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ABSTRACT 

 

PERMANENT MAGNET DESIGN AND IMAGE 

RECONSTRUCTION TECHNIQUE FOR MAGNETIC 

RESONANCE IMAGING IN INHOMOGENEOUS MAGNETIC 

FIELDS 

 

Y��� TLER, Hüseyin 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. B. Murat Eyübo� lu 

 
September 2006, 170 pages 

 
Recently, the use of permanent magnets as magnetic field sources in biomedical applications 

has become widespread. However, usage of permanent magnets in magnetic resonance 

imaging (MRI) is limited due to their inhomogeneous magnetic field distributions. In this 

thesis, shape and geometry optimization of a magnet is performed. Moreover, placement of 

more than one magnet is optimized to obtain desired magnetic field distribution in specific 

region of space. However, obtained magnetic field distribution can not be used in the 

conventional MRI image reconstruction techniques. Consequently, an image reconstruction 

technique for MRI in inhomogeneous magnetic fields is developed. Apart from these, since 

any reconstruction technique requires signal data, an MRI simulator in inhomogeneous 

magnetic fields is constructed as a part of this thesis. Obtained results show that the theory 

developed in this thesis is valid. Consequently, new MRI devices that have permanent 

magnets as magnetic field sources can be constructed in the future. 

 

Keywords: Magnetic Resonance Imaging, MRI in Inhomogeneous Magnetic Fields, 

Permanent Magnet Shape Optimization, MRI Simulator, Image Reconstruction  
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ÖZ 

HETEROJEN MANYET � K ALANLARDA MANYET � K 

REZONANS GÖRÜNTÜLEME � Ç� N KALICI MIKNATIS 

TASARIMI VE GÖRÜNTÜ OLU � TURMA TEKN ���  

GEL�� T� R� LMES�  

 

Y��� TLER, Hüseyin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli � i 

Tez Yöneticisi: Prof. Dr. B. Murat Eyübo� lu 

 
Eylül 2006, 170 sayfa 

 

Son zamanlarda, biyomedikal uygulamalar�nda manyetik alan kayna� � olarak kal�c� 

m�knat�s kullan�m� artm�� t�r. Ancak, manyetik rezonans görüntülemede (MRG) kal�c� 

m�knat�s kullan�m�, m�knat�slar�n heterojen manyetik alanlar�ndan dolay� s�n�rl�d�r. 

Bu tezde, kal�c� m�knat�slar�n � ekil ve geometri eniyilemesi yap�lm�� t�r. Elde edilen 

� ekil ve geometrideki m�knat�slar�n birden fazlas�n�n uzaydaki yerle� imleri de 

eniyilenerek uzay�n belli bir bölgesinde istenilen manyetik alan da� �l�m� elde 

edilmi� tir. Ancak, elde edilen manyetik alan da� �l�m� klinik MRG sistemlerinde 

kullan�lan görüntü olu� turma teknikleri için uygun de� ildir. Bu nedenle, heterojen 

manyetik alanlarda MRG için görüntü olu� turma tekni� i geli� tirilmi � tir. Bununla 

beraber, herhangi bir görüntü olu� turma tekni� i sinyal bilgisini gerektirdi� inden, 

heterojen manyetik alanlarda MRG benzetimi de yine bu tezde yap�lm�� t�r. Elde 

edilen sonuçlar, bu tezde geli� tirilen kuramlar�n do� ru oldu� unu göstermektedir. 

Dolay�s�yla, ileride, geli� tiri len kal�c� m�knat�slar� manyetik alan kayna� � olarak 

kullanan MRG sistemleri geli� tirilebilecektir.   

 

Anahtar Kelimeler: Manyetik Rezonans Görüntüleme, Heterojen Manyetik Alanlarda 

MRG, Kal�c� M�knat�s � ekil Eniyilemesi, MRG benzetimi, Görüntü Olu� turma  
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

1.1. Magnetic Resonance Imaging 

 

Magnetic resonance imaging is a tomographic imaging technique that utilizes the 

response of the spinning atomic particle under influence of static and radio frequency 

magnetic fields in order to form images that are extremely rich in information 

content. 

 

Nuclear magnetic resonance (NMR) phenomenon was first discovered independently 

by Bloch et al [1, 2] and Purcell et al [3] in 1946. This is followed by the discovery 

of the chemical shift which enables the identification of the nuclei in different 

chemical environments. Therefore nuclear magnetic resonance has become a 

powerful tool for chemistry to investigate the structure of the solids and liquids. 

 

The discovery of NMR phenomenon and the discoveries of spectroscopic techniques 

are followed by the discoveries related with imaging the spin distribution in tissues. 

The principle of using gradient fields to spatially encode spin distribution in 

measured spin response was proposed by Lauterbur [4] and by Mansfield and 

Grannell [5] in 1973. The first whole body image is published by Damadian et al [6] 

in 1977. Their pioneering research triggers the development of many other 

discoveries such as the fast imaging methods, T1-T2 contrast imaging etc. 
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1.2. Objective of the study 

 

The proposed imaging techniques for conventional NMR imaging (MRI) systems 

require homogeneous distribution of strong, external, static magnetic field. This 

obligatory requirement arises from the fact that identical spinning frequency 

throughout the object being imaged can be perturbed in a controlled manner easier. 

However, to create homogeneous distribution of strong and static magnetic field 

requires large and expensive coils which restrict the size of object being imaged and 

require high running cost. On the other hand, recently, the usage of high gradient 

magnetic fields for separation and localization has become widespread due to the fact 

that inhomogeneous magnetic field systems have many advantages over the 

commercial resistive or superconductive magnet systems [7]. 

 

The presence of magnetic field gradients allows determination of transverse and 

longitudinal relaxation and translational diffusion which are vital parameters used in 

NMR and MRI systems [7]. The main advantages of high gradient magnetic fields 

over the homogenous magnetic fields are size and cost due to the fact that high 

gradient magnetic fields can be obtained using permanent magnets. Contrary to the 

resistive and superconductive magnets used in commercial systems, permanent 

magnets do not require any running cost, and the size of the magnet is small so that 

the magnetic field source itself can be moved on the object, allowing unlimited 

object size. On the other hand, the usage of permanent magnets is restricted to be 

used in near surface applications due to their high gradient magnetic fields. 

 

Magnetic field distribution of permanent magnets can be altered by changing their 

surfaces. Therefore, the first object of this study is to develop a method to design 

permanent magnets structures.  

 

Since the magnetic field in a region of space satisfies superposition principle for 

linear media, more than one magnet can be used to create desired magnetic field. 

Magnetic field distribution due to more than one magnet can be altered by changing 

positions of magnets. Therefore, the second aim of this study is to develop a method 
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to determine locations of more than one magnet to obtain desired magnetic field 

distribution.   

 

Permanent magnet surface optimization and placement of more than one magnet 

have been studied by researchers. The attempts to obtain desired magnetic field 

distribution are given in introduction section of Chapter 2. 

The use of inhomogeneous magnetic field sources in MRI requires development of 

novel image reconstruction techniques; because conventional techniques require 

homogeneous magnetic field distribution. Since the physical principle behind MRI 

allows usage of high gradient magnetic fields, a different mathematical model of 

MRI system is needed to form images from acquired signals. Since the usage of 

inhomogeneous magnetic field distribution in MRI requires much more complicated 

models, image reconstruction requires high computation cost.  

 

To be able to observe the signal shape and characteristics when the atomic particles 

are under the influence of inhomogeneous magnetic fields in the ideal case, a 

computer simulator should be constructed. However, this requires a relation between 

measured signal and the object being imaged. This relation can be developed by 

extending the conventional MRI formulation using new coordinate system. 

Therefore, the third objective in this study is to develop and construct an MRI 

simulator in inhomogeneous magnetic fields.  

 

Several MRI simulators for educational and research purposes have been 

constructed, so far. These simulators are shortly explained in introduction section of 

Chapter 3. 

 

In this study to be able to construct images from the MRI simulator developed in 

inhomogeneous magnetic fields requires development of new image reconstruction 

techniques. Since any image reconstruction technique requires a mathematical model 

of the system, the fourth aim of this study is to develop a mathematical model of 

MRI in inhomogeneous magnetic fields system. Consequently, the final aim is to 

develop an image reconstruction technique which makes use of the model of the 

system. 
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In literature, it is not possible to find many works which aim to develop a novel 

reconstruction technique for MRI in inhomogeneous magnetic fields. However, there 

are some attempts to correct image artifacts due to magnetic field inhomogeneities. 

The aim to modify the signals obtained in a conventional image reconstruction 

technique. On the other hand, there are some NMR devices constructed using 

permanent magnets as magnetic field sources. Moreover, there have been attempts to 

obtain images using these devices by the conventional image reconstruction 

techniques. Therefore, the main constraint on construction of these devices is to 

obtain magnetic fields as homogeneous as possible. These works are also 

summarized in the introduction section of Chapter 3. 

 

1.3. Outline of the study 

 

As described above, there are five objectives in this study. These five aims can be 

grouped into two; first one is the permanent magnet design (objectives one and two) 

and the second one is the construction of an MRI simulator in inhomogeneous 

magnetic fields (objective three) and the development of an image reconstruction 

technique (objectives four and five).  

 

In Chapter 2, permanent magnet design procedure is described. In its subsections, 

firstly, the motivation behind such a study, objectives and an outline of previous 

works are given. Secondly, the theory of magnetic field calculation is given. Thirdly, 

used methods are introduced. Fourthly, implementation details are given. Lastly, 

obtained results are demonstrated       

 

In Chapter 3, the construction of an MRI simulator in inhomogeneous magnetic 

fields and the development of an image reconstruction technique are described. In its 

subsections, firstly, the motivation behind such a study, objectives and an outline of 

previous works are given. Secondly, theory of the simulator and image 

reconstruction technique are given. Thirdly, implementation details of the simulator 
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and image reconstruction technique are given. Fourthly, obtained results are given 

for both homogeneous and inhomogeneous magnetic field cases are given. 

 

Finally, Chapter 4 is the conclusion chapter. 

 

Since the thesis is divided into two main parts, the references of each part are given 

at the end of each chapter.  

1.4. References 

 

[1]. F. Bloch, “Nuclear induction”, Physical Review, Vol. 70, pp. 460-474, 1946. 

[2]. F. Bloch, W. W. Hansen, and M. Packard, “The nuclear induction experiment”, 

Physical Review, Vol. 70, pp. 474-485, 1946.  

[3]. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear 

magnetic moments in a solid”, Physical Review, Vol. 69, pp. 37-38, 1946. 

[4]. P. C. Lauterbur, “Image formation by induced local interactions - Examples 

employing nuclear magnetic-resonance”, Nature, Vol. 242, pp. 190-191, 1973. 

[5]. P. Mansfield and P. K. Grannell, “NMR 'diffraction' in solids”, Journal of 

Physics C: Solid State Physics, Vol. 6, pp. 422-426, 1973. 

[6]. R. Damadian, M. Goldsmith, and L. Minkoff, “NMR in cancer: XVI. FONAR 

image of the live human body”, Physiological Chemistry and Physics, Vol. 9, 

pp. 97-100, 1977.  

[7]. Gareth P. Hatch, “Magnet design considerations for devices and particles for 

biological high-gradient magnetic separation (HGMS) system”, Journal of 

Magnetism and Magnetic Materials, Vol. 225, pp. 262-276, 2001. 
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CHAPTER 2  

 

 

PERMANENT MAGNET DESIGN 

 

 

 

2.1. Introduction 

 

Magnetic resonance imaging is based on physical phenomenon of nuclear magnetic 

resonance, which is related to magnetic properties of atoms’ nucleus. For 

paramagnetic materials, magnetization of microscopic particles becomes observable 

in macroscopic level only when sufficient number of nuclei is aligned to strong 

external magnetic field [1].  

    

In commercial nuclear magnetic resonance (NMR) and magnetic resonance imaging 

(MRI) systems, large and expensive magnets are used to obtain a highly 

homogeneous magnetic field in order to observe resonance phenomena throughout 

the object being imaged. On the other hand, recently, the use of high gradient 

magnetic fields, for separation and localization, has become widespread due to the 

fact that inhomogeneous magnetic field systems have many advantages over the 

commercial resistive or superconductive magnet systems [7]. 

 

In NMR and MRI systems, magnetic field gradients are an asset for spatial resolution 

[7]. Their presence allows determination of transverse and longitudinal relaxation 

and translational diffusion which are vital parameters used in NMR and MRI 

systems. The main advantages of high gradient magnetic fields over the homogenous 

magnetic fields are size and cost due to the fact that high gradient magnetic fields 

can be obtained using permanent magnets. Contrary to the resistive and 
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superconductive magnets used in commercial systems, permanent magnets do not 

require any running cost, and their sizes are so small that the magnetic field source 

itself can be moved on the object, allowing unlimited object size. Moreover, some 

permanent magnets can produce up to 1.2 T of polarization fields allowing to use 

them in applications which require high magnetic fields. On the other hand, the use 

of permanent magnets is restricted to be used in near surface applications due to their 

highly inhomogeneous magnetic fields.  

 

The magnetic field distribution of permanent magnets is a function of construction 

material, geometry, and initial magnetization of a magnet [2, 3]. Hence, the magnetic 

field distribution can be changed by fine tuning both micro and macro level 

properties of magnet. Since magnetization and magnetic materials are related to 

production of bulk magnet, it is assumed that these parameters are fixed and leave 

them out of scope of this work. Another important reason to leave these parameters 

out of scope of this work is due to the fact that it is not possible to reach a unique 

magnetization distribution which generates a specific magnetic field distribution [2]. 

Consequently, in the first part of this work it is aimed to obtain permanent magnet 

geometry which yields desired magnetic field properties.  

 

Geometry optimization of permanent magnets is studied by researchers previously. 

In [7] and [8], it is assumed that the surface of the magnet is flat, and the geometry is 

optimized for the height and the side lengths of the magnet. However, this kind of 

optimization is not adequate to design permanent magnets for NMR and MRI 

applications. Since the magnetic field distribution generated by a permanent magnet 

is not unique, manufacturability becomes the most important constraint. In previous 

works, manufacturability is defined as regularity [9, 10, 11, 12]. In [9], a novel 

method is presented which makes use of finite element method (FEM) to calculate 

magnetic field distribution. Changes in geometry are performed by moving the mesh 

elements under the application of artificial forces. This idea guarantees the continuity 

of surface, and manufacturability is indirectly assured. In [10], the surfaces are 

parameterized using spline functions adaptively, and the number and locations of 

control points are generated automatically to avoid jagged surfaces. In [11], an 

analytical solution of magnetic field of permanent magnets is developed. The surface 



 

 

8 

is described by equipotential lines of scalar potential function, scalar magnetic 

potential. The use of equipotential lines of potential field assures continuity of the 

surface since any equipotential line of a potential function should be continuous. In 

[12], an inverse methodology is followed. From the desired magnetic field 

distribution, they try to obtain a magnet surface which generates the desired 

magnetic field. In that work, analytical solution derived in [11] is used. Scalar 

magnetic potential is calculated from desired magnetic field to obtain the surface.  

 

In the first part of this work it is aimed to design a permanent geometry which can be 

jagged or not to generate a magnetic field with desired properties in some specific 

region of space. Contrary to previous works, manufacturability is not equated to 

continuity of the surface, since some discontinuous surfaces can be manufactured 

easier than continuous ones.  

 

In the second part of this work, placement of more than one permanent magnet with 

surfaces obtained in the first part is tried to be optimized. The placement of more 

than one permanent magnet in space has been studied previously. It is accepted that 

Halbach magnet arrangement is the one that produces homogeneous magnetic field 

distribution [13]. However, these arrangements are developed for 2D problems and 

they produce homogeneous magnetic fields in the interior of closed structures. In 

[14], a Halbach array is designed to produce homogeneous magnetic field inside a 

tube like 3D structure.  

 

In the second part of the study, it is aimed to design an optimum arrangement of 

permanent magnets which does not form a closed surface so that the structure is 

open, produces a magnetic field with desired properties.           

 

Geometry optimization of permanent magnets and placement of more than one 

magnet in space to obtain desired magnetic field distribution problem is very hard to 

solve by standard nonlinear programming algorithms. These algorithms require near 

optimum initial solution, gradient or Hessian matrix of optimization function, a line 

search algorithm, and a nearly convex optimization function.  The most important 

restriction of these algorithms comes from the initial solution requirement. Since it is 
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not possible to predict a near global optimum solution for such problems directly, an 

algorithm which can carry the solution towards the global optimum is needed. In 

fact, evolutionary algorithms like “Genetic Algorithms” which belong to “Weak 

Methods” in Artificial Intelligence community are the best tools to solve these kinds 

of problems [15].  

 

Although genetic algorithms provide a means to get closer to global optimum 

solution, they should not be used to reach global optimum points in a finite number 

of iterations (generations). When it is thought that the solution is close enough to 

global optimum one, a gradient based optimization algorithm should be utilized to 

reach it. In this work, these algorithms are called “Near Global Optimum 

Algorithms”.  

 

In this chapter, a new method to design permanent magnet structures for generation 

of magnetic fields with desired properties is described. Firstly, the theory of 

magnetic field calculations is given. Secondly, details of genetic algorithms and their 

operations and near global optimum algorithms are described. Thirdly, 

implementation details are given. Fourthly, obtained results are demonstrated. 

Finally, this chapter is concluded. 

 

2.2. Theory 

 

In this part, calculation of magnetic field distribution of permanent magnet using 

scalar magnetic potentials is described in detail.  

 

Magnetic field distribution in space can be calculated using two different potentials: 

vector magnetic potentials, and scalar magnetic potentials. Vector magnetic potential 

arises from the fact that magnetic field is solenoidal, i.e., the divergence of magnetic 

induction is 0. Using the identities of vector calculus:  

0BÑ× =
�

      (2.1) 

( ) 0AÑ × Ñ´ =
�

      (2.2) 

B A= Ñ´
��

      (2.3) 
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for any vector field, A
�

 A
�

 is defined as vector magnetic potential [6].  

The definition implies that, magnetic vector potential exists whenever a magnetic 

induction exists.  

 

On the other hand, for current free regions,  

0 0
0

J
B Jm

=
Ñ´ = =�

� �
     (2.4) 

Hence, using the null identity of vector calculus B
�

can be defined as: 

( ) 0mVÑ´ Ñ =       (2.5) 

0 mB Vm= - Ñ
�

      (2.6) 

for any scalar field mV . mV is defined as the scalar magnetic potential [6]. 

 

Since permanent magnets create magnetic field without a current source, magnetic 

scalar potential can be used to calculate magnetic field distribution. General 

formulation of scalar magnetic potential is given in [4]. Here a slightly modified 

version is given. Before giving the formula of the scalar magnetic potential, 

definition of magnetic moment should be made.    

 

Amperé’s theorem states that any current carrying loop can generate a magnetic 

field. Hence, any magnetic material can be considered as a combination of 

infinitesimally small current carrying loops, making these loops being the most 

elementary elements of magnetism [2].  

 

By defining Ids
�

 as dm
�

, dm
�

can be used as the elementary unit of magnetism instead 

of infinitesimally small current loop:  

dm Ids=
� �

      (2.7) 

This term is defined as the magnetic dipole moment [2]. 

 

Magnetic induction at any point in the space due to a current carrying loop can be 

found using Biot-Savart law; 

0
3( )

4
R

dB Idl
R

m
p

= ´

�
��

     (2.8) 

where R
�

is defined as distance vector; 
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'R r r= -
� � �

      (2.9) 

where 'r
�

is the position vector of source points, and r
�

 is the position vector of field 

points.   

Hence, the change in scalar vector potential, mV , described by (2.6), when the field 

point is moved by an amount of dd
�

, the change in scalar magnetic potential is given 

by; 

3
0

1 ( )

4
m

d dl R
V B d I

R

d
d

m p

× ´
D = - × = - �

� � �
��

��   (2.10) 

The same change in potential should be observed when the field point is fixed and 

the source point is displaced by an amount of -dd
�

. The area swept by such a 

displacement is: 

( )ds d dld= - ´
� ��

     (2.11) 

 

Subtended solid angle by area ds
�

is given by: 

1
( )

s

ds
R

W = - Ñ ×�
�

�      (2.12) 

3

1
( )

R
R R

Ñ = -

�

     (2.13) 

3 3

( ) ( )R d dl d dl R
d

R R

d d× ´ × ´
W = - = -

� � � �� �

  (2.14) 

Substituting (2.14) in (2.10) yields: 

3 44
m

ds R I
V I d

R pp

×
D = = W

��

�     (2.15) 

Using (2.15) and (2.7): 

3
4

m
S

dm R
V

Rp

×
= �

��

�      (2.16) 

The detailed version of derivations can be found in [4].     

 

In macroscopic level, magnetic dipole moments can not be observed but magnetic 

intensity can be observed. Magnetic intensity is defined as: 
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m
M

V
=

��
      (2.17) 

where M
�

is magnetic intensity, m
�

is magnetic dipole moment, and V is the volume 

where magnetic dipole moments are distributed. Using this definition m
�

 can be 

written as: 

dm MdV=
��

      (2.18) 

Substituting (2.18) into (2.16) and using (2.13) yields: 

3

1 1
( )

44
m

V V

M R
V dV M dV

RR pp

×
= = - ×Ñ� �

� �
�

��   (2.19) 

Using the vector identity: 

1 1
( ) ( )

M
M M

R R R
Ñ = ×Ñ + Ñ ×

�
� �

� � �    (2.20) 

and the divergence theorem, mV turns out to be: 

1
( )

4m
V V

M M
V dV dV

R Rp

� �Ñ ×� �= - Ñ × -
� �� �
� �

� �

� �   (2.21) 

1
4m

S V

M M
V ds dV

R Rp

� �Ñ ×� �= - × -
� �� �
� �

� �
�

� �    (2.22) 

The magnetic field distribution can be calculated using (2.22) and (2.6). 

 

To be able to say that any function is a scalar magnetic potential, uniqueness of 

scalar magnetic potential in terms of its formulation, (i.e., equation (2.22)), and 

boundary conditions should be shown. 

 

Boundary conditions of scalar magnetic potential are derived from ordinary 

magnetostatic boundary conditions. Therefore, a relationship between magnetic 

induction, B
�

, and magnetic field, H
�

, in whole space (inside and outside of the 

magnet) should be defined. Interior of ferromagnetic body contains some aligned 

dipole moments, which contributes to the exterior magnet field, H
�

. This fact is 

represented by relation: 

( )B H Mm= +
� � �

     (2.23) 

Outside the magnetic medium M
�

 is 0 and (2.23) becomes:  
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0B Hm=
� �

      (2.24) 

Then, generally scalar magnetic potential is written as: 

mH V= -Ñ
�

      (2.25) 

to make the definition valid inside the ferromagnetic body. Then, using divergence 

free nature ofB
�

: 

( ) 0B M HmÑ × = Ñ × + =
� � �

    (2.26) 

Inside the magnetic body the differential equation of scalar potential becomes: 

2
mH V M-Ñ× = Ñ = Ñ×

� �
    (2.27) 

Outside the magnetic body: 
2 0mVÑ =       (2.28) 

Using the continuity of tangential component of H
�

and normal component of B
�

, the 

boundary conditions for the scalar magnetic potential are obtained as: 

outinm mV V=       (2.29) 

ˆin outm mV V
M n

n n

¶ ¶
- = ×

¶ ¶

�
    (2.30) 

 

Any function satisfying the equations from (2.27) to (2.30) is a solution of these 

equations and it is unique. Proof of this statement is given in [3]. 

 

To be able to calculate magnetic field from scalar magnetic potential using (2.22), 

some assumptions about magnetic intensity distribution of magnet should be made. 

That follows from the fact that magnetic field is given by: 

1
4 S V

M M
H ds dV

R Rp

� 	Ñ ×
 �= Ñ × -

 �
� 
� �

� �
� �

� �    (2.31) 

If magnetic field intensity is assumed to be uniform inside the volume of permanent 

magnet, volume term in (2.31) can be dropped. Let us assume that magnetic field 

intensity of a permanent magnet is defined as: 

0 ˆzM M e=
�

      (2.32) 

where ˆze  is the direction parallel to the height of magnet and 0M is the magnitude of 

magnetic field intensity. Therefore, using the fact that gradient operator in (2.31) 
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operates on field points, r
�

, whereas the integral operates on source points, 'r
�

, (2.31) 

can be written as: 

1 1 1
4 4S S

M
H ds M ds

R Rp p

� 	 � 	

 � 
 �= Ñ × = Ñ ×

 � 
 �
�  � 
� �

�
� �� �

� �  (2.33) 

Using (2.13), (2.33) can be rewritten as: 

3

1
4 S

R
H M ds

Rp
= - ×�

�
� � �

�     (2.34) 

where R
�

 in terms of coordinates of source point and observation point is defined as:  

ˆ ˆ ˆ( ') ( ') ( ')x y zR x x e y y e z z e= - + - + -
�

  (2.35) 

 

Surface integral in (2.34) operates on the whole surface of the permanent magnet. 

