reconstructed image of the object
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The results obtained are satisfactory and showssthiegadeveloped technique can
reconstruct images as good as the conventionalnicped does. Moreover, its
performance for noisy data is better than the wswerFourier technique.

Consequently, the technique can be used in MRihprmogeneous magnetic fields.

3.4.2. Results of Inhomogeneous Magnetic Fields €as

In this part, the performance of the developed naagonstruction technique under

inhomogeneous magnetic fields is demonstrated éygoting the obtained results.

The main magnetic field is calculated for the mageicture obtained in Chapter 2.
The dimensions of side length and height of unigneds have not been defined. The
magnetization strengthl,, of the unit magnets has been takeras To calculate
a realistic magnetic field distribution, the sidength, a, the height, h, and

magnetization strengtiM,, are defined as shown in Table 3.2.

The input parameters are chosen as shown in Tahle 3

Table 3.2: The chosen input values

Slice No=1

Number of Phase Encoding =1 1TE =oms
Number of samples\;, )=11 Ta =58

N, =11mm a=4cm

N, =11Imm HE%H =1imT h=3cm

N, =tmm | [B,] =17 My =22 Arm
dV =1mni ap

The object is placed in the ROI of magnetic fieldcalations. Consequently, the
magnetic field is calculated at each voxel of tigect. The main magnetic field’s
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magnitude distribution is shown in Figure 3.28. Tgradient fields are created as
described in the implementation part. Their magtetdistributions are not the same
with the ones shown in Figures 3.13 and 3.14 duéhé¢ofact that the effective
component of gradient fields are assumed to bdlplta the main magnetic field.
Consequently, according to equations (3.111) and123, the magnitudes of
generated gradient fields are as shown in Figuz3 &nd 3.30.

1/Bol/zdistribution
10.12
2 L
10.11
4 L
10.1
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10t 1 b 10.07
2 4 6 8 10

X
Figure 3.28: The main magnetic field’s magnitudgrdution

As a first test object, the one used in homogenemagnetic fields case is used. The
number of spin distribution is shown in Figure 3.$ince the main magnetic field is
not uniformly distributed through the objed || distribution is different than
number of spins distribution. The initial magnetiaa distribution is shown in
Figure 3.31.
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Figure 3.29: Frequency encoding gradient’s mageitlidtribution
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Figure 3.30: Phase encoding gradient’s magnituskeilolition
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Figure 3.31:\ | distribution of the object being imaged

Since it is not possible to reconstruct imagesihmmogeneous magnetic fields using
inverse Fourier technique, only images reconstduagang the developed technique

are given.
For the parameters given in Table 3.2 and the olgkown in Figure 3.31, the
reconstructed image after one run of the data isetee developed technique is

shown in Figure 3.32.

The error of reconstructed image is calculatedgué3nl23). The error distribution is
shown in Figure 3.33.
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Reconstructed object X 10
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Figure 3.32: The reconstructed image one tour t# sets
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Figure 3.33: The distribution of error

To check the noise performance of the techniquesundisy measurements, again

the measurement vector is imposed to a white Gaugsvise. The power of the
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noise is adjusted so that the SNR is 10 dB. InrégB.34 and 3.35, noiseless and
noisy measurement vectors for the first phase engade shown, respectively.

x 10° Noisless measurement vector
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Figure 3.34: Noiseless measurement vector
x 10° Noisy measurement vector
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Figure 3.35: Noisy measurement vector
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The low pass filter in the demodulator can notfilout the white noise added to
measurements. The demodulator outputs for noiseledsnoisy measurements are

shown in Figures 3.36 and 3.37, respectively.

A/ [n]vs
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Figure 3.36: The demodulator output for noiselesasurements
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Figure 3.37: The demodulator output for noisy mearments
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The reconstructed image using noisy data is shaviAigure 3.38.

Reconstructed image with noisy data x 107
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Figure 3.38: The reconstructed image using noisy da

The error of this image should be calculated witthe whole object. However,
(3.123) should be modified for this purpose.

. 2
(‘Re{ Xe}|- H'\’lO(Xp)H) p=1.P (3.124)
MO, +e

err(x,) =

where e is a very small number (i. = 10") real value of the computer. The error

distribution is shown in Figure 3.39.

The error distribution shown in Figure 3.39 is sdato that the maximum error is

unity. The error distribution of the image in thexels with nonzerd 0|| is shown

in Figure 3.40.
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Figure 3.39: The error distribution of image
reconstructed with noisy data
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Figure 3.40: The error distribution of object irth
voxels where|\ 0| is nonzero
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The Shepp-Logan object is used as an input objéwt. |\ 0| distribution of the

Shepp-Logan object is shown in Figure 3.41. Theomstucted image of this
phantom is shown in Figure 3.42.
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Figure 3.41]|p ©| distribution of the Shepp-Logan phantom
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Figure 3.42: The reconstructed image of the Sheggmh phantom
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The reconstructed Shepp-Logan object has a saale Atthough the image has the

same distribution, thdl\0|| varies from the original object. The error formula
(3.123) is modified so that it can be used in staleages.

