

SPECTRAL (h-p) ELEMENT METHODS APPROACH
TO THE SOLUTION OF

POISSON AND HELMHOLTZ EQUATIONS USING MATLAB

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUĞRUL MARAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science

 Prof. Dr. Kemal İDER
 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

_________________________ _________________________

Asst. Prof. Dr. Cüneyt SERT Asst. Prof. Dr. İlker TARI
Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. M. Haluk AKSEL (METU, ME) ____________________

Asst. Prof. Dr. İlker TARI (METU, ME) ____________________

Asst. Prof. Dr. Cüneyt SERT (METU, ME) ____________________

Instructor Dr. Tahsin A. ÇETİNKAYA (METU, ME) ____________________

Prof. Dr. Ercan ATAER (Gazi U., ME) ____________________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last name: Tuğrul MARAL

Signature :

 iv

ABSTRACT

SPECTRAL (h-p) ELEMENT METHODS APPROACH

TO THE SOLUTION OF

POISSON AND HELMHOLTZ EQUATIONS USING MATLAB

MARAL, Tuğrul

M.S., Department of Mechanical Engineering

Supervisor : Asst. Prof. Dr. İlker TARI

Co-Supervisor : Asst. Prof. Dr. Cüneyt SERT

December 2006, 129 pages

A spectral element solver program using MATLAB is written for the solution of

Poisson and Helmholtz equations. The accuracy of spectral methods (p-type high

order) and the geometric flexibility of the low-order h-type finite elements are

combined in spectral element methods.

Rectangular elements are used to solve Poisson and Helmholtz equations with

Dirichlet and Neumann boundary conditions which are homogeneous or non

homogeneous. Robin (mixed) boundary conditions are also implemented.

Poisson equation is also solved by discretising the domain with curvilinear

quadrilateral elements so that the accuracy of both isoparametric quadrilateral and

rectangular element stiffness matrices and element mass matrices are tested.

 v

Quadrilateral elements are used to obtain the stream functions of the inviscid flow

around a cylinder problem. Nonhomogeneous Neumann boundary conditions are

imposed to the quadrilateral element stiffness matrix to solve the velocity potentials.

Keywords: Spectral element method, Matlab, Poisson and Helmholtz equations.

 vi

ÖZ

SPEKTRAL (h-p) ELEMAN METODU YAKLAŞIMIYLA

POISSON ve HELMHOLTZ DENKLEMLERİNİN

MATLAB KULLANILARAK ÇÖZÜMÜ

MARAL, Tuğrul

Yüksek Lisans, Makine Mühendisliği Bölümü

Tez yöneticisi : Asst. Prof. Dr. İlker TARI

Ortak Tez yöneticisi : Asst. Prof. Dr. Cüneyt SERT

Aralık 2006, 129 sayfa

Poisson ve Helmholtz denklemlerinin çözümü için MATLAB kullanılarak bir

spektral eleman çözücü program yazılmıştır. Yüksek dereceli ve p tipindeki spektral

metodun isabetliliği ve düşük dereceli h tipi sonlu elemanlar metodunun geometrik

esnekliği spektral eleman metodlarinda birleştirilir.

Homojen veya homojen olmayan Dirichlet ve Neumann sınır koşulları içeren

Poisson ve Helmholtz denklemleri, dikdörtgen elemanlar kullanılarak çözülmüştür.

Ayrıca, Robin sınır koşulları da gerçekleştirilmiştir.

Poisson denkleminin çözüm alanı, eğri kenarlı dörtgenlere bölünerek tekrar

çözülmüştür. Bu sayede, izoparametrik eğri dörtgen ve dikdörtgen elemanların sertlik

matrislerinin ve kütle matrislerinin isabetliliği test edilmiştir.

 vii

Silindir etrafındaki ideal akışın stream fonksiyonları, eğri kenarlı elemanlar

kullanılarak elde edilmiştir. Homojen olmayan Neumann sınır koşulları, eğri kenarlı

eleman sertlik matrisine yerleştirilerek hız potansiyelleri çözülmüştür.

Anahtar Sözcükler: Spektral eleman metodu, Matlab, Poisson ve Helmholtz

denklemleri.

 viii

ACKNOWLEDGEMENTS

I would like to thank Asst. Prof. Dr. İlker Tarı for his continuous support, patience

and invaluable guidance throughout this work. I am grateful to have been included in

this subject. I would like to thank Asst. Prof. Dr. Cüneyt Sert for his insight and

helpful suggestions.

I would like to thank Prof. Dr. Ö. Ercan Ataer who recommended me as an M.Sc

student to Asst. Prof. Dr. İlker Tarı.

I would like to thank Prof. Dr. Haluk. Aksel and Asst. Prof. Dr. Tahsin Çetinkaya,

who are my finite volume methods and advanced fluid mechanics instructors. I

would also like to thank my other instructors at METU.

I would like to thank Assoc. Prof. Dr. Hakan I. Tarman and Prof. Dr. Turgut

Tokdemir, who are my pseudospectral methods and finite element instructors.

I would like to thank my mother Mayise Maral and my father Abdullah Maral. The

encouragement and inspiration of my parents was invaluable.

 ix

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………………….iii

ABSTRACT………………………………………………………………………….iv

ÖZ……………………………………………………………………………………vi

ACKNOWLEDGEMENTS……...…………………………………………………viii

TABLE OF CONTENTS……………………………………………………………ix

LIST OF TABLES………..………………………………………………………...xiv

LIST OF FIGURES……..…………………………………………………………..xv

LIST OF SYMBOLS AND ABBREVIATIONS……….………………………….xix

CHAPTER

1. INTRODUCTION..1

 1.1 Objectives of the thesis…………………………………...............6

 1.2 Thesis Organization………………………………………………7

2. CONFORMING SPECTRAL ELEMENT DISCRETISATION…………10

 2.1 Spatial Dicretisation……………………………………..............11

 2.1.1 Strong Formulation of the Poisson equation…………..11

 2.1.2 Residual Form………………………………………….11

 2.1.3 Weighted Residual Formulation...……………..............11

 2.1.4 Weak Formulation……………………………………..13

 2.1.5 Domain Discretisation…………………………………13

 2.1.5.1 Element Discretisation for 2D problems……..13

 2.1.5.2 Weak Formulation for single element………..14

 2.2 Element Discretisation for 2D problems ………………………..14

 x

2.2.1 Dimensional Differentiations in the computational

domains………………………………………………………15

 2.3 Galerkin methods …………………………………......................15

 2.4 Rectangular Geometries…………………………………………15

 2.4.1 2D Mass matrix Evaluation…………………………....15

 2.4.2 Rectangular Element Stiffness Matrix Evaluation…….18

 2.4.3 Helmholtz operator for single element………………...20

 2.4.4 Laplacian operator for single element………………....20

 2.4.5 The Variable-Coefficient Case………………………...21

 2.5 Local elemental operations for Quadrilateral elements………23

 2.5.1 Elemental mappings for general straight-sided

 elements…………………………………………...…24

 2.5.2 Elemental mappings for general curvilinear

 elements…………………………………………...…25

 2.5.3 Integration within an elemental region………………...28

 2.5.4 Differentiation within an elemental region…………….28

2.5.5 Quadrilateral (Curvilinear Edged) Element Stiffness

Matrix Evaluation for the Discretization of Deformed

Geometries……………………………………………30

2.5.6 Mass matrix evaluation for deformed geometries……...34

3. IMPLEMENTATION

 3.1 Poisson Equation Solution with single rectangular spectral

element……………………………………………………................36

3.1.1 Evaluation of Gauss Lobatto Legendre nodes and

weights...36

 3.1.2 Evaluation of mass and 1D stiffness matrices…………37

 3.1.2.1 Evaluation of 1D mass matrix………………..37

 xi

 3.1.2.2 Evaluation of 2D mass matrix……………......38

 3.1.2.3 Evaluation of 1D stiffness matrix…………....39

 3.1.3 Construction of the grid……………………………......39

 3.1.3.1 Plotting the grid………………………………40

 3.1.4 Evaluation of load vector………………………………41

 3.1.5 Evaluation of steady diffusion operator………………..41

 3.1.6 Imposing the homogeneous Dirichlet BC……………...41

 3.1.7 Imposing the nonhomogeneous Dirichlet BC………….43

 3.1.8 Imposing the zero and nonzero Neumann BC…………43

 3.1.8.1 Imposing the nonzero Neumann BC…………43

 3.1.9 Evaluation of the u values in Poisson Equations………44

 3.1.10 Plotting the 3D graph of the solution…………………44

 3.2 Deformed Geometries...………………………………………....46

 3.2.1 2D Quadrilateral Element Stiffness matrix evaluation...46

3.2.2 Evaluation of the physical coordinates of the nodes at the

edges of the element ………………………………………...47

3.2.3 Evaluation of the physical coordinates of the interior

nodes of the element…………………………………………48

3.2.4 Evaluation of the Jacobian……………………………..49

3.2.5 Benchmarks……………………………………………49

3.2.6 The implementation of the Jacobian matrix…………...51

3.2.7 Evaluation of the geometric terms……………………..51

3.2.8 Evaluation of the geometric factor…………………….52

3.2.9 Evaluation of
1ξD and

2
Dξ …………………………...53

3.2.10 Evaluation of the 2D quadrilateral element stiffness

matrix………………………………………………………...53

3.2.11 Evaluation of the element load vector………………..54

 3.3 Poisson Equation Solution with more elements…………………54

3.3.1 Connectivity Matrix Generation……………………….54

3.3.2 Assembly of spectral element stiffness matrix………...55

 3.3.2.1 Evaluation of the Steady Diffusion operator...56

 xii

3.3.3 Evaluation of the global load vector…………………...62

3.3.4 Imposing the Nonhomogeneous Dirichlet Boundary

Conditions……………………………………………………62

3.3.5 Imposing the Nonhomogeneous Neumann Boundary

Conditions……………………………………………………63

 3.3.5.1 Differentiation within an elemental region…..65

3.4 Evaluation of the Helmholtz operator…………………………...67

 4. RESULTS AND DISCUSSIONS

 4.1 Poisson Equation Solution with single rectangular spectral

element………………………………………………………………68

 4.1.1 Poisson equation with all zero Dirichlet boundaries…..68

 4.1.2 Poisson equation with zero Neumann boundaries……..71

 4.1.2.1 The comparison of FEM and SEM…………..72

4.1.3 Steady Conduction Equation with a Convection face

(Robin BC)…………………………………………………...74

4.1.4 Poisson Equation with all nonzero Dirichlet boundary

conditions…………………………………………………….79

 4.2 Poisson Equation solution with multi elements………………….80

 4.2.1 Arc edged Curvilinear Quadrilateral Element…………81

 4.3 Inviscid Flow Around a Circular Cylinder………………………88

 4.3.1 Stream function formulation…………………………...89

 4.3.2 Velocity potential formulation…………………………91

 4.4 Helmholtz Equation……………………………………………...93

 4.4.1 Helmholtz Equation with single element………………93

 4.4.2 Helmholtz Equation with more elements……………...95

5. CONCLUSION………………………………………………………….101

 xiii

REFERENCES……………………………………………………………………..104

APPENDICES

Appendix A: Results of 1d SEM Solution……………………………………..109

Appendix B: Expansion Bases: h-p type approximation………………………112

 B.1.1 Elemental Decomposition: h-type extension………...112

 B.1.2 Polynomial expansion: the p-type extension………...113

 B.1.2.1 Modal and nodal expansions...……………..114

 B.1.2.2 Choice of an expansion set…………………116

 B.2 Nodal Polynomial expansions…………………………………118

 B.2.1 Lagrange polynomials………………………………..118

 B.2.2 Nodal p-type basis: spectral elements………………..119

 Appendix C: Lobatto.m……………………………………………………123

 Appendix D: elematrstmquad.m…………………………………………...124

 Appendix E: streamfunction.m…………………………………………….127

 xiv

LIST OF TABLES

Table 3.1 Global node numbering of Mesh 1 for N=2…………………………55

Table 3.2 Global node numbering of Mesh seen in Fig. 3.14 for N=2…………65

Table 4.1 Maximum absolute relative error of Poisson Equation (4.4)

for the entire domain…………………………………………………85

Table 4.2 Maximum absolute relative error for the entire of

the second element ………………………………………………….86

Table 4.3 Maximum absolute relative error for DOF in the entire domain ……87

 xv

LIST OF FIGURES

Figure 2.1 A general curved quadrilateral element can be described in terms

of a series of parametric functions 1 1 2(), (), (),A B C
f f fξ ξ ξ and

2()D
f ξ . Representing these functions as a discrete expansion,

An isoparametric mapping 1 2(,)ξ ξe

ix relating the standard region

1 2(,)ξ ξ to the deformed region 1 2(,)x x can be constructed……….

27

Figure 3.1 The plot of the Gauss Lobatto Legendre Lagrangian polynomials
()pL ξ (p=1,…, N+1) with a degree of N=6. There are 7

Collocation points between 1 and-1……………………………...

38

Figure 3.2 The plot of the spectral element grid for single element with a
degree of N=24. The bold lines are also 1ξ and 2ξ axis of the

reference coordinates……………………………………………..

40

Figure 3.3

Sparsity plot of the element stiffness matrix evaluated with
Equation (2.28)…………………………………………………...

42

Figure 3.4 The grid of coordinate transformation from physical domain to
computational domain for an element of N=6…………………...

50

Figure 3.5 The grid of the Mesh 1 made up of three elements with a degree
of 12. The global node numbers of the element’s vertices are
seen……………………………………………………………….

56

Figure 3.6 Sparsity plot of the element stiffness matrix for N=12.

Computation zero is defined as 1.0 1510−× .…………………….

57

Figure 3.7 Sparsity plot of the element stiffness matrix for N=12.

Computation zero is defined as 1.0 1310−× . ……………………

58

Figure 3.8 Sparsity plot of the global (assembled in Fig. 3.5) stiffness

matrix for N=12. Computation zero is defined as 1.0 1310−× . …..

59

Figure 3.9 Sparsity plot of the global (assembled in Fig. 3.5) stiffness

matrix for N=12. Computation zero is defined as 1.0 1510−× ……

59

Figure 3.10 The grid of the Mesh 2 made up of a square and two
quadrilateral elements with a degree of 12……………………….

60

 xvi

Figure 3.11 Sparsity plot of the global (assembled in Fig. 3.10) stiffness

matrix for N=12. Computation zero is defined as 1.0 1510−× .…..

60

Figure 3.12 The grid of the Mesh 3 made up of a three quadrilateral elements
with a degree of 12..……………………………………………...

61

Figure 3.13 Sparsity plot of the global stiffness matrix of the mesh in

Fig. 3.12 for N=12. Computation zero is defined as 1.0 1310−× .

61

Figure 3.14 The mesh of the inviscid flow around a cylinder drawn on the
upper right quadrant of the domain………………………………

64

Figure 3.15 Sparsity plot of the same assembled (global) stiffness matrix that
imposed all of the boundary conditions for the mesh of the
stream function seen in Fig. 3.14………………………………...

66

Figure 4.1 3D Solution graph of (4.1) for N=24 with single rectangular
spectral element. The bold line is u(0,y)=0 line………………….

69

Figure 4.1b Contour plot of the solution of (4.1) for N=24 with single
rectangular spectral element. The midline is u(0,y)=0 line………

70

Figure 4.1c Contour plot of the solution of (4.1) for N=24 with single
rectangular spectral element. The contour lines are less curvy…..

70

Figure 4.1d 3D Solution graph of (4.1) plotted on Gauss Lobatto Legendre
grid for N=24 with single rectangular spectral element. The
u(0,y)=0 line is smooth…………………………………………...

71

Figure 4.2 Finite element solution of Equation (4.3) with 16 linear
rectangular element………………………………………………

72

Figure 4.3 Contour graph of the spectral element solution of (4.3) with
rectangular element for the order of N=24……………………….

73

Figure 4.3b 3D graph of the solution of Equation (4.3)………………………

74

Figure 4.4 Isotherms of the spectral element solution of Equation (4.1.3.1a)
with a single rectangular element for the order of
N=32……………………………………………………………..

76

Figure 4.4b Contour graph of the RHS of Equation (4.1.3.1a) with a single

rectangular element for the order of N=32. The solution is

plotted without interpolation…………………………………….

77

 xvii

Figure 4.4c 3D spectral element solution graph of Equation (4.1.3.1) for

N=32 with single rectangular spectral element…………………..

78

Figure 4.5 SEM solution for single element with a degree of N = 24……….

80

Figure 4.6 The results of the solution for the Mesh 1 made up of three
elements with a degree of 12. Blue lines are element
boundaries..

81

Figure 4.7 The results of the solution for the Mesh 2 made up of three
elements with a degree of 12 as seen in Fig. 3.10. Blue lines are
element boundaries……………………………………………….

82

Figure 4.8 The results of the solution for the Mesh 2 made up of three
elements with a degree of 12 as seen in Fig. 3.12. Blue lines are
element boundaries……………………………………………….

83

Figure 4.9 The errors of the results at x=0.75 line for mesh seen in
Fig.3.5…………………………………………………………….

83

Figure 4.10 Spectral convergence obtained for Mesh 1 and 2 seen in Fig. 3.5
and 3.10…………………………………………………………..

84

Figure 4.11 H1 errors for mesh 2 seen in Fig. 3.10…………………………...

84

Figure
4.11b

The grid of the Mesh for DOF = 24 made up of four rectangular
elements. The degree of each element is N = 12…………………

88

Figure 4.12 Domain for the stream function and velocity potential
formulations of inviscid (irrotational) flow about a cylinder…….

89

Figure 4.13 Computational domain and boundary conditions for the stream
function formulation irrotational flow around a cylinder………...

90

Figure 4.14 SEM solution of stream function with the BC’s shown for two
elements with the order of N=12…………………………………

90

Figure 4.15 Computational domain and boundary conditions for the velocity
potential formulation around cylinder……………………………

91

Figure 4.16 Velocity potentials are plotted for N=12. Same mesh is used in
Fig. 3.15…………………………………………………………..

92

Figure 4.17 The figures of 4.13 and 4.15 plotted together to show the
accuracy…………………………………………………………..

92

Figure 4.18 3D graph of the solution of 2 (,)xx yyu u k u f x y+ + = …………….

94

 xviii

Figure 4.19 Contour graph of the solution of 2 (,)xx yyu u k u f x y+ + = ……….

95

Figure 4.20 Spectral Element Solution graph of the Helmholtz equation
(,)xx yyu u u f x yλ+ + = with 4 elements with the order of N=32.

Blue lines are element boundaries………………………………..

97

Figure 4.21 Spectral Element Solution graph of the Helmholtz equation
(,)xx yyu u u f x yλ+ + = with 4 elements with the order of N=12.

Element boundaries are same so they are not drawn to see the
graph better……………………………………………………….

98

Figure 4.22 Spectral Element Solution graph of the Helmholtz equation
(,)xx yyu u u f x yλ+ + = with 4 elements with the order of N=18.

Element boundaries are same so they are not drawn to see the
graph better……………………………………………………….

99

Figure 4.23 The figures of 4.22 and 4.23 are drawn together to see the
difference…………………………………………………………

99

Figure 4.24 3D graph of the solution to the Equation (4.9), (4.9a) and (4.9b)
to show the hills and hollows…………………………………….