The surface of the permanent magnet is represented as a function ( , )z z x y¢ ¢ ¢ ¢= . 

Since, z¢ may or may not be a continuous function, the function space of surfaces 

can not be restricted. Consequently, a methodology which covers all possible 

surfaces, like spline function parameterization, or finite element meshes should be 

followed.  In this work, finite element meshes are generated. To calculate magnetic 

field superposition principle is used. 

 

Triangular elements are chosen to partition the domain of surface function, z¢. A 

sample of mesh is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

Since the mesh segments of domain is represented by 3 points which are not on the 

same line the equation of the plane passing through these 3 points can be found. This 

Figure 2.1: A sample that shows the elements’ 
projection on domain of surface 
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equation can be used to calculate the value of ( , )z z x y¢ ¢ ¢ ¢= when x¢andy¢are known 

and fixed. This methodology will increase the magnetic field calculation accuracy. 

On the other hand, linear interpolation parameters for triangular mesh segments can 

also be found to calculate surface function value.  

 

To find linear interpolation parameters, a slightly different method which makes use 

of the vector algebra is used. A clearer plot of a mesh element is given in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vectors 0 1P P
�����

 and 0 2P P
�����

 are defined as shown in Figure 2.2, so that any point inside 

the triangle can be expressed as a linear combination of these vectors as shown in 

Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

P2 

P0 P1 

Figure 2.2: A triangular element with 
edge points specified 

 P 

P2 

P0 P1 

t 0 1P P
�����

 

s 0 2P P
�����

 
Figure 2.3: Representation of any point inside the 

element as linear combination of 0 1P P
���

 and 0 2P P
���
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Since P is restricted to be inside the triangle, s and t can not take every value. They 

are restricted to satisfy: 

0 1s t£ + £       (2.36) 

Then 0P P
����

can be written as: 

0 0 1 0 2P P t P P s P P= × + ×
���� ����� �����

     (2.37) 

 

For the problem at hand, x¢andy¢are assumed to be known for every point, P, inside 

the triangle. z¢ value of P is given by: 

0 1 0 2 0( ) ( )z z t z z s z z¢ ¢ ¢ ¢ ¢ ¢= + × - + × -    (2.38) 

s and t are found from equations of x¢andy¢, by solving 2 equations with 2 

unknowns: 

0 1 0 2 0( ) ( )x x t x x s x x¢ ¢ ¢ ¢ ¢ ¢= + × - + × -    (2.39) 

0 1 0 2 0( ) ( )y y t y y s y y¢ ¢ ¢ ¢ ¢ ¢= + × - + × -    (2.40) 

 

Area of a surface element in a mesh is given by:  

( )0 1 0 2

1
2

ds P P P P= - ´
��� ����� �����

      (2.41) 

 

The magnetic field due to a source point ( , , )P x y z¢ ¢ ¢at point ( , , )x y z is given by: 

( )
( )3 0 1 0 2

2 2 2 2

0
ˆ ˆ ˆ( ') ( ') ( ')

ˆ( , , )
8

( ') ( ') ( ')

x y z
P zi

x x e y y e z z eM
H x y z e P P P P

x x y y z z
p

- + - + -
= × ´

- + - + -

� ����� �����
 (2.42) 

Using the superposition principle, total magnetic field at point ( , , )x y z is found by 

the vector sum of individual magnetic fields due to source points iP , where 1..i N=  

and N is the number of source points in the whole surface mesh. 

 

2.3. Method 

 

In this section, used algorithms are explained in detail. Firstly, a general description 

of genetic algorithms is given. Secondly, operations of genetic algorithms used in 
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this work are described. Finally, the overall algorithm which is expected to converge 

to near global optimum points is explained. 

 

2.3.1. Genetic Algorithms 

 

Genetic algorithms are a class of optimization (or search) technique inspired from the 

evolutionary biology. These techniques are stochastic in nature, and they simulate 

main concepts of evolutionary biology such as mutation, selection and crossover. 

Consequently, they try to do what nature does to individuals to transform species to 

better ones in the sense of survival [16].  

 

Mathematically genetic algorithms are simulations of a population of abstract 

representations of solutions which aim to evolve to a better solution. Typically, these 

algorithms require two things [17]: 

 1. An abstract representation of a solution,  

 2. A fitness function to evaluate them  

These two requirements are an asset of genetic algorithms, but not enough to 

guarantee an evolution. Evolution of population in genetic algorithms is guaranteed 

by selection, mutation and crossover operations. The first operation is used to inherit 

the solution to the next generation. Mutation and crossover operations are used to 

introduce diversity of a population of solutions. These operations are performed for 

all generations.  

 

A typical genetic algorithm steps are shown in Figure 2.4. The first step of genetic 

algorithms is to define an abstract representation of solutions. This representation of 

solutions is called a “Chromosome”. Chromosomes are nothing but a sequence of 

numbers, which have number of elements equal to the dimension of the solution 

space. Each element of a chromosome is called a “Gene”. Genes can be real 

numbers, floating numbers or binary numbers depending on the representation of 

solutions.  
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define an abstract representation of  solutions

    (form chromosomes)

define a fitness function

generate initial population

evaluate fitness function (population)

i=1

while i maximum iteration number    

   

£

find and hold the elitist chromosome 

         (best solution in the population)

    perform crossover operation

    perform mutation operation

    perform selection for next generation

    evaluate fitness function (population)

    add the elitist chromosome to next generation

    i++

end

Figure 2.4: Genetic algorithm steps 

Fitness function gives a measure of fitness of chromosomes. In other words, it 

assigns a value to the abstract representation of a solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transformation from solution to chromosome is called “Encoding” and 

transformation from chromosome to solution is called “Decoding”. When 

chromosomes are sequences of real numbers the genetic algorithm is called “Real 

Coded Genetic Algorithm”; when the chromosomes are sequences of binary numbers 

the genetic algorithm is called “Binary Coded Genetic Algorithm”. The type of 

encoding is determined according to the problem. In this work, both, binary and real 

coded genetic algorithms are used. 

 

After defining chromosomes and fitness function, the next step is to generate the 

initial population. Initial population is usually constructed randomly. However, 

sometimes some chromosomes with higher fitness are added to it, to be able increase 

the convergence rate of the genetic algorithm. The size of the initial population is 
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defined according to the problem and it is preserved till the end of simulation. After 

creating initial population, the fitness of the population is calculated. To guarantee 

monotonic increase or decrease, the elitist chromosome of the population is stored to 

directly pass it to the next generation.  After that step, genetic algorithm operations 

are repeated.  

 

As in crossover during mitosis in biology two chromosomes come side-by-side, and 

exchange their genes. This structure defines the general nature of crossover 

operation.  At the beginning of the simulation a probability of crossover occurrence 

is defined for a chromosome. The usual procedure, that any crossover follows, 

begins with the determination of chromosomes that will take part in crossover. The 

procedure continues with random selection of two chromosomes among selected 

ones that will exchange their genes. These two chromosomes are called “Parents”. 

After that, a random gene is selected as the binding or breaking point (also called 

“Crossover Point”) after which the parent chromosomes will exchange their genes. 

Finally, the parents exchange the genes and offspring chromosomes are created. 

Whether the parent chromosomes cease to exist or continue to exist depends on the 

problem.  

 

The mutation operation is also an analogue of mutation in genetics. Since the 

mutation in genetics has a variety of forms, in genetic algorithms, this operation is 

not uniquely defined. However, generally, as in crossover operation at the beginning 

of simulation, a probability of mutation is defined. Genes or chromosomes that will 

have mutation operation constitute a set of genes or chromosomes called “Mutation 

Pool”. After that, selected genes or chromosomes are imposed to the indicated 

mutation operation. As in crossover, whether the parent chromosomes cease to exist 

or continue to exist depends on the problem. 

 

Chromosomes for next generation are obtained by applying the selection generation. 

There is a variety of selection procedures, but it is customary to use roulette wheel 

that has slots sized according to fitness values of chromosomes which enter to 

selection mechanism. Then, a shot is made to select a chromosome. This procedure 

of selection is the most frequently used one because of Schema Theorem. This 
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theorem states that   the chromosomes with above average fitness receive 

exponentially increasing trials in subsequent generations of genetic algorithms [16]. 

The details of selection procedure are given in next section. 

 

2.3.2. Genetic Algorithm Operations 

 

As previously stated, in this work, binary coded and real coded genetic algorithms 

are used. The genetic algorithm operations vary according to genetic algorithm type 

and according to problem. In this work, one type of operation has been used for real 

coded genetic algorithms and for binary coded genetic algorithms’ operations one 

type of crossover and three kinds of mutation have been used. Only one type of 

selection operation is used.  

 

2.3.2.1. The Crossover Operation of a Real Coded Genetic Algorithm  

 

The chromosomes in real coded genetic algorithm are sequences of real numbers. 

Therefore, by just exchanging genes of chromosomes does not increase the 

population diversity. Crossover operation of real coded genetic algorithms is 

modified. This modified crossover is known as “Arithmetic Crossover”. In figure 2.5 

arithmetic crossover is shown. In Figure 2.5, X and Y are parents, and Z1 and Z2 are 

offspring. The crossover is performed at the thi gene of the parent chromosomes.  

 

In arithmetic crossover, when the parents are exchanging their genes, genes are 

multiplied with a random number between 0 and 1. This multiplication is performed 

according to rules given below: 

 

 

 

 

 

where a is any random number in the interval [0,1].  

11 1 1

12 2 2

21 1 1

22 2 2

(1 )

(1 )

(1 )

(1 )

Z a X a Y

Z a X a Y

Z a X a Y

Z a X a Y

= × + - ×

= - × + ×

= - × + ×

= × + - ×



 

 

21 

X Y 

X1 

X2 Y2 

Y1 

Z1 Z2 

12Z  

11Z  

22Z  

21Z  

i i i i 

Figure 2.5: Real coded genetic algorithm 

 

 

 

 

 

 

 

However, this multiplication with random number causes the chromosomes to 

converge to an average value of a population as the generations are performed. 

Convergence to average value is prevented by adding boundary chromosomes to 

population. This procedure is known as “Boundary Mutation”, and will be explained 

in real coded mutation section. 

 

An example of real coded genetic algorithm crossover operation is given on the next 

page. 

 

2.3.2.2. The Mutation Operation of a Real Coded Genetic Algorithm  

 

As described previously, mutation operations can operate on genes or chromosomes. 

Since the chromosomes of real coded genetic algorithm are composed of real 

numbers, choosing mutation that operates on chromosomes is more convenient.  
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3 7 9 18

3 18

3

Chromosomes length = 

Select chromosomes for crossover

    selected chromosome set = { , , , }

Select two of  selected chromosomes randomly and remove them from the set

   parents = { , }

1.

   =

N

C C C C

C C

C 18

2 2.2

2.1 1.1

  , =  
2.9 1.9

1.22 1.11

1.45 2.54

Select crossover point 

   crossover point = - 2 

Generate a random number in interval [0,1]

   a = 0.1

Perform the multiplicati

C

N

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� �

1 2

on and form offspring

1.20 2.20 1.20 2.20

2.10 1.10 2.10 1.10
0.1 0.9 0.9 0.1

   O = , O = 
2.90 1.90 2.90

1.22 1.11
0.9 0.1

1.45 2.54

� �� � � � � �
� �� � � � � �

� � � � � �� �× + × × + ×� � � � � �� �� �� � � � � �
� �� � � � � �� � � � � �� �
� �� � � �
� �× + ×� � � �
� �� � � �� �

� � � �

1 2

1.90

1.22 1.11
0.1 0.9

1.45 2.54

2.10 1.30

1.20 2.00

   O =   , O =
2.00 2.80

1.121 1.209

2.431 1.559

 

Continue till the selection 

� �� �
� �� �

� �� �� �� �� �� �
� �� �� �� �
� �� � � �
� �× + ×� � � �
� �� � � �� �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� �

set is empty 

An example of the crossover operation of a real coded genetic algorithm  
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Re×  X R X Y 

+

Figure 2.6: Real coded genetic algorithm mutation operation 

A mutation operation that operates on chromosomes should start with the selection of 

chromosomes that are supposed to undergo a mutation operation. Preceding part of 

mutation procedures is problem dependent. For this problem, mutation has been 

implemented such that a new chromosome with random gene distribution is added to 

the mutating chromosome with some weight. The new chromosome consists of genes 

of real number whose values are between -1 and 1. To prevent extreme boundary 

exceeding of genes, new chromosomes’ genes are multiplied with a number which is 

5% to 10% of original chromosomes’ gene values. In other words, the weight is 

chosen so that it is 5% to 10% of variable’s (the variable which is represented by 

chromosome) interval length of definition. Finally, the genes of the output 

chromosome are checked for boundary exceeding. If a boundary exceeding occurs 

for a gene, that genes value is moved to near boundary. In Figure 2.6, these concepts 

are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 2.6, X shows a chromosome that is selected for mutation; R is the random 

chromosome whose elements are in the interval[ 1,1]- ; Y, which is given 

by X Re+ × , is the output.  
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1 9 15

Chromosomes' genes interval [1,3]

Define 

   0.05 (3 1) 0.1

Select chromosomes for mutation

    selected chromosome set = { , , }

Select one of  selected chromosomes randomly and remove it from the s

C C C

e
e = × - =

9

9

et

   mutation chromosome = { }

1.2

2.1

   X = =   

2.9

1.22

Form a random chromosome

  0.12

-0.21

   =   

 0.02

 - 0.22

Generate the output chromosome

1.20

2.10

   Y =

2.90

1.22

C

C

R

� �
� �
� �� �
� �
� �
� �
� �� �

� �
� �
� �� �
� �
� �
� �
� �� �

�
�

�

�

�

�

  0.12 1.212

-0.21 2.079

0.1 =   

 0.02 2.902

 - 0.22 1.198

Check the output chromosome's genes for boundary exceedings

Continue till the se

� �� � � � �
� �� � � � �
� �� � � � � ��� � � �� � �+ ×� � � �� � �
�� � � �� � �
�� � � �� � �
�� � � �� � �� � � � � �� �

� �

lected chromosome set is empty 

An example of the mutation operation of a real coded genetic algorithm  

 

The determination of e  is critical for the mutation operation. Referring to Figure 2.6, 

if the genes of X are in the interval [ , ]a b , then e is calculated by ( )k b ae = × - , 

where k is in the range [0.05,0.10]. 

 

An example of the mutation operation of a real coded genetic algorithm is given 

below: 
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As stated earlier, another mutation which prevents convergence to average value of a 

population is boundary mutation. Boundary mutation takes its name from the fact 

that it forces certain components of relocated chromosomes to take values at the 

boundary of the feasible region. Therefore, new chromosomes with genes that have 

only 2 values, upper boundary and lower boundary of variable, are created. The 

number of genes that have upper boundary or lower boundary is random and 

determined randomly.  

 

2.3.2.3. The Crossover Operation of a Binary Coded Genetic Algorithm  
 
The first crossover operation for the binary coded genetic algorithm is the customary 

one. It is the direct analogue of crossover in mitosis. The operation associated with 

this crossover operation are as in for the crossover operation ones in real coded 

genetic algorithm, which is described above, except multiplication with a random 

number part. The operations associated with this crossover operation are illustrated 

in the example shown in the next page. 

 

2.3.2.4. Mutation Operation of a Binary Coded Genetic Algorithm -1- 

 

The first mutation operation is the customary one. This mutation operation is 

performed on genes rather than chromosomes.  

 

Before starting to describe this operation it should be noted that the probability of 

mutation in this operation is defined for individual genes rather than chromosomes. 

This operation begins with the formation of the mutation pool. This pool is the set of 

chromosomes whose genes will be candidates of mutation. Then a sequence of 

random numbers between 0 and 1 is generated so that each gene in the mutation pool 

has a corresponding number. Then, genes whose random number is less than or equal 

to mutation probability toggles its value. An example of the steps of this mutation 

operation is given. 
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3 7 9 18

3 18

3

Select chromosomes for crossover

    selected chromosome set = { , , , }

Select two of  selected chromosomes randomly and remove them from the set

   parents = { , }

1

1

0
   

1

0

C C C C

C C

C

� �
� �
� �
� �

= � �
� �
� �
� �
� �

� 18

1 2

0

0

1
,

0

1

Select crossover point 

   crossover point = 2 

Form offspring

1 0

1 0

1 0
   O = ,O =

0 1

1 0

 C

  C

� �
� �
� �
� �

= � �
� �
� �
� �
� �

� � � �� � � �
� � � �� � � �
� � � �� � � �

� � � ��� �� �� ��
� � � �� � � �
� � � �� � � �
� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �� � � �

�

� �

ontinue till the selection set is empty 

An example of the crossover operation of the binary coded genetic algorithm  
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2.3.2.5. Mutation Operation of a Binary Coded Genetic Algorithm -2- 

 

The second mutation operation used operates on chromosomes rather than genes. In 

the previous mutation operation, the number of 1s and 0s alters during mutation. In 

some problems a mutation operation which preserves number of 1s and 0s is needed. 

The simplest idea is to perform usual mutation and check and correct the number of 

1s and 0s. However, this kind of check and correction reduces population diversity 

which mutation operation assures. Therefore, since this mutation operation operates 

on a single chromosome and preservation of 1s and 0s is needed, an operation on the 

chromosome itself is used. 

 

{ }1 7 8 14

1

Probability of  mutation = 0.05

Chromosomes length = N

Form mutation pool

  Mutation pool , , ,

Take one chromosome from pool end remove it from pool

  Taken chromosome = C

Create N uniformly distribut

C C C C=

{ }

1

ed random numbers between 0 and 1 

  Random Numbers = 0.01, 0.21, 0.30 …, 0.05, 0.51

Determine genes for mutation and toggle their values

0 0.01

1 0.21

0 0.99
     C = , R =

0 0.05

1 0.51

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� �
� � �

� �

0 0.01 1

1 0.21 1

0 0.99 0
 Y =    

0 0.05 1

1 0.51 1

Repeat till mutation pool is empty

� �� � � � � � �
� �� � � � � � �
� �� � � � � � �
� �� � � � � � �� �

® ®� �� � � �� � �
� �� � � �� � �
� �� � � �� � �

� � �� � � �� � �
� �� � � � � � �� �

� � �

An example of the mutation operation of the binary coded genetic 
algorithm -1-  
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This operation starts with the selection of chromosomes for mutation. Then, two 

genes from selected chromosome are determined. The elements of the chromosome 

genes between the determined genes are extracted from the chromosome. The 

reduced chromosome is called “Intermediate Chromosome” and the extracted part of 

genes is called “Mutation Genes”. Then, again a gene from the intermediate 

chromosome is selected. The mutation genes are inserted to the intermediate 

chromosome of the selected. This forms the output chromosome. Note that for this 

operation mutation probability is defined for chromosomes. An example of the steps 

of this operation is given on the next page. 

 

2.3.2.6. Mutation Operation of a Binary Coded Genetic Algorithm -3- 

 

The third mutation operation used also operates on chromosomes. This operation 

also preserves number of 1s and 0s. The operation starts with selection of 

chromosomes for mutation. Then, two sets of indices are constructed. The first set 

contains indices of 0s on the mutating chromosome; whereas, the second set contains 

indices of 1s of the same chromosome. Then, one element from each set is 

determined. Then, the determined element of each set is interchanged. Number of 

elements that will be interchanged depends on the problem. Finally, from the index 

sets output chromosome is formed. This operation is illustrated in the following 

example. 
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An example of mutation operation for the binary coded genetic algorithm -

0

1

3 7 9 18

Chromosomes length = N

Number of  1s in chromosomes = N

Number of  0s in chromosomes = N

Select chromosomes for mutations

    selected chromosome set = {C ,C ,C ,C }

Select one of  selected chromosomes ran

{ }
{ }

3

3

0

1

domly and remove it from the set

   selected chromosome = {C }   

0

1

0
   C =

0

1

form the sets of  indices

      S  set of  0s  = 1,3, , N -1

      S  = 2, , N  set 1s

Select one element from each

� �
� �
� �
� �
� �
� �
� �
� �
� �

�

�

�

{ }
{ }

0

1 1

0

1

 set

      S  element no =  2 

      S  element no =  N

Interchange the elements of  sets

      S   = 1, N, , N -1

      S  = 2, ,3  

Form the output from the sets

0

1

1
    Y =

0

0

Continue till sel

� �
� �
� �
� �
� �
� �
� �
� �
� �

�

�

�

ected chromosome set is empty
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3 7 9 18

Probability of  mutation = 0.05

Chromosomes length = N

Select chromosomes for mutations

    selected chromosome set = {C ,C ,C ,C }

Select one of  selected chromosomes randomly and remove it from the set

  3

3

 selected chromosome = {C }   

0

1

0
   C =

0

1

Select two genes from selected chromosome randomly 

   selected genes = {2,3}

Form intermediate chromosome and mutation genes

  Inetermediate c

� �
� �
� �
� �
� �
� �
� �
� �
� �

�

0

hromosome =
0

1

1
  Mutation genes                   =

0

Determine a gene in intermediate chromosome randomly

  selected gene = (N - 2) -1

Paste mutation genes after determined gene and form

� �
� �
� �
� �
� �
� �� �

� �
� �
� �

�

 the output chromosome

0 0

  0 0
Y =

1 1

0 0

11

 Continue till the selection set is empty 

� � � �
� � � �
� � � �
� � � �� �

®� � � �
� �� � � �� �� � � �� �� � � �

� � � �� �

� �

An example of mutation operation for the binary coded genetic algorithm -2-  
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2.3.2.7. Selection Operation 

 

The selection operation used can be thought as a simulation of roulette wheel as 

stated previously. This operation can also be thought as the game of dart. As in the 

roulette, the dart board has slots proportional to the fitness of chromosomes. To 

perform a selection, a dart spear is thrown without aiming any specific slot on board. 

Consequently, a probability proportional to the size of each slot on the dart should be 

defined to perform selection properly. 

 

Let us define iF  as the fitness of chromosome i  in the population composed of 

N chromosomes. Then, the selection probability of each chromosome is defined as 

follows: 

1

N

total
n

nF F
=

= �       (2.43) 

total

i
i

F
p

F
=       (2.44) 

However, slots are not defined by just finding probabilities, since a slot is defined as 

an interval with a starting point iq . The starting slot (i.e. interval is defined as) : 

1

i

j
i jq p

=

= �       (2.45) 

 Since uniformly distributed real random numbers can be generated in computers, to 

simulate a dart spear throw the uniformly distributed random number generators can 

be used. Therefore, a real random number, r , between 0 and 1 is generated to 

simulate dart spear throw. After that, by checking the interval it falls into using the 

standing points of the interval,1i iq r q- < £ , which slot has been hit is found. When 

there is a hit in the thi interval, the thi chromosome is put to the next generation. 

 

It should be noted that this operation allows us to select the number of chromosomes 

that will be carried to next generation, since the number of dart spear throw depends 

on the user. The number of selections depends on the problem, and should be 

determined by the programmer. 
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2.3.3. Near Global Optimum Algorithm 

 

As stated previously, genetic algorithms do not guarantee a hit to a global optimum 

solution. When it is thought that the fitness of a solution is close enough to the global 

optimum value, it is convenient to use another algorithm to reach a global optimum 

solution quickly.  

 

The selection of such an algorithm depends on the problem. However, for problems 

with very large solution spaces, and for optimization functions that are not 

continuous or that do not have 1st and 2nd derivatives, Steepest Descent or Newtonian 

like algorithms can not be utilized. Moreover, since these algorithms require line 

search techniques, and since function evaluation is costly for the problem at hand, 

these algorithms are not suitable for the present problem. 

 

The suitable algorithms that can be used are the one that do not require line search 

and 1st or 2nd derivatives of the cost function. Although there are lots of algorithms in 

this class, “Cycling Coordinates” is one of the simplest and straightforward.  

 

Cycling coordinates algorithm searches for increase (or decrease) in the direction of 

each orthonormal basis vector of the solution space. The direction of search is 

determined by one function evaluation, and step size of algorithm is determined 

using additional function evaluations. After the step size is determined, the solution 

is updated.  

 

The update equation for this algorithm is: 

 1 jk k kx x ea+ = +      (2.46) 

where k  is the iteration number, je  is the thj  orthonormal basis vector in N  

dimensional solution space, ka  is a constant which determines the step size and the 

search direction. Note that j is an integer from1..N . It is determined according to: 

mod( , ) if
for an integer n

1 otherwise

k N k nN
j

¹�
= �

�
 (2.47) 

The operations associated with the algorithm are shown in Figure 2.7. 
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,1 0

1 ,1

1

,1 0

1 ,1

Initialize;

1;

1;

while k  iteration No

   mod( , );

  if  0

     1;

  endif

  ;

  ;

  if  FunctionValue( ) < FunctionValue( )

     -

     ;

  endif

  2;

  whi
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+

=
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=
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le FunctionValue( ) > FunctionValue( )

      2 ;

      ;

      1;

  endwhile

  ;

  1;

endwhile
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Figure 2.7: Cycling Coordinate algorithm 
evaluation steps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the initialization section of the algorithm, initial solution and initial step size, 0a , 

are entered. In the direction determination part of the algorithm, the direction of 

increase is checked. This is due to the fact that the given algorithm is for a 

maximization problem.  