(a‘Re{Xp}" HMO(Yp)H)Z ,p=1.P (3.125)
e

err(x,) =

where a is the scale factor between original distributeord reconstructed image.

The error distribution of the Shepp-Logan imagshiswn in Figure 3.42.

Although the reconstruction algorithm was used ram one cycle of the
measurements, its output is satisfactory. On therdband, it is possible to change
the field of view (FOV) by narrowing RF field’s bdwidth. To test this case, the
object shown in Figure 3.11 is used. For this dijeslices are taken and the object
is reconstructed. The center frequencies of RFsti@vn in Figure 3.43. The

reconstructed object is shown in Figure 3.44.
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Figure 3.42: The error distribution of the Shepm&n image
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Figure 3.43: The center frequencies of RF field for
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Figure 3.44: The object reconstructed by usingcesl

When the image size is increased fromriin to 32 mm the |By|, [Bpe| and

HBFRQH distributions are shown in Figures 3.45, 3.46 34d, respectively.
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Figure 3.45]|B, || distribution when the object is 32x&anf
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Figure 3.46|B,¢| distribution when the object is 32x&aht
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Figure 3.47:” BFRQH distribution when the object is 32x&T

The | 9| distribution and the reconstructed image are shiowRigures 3.48 and

3.49.

1M Yedistribution x 107

5l | 17
16

10+ .
15

15+ .
> 7 4
20+ . L 13
251 102
11

30+ :

5 10 15 20 25 30
X

Figure 3.48]|\ | distribution when the object is 32x8anf
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The reconstructed image x 107
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Figure 3.48: The reconstructed image of 32x8&object

As shown in the Figures 3.46 and 3.47, the gradigagnetic field distributions do

not vary uniformly throughout the object. The classMRI model requires uniform

distribution of gradient fields to be able to restnct images. This requirement
arises from the fact that uniform distribution afdient fields guarantee linearly
independent measurements and uniform distributibrfiremuency content of the

acquired data. However, since the developed teakmgconstructs images of initial
magnetization in a least square sense, it is aldaltulate initial magnetization with
small errors. The error distribution of the reconsted image at non-zero initial
magnetization pixels (calculated using equatioldB)) is shown in Figure 3.49.
The error distribution at zero initial magnetizatipixels (calculated using equation
(3.124)) is shown in Figure 3.50. The error digttibn shown in Figure 3.50 is

scaled so that the maximum error is unity.
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The error distribution
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Figure 3.49: The error distribution at non-zerdiaimagnetization
pixels of the reconstructed image of 32xB&fobject

The error distribution
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Figure 3.50: The scaled error distribution at zZartal magnetization
pixels of the reconstructed image of 32xB&fobject
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The obtained results are satisfactory. They sigtinft a new imaging modality has
been developed for MRI in inhomogeneous magnetidsi The performance of the
technique is good enough to reconstruct images fnoeasurements with 10 dB
SNR. Moreover, by making use of the inhomogeneitynain magnetic field it

allows to reconstruct 3D images using two gradiehds.

3.5. Conclusion

In this part of the work, an MRI simulator in inhogeneous magnetic fields is
constructed and an image reconstruction technigmeMRI in inhomogeneous

magnetic fields is developed. For the constructibthe simulator, the conventional
MRI formulation, which has been developed for hoerapus magnetic fields, is
extended to inhomogeneous magnetic fields by defim novel local reference
frame. To be able to reconstruct images under tifleence of inhomogeneous
magnetic fields, a new model of MRI in inhomogereomagnetic fields is

developed. A methodology for reconstructing imagéshe physical parameters,
making use of the developed model, is introducdte ®btained results have been

presented as a proof of the concept.

Magnetic field distributions are generally inhomongeus. Consequently,
homogeneous magnetic fields are just a special chsghomogeneous magnetic
fields. Using this fact, the constructed simulab@as been verified first by using
homogeneous magnetic fields. The images of thectsbjre reconstructed by the
conventional image reconstruction technique udiegrmeasurements obtained from
the simulator. This experiment has been accepted@sof of correct operation of
the simulator. The same magnetic field distribugibiave been used in the developed
model of MRI. The obtained results of the modelnglavith the signals obtained
from the simulator have also been used to recartsimages using the developed
image reconstruction technique. The images reaeectsl using both the
conventional and the developed techniques have bemmpared to investigate the

correctness of both the model developed and thpogexl image reconstruction
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technique. Moreover, performances of the developedie reconstruction technique
and the conventional technique have been companeddisy measurement data.
The obtained results demonstrate that the developade reconstruction technique
and MRI model perform well enough to be used in MRhhomogeneous magnetic
fields.

Although the simulator and the MRI model make ukdifferent approaches, if the
initial magnetization is known by the MRI model,thdhe simulator and the MRI
model would generate the same magnetization disioib at the same time instant of
pulse sequence. The simulator and the MRI modettaes checked using this fact,

during the tests of inhomogeneous magnetic fieisksiblution.