100

Figure A.1 Errors of the 1D spectral element solution of problem (A)
for same number of nodes in the interval [-1, 1]. 1 elm for N=24,
2 elm for N=12, 3 elm for N=8 and 4 elm for
N=6………………………………………………………………

110

Figure A.2 Errors of the 1D spectral element solution of problem (B) for
same number of nodes in the interval [-1, 1]. 1 elm for N=24, 2
elm for N=12, 3 elm for N=8 and 4 elm for
N=6………………………………………………………………

111

 xix

LIST OF SYMBOLS AND ABBREVIATIONS

2∇ Laplacian operator

Ω Solution Domain

Γ Boundary of Ω

iΦ Analytic trial (or expansion) function

dofN Number of global degrees of Freedom

v Weight (test) functions

Γ

∫�
h

 Boundary integral of Neumann BC

1 2() ()ψ ξ ψ ξp q Weight functions in two dimensions

1 2() ()ψ ξ ψ ξi j Trial functions in two dimensions

1ξ and 2ξ Local Cartesian coordinates

eΩ Elemental region on physical coordinates (x, y)

P
deg

()
N st

Ω Polynomial space of order degN on stΩ

()B

p xΦ A nodal expansion (Lagrange expansion basis)

()ph x One–dimensional pth order Lagrange polynomial

I Interpolation operator

ˆ
pu Vector of pth degree expansion coefficients

M̂ and ˆ
ijM 1D mass matrix evaluated with GLL polynomials

K̂ 1D stiffness matrix evaluated with GLL polynomials

H Helmholtz operator

⊗ Kronecker product

1 2,x x , x Global Cartesian Coordinates

1 1 2(), (), (),A B C
f f fξ ξ ξ

and 2()Df ξ

The shape mapping functions of each edge of the

quadrilateral element

 xx

2DJ Jacobian (Determinant of the Jacobi matrix)

ijG Geometric terms

ijG and () ˆ ˆij kk
G Geometric factors

F(v) Load vector

hΓ Neumann Boundary conditions

ℜ Residual

iφ Truncated trial (or expansion) functions

χ Space of Trial functions

V Space of weight (test) functions

Nχ Finite dimensional space of trial solutions. Nχ χ⊂

sunspace of χ

 V N Finite dimensional space of trial solutions V N ⊂V

n Unit outward normal

()A

p xΦ Modal or a hierarchical expansion

()C

p xΦ Modal expansion with Legendre polynomials

pqδ Kronecker delta

()pL ξ Lagrange interpolants through the zeros of the pth

degree Gauss-Lobatto polynomials

1L and 2L Lengths of the rectangular domain

(.,.)N Discrete inner product given by Gauss Lobatto

quadrature in each spatial direction.

(1)
,N ijD and

D, D̂

The nodal values of the first derivative of the GLL

Lagrangian polynomials are called 1D differentiation

matrix.

L Steady Diffusion operator

 xxi

ˆ T
D

Tranpose of 1D differentiation matrix.

e

ix Global Cartesian Coordinates of the element

2 1 2(,)ξ ξDJ Two dimensional Jacobi matrix

1

∂

∂x
 and

2

∂

∂x

Partial derivatives of the global coordinates

()ξJ Dimensionless Jacobian. (For 2D ()ξJ = 2DJ)

I Identity matrix

λ Helmholtz Equation Constant

Abbreviations

SEM Spectral element method

FEM Finite element method

GLL Gauss Lobatto Legendre

GL Gauss Legendre

DOF Global degrees of freedom

Subscripts

g Dirichlet

h Neumann

st Standard (master) element in 1ξ and 2ξ

 1

CHAPTER 1

INTRODUCTION

Spectral element methods that combine the geometric flexibility of the finite element

method with the pth order accurate spectral methods are investigated and

implemented for the solution of Poisson and Helmholtz Equations using MATLAB.

The idea of the Spectral Element method (SEM) is first introduced as a global

element method with Gauss Chebyshev trial functions which are not 0C continuous

at the element boundaries. As a result, a single global element is used for the solution

of elliptic equations like Poisson and Helmholtz in the earliest applications of Delves

et al. [21, 22]. SEM can be referred with various names like domain decomposition

pseudospectral and Legendre-Galerkin methods in various references. Both of them

are features of the method but it is generally called as Spectral h-p element method.

Spectral methods involve the expansion of the solution of a differential equation in a

high-order orthogonal expansion, the coefficients of which are determined by a

weighted residual projection technique. The schemes are “infinite order accurate” if

the expansion functions are properly selected.

The finite element procedure is, in the most general sense, a weighted residual

technique applied to a series of expansions, each with support over only a small

region of space (an “element”). When the weighted-residual technique is directly

derived from an associated variational principle, continuity of natural boundary

conditions is implicitly satisfied at element boundaries as part of the convergence

process.

Although the finite element and spectral methods are in fact related, but the

practitioners and performers of the two methods had not dealed with each other’s

work until 1984. In 1984 A. Patera, in his paper [10], remembers the finite element

 2

and spectral methods come from the same family of Galerkin methods which are the

specific application of the weighted residual methods. For spectral methods the trial

functions are infinitely differentiable global functions. In finite element methods, the

domain Ω is divided into elements, and trial functions are specified in each element

and are local in character.

Patera[10] showed the advantage and the effectiveness of the spectral element by

first solving elliptic equations. Its main advantage is Gauss Lobatto Chebyshev

polynomials used as trial functions which are 0C continuous compared to the trial

functions of the global element method. Most of the problems have worked on

clusters of computers because of its parallel work availability.

Ronquist’s thesis [16] presents a new optimal-order Legendre spectral element

discretization and solution procedures for elliptic and parabolic equations. He first

used Gauss Lobatto Legendre polynomials to solve 1D Helmholtz equations. The

two dimensional Poisson Equation on a rectilinear domain with homogeneous

Dirichlet boundary conditions is solved with GLL quadrature. Quadrilateral elements

are formulated and used to solve 2D Poisson equation.

The mortar element method is first presented as a new nonconforming discretisation

in Mavriplis’s PhD thesis [9] in 1989. It improves the flexibility of spectral element

approach in regards to the automatic mesh generation and the non-propagating local

mesh refinement. Single mesh posteriori error estimators are developed to estimate

the actual error incurred by the discretisation on a local elemental basis and predict

the convergence behavior for decision between h and p refinement.

Fischer presented high-efficiency medium grained parallel spectral element method

[20] for solution of the incompressible Navier-Stokes equations in two and three

dimensional domains. It is based upon naturally concurrent Uzawa and Jacobi-

preconditioned conjugate gradient iterative methods [9, 11]; data-parallel geometry-

based distribution work between processors; neighbor sparsity and high-order

substructuring for minimum communication; general heterogeneous locally

structured (vector) and globally unstructured (parallel) constructs; and efficient

embedding of vector reduction operates for inner product and norm calculations.

 3

An important consideration for using unstructured expansion of time-dependent

computations that typically arise in fluid dynamics is the numerical efficiency of the

algorithm which is in the context of cost per time step. To be competitive, an

unstructured expansion must be as numerically efficient as the structured expansion

arising from the tensor product construction. It will be better to use a similar

procedure to construct expansions within the unstructured domains. A suitable modal

basis was proposed by Dubiner [17] in two dimensions and extended to three

dimensions in Sherwin and Karniadakis [18, 19].

Karniadakis and Sherwin [2] presented the spectral element formulations for

unstructured elements and provide many large scale applications of the partial-

differential equations. They introduced a complete formulation using a modal basis

which has been implemented in a new code NEKTAR. Their basis has the following

properties: Jacobi polynomials of mixed weights; semi-orthogonality; hierarchical

structure; generalized tensor (warped) product; variable order; and a new apex

coordinate system allowing automated integration with Gaussian quadrature. They

have discussed the formulation using a matrix notation which allows for an easy

interpretation of the forward and backward transformations [19].

Pathria and Karniadakis [23] investigated the methods for overcoming the geometric

singularities. The advantages of the method of auxiliary mapping compared to the

other ways (supplementary basis functions, eigenfunctions and graded meshs) are

investigated. They studied the method of auxiliary mapping with the use of

supplementary basis functions. The error estimates of combined approach were

confirmed through a number of numerical experiments for the Laplace, Poisson and

Helmholtz equations. The method is more effective for achieving exponential

convergence and analytical solution.

Pasquetti and Rapetti [24] discussed a straight edged triangle based spectral element

method (SEM) with the classical quadrangle based SEM and with a standard spectral

method. They solved Helmhotz equation (4.9) with both quadrangle and triangle

elements for two different force functions. Because of having no Gauss quadrature

rule for triangle with fekete points, the element mass matrices are full and

 4

computational work is heavier than rectangular elements. They also proved that the

condition number grows significantly faster for triangles than for quadrilaterals.

Three dimensional time dependent simulations of variable density and viscosity,

miscible flows in a circular tube were done by Wilhelm and Meiburg [25]. They used

an approach based on a mixed (hybrid) spectral element and Fourier spectral scheme

for the spatial discretisation. The result of the temporal discretisation done with a

semi-implicit method made up of 2
nd

 order backward differencing and extrapolation

is a Helmholtz equation which was solved by a fast diagonalization method.

Frutos and Novo [26] presented an approximate inertial manifold based on

postprocessing Galerkin method to enhance the accuracy of the spectral element

method for evolutionary equations of dissipative type. The postprocess consists of

the resolution of a discrete elliptic problem only once when the time evolution has

been completed. A better accuracy has achieved with little increase in solution time.

A spectral element method is used in Mehdizadeh and Paraschivoiu [27] for solving

the two-dimensional Helmholtz’s equation, which is the equation governing time-

harmonic acoustic wave. They compared SEM and FEM with Green’s function,

closed wave-guide and semi-infinite wave guide problem. The concluded that the

omputational cost for solving Helmholtz’s equation with the Galerkin finite element

method increases as the wave number increases, due to the pollution effect. Spectral

element method needs fewer grid points per wavelength and less computational time

for the same accuracy.

Spectral h-p element discretisation was applied to the incompressible Navier–Stokes

equations in three dimensions using a splitting approach in Karniadakis et al. [28] by

Sherwin and Casarin[29]. After the time discretization which decouples the viscous

and inviscid parts of the operator, the most computationally intensive parts of the

solver are a series of elliptic equation solutions, namely one Poisson equation

solution and three Helmholtz equation solutions, which are performed at each time

step. Each of these elliptic solutions is preconditioned with an iterative substructuring

type domain decomposition method which takes advantage of the natural splitting of

the basis into interior, face, edge, and vertex basis functions. Currently, once a

 5

suitable computational mesh has been generated the limiting computational cost of

the algorithm is the solution of the four elliptic problems. They have builded an

efficient preconditioning strategy for substructured solvers based on a transformation

expansion basis to a low energy basis on the work of Bica [30]. By applying an

additive Schwarz block preconditioner to the low-energy basis combined with a

coarse space linear vertex solver they have observed reductions in execution time of

up to three times for tetrahedral elements and 10 times for prismatic elements when

compared to a standard diagonal preconditioner.

Guermond and Shen[31] introduced a new class of splitting schemes based on a weak

form of the pressure Poisson equation and, at each time step, they only require to

solve a set of Helmholtz-type equations for the velocity and a Poisson equation (in

the weak form) for the pressure, just as pressure-correction and velocity-correction

schemes for incompressible flows. However, unlike pressure-correction and velocity-

correction schemes, the new splitting schemes are free of splitting errors and deliver

full accuracy on the vorticity and the pressure.

Pavarino and Widlund [32] considered two types of iterative substructuring methods.

First is designed for the Galerkin formulation of the problem. The second applies to

linear systems for a discrete model derived by using Gauss-Lobatto-Legendre

quadrature. For both methods, it is established that the condition number of the

relevant operator grows only in proportion to ()
2

1+log p .

Hybrid discretisations of complex domains include triangle and quadrilateral

elements. Unstructured meshes based on triangles and tetrahedral were defined in

Sherwin and Karniadakis [19, 34, 35] and their parallel code Nektar. Such an

approach combines the simplicity and convenience of structured domains with the

geometric flexibility of an unstructured discretisation. To increase the computational

efficiency of the hybrid discretisation, a new coordinate transformation from master

rectangle element to master triangle element was defined by Evangelinos et al. [33].

In order to evaluate the performance of the solver they conducted tests on a scalar

Helmholtz problem which forms the backbone of a splitting scheme [28] used to

solve the Navier-Stokes equations.

 6

In his PhD thesis, Warburton [36] develops a unified description of hybrid basis

functions following earlier developments in [17, 19, 34, 35]. He also develops five

types of basis functions which are either modal or nodal or mixed and which may or

may not be hierarchical. He shows how polymorphic elements can be built and

interfaced to enhance the efficiency of the unstructured spectral element method. A

discontinuous Galerkin formulation is developed with a discontinuous trial basis.

This basis is orthogonal, hierarchical and maintains a tensor product property (even

for non-orthogonal elements), a key property for efficient implementation of high-

order methods.

Sert and Beskok [38] presented spectral element formulations on polynomial (p-type)

and geometric (h-type) non-conforming grids using both the pointwise matching

(also known as the Constrained Approximation) and integral projection (also known

as the Mortar Element) methods. These formulations were tested to solve Poisson

Equation with four different types of meshes including such as p-type and h-type

non-conforming elements.

A spectral method using MATLAB for the solution of the most of the PDEs

including the Poisson and Helmholtz equations are discussed and implemented in

Trefethen [1].

1.1 Objectives of the thesis

1. Implementing a spectral element method using MATLAB for the solution of

some fundamental problems.

2. Comparing the results with the the exact results to observe and appreciate the

accuracy of the approach.

3. Element stiffness matrices K and element mass matrices M are evaluated for

both of the quadrilateral and rectangular elements to form steady diffusion and

Helmholtz operators.

 7

4. Steady Diffusion operator, which is equal to rectangular element stiffness

matrix for a single element is used to solve the Poisson problems including both of

the Dirichlet and Neumann boundary conditions which are homogeneous or

nonhomogeneous.

5. In order to solve Poisson Equation with multi-elements, element stiffness

matrices are assembled to form the global stiffness matrix (steady diffusion operator

of multi-element domain).

6. The mesh of domain with an inner corner is drawn to investigate the

geometric singularity. The capacity and accuracy of curvilinear quadrilateral

elements with single or two curvy edges investigated on this domain.

7. After testing isoparametric quadrilateral element matrix evaluator program, it

is used to solve inviscid flow over a cylinder problem.

8. Helmholtz equations are solved with the Helmholtz operator evaluated for a

single and multi-element. The effect of the Gauss Lobatto Legendre quadrature on

the accuracy of the Helmholtz operator is investigated.

1.2 Thesis Organization

In this chapter, the results of the literature survey is presented. The importance of

Poisson and Helmholtz equations is discussed for the solution of other PDE’s (like

Navier-Stokes).

In Chapter 2, the fundamentals of the spectral element method is investigated and

discussed for the solution of Poisson and Helmholtz Equations with rectangular and

quadrilateral elements. The evaluation process of element stiffness and mass matrices

is formulated for both of the rectangular and quadrilateral (isoparametric) elements.

Load vector and Helmholtz operator evaluation is formulated by using mass matrix

formulas for both of the elements. Differentiation and integration within a

quadrilateral element discussed in Section 2.5.3 and 2.5.4 contains Jacobi matrix and

 8

Jacobian evaluation. Jacobi mapping is also formulated for quadrilateral (curvilinear

edged) elements.

In chapter 3, the implementations of spectral element methods for the Poisson and

Helmholtz equations using MATLAB on rectangular and deformed domains

discretised with a single and multi-element are discussed including the element

stiffness and mass matrices evaluation discussed in Section 3.1 and 3.2. How to

impose the Dirichlet and Neumann boundary conditions are also included for both

kinds of the elements. The global node numbering of the elements is discussed in

Connectivity matrix generation. The assembly (Direct Stiffness Summation) of

element stiffness matrices to form global element stiffness matrix is implemented in

Section 3.3.2. The assembly of element load vectors to form global load vector is

implemented in Section 3.3.3. The implementation procedure for the SEM with two

quadrilateral elements to the solution of theinviscid flow around a cylinder is

discussed for a velocity potential equation including nonhomogeneous Neumann

boundary conditions. The Helmholtz operator of quadrilateral elements is

implemented for the solution of Helmholtz Equations in Section 3.4.

In Chapter 4, the results and discussions of the SEM solution for the Poisson

equation with single element using MATLAB on rectangular domains with all type

of boundary conditions (zero or nonzero Dirichlet and Neumann) are discussed in

Section 4.1. The comparison between finite element and SEM is also discussed in

Section 4.1.2. The results and discussions of the Poisson equation (4.4) using

MATLAB on multi-element domains are in Section 4.2. These discussions include

how the solution and error results are affected from the domain discretisation with

three types of mesh containing both of the rectangular and quadrilateral elements. A

domain containing an inner corner is selected to discuss the effects of the geometric

singularity on the solution. The results and discussions of the solution of the inviscid

flow around a cylinder with two quadrilateral elements are presented in Section 4.3.

Velocity potential and stream function results are discussed in Section 4.3.1 and

4.3.2. The results and discussions of the solution of the Helmholtz equations on

single and multi element domains are given in Section 4.4. Helmholtz equations are

solved with the Helmholtz operator evaluated for a single and multi elements in

 9

Section 4.4.1 and 4.4.2. The effect of the Gauss Lobatto Legendre quadrature on the

accuracy of the Helmholtz operator is investigated.

In Chapter 5, thesis is concluded with some comments and discussions especially on

the ease of implementation of the algorithms using MATLAB.

 10

CHAPTER 2

CONFORMING SPECTRAL ELEMENT DISCRETISATION

The application of the Uzawa algorithm [16, 20] to the steady stokes or Navier-

Stokes equations form a linear algebraic system. This discrete system includes

element stiffness matrix called as discrete Laplacian operator [16], element mass

matrix and a 2D first order differentiation matrix that is called the gradient operator

[16, 20].

The splitting approach of Karniadakis et al. [28], which is an alternative method,

decouples the Navier-Stokes equations into four elliptic equations. Three of them are

Helmholtz equations and one of them is a Poisson equation. Therefore, the

fundamentals of the spectral element method is investigated and discussed for the

solution of Poisson and Helmholtz Equations with rectangular and quadrilateral

elements [3]. The evaluation process of element stiffness and mass matrices is

formulated for both of the rectangular and isoparametric quadrilateral elements [2, 3].

Load vector and Helmholtz operator evaluation is formulated by using mass matrix

formulas for both of the elements [3]. Differentiation and integration within a

quadrilateral element is discussed in Section 2.5.3 and 2.5.4 for 2D first order

differentiation matrix evaluation which contains Jacobi matrix and Jacobian

evaluation [2]. Jacobi mapping is also formulated for isoparametric quadrilateral

(curvilinear edged) elements [2]. Spectral element method begins with the spatial

discretisation of the domain.

Section 2.1 includes general discussions which are adapted from the book by

Karniadakis and Sherwin[2], and by Sert[5]. Section 2.2, 2.3 and 2.4 are adapted

mostly from Deville, Fischer and Mund [3] with some modifications. Head of the

section 2.5 and sections from 2.5.1 to 2.5.4 are again mostly from Karniadakis and

Sherwin[2]. Section 2.5.5 and 2.5.6 are mostly adapted from [3] and Fischer [20]

with some modifications.

 11

2.1 Spatial Discretisation

In order to introduce the fundamentals of spectral element formulation, strong

formulation of the Poisson equation will be discussed at the beginning.

2.1.1 Strong Formulation of the Poisson equation

2
u f−∇ = on Ω (2.1a)

u g= on gΓ the Dirichlet (essential) boundary conditions (2.1b)

n u h⋅∇ = on hΓ the Neumann (natural) boundary conditions (2.1c)

2∇ , 2
nd

 degree differentiation operator for PDE, is called Laplacian or diffusion

operator, where u is the scalar unknown. Ω is the domain of the problem and

g hΓ = Γ Γ∪ is the boundary of Ω .They are the Dirichlet (essential) and Neumann

(natural) boundary conditions. The unit normal n points outward from boundary hΓ ,

and f, g and h are known functions.

2.1.2 Residual form

The Poisson equation is written in the residual form as Equation (2.2) by equating

left-hand side to zero.

2 0u fℜ = ∇ + = (2.2)

2.1.3 Weighted Residual Formulation

Weighted residual assumes that the solution u can be accurately represented by the

approximate solution of the form

 12

0

1

dofN

N i i

i

u u u
=

= + Φ∑ (2.3)

where iΦ are analytic functions called the trial (or expansion) functions, and iu are

the dofN unknown coefficients. By definition iΦ is equal to zero on Dirichlet

boundaries to satisfy the homogeneous boundary conditions and 0u is selected to

satisfy the initial and non-zero Dirichlet boundary conditions [2].

To construct the weighted residual form the residual is multiplied with a weight (test)

function w. The approximate solution is forced to satisfy the residual equation in a

weighted integral sense [1, 2]. The below formulation is equivalent to forcing the

residual to vanish when projected onto the test space [8].

2() 0u f vd
Ω

∇ + Ω =∫ (2.4)

The approximate solution u and the weight function v belong to the following Hilbert

spaces. The trial space is the Hilbert space where the approximate (trial) solutions

are lied in and is denoted by χ .

1{ : ()u u Hχ = ∈ Ω , u =g on gΓ } (2.5)

V
1{ : ()= ∈ Ωw w H , v = 0 on gΓ } (2.6)

The trial and test spaces χ and V contain infinite number of functions, as a result it is

an infinite dimensional problem. The trial and test subspaces, Nχ and V N , are

selected to contain finite number of functions and are considered as two finite

dimensional approximation spaces that belong to the Nχ χ⊂ and V N ⊂V . The test

space V N,0 belongs to the V N ⊂V N,0 where the subscript 0 refers to the fact that it

 13

satisfies the boundary conditions on gΓ . This means weight (test) function v (or w in

[4]) is zero on all Dirichlet boundaries.