 

The convergence rate of this algorithm is not high, but excluding the time needed for 

function evaluations of other nonlinear programming algorithms, this algorithm will 

converge faster. 
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2.4. Implementation 

 

In this section, implementation details of the problem are given. Firstly, the parts of 

the problem are clarified. Secondly, fitness function derivations and implementation 

details of each part are given. Finally, evolution of the solution is given. 

 

2.4.1. Problem Definition  

 

The problem of generating magnetic field with desired properties is the most 

important step for all types of devices whose operation depends upon magnetic field 

distribution. For a system that uses permanent magnets for the generation of 

magnetic fields, a methodology for optimization of permanent magnet structures to 

obtain desired magnetic field distribution in some region of space should be 

developed.  

 

Magnetic field distribution and strength of magnetic field of a permanent magnet is a 

function of magnetization and geometry of the magnet as stated previously. This can 

also be rephrased as; induction between a source and a target point is a function of 

properties of the media and the source. Therefore, source distribution and source 

strength are the parameters related to the source that change the magnetic field’s 

distribution and strength at a target point. Although a single source (single magnet 

for this case) can be used, multiple sources can also be used to obtain the desired 

strength and magnetic field distribution at target points.  

 

In this work, many unit magnets will be used to generate remote magnetic field with 

desired properties. This can be thought as a four part problem: 

1. Determination of the shape of unit magnets that will be used as a unit   

source of magnetic field. 

2. Optimization of the shape parameters to determine exactly the shape of 

the unit magnet. 

3. Optimization of the surface of the unit magnet which has a shape 

determined in previous steps. 
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4. Optimization of placement of these unit magnets in a specific region to 

generate a magnetic field with desired properties at some region of space. 

 

The first three steps determine exactly the unit magnets that are used in the final step. 

Therefore, in these steps problem should be defined so that the objective to generate 

magnetic field with desired properties will be achieved in smaller number of 

iterations in the final step.  

 

The first step is not studied in this work. The main geometry of unit magnets is 

assumed to have square prism shape. Second step has studied in [7] and [8]. 

However, in this work, the results of [8] are used.  Correctness of the fitness function 

is checked by trying to obtain the same results. Third and fourth parts of the problem 

are the main objectives of this work. 

 

As stated previously, permanent magnet structures have a drawback that does not 

allow them to be used in applications that require high field strength in deeper 

regions (points of space far away from the surface of magnet). Therefore, the natural 

aim of the third step of the problem is to generate magnetic field that does not scatter 

through outer regions (outer regions will be described later). The dual of this 

objective is to localize the magnetic energy in space due to a permanent magnet. 

Therefore, the main problem of the third step is to maximize magnetic energy in 

some region of space by adjusting the surface of magnetic energy source.  

 

The final step of this process is the most vital one since it directly aims to generate 

the magnetic field in a region of interest. In this step, resultant magnet of third step is 

used as an input and the problem is extended to many magnets as magnetic energy 

source. Placement of a unit magnet in some region to obtain optimized results with 

respect to previously defined requirements of the problem implies optimization of 

three independent variables. These variables are the location of centre of the magnet, 

the azimuth and elevation angles of the magnet.  

 

The elevation angle of unit magnets directly determines the effective pole of magnet 

on the region of interest. Therefore, this parameter can be defined as a two state 
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variable instead of defining this parameter as a continuous variable; one state for 

N pole facing the region of interest and one state for Spole facing the region of 

interest. In this case, the elevation angle parameter is named as the orientation 

parameter. Consequently, the fourth step’s objective is to obtain a desired magnetic 

field distribution by adjusting locations, azimuth angle and orientation of unit 

magnets. 

 

 The implementation details and fitness function derivations of these problems are 

given in the next sections. 

  

2.4.2. Determination of Unit Magnets 

 

As stated previously, the shape of magnets is not determined in this work. The results 

of [8] is directly used.  

 

In [8], the shape of magnet is taken as square prism and side length and height is 

tried to be optimized in the sense of maximum magnetic field strength transferred to 

deeper regions of space. In Figure 2.8, results of [8] are visualized. 

 

 

 

 

 

 

 

 

 

 

 

 

a 
a 

h 

Figure 2.8:  Unit magnet and its dimensions 
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As shown in Figure 2.8, the unit magnet shape is given by ratio 0.75
h
a

= . In Figure 

2.8, theN pole is the top side of the prism with z+ values, and the Spole is the 

bottom side of the prism with z- values.  

 

Any surface can be described by ( , )z f x y= . Therefore, zdetermines the surface of 

any geometrical object. Consequently, in this part of the problem the distribution of 

z is sought. To make the problem feasible and solvable, a range of z should be 

defined.  

 

3, 4h a= =  are taken as a test case. The magnet’s centre is placed to the origin of 

laboratory frame of reference, as shown in Figure 2.8. Then, the program is allowed 

to adjust the surface of poles by changing z h=  variable 5%± of its original value, 

1.5. In other words, z is defined in the range [1.425,1.575]. 

 

Magnetic energy in free space is given by: 

V

E B Hdv= ×�
� �

      (2.48) 

Using the definition of magnetic induction, a formula for energy in terms of the 

magnetic field strength is obtained. 

0B Hm=
� �

      (2.49) 

2

0 0

V V

HE H Hdv dvm m== ×� �
�� �

   (2.50) 

 

Since the main drawback of permanent magnets’ magnetic fields is the rapid 

decrease in the magnetic field strength when the filed point is moved away from the 

surface of the magnet, the natural objective is to maximize the magnetic field 

strength in the region of interest. This corresponds to the maximization of magnetic 

energy due to the fact that maximization of magnetic field strength is equivalent to 

maximization of square of magnetic field strength since magnetic field strength is 

non-negative function. Therefore, by comparing the definition of magnetic energy, 

(2.50), with maximization function of square of magnetic field strength, this problem 
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can be defined as maximize the magnetic energy in the specific region of space by 

changing z variable. 

This definition of problem implies minimization of magnetic energy in regions 

exterior to the desired region of space. Therefore, the problem should contain a 

minimization part. This part of the problem can be stated as minimize the magnetic 

energy in exterior to the regions of region of interest.  

 

Magnetic energy of a permanent magnet, generally, is given by: 

magnetV

E M Bdv= ×�
� �      (2.51) 

For magnets placed in free space, (2.51) is modified: 

21

magnetV

E M dv
m

= �
�

     (2.52) 

 

The magnetic energy in the space due to a permanent magnet can not exceed 

magnet’s total energy which is given by (2.51) and (2.52). In (2.51) and (2.52) the 

integrals are evaluated in the volume of magnet. Therefore, the energy of magnet is a 

function of magnet’s volume when the magnetization vector of the magnet is 

assumed known and constant. Consequently, the volume of the magnet should be 

constant during the optimization procedure.  

 

The resultant definition of the problem becomes: 

By adjusting the z variable maximize the magnetic energy in the region of interest 

while minimizing the magnetic energy in the regions exterior to the region of 

interest, keeping the volume of the magnet constant. 

 

Before giving the mathematical representation of this problem, let us define the 

regions of space. From now on, the region of interest will be abbreviated by ROI. In 

Figure 2.9, average magnet and ROI (a), and magnet, ROI and exterior regions (b) 

are shown. In Figure 2.10, ROI and exterior regions are shown in 2D as the top view 

of Figure 2.9(b). 

 

 



 

 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any optimization problem including maximization and minimization objectives can 

be combined mathematically as: 

0 max min
1

i

N

i
i

F F Fa a
=

= - �      (2.53) 

(a) (b) 

Figure 2.9: (a) Magnet (blue) and ROI (green); 
(b) Magnet (blue), ROI (green) and exterior regions (red) 

 

    ROI 

 

Exterior2 

 

Exterior3 

 

Exterior5 

 

Exterior4 

 

Exterior6 

 

Exterior1 

 

Exterior8 

 

Exterior7 

Figure 2.10: Region definitions in 2D 
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where ia s are some constants, satisfying
0

1
N

j
j

a
=

=� , andN is the number of 

minimization or constraining functions.  

 

For the problem at hand, maxF is defined by: 

2
max

ROIV

F H dv= �
�

      (2.54) 

Similarly, the objectives of the problem to be minimized can be defined as: 

1

8 2
min

1 outeri
i V

F H dv
=

= � �
�

     (2.55) 

Since the volume of the magnet is desired to be fixed, another function that 

guarantees this fix in the volume is required. This constraint is imposed on the 

problem as a penalty using the square norm function. Consequently, the second 

minimization function takes the form shown in (2.56). 

 ( )2

2
min 0 magnetF K V V= -      (2.56) 

 

The resultant objective function of the problem is given below (2.57). 

( )
8 22 2

0 1 2 0
1ROI outeri

magnet
iV V

F H dv H dv K V Va a a
=

= - - -�� �
� �

 (2.57) 

where K is any positive constant that reflects the importance of the constant volume 

constraint. 

 

To maximize F , real coded genetic algorithm has been used. The chromosomes of 

this algorithm are zvalues of each node of surface grid shown in Figure 2.1. 

Therefore, the chromosome consists of the zcoordinates of iP ’s in expression 

(2.42).  

 

2.4.3. Placement of Unit Magnets in Space 

 

Magnetic field properties generated at a region of space is a function of source 

strength, source location, distribution of sources and properties of medium. 
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Assuming linear isotropic free space as medium, optimization of magnetic field 

generated by permanent magnets requires optimization of locations and distributions 

of permanent magnets.  

 

The problem of the placement of a unit magnet in a region of space contains 

optimization of three different variables. The first one is the point where the centre of 

the magnet will be placed. The second one is the angle at which the magnet will be 

rotated (azimuth angle). The third is the orientation of the magnet.  

 

2.4.3.1. Variable Definitions 

 

To determine the point at which the centre of the magnet will be placed is the 

problem of determination of a point in 3D space. However, since the magnets should 

not be placed on the top of one another, determination of the center point in the 2D 

place and leaving the other spatial variable as another optimization variable is a 

better treatment. 

 

In the plane magnet placement region can be defined as a grid. Each segment of the 

grid is centered at a point at which the centre of unit magnet can be placed.  The grid 

is shown in Figure 2.11.  

 

 

 

 

 

 

  

 

 

 

 

 
Figure 2.11:  Magnet Placement Region (MPR) in 2D 
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Figure 2.12: Magnet Placement Region (MPR) in 3D 

Figure 2.13: z limits 

From now on magnet placement region is abbreviated as MPR. As shown in Figure 

2.11, each unit magnet can be placed in a segment which is a square with side length 

a. a should be chosen so that the magnet can be rotated inside the grid segment. 

Since the unit magnets are in square prism shape ˆ2a a=  should be satisfied to 

ensure the rotation of magnets inside a grid where â  is the side length of a unit 

magnet. The numbers shown in Figure 2.11 are the ID numbers of each location. 

Since this is a placement problem, 3rd coordinate variable (for this problem it is the z-

coordinate) should be found. In Figure 2.12, MPR is shown in 3D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 shows only the grid of MPR, but not the 3rd variable. In figure 2.13, 

magnet placement region with two unit magnets placed having the same but opposite 

z values is shown. 
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Figure 2.14: Top and side views of z limits 

Top view Side view 

 

As it is shown in Figure 2.13, the variation of z variable is not limited to discrete 

levels; it is a continuous variable. Top view and side view of magnets shown in 

Figure 2.13 are given in Figure 2.14: 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 2.13 and in Figure 2.14, z is in the interval [0,1.5]. In both 

figures, the unit magnets shown have side lengths and heights as defined in the 

previous section.   

 

For the placement problem, a unit magnet can be rotated in a grid. Since the rotation 

of unit magnets around their principle axis changes the magnetic field distribution, 

angle of rotation is another variable of the problem. In Figure 2.15, angles of rotation 

for two unit magnets are shown. In Figure 2.15, blue magnet is rotated 
4
p

 degrees 

and green one is rotated 
8
p

 degrees. 

 

Another variable which changes the magnetic field distribution in a region is the 

orientation of the unit magnets (by the orientation of a magnet, pole facing to the 

ROI is meant), due to the fact that the magnetic field in a region due to more than 

one magnet is the superposition of magnetic fields generated by each magnets. 
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Figure 2.15: Different Angles of rotation 

Top view 3D view 

Therefore, the magnetic field strength increases or decreases according to the relative 

alignment of magnets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, two variables that vary in discrete steps, and two variables that vary 

continuously are at hand. If in a grid region there is a magnet then the value of the 

placement variable is 1, otherwise it is 0. The height, where the centre of the magnet 

is placed, can be changed continuously. The rotation angle is also allowed to change 

continuously which is a direct consequence of the effect of rotation angle of magnet 

on the magnetic field distribution. Lastly, the orientation variable is also discrete 

since it can only take two states representing which pole of the magnet points ROI. 

 

Placement variable is associated with a grid region as shown in Figure 2.11. This 

variable is used to represent existence of a unit magnet in a grid segment. Therefore, 

a string of 0s and 1s can be formed to represent where the unit magnets are placed in 

MPR. In Figure 2.16, formation of strings is shown. 

 

In Figure 2.16, No is the id number of a grid segment, Value shows whether a grid 

segment contains a unit magnet or not (1 if it contains, 0 if not), Position is the 

coordinate of grid segments’ centre. 

 



 

 

45 

 

 

 

 

 

 

 

 

  

 

 

No Value Position 

1 1 1 1( , )x y  

2 1 2 2( , )x y  

     �           �                 �  

31 0 31 31( , )x y  

32 1 32 32( , )x y  

Figure 2.16: Placement Strings 

 

 

 

 

 

 

 

 

 

 

 

 

Center positions of the grid segments are determined when MPR is created. These 

values are stored to be used while fitness function is evaluated.  It is the Value row 

that represents the variable of the placement problem. Therefore, the chromosomes 

of genetic algorithm are composed of the Value row of Figure 2.16.  

 

Orientation variable represents which pole of magnet is facing ROI. Therefore, it is 

also a two state variable where 0 means S pole facing ROI, 1 means N pole facing 

ROI. As in placement variable, a string of 0s and 1s is constructed to represent the 

orientation of each unit magnet.  

Height and rotation angle variables are real valued. Therefore, these variables are 

represented by real valued strings (sequences). The values in the strings should be in 

the feasible range of corresponding variables. 

 

2.4.3.2. Region Definitions 

 

As in the previous section, ROI with respect to MPR should be defined. In Figure 

2.17, MPR and ROI are shown to illustrate how the regions are in 3D space. In 

Figure 2.18, ROI and MPR when MPR is filled with unit magnets is shown. 
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Figure 2.17: MPR (green object) and ROI (red object) in 3D 

Figure 2.18: ROI (green object) and MPR (red 
object) with unit magnets (blue objects) 
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Since ROI affects the solution directly, the size of it should be determined to obtain 

good results. However, it is also possible to keep ROI sufficiently large so that the 

solution is not satisfactory but enables us to determine a portion of it so that 

magnetic field distribution in that portion has the desired properties. 

 

2.4.3.3. Fitness Function Derivation  

 

Since the aim is to generate a magnetic field distribution with desired properties in a 

specific region, magnetic field properties should be defined mathematically. As in 

the previous section, it is aimed to obtain maximum strength of magnetic field in the 

ROI. Remaining properties of the magnetic field in the ROI can vary according to 

the requirements of the problem. In general, the problem can be defined as the 

maximization of magnetic field energy in a specific region subject to some 

constraints on the solution space of the problem. Mathematically, these can be 

expressed as: 

2
minmaximize  H

ROIV

dV F
� �� �

-� �
� �� �

�
�

 

where H
�

is the magnetic field intensity, andminF is a function that represents other 

requirements which varies according to the requirements of the problem.  

 

For this problem, the objective function is given as: 

1

2
1 min

2
i

ROI

N

i
iV

F H dv Fa a
-

=

= - ��
�

   (2.58) 

where 
1mini

F
-

is defined according to problem requirements.  

 

For F  to represent a maximization function for magnetic field distribution that will 

be used in Magnetic Resonance Imaging (MRI), some constraints to be minimized 

related to either magnetic field strength or magnetic field components should be 

defined.  

 



 

 

48 

The dependence on magnetic field strength is due to the fact that, magnetic field 

distribution in MRI generates level surfaces of Larmor frequencies. This can be 

shown as: 

Bw g=
�

      (2.59) 

( ){ }B xS xw w g==
� ��

    (2.60) 

 

On the other hand, dependence on magnetic field components can be explained by 

the fact that when a magnetic field generated has the same magnitude but different 

direction, for a sample containing nonzero susceptibility value will produce a counter 

magnetic field that changes the overall magnetic field distribution, and the shape 

of Sw . This is one of the most vital problems in MRI due to the fact that for imaging 

modalities it is assumed that the frequencies at each point are known. However, one 

can assume existence of paramagnetic materials in the region of interest and applied 

magnetic field strength is not so high to take the materials to the saturation region. 

These assumptions will enable us to safely assume that, there is no change in 

orientation of magnetic fields due to some interactions of materials inside the ROI. 

Therefore, only the shape of Sw  surfaces (i.e., magnetic field strength distribution) 

is optimized. 

 

Since the physical limits of change of direction of magnetic field that satisfy 

assumptions are not exactly known, it is assumed that the direction requirements can 

be satisfied easily, by adding some extra minimization functions to (2.58). In this 

work, magnetic field strength distribution in ROI is tried to be optimized. 

 

A proper mathematical definition of the problem should be made. As stated earlier, 

the magnetic field strength in ROI should be maximized subject to some constraints 

on the magnetic field distribution. As a test case, linear variation of isosurfaces of 

magnetic field strength is chosen. This statement implies the derivatives of strength 

of magnetic field to be constant and second derivatives to be identically zero. In a 

more formal way: 

, ,x y z

H H H
C C C

x y z

¶ ¶ ¶
= = =

¶ ¶ ¶

� � �

    (2.61) 
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2 2 2

2 2 2
0, 0, 0

H H H

x y z

¶ ¶ ¶
= = =

¶ ¶ ¶

� � �

   (2.62) 

2 2 2

0, 0, 0
H H H

x y x z z y

¶ ¶ ¶
= = =

¶ ¶ ¶ ¶ ¶ ¶

� � �

   (2.63) 

 

Therefore, for this part, the problem can be defined to maximize magnetic energy 

while keeping the variation of strength of magnetic field constant in ROI. 

 

Expressions (2.61) to (2.62) should be defined as minimization functions. This can 

be achieved by introducing barrier and penalty functions. Penalty and barrier 

functions are defined using max and min functions when the limits of linear variation 

are defined. Before giving these functions, let us define limits of variation: 
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Therefore, the barrier functions of these limits are: 
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 (2.65) 

 

Since the second derivatives of magnitude of magnetic field components are desired 

to be identically 0, penalty functions of those constraints are defined as: 
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  (2.66) 

 

Therefore, minimizations functions in (2.58) can be defined as: 

min1

min 2

x y z

xx yy zz xy yz xz

F P P P

F P P P P P P

= + +

= + + + + +
   (2.67) 

 

(2.58) can be written as: 

( )2

1 2 min1 3 min 2
VROI

F H F F dva a a= - -�
�

   (2.68) 

2.4.3.4. Identification Systems 

 

To keep the track of variables during function evaluation, two types of identification 

numbering systems have been used. First one is to give id numbers to grid segments; 

second one is to give id numbers to unit magnets. These numbering systems are 

visualized in Figure 2.19: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Segm ent 

N o 
V alue Position U nit 

N o 

1 0 1 1( , )x y  --- 

2 1 2 2( , )x y  1 

     �           �               �                �  

31 0 31 31( , )x y  --- 

32 1 32 32( , )x y  16 

Figure 2.19: Segment No and Unit No 
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 Figure 2.19 is an example of numbering systems for 32 grid segments and 16 unit 

magnets. 

 

Grid segments’ numbering is not allowed to change during the run of the program 

whereas unit numbering is allowed to change. ID number 1 in unit numbering system 

is always the first occurrence of 1 in the binary string of placement variable. 

Therefore, the units are numbered according to their positions in the placement 

strings. Grid numbering system is used to represent the placement variable, whereas 

unit numbering system is used in the representations of other variables.  

 

2.4.3.5. Fitness Function Evaluation 

 

Since the orientation, the height of centre of magnets and the angle of rotation are 

identified using unit magnet numbering system, the indices of 1s in placement strings 

are needed to be able to calculate the magnetic field in ROI. After finding the indices 

of 1s in placement string, the centre points of MPR segments are used from table that 

was previously stored. After that, for each 1 in the placement string, corresponding 

height, rotation angle and orientation value are found from corresponding strings. 

These values are used to calculate the magnetic field in ROI due to a single unit 

magnet. This procedure is repeated for the number of unit magnets and magnetic 

fields of all unit magnets are added to obtain the total magnetic field. 

 

In, the magnetic field calculations it is assumed that the magnet is placed at the 

origin. Therefore, the centre points of unit magnets surface grid segments should be 

modified. Translation of origin from one point to another requires translation of 

every point that is defined referencing to the first origin. This translation is given by: 
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where 0x  is the coordinate of the new origin referenced to the previous one, x  is the 

original point, x̂  is the new point referencing to the previous origin. Therefore, only 

two vectors are added to find the centers of unit magnets’ surface grid segments. 

  

To find the effect of rotation of magnets in azimuth, before moving them to 

placement grid segments, ( , )x y  values of centre points of unit magnets’ surface grid 

segments are multiplied by the rotation matrix of rotation R (2.70).  

cos sin

sin cos
R

f f
f f

-� �
= � �

� �
     (2.70) 

where f  is the angle of rotation.  

 

In the theory part, it is assumed that a unit magnet’s N pole is facing to the ROI. 

Therefore, when orientation is not 1, centre points of S pole of unit magnet surface 

grid segments should be interchanged with the ones of the N pole. Moreover, the 

direction of magnetization should be reversed if the S pole of the magnet is facing to 

the ROI .  

 

After finding the centre points of unit magnet surface grid segments, the magnetic 

field is calculated using (2.41) for all nodes in the grid of unit magnet’s surface. 

Afterwards, the same procedure is repeated for all unit magnets in a chromosome and 

the results are added to obtain the  fitness value of that chromosome. 

 

The derivatives of magnetic field magnitude in the ROI are found by using central 

differences between pixels. To find the neighboring pixels (voxel in 3D case), the 

neighboring pixels’ indices are stored while constructing the ROI at beginning of the 

program. By using this convention, it is only needed to take differences of the values 

of magnitude of magnetic fields in the pixels and divide by the pixels size.    

 

After calculating the magnetic field magnitude values and its first and second 

derivatives as explained, the only remaining thing is to add them up to obtain each 

part of (2.68) to find the fitness of a chromosome. 
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2.4.3.6. Used Genetic Algorithms 

 

Four variables that should be optimized have been defined. Two of them (grid 

placement and orientation) are two state variables, whereas the other two (rotation 

angle and height of centre of magnet) are continuous variables which can take any 

value in the range specified. This definition of variables leads us to three different 

procedures of optimization; a procedure for optimization of real variables and two 

procedures for optimization of discrete variables. Although these variables are not 

independent when the solution of the problem using genetic algorithms is considered, 

it is quite safe to assume that these variables are independent.  

 

A real coded genetic algorithm has been implemented to optimize the real valued 

variables. For optimization of binary coded chromosomes, two types of algorithms 

are needed due to the different nature of variables represented by these 

chromosomes.  

 

Since the number of units is fixed, the genetic algorithm of the placement variable 

should not be able change number of 1s in a chromosome during crossover or 

mutation operations. In this work, for placement variable genetic algorithm, usual 

crossover (described in section 2.3.2.3) with number of 1s correction in the resultant 

chromosomes has been implemented. As a mutation operation, the permutation 

mutation operation (described in section 2.3.2.5) has been implemented.   

 

Usual binary coded genetic algorithm operations have been used for the orientation 

variable optimization, since the number of magnets with specific orientation does not 

have to be fixed during the evolution of the algorithm. Therefore, the crossover is the 

one that was explained in the section 2.3.2.3. The mutation operation of the binary 

coded genetic algorithm is the one described in section 2.3.2.4. 
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initialize;

generate initial population

evaluate fitness function (population)

i=1

while i maximum iteration number    

    find and hold the elitist chromosome 

    perform real coded genetic algorithm cro

£

ssover operation

    perform real coded genetic algorithm mutation operation

    evaluate fitness function for new chromosomes

    add B boundary chromosomes to chromosomes that are in selection set

    perform selection for next generation

    add the elitist chromosome to next generation

    i=i+1

end

Figure 2.20: Real coded genetic algorithm steps 

2.4.4. Solution Steps 

 

In this section the steps of the solution are given. First, surfaces of unit magnets are 

determined. After that, the steps of placement of unit magnets problem solution are 

given.  