The same objects used in the homogeneous magiedtis £ase have been used for
tests in the inhomogeneous magnetic fields case.rétonstructed images and the
error distribution throughout the image are exleithito demonstrate the capabilities
of the developed image reconstruction techniquerelher, performance of the
reconstruction algorithm is tested for noisy measwents. The obtained results show
that the technique can successfully reconstruaj@sander this condition.

The computation cost of the MRI model is very highbe used in nearly real time
applications. However, it is possible to save thelation between initial
magnetization and measurements for a fixed pulgeesee with fixed parameters to

be used with measurements obtained for differejeiotd

To sum up, the construction of an MRI simulatormhomogeneous magnetic fields
and the development of image reconstruction teclnfgr MRI in inhomogeneous
magnetic fields have been accomplished. The deedlofechnique and the

constructed simulator are both novel.
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CHAPTER 4

CONCLUSION

In this thesis, design of a permanent magnet, oaetgin of an MRI simulator and
development of an image reconstruction techniguenhibomogeneous magnetic

fields have been studied.

The design of a permanent magnet has been corsidera problem of permanent
magnet surface optimization and optimization otplaent of more than one magnet
to obtain a magnetic field distribution with thesded properties. For this purpose,
real coded and binary genetic algorithms and amagdtion routine which does not
require gradient or Hessian of fithess functionenbeen utilized. These algorithms
have been combined to form a method of permanemnetadesign to obtain a
desired magnetic field distribution. For each pdrthe problem, variables of fithess
function that changes the magnetic field distribotihave been determined and
optimized using the methods developed during theskwThe unit magnets in the
“placement of more than one magnet” part of thébjgm have the resultant surface

of the “surface optimization” part.

The task of designing permanent magnet structugasrgting a magnetic field with
the desired properties in a region of interest @asn accomplished. The resultant
magnetic field distribution has been used in tlsstef both the MRI simulator and
the image reconstruction technique in inhomogenetwagnetic fields.

The construction of the simulator is based uponetktension of conventional MRI

formulation to inhomogeneous magnetic fields byirde§ a novel local reference
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frame. To be able to reconstruct images under tifieence of inhomogeneous
magnetic fields, a new model of MRI in inhomogeremagnetic fields has been
developed. A methodology for reconstructing imagéshe physical parameters,

employing of the developed model, is introduced.

The constructed simulator has been verified bygibimmogeneous magnetic fields.
The measurements obtained from the simulator aé tesreconstruct images of the
objects using the conventional image reconstructiechnique. Ability of the

conventional image reconstruction technique tomstact images from the outputs
of the simulator has been accepted as a proof éaooperation of the simulator.
The same magnetic field distributions have beerl usethe developed model of
MRI. The obtained results of the model along witle signals obtained from the
simulator have also been used to reconstruct imagesy the developed image
reconstruction technique. Capabilities of the deped image reconstruction
technique in inhomogeneous magnetic fields haven lweemonstrated. Moreover,
performance of the reconstruction algorithm has nbdested under noisy

measurements.

As future work, one may use the result of the fratt of permanent magnet design
as reference and try to optimize geometries onstinéace which are in elliptic
cylinders shape. This kind of optimization is petdd to converge very fast. For the
second part, one can change the fitness functioabtain different unit magnet

arrangements using the method developed.

In the future, 3D image reconstruction in inhomagmis magnetic fields should be
tested. The simulated MRI system is assumed to tvawegradient coils which is a
drawback for MRI functioning in inhomogeneous magnields. Since the gradient
in the main magnetic field is an asset for lineangependent measurements, the
main magnetic field can be varied by rearrangirsg sburces to obtain linearly
independent measurements. In the future, rearragigewf sources of the main
magnetic field instead of the gradient fields iarpled to be implemented. On the
other hand, all of the tests are performed forRRefield which is orthogonal to the

main magnetic field at all voxels of the object.nSequently, a proper RF coil
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should be designed so that its magnetic field ibigtion is orthogonal to the main
magnetic field.

170



PUBLICATIONS

Publications Prior to M.Sc. Study

[1] H.Yigitler, A.O. Yilmaz and B. M. Eyuboglu, “An Approach teegmetrical
design of Permanent Magnets for Biomedical Appiiret’, Biomed2004, 11
International Biomedical Science and Technology £ a&nkara- Turkey, p.24,
2004.

Publications During M.Sc. Study

[2] H.Yigitler and B. M. Eyuboglu, “Homojen Olmayan Manyetik Almmla
Manyetik Rezonans Goéruntilemgn Kal ¢ M knat s Tasar m ”, Proceedings of
URSI-TURK YE'2006 3 National Congress, Ankara - Turkey, pp.183-185,
2006.

[3] V.E. Arpinar,H.Yigitler and B. M. Eyuboglu, “Homojen Olmayan Manyetik
Alanlarda Manyetik Rezonans Goriintileme SistemidinBoyutlu Uzayda
Numerik Modellemesi”, Proceedings of URSI-TURHKE'2006 3 National
Congress, Ankara - Turkey, pp.186-188, 2006.

171