The approximate solution N Nu χ⊂ is then rewritten as

0

N

N i i

i

u u φ
=

=∑ (2.7)

The trial functions iφ are used as basis functions for a truncated series expansion of

the solution.

2.1.4 Weak formulation

To construct the weak form, integration by parts is applied to the first term of

Equation (2.4).

h

u vd f vd hvds
Ω Ω Γ

∇ ⋅∇ Ω = ⋅ Ω +∫ ∫ ∫�
(2.8)

To impose the Neumann (natural) BC naturally and lower the order of the first term,

integration by parts is applied; as a result linear order polynomials can be used for

preconditioning the mesh.

2.1.5 Domain Discretization

It is an application of the weak formulation to each element individually.

e
h

e e e e e e e e
u v d f v d h v ds

Ω Ω Γ

∇ ⋅∇ Ω = ⋅ Ω +∫ ∫ ∫�
(2.9)

2.1.5.1 Weak formulation for a single element

The Equation (2.9) becomes

 14

(,) (,)
e
h

e ev u v u
dxdy dxdy f x y v x y dxdy h v ds

x x y y
Ω Ω Ω Γ

∂ ∂ ∂ ∂
+ = ⋅ +

∂ ∂ ∂ ∂∫ ∫ ∫ ∫� (2.10)

If the whole solution domain is treated as a single element, then the p-type method

becomes a spectral method [8, 16]. A lot of methods are produced by the choice of

the expansion (trial) function
iφ and the test function v, for example least squares and

collocation. Our main concern is the Galerkin method also known as Bubnov-

Galerkin.

2.1.5.2 Weak Formulation for Homogeneous Neumann BC

The last term of Equation (2.10) is the boundary term which is zero for homogeneous

Neumann boundary conditions 0⋅∇ = =n u h on hΓ .Thus, Equation (2.10) becomes

(,) (,)
Ω Ω Ω

∂ ∂ ∂ ∂
+ = ⋅

∂ ∂ ∂ ∂∫ ∫ ∫
v u v u

dxdy dxdy f x y v x y dxdy
x x y y

 (2.11)

As it is seen, natural boundary conditions are included in the solution naturally.

2.2 Element Discretisation for 2D Problems

Tensor product forms are used to develop steady diffusion operator and other spectral

element operators for elliptic problems like Poisson equation in a rectangular

domain. u is approximated in the element eΩ by mapping each element in physical

coordinate (x, y) to a master element in (
1 2,ξ ξ) 2[1,1]∈ − reference coordinate system

(computational domain). Typical function u(x,y)∈ V N has the representation

u (1 2,ξ ξ) = 1 2

0 0

() ()
N N

ij i j

i j

u ψ ξ ψ ξ
= =

∑∑ (2.12)

 15

2.2.1 Two dimensional differentiations in the computational domains

The differentiations with respect to 1ξ and 2ξ are expressed in the reference

coordinates as

1
2

0 01 1

()
()

N N
i

ij j

i j

u
u

ψ ξ
ψ ξ

ξ ξ= =

∂∂
=

∂ ∂
∑∑ (2.13)

2

1

0 02 2

()
()

N N
j

ij i

i j

u
u

ψ ξ
ψ ξ

ξ ξ= =

∂∂
=

∂ ∂
∑∑ (2.14)

Here, it is needed to select expansion bases for trial and weight functions. Various

expansion bases are discussed and compared with each other in Appendix B.

2.3 Galerkin methods

The test functions are chosen to be same as the trial (or expansion) functions. As a

result the spaces χ and V are chosen to be the same, and the weak formulation

Equation (2.9) is used as a starting point of the method which is called a Galerkin

weighted-residual method so the weight (test) function v is written as

v= 1 2 1 2

0 0

(,) () ()
N N

pq p q

p q

φ ξ ξ ψ ξ ψ ξ
= =

=∑∑ (2.15)

2.4 Rectangular geometries

In this section, 2D rectangular stiffness matrix and mass matrix evaluation are

formulated. Helmholtz operator and variable-coefficient case is also formulated.

2.4.1 2D Mass matrix Evaluation

The 2D mass matrix is derived by simply evaluating (u, v) as seen in Equation (2.16)

for all u, v∈ V N for rectangular domains. Mass matrix is used for evaluating load

 16

vector with force function and some operators like Helmholtz in some problems like

Poisson, wave and advection-diffusion (Burgers) etc.

1 2 1 2 1 2() () () ()(,) ()p q i jpq q ij
pj iq

dxu v vudV v dx uψ ξ ψ ξ ψ ξ ψ ξ
ΩΩ

= = ∫∑∑∫ (2.16)

For a rectangular domain [x,y]∈[0, 1 2] [0,]×L L

1 1

1 2
1 1 2 2 1 2ˆ

1 1

() () () ()
2 2

ψ ξ ψ ξ ψ ξ ψ ξ ξξ
− −

= ∫ ∫ p i j qkk

L L
M dd (2.17)

1 2 ˆ ˆ
4

L L
M M M= ⊗ (2.18)

1L and
2L are the lengths of the edges of the rectangular element or domain.

The availability of a diagonal mass matrix is a particularly useful feature in unsteady

or temporal discretization problems that require frequent application of 1−M because

computational cost of inverting the mass matrix is an important issue. However, the

most important cost is the computational cost of constructing the matrix system

which involves numerical integration including the mass matrix.

M̂ will be diagonal if the basis functions are orthogonal with respect to the inner

product. One possibility is to choose { }
0

N

p i
ψ

=
 to be a set of orthogonal functions such

as Legendre polynomials, which will be discussed as Modal Legendre expansion

()C

p xΦ in Appendix B.1.2.2; however, this expansion will not automatically satisfy

the essential boundary conditions. The difficulty arises when it is tried to ensure a

degree of continuity in the global expansion at elemental boundaries. For a domain

with a single element, element and domain boundaries are the same. For accurate

results, it is sufficient to guarantee Nu . Typically, in the finite element methods this

is satisfied by imposing a 0C continuity between elemental regions; that is, the global

 17

expansion modes are continuous everywhere in the solution domain although the

derivatives may not be.

As an alternative to fully orthogonal basis, one can use localized Lagrangian

interpolants coupled with mass lumping as FEM, in which the mass matrix is

replaced by a diagonal matrix with an identical row sum. This is achieved by the

SEM, which is discussed in Appendix B.2.2 in a more formal setting.

The SEM is defined not only by its choice of Lagrangian basis functions,
i iLψ = , but

also by the associated quadrature rule or inner product (.,.) of Equation (2.16) which

is approximated by the discrete inner product (.,.)N given by Gauss Lobatto

quadrature in each spatial direction. For a single coordinate direction and with

{ }0 1, ,..., Nξ ξ ξ and { }0 1, ,..., Nw w w denoting the quadrature nodes and weights

respectively, the integral of g(ξ) function can be defined as

1

01

() ()
N

k k

k

g d w gξ ξ ξ
=−

≈∑∫ (2.19)

Each inner product in the SEM is computed by first evaluating the integrand, then

substituting the quadrature (2.19) for integration. Thus, entries in M̂ become

0

ˆ () ()
N

ij k i k j k

k

M w L Lξ ξ
=

=∑ (2.20)

However, because the basis is Lagrangian [i.e., ()i j ijL ξ δ= , where ijδ is the

Kronecker Delta], it is clear that due to the cardinality property of the Lagrangian

basis on the GLL grid, for spectral elements, M̂ is diagonal

ˆ ()iM diag w= (2.20a)

The stiffness matrix K is derived in a similar manner. At first, p(x) and q(x) are

defined as constant, leading to a particularly simple form that is amenable to both fast

evaluation and fast inversion.

 18

2.4.2 Rectangular Element Stiffness Matrix Evaluation

In 2� , the energy inner product is

A(u,v)=
v u v u

p p qvu dx
x x y y

Ω

 ∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂
∫ (2.21)

For Helmholtz problem, q has got a value. For Poisson problems p=1 and q=0, as a

result last term of Equation (2.21) is zero for Poisson problems.

Using the expansions Equations (2.12), (2.13), (2.14) and (2.15) for u and v, the first

term on the RHS of Equation (2.21)

1 1

2
2 1

1 1 11 1

p i
pq q j ij

pq ij

Lv u
p dx v p d d u

x x L

ψ ψ
ψ ψ ξ ξ

ξ ξ
Ω − −

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
∑∑∫ ∫ ∫

Ω

∂ ∂
=

∂ ∂∫
v u

p dx
x x

2

1

ˆ ˆ
pq qj pi ij

pq ij

L
v p M K u

L
∑∑ (2.22)

where K̂ is the one-dimensional stiffness matrix on [-1,1]. Using tensor notation as it

is in Equation (2.18) gives

()2

1

ˆ ˆTLv u
p dx p v M K u

x x L
Ω

∂ ∂
= ⊗

∂ ∂∫ (2.22a)

Using the expansions Equations (2.12), (2.13), (2.14) and (2.15) for u and v, the

second term on the RHS of Equation (2.21) is

1 1

1
2 1

2 2 21 1

q j

pq p i ij

pq ij

Lv u
p dx v p d d u

y y L

ψ ψ
ξ ψ ψ ξ

ξ ξ
Ω − −

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
∑∑∫ ∫ ∫

 = 1

2

ˆ ˆ
pq qj pi ij

pq ij

L
v p K M u

L
∑∑ (2.23)

where K̂ is the one-dimensional stiffness matrix on [-1,1]. Using tensor notation as it

is in equation (2.18) gives

 19

()1

2

ˆ ˆTLv u
p dx p v K M u

y y L
Ω

∂ ∂
= ⊗

∂ ∂∫ (2.23a)

Numerical quadrature can be applied also for evaluation of K̂

1' ' 1
1 1

0 0 1 1

()()ˆ () ()
N N

j ki k
ij k i k j k k

k k

K w w
ψ ξψ ξ

ψ ξ ψ ξ
ξ ξ= =

∂∂
= =

∂ ∂
∑ ∑

11

0 1 1

()()ˆ
N

j ki k
ij k

k

LL
K w

ξξ

ξ ξ=

∂∂
=

∂ ∂
∑ (2.24)

1kξ is the tensor product matrix of the 1ξ (local) coordinates of the element. Since the

number of nodes in x and y direction is equal to each other, ˆ
pi

K is equal to ˆ
qj

K . This

equation is remembered as 1D stiffness matrix and its implementation is also similar.

Exact evaluation of mass matrix means accurate evaluation of 1D stiffness matrix

(' '

i jψ ψ has got a degree of 2N-2). Because the N+1 point Gauss-Lobatto Legendre

quadrature rule is exact for all polynomials of degree 2N-1 or less.

1

1

()i kL ξ

ξ

∂

∂
 is the derivative of the Lagrangian polynomials. It will be the

differentiation matrix (1)

,N ijD and can be written from [3] as

(1)

,

() 1
,

()

(1)
, 0

: 4

(1)
,

4

0, 1,..., 1

i

N i

N j i j

j

N ij

L
i j

L

N NdL i j
D

d
N N

i j N

i j N

ξ ξ

ξ

ξ ξ ξ

ξ
=

→ ≠ −

 +
 − → = =

= =
 +
 → = =

 → = = −

 (2.24a)

The matrix elements are the nodal values of the first derivative of the GLL

Lagrangian polynomials.

 20

Combining Equations (2.22a) and (2.23a) with a similar expression for the y-

derivatives and with the mass matrix derived in Equation (2.18) yields

A () () ()2 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ(,)
4

T L L L L
u v v p M K p K M q M M u

L L

= ⊗ + ⊗ + ⊗

 (2.25)

At the RHS of Equation (2.11), Calculation of the force (load) matrix is needed for

all of the PDE’s if there is a force function

F(v)= ()1 2 ˆ ˆ(,) (,)
4

TL L
f x y v x y dxdy v M M f

Ω

⋅ = ⊗∫ (2.26)

The second expression results from the insertion of the interpolant of f(x) into the

RHS of Equation (2.11).

2.4.3 Helmholtz operator for a single element

Equations from (2.18) to (2.26) describe the essential mechanics for evaluating the

bilinear form (u,v), A(u,v) and F(v) for any element pair, where u,v NV∈ . The

discrete Helmholtz operator

() () ()2 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ:
4

L L L L
H p M K p K M q M M

L L

= ⊗ + ⊗ + ⊗

 (2.27)

is sometimes referred as the Neumann operator, because it is the system governing

the homogeneous Neumann problem. It is symmetric, positive and definite unless

q=0, in which case it has 1D nullspace corresponding to the constant mode.

2.4.4 Laplacian operator for a single element

For q=0, the Laplacian operator, also called as Steady diffusion operator, will be

 21

L () ()2 1

1 2

ˆ ˆ ˆ ˆ:
L L

p M K p K M
L L

= ⊗ + ⊗

 (2.28)

For Laplacian problem, where L is Laplacian operator

Lu=F(v) (2.29)

Here, the local stiffness (element) matrix of rectangular element on the reference

coordinates is calculated for steady diffusion (Laplacian) operator. Sometimes K is

used as its symbol, because its name is stiffness matrix.

All of the stiffness matrices of the square element with the same degree, which are on

different physical coordinates, are the same. F(v) will be different, whether force

function is dependent on x,y coordinates or not. These issues will be handled in the

implementation Chapter 3.

Dirichlet and Neumann boundaries are considered and discussed in Chapter 3

implementation process.

For nonzero Neumann if the domain is square, poldif.m can be used to find the

differentiation matrix with respect to x or y of the element [7, 8 and 12].

2.4.5 The Variable-Coefficient Case

To develop the system matrices for the case of variable p(x,y), evaluation of the

integrals in the first term at the RHS of Equation (2.21) requires an evaluation once

again. The reference and physical coordinates are the same. For two-dimensional

domains, the first term of Equation (2.21) is written as

A

1 1

1 2 1 2

1 11 1

(,) : (,)x

v u
u v p d dξ ξ ξ ξ

ξ ξ
− −

∂ ∂
=

∂ ∂∫ ∫ (2.30a)

 22

which constitutes a single term in the energy inner product A(u,v). To generate the

discrete operators, the equations of expansions (2.12), (2.13), (2.14) and (2.15) for u,

v, and p are inserted into Equation (2.30a):

A

1 1

2 1

1 11 1

(,)
p i

x pq mn q j n m ij

pq ij mn

u v v p d d u
ψ ψ

ψ ψ ψ ξ ψ ξ
ξ ξ

− −

∂ ∂
=

∂ ∂
∑∑ ∑ ∫ ∫ (2.30b)

If left in this form, the cross term mnp destroys the tensor-product form and leads to

an unacceptable fill in the stiffness matrix

A

1 1

2 1

2 21 1

(,)
ψ ψ

ψ ξ ψ ψ ψ ξ
ξ ξ

− −

∂ ∂
=

∂ ∂
∑∑ ∑ ∫ ∫

q j

pq mn n p i m ij

pq ij mn

y u v v p d d u (2.30c)

The SEM avoids this difficulty through the use of a high-order quadrature rule

coupled with Lagrangian basis functions based on the Gauss Lobatto Legendre points

iξ by employing the basis functions 1()i iLψ ξ= described before. The first integral

on the right in Equation (2.30c) is approximated as

1 11 1
1

0 1 1 1 1

() ()() () ˆ ˆ()
N

p k p mi k i m
m k k m mp mi m

k

dL dLdL dL
L w w D D w

d d d d

ξ ξξ ξ
ξ

ξ ξ ξ ξ=

= =∑ (2.31)

where
1

1

()
ˆ :

p m

mp

dL
D

d

ξ

ξ
= . The second integral in Equation (2.30c) is approximated by

1 1 1 1

0

() () ()
N

q k j k n k k qn jn n

k

L L L w wξ ξ ξ δ δ
=

=∑ (2.32)

Let P:=diag(m̂p) and W:=diag(m̂w) be the diagonal matrices having entries

m̂ mnp p= and ˆ :m mn m nw p w w= respectively, where m̂ =1+m+(N+1)n corresponds to

the natural ordering of the nodes. W can be expressed in terms of tensor-product

forms where ˆ ()iM diag w=

 23

ˆ ˆ()W P M M= ⊗ (2.33)

and the integral expression eqn. (2.30) recast in terms of W,

A () ()ˆ ˆ(,)
T T

x u v v I D W I D u= ⊗ ⊗ (2.34)

From this, the spectral–element stiffness matrix can be concluded for Equation (2.21)

for q=0 with variable p(x,y) is of the form

() () () ()ˆ ˆ ˆ ˆT T
K I D W I D D I W D I= ⊗ ⊗ + ⊗ ⊗ (2.35)

Dirichlet and Neumann boundary conditions are also an implementation issue.

The presence of matrix P in Equation (2.33) is generally not in tensor form, and

therefore the fast diagonalization method cannot be used to invert K . However,

because the cost of applying the diagonal matrix W to a vector is only ()dO N , the

leading order of complexity of forward application of K is governed by the

differentiation associated with the matrices D̂ and ˆ T
D and is only 1()dO N + . Note

that if W were full rather than diagonal, the cost of applying K would be 2()dO N . It

is precisely the use of the diagonal mass matrix M̂ [the approximation equations

(2.31) and (2.32)] that lead to a favorable complexity estimate in the variable –

coefficient case and that is central to the utility of the high-order methods in complex

geometries.

2.5 Local elemental operations for quadrilateral elements

It is recalled that to solve the Galerkin formulation of the Laplace equation in

deformed geometries, the inner products of the form within every elemental region is

needed to evaluate. The equation (2.21) for q=0 can be written again like

A (,) () () ()
e

st

u v p v ud p v u J dξ ξ
ΩΩ

= ∇ ⋅∇ = ∇ ⋅∇∫ ∫x x x
(2.36)

 24

where eΩ denotes the element region, stΩ denotes the standard elemental region

(computational domain),x denotes the Cartesian coordinates and J is the Jacobian of

the mapping between these two regions. From the structure of the inner product,

there are three important concepts First, integration within stΩ , second;

differentiation in the standard region
stΩ and, last, differentiation in the elemental

region eΩ . To perform the differentiation and integration within the elemental region,

a mapping between these regions is defined. It is called elemental mapping.

Operations within general-shaped elements

To consider these cases a one-to-one mapping between the Cartesian coordinates

(1 2,x x), and the Local Cartesian coordinates (1 2,ξ ξ) which are denoted by

1 1 2(,)e
x x ξ ξ= , 2 1 2(,)e

y x ξ ξ= (2.5.1)

are defined in two dimensions, and similarly

1 1 2 3(, ,)e
x x ξ ξ ξ= , 2 1 2 3(, ,)e

y x ξ ξ ξ= , 3 1 2 3(, ,)e
z x ξ ξ ξ= (2.5.2)

are defined in three dimensions. They have been called physical coordinates(x,y) and

reference coordinates (1 2,ξ ξ) as mentioned in Section 2.2.

A mapping e

ix is defined from the elemental region to the standard region for

straight–sided elements

2.5.1 Elemental mappings for general straight-sided elements

For elemental shapes with straight sides a simple mapping may be constructed using

the linear vertex modes of a modified hierarchical modal expansion.

Because of linear order elements, it is called bilinear mapping for an arbitrary-shaped

straight-sided quadrilateral where only the Cartesian coordinates of the vertices need

 25

to be prescribed. For the straight-sided quadrilateral with vertices labeled with letters

have counter-clockwise order

1 2 1 2
(1) (1) (1) (1)

2 2 2 2

A B

i i ix x x
ξ ξ ξ ξ− − + −

= +

1 2 1 2
(1) (1) (1) (1)

2 2 2 2

D C

i ix x
ξ ξ ξ ξ− + + +

+ + , i=1, 2

(2.37)

For high-order element matrices, Equation (2.37) will be subparametric. When

developing a mapping, it is important to ensure that the Jacobian (determinant of the

Jacobi matrix) of the mapping to the standard region is nonzero and of the same sign.

To ensure this condition that is satisfied when using the mappings given above, all

elemental regions are required to have internal corners with angles that are less

than180� . Accordingly, quadrilaterals must be convex. It is impossible to generate

local stiffness (element) matrix for quadrilaterals with an interior angle greater than

180� (Concave quadrilateral elements).