 

As stated previously, genetic algorithms do not guarantee convergence to a global 

optimum, but they provide a method to get closer to it. This fact leads us to use 

genetic algorithms till the solution gets closer to a global optimum solution. 

Afterwards, local optimum finding algorithms have been used. These two steps are 

followed in both parts of the solution. In the next sections, these steps are explained. 

 

2.4.4.1. Determination of Unit Magnets’ Solution Steps 

 

Real coded genetic algorithm, which is explained previously, is summarized in 

Figure 2.20. 
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initialize;

create initial population

calculate fitness of initial population

i=1;

while i  iterNo

  FOR HEIGHT, ANGLE, ORIENTATION AND PLACEMENT PARAMETERS

    perform crossover and create mutation pool

  

£

  perform mutation 

  ENDFOR

  calculate fitness of offsprings of crossover operations

  calculate fitness of mutated chromosomes

  eleminate 2 chromosomes with worst fitness from real coded chromosomes

  create 2 boundary chromosomes for real coded parameters

  place generated chromosomes in the place of eleminated ones

  calculate fitness of voundary chromosomes

  perform selection for next generation

  add the previous population's elitist chromosome to next generation

endwhile
 

Figure 2.21: Evaluation of genetic algorithm 

The rate of change of the elitist chromosome’s fitness value is used to determine the 

termination generation number of the genetic algorithm. If it is small enough to 

terminate the genetic algorithm, user passes the elitist chromosome of the last 

generation of the real coded genetic algorithm to the cycling coordinates 

optimization algorithm. 

 

2.4.4.2. Solution Steps of Placement of Unit Magnets’ 

 

As stated previously, four genetic algorithms are performed at the same time for the 

optimization of placement of unit magnets problem. The steps of genetic algorithm 

are shown in Figure 2.21. 
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After the genetic algorithm, the output of genetic algorithm phase is transferred to 

near global optimum algorithm. For this part of the problem, two kinds of near global 

optimum algorithms are implemented. First algorithm is shown on Figure 2.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm shown in Figure 2.22 does not converge fast enough due to the fact that 

four variables are not independent. This phenomenon can be understood better by 

defining dependent variables. It is obvious that height, rotation angle, and orientation 

variables are all independent of each other. However, these three variables are all 

dependent to the placement variable. In other words, orientation, height and rotation 

angle of unit magnets should be changed according to the places of unit magnets. 

Therefore, for example, if the placement order of any chromosome is changed and a 

better fitness for that chromosome is obtained, a better fitness is not assured while 

changing the height of the same chromosome. To obtain a better fitness value it is 

required to run another optimization algorithm. For specific height, orientation, and 

rotation angle strings of chromosomes, the genetic algorithm operations for the 

placement variable should preserve the other three variable values associated with 

initialize;

while i  iterNo

  find ellitest chromosome

  perform cycling coordinate on height parameter

  perform cycling coordinate on rotation angle parameter

  add obtained chromosome to population

  pe

£

rform GA operations on placement and orientation parameters

  calculate fitness values of chromosomes

  perform selection for next generation  

end

 

Figure 2.22: Evaluation of the first near optimum algorithm 
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unit magnets. This idea leads us to define another near global optimum algorithm 

which takes into account the relation between variables.  

 

The second near global optimum algorithm implemented takes into account the 

remarks made. It fixes three variables (height, rotation angle, and orientation 

variables) to unit magnets’ ids. Therefore, when the place of a unit magnet is 

changed, the unit ids are also changed. If a change in the order of unit magnets 

occurred, the unit magnets’ variables, associated with a specific unit magnet, are 

preserved. This algorithm preserves the number of unit magnets in MPR. Another 

important point that should be clarified is the independence of height, rotation angle 

and orientation variables. Since the algorithm is at a sub global optimum one, by just 

adjusting the places of these values the global optimum of whole problem can be 

reached. However, to guarantee the assumption of global optimum of these variables, 

cycling coordinate method is performed for the height and rotation angle variables.  

 

The main difference of this algorithm from the previous one is in the operations of 

genetic algorithm used for the optimization of the placement variable. Permutation 

mutation has been used as crossover operation (described in section 2.3.2.5). 

Therefore, just one chromosome is needed for the crossover operation. Mutation 

operation described in section 2.3.2.6 is used. However, since the elitist chromosome 

has relatively high fitness value, only it can be used in the placement operations. On 

the other hand, it is quite possible for the elitist chromosome to be at a local optimum 

near to a global optimum. To prevent this kind of situations, more than one 

chromosome with high fitness values obtained from the genetic algorithm is used as 

an input for this algorithm. This algorithm is shown Figure 2.23. 

 

As it is summarized in Figure 2.23, an improvement in the fitness value is expected 

after performing the placement operations. Due to this fact, an offspring 

chromosome which has a fitness value better than its parents and M additional 

chromosomes is expected. If there is no improvement for some specific steps, it is 

concluded that global optimum value is reached. Another important point that should 

be clarified is the fact that in this algorithm the orientation variable is not imposed to 

any operations. That is due to the fact that the orientation of unit magnets affects the 
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magnetic energy in ROI more than other variables. Therefore, orientation variable 

converges to its global optimum distribution faster than other variables. 

Consequently, it is assumed that this variable has already converged during the 

genetic algorithm phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Results 

 

In this section, the results obtained for each part of the problem are given. First, the 

obtained results are shown for the unit magnet determination part. The results of the 

placement of unit magnets are shown. 

 

2.5.1. Results of Unit Magnet Determination Part  

First of all, the undefined parameter values should be defined. As stated previously, 

the magnets, shown in Figure 2.8, used in this work has dimensions of: 

initialize;

while i  iterNo

  find M elitist chromosomes from population

  find maximum fitness valued M chromosome

  while offspring maximum fitness  old maximum fitness

     perform placement parameter 

£

£

operations on M selected chromosomes

     calculate fitness of created offsprings

     find maximum fitness of offsprings

  end

  perform Cycling Coordinate algorithm on height and angle parameters

  update the population

end

 

Figure 2.23: Evaluation of the second near global optimum algorithm 
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Figure 2.24: The evolution of elitist fitness 
values through generations 
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units. Weighting coefficients in equation (2.57) are chosen to be: 
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The variable z is chosen to be in the interval [1.425,1.575]. xandy values are 

discretized with step lengths 0.1 and 0.1, respectively. Therefore, the solution space 

is 1641 dimensional. The parameters of the real coded genetic algorithm are chosen 

as: 

mutation probability = 0.1

 of  mutation operation = 0.015e
 

In 1000 generations of the genetic algorithms, the fitness values of the elitist 

chromosomes are shown in Figure 2.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After 1000 generations of the genetic algorithm, the magnet’s surface takes the form 

shown in Figure 2.25. 
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Figure 2.25: Obtained magnet surface after 1000 genetic algorithm generations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface shown in Figure 2.25 seems to be highly jagged. To eliminate high 

frequency changes on the surface, it has been passed through an ideal low pass filter 

that has cutoff frequency
4
p

. After this operation the surface becomes continuous as 

shown in Figure 2.26.  

 

Surface shown in Figure 2.26 and the decrease in the rate of increase in elitist fitness 

values show that the genetic algorithm has brought the solution near to a global 

optimum. Therefore, the elitist chromosome of 1000th generation is transferred to the 

cycling coordinates method.  

 

In the cycling coordinates method, the fitness function of the genetic algorithm is 

used. Initial step size, 0a , is chosen as 0 0.0015a = . Since the solution space is 1641 

dimensional, a full search cycle in the directions of all basis vector of the solution 
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Figure 2.26: Filtered version of surface shown Figure 2.25  

space necessitates 1641 iterations. 1 cycle means 1641 iterations of the cycling 

coordinates method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fitness value variation in one cycle of iterations is shown in Figure 2.27. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.27: Fitness value variation in 
one cycle of iterations 



 

 

62 

Figure 2.28: Surface after 1 cycle of iterations 

 

Figure 2.27 shows that the algorithm has not converged, yet. Therefore, this 

algorithm should continue to run. The surface after one cycle of iterations of this 

algorithm is shown in Figure 2.28 in the following page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After running this algorithm for 11 cycle iterations more, a sufficiently good surface 

is obtained. The variation of fitness values in 11 cycles of iterations is shown in 

Figure 2.29. The surface after 11 cycles of iterations is shown in Figure 2.30. As it is 

shown in Figure 2.29, the algorithm has converged. 

 

The surface obtained after 1000 genetic algorithm generations and 12 cycles of the 

cycling coordinates method, shown in Figure 2.30, is manufacturable. 
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In the preceding figures, each run of algorithm accepts the initial solution as the last 

solution of the step described before it. For example, the initial solution of 11 cycle 

run is the surface shown in Figure 2.28.  

 

Figure 2.29: Fitness value variation in 11 cycles 

Figure 2.30: Obtained surface after 11 cycles of iteration 
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Figure 2.31: Some known surfaces 

The fitness function parts of magnet surfaces shown in Figures 2.25, 2.26, 2.28 and 

2.30 are given in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

In Table 2.1, Fig.No means the figure number. F part is the fitness function value of 

the solution. As shown in Table 2.1, the fitness value is not affected drastically when 

the surface is filtered. Compared to the magnet surface after the genetic algorithm 

phase, the maximization part of the fitness is increased by 2.3% and minimization 

part is decreased by 1.8% and total fitness is increased by 17.51%.  

 

In Figure 2.31, some surfaces are shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.25 885.6343 697.6812 1.52E-06 46.98676
2.26 882.6575 698.4116 2.03E-05 46.04118
2.28 896.852 693.3342 4.74E-05 50.83208
2.30 906.0211 685.1394 7.58E-06 55.21284

maxF min1F min2F F.Fig No

Table 2.1: Fitness function parts of obtained surfaces 
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The fitness parts of these geometries are shown in Table 2.2. 

 

 

 

 

 

 

 

 

 

 

 

In Table 2.2, ID field represents numbers shown above the subfigures in Figure 2.31. 

Therefore, the average surface has an ID of 1. Comparing the best magnet surface 

with average magnet surface, the maximization part of the fitness has been increased 

by 5.85%, and minimization part has decreased by 4.02%. Fitness function value is 

increased by 55.41%. Therefore, the obtained result is satisfactory as long as increase 

in the fitness function is concerned. 

 

Magnetic field distribution of magnet with surface shown in Figure 2.30 is shown in 

Figure 2.32. 

 

In Figure 2.32, arrows show the magnetic field direction, and the colored parts show 

the magnetic field strength on the planes 0x = , 0y = and 2.35z = .  

 

To compare the change in the magnetic field distribution, side views of the magnetic 

field distributions of the average magnet and the resultant magnets are shown in 

Figure 2.33 and Figure 2.34, respectively. 

 

 

 

 

 

1 855.9116 713.8035 0 35.52703
2 873.3326 696.5576 0 44.19375
3 849.6079 738.2065 0 27.85035
4 847.2713 740.5302 0.000004 26.68126
5 870.1086 692.2395 0.000004 44.46329
6 862.3746 715.7831 0 36.64788

maxF min1F min2F FID

Table 2.2: Fitness function parts of known surfaces 



 

 

66 

Figure 2.32: Magnetic field distribution of best solution in ROI and outer regions 

Figure 2.33: Magnetic field distribution of solution in ROI 
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Figure 2.34: Magnetic field distribution of average magnet in ROI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the preceding two figures are compared, the magnetic field strength shows 

slower variation with respect to z (magnetic field strength is higher in deeper 

regions) in the first figure. Therefore, the magnetic energy in ROI has increased.  

 

As stated previously, to check the fitness function, shape parameters of the average 

magnet is optimized. There are two parameters that describe the shape of the magnet, 

aandh . When the volume of the magnet is fixed, these two parameters become 

dependent due to imposition of holonomic constraint on the principle coordinate 

system of the problem. Therefore the unknown of the problem can be defined as the 

ratio of h  to a . Then, the problem is defined as “maximizing magnetic energy in the 

ROI while minimizing magnetic energy in the outer regions by changing the ratio of 

h to a ”. 

 

This problem is solved by using the steepest descent algorithm. The volume of the 

magnet has been fixed to 1000 units and the initial side length has been chosen as 10 

units. In other words, the optimization procedure is started with ratio 1.  
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For the steepest descent algorithm, the derivative step size is chosen as 410- , the 

accuracies of search, linear search and variable are 610- , 610- and 710- , respectively.  

 

After 6 iterations, the program has converged to the value 0.7466, which is very near 

to the one obtained in [8]. 

 

2.5.2.Results of Placement of Unit Magnets Part  

 

Before starting to present the unit magnet arrangements obtained, undefined 

parameters of the methods used should be defined.  

 

As a test case, 16 unit magnets with surfaces shown in Figure 2.30 are aimed to be 

placed in 32 grid regions. Each unit magnet has side length, a , 4 units and height, h , 

3 units. MPR is created so that there are 8 grids in one direction and 4 grids in the 

other, as shown in Figure 2.12.  

 

The height of MPR segments, h , is defined to be in the range [0,1.5]. The rotation 

angle is defined in the interval [ , ]
4 4

p p
- .  

 

Real coded genetic algorithms use 0.1 as the mutation probability. For real coded 

genetic algorithms, number of boundary mutations is 2. Mutation operation e  of 

height of MPR segments is taken as 0.075. Mutation operation e  of angle of rotation 

is taken as 
36

p
. The mutation probabilities of placement and orientation parameters 

are taken as 0.25 and 0.05, respectively.   

 

Weighting coefficients in equation (2.68) are chosen to be: 

1

2

3

0.4
0.3
0.3

a
a
a

=
=
=

 

The boundaries in (2.64) are chosen as: 
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Figure 2.35: The variation of elitist fitness 
 in 350 genetic algorithm iterations 
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Region of interest (ROI) for this part of the problem is defined by the intervals: 

[ 8 2,8 2]
[ 8 2,8 2]
[3.5,6.5]

x
y
z

Î -
Î -
Î

. 

The differential changes in ROI are taken as: 

1
1
1

dx
dy
dz

=
=
=

. 

For these parameters, the variation of the elitist fitness in 350 generations of the 

genetic algorithm is shown in Figure 2.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variation of the fitness of the elitist chromosome has a staircase shape in some 

regions. This is due to the fact that, more than one genetic algorithm is running. 

When a change in one variable occurs, the other variables are trying to reach and 

keep up that fitness value.  
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Figure 2.36: Top view of magnet placement 
after 350 genetic algorithm generations 

Since the fitness function is defined by the equation (2.68), the maximum height 

variable is expected. Since the ROI is defined in the middle of MPR, all magnets 

should be placed just below the ROI to maximize the magnetic energy. Since the 

maximum energy stored in the MPR occurs when the magnet arrangement is united 

in the sense of all unit magnets are touching each other, all the angles should be 

either 
4
p

 or 
4
p

- . Minimization parts of (2.68) will be effective on the orientation 

variable more than the other variables. Since linear variation in the magnitude of the 

magnetic field is desired, equal number of unit magnets with each possible 

orientations is expected.  

 

The magnet arrangement after 350 genetic algorithm generations is shown in Figure 

2.36 and 2.37. The chromosomes of each variable are shown in Table 2.3. 

 

In Figures 2.36 and 2.37 blue objects represent unit magnets of which S pole is 

facing to the ROI, and green objects are represent unit magnets of which N pole is 

facing to the ROI. In Table 2.3, No represents the MPR segment number. Other four 

columns show the chromosomes of placement, angle, height and orientation 

variables. Some chromosomes do not have genes at grid nodes where magnet is not 

placed, due to the fact that the identification system of these chromosomes is 

different then the one used for placement chromosomes. 
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Figure 2.37: Side view of magnet placement 
after 350 genetic algorithm generations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N o P la c e m e n t A n g le H e ig h t O rie n t
1 1 4 0 .5 8 4 0 .7 4 9 8 5 1
2 1 3 4 .8 0 9 0 .1 8 7 9 2 0
3 1 3 8 .8 7 2 1 .4 2 2 9 0
4 1 4 0 .9 8 1 1 .2 9 8 6 1
5 1 4 3 .3 2 7 1 .2 5 1
6 1 3 9 1 .2 7 6 5 0
7 0 -- -- --
8 1 3 6 .4 2 9 1 .1 0 6 2 1
9 0 -- -- --

1 0 0 -- -- --
1 1 1 3 7 .9 4 3 1 .4 9 1 9 0
1 2 1 3 5 .2 3 1 .2 6 6 4 1
1 3 1 4 4 .5 1 4 1 .2 2 4 7 1
1 4 1 3 5 .2 5 4 1 .1 1 0
1 5 0 -- -- --
1 6 0 -- -- --
1 7 0 -- -- --
1 8 0 -- -- --
1 9 1 4 0 .4 6 4 1 .1 0 3 2 0
2 0 1 3 5 .1 9 1 .2 5 6 5 1
2 1 0 -- -- --
2 2 1 9 .1 0 3 5 1 .3 2 3 3 0
2 3 0 -- -- --
2 4 0 -- -- --
2 5 0 -- -- --
2 6 0 -- -- --
2 7 1 -4 .7 8 8 1 1 .4 0 6 8 0
2 8 1 3 5 .7 0 6 1 .3 1 6 5 1
2 9 0 -- -- --
3 0 0 -- -- --
3 1 0 -- -- --
3 2 0 -- -- --

Table 2.3: The chromosomes of obtained distribution after 350 genetic 
algorithm generations 
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Figure 2.38: The variation of elitist fitness 
after 120 iterations of near global optimum algorithm 1 

 

As shown in Figure 2.35, the rate of increase in the fitness of the elitist chromosome 

is very small after 100th iteration. Therefore, after 350 generations of the genetic 

algorithms, 350th generation is transferred to the near global optimum algorithm.  

 

In the near global optimum algorithms, since there are 16 unit magnets, the solution 

space of real valued variables is 16 dimensional. Therefore, one cycle of iterations 

means 16 iterations. In the cycling coordinates method part of this algorithm, the 

initial step size, 0a , is chosen as 0.015 for the height variable and 
36
p

for the 

orientation angle variable. For algorithms summarized in Figure 2.20 and Figure 

2.22, cycling coordinate part is performed for one cycle of iterations.  

 

As stated previously, two types of the near global optimum algorithms are 

implemented for this part. The first algorithm does not converge fast enough. This 

fact is shown in the Figures 2.38, 2.39 and 2.40. 
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Figure 2.40: Side view of magnet placement  
after 120 iterations of near global optimum algorithm 1 

Figure 2.39: Top view of magnet placement 
after 120 iterations of near global optimum algorithm 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the algorithm has been evaluated for 120 iterations, the placement has not 

converged as can be seen in Figure 2.39 and Figure 2.40. The increase in fitness 

function value shown in Figure 2.38 is due to a change in height and rotation angle 

parameters, which are optimized using cycling coordinates.  

 

After concluding that this algorithm is not satisfactory for the problem defined, 350th 

generation of genetic algorithm is transferred to the 2nd near global optimum 

algorithm which is summarized in Figure 2.22. 
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Figure 2.41: The variation of elitist fitness 
 in 48 iterations of near global optimum algorithm 2  

 

In this algorithm, number of chromosomes that are imposed to placement algorithm 

operations, M, is chosen to be 5. Cycling coordinate parameters are the ones used in 

the previous near global optimum algorithm. If the fitness of the elitist chromosome 

increases or if 20 iterations of placement operations are performed, the program 

passes to the next steps. 

  

In 48 iterations of this algorithm, the variation of fitness function value of the elitist 

chromosome is shown in Figure 2.41.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obtained magnet arrangement is shown in Figure 2.42 and Figure 2.43, the values in 

the chromosomes are given in Table 2.4. 
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Figure 2.43: Magnet placement after 48 near global in 
48 iterations of near global optimum algorithm 2 

Figure 2.42: Top view of magnet placement 
in 48 iterations of near global optimum algorithm 2 
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Figure 2.42 and Figure 2.43 show that the placement of more than one unit magnets 

has converged just after 8 iterations of 2nd near global optimum algorithm iterations.  

 

Obtained magnet arrangement is the expected one. Although the rotation angle of all 

chromosomes is not the expected ones, other variables have the values as expected.  

 

No    Place Angle Height Orient
1 0 -- -- --
2 0 -- -- --
3 1 43.872 1.5 0
4 1 43.481 1.5 1
5 1 42 1.5 1
6 1 25.5 1.5 0
7 0 -- -- --
8 0 -- -- --
9 0 -- -- --
10 0 -- -- --
11 1 45 1.5 0
12 1 44 1.5 1
13 1 45 1.5 1
14 1 45 1.5 0
15 0 -- -- --
16 0 -- -- --
17 0 -- -- --
18 0 -- -- --
19 1 42.464 1.5 0
20 1 38.69 1.5 1
21 1 -41.5 1.5 1
22 1 39.103 1.5 0
23 0 -- -- --
24 0 -- -- --
25 0 -- -- --
26 0 -- -- --
27 1 -14.288 1.5 0
28 1 45 1.5 1
29 1 43 1.5 1
30 1 45 1.5 0
31 0 -- -- --
32 0 -- -- --

Table 2.4: The chromosomes of obtained arrangement 
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Figure 2.45: Predicted magnet arrangement 1 

Figure 2.46: Predicted magnet arrangement 2 

Table 2.5 is prepared to compare the fitness function of the obtained magnet 

arrangement with the ones predicted. The predicted arrangements are shown in 

Figures 2.44, 2.45 and 2.46. 

  

Three arrangements in Figures 2.45, 2.46 and 2.47 have the same placement and 

height variable values as in the obtained arrangement.  
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Figure 2.47: Predicted magnet arrangement 3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.45 shows an arrangement very similar to the obtained one accept that 

rotation angle is fixed to 
4
p

 radians. Figure 2.46 shows an arrangement when unit 

magnets with different orientation are placed in two different regions of MPR to 

decrease the 1st and the 2nd derivatives of magnetic field magnitude. The arrangement 

shown in Figure 2.47 is different than others. In this arrangement, the orientation 

parameter is such that one row of the magnets with a fixed orientation are followed 

by the magnets with the other orientation. In Table 2.5 the values of fitness function 

of these magnet arrangements are shown. 

 

 

 

 

 

 

 

 

 

 

The Fig.No field in Table 2.5 shows the figure number.  

 

2.42 7835.60 1731.00 2890.70 1747.80
2.45 7837.50 1726.50 2903.10 1746.10
2.46 6838.90 1426.60 2793.30 1469.60
2.47 8180.70 2054.00 3115.90 1721.30

maxF min1F min 2F F.Fig N o

Table 2.5: Fitness function parts of obtained 
and predicted magnet arrangements 
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Figure 2.48: Magnetic Field distribution after 350 generations of 
genetic algorithm when viewed from Y axis 

The fitness function parts of the arrangements in Figures 2.42 and 2.45 have higher 

magnetic energy in ROI compared to arrangement in Figure 2.46 resulting in higher 

fitness values. These two arrangements have very similar results. Therefore, one of 

them can be chosen as the output of this study. Arrangement shown in Figure 2.46 

has smaller minimization function parts. Therefore, the 1st and 2nd derivatives of the 

magnetic field magnitude in ROI are smaller for these arrangements. The 

arrangement shown in Figure 2.47 has the highest maximization part in its fitness. 

However, its minimization parts are higher than the others. The fitness is smaller 

than the fitness of the obtained arrangement. Consequently, these arrangements have 

been ignored. 

  

The magnetic field distribution of magnet arrangement after 350 generations of the 

genetic algorithm is shown in Figures 2.48 and 2.50. In Figure 2.48 and in Figure 

2.50, the magnetic field distribution is shown when looked from the Y axis and the X 

axis respectively. Similarly, the magnetic field distribution of magnet arrangement 

after 48 iterations of near global optimum algorithm is shown in Figures 2.49 and 

2.51. In Figure 2.49 and in Figure 2.51, the magnetic field distribution is shown 

when looked from the Y axis and the X axis respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

80 

Figure 2.49: Magnetic Field distribution after 48 iterations of 
near global optimum algorithm when viewed from Y axis 

 

Figure 2.50: Magnetic Field distribution after 350 generations 
of genetic algorithm when viewed from X axis 
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Figure 2.51: Magnetic Field distribution after 48 iterations of 
near global optimum algorithm when viewed from X axis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen from the figures, magnetic field magnitude has increased in the 

deeper parts of the ROI while the variation of magnetic field with respect to x and y 

is kept nearly constant in larger areas of the ROI after 48 iterations of near global 

optimum algorithm. 