2.5.2 Elemental mappings for general curvilinear elements

From Equation (2.37), it is seen that this simply involves the vertex modes of the

modified hierarchical expansion basis within a quadrilateral domain. The mapping

can be written as

()
1 2

1 1 1 2 1 1 2

0 0

(,) (,)
N N

e

pqpq
p q

x x xξ ξ φ ξ ξ
= =

= =∑∑ (2.38a)

()
1 2

2 2 1 2 2 1 2

0 0

(,) (,)
N N

e

pqpq
p q

x x xξ ξ φ ξ ξ
= =

= =∑∑ (2.38b)

where 1 1() ()a a

pq p qφ ψ ξ ψ ξ= and i

pqx =0, except for the vertex modes which have a

value of

()1 10,0

A
x x= ()

1
1 1,0

B

N
x x= (2.38c)

 26

()
1 2

1 1,
= C

N N
x x ()

1
1 10,

D

N
x x=

The construction of a mapping based upon the expansion modes in this form can be

extended to include curved-sided regions using an isoparametric representation. In

this technique this geometry is represented with an expansion of the same form and

polynomial order as the unknown variables.

To describe a curved region as seen in Fig. 2.1 requires more information than the

values of the vertex locations as a straight-sided region. A definition of a mapping of

the shape of each edge in terms of the local Cartesian coordinates is denoted by

1 1 2(), (), (),A B C

i i if f fξ ξ ξ and 2()D

if ξ . The process of defining the mapping functions

is considered as part of mesh generation process of the isoparametric quadrilateral.

Knowing the definition of the edges (or faces in three dimensions), a mapping for a

curvilinear domains can be determined using the iso-parametric form of equation to

include more nonzero expansion coefficients than simply the vertex contributions. If

it isn’t represented by a polynomial of appropriate order, it is needed to approximate

the shape mapping ()if ξ .

This can be done by approximating the edge function in terms of the Lagrange

polynomial. The following approximations for 1()A

if ξ is

1 1

0

() (,) ()A A

i p

p

f f i hξ ξ ξ
=

∑� (2.39a)

 0 1

0

ˆ ()i

p p

p

x ψ ξ
=

∑�
(2.39b)

One important feature of the approximation, and, consequently, the mapping ix is

that the vertices of each element coincide so that elements remain continuous. One

way to ensure this is to use a collocation projection where the collocation points

include the endpoints 1ξ ± 1. The Lagrange representation of Equation (2.39a) is,

 27

therefore, a consistent way of approximating ()A

if ξ . Using the Gauss-Lobatto

Legendre quadrature points for the collocation projection is beneficial. By making

collocation projections at a series of nodal points, the function Af as a polynomial

can be equivalently expressed in terms of a hierarchical expansion, ()pψ ξ , to obtain

the coefficients 0
ˆ i

px in Equation (2.39b). This final transformation can be performed

either by a collocation or Galerkin projection if the polynomials span the same space.

If more collocation points are used, then a modified Galerkin projection can be

applied. Having determined the coordinate expansion coefficients, 0
ˆ i

px , Equation

(2.38) can be evaluated to determine the iso-parametric mapping from the standard

region to the curvilinear region.

Figure 2.1 A general curved quadrilateral element can be described in terms of a

series of parametric functions 1 1 2(), (), (),A B Cf f fξ ξ ξ and 2()Df ξ [2].

Representing these functions as a discrete expansion, An isoparametric

mapping 1 2(,)ξ ξe

ix relating the standard region 1 2(,)ξ ξ to the deformed

region 1 2(,)x x can be constructed [2]. (Adopted from [8])

The form of the boundary-interior decomposition of the modal quadrilateral and

hexahedral expansion is discretely equivalent to using a linear blending function, as

 28

originally proposed by Gordon and Hall [13]. For the quadrilateral region shown in

Figure 2.1 the linear blending function is written as

2 2 1 1
1 1 2 2

(1) (1) (1) (1)
() () () () ()

2 2 2 2

A C D B

i f f f f
ξ ξ ξ ξ

χ ξ ξ ξ ξ ξ
− + − +

= + + +

 1 2 1 2(1) (1) (1) (1)
(1) (1)

2 2 2 2

ξ ξ ξ ξ− − + −
− − −A A

f f

1 2 1
(1) (1) (1)

(1) (1)
2 2 2

ξ ξ ξ− + +
− − +C Cf f

(2.40)

where the vertex points are continuous (for example, (1)Af − , (1)Df −). If the

analytic curves 1 1 2(), (), (),A B C
f f fξ ξ ξ and 2()D

f ξ replaced in Equation (2.39a) and

rearranged, the expansion of the form given by Eqn. (2.38a, b) can be obtained. The

blending function Eqn. (2.40) with approximations of the form Eqn. (2.39a) to the

mapped edges has been applied in spectral element methods. For curved triangular,

tetrahedral or unstructured elements, the linear blending function expressed in terms

of the local collapsed coordinates should not be used as this can generate a non-

smooth Jacobian at the singular vertices. 0
C continuity can be lost.

2.5.3 Integration within an elemental region

After the coordinates of the element’s inner and surface (face) nodes, all the partial

derivatives required to determine the Jacobian can be evaluated. 1

1x

ξ∂

∂
, 2

1x

ξ∂

∂
, 1

2x

ξ∂

∂
 and

2

2x

ξ∂

∂
 must be calculated to find the Laplacian operator .

1 1

1 2 1 2 1 2
2

2 2 1 2 2 1

1 2

ξ ξ

ξ ξ ξ ξ

ξ ξ

∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂

D

x x

x x x x
J

x x
 (2.41)

 29

2.5.4 Differentiation within an elemental region

To differentiate a function within the arbitrary elemental region eΩ , the chain rule is

applied for the two-dimensional case, gives

1 2

1 1 1 1 2

1 2

2 2 1 2 2

x x x

x x x

ξ ξ

ξ ξ

ξ ξ

ξ ξ

∂ ∂∂ ∂ ∂
+ ∂ ∂ ∂ ∂ ∂

 ∇ = =
∂ ∂ ∂∂ ∂

+ ∂ ∂ ∂ ∂ ∂

 (2.42)

In order to evaluate partial derivatives of the form 1

1x

ξ∂

∂
, they are expressed in terms

of
1ξ ,

2ξ which is the terms of Jacobian.

The total change 1 1 1 2(,)e
x x ξ ξ= and 2 2 1 2(,)e

x x ξ ξ= is

1 1

1 21 1

2 22 2

1 2

x x

dx d

dx dx x

ξ ξ ξ

ξ

ξ ξ

∂ ∂
 ∂ ∂ = ∂ ∂
 ∂ ∂

 (2.42a)

which can be inverted to obtain

2 1

2 21 1

2 22 12

1 1

1

1

D

J

x x

d dx

d dxx xJ

ξ ξξ

ξ

ξ ξ

−

∂ ∂
− ∂ ∂ = ∂ ∂ − ∂ ∂ ��������	

(2.43)

However, as the mapping is assumed to be one to one and have an inverse

()
1

1 1 1 2
(,)ex x xξ

−

= , ()
1

2 2 1 2
(,)ex x xξ

−

= (2.5.4.1)

 30

 and, as a result, it is obtained that

1 1

1 21 1

2 22 2

1 2

x xd dx

d dx

x x

ξ ξ

ξ

ξ ξ ξ

∂ ∂
 ∂ ∂ = ∂ ∂
 ∂ ∂

 (2.44)

which by comparison, finally gives

1

1x

ξ∂

∂
= 2

2 2

1

D

x

J ξ

∂

∂
 1

2x

ξ∂

∂
= 1

2 2

1

D

x

J ξ

∂
−

∂

2

1x

ξ∂

∂
= 2

2 1

1

D

x

J ξ

∂
−

∂
 2

2x

ξ∂

∂
= 1

2 1

1

D

x

J ξ

∂

∂

(2.44b)

The two-dimensional gradient operator can be evaluated as all the partial derivatives

are expressed in terms of differentials with respect to
1ξ ,

2ξ .

2.5.5 Quadrilateral (Curvilinear Edged) Element Stiffness Matrix Evaluation

for the Discretization of Deformed Geometries

The case where Ω may be deformed will be considered. After suitable

transformations called mapping to the computational domain Ω̂ , the preceding

methodology developed for the variable-coefficient case can be readily extended to

develop a compact formulation of the stiffness matrix in the case of deformed

geometries. To highlight the many symmetries in the problem, the results are derived

for two dimensional domain (d=2).

There exists an invertible map ()ix ξ from the physical deformed domain eΩ to the

reference domain stΩ (standard elemental region) for which the Jacobian is

nonvanishing and, therefore, of the same sign everywhere on stΩ . (Specifically all

vertex angles should be bounded away 0 and 180�). Without loss of generality, it is

also assumed that the Jacobian (determinant of the Jacobi matrix) is positive,

implying that an element volume in the transformed (mapped) coordinates is

positive.

 31

1 1

1

1

() det

d

d d

d

x x

J

x x

ξ ξ

ξ

ξ ξ

∂ ∂
 ∂ ∂

 =

∂ ∂
 ∂ ∂

� �

 (2.5.5.1)

For 2D problems

1 1

1 2

2 1 2

2 2

1 2

(,)D

x x

J
x x

ξ ξ
ξ ξ

ξ ξ

∂ ∂
 ∂ ∂
 =
 ∂ ∂
 ∂ ∂

 (2.5.5.2)

Equation (2.21) for q=0 is remembered again like

A
1

(,) ()
e e

d

k k k

u v
u v p v ud p d

ξ ξ=Ω Ω

∂ ∂
= ∇ ⋅∇ =

∂ ∂
∑∫ ∫x x x (2.45)

For d=2, 1 2d dx dxx = . Going from eΩ to stΩ , partial derivatives of u are evaluated

according to the chain rule

1

d
i

ik i k

u u

x x

ξ

ξ=

∂∂ ∂

∂ ∂ ∂
∑= k=1,…,d (2.5.5.3)

Combining with a similar expression for v leads to

A
1 1 1

(,) ()

st

d d d
ji

k i ii jk k

v u
u v p J d

x x

ξξ
ξ ξ

ξ ξ= = =Ω

∂∂∂ ∂
=

∂ ∂ ∂ ∂∑ ∑ ∑∫

A
1 1 1

(,) ()

st

d d d
ji

i j ki k k j

v u
u v p J d

x x

ξξ
ξ

ξ ξ= = =Ω

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
∑∑ ∑∫ ξξξξ (2.46)

 32

where in the last equation , 1 2d d dξ ξ=ξξξξ and the geometric factors associated with

the matrics i

kx

ξ∂

∂
, and the jacobian have been assembled within a set of functions

G
1

() ()
d

ji
ij

k k k

J
x x

ξξ
ξ ξ

=

∂∂
=

∂ ∂
∑ , 1 ,i j≤ ≤ d (2.47)

It is seen that Equation (2.46) has a form similar to Equation (2.30a). As in that case,

it is evaluated by using numerical quadrature on the tensor product of the Gauss-

Lobatto grid points, Equation (2.46) is calculated as

A

()1 1
, ,

(,)

mk l

d d

ij k l m

i j klm i j

v u
u v p w w w

ξ ξ ξ
ξ ξ= =

 ∂ ∂
=

∂ ∂
∑∑∑ G (2.48)

The coefficient p, geometric terms ijG , and the quadrature weights w can all be

conveniently combined into a set of 2
d diagonal matrices, ijG , { }

2
, 1,...,i j d∈ . Let

() ()ξ ξ ξ=
ˆˆ , ,: []

mk l
ij ij k l mkk
G p w wwG (2.49)

For 2D and using equation (2.33), Equation (2.49) becomes

() ()ˆ ˆ ,
ˆ ˆ: ([])()

k l
ij ijkk

G diag p M Mξ ξ= ⊗G (2.50)

with 2ˆ 1 (1) (1)k k N l N m= + + + + + , k, l, m { }
3

0,..., N∈ ,defining a natural ordering of

the quadrature points. Note that multiplication of u by each ijG simply pointwise

multiplication (collocation) of the nodal values klmu with the terms on the right of

Equation (2.49) are evaluated, the derivatives in Equation (2.48) are evaluated, for

example, as

 33

01

ˆ
N

kp plm

pklm

u
D u

ξ =

∂
=

∂
∑ k, l, m { }

3
0,..., N∈

 = ()ˆI I D u⊗ ⊗

(2.51a)

Defining

()1
ˆ:D I I D= ⊗ ⊗ ()2

ˆ:D I D I= ⊗ ⊗ ()3
ˆ:D D I I= ⊗ ⊗ (2.51b)

For two dimensional problems

()1
ˆ:D I D= ⊗ ()2

ˆ:D D I= ⊗ (2.51c)

When the derivative operators Equation (2.51b) with the geometric factors Equation

(2.50) to yield a final compact form, the energy product Equation (2.46) will be

A

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

(,)

T

T

D G G G D

u v v D G G G D u

D G G G D

=

 (2.52)

 = T T
v D GDu (2.52b)

Since ij jiG G= , only six of the geometric factors need to be computed. The leading-

order storage requirement for the factored-stiffness matrix is thus only 6 ()
3

1N + ,

compared with ()
6

1N + for the full matrix.

For the case d=2

1 11 12 1

2 21 22 2

(,)

T

T
D G G D

A u v v u
D G G D

=

 (2.52a)

 34

 1D I D= ⊗ and 2D D I= ⊗ is used.

The work required for a matrix-product is similarly reduced. In applying : T
K D GD=

to a vector u , one begins with d tensor-product based derivative evaluations,

ˆ
j ju D u= , followed by multiplication with the geometric factors ˆ

i j ij ju G u=∑� ,

followed finally with a sum across the transposed derivative operators,

T

i i iKu D u=∑ � for a total operation count of 12 4 3(1) 15(1)N N+ + + . This is a

significant improvement over the 2 6(1)N + cost incurred if the stiffness matrix is

computed and stored explicitly.

2.5.6 Mass matrix evaluation for deformed geometries

The extension of the mass matrix to the deformed geometry case is a straight-forward

application of quadrature and leads (in 3R) to the diagonal form

ˆ̂ 1 2 3(, ,)ıı i j k i j kM J w w wξ ξ ξ= 2ˆ : 1 (1) (1)ı i N j N k= + + + + + (2.53)

For two dimensional problem it will be

()ˆ̂ 2
ˆ ˆ= ⊗ıı DM J M M (2.53b)

Element load vector evaluation is

F(v) ()2
ˆ ˆT

Dv J M M f= ⊗ (2.54)

For Helmholtz problems, the corresponding Helmholtz operator is created by

augmenting the stiffness matrix K as

:H K QM= + (2.55)

 35

where Q is the diagonal matrix corresponding the nodal values q(x(, ,i j kξ ξ ξ)).

Although the presence of the variable q and Jacobian degrades the accuracy of the

quadrature somewhat, the fact that it is high-order tends to diminish the severity of

the “variational crime” [14]. The possibility of using higher-order integration rules to

overcome this difficulty, it was better to recover the accuracy by simply increasing N.

In this chapter, element stiffness and mass matrices evaluation is discussed for the

rectangular and isoparametric quadrilateral elements. Laplacian and Helmholtz

operator equations are investigated for the rectangular and isoparametric quadrilateral

elements. The evaluation of gradient operator (2D first order differentiation matrix)

is also discussed for the rectangular and isoparametric quadrilateral elements in

Sections 2.5.4 and 2.5.5.

In Chapter 3, implementation of the equations of Chapter 2 will be discussed.

 36

CHAPTER 3

IMPLEMENTATION

High order finite element method was not famous until the 1980s because increasing

the order means increasing the size of the element matrix. This increases the

computation time. Reducing the band size of the assembled stiffness matrix has been

a problem from the earliest times of the finite element. Therefore, a diagonal mass

matrix is the dream of the most finite element people. Gauss Lobatto Legendre

(GLL) Lagrangian polynomials and Gauss Lobatto Legendre quadrature is used

because GLL Lagrangian polynomials are equal to kronecker delta at GLL nodes.

This means identity matrix. If the same polynomials and quadrature is not used, the

matrix will be full.

All of the spectral element MATLAB codes can be run both of MATLAB 6.5 and

7.0. Their built-in functions are also used like mesh.m. To see the results better, the

Matlab 7.0 can be used because its capacity of array editor is larger than Matlab 6.5.

3.1 Poisson Equation Solution with a single rectangular spectral element

Rectangular element (local) stiffness matrix is found by using the Equation (2.28)

with the formulas in Section 2.4 of Chapter 2. Rectangular element (local) stiffness

matrix is equal to global stiffness matrix as a result local node numbering is the same

as global node numbering.

3.1.1 Evaluation of Gauss Lobatto Legendre nodes and weights

Lobatto.m file function is used as [w,x]=Lobatto(N) to find the Gauss

Lobatto Legendre weights and nodes from 1 to -1. The row vector x that found is

also the roots of the Gauss Lobatto Legendre Lagrangian polynomials. Lobatto.m

is written by Tarman [8] and is given in Appendix B and C.

 37

3.1.2 Evaluation of mass and 1D stiffness matrices

As mentioned before, ()i j ijL ξ δ= , where
ijδ is the Kronecker Delta, it is clear that

()i jL ξ is equal to I=eye(N+1); In Fig. 3.1, GLL polynomials with a degree of

N=6 are plotted as an example.

D=poldif(x,1); this finds the differentiation matrix. Its component in 1st row

and 1st column is derivative of 1 1()L ξ at x=1(1 1(1)L ξ = is equal to 1 at x=1). D(:,p) is

the derivative of ()i jL ξ at all points between [1,-1] and means the matrix’s pth

column.. The first collocation point is 1. It is seen from the graph of lagrangian

polynomials pth lagrangian polynomial’s derivative is equal to 0 at pth collocation

point except 1st and last. Example D=poldif(x,2); this finds the second order

differentiation matrix. The poldif.m belongs to Weideman and Reddy [7].

3.1.2.1 Evaluation of 1D mass matrix

Both of the equation (2.20) and (2.20a) can be used. Equation (2.20a) is implemented

as RHS2=diag(w); Equation (2.20) implemented as

Mathematical Formulation Numerical implementation

0

ˆ () ()
N

ij k i k j k

k

M w L Lξ ξ
=

=∑

for p=1:N+1

for q=1:N+1

L=I(:,q).*I(:,p);

RHS2(p,q)=dot(w,L);end

end

ˆ ()iM diag w= RHS2=diag(w);

w is the kw and L is the () ()i k j kL Lξ ξ . Here, w and L are column vectors with

same size. For array multiplication “.*” is used. I(:,q).*I(:,p)is the entry-by-

entry product of I(:,q) and I(:,p). The dot product is

dot(w,L)=w(1)*L(1)+w(2)*L(2)+...+ w(N+1)*L(N+1)

 38

4
th

 GLL Lagrangian polynomial seen in Fig. 3.1 oscillates less than 4
th

 equispaced

Lagrangian polynomial at the boundaries.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

L
p

i=1

i=2

i=4

Figure 3.1 The plot of the Gauss Lobatto Legendre Lagrangian polynomials

()pL ξ (p=1,…, N+1) with a degree of N=6. There are 7 collocation

points between 1 and-1. p = i

3.1.2.2 Evaluation of 2D mass matrix

Equation (2.18) implemented as

1 2 ˆ ˆ
4

L L
M M M= ⊗ s=kron(RHS2,RHS2);

2D mass matrix is diagonal. Here, the lengths 1L and 2L of the standard (master)

element are equal to 2.

 39

The kronecker product of two matrices A and B is denoted by A B⊗ and is

computed by the matlab built-in function kron(A,B). If A and B have dimensions

of p q× and r s× , then A B⊗ is the matrix of dimension pr qs× with p q× block

form and is written as [1]

2 2

1 2 2 2

3 4 3 3 4 4

3 3 4 4

a b a b

a b c d c d

c d a b a b

c d c d

 ⊗ =

 (3.1.1)

3.1.2.3 Evaluation of 1D stiffness matrix

Equation (2.24) is used for the evaluation of 1D stiffness matrix. It is implemented as

Mathematical Formulation Numerical implementation

11

0 1 1

()()ˆ
N

j ki k
ij k

k

LL
K w

ξξ

ξ ξ=

∂∂
=

∂ ∂
∑

for p=1:N+1

for q=1:N+1

Ae=D(:,q).*D(:,p);

df2(p,q)=dot(w,Ae);end

end

The implementation of Equation (2.20) and (2.24) looks same because of GLL

quadrature.

3.1.3 Construction of the grid

The master element’s local coordinates are calculated by Lobatto.m. It has same

collocation points in both of the x and y direction for N=24, but having same degree

for all directions is not an obligation because of having a single element.

[xx,yy] = meshgrid(x(1:N+1),y(1:N+1)); returns the local

coordinates of each node of the master element in Fig. 3.2.

 40

3.1.3.1 Plotting the grid

The master element grid is plotted by the matlab command

plot(xx,yy,xx’,yy’)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y

x

gnn=1gnn=25

gnn=625 gnn=601

Figure 3.2 The plot of the spectral element grid for a single element with a degree

of N=24. The bold lines are also 1ξ and 2ξ axis of the reference

coordinates. There is a node at each intersection.

The grid becomes denser through the direction from the center of the element to the

edges or the vertices of the element.

The distance between the nodes near the edges (boundary) or the vertices of the

element (domain) is less than the distance between the nodes near the intersection of

the midlines, because of the orthogonality property of GLL polynomials.

 41

3.1.4 Evaluation of load vector

Both of the equation (2.18) and (2.26) are the same except the force function in

Equation (2.26) The force function is calculated at xx = xx(:); yy = yy(:);

which are the vectorized xx and yy and column vectors with sizes of 625. 2D mass

matrix M is used for implementation as s; Equation (2.26) implemented as

Mathematical Formulation Numerical implementation

F(v) ()1 2 ˆ ˆ
4

TL L
v M M f= ⊗

for p=1:(N+1)^2

for q=1:(N+1)^2

if (p==q)

RHS(q)=s(p,q).*f(q);end

end

end

3.1.5 Evaluation of steady diffusion operator

1D mass matrix M̂ and 1D stiffness matrix K̂ has been evaluated for the

implementation of Equation (2.28). It is used for the evaluation of steady diffusion

operator. Equation (2.28) is implemented as

Mathematical Formulation Numerical implementation

L () ()2 1

1 2

ˆ ˆ ˆ ˆ:
L L

p M K p K M
L L

= ⊗ + ⊗

 delta=kron(RHS2,df2)+kron(df2,RHS2);

Kron.m file is used to implement the Equation (2.28) to evaluate the steady diffusion

operator. 2D Rectangular Element Stiffness matrix equals to the steady diffusion

operator for a single element.

3.1.6 Imposing the homogeneous Dirichlet BC

Homogeneous Dirichlet boundary conditions can be implemented for a single

rectangular SEM by deleting (discarding) the first and/or last rows of K̂ the 1D

 42

stiffness calculated by using Equation (2.24) and M̂ the 1D mass matrices evaluated

from Equation (2.20). The steady diffusion operator Equation (2.28) is implemented

as

delta=kron(RHS2,df2(2:N,2:N))+kron(df2(2:N,2:N),RHS2);

In Fig. 3.3, the sparsity graph of the calculated delta (The steady diffusion

operator) is plotted. From Fig. 3.3, delta has got a size of 529×529, the for loop

counters in load vector evaluation are changed to 529. Black regions correspond to

non-zero matrix elements as seen in Fig. 3.3. From Fig. 3.3, there are 23805 non-zero

(nz) elements in delta. An example problem from [1] will be discussed as

Equations (4.1) and (4.2) in Chapter 4.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 23805

Figure 3.3 Sparsity plot of the element stiffness matrix evaluated with Equation

(2.28). No threshold is used because it is kronecker delta

 43

3.1.7 Imposing the nonhomogeneous Dirichlet BC

Poisson Equation with all nonzero Dirichlet boundaries is discussed in Section 4.1.4

with a problem from [5], The global node number of the nodes at the

nonhomogeneous Dirichlet boundary are found by the MATLAB command

b=find(abs(xx)==1 | abs(yy)==1); All components of the related rows

defined by b is denoted as 0.

delta(b,:) = zeros(4*N,(N+1)^2);

The related components of related rows are equal to 1.

delta(b,b) = eye(4*N);

The related components of the column vector RHS’ is changed with the value of u

at the Dirichlet BC. There are 4*N nodes at the Dirichlet boundary.

RHS(b)=sin(4*pi*sqrt((xx(b)-2).^2+(yy(b)-2).^2));

3.1.8 Imposing the zero and nonzero Neumann BC

Zero Neumann BC’s do not need implementation. Adding 0 to the load vector will

not cause any change. As it is said in Section 2.1.5.2, natural boundary conditions are

included naturally in the solution.

3.1.8.1 Imposing the nonzero Neumann BC

For nonzero Neumann there is another method for only 2D rectangular elements to

change the related row of the steady diffusion operator (element stiffness matrix)

with related row of the 2D first order differentiation matrix.

DNBC = kron(I,D)+kron(D,I);

 44

All square element stiffness matrices evaluation and the master element matrix

evaluation for the domain spans the area {-1 ≤ x ≤ 1,-1 ≤ y ≤ 1} is done by the same

Equations (2.20), (2.24) and (2.28). If the domain isn’t [1,-1], for problems in

Sections 4.1.2 and 4.1.4, D must be calculated at 1D mapped nodes from [1,-1] to

[0, 1]. The differentiation matrix D used for calculation of the steady diffusion

operator and 2D first order differentiation matrix must be same.

The related components of the column vector RHS’ is changed with the value of u

at the Neumann BC. Do not add it. . It is a trick from spectral method. [1]

RHS(c)=h;

Here, c is the node numbers of the Neumann boundaries. For problems in Sections

4.1.2 and 4.1.4, F(v) will be different from problem in Section 4.1.1, whether if force

function is dependent on x,y coordinates or not. 1 2

4

L L
 must not be used

3.1.9 Evaluation of the u values in Poisson Equations

un=-delta\RHS';

\ is the Backslash used for matrix left division. For problem 1, delta is a 529×529

matrix and RHS’ is a column vector with n components, then un=-delta\RHS';

is the solution to Lu=F(v) the equation (2.29) computed by Gaussian elimination. A

warning message is displayed if delta is badly scaled or nearly singular.

The time used for un=-delta\RHS'; is 0.09880954 seconds. The time used for

un=-inv(delta)*RHS'; is 0.22994469 sec., which is three times slower than

the backslash.

3.1.10 Plotting the 3D graph of the solution

The part of program 16 in [1] is used for plotting the Fig 4.1.

 45

uu=reshape(un,N+1,N+1);

[xx,yy] = meshgrid(x,y);

value = uu(N/4+1,N/4+1);

% Interpolate to finer grid and plot:

[xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1);

uuu = interp2(xx,yy,uu,xxx,yyy,'cubic');

figure(2), clf,

mesh(xxx,yyy,uuu), colormap(1e-6*[1 1 1]);

xlabel x, ylabel y, zlabel u

Here, interp2.m is used to calculate the u values on an equispaced grid. xxx

and yyy are the interpolation points where xx and yy are interpolated.

uuu = interp2(xx,yy,uu,xxx,yyy,'cubic'); returns matrix uuu

containing elements corresponding to the elements of xxx and yyy and determined

by interpolation within the two-dimensional function specified by matrices xx, yy,

and uuu. x and y must be monotonic, and have the same format ("plaid") as if they

were produced by meshgrid. Matrices xx and yy specify the points at which the data

uu is given. Out of range values are returned as NaNs. Cubic interpolation is used, as

long as data is uniformly-spaced. Otherwise, this method is the same as 'spline'.

A mesh is drawn as a surface graphics object with the viewpoint specified by

view(3). Mesh.m create wireframe parametric surfaces specified by X, Y, and Z, with

color specified by C.

mesh(xxx,yyy,uuu) draws a wireframe mesh with color determined by uuu as a

result color is proportional to surface height. If xxx and yyy are vectors,

length(xxx) = n and length(yyy) = m, where [m,n] = size(uuu).

xxx and yyy are the intersections of the wireframe grid lines.

 46

3.2 Deformed Geometries

This is the situation where the physical domain is different from the computational

domain. The formulas used are isoparametric. Same degree of GLL polynomials used

to define the coordinate transformation from physical to computational domain. [4]

The geometry is represented by the same order quadrilateral elements that are used to

approximate the dependent variables.

3.2.1 2D Quadrilateral Element Stiffness matrix evaluation

Elematrstmquad.m is given in Appendix D. It is written by using the following

equations. If the order of the element is same, the matrix size of the quadrilateral

element is the same as the rectangular element

The first row of the program is

function[delta,Xesit,Yesit,Jab]=elematrs(N,xna,xnb,xnc,

xnd,yna,ynb,ync,ynd,orderofedge,yeqa,yeqc,xeqd,xeqb)

Left hand side is the output of the function. delta is the quadrilateral element

stiffness matrix. Xesit,Yesit are the physical coordinates of the element which

are vectorized column vectors. Jab is the determinant of the Jacobi matrix

(Jacobian). Jab will be used to find the mass matrix. Mass matrix is used for the

evaluation of the load vector.

Right hand side is the input of the function. N is the degree of the element in both of

the x and y directions. xna and yna are the left and down vertices of the element.

xnb and ynb are the right and down vertices. xnc and ync are the right and up

vertices. xnd and ynd are the left and up vertices of the element. If the order of

edge is 0, there is no need to input yeqa, yeqc, xeqd and xeqb. Thus, to

describe a straight-sided region only the values of the vertex locations are necessary.

 47

3.2.2 Evaluation of the physical coordinates of the nodes at the edges of the

element

We expect to be given the shape of each edge in terms of a series of parametric

functions, 1 1 2 2(), (), (), ()A C D B
f f f fξ ξ ξ ξ

 1()Af yeqaξ = , 1()Cf yeqcξ = , 2()Df xeqdξ = and 2()Bf xeqbξ =

[w, xs] = Lobatto(N); xs = xs'; w = w';

ys = xs; [XS, YS] = meshgrid(xs,ys);

Dxs = poldif(xs,1); Dxs = Dxs(:,:,1); Dys = Dxs;

LXS1 = (1-XS)/2; LXS2 = (1+XS)/2;% >> xna=0;xnb=0.5;xnc=0.5;xnd=0;

LYS1 = (1-YS)/2; LYS2 = (1+YS)/2;% >> yna=0;ynb=0;ync=0.5;ynd=0.5;

LXS1, LXS2, LYS1 and LYS2 are known as the linear edge functions of the master

rectangular element of the spectral element methods. These matrices store the values

of the edge functions at the nodes of the master element seen as an example in

Fig. 3.2 for N=24. From FEM for mapping, it is also remembered to multiply the

nodes with edges that can not be neighbor of the edge the node found. XS and YS are

the local Cartesian coordinates of the nodes of the master element.

1 1, 1

0

() () ()
N

A A

i i q q

q

f f Lξ ξ ξ
=

=∑

The physical coordinates of nodes at all edges of the quadrilateral element must be

found. As it is said, GLL points are attractive. The parametric representation begins

by expressing

a i bx x x≤ ≤ ⇐
(1) (1)

2 2

i i

i a b
x x x

ξ ξ− +
= + ⇒ 1 1iξ− ≤ ≤

Above Equation is implemented by a modification of [8] as

if(orderofedge==0)

 48

XA = xna*LXS1 + xnb*LXS2; YA = yna; % down face

XC = xnd*LXS1 + xnc*LXS2; YC = ync; % up face

YD = yna*LYS1 + ynd*LYS2; XD = xnd; % left face

YB = ynb*LYS1 + ync*LYS2; XB = xnb; % right face

else

XA = xna*LXS1 + xnb*LXS2; YA = subs(yeqa); % The value in the subs()

XC = xnd*LXS1 + xnc*LXS2; YC = subs(yeqc); % paranthesis can be

YD = yna*LYS1 + ynd*LYS2; XD = subs(xeqd); % a symbolic equation or

YB = ynb*LYS1 + ync*LYS2; XB = subs(xeqb); % a number

end

% XA = 0*LXS1 + 0.5*LXS2; YA = 0;

% XC = 0*LXS1 + 0.5*LXS2; YC = 0.5;

% YD = 0*LYS1 + 0.5*LYS2; XD = 0;

% YB = 0*LYS1 + 0.5*LYS2; XB = 0.5;

3.2.3 Evaluation of the physical coordinates of the interior nodes of the element

The sparsity and the accuracy of the local stiffness matrices which are evaluated by

elemental mapping for curvilinear Equation (2.40) and straight-sided elements

Equation (2.37) are similar for quadrilateral elements with straight sides.

Both of the curvilinear and straight-sided element’s local stiffness (element) matrices

are evaluated with Equation (2.40).

There are two xna, one is from XA and the other is from XD. So the term xna

multiplied by the edges is subtracted in the linear blending function, which xna is not

found. For the other coordinates we do the same. The equation (2.40) for linear

blending function is implemented with a modification of [8] as

X = XA.*((1/2)*(1 - YS)) + XC.*((1/2)*(1 + YS)) + ...

XD.*((1/2)*(1 - XS)) + XB.*((1/2)*(1 + XS)) - ...

(xna)*((1/2)*(1 - XS)) .* ((1/2)*(1 - YS)) - ...

(xnb)*((1/2)*(1 + XS)) .* ((1/2)*(1 - YS)) - ...

xnd*((1/2)*(1 - XS)) .* ((1/2)*(1 + YS)) - ...

(xnc)*((1/2)*(1 + XS)) .* ((1/2)*(1 + YS));

Y = YA.*((1/2)*(1 - YS)) + YC.*((1/2)*(1 + YS)) + ...

YD.*((1/2)*(1 - XS)) + YB.*((1/2)*(1 + XS)) - ...

 49

(yna)*((1/2)*(1 - XS)) .* ((1/2)*(1 - YS)) - ...

(ynb)*((1/2)*(1 + XS)) .* ((1/2)*(1 - YS)) - ...

(ynd)*((1/2)*(1 - XS)) .* ((1/2)*(1 + YS)) - ...

(ync)*((1/2)*(1 + XS)) .* ((1/2)*(1 + YS));

After finding the coordinates of the element nodes, all the partial derivatives can be

evaluated, which is required to determine the Jacobian. To find the laplacian operator

1

1x

ξ∂

∂
, 2

1x

ξ∂

∂
, 1

2x

ξ∂

∂
 and 2

2x

ξ∂

∂
 must be found.

3.2.4 Evaluation of the Jacobian

Following equation is used

1 1

1 2 1 2 1 2

2 2 1 2 2 1

1 2

x x

x x x x
J

x x

ξ ξ

ξ ξ ξ ξ

ξ ξ

∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂

It is implemented in [8] as

J = (Dxs * X')' .* (Dys * Y) - (Dys * X) .* (Dxs * Y')';

3.2.5 Benchmarks

Jacobi matrix is used to find the local stiffness matrix of the quadrilateral element. To

control its accuracy, the exact area of the element must be found by using the

determinant of the Jacobi matrix.

1 1

1 1

()A J r drds
− −

= ∫ ∫

Here, the Jacobian J(r) is the determinant of Jacobi matrix. It is implemented in [8] as

Area = w' * J * w

 50

Dividing rectangular domain to rectangular elements is not an obligation. Changing

size or the type of the element like quadrilateral element is a way to achieve or obtain

better results. Rectangular domain is divided to complex elements to control the

success of the Jacobi mapping.

Example problem is solved from [4]. For the physical domain seen in Fig. 3.4, the

equations of the edges are yeqa=-XA/5; yeqc = 1/3*XC+11/3; xeqd =

YD/4; xeqb =(29-YB)/6; Subs will be input XA,XC,YD and YB values to

find YA,YC,XD and XB. The x coordinates of the vertices are xna=0, xnb=5, xnc=4

and xnd=1. The y coordinates of the vertices are yna=0, ynb=-1, ync=5 and ynd=4.

Jacobian is calculated for N=6. The element has 49 nodes. The area calculated by

Jacobian is equal to 20. The area calculated by geometry is equal to 20 as a result the

accuracy of Jacobian has been controlled. The element is seen in Fig. 3.4.

Computational domain Physical Domain

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0 2 4 6
-1

0

1

2

3

4

5

Figure 3.4 The grid of coordinate transformation from physical domain to

computational domain for an element of N=6

 51

3.2.6 The implementation of the Jacobian matrix

Mathematical Formulation Numerical implementation

1 1

1 2

2 1 2

2 2

1 2

(,)D

x x

J
x x

ξ ξ
ξ ξ

ξ ξ

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂

Jlast=[(Dxs * X')' (Dys * X);

(Dxs * Y')' (Dys * Y)];

1

1

x

ξ

∂

∂
 J11y=Jlast(1:(N+1),1:(N+1))';

1

2

x

ξ

∂

∂
, 2

1

x

ξ

∂

∂
 and 2

2

x

ξ

∂

∂

J12y=Jlast(1:(N+1),N+2:2*N+2)';

J21y=Jlast(N+2:2*N+2,1:(N+1))';

J22y=Jlast(N+2:2*N+2,N+2:2*N+2)';

3.2.7 Evaluation of the geometric terms

The inverse of the Jacobi matrix must be found to evaluate the geometric terms in

Equation (2.47).

Mathematical Formulation Numerical implementation

2 1

2 2

2 12

1 1

1

D

x x

x xJ

ξ ξ

ξ ξ

∂ ∂
− ∂ ∂

∂ ∂

− ∂ ∂

Jinv=[J22y(:)./Jab(:) -J12y(:)./Jab(:);

-J21y(:)./Jab(:) J11y(:)./Jab(:)];

1

1x

ξ∂

∂
, 1

2x

ξ∂

∂
, 2

1x

ξ∂

∂

and 2

2x

ξ∂

∂

J11inv=Jinv(1:(N+1)^2,1);

J12inv=Jinv(1:(N+1)^2,2);

J21inv=Jinv((N+1)^2+1:2*(N+1)^2,1);

J22inv=Jinv((N+1)^2+1:2*(N+1)^2,2);

J12y and J21y or J12inv and J21inv are not equal to each other for quadrilaterals. All

of them must be calculated.

The geometric terms Equation (2.47) can be written for two dimensional elements as

 52

G
11 12 21 22

1

() ()
d

ji
ij

k k k

J
x x

ξξ
ξ ξ

=

∂∂
= = + + +

∂ ∂
∑ G G G G (3.2.7.1)

Mathematical Formulation Numerical implementation

1 1 1 1
11

1 1 2 2

() () ()J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G

Gk11=J11inv.*J11inv.*Jab(:)

 +J12inv.*J12inv.*Jab(:);

1 2 1 2
12

1 1 2 2

() () ()J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G

Gk12=J11inv.*J21inv.*Jab(:)

 +J12inv.*J22inv.*Jab(:);

2 1 2 1
21

1 1 2 2

() () ()J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G

Gk21=J21inv.*J11inv.*Jab(:)

 +J22inv.*J12inv.*Jab(:);

2 2 2 2
21

1 1 2 2

() () ()J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G

Gk22=J21inv.*J21inv.*Jab(:)

 +J22inv.*J22inv.*Jab(:);

3.2.8 Evaluation of the geometric factor

ˆ ˆ()M M⊗ must be evaluated.

for p=1:N+1

for q=1:N+1

L=I(:,q).*I(:,p);

RHS2(p,q)=dot(w1,L);end % RHS2 is equal to 1D mass matrix

end

s=sparse(kron(RHS2,RHS2));

As it was said before, 11G , 12G , 21G , and 22G are vectors. Therefore, they must be

diagonalized to be a diagonal matrix. Equation (2.50) is implemented as

() ()ˆ ˆ ,
ˆ ˆ: ([])()

k l
ij ijkk

G diag p M Mξ ξ= ⊗G

G11=sparse(s*diag(Gk11));

G12=sparse(s*diag(Gk12));

G22=sparse(s*diag(Gk22));

G21=sparse(s*diag(Gk21));

 53

Since G12 and G21 are equal to each other, G11, G12 and G22 are needed to be

evaluated. To dictate like G12=G21; is enough.

3.2.9 Evaluation of
1ξD and

2
Dξ

The master element has same degree in the both of the x and y direction. Thus,
1

Dξ

and
2

Dξ are same. Equation (2.51c) is implemented as

Mathematical Formulation Numerical implementation

()1
ˆ:D I D= ⊗ and ()2

ˆ:D D I= ⊗
D1=sparse(kron(I,D));

D2=sparse(kron(D,I));

Sparse matrices are a special class of matrices that contain a significant number of

zero-valued elements. This property allows MATLAB to store only the nonzero

elements of the matrix, together with their indices. It reduces computation time by

eliminating operations on zero elements.

Global stiffness matrix memory usage is 1850.9 KB. By the matlab command of

Stiff2=sparse(stiff2); the memory used is reduced to 678.5 KB. Time consumed for

matrix left division is reduced from 0.05093(full) to 0.02878 seconds with sparse.