 

These magnetic field distributions show that, the objective of the study has been 

reached. 

 

2.6. Conclusion 

 

In this part of the work, permanent magnet surface optimization and optimization of 

placement of more than one magnet to obtain a magnetic field distribution with 

desired properties have been performed. For this purpose, real and binary coded 

genetic algorithms, and an optimization routine which does not require gradient or 

Hessian of the fitness function have been utilized. These algorithms have been 

recombined to form a complete method for the design of a permanent magnet which 
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has a desired magnetic field distribution. The obtained results of each step have been 

presented. 

   

Due to huge computing time requirements of magnetic field calculations in computer 

environment, scalar magnetic potential method has been used to calculate magnetic 

field distribution along with FEM like interpolation. For each part of the problem, 

variables of the fitness function that change the magnetic field distribution have been 

determined and optimized using the methods developed during this work. The 

methods used for the parts of this work are summarized in Figures 2.20 and 2.23. 

The unit magnets used in the placement of more than one magnet in space have the 

resultant surface of the surface optimization part. In this part of the thesis, the work 

done in [8] has also been verified. This verification has proved that the fitness 

functions used in this work have been chosen properly.  

 

The surface of the unit permanent magnets has been shown in Figure 2.30. Although 

the resultant surface is discontinuous, it is quite suitable for manufacturing. This 

validates the assumption made about manufacturability of discontinuous surfaces. 

The fitness function of the obtained magnet surface has improved by 55.41% 

compared to a flat surface. In the second part of this work, 16 unit magnets with 

surfaces shown in Figure 2.30 have been placed in space as shown in Figures 2.42 

and 2.43 for the fitness function and method parameters chosen as a test case. The 

magnetic field distribution of obtained magnet arrangement has been shown in 

Figures 2.49 and 2.51. The obtained arrangement has met the magnetic field property 

requirements of the test case fitness function. Since the obtained results are 

satisfactory, the developed methods are proven to be valid. 

     

To sum up, the task of designing permanent magnet structures generating magnetic 

field with the desired properties in the region of interest has been accomplished. The 

resultant magnetic field distribution is used in the MRI simulator in inhomogeneous 

magnetic fields. In the next chapter, the development of MRI simulator in 

inhomogeneous magnetic fields is explained and the image reconstruction technique 

developed for MRI imaging in inhomogeneous magnetic fields is introduced. 
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CHAPTER 3  

 

 

MAGNETIC RESONANCE IMAGING SIMULATOR 

AND IMAGE RECONSTRUCTION ALGORITHM IN 

INHOMOGENEOUS MAGNETIC FIELDS  

 

 

 

3.1. Introduction 

 

Magnetic Resonance Imaging (MRI) is a tomographic imaging technique that 

produces images of microscopic magnetic characteristics of an object using 

measured signals. Physically, MRI is based on NMR phenomenon observed by Felix 

Bloch and Edward Purcell in 1946 [1]. This phenomenon describes the behavior of 

paramagnetic materials under the influence of strong and constant magnetic field, 

when the spinning frequencies of the microscopic particles are imposed to external 

RF energy. When the strong magnetic field is uniformly distributed over the object, 

the spinning frequencies of the same type of atoms are all the same. Paul Lauterbour 

developed an imaging method in 1973 [2], using the fact that when external magnetic 

field is not uniformly distributed the spinning frequencies of microscopic particles 

vary in accordance with non-uniformity of magnetic field. Since then, different 

techniques for image formation of magnetic properties of objects using spatial 

encoding in measured NMR signals have been developed.    

 

The conventional imaging system is composed of three main parts, a main magnet, a 

gradient coil system, and a Radio Frequency (RF) system.  
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The main magnet’s function is to generate strong static main magnetic field (0B
�

). 

Although the strength of 0B
�

 directly effects the Signal to Noise Ratio (SNR) and the 

spatial resolution of the imaging system, it is limited with RF energy level to which 

the patient can be exposed. The order of0B
�

 magnitude ranges between 0.3T and 3T 

for clinical application [3].  In these systems, the homogeneity of 0B
�

over the 

imaging volume is very important, since the imaging modalities in use assume 

homogeneous magnetic field distribution. Therefore, to achieve almost uniform static 

magnetic field (inhomogeneity 10ppm to 50ppm [4]), these magnets are designed 

and constructed with special methods.   

 

The gradient coil system, traditionally, consists of three orthogonal gradient coils. 

Each of these coils is designed to generate linearly varying spatial non-uniformity in 

the magnetic field that the object is imposed to. This linear variation is supposed to 

occur along a specific spatial coordinate axis selected during the system construction. 

Using these three coils, spatial information along each coordinate axis is encoded in 

measured NMR signals. This makes signal localization possible. The strength of the 

magnetic fields generated by these coils are smaller compared to static main 

magnetic field. The gradient coils’ magnetic field strength is on the order of militesla 

per meter (mT/m) [4].  

 

The RF system consists of a transmitter coil and a receiver coil or a single coil for 

transmission and reception of RF energy. The transmitter part of the system is 

capable of generating a time varying magnetic field in RF range used for 

perturbation of spins in object. Since this perturbation is possible only when the 

frequency of radiated RF energy and the spinning frequency of spins are in 

resonance, the transmitter part of the system is required to have a frequency 

bandwidth which contains this frequency.  To obtain the desired perturbation, the 

magnetic field of the transmission part should be orthogonal to the main magnetic 

field. Therefore, since the main magnetic field is required to be homogeneous, the 

RF transmission system is required to generate homogeneous magnetic field. The 

receiver part of the RF system is used for NMR signal reception. In order not to 
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decrease the signal strength, it should be capable of uniform reception from the 

interior of the object being imaged.   

 

When any of the magnetic fields (main magnetic field, gradient fields or RF field) 

has nonuniform distribution, the image quality lowers down. The correction methods 

for these cases have been developed [5, 6, 7, 8, 9]. In [5], a technique for the 

correction of magnetic field inhomogeneities is described. In this method, a model 

that describes the effect of inhomogeneity on the measurement is developed. This 

method requires two images of the same object with altered gradient. Using the 

model developed, the nonunformity properties of magnetic fields are calculated and 

imaging accuracy is increased. In [6], an iterative method to reconstruct images is 

introduced. Since inhomogeneity in main and gradient magnetic field distribution 

changes the frequency content of the acquired signals, a linear mapping between 

image reconstruction and frequency domain trajectory of signals is developed. Since 

the frequency content of signal is not uniformly sampled for this case, the frequency 

domain trajectory of signals is not linear. Consequently, the inverse problem is 

solved iteratively. In [7], a band selective signal removal technique is presented.  

This technique is useful for applications requiring inhomogeneous RF transmitter, 

such as surface RF coil usage. In [8], a method for removing signal intensity 

inhomogeneity is developed. The signal intensity inhomogeneity is thought to be 

caused by surface RF receive coils. Obtained images are used to estimate the 

sensitivity map of surface RF coils. A wavelet transform is used for slowly varying 

sensitivity pattern estimation. In [9], a method for intensity nonuniformity due to RF 

field inhomogeneity in MRI data is presented. In this method, additive noise, 

normalize local intensity gradients and smooth local derivatives in the image are 

estimated to construct relative nonuniformity map. Then, true uniformity map is 

constructed.   

 

The systems which do not require uniform distribution of magnetic fields have been 

investigated by a number of researchers. Although the analyses of the developed 

systems are done generally on NMR experiments, some efforts are made on image 

reconstruction.  
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The first method developed is known as stray-field imaging named as STRAFI, [10]. 

This method makes use of the large magnetic field gradient outside of central region 

of the main magnet in a conventional MRI system. Although the sensitive area of 

this method is restricted, it readily preserves dynamic contrast while offering very 

high spatial resolution.  

 

The STRAFI method exploits the extremely large magnetic field gradient outside the 

central region of all high field superconducting NMR magnets. In this gradient, even 

a short radio frequency pulse only excites nuclei in a narrow slice of the sample 

orthogonal to the gradient direction, thus providing spatial localization of the NMR 

measurement. By stepping the sample through the gradient and repeating the 

measurement at each position, it is possible to build a profile of the sample in the 

gradient direction. By mechanical movement of the object and with the use of 

surface RF coils, 2D or 3D images have been constructed using this method [11].  

 

When the system is not required to have uniform magnetic field distribution, 

obligations on main magnet are decreased. For example, permanent magnets can be 

used as magnetic field sources. Using this fact, a Mobile NMR Surface Scanner 

(NMR MOUSE) has been developed [12, 13]. This is a PC based NMR console with 

a permanent magnet probe. This design achieves portability and can investigate large 

objects. Also it eliminates the usage of super conducting magnet which is the most 

expensive part of the conventional MR system.  

 

The basic setup of the MOUSE composed of mainly two parts: RF and electronic 

systems, and the probe [12]. RF pulse generation, amplification and signal detection 

are done by a PC controlled low-field (1-64MHz) NMR spectrometer, a duplexer and 

1kW amplifiers. The PC is also used for pulse sequence generation, and data 

acquisition. The probe is composed of a permanent magnet and a solenoid RF coil. 

Due to low weight, the probe can be positioned arbitrarily. Sensitive depth range of 

the system is 0-2mm. The sensitive area is 3.5mm x 3.5mm for that depth. Since B1 

and B0 fields generated by NMR-MOUSE are inhomogeneous, using the results of 

[14], Hahn echoes, CPMG type pulse sequences are used for signal generation. 
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Although the aim of NMR-MOUSE construction is to be used in separation and 

classification of materials, NMR-MOUSE had been used for explorative studies on 

in vitro biomedical samples [13, 15]. In [13], two dimensional image of a cross 

section through a pork leg is obtained. In order to obtain an image of the pork leg the 

NMR mouse is repositioned in a point-wise manner over the cross section of interest. 

Since the system is portable and has an open magnet, it is easy to make orientation 

dependent studies. Also the transverse relaxation time is measured by changing the 

orientation of the pork tendon [13]. In [15], anisotropy in tendon is investigated in 

vivo. In [16], a gradient coil is added to NMR-MOUSE to be able to construct 1D 

images. In [17], results of [16] are used as a basis and another gradient coil is added 

to the system. In [18], the inhomogeneity of main magnetic field is redirected so that 

the main magnetic field magnitude varies linearly in one direction. In [18], as in [17], 

two gradient coils are used for spatial encoding, and the gradient in main magnetic 

field is used as another gradient to be able to construct 3D images.  

 

There are some theoretical studies on imaging in inhomogeneous main magnetic 

field and on inhomogeneity limits. In [19], very detailed theoretical study on 

magnetic resonance in inhomogeneous magnetic fields is presented. In that study, the 

theoretical limits of main magnetic field inhomogeneity is found using signal to 

noise ratio (SNR) and specific absorption rate (SAR) concepts.  

 

The imaging experiments using the developed systems [13, 15, 16, 17, 18] and the 

theoretical study [19], all try to obtain a uniformly sampled frequency domain 

signals. Since MRI system which does not require homogeneous magnetic fields can 

not assume uniformly sampled frequency signals, these studies are trying to obtain 

limited imaging systems. On the other hand, in [20], some imaging techniques for 

MRI in inhomogeneous magnetic fields are developed. In that study, the imaging 

modality in MRI in inhomogeneous magnetic field are not restricted to the ones 

using frequency content transformation For this purpose, a relation between 

measured signal and object properties is derived. The feasibility of the derived 

relation is investigated using the singular values of the matrix representation of this 

relation.   
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The works presented so far, do not aim to develop a generalized image 

reconstruction technique for MRI (except [20]). In these works, the main aim is to 

design a system which has a main magnet which generates magnetic field as 

homogeneous as possible to be able construct images using inverse Fourier approach. 

This is due to the fact that inverse Fourier techniques that are being used for 

conventional NMR and MRI systems yield high resolution images in short 

computation time. However, under inhomogeneous magnetic fields, frequency 

bandwidth of measured signals not only change due to the gradient field, but also 

change due to the magnetic field inhomogeneity. Therefore, MRI in inhomogeneous 

magnetic fields requires some image reconstruction modalities that do not require 

homogeneous magnetic fields. Moreover, the technique should be able to fully 

satisfy the obligatory constraints imposed by the physical basis of MRI. Moreover, 

the feasibility of the reconstruction technique should be examined in the sense that it 

should be able to make use of all acquired data to produce images.  

 

Development of any image reconstruction technique requires generation of test data 

and construction of a forward problem solver. The first requirement is signal data 

obtained from any source. The source may be a physical system or a simulator. In 

this work, a MRI simulator in inhomogeneous magnetic fields to generate test data 

has been developed. Since the physical principle in microscopic level of magnetic 

resonance is the same for both inhomogeneous and homogeneous external magnetic 

fields, the construction steps are straightforward when the imaging domain is 

discretized.  

 

Some MRI simulators have been constructed for educational and research purposes 

[21 to 32]. [21] and [27 to 29] are general simulators for MRI. These simulators 

require high computation time. Therefore, some simulators have been implemented 

for parallel computing [23 and 24]. Simulators for NMR have also been developed, 

[25 to 27]. These NMR simulators are developed for pulse sequence design and for 

educational purposes. In [22], object specific field mapping is used to simulate 

artifacts in the images. In [30], a simulator is developed to investigate static field and 

RF field imperfections. In [32], a simulator which can exhibit nearly all imaging 

artifacts is developed. This simulator combines all properties of other simulators. 
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However, none of above aims to construct a simulator for MRI or NMR in 

inhomogeneous magnetic fields. So far, [34] is the only attempt to construct an NMR 

simulator in inhomogeneous magnetic fields. 

 

In this chapter, the construction details of a magnetic resonance imaging simulator in 

inhomogeneous magnetic fields are given and the development of image 

reconstruction technique for magnetic resonance imaging in inhomogeneous 

magnetic fields is introduced. Firstly, theory of the simulator and the image 

reconstruction technique are given. Secondly, implementation details of the 

simulator and the image reconstruction technique are given. Thirdly, obtained results 

are given for both homogeneous and inhomogeneous magnetic field cases. Finally, 

this chapter ends with conclusion. 

 

3.2. Theory 

 

Nuclei with odd atomic weight possess an angular momentum. This fundamental 

property of nuclei is called “Spin”. Since all moving charged particles create 

magnetic field around themselves, microscopic charged particles create magnetic 

field. This is the basic physical principle of nuclear magnetism. This microscopic 

magnetic field is called the “Magnetic Moment”. 

 

The angular momentum is related to magnetic moment with proportionality constant 

g as shown below.  

Jm g=
��

      (3.1) 

This constant is known as the “Gyromagnetic Ratio”. Gyromagnetic ratio varies from 

microscopic particle to particle. In above equation m
�

 is magnetic moment, J
�

is 

angular momentum.  

 

The magnetic property of atoms is represented by spin quantum number, S. In 

quantum mechanics, spin quantum number can only take discrete values. The 

magnitude of magnetic moment is certain under any condition and related to the spin 

quantum number. However, the direction of magnetic moment is uncertain due to the 
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uncertainty principle of quantum mechanics. On the other hand, a component of the 

magnetic moment can be determined by imposing the spin to an external static 

magnetic field. In this case, the energy of spin is fixed, and that component of the 

magnetic moment is aligned to the external magnetic field. However, the external 

magnetic field can not change the fact that the particle is spinning. Other two 

components of the magnetic moment are still rotating, and their exact magnitude can 

not be determined.  Therefore, the spins under the influence of the external magnetic 

field creates a magnetic moment that precesses around the external magnetic field. 

 

The frequency of precession is known as the “Larmor Frequency”. Larmor frequency 

of a spin is a function of the magnitude of the external magnetic field and is 

represented by 

0 0Bw g=
�

      (3.2) 

where 0B
�

 is the external magnetic field.   

 

An ensemble of spins with the same spin quantum number is called a “Spin System”. 

Total magnetic moment of a spin system is known as the “Magnetization”, M
�

, and 

is defined as the vector sum of all individual magnetic moments of spins.  

1

N

i
i

M m
=

= �
� �

      (3.3) 

where N  is the number of spins in the spin system. 

 

When all spins of a spin system is imposed to the same external static magnetic field, 

the magnitude and the component of the magnetic moment parallel to external 

magnetic field is certain. Moreover, total magnitude of the components of magnetic 

moment perpendicular to external magnetic field is known. However, the angle 

between these two components is a uniformly distributed random variable that can 

take any value between [ ],p p- . When the number of spins in the spin system 

approaches to infinity, total number of perpendicular components of magnetic 

moments of individual spins start to become deterministic due to the central limit 

theorem. The angle between two components is defined as random variable. As the 

number of spins in the spin system approaches infinity, in the average observable 
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perpendicular to the external magnetic field components of magnetization tend to 

zero. Therefore, macroscopic magnetization of the spin system in thermal 

equilibrium is defined as shown below. 

 

2 2
0

0
( 1)

3
s

s

h N S S
M B

KT

g +
=

� �
    (3.4)     

where K is Boltzmann constant, sT is absolute temperature of the spin system, sN  is 

the number of spins in spin system, h is normalized Planck’s constant (
2
h

h
p

= ), 

0B
�

is the external magnetic field and 0M
�

is the magnetization of spin system in 

thermal equilibrium. Detailed derivation can be found in [4]. 

 

For 
1
2

S =  spin system,  (3.4) becomes: 

2 2
0

04
s

s

h N
M B

KT

g
=

� �
      (3.5) 

Since a hydrogen atom’s nucleus consists of only one proton, its spin quantum 

number is 
1
2

. Since in biological applications distribution of hydrogen atoms is 

imaged, from now on 
1
2

S =  systems will be investigated. 

 

As stated previously, angular momentum and magnetic moment are related to each 

other with gyromagnetic ratio. Torque created by magnetic moment and angular 

momentum should sum to zero. In classical mechanics, this statement is expressed 

as: 

dM
M B

dt
g= ´

�
� �

      (3.6) 

where B
�

 is the magnetic field at any time instant that the spin system is imposed to. 

B
�

 can be expressed as total magnetic field as shown below. 

0 OTHERB B B= +
� � �

     (3.7) 
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where OTHERB
�

 represents other magnetic fields that effects the spin system. More 

detailed derivation can be found in [4]. 

 

Equation (3.6) implies that whenever M
�

 and B
�

 are not parallel to each other, a 

torque is created to make them parallel. This torque can not change M
�

 

instantaneously. This relaxation process is known as “Longitudinal Relaxation” and 

the time constant that represents this relaxation process is generally called 1T . 

Therefore, when OTHERB
�

 becomes 0, the component of M
�

(longitudinal component 

of M
�

, M �

�
) parallel to 0B

�
 should relax to the thermal equilibrium magnetization, 

0M
�

.  

 

Another relaxation process occurs for the components of M
�

(transverse components 

of M
�

, M^

�
) perpendicular to 0B

�
. This relaxation is known as “Transverse 

Relaxation” and represents the loss of phase coherence among spins in the spin 

system. Loss of phase coherence occurs due to 0B
�

 inhomogeneity along the volume 

of the spin system and due to spin-spin interactions. This relaxation process is 

represented by another time constant, 2T . The transverse components of M
�

should 

decay to 0, when phase coherence among spins in the spin system is lost.   

 

When the relaxation terms are added to (3.6), Bloch equation is obtained. 

( )0

2 1

M MMdM
M B

dt T T
g ^

-
= ´ - -

�

� ���
� �

    (3.8) 

The state of the spin system (( )M t
�

) is described by (3.8). However, a measurement 

equation is needed to fully describe the spin system. 

 

For homogeneous magnetic fields case, the relation between state of spin system and 

measurements is formulated in the next subsection. Also, in the next subsection, 

utilization of measured data to obtain images is briefly described. After that 

subsection, a method to extend formulation of homogeneous magnetic fields case to 

inhomogeneous magnetic fields case is introduced. After that, derivation of a linear 
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relation between initial magnetization and measurements is described. Finally, the 

theory of developed image reconstruction technique is presented. 

 

3.2.1. Conventional MRI Formulation 

 

In Bloch equation, M Bg ´
� �

part expresses the torque that tries to change the 

magnetization state of a spin system. An external magnetic field with non-zero 

perpendicular component to M
�

 should be applied to create that torque. As stated 

previously, the external RF field should be in resonance with the spins to be effective 

on them.  

 

Applied RF field has the form shown below. 

1 1 1, 1, 1,ˆ ˆ ˆ2 ( )cos( )e
rf x y zB B t t B x B y B zw j � �= + + +� �

�
    (3.9) 

where ˆ ˆ ˆ,  and x y zare the unit vectors of left handed orthogonal reference frame. For 

homogeneous 0B
�

field distribution, 1B
�

is homogeneous and orthogonal to 0B
�

. When 

0B
�

 is defined as in (3.10), 1B
�

takes the form: 

 0 0ˆB B z=
�

       (3.10) 

1 1 ˆ2 ( )cos( )e
rfB B t t xw j= +

�
     (3.11) 

Equation (3.11) can be decomposed into two rotating fields; one rotating in 

clockwise and the other rotating in counterclockwise direction as: 

}
}

1 1 ˆ ˆ( ) cos( ) sin( )        

ˆ ˆ                   cos( ) sin( )        

e
rf rf

rf rf

B B t t x t y counterclockwise

t x t y clockwise

w j w j

w j w j

�= + + + + ®�

�+ - + ®�

�

(3.12) 

 

Since counterclockwise rotating part of the RF field is in the opposite direction of 

spin rotation direction (the spin rotation is in clockwise direction), it produces 

negligible effect. Therefore, the effective RF field, 1B
�

, is in the form: 

1 1 ˆ ˆ( ) cos( ) sin( )e
rf rfB B t t x t yw j w j� �= + - +� �

�
  (3.13) 
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1
eB is the envelope of the magnetic field. It can be of any shape, but it is usually 

chosen to be in sinc shape, square shape or triangular shape. When 0B
�

field is in the 

form shown in (3.10), RF field in (3.13) produces non-zero torque due to  M Bg ´
� �

 

part of the Bloch equation. Therefore, the magnetization vectors of spins, due to 

imposed RF field in duration RFT , are rotated by an angle of a .  

 

On the other hand, since x̂  and ŷ components of magnetization vector of spins in 

thermal equilibrium are rotating with the Larmor frequency, 0w , and the effective 

rotating component of the RF field (equation (3.13)), is rotating with frequency rfw , 

it is customary to define a rotating frame of reference.  

 

The unit vectors of rotating frame of reference are functions of time and expressed 

as: 

ˆ ˆ ˆ' cos( ) sin( )

ˆ ˆ ˆ' sin( ) cos( )

ˆ ˆ'

x t x t y

y t x t y

z z

w w
w w

= -

= +

=

     (3.14) 

where w  is the frequency of rotating frame. Therefore, the unitary transformation 

matrix, rotT , from laboratory frame to rotating frame is defined as: 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1
rot

t t

T t t

w w
w w

-� �
� �= � �
� �� �

     (3.15) 

The time derivative of any vector in the rotating frame, rot rotM T M=
� �

,  can be 

expressed as: 

( ) sin( ) cos( ) 0

cos( ) sin( ) 0

0 0 0

rot
rot

t t
d T M dM

t t M T
dt dt

w w
w w w

� �
� �= - - +� �
� �� �

� �
�

 (3.16) 

in laboratory frame. The first term in (3.16) can be expressed as a skew symmetric 

matrix product as shown below. 

sin( ) cos( ) 0 0 1 0

cos( ) sin( ) 0 1 0 0

0 0 0 0 0 0
rot

t t

t t T

w w
w w

-� � � �
� � � �- = -� � � �
� � � �� � � �

  (3.17) 
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The skew symmetric matrix in (3.17) is nothing but cross product matrix of the unit 

vector ˆ 'z . Consequently, the first term in (3.16) can be expressed as: 

( ) ( )
sin( ) cos( ) 0

cos( ) sin( ) 0 ˆ '
0 0 0

rot

t t

t t M T Mz

w w
w w w w

� �
� � � �- - = ´-� �� �
� �� �

� �
 (3.18) 

The derivative of M
�

 can be expressed as: 

( )
( ) ( )ˆ '

rot
rot rot

d T MdM
T T Mz

dt dt
w � �= - ´-� �

��
�

   (3.19) 

The Bloch equation without relaxation terms is: 

 
( ) ( ) ( )rot

rot rot

d T M
T M T B

dt
g= ´

�
� �

    (3.20) 

Then, the Bloch equation in rotating frame can be expressed as: 

( ) ( ) ( ) ( )ˆ 'rot rot rot rot
dM

T T M T B T M z
dt

g w� �= ´ + ´ -� �

�
� � �

 (3.21) 

Combining the magnetization terms in (3.21) yields the Bloch equation without 

relaxation terms in the rotating frame. 

 ( ) ( ) ˆ 'rot rot rot
dM

zT T M T B
dt

w
g

g
� 	� 	

= ´ -
 �
 �
� � 

�
� �

   (3.22) 

The effective magnetic field in the rotating frame is defined as: 

ˆ 'eff rotB B z
w
g

= -
� �

      (3.23) 

The Bloch equation including relaxation terms turns out to be as: 

( )0
'' '

2 1

ˆ 'ˆ ˆ' ' zx yrot
rot eff

M M zM x M yM
M B

t T T
g

-+¶
= ´ - -

¶

�
� �

  (3.24) 

 

For static magnetic field as in (3.10) and for the case where the frequency of the 

rotating frame equals to Larmor frequency of spins: 

( ) 00 ˆrot B zT B ¢=
�

      (3.25) 

0 0Bw w g= =        (3.26) 

( ) 0 ˆ 0rot rot
dM

BT zT M
dt

w
g

g
� 	� 	 ¢-= ´ =
 �
 �
� � 

�
�

   (3.27) 

In the rotating frame, M
�

 is stationary when, only, static magnetic field is applied.  
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In the rotating frame, the RF field in the form (3.13) turns out to be as shown in 

equation (3.28). 

1 1 ˆ( )e
rotT B B t x¢=

�
      (3.28) 

When an RF pulse is applied to the spin system rotating around 0B
�

, in rotating 

frame, only the torque due to the envelope of RF field is effective. The frequency of 

rotation caused by this torque is related to the instantaneous magnitude of the RF 

pulse by: 

1 1( ) ( )et B tw g=
�

      (3.29) 

Consequently, after the RF pulse the magnetization vector is rotated around 1B
�

. The 

angle of rotation is given by: 

1

0

( ) ( )
t

et B da g t t= �       (3.30)        

After an a  RF pulse, magnetization vector can be found using rotation matrices. 

When the RF field is in ̂x¢ direction, the rotation matrix that represents the rotation 

of the magnetization vector is given by: 

 

1 0 0

( ) 0 cos sin

0 sin cos
xR a a a

a a
¢

� �
� �= � �
� �-� �

    (3.31) 

 

In order to spatially encode the spins in the spin system gradient fields are used. 

These fields are in the direction of 0B
�

, but have magnitudes that vary almost linearly 

with position as shown below: 

ˆ( )gradientB Gx z=
�

      (3.32)  

where G  is the derivative of magnitude of gradient field with respect to x . When 

such inhomogeneity is introduced, the Larmor frequencies of spins vary linearly in x  

direction. Consequently, the phase angle due to the gradient field can be calculated 

using: 

0

( , ) ( )
t

x t G xdf g t t= �       (3.33)  
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After applying the gradient field for finite duration gradientt , the magnetization vector 

can be calculated using the rotation matrix around z  axis. 

cos ( ) sin ( ) 0

( ( )) sin ( ) cos ( ) 0

0 0 1
gradient

x x

R x x x

f f
f f f

-� �
� �= � �
� �� �

   (3.34) 

 

When no magnetic field other than 0B
�

 is applied, the Bloch equation in rotating 

frame has a solution given by: 

( )

0 2

0 2

0 1
0 1

( ) /
0

( ) /
0

( ) / 0
( ) /

0

0( )( )
0( ) ( )

1( ) ( )

t t T
xx

t t T
y y

t t T
t t Tz z

M t eM t

M t M t e

e MM t M t e

- -
¢¢

- -
¢ ¢

- -
- -¢ ¢

� � � �� �
� � � �� � = +� � � �� �
� � � �� � -� � � � � �� �

 (3.35) 

The matrix form of the relaxation process is given by: 

 

( )

0 2

0 2

0 1

0 1

( ) /

( ) /
0

( ) /

0

( ) /

0 0

( ) ( )0 0

0 0

0 0 0

0 0 0                         

0 0 1

               

t t T

t t T
rot rot

t t T

t t T

e

M t M te

e

M

e

- -

- -

- -

- -

� �
� �

= +� �
� �
� �� �

� �
� �
� �
� �-
� �

� �

�
   

Signal detection in MR is based on the Faraday law of electromagnetic induction and 

the reciprocity principle. The Faraday law of induction states that time varying 

magnetic flux through the receiver coil induces a voltage that is equal to the rate of 

change in magnetic flux through the coil. The detection sensitivity of a receiver coil 

is determined through the principle of reciprocity. Assume that 2B
�

 is the magnetic 

field produced by a unit direct current flowing through the coil. Then the magnetic 

flux through the coil due to M
�

 is given by: 

2( )

objV

t B MdvF = ×�
� �

      (3.37) 

Using the Faraday law, voltage induced is obtained as: 

 

 

 

(3.36) 
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LP filter 

sin( )tw

cos( )tw  

   ´  

   ´  

LP filter 

�  

i  

   ´  

( )x t  ( )y t  

 
Figure 3.1: Demodulation system 

2
( )

( )

objV

t
V t B Mdv

t t
¶F ¶

= - = - ×
¶ ¶ �

� �
    (3.38) 

Since 2B
�

and integral are not functions of time, then the derivative term can be taken 

inside the integral and allowed to operate on M
�

.  

2( )

objV

M
V t B dv

t
¶

= - ×
¶�
�

�
     (3.39) 

 

To be able to obtain any information from measured voltage, magnetization should 

be time dependent, and its derivative should be large enough. The time dependent 

components of the magnetization vector are the transverse components. Since the 

measured voltage is around the Larmor frequency, the voltage should be 

demodulated. However, since the magnetization vector has two transverse 

components, the demodulator should be designed so that both components are 

demodulated. Since the phase difference between two components of magnetization 

is 
2
p

, the designed demodulator has to have two multiplier parts with sinusoids that 

are 
2
p

 degrees out of phase with respect to each other. Figure 3.1 shows the 

demodulator. 
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In Figure 3.1, the input signal is multiplied by two sinusoids which are 
2
p

 degrees 

out of phase with respect to each other. Then, each multiplication outputs are low 

pass filtered. One of the outputs of low pass filters is multiplied by i  to obtain 

imaginary part of the signal. Then, two demodulated signals are added to obtain 

complete complex signal.  

 

Since the output of the demodulator system is a band limited signal, it can be 

sampled according to the Nyquist criteria. The details will be given in the 

implementation part. 

 

3.2.2. Extension to Inhomogeneous Magnetic Fields    

 

Although the formulation given above is only valid for magnetic fields that are 

homogeneous throughout the object being imaged, this formulation can be used in 

inhomogeneous magnetic field case when the problem is discretized and a suitable 

transformation is defined.  

 

When the volume of the object being imaged is discretized into small volume 

segments, the magnetic field variation in these volume segments can be ignored. In 

other words, magnetic fields in these volume segments (voxels) are considered as 

homogeneous magnetic fields. Therefore, the Bloch equation, (3.8), is valid in each 

voxel of the volume. However, since the directions of magnetic fields vary from 

voxel to voxel; a different reference frame for each pixel should be defined.  

 

As in the homogeneous case, the local reference frame is defined referencing to 0B
�

. 

In homogeneous case, the laboratory frame is defined according to direction of 0B
�

 

and it is taken as z  direction of laboratory frame. In inhomogeneous case, laboratory 

frame is not defined, but a global reference frame is used to represent  0B
�

. This 

global reference frame can be considered as the reference frame used by magnetic 

field measurement device. The local reference frames are defined using a spherical 

coordinate system.  
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Any point in a Cartesian coordinate system ( , , )x y z  is represented by ( , , )rq f  in 

spherical coordinates. ( , , )rq f  are defined according to following expressions: 

2 2
1

1

2 2 2

tan

tan

x y

z
y
x

r x y z

q

f

-

-

+
=

=

= + +

          (3.40) 

 

While defining local reference frame, the same methodology is followed.  0B
�

 in each 

voxel is used for calculation of q  and f  angles, and its direction is taken to be in r̂  

direction. The angles are calculated using: 

2 2
1

1

tan

tan

x y

z

y

x

B B

B

B

B

q

f

-

-

+
=

=

        (3.41) 

Then, a transformation matrix from global reference frame to local reference frame is 

defined as: 

cos cos cos sin sin

sin cos 0

sin cos sin sin cos
sphericT

q f q f q
f f

q f q f q

-� �
� �= -� �
� �� �

   (3.42) 

Since sphericT  is a unitary transformation its inverse is equal to its transpose.  

 

r̂  component of local coordinate frame is not defined explicitly, but it is the unit 

vector in the direction of 0B
�

. 

0

0

ˆ
B

r
B

=

�

�        (3.43) 

Within each voxel,  0B
�

 is in r̂  direction. Other vectors in the local reference are 

expressed with respect to the direction of 0B
�

. In Figure 3.2, global and local 

reference frames are shown. 
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Using the local reference frame, the Bloch equation (equation (3.8)) can be used in 

each voxel by the formulation derived for the homogeneous magnetic fields case.  

 

3.2.3. MR Formulation in Inhomogeneous Magnetic Fields  

 

The Bloch equation given in the form (3.8) can be expressed in terms of 

0
0 1, , , ,M M B B T

� � � �
 and 2T . This representation is based upon the fact that transverse 

and longitudinal components of M
�

are defined referencing to 0B
�

. The longitudinal 

component of M
�

 is found by projection of M
�

onto 0B
�

.  

0 0

0 0

M B B
M

B B

� 	×
= 
 �
 �

� 
�

� � �
�

� �        (3.44) 

The remaining component of M
�

 is the transverse component, M ^

�
, defined below.  

 0 0

0 0

M B B
M M

B B
^

� 	×
= - 
 �
 �

� 

� � �
� �

� �       (3.45) 

Since M
�

and 0B
�

 are real valued vectors, the dot product is defined in 3� . 

Consequently, (3.44) and (3.45) can be expressed as a matrix vector product. 

0 0
2

0

TB B
M M

B
=�

� �
� �

�  `      (3.46) 

x  

y  

z  
0B

�  

r  

f  

q  

Figure 3.2: Global reference frame, ( , , )x y z ,  
and local reference frame,( , , )rq f . 
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0 0
2

0

TB B
IM M

B
^

� 	
-
 �=


 �
� 

� �
� �

�       (3.47) 

 

B
�

 in (3.8) can be decomposed as in (3.7). Using the additivity property of cross 

product, cross product term in (3.8) can be expressed as: 

( ) 00 OTHEROTHERM B M M B M BB Bg g g g´ = ´ = ´ + ´+
� � � � � � �� �

  (3.48) 

Using the following property of cross product: 

0 0M B B Mg g´ = - ´
� � � �

      (3.49) 

The cross product can be represented by a skew symmetric matrix operator. 

0, 0,

0, 0,0

0, 0,

0

0

0

z y

z x

y x

B B

M MB BB
B B

gg

-� �
� �

� � = - -- ´ � �� �
� �-� �

� ��
     (3.50) 

As stated previously, OTHERB
�

 term represents the magnetic fields, other than 0B
�

, the 

spin system is exposed to. The cross product matrix, OTHERBg� �- ´� �
�

, can be 

considered as the input matrix to the system represented by (3.8). Consequently, it is 

suitable to leave this term out of terms related to 0B
�

, which represents the system. 

 

0B
�

 related terms in (3.8) can be collected to define system matrix 0A .  

  
0, 0,

0 0 0 0
0 20, 0, 2

2 10 00, 0,

0
1 1

0

0

z y T T

z x

y x

B B
B B B BIA B B

T TB BB B

g

-� �
� 	� � -
 �= - - --� � 
 �� � � -� �

� � � �

� �  (3.51) 

(3.51) can be shown in more compact form as in (3.52). 

0 0
0 0 2

2 1 20

1 1 TB B I
A B

T T TB
g

� 	-� �= + -- ´ 
 �� �
� 

� �
�

�     (3.52) 

The input matrix, uA , is defined as follows: 

u OTHERA Bg� �= - ´� �
�

       (3.53) 

 

Using (3.52) and (3.53), the Bloch equation can be rewritten as: 
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( )
0

0
1

u
dM M

A A M
dt T

+= +

� �
�

      (3.54) 

The summation of system matrix and input matrix can be combined to obtain the 

matrix, A . The constant term in (3.54) is called b . 

0 uA A A= +         (3.55) 

0

1

M
b

T
=

�

        (3.56) 

Since M
�

 and magnetic fields are functions of position, x ( ( ), ,x x y z	 ), and time, 

t , (3.54) can be rewritten as: 

( , )
( , ) ( , ) ( )

dM x t
A x t M x t b x

dt
= +

�
�

     (3.57) 

From now on, when x  is not specified explicitly, the derivations are given for one 

voxel (position is fixed to0x ).  

 

When A  is time invariant, (3.57) has an analytical solution: 

( ) ( )( )0 0
1

0( ) ( )t tA t tAM t e M t A be I
- --= + -

� �
    (3.58) 

When A  is time varying, one of the numerical methods can be utilized to solve the 

inhomogeneous differential equation shown in (3.57).  

 

When 0t t
  in equation (3.58), for 0uA =  case, exponential terms in (3.58) will 

approach to 0 due to the fact that all eigenvalues of 0A  have negative real parts. 

Consequently, (3.58) can be approximated to: 

 0
1

0( ) ,     M t A b t t--
�

� 
       (3.59) 

On the other hand, when 0t t»  in equation (3.58), exponential terms approach to I . 

In this case, (3.58) can be approximated to: 

( )00
0 0( ) ( ),     t tAM t e M t t t- »

� �
�       (3.60) 

Therefore, for long durations the inverse of 0A  is needed, whereas for short durations 

the inverse of 0A  is not needed. For the case 0t t
 , it is required to be shown that 

0A  has an inverse. To be able to prove this, eigenvalues and eigenvectors of 0A  are 

needed. 
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Proposition:   

 

Eigenvalues of 0A  are: 

1
1

2 0
2

3 0
2

1

1

1

T

i B
T

i B
T

l

l g

l g

= -

= -

= - -

�

�

       (3.61) 

 

Proof: 

 

Eigenvalues of   0Bg� �- ´� �
�

 are: 

 

1,1

1,2 0

1,3 0

0

i B

i B

l

l g

l g

=

=

= -

�

�
        (3.62) 

The eigenvectors associated with each eigenvalue of 0Bg� �- ´� �
�

 are: 

0, 0, 0, 0, 0, 0,0 0

0, 0, 0, 0, 0, 0,0, 0 0

2 2 2 20,1 2 30, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,0 0

; ;

1 1

x y z x y z

y z x y z xx

y x z x z

z y z x y z x

B B iB B B iBB B

B B iB B B iBB B B

Be e eB B B B
B B B iB B B iBB B

� � � �+ -
� � � �

- +� � � � � �
� � � � � �= = =+ +� � � � � �

- -� � � � � �- +� � � � � �
� � � �� � � �

� �

� �

� �
 (3.63) 

 

Since 0Bg� �- ´� �
�

 is a cross product matrix (i.e., it is a skew symmetric matrix), it is 

obvious that 0B
�

 is an eigenvector associated with 0 eigenvalue of this matrix. Since 

the other two eigenvalues are nonzero and cross product produces nonzero results 

when it operates on vectors that have components orthogonal to 0B
�

, the other two 

eigenvectors should be orthogonal to 0B
�

.  
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0 0
2

2 1
0

1 1 TB B
T T B

� 	-
 �
� 

� �

�  is a rank 1 matrix. Consequently, it has only one nonzero 

eigenvalue. Eigenvalues of this matrix are: 

2,1
2 1

2,2

2,3

1 1

0

0

T T
l

l

l

= -

=

=

        (3.64) 

The eigenvector associated with the nonzero eigenvalue this matrix is 0B
�

. This part 

of 0A  is, infect, a projection operator onto the subspace spanned by 0B
�

. Therefore, 

0B
�

 forms a basis for the range space of this matrix. Since this part is a rank 1 matrix, 

other eigenvectors form a basis for the null space of this matrix. In other words, these 

two eigenvectors are orthogonal to 0B
�

. Therefore, 2e  and 3e  in (3.62) are suitable 

choices. Consequently, the eigenvectors in (3.62) are also eigenvectors of this part. 

 

2

I
T

-  part of 0A  has three nonzero eigenvalues all equal to 
2

1
T

- .  

3,1
2

3,2
2

3,3
2

1

1

1

T

T

T

l

l

l

= -

= -

= -

        (3.65) 

Since this part is the identity matrix, any vector in 3�  is an eigenvector of it.  

 

Since all three parts of 0A  have the same set of eigenvectors, the eigenvalues of 0A  

are sum of the eigenvalues of each part. This proves the proposition. 

 

Since 2l  and 3l  have magnitudes much larger than 1l (due to the fact that g  is on 

the order of 610 ), 0A  is ill conditioned. Therefore, the inverse 0A  is nearly a rank 1 

matrix. In this case, the pseudo inverse can be computed using singular value 

decomposition concept. 
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The singular value decomposition is based on the fact that any matrix of which 

number of columns is greater than or equal to number of rows can be written as 

product of three matrices. If the dimensions of a matrix A , are defined as NM ´ , A  

can be written as a product of  M N´  column orthogonal matrix U , an N N´  

diagonal matrix S, transpose of a N N´  orthogonal matrix V [33]. Therefore,  A  

can be written as: 

TA USV=         (3.66) 

For square matrices the inverse of A  is given by: 

1 1 TA VS U- -=        (3.67) 

 Since S is a diagonal matrix its inverse is given by: 

1,1

2,2
1

11, 1

,

1
0 0 0

1
0 0 0

0 0

1
0 0 0

1
0 0 0

N N

N N

s

s

S

s

s

-

- -

� �
� �
� �
� �
� �
� �
� �=
� �
� �
� �
� �
� �
� �
� �

�

�

�  �

�

�

    (3.68) 

 

For a square matrixA , the columns of U  forms an orthonormal set of basis vectors 

for the range space of A .  The columns of V  forms an orthonormal set of basis for 

the null space of A . S is a diagonal matrix whose elements are the eigenvalues of 

A .  

 

Generally, U is formed from the eigenvectors of TAA  and V  is formed from the 

eigenvectors of TA A. All parts of the 0A  matrix, defined in (3.52), have the same set 

of eigenvectors defined in (3.62). The transpose of each part also has the same set of 

eigenvectors. Therefore, U  and V  are formed using the vectors in (3.62). 

 

In equation (3.59), the inverse of  0A  matrix should be calculated. An approximate 

inverse of 0A  can be found using singular value decomposition by setting singular 

values with very small multiplicative inverse to zero. When this operation is 
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performed on the eigenvalues given by (3.61), the multiplicative inverses of 2l  and 

3l  should be set to zero. Therefore, after inversion in (3.67) is performed, the 

nonzero column of inverse will be 1e , in (3.62). Consequently, the range space of 

1
0A-  is the span of 0B

�
. When the range space of 10A-  is composed with null space of 

it, a basis set for 3�  will be obtained. Therefore, 1
0A-  is obtained only when two 

vectors which are orthogonal to 0B
�

 and to each other, are replaced with zero 

columns of 1
0A- .  

 

The eigenvalues of 0A  implies that one component of M
�

 relaxes through 0B
�

 with 

time constant 1T , and other two components are rotating in a plane perpendicular to 

0B
�

 and loosing their magnitude with time constant 2T . This mathematical conclusion 

is in accordance with the physical fact, described previously. This shows us that the 

model exhibits the physical basics of the system.  

 

When an input magnetic field is applied to the system ( 0uA ¹ ), the eigenvalues of 

the matrix A  in (3.55) will be different than those in (3.65). In MRI pulse sequences, 

applied inputs have a finite duration that is neither small, nor large. Since none of the 

assumptions about durations hold for 0uA ¹  case, it is more suitable to perform 

matrix inversion using (3.67) directly.   

 

 Any image reconstruction technique needs a relation between the property being 

imaged and signals measured. Therefore, an operator that transfers the magnetization 

from the initial state to the final state is needed. These transformations are called 

state transition functions, and for the finite dimensional case they are called state 

transition matrices, 0( , )t tF . A state transition matrix satisfies: 

0 0

1
0 0

0 0

2 0 2 1 1 0

( ) ( , ) ( )

( , ) ( , )

( , )

( , ) ( , ) ( , )

M t t t M t

t t t t

t t I

t t t t t t

-

= F

F = F

F =

F = F F

� �

      (3.69)    
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Using state transition matrix concept and substituting (3.56), (3.58) can be rewritten 

as: 

( ) ( )( )0
0

1
0

0
1

( ) ( ,0)
t tA

t tA Ae IM t Me t
T

--
-

� 	-= 
 �F +
 �
� 

� �
   (3.70) 

Consequently, the state transition matrix from 0t =  to t  is defined as: 

( ) ( )( )0
0

1

0
1

( ,0) ( ,0)
t tA

t tA Ae It e t
T

--
- -F = F +     (3.71) 

Therefore, for known input magnetic fields, 0B
�

, 1T  and 2T , ( ,0)tF  can be found. 

 

(3.71) is only valid when A  is time invariant. When A  is time varying, state 

transition matrix cannot be found directly. In the time varying A  case, 0M
�

 should 

be known to find the state transition matrix using numerical methods. For the 

reconstruction problem 0M
�

 is not known. To be able to find a relation between 

( )M t
�

 and 0M
�

, each orthogonal basis vector of 3�  is assigned as 0M
�

 and (3.57) is 

solved for each 0M
�

. The calculated ( )M t
�

s are the columns of 0( , )t tF . Therefore, 

to find 0( , )t tF , differential equation (3.57) is solved three times for each unit basis 

vector of 3� .  

 

Since the state transition matrix is known at time the measurement is made, (3.57) 

can be rewritten as: 

0

1

1( ) ( ) ( ,0)dM t A t t I M
Tdt

� 	F += 
 �
� 

�
�

     (3.72) 

Measured voltage also satisfies (3.39). Substituting (3.72) to (3.39) yields: 

0
2

1

1
( , ) ( ; ,0)( ) ( ) ( )

( )
objV

A x t x t IV t B x M x dx
T x

� �� 	F += - ×� �
 �
� � �

�
� �

 (3.73) 

After measuring the voltage, it is demodulated to obtain the low frequency content. 

The demodulator is the same as the one shown in Figure 3.1. However, the cutoff 

frequency of the low pass filters should be chosen according to the bandwidth of 

data; because the magnitude variation of 0B
�

 field may be large causing large 

variations in the Larmor frequencies of spins.  
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3.2.4. Image Reconstruction Technique Formulation 

 

If 0( )M x
�

 is known for all x ÎW  (W is the volume of the object being imaged), the 

problem is to find ( )V t . On the other hand, if ( )V t  is known, the problem is to find 

0( )M x
�

, which is a function of sN . The first problem is called as forward problem, 

and the latter one is the inverse problem.   

 

Forward problem can be solved by (3.73). However, a relation between 0( )M x
�

 and 

( )V t  is needed to solve the inverse problem. The relation given by (3.73) can not be 

used directly to find 0( )M x
�

. The easiest way is to discretize the relation (3.73) with 

respect to time and position, so that a linear transformation from  0( )M x
�

 to ( )V t  is 

obtained.  

 

As in the previous discretization, the volume being imaged, W, is divided into 

voxels, in each of which magnetic fields are assumed to be uniform. Let P  denote 

number of voxels in W. Then, (3.73) can be rewritten as: 

0
2

11

1
( , ) ( ; ,0)( ) ( ) ( )

( )

P

p pp p
pp

A x t x t IV t B x M x v
T x

=

� �� 	F += - × D� �
 �
� � �

�
� �

  (3.74) 

where vD  is the volume of one voxel and px  is the position of the centre of p th-  

voxel. Since 2B
�

 and the bracketed term in (3.74) are both real valued, dot product is 

the standard inner product in 3� . Consequently, (3.74) can be rewritten as: 

 
2

0

11

1
( , ) ( ; ,0)( ) ( ) ( )

( )

P
T

p pp p
pp

A x t x t IV t B x v M x
T x

=

� �� 	F += - D� �
 �
� � �

�
� �

  (3.75) 

The bracketed term in (3.75) can be defined as: 

( ) 2
1

1
( , ) ( ; ,0), ( )

( )

T
T

p pp p
p

A x t x t Ix tF B x v
T x

� �� 	F += - D� �
 �
� � �

� �
  (3.76) 

Since ( ),px tF  is a vector for each px , a vector in 3P�  can be defined by 

concatenating each ( ), ,   1,2,..,ix tF i P= one under another as follows: 
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( )

( )
( )
( )
( )

( )
( )

1

1

1

2

,

,

,

,

,

,

x

y

z

x

y P

z P

F x t

F x t

F x t

F F x tt

F x t

F x t

� �
� �
� �
� �
� �

= � �
� �
� �
� �
� �
� �� �

�

�

       (3.77) 

Similarly, another vector for the components of 0( )pM x
�

 can be defined as: 

( )
( )

( )
( )

( )

( )

0
1

0
1

0
1

0 0
2

0

0

x

y

z

x

y P

z P

M x

M x

M x

M M x

M x

M x

� �
� �
� �
� �
� �
� �= � �
� �
� �
� �
� �
� �� �

�

�

�

� �

�

�

�

       (3.78) 

Using (3.77) and (3.78), (3.75) can be written as a dot product of these two vectors.  