Without sparse CPU usage for left division has reached to a peak value of %50.

The result of assembly or multiplication of sparse matrices is a normal matrix. Using

sparse for normal matrices is needless memory usage. For a 169×169 matrix,

memory usage of sparse is 343.4 KB and the normal one uses 228.5 KB.

3.2.10 Evaluation of the 2D quadrilateral element stiffness matrix

Equation (2.52a) is implemented as

1 11 12 1

2 21 22 2

T
D G G D

D G G D

DekT=[D1;D2]';

G=[G11 G12;G21 G22];

delta=DekT*G*[D1;D2];

 54

3.2.11 Evaluation of the element load vector

As mentioned before, the mass matrix for the quadrilateral element must be found.

To have an element load vector, the element mass matrix is needed to be evaluated.

The equation (2.54) is implemented as

F(v) ()2
ˆ ˆT

Dv J M M f= ⊗

for p=1:(N+1)^2

for q=1:(N+1)^2

if (p==q)

RHS(q)=Jab(p).*s(p,q).*f3(q);end

end

end

3.3 Poisson Equation Solution with more elements

Problem in Section 4.1.4 will be solved with more than one element. The domain

[0,1] [0,1]Ω∈ × is sliced to four elements and the element at the left and up corner is

cut away. The solution domain is seen in Fig. 3.5. The global stiffness matrix is the

steady diffusion operator which is the result of the assembly. Connectivity matrix is

required to assemble the local stiffness matrices.

3.3.1 Connectivity Matrix Generation

Elnode.m is the code which generates a connectivity matrix for Fig. 3.5. The

connectivity matrix generated for N=2 is seen in Table 3.1. In the connectivity matrix

pth row is the node numbers of the pth element. Gauss Lobatto Legendre points

evaluated with Lobatto.m are from 1 to -1, so the order of the local node numbering

begins from 1
st
node at the highest right corner, goes left through the line, and passes

the node under the 1
st
node, last node is the node at the lowest left corner. This is the

order of local node numbering.

For global node numbering the highest right element is numbered first, so global

node numbers and local node numbers of the first element are identically same. The

order of the global node numbering is as same as the local node numbering.

 55

The node numbers of the first element nodes on the joint lower edge of the first is

same as the upper edge of the second element, the global node numbering continues

from the node under the local 1
st
node. By numbering the second, the left edge of the

second and the right edge of the third element have same global node numbers, so the

global node numbering of third element is done in the same order without numbering

the right edge as seen in Fig.3.5.

Table 3.1 Global node numbering of Mesh 1 for N=2

Local Node

numbering
1 2 3 4 5 6 7 8 9

Element 1 1 2 3 4 5 6 7 8 9

Element 2 7 8 9 10 11 12 13 14 15

Element 3 9 16 17 12 18 19 15 20 21

Numbering the edge nodes first can help to reduce the band size of the assembled

stiffness matrix like Karniadakis and Sherwin [2]. The program elnode.m is N

independent so it doesn’t need modifications for different N’s. N is the only input

and the matrix of the global node numbers of the elements is the only output. For

different mesh types, different mesh generators must be used or written.

Elematrstmquad.m program in Appendix D gives also the coordinates of x and y of

the element’s nodes and also the determinant of the Jacobi matrix to evaluate the load

vector (RHS) of the problem. In Table 3.1, the output of elnod=elnode(N); is

seen for N=2.

3.3.2 Assembly of spectral element stiffness matrix

Assemblies of the 2D rectangular spectral element and the 2D quadrilateral spectral

element’s local stiffness matrices are all same because they must have the same size

if they are at the same order.

 56

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

u=uexact

gnn=325gnn=481 gnn=312

gnn=1

gnn=337 gnn=169
global node

 number=157

gnn=13

Figure 3.5 The grid of the Mesh 1 made up of three elements with a degree of 12.

The global node numbers of the element’s vertices are seen.

Local stiffness matrix of the curvilinear quadrilateral element is full matrix. Using

curvilinear elements increase the band size and density of the global stiffness matrix

as seen in Figures 3.11 and 3.13.

3.3.2.1 Evaluation of the Steady Diffusion operator

Steady diffusion operator is the global stiffness matrix. It is the result of the assembly

of the local stiffness matrix. The program that is written to assemble the local

stiffness matrices to form the global stiffness matrix

for i=1:(N+1)^2

for j=1:(N+1)^2

if(abs(delta(i,j))>=1e-15)

stiff2(elnod(e,i),elnod(e,j))=stiff2(elnod(e,i), ...

elnod(e,j))+delta(i,j);

 57

end

end

end

The global stiffness matrix is stiff2. Here, 1e-15 within if statement is the

threshold value; which is used as computation zero by the definition. It is used with if

statement to decide which component of the element stiffness matrix is zero. If a

component of the element stiffness matrix is smaller than the threshold value, it will

be assumed as zero and won’t be assembled into the global stiffness matrix. Sparsity

plot of the Mesh1’s elements is seen for the threshold value of 1.0 1510−× in the

following Fig. 3.6. The white areas are the zero components of the element stiffness

matrix.

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 7877

Figure 3.6 Sparsity plot of the element stiffness matrix for N=12. Computation

zero is defined as 1.0 1510−× .

Element stiffness matrices calculated for rectangular elements with straight sided

quadrilateral element formula are as sparse as quadrilateral element formula. Both of

 58

them needed threshold value to be like in Fig. 3.3. The diagonal lines near the main

band-diagonal are not clearly seen in Fig 3.6. As it is seen, the sparsity plot of the

rectangular element’s local stiffness matrix is not like Fig. 3.3. Both of them are

square elements, as a result they must have same sparsity. So a threshold value will

be 1.0 1310−× . Here, the local stiffness matrix is seen for Fig. 3.7.

For Fig. 3.7, the diagonal lines and the square matrices in the main band-diagonal are

clearly seen. Contrary to Fig.3.6, all of the diagonal lines are clearly seen in Fig. 3.7.

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 4227

Figure 3.7 Sparsity plot of the element stiffness matrix for N=12. Computation

zero is defined as 1.0 1310−× .

The sparsity of the global stiffness matrices evaluated for both of the threshold values

of 1.0 1310−× and 1.0 1510−× is plotted in Fig. 3.8 and Fig. 3.9. Choosing a threshold

value of 1.0 1310−× decrease the band size and density, as a result matrix is sparser

and narrower. This means economic usage of implementation time and memory.

 59

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 12337

Figure 3.8 Sparsity plot of the global (assembled) stiffness matrix for N=12.

Computation zero is defined as 1.0 1310−× .

Figure 3.9 Sparsity plot of the global (assembled) stiffness matrix for N=12.

Computation zero is defined as 1.0 1510−× .

 60

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

Figure 3.10 The grid of the Mesh 2 made up of a square and two quadrilateral

elements with a degree of 12.

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 69165

Figure 3.11 Sparsity plot of the global (assembled in Fig. 3.10) stiffness matrix for

N=12. Computation zero is defined as 1.0 1510−× .

 61

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

Figure 3.12 The grid of the Mesh 3 made up of a three quadrilateral elements with

a degree of 12.

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 85339

Figure 3.13 Sparsity plot of the global stiffness matrix of the mesh in Fig. 3.12 for

N=12. Computation zero is defined as 1.0 1310−× .

 62

In Fig. 3.10, right face of the 3rd element is an arc drawn at the center of (0, 0) with a

radius of 2 /2. In Fig. 3.12, down face of the 1st element is an arc drawn at the

center of (1, 1) with a radius of 2 /2.

3.3.3 Evaluation of the global load vector

The program part written looks like the program part written for global stiffness

matrix.

for j=1:(N+1)^2 % j can be i, it will be better

load(elnod(e,j))=load(elnod(e,j))+RHS(j);

end

Now, Global stiffness matrix and load vector is evaluated. Imposing the boundary

conditions will be our next issue. For imposing the boundary conditions, the global

node numbers of the element’s nodes at the domain boundaries must be found.

3.3.4 Imposing the Nonhomogeneous Dirichlet Boundary Conditions

The local node numbers of the element’s Dirichlet boundary nodes must be found.

Poisson Equation (4.4) in Section 4.1.4 is solved on mesh 1 seen in Fig. 3.5. From

Fig 3.5, up, right and left face of the first element is Dirichlet boundaries. Right and

down faces of the second element and up, down and left faces of the third element

are Dirichlet boundaries. The Dirichlet boundaries is found like that

nodirichel1es = find(abs(yy)==1 | xx==1); % 1st element

nodirichel2es = find(xx==-1 | yy==1); % 2nd element

nodirichel3es = find(abs(xx)==1 | yy==-1); % 3rd element

Their global node numbers will be

for i=1:3*N+1

assemel3(i)=elnod(3,nodirichel3es(i));

end

 63

for i=1:3*N+1

assemel1(i)=elnod(1,nodirichel1es(i));

end

for i=1:2*N+1 % Shows how many nodes are on the Dirichlet

% boundaries

assemel2(i)=elnod(2,nodirichel2es(i));

end

The Dirichlet boundary conditions can be imposed like

stiff2(assemel2,:) = zeros(2*N+1,3*(N+1)^2-2*(N+1));

stiff2(assemel2,assemel2) = eye(2*N+1);

stiff2(assemel1,:) = zeros(3*N+1,3*(N+1)^2-2*(N+1));

stiff2(assemel1,assemel1) = eye(3*N+1);

stiff2(assemel3,:) = zeros(3*N+1,3*(N+1)^2-2*(N+1));

stiff2(assemel3,assemel3) = eye(3*N+1);

load(assemel1)=uex(nodirichel1es,1);

load(assemel2)=uex(nodirichel2es,2);

load(assemel3)=uex(nodirichel3es,3);

Since the domain boundaries are the same, these implementation features of

imposing Dirichlet boundaries are the same for both of the meshes in Fig. 3.10 and

Fig. 3.12

3.3.5 Imposing the Nonhomogeneous Neumann Boundary Conditions

The example problem will be inviscid flow around a cylinder from [4]. The

irrotational flow of an ideal fluid about a circular cylinder, placed with its axis

perpendicular to the plane of the flow between two long horizontal walls.

 64

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

x

gnn=1

gnn=157

gnn=13

gnn=169

gnn=313gnn=325

Figure 3.14 The mesh of the inviscid flow around a cylinder drawn on the upper

right quadrant of the domain.

The mesh is seen in Fig. 3.14. The domain is divided from the diagonal between (0,2)

and (4,0). The node A is the 169
th

 node, not the 1
st
 node. A, B, C, and D are defined

through counter clockwise as FEM in Fig. 2.1. As discussed before 1
st
 node is upper

and most right so 1st element is the upper and the most right in the figure the mesh

and global node numbers are seen in Table 3.2. Blue lines are element boundaries.

The equations of the element’s edges are

yeqc = [2 -1/2*XC+2];

xeqd = [4-2*YD 0];

xeqb = [4 -sqrt(1-YB.^2)+4];

yeqa = [sqrt(1-(XA-4).^2) 0];

The left edge of the 1st element is adjacent to the up edge of the 2
nd

 element. Because

of that, the global numbers of the nodes on them are the same. The mesh generation

is done for global node numbering will be handled differently. The connectivity

matrix generated for N=2 is seen in Table 3.2.

 65

Table 3.2 Global node numbering of Mesh seen in Fig. 3.14 for N=2

Local Node

numbering
1 2 3 4 5 6 7 8 9

 Element 1 1 2 3 4 5 6 7 8 9

 Element 2 9 6 3 10 11 12 13 14 15

From Figure 4.15, it is seen that the left face of domain or 2
nd

 element is

nonhomogeneous Neumann boundary. It is a linear edge, but its 2D first order

differentiation matrix can not be evaluated with the formulas for rectangular

elements. Therefore, there are two choices. Evaluation of the surface Jacobian is

done and it is added to the related rows of the related element’s load vector or

assembled load vector [2]. The related row should not be changed.

The second choice is the evaluation of the 2D first order differentiation matrix for

quadrilateral element. This is discussed in following Section 3.3.5.1.

3.3.5.1 Differentiation within an elemental region

The second choice is the evaluation of the 2D first order differentiation matrix for

quadrilateral element and replacing it into the element stiffness matrix. Equation

(2.42) is implemented as

Dksi=diag(J11inv(:))*kron(I,Dxs)+diag(J21inv(:))*kron(Dxs,I);

The local and global node numbers of the nodes on the nonzero Neumann boundary

(2
nd

 element’s left face seen in Fig. 3.14) is found as

localnodenum2ndelleft=find(yy==-1); %

for i=1:N+1

globalnodenum2ndelleft(i)=elnod(2,localnodenum2ndelleft(i));

end

 66

Then it is replaced in the 2
nd

 element stiffness matrix’s related rows stored by

localnodenum2ndelleft. It is implemented as

for i=1:13

delta(localnodenum2ndelleft,:) = Dksi(localnodenum2ndelleft,:);

end

After the Dirichlet boundary conditions have already been imposed. The sparsity plot

of the global stiffness matrix is seen in Fig. 3.15.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 46393

Figure 3.15 Sparsity plot of the same assembled (global) stiffness matrix that

imposed all of the boundary conditions for the mesh of the stream

function seen in Fig. 3.14.

 67

3.4 Evaluation of the Helmholtz operator

Element stiffness matrices and mass matrices have been evaluated for quadrilateral

and rectangular element. Mass matrix and Helmholtz operator of the quadrilateral

element is evaluated with Equations (2.54) and (2.55). They are implemented as

for p=1:(N+1)^2

for q=1:(N+1)^2

if (p==q) MwJ(p,q)=1*Jab(p).*s(p,q);end

end

end

delta=delta+MwJ;

In this chapter, the implementation of spectral element method for the Poisson and

Helmholtz equations using MATLAB on rectangular and deformed domains

discretised with a single and multi-element are discussed including the element

stiffness and mass matrices evaluation. Imposing the homogeneous or non-

homogeneous Dirichlet and Neumann boundary conditions into the global stiffness

matrix and load vector are also discussed for domains discretised with rectangular

and isoparametric quadrilaterals. The global node numbering of the elements is

discussed in Connectivity matrix generation. Assembly (Direct Stiffness Summation)

of element stiffness matrices to form global element stiffness matrix is implemented.

Assembly of element load vectors to form global load vector is implemented. The

implementation procedure for the SEM solution with two quadrilateral elements to

the inviscid flow around a cylinder is discussed for velocity potential equation

including nonhomogeneous Neumann boundary conditions. Helmholtz operator of

quadrilateral elements is implemented for the solution of Helmholtz.

The elematrstmquad.m written for the evaluation of isoparametric quadrilateral

element stiffness matrix is first verified by evaluating rectangular element stiffness

matrix.

 68

CHAPTER 4

RESULTS AND DISCUSSIONS

Poisson and Helmholtz equations are solved with single and multi-elements

including both of the rectangular and isoparametric quadrilaterals. Inviscid flow

around a cylinder is also solved. Spectral element results will be compared with the

the exact results to observe and appreciate the accuracy of the approach. Also, Single

spectral element results will be compared with finite element or spectral collocation

(pseudospectral) solutions.

4.1 Poisson Equation Solution with a single rectangular spectral element

Four different Poisson Equations including different types of boundary conditions

(such as Dirichlet (zero or non-zero), Neumann and Robin) are solved.

4.1.1 Poisson equation with all zero Dirichlet boundaries

Our first program’s purpose is to solve the Poisson Equation below

2 2

2 2
10 sin(8 (1))

u u
x y

x y

∂ ∂
+ = × × −

∂ ∂
 on [1,1] [1,1]Ω∈ − × − (4.1)

u(-1, y) = 0, u(1, y) = 0 (4.2)

u(x, -1)= 0, u(x, 1) = 0 on the Dirichlet(essential) boundaries (4.2a)

The problem is taken from [1]. It is on a rectangular domain. From Fig 3.2, the grid’s

middle part is sparser than equispaced grid, because the nodes are collocated near the

boundaries as a feature of the roots of the orthogonal polynomials. For plotting, the

problem is interpolated to more equispaced points. (Section 3.1.10)

 69

Domain with a single rectangular spectral element is a problem that element stiffness

matrix equals to the assembled stiffness matrix. Spectral method is used as

benchmark for some problems especially domain with a single rectangular spectral

element. Both of the methods have got a degree of N=24. For domains x∈ [1,-1] and

y∈ [1,-1] the solution is calculated at same collocation points for both of the

methods. The results must be same for same collocation points (Gauss Lobatto

Legendre points). For N=24 degree of polynomials 625 collocation points are on the

solution domain, 96 of the collocation points belong to the zero Dirichlet boundaries.

U is calculated at 529 collocation points. The results are same up to 14 decimal

digits.

If an even number N=24 was not chosen as the degree of the method, there wouldn’t

be any nodes (collocation points) on the midlines of the domain which are x=0 and

y=0.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-0.5

0

0.5

xy

u

Figure 4.1 3D Solution graph of (4.1) for N=24 with a single rectangular spectral

element. The bold line is u(0,y)=0 line.

 70

-0.4

-0.4

-0.3

-0.3

-0.3

-0.2

-0.2

-0.2

-0.2

-0.1

-0.1

-0.1

-0.1
-0.1

0

0

0

0

0

0

00

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0.1

0.1
0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

y

x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1b Contour plot of the solution of (4.1) for N=24 with a single rectangular

spectral element. The midline is u(0,y)=0 line.

-0.4

-0.4

-0.3

-0.3

-0.3

-0.2

-0.2

-0.2

-0.2

-0.1

-0.1

-0.1

-0.1
-0.1

0

0

0

0

0

0

00

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0.1

0.1
0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

y

x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 with interpolation

-0 .4

-0 .3

-0
.3

-0
.3

-0.2

-0.2

-0
.2

-0.2

-0 .1

-0 .1 - 0
.1

-0
.1

-0.1

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

00

0

0.1

0.
1

0
.1

0.1
0.1

0.2

0
.2

0.2 0
.2

0.3

0
.3

0
.3

0.
4

0.4

y

x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 without interpolation

Figure 4.1c Contour plot of the solution of (4.1) for N=24 with a single rectangular

spectral element. The contour lines are less curvy.

 71

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-0.5

0

0.5

xy

u

Figure 4.1d 3D Solution graph of (4.1) plotted on Gauss Lobatto Legendre grid for

N=24 with a single rectangular spectral element. The u(0,y)=0 line is

smooth.

The contours at the edges of the domain must not be broken. These errors seen in

Fig. 4.1b are interpolation errors caused by interp2.m matlab built-in function.

Because of that, the same graphs are plotted without interpolation. In Fig. 4.1c none

of the contour lines are broken at y=0 line. On the midline u(0,y)=0 line the

computation zeros change within the interval of -1.8788 1510−× and near the

boundary -1.4084 1510−× .

4.1.2 Poisson equation with zero Neumann boundaries

Our second purpose is to solve the problem from [4]

2 2

2 2
1

u u

x y

∂ ∂
+ = −

∂ ∂
 (4.3)

 72

u (1,y)=0, u(x,1)=0, 0<x, y<1 on the Dirichlet(essential) boundaries (4.3a)

xu (0, y)=0 yu (x, 0) =0 as shown in the FEM solution of the graph (4.3b)

4.1.2.1 The comparison of FEM and SEM

0.05

0.05

0.05

0.050.05

0.1

0.1

0.1
0.1

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.25

0.25

x

y

X= 0

Y= 0

Level= 0.29839

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
x
 = 0

u
y
 = 0

u = 0

u = 0

Figure 4.2 Finite element solution of Equation (4.3) with 16 linear rectangular

 element

Low order finite element method solutions can be used as a preconditioner for SEM.

The vertical and horizontal lines are boundaries (edges) of the linear elements and the

intersections of the lines are the nodes of the elements. From Figure 4.2, the plot of

the solution has one hill at the coordinate of (0, 0). The value of u increases from

(1, 1) to (0, 0) through the diagonal. There are five nodes on this diagonal and the

increase is from 0 to 0.3125.

 73

In this example, FEM has achieved the success of finding the characteristic of the

solution. However, there is a problem at zero Neumann boundaries. The contours of

0.25, 0.2 and 0.15 are not perpendicular to x=0 and y=0 line. As a result of using first

order FEM, the contours are made up of linear lines. It’s like a light ray has broken

while changing its environment.