0( ) ( )TV t F t M= � �        (3.79) 

 

When time is discretized using time step (sampling duration) that does not destroy 

the frequency content of data, (3.79) can be written as: 

0[ ] [ ] ( ),       ( 1)T
nV n F n M V t n t t n t= = D < £ + D� �    (3.80) 

where n  is defined using ( 1)n t t n tD < £ + D ( tD  is sampling duration).  

 

In MRI, voltage is measured for finite duration of time. The measurement duration is 

called “Acquisition Time”, acqT . If N  samples are taken in acqT , (3.80) can be 

extended to contain all the acquired data in acqT . Defining a vector V�  and a 

matrixS, a linear relation between 0M�  and measured voltage is obtained. 

[ ]
[ ]

[ ]
[ ]

1

2

1

V

V

V

V N
V N

� �
� �
� �
� �=
� �

-� �
� �� �

� �        (3.81) 
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[ ]

[ ]

[ ]

[ ]

1

2

1

T

T

T

T

F

F

S

F N

F N

� �
� �
� �
� �

= � �
� �

-� �
� �
� �

�

�

�

�

�

       (3.82) 

0V SM=� �         (3.83) 

 

The inverse of S should be found to determine 0M� . However, since both right and 

left hand sides of (3.83) contain modulated data and since demodulator is a linear 

system, both sides can be demodulated. Left hand side can be demodulated directly 

using the demodulator in Figure 3.1. However, right hand side can not be 

demodulated directly. However, since right hand side is a matrix vector product, 

right hand side of (3.83) can be rewritten as: 

3
0 0

1

P

i i
i

SM M s
=

= �� �         (3.84) 

where 0
iM�  is the thi  component of  0M�  and is  is the thi  column of S. Therefore, 

the right hand side is demodulated by demodulating each column of S.  

 

Let V�  denote the demodulated signal and S denote the S matrix with demodulated 

columns. 

 

The direction of 0( )pM x
�

 is known from (3.4). The number of unknowns can be 

reduced using the direction of 0( )pM x
�

. Another matrix can be constructed to 

represent the direction information to eliminate the direction of 0( )pM x
�

 among the 

unknowns.  

 

0( )pM x
�

 is in the direction of 0( )pB x
�

. Consequently, a 3P P´  direction matrix can 

be constructed as follows: 
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0, 1

1

0, 1

1

0, 1

1

0, 2

2

0, 2

2

0, 2

2

0,

0,

0,

( )
0 0

( )

( )
0

( )

( )
0

( )

( )
0

( )

( )

( )

( )

( )

0 0

( )

( )

( )

( )

( )
0 0

( )

x

y

z

x

y

z

x P

P

y P

P

z P

P

B x

B x

B x

B x

B x

B x

B x

B x

B x

D B x

B x

B x

B x

B x

B x

B x

B x

B x

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �= � �
� �
� �
� �
� �
� �
� �
�
�
�
�
�
�
�
�
�� �

��

�

�

��

�

�

� 

� �

�

� �

�
�
�
�
�
�
�
�
�

      

 

The unknown vector is defined as: 

0
1

0
2

0

( )

( )

( )P

M x

M x
X

M x

� �
� �
� �

= � �
� �
� �
� �� �

�

�

�
�

       (3.86) 

Using these definitions (3.83) can be rewritten as: 

( ) X VSD = �         (3.87) 

 

SinceS does not have full rank for a single measurement, solving (3.87) iteratively is 

more suitable than trying to compute the pseudo inverse of ( )SD . In the iterative 

solution, initial solution of each measurement data will be taken as the solution of 

previous measurement’s set of data.    

 

(3.85) 
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Any reconstruction technique that utilizes finite set of data to reconstruct an image of 

an infinite dimensional physical parameter, aims to find a solution in the least 

squares sense. Similarly, iterative reconstruction techniques also try to find a solution 

in the least squares sense.  

 

The problem of solving a linear set of equations, as in (3.87), can be generalized as a 

minimization problem: 

Minimize ( )
2

X VSD - � . 

Since S and V�  are complex valued the norm used in the objective function above is 

induced from the following complex inner product: 

( ) ( )( ) ( )( )H
f X V X VSD SDX = - -� �     (3.88) 

where H denotes complex conjugate transpose (tranjugate). When multiplication is 

performed, (3.88) can be rewritten as: 

 ( ) T T H T T H H Hf X D S SDX X D S V V SDX V VX = - - +� � � �   (3.89) 

where for real valued vector and matrix (D  and X ), tranjugate is used as 

transposition.    

 

The gradient of ( )f X  with respect to X  is given by: 

( )( ) ( ) ( )2 2 HT H X SD Vf D S SDXÑ = - �    (3.90) 

As in any unconstrained optimization problem the gradient  ( )( )f XÑ  should be 

equal to 0 at a local optimum point. Then, the problem is reduced to the solution of a 

linear set of equations. However, for the problem at hand, it is not possible to obtain 

a minimum norm solution using one set of data (( )T HD S SD  and HV SD� ). 

Therefore, an iterative method, like steepest descent or conjugate gradient, will be 

more suitable to extend the solution obtained using one set of data to the next set of 

data.  
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RF  

PEG  

FRQG  

Signal 

t  
0t 1t 2t 3t 4t 5t 6t 7t

Figure 3.3: Implemented pulse sequence (order of inputs and durations) 

 

 

3.3. Implementation 

 

In this section, implementation details are given.  

3.3.1. Implemented Pulse Sequence 

 

In any MRI system, input magnetic fields should be applied in an order to obtain 

desired responses from the spin system. The order of application and the duration of 

inputs is called a “Pulse Sequence”.  

 

There is a variety of pulse sequences used in MRI. However, the basic pulse 

sequence is known as the “Spin Echo” pulse sequence. In this work, the spin echo 

pulse sequence is implemented as a test case to verify that the developed theory is 

valid. Figure 3.3 shows the order of inputs of the spin echo pulse sequence.  
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In Figure 3.3, RF  represents RF field, PEG  represents the magnitude of phase 

encoding gradient field derivative with respect to phase encoding direction, FRQG  

represents the magnitude of frequency encoding gradient field derivative with respect 

to the frequency encoding direction, Signal represents the measured signal and t  

represents time.  

 

The signal is obtained after an application of appropriate input magnetic fields. As 

shown in Figure 3.3, the signal is acquired only between specific time instants. As 

stated previously, the duration between these time instants is known as the signal 

acquisition time, acqT .   

 

 

In this pulse sequence two RF pulses are applied. First RF pulse is required to rotate 

M
�

 through the transverse plane; whereas the second one is used for the reversal of 

the direction of M
�

. The first RF pulse is named as 
2
p

, and second pulse is named as 

p  pulse. In order to obtain a p  pulse from the RF field applied to obtain a 
2
p

 pulse, 

from equation (3.30), the magnitude of the RF field (described by the envelope 

function) can be doubled. In this case, the durations of RF pulses become equal to 

each other. The duration of 
2
p

 pulse can be calculated using (3.30). However, in this 

study the envelope of the RF field is considered to be in rectangular shape. 

Consequently, (3.30) can be rewritten as: 

1( )t B ta g=
�

       (3.91) 

and the duration of  
2
p

 pulse can be calculated using: 

12
RFT

B

p
g

= �        (3.92) 

The RF pulse is designed so that it has a frequency bandwidth, 2 wD . A typical RF 

envelope function in frequency domain is shown in Figure 3.4. 
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Typical RF pulse envelope function

½B1½

wrfwrf-Dw wrf+Dw

w

Figure 3.4: Typical RF pulse envelope 
function in the frequency domain 

 

 

 

 

 

 

 

 

 

 

 

 

Since the resonance condition imposes the fact that all spins in the object should 

have a precession frequency that is covered by RF pulse’s bandwidth, RF pulse is 

used to narrow the imaging domain in the object. The imaging region imposed by RF 

field’s bandwidth is given by: 

{ }0( ) ,rf rfx xw w w w w� �W = Î - D + D� �    (3.93)   

where 0 ( )xw  is the Larmor frequency in the point x . This region is also called the 

“Field of View” (FOV). By changing the center frequency of the RF pulse, FOV is 

changed. Each FOV imposed by the RF pulse’s bandwidth is named as “Slice”. If the 

number of slices is greater than one (3.93) can be rewritten as: 

{ }0 , ,( ) ,i rf i rf ix xw w w w w� �W = Î - D + D� �    (3.94) 

for the thi  slice. Hence, the whole imaging domain is the union of iW s. 

1

N

i
i

slice

=
W = W�        (3.95) 

 where Nslice  is the number of slices. Consequently, although in conventional MRI 

this pulse sequence only produces 2D images, in inhomogeneous case it yields 3D 

images. 

 

The phase encoding gradient field’s magnitude is varied from measurement to 

measurement to obtain linearly independent measurements. The variation of the 

magnitude is chosen properly to prevent aliasing in the images. Although the 
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duration of the phase encoding gradient can be chosen arbitrarily, it is customary to 

chose it 
2
acqT

.  

 

The frequency encoding is applied two times in this pulse sequence. These two 

frequency encoding gradient fields are applied to encode spatial information in the 

frequency encoding direction. The second one is applied for acqT  duration. The 

magnitude of the frequency encoding gradient can be chosen arbitrarily; but the 

magnitude of it directly effects the duration of signal detection, acqT . Consequently, it 

should neither be too small nor too large.  

 

In Figure 3.3, after acquiring the signal another RF pulse is shown to signify that the 

pulse sequence is repeated.  

 

The time at which the maximum amplitude of signal occurs is known as “Echo 

Time”, ET . The duration that the spin system is let to relax through the initial state is 

known as “Relaxation Time”, RT . 

 

Certain instants of the time axis are labeled in Figure 3.3. 0t  is the instant at which 

the sequence starts with the application of  
2
p

 RF pulse. 1t  represents the end of  
2
p

 

RF pulse and the start of application of phase encoding and frequency encoding 

gradients. The duration between 0t  and 1t  is: 

1 0RFT t t= -        (3.96) 

At 2t  gradients fields are closed. Consequently, the duration between 1t  and 2t  is: 

2 12
acqT

t t= -        (3.97) 

The middle of  p  pulse is at 3t . The p  pulse is applied so that the middle of it is at 

2
ET

. Consequently, 3t  is equal to 
2
ET

. At 4t  the signal acquisition and frequency 
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encoding start at the same time. 6t  is the end of signal acquisition and frequency 

encoding. Consequently, the duration between 4t  and 6t  is : 

6 4acqT t t= -        (3.98) 

At 5t  the maximum amplitude of the signal is obtained. 5t  is equal to ET . At 7t  the 

current step of the pulse sequence is finished and the next step starts. The duration 

between 0t  and 7t  is given by: 

7 0RT t t= -        (3.99) 

 

To be able to use this pulse sequence, 1,  ,  ,  ,  E R FRQ PET T G G BD
�

 and acqT  should 

be determined.  

 

ET  and RT  can be chosen so that the image is weighted with 1T  or 2T . However, 

since the aim of the  reconstruction algorithm is to find 0M
�

, it is more suitable to 

choose ET  around 2T , and RT  larger than 1T  so that in the image neither  1T  nor 2T  

is weighted. 

 

FRQG  should be determined before the pulse sequence is applied. In the 

homogeneous magnetic fields case, since this encoding changes the frequency 

content of the signal, the sampling duration of the signal should be chosen according 

to it. Sampling duration is determined by the data acquisition hardware of the 

system. For known sampling duration,  FRQG  can be calculated by: 

2
FRQ

frq

G
W t

p
g

£
D

      (3.100) 

where frqW  is the width of object in frequency encoding direction and tD  is the 

sampling duration. This condition also satisfies the Nyquist criteria, when it is given 

in the form: 

2

frq FRQ

t
W G

p
g

D £       (3.101) 

for known  FRQG . 

 



 

 

121 

Since the size of the image is determined prior to collecting data, for a fixed 

sampling duration, acqT  can be determined using: 

acq frqT N t= D        (3.102) 

where frqN is the number of samples (the size of image in frequency encoding 

direction). 

 

However, in inhomogeneous case the frequency content of the signal is not only 

determined by the frequency encoding gradient, but also from the width of the 

inhomogneity of 0B
�

. Therefore, in this case, (3.98) should be written as: 

2
2 s

t
p
w

D £
D

        (3.103) 

where swD  is the half of frequency bandwidth of the signal. The frequency 

bandwidth of the signal is: 

( ) ( )( )0 02 max min( ) ( ) ( ) ( )s FRQ FRQB x B x B x B xw gD = -+ +
� � � �

 (3.104) 

for the points previously determined by  RF pulse bandwidth in (3.93), x ÎW , where 

FRQB
�

 is the magnetic field of frequency encoding gradient.  

 

As stated previously, phase encoding gradient is used to obtain linearly independent 

solutions. Each step of the phase encoding gradient’s magnitude should be chosen 

carefully to obtain linearly independent measurements. In conventional MRI, the 

linearly independent measurements are guaranteed by the Nyquist criteria. By the 

Nyquist criteria, the phase introduced to spins in the spin system is at most 2p  in 

each measurement. Consequently, this condition can be written as: 

2
PE

pe PE

G
W T

p
g

D £         (3.105) 

where peW  is the width of object in the phase encoding direction and PET  is the 

phase encoding duration. In MRI in inhomogeneous magnetic fields, the same 

condition is used.  
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3.3.2. Generation Of Magnetic Fields  

 

There are five magnetic fields required by the simulator and the reconstruction 

algorithm, 0 1,  ,  ,  FRQ PEB B B B
� � � �

 and 2B
�

.  

 

The main magnetic field, 0B
�

, is the magnetic field generated by the permanent 

magnet arrangement obtained in Chapter 2. The main magnetic field is used as a 

reference in the generation of other magnetic fields. 

 

The RF field, 1B
�

, is generated  perpendicular to 0B
�

 at all points in the object being 

imaged. To obtain a perpendicular field,  0B
�

 is represented in spherical coordinates 

by calculating q  and f  angles using (3.41). These angles are used in the calculation 

of transformation given in (3.42). In this representation, 0B
�

 has only ̂r  component. 

Since 1B
�

 should be in the form given in (3.13) and should be perpendicular to 0B
�

,  a 

vector in spherical coordinates is created as : 

1,

1, 11,

1,

cos( )

( ) sin( )

0

rf

spheric rf

r

tB

B t tBB
B

q

f

w

w

� �� �
� �� �= = -� �� �
� �� �� � � �

� �
    (3.106) 

Then, 1B
�

 in the global frame is found using: 

1 1,
T
spheric sphericB T B=

� �
       (3.107) 

The magnitude of 1B
�

 is determined prior to these operations.  

 

Similarly, 2B
�

 is created using the same procedure.  

2

1

2
1

2
0

T
sphericB T

� �
� �
� �

= � �
� �
� �
� �� �

�
       (3.108) 
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Gradient fields are assumed to have homogeneous direction distribution throughout 

the object being imaged. Therefore, they are created in the global frame as: 

0

0FRQ

FRQ

B
G x

� �
� �= � �
� �� �

�
      (3.109) 

0

0PE

PE

B

G y

� �
� �= � �
� �� �

�
      (3.110) 

where the frequency encoding gradient’s magnitude varies linearly in x  direction 

and the phase encoding gradient’s magnitude varies linearly in y  direction. These 

gradient fields can be used in regions where the magnitude of the magnetic field is 

much larger than magnitudes of gradient fields. In the regions where this assumption 

is valid, gradient fields’ effective component is in the direction of 0B
�

. Therefore, 

gradient fields are modified using this fact. 

0 0
2

0

T

FRQ FRQ
B B

B B
B

=

� �
� �

�       (3.111) 

0 0
2

0

T

PE PE
B B

B B
B

=

� �
� �

�       (3.112)   

 

3.3.3. MRI Simulator In Inhomogeneous Magnetic Fields 

 

The constructed MRI simulator in inhomogeneous magnetic fields makes use of the 

magnetic fields generated and the pulse sequence described previously.  

 

The objects being imaged are created in the simulator. The objects being created are 

composed of x y zN N N´ ´  voxels. sN , 1T  and 2T  distributions are created 

randomly so that each slice of the object forms previously defined shapes.   

 

The magnetic fields are created in each voxel of the object. The main magnetic field, 

0B
�

, is created using the obtained magnet arrangement in Chapter 2. Each unit 

magnet in the arrangement has a side length of 4cm and a height of 3cm. Then, the 
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magnetic field is calculated using (2.42). After creating main magnetic field, other 

magnetic fields are created as described in the previous section.  

 

Since measured signals from any MRI device are continuous, an appropriate discrete 

representation of these signals should be used. Measured signal is a band limited RF 

signal modulated with a sinusoid with center frequency of bandwidth. To be able to 

represent this signal appropriately, at least two samples of the highest frequency 

component of the signal is needed.   This condition can be expressed as: 

( )0

1

2 max
at

Bg
D £ �       (3.113) 

where atD  is the sampling duration. Moreover, any continuous signal in the 

simulator is represented in discrete time by the chosen atD . 

 

In Figure 3.5, the simulator is given in pseudo code form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

th 

Get user Inputs

Initialize

While k Number of Slices

    Find k Slice 

    Slice Initialize  

    While j Number of phase encodings

        Apply RF pulse
2

        Apply Phase encoding gradient

        Wait

p

£

£

w1

w2

w3

 for T  duration (Free relaxation)

        Apply RF pulse

        Wait for T  duration (Free relaxation)

        Acquire and Save the Signal

        Wait for T  duration (Free relaxation)

         j + +

 

p

   end

    k + +

end

Figure 3.5: Simulator in pseudo code 
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In Get user Input part, the simulator expects the user to define 

1 2, , , ,FRQ E RG T TB B
� �

, the number of phase encoding steps, the number of 

frequency encodings, the size of the object in terms of pixels and the magnetic field 

distribution in FOV.   

 

In Initialize part, main magnetic field is loaded; the object being imaged is created; 

other magnetic fields are created referencing to main magnetic field and are 

represented in the local reference frame as described. After that, 0M
�

 is calculated 

using equation (3.4). Using 0B
�

 distribution and the number of slices entered by the 

user, RF field’s bandwidth and center frequencies are calculated. After that, (3.113) 

is used to calculate the sampling duration for discrete time signal representation. 

After converting all of the vectors in local reference frame, they are considered as 

represented in the rotating frame of reference as in the conventional MRI.  

 

In Find thk  Slice part, equation (3.94) is used to find the current slice voxels.  

 

In Slice Initialize part, using (3.92) RFT , using (3.102) acqT and using (3.105) PEGD  

are calculated. Afterwards, the steps of the phase encoding field’s magnitude 

derivative with respect to the phase encoding direction for each phase encoding are 

generated.  

 

2
p

 RF pulse is applied using the matrix representation of this operation given in 

(3.31). Although equation (3.31) is only valid for a RF field in q̂  direction of local 

reference frame, it is easy to extend it for RF fields in other directions. In this work, 

RF field is assumed to be in q̂  direction, although the simulator can handle RF fields 

in other directions. The matrix representing RF field application is created for all 

voxels in the current slice, and magnetization vector of each voxel is multiplied with 

a corresponding matrix. 
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Phase encoding is applied for both phase encoding gradient and frequency encoding 

gradient for the same duration at the same time. As a matrix representation of the 

phase encoding operation, (3.34), is used. Since PET  is defined to be 
2
acqT

, for 

constant gradient field the phase angle introduced by gradient fields are: 

( ) ( ) ( )
2
acq

FRQ PE

T
x B x B xf g= +

� �
      (3.114) 

The phase angles calculated using (3.114) are used to create matrices of the phase 

encoding in (3.34) for each voxel in the current slice. Similar to RF pulse 

application, the matrix of each voxel is multiplied with the magnetization vector of 

the same voxel.  

 

Between the phase encoding and p  RF pulse application the spin system is left for 

relaxation. The matrix representation of the relaxation is given in (3.36). The matrix 

representations of the phase encoding and RF application operations do not contain 

any relaxation terms. Since the matrix representation of free relaxation is composed 

of two diagonal matrices, it commutes with any matrix. Consequently, the 

relaxations during phase encoding and RF field application can be concatenated with 

free relaxation period. Hence, 1wT  is: 

1 2
E

w
T

T =        (3.115) 

For this period, the half of p  RF pulse duration is covered. Similar to other 

operations, this operation is performed for all of the voxels in the slice.  

 

The application of  p  RF pulse is the same with 
2
p

 pulse. After that, the spin system 

is relaxed for  2wT  duration. This time relaxation duration is: 

2 2 2
acqE

w

TT
T = -       (3.116) 

 

Signal acquisition part of the simulator is summarized in Figure 3.6. 
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Application of the frequency encoding gradient is not different than the application 

of the phase encoding gradient. Consequently, the frequency encoding is applied for 

atD  duration using the matrix representation of the phase encoding. The phase angle 

introduced by the frequency encoding is given by: 

( ) ( ) aFRQx tB xf g= D
�

     (3.117) 

After that, the system is relaxed for atD  duration as explained above. To be able to 

calculate the voltage induced on the receiver coil, the magnetization vector in each 

voxel of slice should be represented in the global reference frame. To be able to 

obtain magnetization vector in the global frame, first, it should be converted to the 

global rotating frame, then to the inertial global frame. The conversion to the global 

rotating frame is done by multiplying the magnetization vectors of each voxel with 

spheric

TT  matrix (in (3.42)) of the same voxel. Similarly, the conversion to the inertial 

frame is done by multiplying the obtained magnetization in the rotating frame by 

( )
rot

TT t matrix at time instant given by: 

2
acq

E a

T
t T n t= - + D       (3.118) 

Figure 3.6: Signal acquisition phase of the simulator 

a

a

While i SampleNo

    Apply frequency encoding gradient for t  duration

    Relax for t  duration

    Convert the magnetizations from local frame to global rotating frame

    Convert the magnetizations f

£

D

D

th

rom rotating frame to static frame

    Calculate derivative of magnetizations using Bloch equation

    Calculate the voltage induced 

    Store the result of  i  sample

    i + +

end

Save the resultant signal
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After that, the derivative of the magnetization vector in the global inertial frame is 

calculated using the Bloch equation, (3.8). After calculating the derivative of 

magnetization, the discrete form of (3.37) (given in (3.119)) is used to calculate the 

voltage induced at the receiver coil. 

2
1

( , )
[ ] ( )

a

P
p

p
p t i t

dM x t
V i B x

dt= = D

= - ×�
�

�
    (3.119) 

The procedure is repeated for all of the samples in acqT . The number of samples can 

be calculated using: 

acq

a

T
SampleNo round

t

� 	
= 
 �

D� 
     (3.120) 

After collecting all the samples, the obtained voltage signal is stored to be used in the 

reconstruction algorithm. 

 

After acquiring the voltage induced, the simulator waits for the relaxation of spins to 

the initial state for  3wT  duration. This duration is given by: 

3 2
acq

w R E

T
T T T= - -        (3.121) 

Then, the same pulse sequence operations are repeated for all of the phase encodings. 

The whole procedure is repeated for the total number of slices.  

 

3.3.4. MRI In Inhomogeneous Magnetic Fields Implementation 

 

The same pulse sequence is implemented for magnetic resonance in inhomogeneous 

magnetic fields. The same magnetic fields are used as in the simulator 

implementation. The procedure is summarized as a pseudo code in Figure 3.7. 

 

In Get user Input part in Figure 3.7, the simulator expects the user to define 

1 21 2,  ,  ,  ,  ,  ,  FRQ E RG T T T TB B
� �

, the number of phase encoding steps, the number 

of frequency encodings and the path of magnetic field distribution in FOV. The 

relaxation time constants, 1T  and 2T ,  are just the estimated ones since the exact 

distribution is not known.  
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th 

Get user Inputs

Initialize

While k Number of  Slices

    Find k Slice 

    Slice Initialize  

    While j Number of phase encodings

        Find transformation matrix for  RF pulse application
2

        Fin

p

£

£

w1

d transformation matrix for phase encoding 

        Find transformation matrix for free relaxation for T  duration

        Find transformation matrix for  RF pulse application

        Find transformati

p

w2

0

w3

on matrix for free relaxation for T  duration

        Acquire and Save the transformation from M

        Find transformation matrix for free relaxation for T  duration

         j + +

    end

    k + +

end

�

Figure 3.7: Pseudo code of MR in 
inhomogeneous magnetic fields  

 

In Initialize part in Figure 3.7, main magnetic field is loaded and other magnetic 

fields are created referencing to the main magnetic field as in the simulator. Using 

0B
�

 distribution and the number of slices entered by the user, RF field’s bandwidth 

and center frequencies are calculated. After that, the sampling duration for the 

discrete time signal representation is used as in the simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Find thk  Slice part, equation (3.94) is used to find the current slice voxels.  