00000

0
0

0
0

0
0

0
.0

5
0
.0

5

0.05

0.050.05

0
.1

0
.1

0.1

0.1
0
.1

5

0.15

0.15

0.15
0
.2

0.2

0.2

0
.2

5

0.25

X= 0

Y= 0

Level= 0.29469

y

x

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3 Contour graph of the spectral element solution of (4.3) with a single

rectangular element for the order of N=24.

All of the contours are perpendicular to the zero Neumann boundaries at the solution

graph of domain with a single spectral element. The graphs of SEM and FEM looks

like same except this feature. The vertical and horizontal lines were drawn to show

the success of FEM as a preconditioner.

 74

0 0.2 0.4 0.6
0.8 1 0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y

x

u

Figure 4.3b 3D graph of the solution of (4.3).

In Fig. 4.3b, the solution at (0, 0) is parallel to the x-y plane at the intersection of

zero Neumann boundaries because the derivative of u to x and y is equal to zero.

From both of the Figures 4.2 and 4.3, the solution of u is symmetric to the diagonal

between (0, 0) and (1, 1) so this line is line of symmetry. On lines of symmetry the

normal derivative of the solution is zero [4] as a result the solution contours are

perpendicular to the line of symmetry in both of the Figures 4.2 and 4.3.

4.1.3 Steady Conduction Equation with a Convection face (Robin BC)

Consider the following two-dimensional steady conduction equation with a thermal

conductivity k=20 /W mK and heat generation 115 10 sin(8 (1))q x y= × × × − 3/W m .

2k T q− ∇ = on [1,1] [1,1]Ω ∈ − × − (4.1.3.1)

T(-1,y) = 300 K on Γ (left face) (4.1.3.2a)

 75

 T(1,y) = 400 K on Γ (right face) (4.1.3.2b)

(, 1)T x

y

∂ −

∂
 = 0 on Γ (down face is insulated) (4.1.3.2c)

Robin (mixed) BC is up face with convection heat transfer and written as

(,1)
((,1))

T x
k h T x T

y
∞

∂
= −

∂
 on Γ (up face) (4.1.3.3)

Up face is exposed to a convection process with T∞ =300K and h=100 W/ 2
m K.

Domain’s area is 4 mm 2 . The steady conduction equation will be

2 2000 sin(8 (1))T x y∇ = − × × − on [1,1] [1,1]Ω∈ − × − (4.1.3.1a)

Convected face forming Robin BC Equation (4.1.3.3) combines the Neumann and

Dirichlet boundary conditions as a result its implementation will be a modification

and connection of them. Poisson equations with Robin boundary conditions are

implemented like

upface=find(yy==1);

upface=upface(2:N);

DNBC = kron(D,I);

for i=1:23

DNBC(upface(i),upface(i))=DNBC(upface(i),upface(i))-5;

end

delta(upface,:)=DNBC(upface,:);

RHS(upface)=-1500;

The temperature contours are called as isotherms. The angle between the up edge and

the isotherms of T=380, 360, 340 and 320 K over hill are less than right angle as seen

in Fig. 4.4a. This feature is similar to the Table 2.1 of Incropera and DeWitt [37].

The isotherms are turning around themselves at the local maximum (heat generation)

and minimum (heat sink) values of the q heat generation function to form a bottom at

(-0.4649, 0.6264) and a hill by closing as seen in Fig. 4.4. The directions of the heat

 76

fluxes at T=420 K isotherm are from hill to up face and bottom in the hollow of the

T=240 K isotherm. The direction of the heat flux is always from hot places to cold

places. Therefore, all of the heat flux vectors are perpendicular (normal) to isotherms.

The ends of the isotherms at the down face are perpendicular to the y = 0 line (down

face) as a feature of homogeneous Neumann boundary conditions.

240

240

260

2
6

0

260

280

280

2
8

0

280

3
0
0

300

300

300

300

3
0

0

3003
0
0

320

3
2

0

3
2

0

32
0

32
0

3
2

0

32
0

340

34
0

3
4

0
3
4

0

360

360

3
6
0

360

360

3
6

0

380

38
0

3
8

0

380

38
0

3
8

0

3
8

0

4
0
0

400

40
0

400

400

400

400

420

420

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 k*T
y
=h(T-300)

300 K

T
y
 = 0

400 K

Figure 4.4a Isotherms of the spectral element solution of Equation (4.1.3.1a) with

a single rectangular element for the order of N=32. The solution is

plotted without interpolation.

 77

The negative values of q function are called as heat sink where thermal energy is

being consumed. The positive values of q heat generation function are also called as

energy source term where thermal energy is being generated. The plot of the q/k

function is anti-symmetric about x=0 line as seen in Fig. 4.4b.

-1
50

0
-1

50
0

-1
5
0
0

-1
50

0

-1
5
0
0

-1
50

0

-1
5
0
0

-1
500

-1500

-1
5
0
0

-1
5
0
0

-1500

-1
5
0
0

-1500

-1
5
0
0

-1500

-1
500

-1
00

0

-1
0
00

-1
0
0
0

-1
000

-1
0
0
0

-1
0
0
0

-1000

-1
0
0
0

-1
0
0
0

-1000

-1000

-1
0
0
0

-1
0
00

-1000

-1
0
0
0

-1000

-1
0
0
0

-1000
-1

000

-5
00

-5
00

-5
0
0

-5
00

-5
0
0

-5
0
0

-500

-5
0
0

- 5
0
0

-5
00

-500

-5
0
0

-5
0
0

-500

-5
0
0

-500

-5
0
0

-500
-5

00

00

0

0

0

0

0

0

0
0

00

0

0

0

0

0

0

0

0 50
0

5
0
0

50
0

5
0
0

500

5
0

0

5
0
0

500

5
0

0
5
0

0
50

0

500

5
0

0

5
0
0

500

5
0

0

500

50
0

50
0

10
00

1
0

0
0

10
00

1
0

0
0

10
00

1
0

0
0

1
0
0
0

1000

1
0

0
0

1
0

0
0

1000

1000

1
0

0
0

1
0

0
0

1000

1
0

0
0

1000

10
00

10
00

15
00

1
5

0
0

15
00

1
5

0
0

15
00

1
5

0
0

15
00

1500

1
5

0
0

1
5

0
0

1500

1
5

0
0

1
5

0
0

1500

15
0
0

1500

1
5

0
0

15
00

y

x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4b Contour graph of the RHS of Equation (4.1.3.1a) with a single

rectangular element for the order of N=32. The solution is plotted

without interpolation.

 78

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
200

250

300

350

400

450

xy

u

Figure 4.4c 3D spectral element solution graph of Equation (4.1.3.1) for N=32

with a single rectangular spectral element.

 79

4.1.4 Poisson Equation with all nonzero Dirichlet boundary conditions

Consider the following two-dimensional steady Poisson equation with Dirichlet

boundary conditions from [5]

2u f−∇ = on [0,1] [0,1]Ω ∈ × (4.4a)

exactu u= on Γ (4.4b)

The following force function

2 2 2 2

2 2
4 sin(4) 4 cos(4)π π π π

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂

A A A A
f A A

x x x y
 (4.4c)

Results in the exact solution of

sin(4)exactu Aπ= (4.4d)

where

2 2(2) (2)A x y= − + − (4.4e)

From Equation (4.4d), the exact solution is a sine function so it is periodic as a result

periodicity is seen at the diagonal line between (0, 0) and (1, 1) in Fig. 4.5.

 80

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

y

x

u

Figure 4.5 SEM solution for a single element with a degree of N = 24.

4.2 Poisson Equation solution with multi elements

Three meshes are used as seen in Fig. 3.5, 3.10 and 3.12. All of the global stiffness

matrices of the three meshes are made up of assembling same size of matrices but

Rectangular element stiffness matrices are sparser than quadrilateral element stiffness

matrices. If a stiffness matrix has a value or values smaller than 1.0 1510−× this value

won’t be assembled to the assembled stiffness matrix as a result Mesh1’s assembled

stiffness matrix is sparser than the assembled quadrilateral element stiffness matrices.

For N=12 local stiffness matrices have got a size of 169×169. After assembling local

stiffness matrices and local load vectors, the size of the assembled stiffness matrix is

481×481 for all of them.

Point per wavelength (ppw) is an important issue for spectral methods. At first mesh

there are three same rectangular elements. The number of nodes per area is all same

for both of the elements of Mesh 1. On the line of x=0.75 three half wavelength is

 81

seen in Fig. 4.6 and for degree of N=12 or larger the largest error is seen at the 2nd

element. That’s why the errors at x=0.75 have been plotted. In mesh2 right face of

the 1st element is drawn at the center of (0, 0) with a radius of 2 /2. While

decreasing the area of 2
nd

 element, Node per area of 2nd element increased.

2 1 3EL EL ELNPA NPA NPA< <

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.8

-0.8

-0.8-0.6

-0.6

-0.6

-0.4

-0.4

-0.4

-0.4

-0.2

-0.2

-0.2

-0.2

0

0

0

0 0.2

0.2 0.2

0.2
0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

-0.8

-0.8

-0.8 -0.6

-0.6

-0.6 -0.4

-0.4

-0.4 -0.2

-0.2
-0.2

-0.2

0

0

0

0

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

y

x

u=uexact

Figure 4.6 The results of the solution for the Mesh 1 made up of three elements

with a degree of 12. Blue lines are element boundaries.

4.2.1 Arc edged Curvilinear Quadrilateral Element

Jacobi matrix is used to find quadrilateral element’s local stiffness matrix. By using

the determinant of the Jacobi matrix the exact area of the element must be found.

1 1

1 1

()A J r drds
− −

= ∫ ∫

 82

Here J(r) is the determinant of Jacobi matrix. Dividing rectangular domain to

rectangular elements is not an obligation. Changing size or the type of the element

like quadrilateral element is a way to achieve or obtain better. Rectangular domain is

divided to complex elements to control the success of the Jacobi mapping.

Figure 4.7, the contour graph of the solution is smoother than the Figure 4.8. The 2nd

element with two arc face has the same area as the rectangular one. Arc upper face is

needless because of the accuracy decreased by Jacobi mapping. Calculating element

matrices will consume much more time if more face needs Jacobi mapping.

-0.8

-0.8

-0.8

-0.8

-0.8

-0.8

-0.8

-0.6

-0.6

-0.6 -0.6

-0.6

-0.6

-0.6
-0.4

-0.4

-0.4
-0.4

-0.4

-0.4

-0.4 -0.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0.2 0

0

0
0

0

0

0
0.2

0.2
0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

0.4
0.6

0.6

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

0.8

0.8

-0.8

-0.8

-0.8

-0.8

-0.6

-0.6

-0.6

-0.6

-0.4

-0.4-0.4

-0.4

-0.2

-0.2

-0.2

-0.2

-0.2

0

0

0

0

0

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

y

x

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.7 The results of the solution for the Mesh 2 made up of three elements

with a degree of 12 as seen in Fig. 3.10. Blue lines are element

boundaries.

The results are better and Fig 4.9 looks like 1D SEM solution in Fig. A.1. The Jacobi

mapping is tested by dividing the domain to arc faced elements as a benchmark.

 83

-0.8

-0.8

-0.8

-0.6

-0.6

-0.6

-0.6

-0.4

-0.4

-0.4

-0.4

-0.2

-0.2

-0.2

-0.2

0

0

0

0

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

0.8

-0.8

-0.8-0.8

-0.8

-0.6

-0.6
-0.6

-0.6

-0.4

-0.4

-0.4

-0.4

-0.2

-0.2

-0.2

-0.2

-0.2

0

0

0

0

0

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

y

x

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8 The results of the solution for the Mesh 2 made up of three elements

with a degree of 12 as seen in Fig. 3.12. Blue lines are element

boundaries.

0 0.2 0.4 0.6 0.8 1
-5

0

5

10
x 10

-3

e
rr

o
r

a
t

x
=

0
.7

5

y

Spectral Element with N = 6

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2
x 10

-5

e
rr

o
r

a
t

x
=

0
.7

5

y

Spectral Element with N = 8

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2
x 10

-7

y

e
rr

o
r

a
t

x
=

0
.7

5

Spectral element with N = 10

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6
x 10

-7

e
rr

o
r

a
t

x
=

0
.7

5

y

Spectral Element with N = 12

Figure 4.9 The errors of the results at x=0.75 line for mesh seen in Fig.3.5.

 84

0 5 10 15 20 25 30 35 40
-12

-10

-8

-6

-4

-2

0

2

N (degree of polynomials)

lo
g

1
0
(m

a
x
(e

rr
o
r)

)

Maximum errors of Mesh 1 and Mesh 2

mesh 1

mesh 2

Figure 4.10 Spectral convergence obtained for Mesh 1 and 2 seen in Fig. 3.5 and 3.10

2 4 6 8 10 12 14 16
-14

-12

-10

-8

-6

-4

-2

0
H1 error of elment 2 for different N's

lo
g

1
0
(

 H
1
 e

rr
o
r

)

N (degree of polynomials)

Figure 4.11 H1 errors for mesh 2 seen in Fig. 3.10.

 85

The area of the domain of the single element and the other three meshes are different,

so the Table 4.1 is not drawn for degree of freedom. The mesh of Fig. 4.5 with a

degree of N=24 is as same as Fig. 3.2 except the domain of Fig. 4.5 spans the area

[0,1] [0,1]Ω∈ × and the mesh of Fig. 4.6 is the Fig. 3.5 with an element degree of

N=12. Both of the meshes of the Fig 4.5 and Fig. 4.6 have same number of nodes per

unit area. The accuracy achieved with less nodes for a single element. This is not

amazing, 1D SEM solution with a single element is also better than domain with

more elements for 1D periodic problem. It is seen in Fig. A.1 in Appendix A. It is

normal because it is first designed to solve channel expansion. Its capacity is seen a

problem like in Fig. A.2 or discontinuous problems like 1D shock. SEM is not

invented for steady diffusion problems.

Table 4.1 Maximum absolute relative error of Poisson Equation (4.4)

for the entire domain

N Single

element

Mesh 1

(Fig. 3.5)

Mesh 2

(Fig. 3.10)

Mesh 3

(Fig.3.12)

2 1.1403 1.5663 1.6623

4 0.4404 1.2798 1.4389 0.2263

6 0.0724 0.0089 0.0069 0.1404

8 0.0548 1.8059 410−× 5.6197 410−× 0.0572

10 0.0029 2.4784 610−× 3.0437 510−× 0.0148

12 1.2073 410−× 4.5781 710−× 2.6920 610−× 5.7047 610−×

16 3.7225 710−× 2.5270 1110−× 2.0046 810−× 4.8677 810−×

20 4.0880 1010−× 2.0249 1210−× 1.4206 1010−× 1.4862 1010−×

24 2.6689 1110−× 2.6145 1010−× 3.7651 1110−× 1.2995 910−×

28 1.2045 1110−× 2.5300 1110−× 2.3118 1110−× 1.1142 1010−×

32 4.3815 1210−× 1.8417 1010−× 2.4370 1110−× 2.4050 1110−×

36 3.6459 1110−× 2.0805 810−× 1.3703 810−× 5.5512 1110−×

40 2.4293 1210−× 1.0802 910−× 9.2790 1110−× 6.8234 1010−×

 86

Needless curvilinear quadrilateral element usage causes extra time consumption. The

comparison for the accuracy of the second element is seen in Table 4.2. Mesh1

reaches the lowest error for 2
nd

 element with a degree of N=20. Mesh2 passes mesh1

only for N=12. Mesh1 is the first which reaches the computation zero for N=16.

Curvy elements must only be used to discretize the curvy boundaries of the domain.

Table 4.2 Maximum absolute relative error for the entire of the second element

N Mesh 1

(Fig. 3.5)

Mesh 2

(Fig. 3.10)

Mesh 3 (Fig.3.12)

2 0.5167 0.3723 0.2168

4 0.0606 0.0206 0.1006

6 0.0090 0.0016 0.0061

8 1.8824 510−× 2.0467 510−× 1.0748 410−×

10 1.4186 710−× 4.4625 710−× 3.4713 510−×

12 4.5781 710−× 7.2291 810−× 1.0107 610−×

16 8.0173 1410−× 1.3504 1010−× 1.1937 910−×

20 5.8280 1410−× 5.1680 1310−× 2.2909 1110−×

24 1.0122 1210−× 1.5530 1310−× 2.2068 1310−×

28 4.7380 1310−× 6.3631 1310−× 1.7309 1310−×

32 1.4405 1210−× 2.8633 1210−× 1.3065 1310−×

36 3.0318 1110−× 1.5288 1110−× 4.3030 1310−×

40 8.4921 1110−× 6.9665 1210−× 3.2235 1210−×

The accuracy of four element passes the accuracy of a single element for DOF=28 in

Table 4.3. Four element reaches the computation zero for DOF=32. However, mesh1

and mesh with four elements have equal degree and node per area, mesh with four

elements is better. The question is why mesh1 can not reach this accuracy and

computation zero. Mesh1 in Fig.3.5 has an inner corner like lid-driven cavity

problem. The effect of the geometric singularity is occurred at the inner corner of the

three meshes of the Poisson Equation so it can not reach the computation zero. To

increase the node per area, the area of the 2
nd

 element is decreased by changing its

 87

shape as seen in Fig. 3.10. Constructing mesh2 in Fig. 3.10 or mesh3 in Fig.3.12

causes higher errors like 2.4370 1110−× or 2.4050 1110−× as seen in Table 4.1 for the

entire domain and the little fluctuations have seen at the contour lines of the Fig.

4.18, so usage of the curvilinear quadrilateral element is not a solution for the

geometric singularity. It increases the band size and density as seen in the sparsity

graphs of Fig. 3.11 and Fig. 3.13 as a result the evaluation time is increased.

Spectral and spectral element methods suffer more from the geometric singularities

such as corners or discontinuities inherent in the solution such as shock waves. Here,

all boundaries are continuous (u=uexact), therefore singularities are due to the inner

corner in the domain of Fig. 4.6, 4.7 and 4.8. Pathria and Karniadakis [23] suggests

auxiliary mapping to achieve exponential convergence.

Table 4.3 Maximum absolute relative error for DOF in the entire domain

Degree of

freedom (DOF)

Single element

DOF=N

Four element

DOF=N/2

4 0.4404 1.0265

8 0.0548 0.0247

12 1.2073 410−× 4.5853 410−×

16 3.7225 710−× 6.1216 610−×

20 4.0880 1010−× 6.6509 810−×

24 2.6689 1110−× 5.7290 1010−×

28 1.2045 1110−× 5.1903 1210−×

32 4.3815 1210−× 8.9262 1410−×

36 3.6459 1110−× 6.8945 1410−×

40 2.4293 1210−× 2.0461 1310−×

Meshes with same DOF have same number of nodes in each direction and the entire

of the domain. Four element mesh seen in Fig. 4.11b have 625 number of nodes like

 88

the single element with an element degree N = 24. For single element, element

degree and DOF are equal to each other.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

1st el2nd el

3rd el4th el

gnn =1

gnn = 481 gnn = 469gnn = 625

gnn = 157

gnn = 181 gnn =13

gnn = 325 gnn = 169

Figure 4.11b The grid of the Mesh for DOF = 24 made up of four rectangular

elements. The degree of each element is N = 12.

4.3 Inviscid Flow Around a Circular Cylinder

The irrotational flow of an ideal fluid about a circular cylinder, placed with its axis

perpendicular to the plane of the flow between two horizontal walls. [4]

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 (4.5)

u(x,y)=0, -1<x,y<1 on the Dirichlet(essential) boundaries (4.5a)

The exact solution is found for the center of the circle as origin from [6].

 89

2

2 2

2
sinh ()sin()

2

cosh () cos ()

H b y

H HU y
x y

H H

π π

πψ
π π

= −
 −

 (4.6)

H is the vertical distance between the two plates and b is the radius. Chung [6]

warned that this analytical solution is not accurate for large values b/H ratio. For this

problem b/H is 0.25 and the error is 2.34%. SEM solution is far more accurate so the

comparison is needless to have an idea.

Figure 4.12 Domain for the stream function and velocity potential formulations of

inviscid (irrotational) flow about a cylinder.

4.3.1 Stream function formulation

Because of symmetry about horizontal and vertical lines, a quadrant is enough to

model the solution.

The boundary conditions on the stream function ψ can be determined as follows in

Fig 4.13. Streamlines have the property that flow perpendicular to them is zero.

 90

Figure 4.13 Computational domain and boundary conditions for the stream

function formulation irrotational flow around a cylinder.