 

In Slice Initialize part, RFT , acqT and PEGD  are calculated. Afterwards, the steps of 

the phase encoding field’s magnitude derivative with respect to the phase encoding 
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direction for each phase encoding are generated. After that, the initial state transition 

matrices for each voxel are created. The initial state transition matrices are identity 

matrices. Then, free relaxation durations are calculated. In this case, pulse sequence 

operations contain relaxation terms. Consequently, relaxation times are given by: 

1

2

3

3

2 2 2

2 2 2

2

acqE RF
w

acqE RF
w

acq
w R E

TT T
T

TT T
T

T
T T T

= - -

= - -

= - -

     (3.122) 

Since the RF pulses yields time varying A  in (3.57), the transition matrices for RF 

pulses are calculated using Runge-Kutta (4, 5) algorithm. This algorithm is provided 

by MATLAB and is not implemented in this work. As described previously, to find 

the state transition matrix from 0M
�

 to ( )M t
�

, equation (3.72) is solved three times 

for the assignment of each unit vector of 3� as 0M
�

.  

 

The state transition matrices, 0( ; ,0)RFx T tF + , of 
2
p

 RF pulse are found as 

described above. This pulse is assumed to be applied at 0t .  

 

Gradient fields are assumed to be time invariant in this work. Therefore, after turning 

on these fields, A  in (3.57) is time invariant. Consequently, equation (3.71) is used 

to find the state transition matrix after the application of gradient fields.  

 

Between the phase encoding and p  RF pulse application the spin system is left for 

relaxation. In this duration no input is applied. In other words, A  is time invariant 

and equal to 0A . Consequently, again (3.71) is used to find state the transition matrix 

after the relaxation duration, 1wT .  

 

The state transition matrix after the application of p  RF pulse is calculated with the 

same procedure used in 
2
p

 RF pulse. While calculating the state transition matrices 

after p  pulse, the magnitude of RF field is doubled to keep the duration constant. 
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After p  pulse, the spin system is relaxed for 2wT  duration. The state transition 

matrix after 2wT  is calculated using the same procedure as in the previous relaxation. 

 

Calculation of S matrix in equation (3.83) is summarized in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The state transition matrix is calculated using small duration approximation. This 

assumption is valid since the S matrix is calculated for atD  duration.  [i]F�  is defined 

in (3.77), but its components are calculated using (3.76). Then, the S matrix is 

formed as in (3.82); i.e, thi  row of the S matrix is formed by [i]TF� . All rows of the S 

matrix is filled with TF�  and resultant matrix is saved to be used in the reconstruction 

algorithm.   

 

After creating the S matrix, the spin system is relaxed for 3wT  duration. This duration 

is very large compared to other intervals. Consequently, large duration 

approximation holds and the state transition matrix is calculated using (3.59). The 

inverse of matrix A , which is equal to 0A , is calculated using the facts proven in the 

theory part. 

 

Then, the same pulse sequence operations are repeated for the total number of the 

phase encodings. The whole procedure is repeated for all of the slices. 

Figure 3.8: S matrix calculation steps 

th

While i SampleNo

    Calculate the state transition matrix using (3.60)

    Calculate [i] using (3.76)

    Form i  row of   matrix from [i] 

    i + +

end

Save the resultant matrix 

T

F

S F

S

£

�

�
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3.3.5. Image Reconstruction Technique Implementation 

 

The image reconstruction technique is a procedure to solve equation (3.87). The 

steepest descent algorithm is used to solve the optimization problem defined in the 

theory part. The steps of the steepest descent algorithm are summarized in Figure 

3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The steps of the reconstruction algorithm are summarized in Figure 3.10. In the 

initialization part, the variables used in the algorithm are initialized. For each slice, 

iW and 0( ),j j iB x x Î W
�

are loaded. 0( )B x
�

 is used to calculate the demodulator’s 

frequency and cutoff frequency of the low pass filter. After that,  thj  phase encoding 

of thk  slice data is loaded both from simulator and MR in inhomogeneous magnetic 

field parts. Then, both signals are demodulated using the procedure described in the 

theory part. After that, the steepest descent algorithm is performed using 0x  as the 

( )
( )

i

i

i i

i
i

i

1 i i

i i

i = 0

r b - Ax

While i iterNo

r r
    

r Ar

     r

     r b - Ax

end
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H

T

T

i i

A D S SD

b SD V

x x

a
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=

=

£

=

= +

=

�

Figure 3.9: The steepest descent 
algorithm 



 

 

133 

initial solution for previously defined steps. The obtained solution of  the thj  phase 

encoding is used as the initial solution of the steepest descent algorithm at ( 1)thj +  

phase encoding.  After covering all of the phase encodings, the obtained solution is 

inserted into the appropriate components of 0( )jM x� . The procedure is repeated for 

all slices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Results 

 

In this section, obtained results are shown. First, the results of the simulator and the 

image reconstruction technique are shown for homogeneous magnetic fields case. 

These results are shown to validate the theory developed. Second, the results of both 

the simulator and the image reconstruction technique for inhomogeneous magnetic 

fields are shown. 

th 

0

th th 

th t

Initialize

While k Number of  Slices

    Load k slice data 

    x 0

    While j Number of  phase encodings

        Load  matrix of  k slice's j phase encoding

        Load signal data of  k slice's j

S

£

=

£

h 

0

0

phase encoding,  

        Demodulate  and  and obtain  and 

        Perform the steepest descent algorithm for x  and obtain x

        x x

        j + +

    end

    k + +

end

V

S V S V

=

�

� �

Figure 3.10: Pseudo code of the image 
reconstruction technique  
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3.4.1. Results Of Homogeneous Magnetic Fields Case 

 

The constructed simulator and MR in inhomogeneous magnetic fields theory is 

tested using homogeneous magnetic fields. Homogeneous magnetic field distribution 

can be thought as a special case of the inhomogeneous distribution of magnetic 

fields. Moreover, the use of homogeneous magnetic fields as a test case provides a 

basis to compare the performance of the image reconstruction technique with the 

conventional inverse Fourier technique.  

 

The input parameters are chosen as shown in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

The object being imaged is created as a square object as shown in Figure 3.11. 

 

For the object shown in Figure 3.11, relaxation time constants are chosen as: 

1

2

1

100

T s

T ms

=

=
 

 

0M
�

 is calculated using the equation (3.4). The magnitude distribution of initial the 

magnetization, 0M
�

, is shown in Figure 3.12 

 

 

 

Table 3.1: The chosen input values 

Slice No = 1

Number of  Phase Encoding = 11

Number of  samples ( ) = 11frqN
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Figure 3.12: 0M
�

 distribution 

Figure 3.11: sN  distribution 
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Figure 3.13: PEB
�

distribution 
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Figure 3.14: FRQB
�

distribution 

The distributions of the gradient magnetic fields’ magnitude are shown in Figures 

3.13 and 3.14. Although the magnitude of the phase encoding gradient is varied 

during the evaluation of the pulse sequence, Figure 3.13 is given for unity phase 

encoding gradient’s magnitude derivative.   
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Figure 3.15: The reconstructed image using inverse Fourier technique 
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Reconstructed image using inverse Fourier approach
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Figure 3.16: The reconstructed image using developed technique 
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The reconstructed image using inverse Fourier technique is given in Figure 3.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reconstructed image using the developed technique is shown in Figure 3.16. 
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The error of reconstructed image with respect to 0M
�

 distribution is calculated 

using: 

{ }( )2
0

20

Re ( )
( ) , 1..

( )

p p
p

p

X M x
err x p P

M x

-
= =

�

�    (3.123) 

where 0( )p p r
X M x=

�
 is the calculated magnitude of 0M

�
 at the thp  pixel of image;  

0( )pM x
�

 is the magnitude of 0M
�

 at thp  pixel of object being imaged. The 

calculated magnitude of 0M
�

 is in the modulus due to the fact that the reconstruction 

algorithm outputs complex numbers. The formula is only valid for voxels at which 

spins exist, i.e.,  0( )pM x
�

 is nonzero.  

 

Similarly, the conventional image reconstruction technique also aims to reconstruct 

the magnitude of 0M
�

 distribution. Consequently, the same error formula can be used 

to find the error distribution in the image which is reconstructed using inverse 

Fourier technique. 

 

In Figures 3.17 and 3.18, the error distributions of reconstructed images are given for 

the developed technique and the inverse Fourier technique, respectively. 

 

The error performance of the developed technique is better than the Fourier based 

image reconstruction technique. This is due to the fact that the developed technique 

is iterative. When an iterative technique converges to the solution, reconstruction 

error decreases. Due to this fact, the same set of data, with an initial solution 

obtained from previous sets of data, is used for more than one time in the procedure. 

Using this fact, the reconstruction technique has been run three times with the same 

set of data to obtain the image shown in Figure 3.16. 
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Figure 3.17: Error distribution of the image 
reconstructed with the developed technique 
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Figure 3.17: Error distribution of the image 
reconstructed with the developed technique 
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Figure 3.18: Noiseless measurement vector 
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To investigate the noise performance of the technique, the developed technique is 

tested with noisy data. Zero mean Gaussian white noise is added to the measurement 

vector, V� , to create a noisy data. In Figures 3.18 and 3.19, original measurement 

vector and noise added measurement vector for one phase encoding are shown, 

respectively. The noisy measurement shown in Figure 3.18 has a signal to noise 

ration (SNR) of 10 dB.  

 

White Gaussian noise has a constant power spectral density function. In other words, 

it contains all of the frequencies. Consequently, since the added noise is white 

Gaussian noise, low pass filter in the demodulator can not completely remove the 

noise from the measurement, but it increases the SNR. In Figures 3.20 and 3.21, the 

output of the demodulator for the original measurement and the noisy measurement 

are shown, respectively. 
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Figure 3.19: Noisy measurement vector 
SNR = 10 dB 
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Figure 3.20: Demodulated noiseless measurement vector 
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Figure 3.21: Demodulated noisy measurement vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All of the measurement vectors for all phase encodings are exposed to noise and 

SNR value is kept constant at 10 dB. The reconstructed image using the developed 

technique and the inverse Fourier technique is given in Figures 3.22 and 3.23, 

respectively. 
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X

Y

Reconstructed image with noisy data
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Figure 3.22: The image reconstructed with the developed 
technique using noisy data 
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Figure 3.23: The image reconstructed with the inverse 
Fourier technique using noisy data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 shows that the developed technique is less sensitive to noise than the 

conventional inverse Fourier technique.  
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x

y

The Shepp-Logan phantom
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Figure 3.24: The Shepp-Logan phantom 

 

Although obtained results are encouraging for the inhomogeneous case, before 

proceeding to inhomogeneous magnetic fields case, reconstruction of images of 

some other objects is required. The first object, shown in Figure 3.24, is known as 

the Shepp-Logan phantom. 

 

For the chosen input values, given in Table 3.1, the image of the object is 

reconstructed with the developed technique. The image is shown in Figure 3.25. 
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Another object that is used for tests is shown Figure 3.26. The reconstructed image 

of the object shown above is shown in Figure 3.27. 
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Figure 3.25: The reconstructed image of the Shepp-Logan 
phantom 
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Figure 3.27: The reconstructed image of the object 
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Figure 3.26: An object of strips 
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The results obtained are satisfactory and shows that the developed technique can 

reconstruct images as good as the conventional technique does. Moreover, its 

performance for noisy data is better than the inverse Fourier technique. 

Consequently, the technique can be used in MRI in inhomogeneous magnetic fields. 

 

3.4.2. Results of Inhomogeneous Magnetic Fields Case 

 

In this part, the performance of the developed image reconstruction technique under 

inhomogeneous magnetic fields is demonstrated by presenting the obtained results. 

 

The main magnetic field is calculated for the magnet structure obtained in Chapter 2. 

The dimensions of side length and height of unit magnets have not been defined. The 

magnetization strength, 0M , of the unit magnets has been taken as 4p . To calculate 

a realistic magnetic field distribution, the side length, a , the height, h , and 

magnetization strength, 0M , are defined as shown in Table 3.2. 

 

The input parameters are chosen as shown in Table 3.2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The object is placed in the ROI of magnetic field calculations. Consequently, the 

magnetic field is calculated at each voxel of the object. The main magnetic field’s 

Table 3.2: The chosen input values 
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Figure 3.28: The main magnetic field’s magnitude distribution 
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magnitude distribution is shown in Figure 3.28. The gradient fields are created as 

described in the implementation part. Their magnitude distributions are not the same 

with the ones shown in Figures 3.13 and 3.14 due to the fact that the effective 

component of gradient fields are assumed to be parallel to the main magnetic field. 

Consequently, according to equations (3.111) and (3.112), the magnitudes of 

generated gradient fields are as shown in Figures 3.29 and 3.30.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a first test object, the one used in homogeneous magnetic fields case is used. The 

number of spin distribution is shown in Figure 3.11. Since the main magnetic field is 

not uniformly distributed through the object, 0M
�

 distribution is different than 

number of spins distribution. The initial magnetization distribution is shown in 

Figure 3.31. 

 

 

 

 



 

 

149 

x

y

½Bpe½ Distribution

 

 

2 4 6 8 10

2

4

6

8

10

0

1

2

3

4

5

6

7

8

9

x 10
-3

Figure 3.30: Phase encoding gradient’s magnitude distribution 

Figure 3.29: Frequency encoding gradient’s magnitude distribution 
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Figure 3.31: 0M
�

 distribution of the object being imaged 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since it is not possible to reconstruct images in inhomogeneous magnetic fields using 

inverse Fourier technique, only images reconstructed using the developed technique 

are given. 

 

For the parameters given in Table 3.2 and the object shown in Figure 3.31, the 

reconstructed image after one run of the data sets in the developed technique is 

shown in Figure 3.32. 

 

The error of reconstructed image is calculated using (3.123). The error distribution is 

shown in Figure 3.33. 
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Figure 3.32: The reconstructed image one tour of data sets 
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Figure 3.33: The distribution of error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To check the noise performance of the technique under noisy measurements, again 

the measurement vector is imposed to a white Gaussian noise. The power of the 
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Figure 3.34: Noiseless measurement vector 
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Figure 3.35: Noisy measurement vector 

noise is adjusted so that the SNR is 10 dB. In Figures 3.34 and 3.35, noiseless and 

noisy measurement vectors for the first phase encoding are shown, respectively. 
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Figure 3.36: The demodulator output for noiseless measurements 
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Figure 3.37: The demodulator output for noisy measurements 

The low pass filter in the demodulator can not filter out the white noise added to 

measurements. The demodulator outputs for noiseless and noisy measurements are 

shown in Figures 3.36 and 3.37, respectively. 
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The reconstructed image using noisy data is shown in Figure 3.38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The error of this image should be calculated within the whole object. However, 

(3.123) should be modified for this purpose.  
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where e  is a very small number (i.e. e  = 10-17) real value of the computer. The error 

distribution is shown in Figure 3.39. 

 

The error distribution shown in Figure 3.39 is scaled so that the maximum error is 

unity. The error distribution of the image in the voxels with nonzero 0M
�

 is shown 

in Figure 3.40. 
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Figure 3.38: The reconstructed image using noisy data 



 

 

155 

x

y

Error of reconstructed image

 

 

2 4 6 8 10

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

Figure 3.39: The error distribution of image 
reconstructed with noisy data 
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Figure 3.40: The error distribution of object in the 
voxels where 0M

�
 is nonzero 
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Figure 3.41: 0M
�

 distribution of the Shepp-Logan phantom 
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Figure 3.42: The reconstructed image of the Shepp-Logan phantom 

The Shepp-Logan object is used as an input object. The 0M
�

 distribution of the 
Shepp-Logan object is shown in Figure 3.41. The reconstructed image of this 
phantom is shown in Figure 3.42. 
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Figure 3.42: The error distribution of the Shepp-Logan image 

 

The reconstructed Shepp-Logan object has a scale error. Although the image has the 

same distribution, the 0M
�

 varies from the original object. The error formula 

(3.123) is modified so that it can be used in scaled images. 
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where a  is the scale factor between original distribution and reconstructed image. 

The error distribution of the Shepp-Logan image is shown in Figure 3.42. 

 

Although the reconstruction algorithm was used run for one cycle of the 

measurements, its output is satisfactory. On the other hand, it is possible to change 

the field of view (FOV) by narrowing RF field’s bandwidth. To test this case, the 

object shown in Figure 3.11 is used. For this object 5 slices are taken and the object 

is reconstructed. The center frequencies of RF are shown in Figure 3.43. The 

reconstructed object is shown in Figure 3.44. 
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Figure 3.43: The center frequencies of RF field for 
a bandwidth of 548.16 kHz 
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Figure 3.44: The object reconstructed by using 5 slices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the image size is increased from 11 mm to 32 mm, the 0B
�

, PEB
�

 and 

FRQB
�

 distributions are shown in Figures 3.45, 3.46 and 3.47, respectively.  
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Figure 3.45: 0B
�

 distribution when the object is 32x32 mm2 
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Figure 3.46: PEB
�

 distribution when the object is 32x32 mm2 
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Figure 3.47: FRQB
�

 distribution when the object is 32x32 mm2 

Figure 3.48: 0M
�

 distribution when the object is 32x32 mm2 

x

y

½M0½ distribution

 

 

5 10 15 20 25 30

5

10

15

20

25

30
1

2

3

4

5

6

7

x 10
-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 0M
�

 distribution and the reconstructed image are shown in Figures 3.48 and 

3.49. 
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Figure 3.48: The reconstructed image of 32x32 mm2object 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the Figures 3.46 and 3.47, the gradient magnetic field distributions do 

not vary uniformly throughout the object. The classical MRI model requires uniform 

distribution of gradient fields to be able to reconstruct images. This requirement 

arises from the fact that uniform distribution of gradient fields guarantee linearly 

independent measurements and uniform distribution of frequency content of the 

acquired data. However, since the developed technique reconstructs images of initial 

magnetization in a least square sense, it is able to calculate initial magnetization with 

small errors. The error distribution of the reconstructed image at non-zero initial 

magnetization pixels (calculated using equation (3.125)) is shown in Figure 3.49. 

The error distribution at zero initial magnetization pixels (calculated using equation 

(3.124)) is shown in Figure 3.50. The error distribution shown in Figure 3.50 is 

scaled so that the maximum error is unity.  
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Figure 3.49: The error distribution at non-zero initial magnetization 
pixels of the reconstructed image of 32x32 mm2object 
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Figure 3.50: The scaled error distribution at zero initial magnetization 
pixels of the reconstructed image of 32x32 mm2object 
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The obtained results are satisfactory. They signify that a new imaging modality has 

been developed for MRI in inhomogeneous magnetic fields. The performance of the 

technique is good enough to reconstruct images from measurements with 10 dB 

SNR. Moreover, by making use of the inhomogeneity of main magnetic field it 

allows to reconstruct 3D images using two gradient fields. 

 

3.5. Conclusion 

 

In this part of the work, an MRI simulator in inhomogeneous magnetic fields is 

constructed and an image reconstruction technique for MRI in inhomogeneous 

magnetic fields is developed. For the construction of the simulator, the conventional 

MRI formulation, which has been developed for homogeneous magnetic fields, is 

extended to inhomogeneous magnetic fields by defining a novel local reference 

frame. To be able to reconstruct images under the influence of inhomogeneous 

magnetic fields, a new model of MRI in inhomogeneous magnetic fields is 

developed. A methodology for reconstructing images of the physical parameters, 

making use of the developed model, is introduced. The obtained results have been 

presented as a proof of the concept. 

 

Magnetic field distributions are generally inhomogeneous. Consequently, 

homogeneous magnetic fields are just a special case of inhomogeneous magnetic 

fields. Using this fact, the constructed simulator has been verified first by using 

homogeneous magnetic fields. The images of the objects are reconstructed by the 

conventional image reconstruction technique using the measurements obtained from 

the simulator. This experiment has been accepted as a proof of correct operation of 

the simulator. The same magnetic field distributions have been used in the developed 

model of MRI. The obtained results of the model along with the signals obtained 

from the simulator have also been used to reconstruct images using the developed 

image reconstruction technique. The images reconstructed using both the 

conventional and the developed techniques have been compared to investigate the 

correctness of both the model developed and the proposed image reconstruction 
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technique. Moreover, performances of the developed image reconstruction technique 

and the conventional technique have been compared for noisy measurement data. 

The obtained results demonstrate that the developed image reconstruction technique 

and MRI model perform well enough to be used in MRI in inhomogeneous magnetic 

fields.  

 

Although the simulator and the MRI model make use of different approaches, if the 

initial magnetization is known by the MRI model, both the simulator and the MRI 

model would generate the same magnetization distribution at the same time instant of 

pulse sequence. The simulator and the MRI model are cross checked using this fact, 

during the tests of inhomogeneous magnetic fields distribution.    

 

The same objects used in the homogeneous magnetic fields case have been used for 

tests in the inhomogeneous magnetic fields case. The reconstructed images and the 

error distribution throughout the image are exhibited to demonstrate the capabilities 

of the developed image reconstruction technique. Moreover, performance of the 

reconstruction algorithm is tested for noisy measurements. The obtained results show 

that the technique can successfully reconstruct images under this condition. 

 

The computation cost of the MRI model is very high to be used in nearly real time 

applications. However, it is possible to save the relation between initial 

magnetization and measurements for a fixed pulse sequence with fixed parameters to 

be used with measurements obtained for different objects.  

 

To sum up, the construction of an MRI simulator in inhomogeneous magnetic fields 

and the development of image reconstruction technique for MRI in inhomogeneous 

magnetic fields have been accomplished. The developed technique and the 

constructed simulator are both novel.  
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CHAPTER 4  

 

 

CONCLUSION 

 

 

 

In this thesis, design of a permanent magnet, construction of an MRI simulator and 

development of an image reconstruction technique in inhomogeneous magnetic 

fields have been studied.  

 

The design of a permanent magnet has been considered as a problem of permanent 

magnet surface optimization and optimization of placement of more than one magnet 

to obtain a magnetic field distribution with the desired properties. For this purpose, 

real coded and binary genetic algorithms and an optimization routine which does not 

require gradient or Hessian of fitness function have been utilized. These algorithms 

have been combined to form a method of permanent magnet design to obtain a 

desired magnetic field distribution. For each part of the problem, variables of fitness 

function that changes the magnetic field distribution have been determined and 

optimized using the methods developed during this work. The unit magnets in the 

“placement of more than one magnet” part of the problem have the resultant surface 

of the “surface optimization” part.  

 

The task of designing permanent magnet structures generating a magnetic field with 

the desired properties in a region of interest has been accomplished. The resultant 

magnetic field distribution has been used in the tests of both the MRI simulator and 

the image reconstruction technique in inhomogeneous magnetic fields.  

 

The construction of the simulator is based upon the extension of conventional MRI 

formulation to inhomogeneous magnetic fields by defining a novel local reference 
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frame. To be able to reconstruct images under the influence of inhomogeneous 

magnetic fields, a new model of MRI in inhomogeneous magnetic fields has been 

developed. A methodology for reconstructing images of the physical parameters, 

employing of the developed model, is introduced. 

 

The constructed simulator has been verified by using homogeneous magnetic fields. 

The measurements obtained from the simulator are used to reconstruct images of the 

objects using the conventional image reconstruction technique. Ability of the 

conventional image reconstruction technique to reconstruct images from the outputs 

of the simulator has been accepted as a proof of correct operation of the simulator. 

The same magnetic field distributions have been used in the developed model of 

MRI. The obtained results of the model along with the signals obtained from the 

simulator have also been used to reconstruct images using the developed image 

reconstruction technique. Capabilities of the developed image reconstruction 

technique in inhomogeneous magnetic fields have been demonstrated. Moreover, 

performance of the reconstruction algorithm has been tested under noisy 

measurements.  

 

As future work, one may use the result of the first part of permanent magnet design 

as reference and try to optimize geometries on the surface which are in elliptic 

cylinders shape. This kind of optimization is predicted to converge very fast. For the 

second part, one can change the fitness function to obtain different unit magnet 

arrangements using the method developed.    

 

In the future, 3D image reconstruction in inhomogeneous magnetic fields should be 

tested. The simulated MRI system is assumed to have two gradient coils which is a 

drawback for MRI functioning in inhomogeneous magnetic fields. Since the gradient 

in the main magnetic field is an asset for linearly independent measurements, the 

main magnetic field can be varied by rearranging its sources to obtain linearly 

independent measurements. In the future, rearrangement of sources of the main 

magnetic field instead of the gradient fields is planned to be implemented. On the 

other hand, all of the tests are performed for the RF field which is orthogonal to the 

main magnetic field at all voxels of the object. Consequently, a proper RF coil 
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should be designed so that its magnetic field distribution is orthogonal to the main 

magnetic field.  
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