All contour lines should go to the up. Any line mustn’t be seen as going down. It is

seen at lower order FEM solution [4]. The domain is sliced two quadrilateral spectral

elements from the diagonal passes through the center of the circle. From Fig. 4.14,

none of the contour lines are seen broken down through the element boundary

diagonal.

0.2
0.4

0.
4

0.6

0.6

0.8

0.8

1

1
1.2

1.2
1.4

1.4

1.4
1.6 1.6

1.6
1.8 1.8 1.8

2 2 2

0
0

0.2 0.2

0.
20.4

0.4
0.6

0.6
0.8 0.8

1 1

1.2

1.4

1.6

1.8

y

x

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.14 SEM solution of stream function with the BC’s shown for two

elements with the order of N=12.

 91

From Fig. 4.14, all contour lines are perpendicular to zero Neumann BC at the x=4

line. All contour lines are smooth, no fluctuations are seen. Stream function is

implemented and plotted by streamfunction.m as seen in Appendix E.

4.3.2 Velocity potential formulation

2 2

2 2
0

x y

φ φ∂ ∂
+ =

∂ ∂
 (4.7)

The boundary conditions are shown in Fig. 4.15. The nonzero Neumann boundary is

the EA edge of the quadrant domain.

y

x

0
y

φ∂
=

∂

0
y

φ∂
=

∂

0
n

φ∂
=

∂

0φ =

0
U

x

φ∂
− =

∂

43

2

0

Figure 4.15 Computational domain and boundary conditions for the velocity

potential formulation around cylinder.

 92

0
0

0

0
.5

0
.5

1
1

1
. 5

1
.5

2
2

2

2
.5

2
. 5

3
3

3
. 5

4

4
.5

2
.5

3
3

3
.5

3
. 5

4
4

4

4
.5

4
.5

4
.5

y

x

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.16 Velocity potentials are plotted for N=12. Same mesh is used in Fig.

3.15.

From Fig. 4.16, all contours are perpendicular to zero Neumann BC at the y=0 line

and the arc line. At point (3, 0) there is a connection of zero Neumann BC’s as a

result the contour seems like that.

2
.5

3
3

3
. 5

3
.5

4
4

4
.5

4
.5

0
0

0

0
.5

0
.5

1
1

1
. 5

1
.5

2

2

2
.5

2
. 5

3

3
3
.5

4

4
.5

y

x

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

Figure 4.17 The figures of 4.14 and 4.16 plotted together to show the accuracy.

From Fig. 4.17, velocity potentials are perpendicular to the streamlines as expected.

 93

4.4 Helmholtz Equation

4.4.1 Helmholtz Equation with a single element

A variation of the Poisson equation is the Helmholtz equation from [1].

2 (,)xx yyu u k u f x y+ + = , -1 < x, y < 1, on the boundary u = 0 k=9 (4.8)

The problem is on the rectangular domain. This equation arises in the analysis of

wave propagation governed by the equation

(,)ikt

tt xx yyU U U e f x y− + + = 4.4.1.1

after separation of variables to get (, ,) (,)iktU x y t e u x y= . Program of Helmhholtz

equation is a minor modification of Poisson Equation on the rectangular geometry to

solve such a problem for the particular choices

k = 9,

2

2 1
(,) exp(10[(1)])

2
f x y y x

= − − + −

 (4.8a)

The modification on the code

delta=-(kron(RHS2,df2(2:N,2:N))+kron(df2(2:N,2:N),RHS2))+k^2*s;

Degree of GLL polynomials is chosen as even number to have odd number of nodes.

Element with odd numbered nodes have a node at the midpoint of the element. We

delete the rows and columns belong to the Dirichlet boundary condition in the

differentiation matrix. Solution graphs are plotted as two types. One is 2D contour

the other is 3D graph of the results on the solution domain. Our domain is x = [-1, 1]

and y = [-1, 1]. Therefore, it’s important what happened at x=0, y=0. Therefore, the

even number is chosen because of this.

 94

The solution appears as a 3D mesh plot in Fig. 4.18 and as a contour plot in Fig. 4.19.

It is clear that the response generated by this forcing function f(x, y) for this value

k=9 has approximately the form of a wave with three half-wavelengths in the x

direction and five half-wavelengths in the y direction. This is easily explained. Such

a wave is an eigenfunction of the homogeneous Helmholtz problem

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

Spectral element 1 el with N=24 u
xx

+k2*u=f

y

U

Figure 4.18 3D graph of the solution of 2 (,)xx yyu u k u f x y+ + =

 95

-0.015

-0.015

-0.015

-0.015

-0.015

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

-0.005

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0 0

0

0

0

0

0
0

0

0

0

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.015

0.015
0.015

0.015

0.015

0.015

0.015

0.02

y

x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.19 Contour graph of the solution of 2 (,)
xx yy

u u k u f x y+ + =

4.4.2 Helmholtz Equation with more elements

Consider the following two-dimensional Helmholtz equation with Dirichlet boundary

conditions and λ =1

2 2

2 2

u u
u f

x y

∂ ∂
+ + =

∂ ∂
 on [1,1] [1,1]Ω∈ − × − (4.9)

exactu u= on Γ (4.9a)

Results in the exact solution of

sin()cos()exactu x yπ π= (4.9b)

Helmholtz Equation (4.9) that we know its exact solution is a problem from

Karniadakis’s book [2]. Helmholtz equation’s f function has been calculated from a

 96

known u function (,) sin() cos()u x y x yπ π= by using symbolic differentiation feature

of MATLAB as f=-(diff(u,xx,2)+diff(u,yy,2))+u .

The domain is sliced from x and y axis so four elements are used to represent the

solution domain. From Fig. 4.20 the function’s solution is symmetric to x axis.

The highest error is at x=0.5 and y=0.076826, and the second highest is at x=-0.5 and

y=0.076826 in Fig. 4.21 for N=12. The highest error is found at the local x axis of

the element and lower part. Examining the results from array editor of The Matlab,

the largest errors are near the top of the hill and near the lowest part of the hollow.

The peak of the hills and the bottom of the hollows are at the middle of the boundary

(connection) line of the elements. The contour graphs seen in Figures 4.20, 4.21 and

4.22 are including four quarter wave-lengths and two half wave-lengths.

Also at the hill or at the bottom points of the contour graphs seen in Figures 4.20,

4.21 and 4.22 the derivative of the exact solution is equal to zero. When thinking the

first element sliced from local x and y axis, lower left part looks like FEM example

so the mesh is not dense enough at these hills and hollows.

From Fig. 4.20 it is seen that there are zero lines at y=0.5, y=-0.5 and x = 0. From

Figures 4.21 and 4.22 it is seen that there is a gap between the zero lines for N=12

and N=18. The gaps of N=12 is wider than the gaps of N=18. At x=0 u=0, at y=0.5

and y=-0.5 u=0 so there must be a zero line. For N=32 the zero line is continuous in

Fig. 4.20. For N=18 there is not an intersection plus at (0, 0.5) and (0, -0.5) but the

error found is less than N=32.

Spectral methods have some difficulties to solve problems with sharp corners like hat

function. For N=12 and N=18 the same difficulty has been seen at the coordinates of

(0,-0.5) and (0, 0.5). These are the middle of the boundary line of the element.

 97

-0
.8

-0.8

-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0
.2

-0.2 -0.2

-0
.2

0

0000

0.2

0.2 0.2

0
.2

0
.4

0.4 0.4

0
.4

0
.6

0.6

0.
6

0.8
0.

8
-0.8

-0
.8

-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0.2

-0.2 -0.2

-0
.2

0000
0

0.
2

0.2 0.2

0
.2

0
.4

0.4 0.4

0
.4

0
.6

0.6

0.6

0.
8

0.8

-0.8

-0
.6 -0

.6

-0
.4 -0

.4

-0.2 -0.2

00

0

0
.2

0.2
0
.4

0.4
0
.6

0.
6

0.8-0.8

-0
.6

-0
.6

-0
.4

-0.4-0.2 -0.2

0 0

0
0.2

0
.20.

4

0.4

0
.6

0
.6

0.8

y

x

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.20 Spectral Element Solution graph of the Helmholtz equation

(,)xx yyu u u f x yλ+ + = with 4 elements with the order of N=32. Blue

lines are element boundaries.

u=0 lines must intersect with a right angle. It is seen at the Fig. 4.20 for N=32. The

edges of the 0.8 contour circle couldn’t intersect with a right angle for Fig 4.21 of N

= 12 which means the solution is not enough. The smooth 0.8 curve contour is seen

for Fig. 4.20 of N = 32. For N=32 the contour lines are seen clearly perpendicular to

the x axis as a feature of line of symmetry.

 98

-0
.8

-0.8

-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4-0

.2

-0.2 -0.2

-0
.2

0

0 0 0 0
0

0
.2

0.2 0.2

0
.2

0
.4

0.4 0.4

0
.40

.6

0.6

0
.6

0
.8

0.8 -0.8

-0
.8

-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0
.2

-0.2 -0.2

-0
.2

0

0 0 0

0

0
.2

0.2 0.2

0
.2

0
.4

0.4 0.4

0
.4

0
.6

0.6

0.6

0.
8 0.8

-0.8

-0
.6

-0
.6

-0
.4 -0

.4

-0.2

-0
.2

0

00

0
0
.2

0.2

0.4

0
.4

0
.6 0

.60.8

-0.8

-0
.6

-0
.6-0

.4

-0.4

-0
.2

-0.2
0 0

0

0.2

0
.2

0.
4

0.4

0
.6

0
.6

0.8

y

x

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.21 Spectral Element Solution graph of the Helmholtz equation

(,)xx yyu u u f x yλ+ + = with 4 elements with the order of N=12.

Element boundaries are same so they are not drawn to see the graph

better.

For Fig. 4.21, at the coordinates of (-0.5, 0) and (0.5, 0) a point is seen as contour

have a value of 1. From Fig. 4.22 the solution loses hill point at (0.5, 0) as for N=32.

None of the hills can be seen in Fig. 4.20 for N=32.

 99

-0
.8 -0

.8-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0
.2

-0.2
-0.2 -0.2

0
0

000

0
.2

0.2 0.2
0.2

0
.4

0.4 0.4

0
.4

0.6

0.6

0
.60.8

0.8
-0.8 -0

.8-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0
.2

-0.2 -0.2
-0

.2

000

0

0

0
.2

0.2
0.2

0.2

0
.4

0.4 0.4

0
.40

.6

0.6

0.6
0.8 0.8

-0.8

-0
.6 -0

.6-0
.4

-0.4

-0
.2

-0.2

0

00

0

0.2

0.
2

0.4 0.
4

0
.6

0.
6

0.8-0
.8

-0
.6 -0

.6-0
.4

-0.4

-0.2

-0
.2

0 0

0
0.2 0.2

0.4

0
.4

0
.6

0
.60.8

y

x

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.22 Spectral Element Solution graph of the Helmholtz equation

(,)xx yyu u u f x yλ+ + = with 4 elements with the order of N=18.

Element boundaries are same so they are not drawn to see the graph

better.

-0
.8

-0.8

-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4-0

.2

-0.2 -0.2

-0.2

0

0 0 0 0
0

0
.2

0.2 0.2

0
.2

0
.4

0.4 0.4

0
.40

.6

0.6

0
.6

0
.8

0.8 -0.8

-0
.8

-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0
.2

-0.2 -0.2

-0
.2

0

0 0 0

0

0
.2

0.2 0.2

0
.2

0
. 4

0.4 0.4

0
.4

0
.6

0.6

0
.6

0.
8 0.8

-0.8

-0
.6

-0
.6

-0.4 -0
.4

-0.2

-0
.2

0

00

0
0
.2

0.2

0.4

0
.4

0
.6 0

.60.8

-0.8

-0
.6

-0
.6-0

.4

-0.4

-0
.2

-0.2
0 0

0

0.2

0
.2

0.
4

0.4

0
.6

0
.6

0.8

y

x

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N=12

-0.8 -0.8-0
.6

-0.6

-0
.6

-0
.4

-0.4 -0.4

-0
.4

-0
.2

-0.2 -0.2 -0.2

0
0

000

0
.2

0.2 0.2
0.2

0
.4

0.4 0.4

0
.4

0.6

0.6

0
.60.8

0.8
-0.8 -0

.8-0
.6

-0.6
-0

.6

-0
.4

-0.4 -0.4
-0

.4

-0
.2

-0.2 -0.2
-0

.2

000

0

0

0
. 2

0.2
0.2 0.2

0
.4

0.4 0.4

0
.40

.6

0.6

0.6

0.8 0.8

-0.8

-0
.6 -0

.6-0
.4

-0.4

-0
.2

-0.2

0

00

0

0.2

0.
2

0.4 0.
4

0
.6

0.
6

0.8-0
.8

-0
.6 -0

.6-0
.4

-0.4

-0.2

-0
.2

0 0

0

0.2 0.2
0.4

0
.4

0
.6

0
.60.8

y

x

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N=18

Figure 4.23 The figures of 4.21 and 4.22 are drawn together to see the difference.

 100

Another difference is zero lines surrounding the hill. For N=12 zero lines surround

the negative hill at the negative x. For N=18 zero lines surround the positive hill at

the positive x.

-1

0

1

-1
-0.5

0
0.5

1
-1.5

-1

-0.5

0

0.5

1

1.5

x
y

u

Figure 4.24 3D graph of the solution to the Equation (4.9), (4.9a) and (4.9b) to

show the hills and hollows

The Dirichlet BC’s are included in the solution by making the related row and

column 1 and the others in the related row is zero. Therefore, the related rows of the

RHS are equal to uexact.

 101

CHAPTER 5

CONCLUSION

A spectral element solver program using MATLAB is developed for the solution of

Poisson and Helmholtz equations. Element stiffness matrices and element mass

matrices are evaluated for both of the isoparametric quadrilateral and rectangular

elements to form steady diffusion and Helmholtz operators with this program.

The steady diffusion operator, which is equal to rectangular element stiffness matrix

for a single element is used to solve the Poisson problems including both of the

Dirichlet and Neumann boundary conditions which are homogeneous or

nonhomogeneous. The steady diffusion operators of domains with more than one

element are solved with the global stiffness matrix, which is the result of assembled

element stiffness matrices.

The implementation of the quadrilateral element stiffness matrix evaluation is

presented. Quadrilateral element formula is first tested on the mesh with rectangular

elements. The results are discussed. The contour lines are smooth and there are no

broken line is seen at the common element boundaries.

The local stiffness matrices of square element that are calculated with the

quadrilateral element formulas are full matrices. When the rectangular element

formulas are used, the matrices will have less band size and density. If a component

of the matrix is less than a threshold value, it is declared as zero. With this threshold

value of 1.0 1310−× , both of the element matrices will be the same and have the same

sparsity shown in Fig 3.7. The computation zero is 1.0 1310−× .

 102

The features, capacity and accuracy of curvilinear quadrilateral elements with single

or two curvy edges investigated. As a result curvilinear quadrilateral elements have

to be used to discretise curvy boundaries of the deformed domains.

The accuracy of the four element solution passes the single element for DOF=28.

The four element reaches the computation zero for DOF=32 in Table 4.3. This means

the assembly of the local stiffness matrices are done correctly.

Inviscid flow around a cylinder is a problem that the use of curvilinear quadrilateral

is a must. From he contour graph of the stream function, it is seen that all contours

are perpendicular to zero Neumann BC at the y=0 line and the arc line. The contour

lines are smooth and no broken line is seen at the common element boundaries.

Velocity potential formulation is a problem with nonhomogeneous Neumann

boundary conditions. Here, two dimensional first order differentiation matrix is

successfully evaluated and used. The obtained velocity potentials are perpendicular

to the streamlines.

Helmholtz equation is solved with a single rectangular element. The formulas for the

evaluation of Helmholtz operator are discussed. The implementation of Helmholtz

equation is presented. Rectangular element formulas are used to evaluate Helmholtz

operator. The results are plotted as both 3D and contour graphs.

The accuracy of the Helmholtz operator that is evaluated by quadrilateral element

formulas for the domain with more elements is tested. All obtained u=0 lines

intersect with a right angle for N=32. For N=32, the contour lines are seen clearly

perpendicular to the x axis as a feature of the line of symmetry.

The element load vectors of Poisson and the Helmholtz equation are evaluated and

assembled to construct the global load vector. This is also an important part of the

solution of the Partial Differential Equations.

Developed spectral element code is benchmarked. For the implementation of spectral

element methods, MATLAB built-in functions and MATLAB function libraries of

the spectral methods in the literature are used. MATLAB is a powerful tool that

 103

lowers the implementation work load. Especially, the implementations of matrix

operations are easy with its built-in functions. The suitability of MATLAB for

spectral element methods is investigated. MATLAB is ready for the spectral element

method with its matlab built-in functions and its spectral methods library provided by

scientists and researchers. Also, its plotting feature is useful for post-processing the

results.

The main background of the spectral element methods is discussed. Therefore, this

thesis can be easily developed and expanded for the solution of Stokes, Advection-

diffusion and Navier-Stokes Equations.

 104

REFERENCES

[1] L. N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, 2000.

[2] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD,

Oxford University Press, New York, 1999.

[3] M. O. Deville, P. F. Fischer and E. H. Mund, High-Order Methods for

Incompressible Fluid Flow, volume 9 of Cambridge Monographs on Applied and

Computational Mathematics, Cambridge University Press, 2002.

[4] J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed., McGraw-

Hill, 1993.

[5] C. Sert, Nonconforming Formulations with Spectral Element Methods, Ph.D.

Thesis, Mechanical Engineering Department, Texas A&M University, 2003.

[6] T.J Chung, Finite Element Analysis in Fluid Dynamics, 1st. ed., McGraw-Hill,

New York, 1978.

[7] J. A. C Weideman and S. C. Reddy, A MATLAB Differentiation Matrix Suite,

ACM Trans. Math. Software (TOMS), vol. 36, pg. 465-519, 2000.

[8] H.I. Tarman, ES 702 Pseudospectral Methods Lecture Notes, METU, Ankara,

2005.

 105

[9] C. A. Mavriplis, Nonconforming Discretizations and a Posteriori Error Estimators

for Adaptive Spectral Element Techniques, Ph.D. Thesis, Department of Aeronautics

and Astronautics, MIT, 1989.

[10] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a

channel expansion, J. Comp. Phys., vol. 54, pg. 468-488, 1984.

[11] L. W. Ho, A Legendre Spectral Element Method for simulation of

Incompressible Unsteady Viscous Free-Surface Flows, Ph.D. Thesis, Department of

Aeronautics and Astronautics, MIT, 1989.

[12] B. D. Welfert, Generation of pseudospectral differentiation matrices I, SIAM J.

Numerical Analysis, vol. 34, pg. 1640–1657, 1997

[13] W.J. Gordon and C.A. Hall, Transfinite Element Methods: Blending Function

Interpolation over Arbitrary Curved Element Domains. Num. Math., vol. 21, pg. 109,

1973.

[14] G. Strang and G. J. Fix, An Analysis of Finite Element Method, Series in

Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ, 1973.

[15] G.E. Karniadakis, E.T. Bullister, and A.T. Patera, A spectral element method for

solution of two and three-dimensional time dependent NavierStokes equations, In

Finite Element Methods for Nonlinear Problems, pg. 803, SpringerVerlag, Berlin,

1985.

[16] E.M. Rønquist, Optimal spectral element methods for the unsteady three

dimensional incompressible Navier-Stokes equations, PhD thesis, Massachusetts

Institute of Technology, 1988.

[17] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comp.,

vol. 6, pg. 345, 1991.

 106

[18] S. J. Sherwin and G. E. Karniadakis, A triangular spectral element method;

applications to the incompressible NavierStokes equations. Comp. Meth. Appl.

Mech. Eng., vol. 123, pg. 189-229, 1995.

[19] S. J. Sherwin and G. E. Karniadakis, A new triangular and tetrahedral basis for

high-order finite element methods, Int. J. Num. Meth. Eng., vol. 38, pg. 3775-3802,

1995.

[20] P. F. Fischer, Spectral element solution of the Navier-Stokes equations on high

performance distributed-memory parallel processors, PhD thesis, Massachusetts

Institute of Technology, 1989.

[21] L. M. Delves and C.A: Hall, J. Inst. Math. Appl., vol. 23, pg. 223, 1979.

[22] L. M. Delves and C. Philips, J. Inst. Math. Appl., vol. 25, pg. 177, 1980.

[23] D. Pathria and G. E. Karniadakis, Spectral element methods for elliptic

problems in nonsmooth domains, J. Comp. Physics, vol. 122, pg. 83-95, 1995.

[24] R. Pasquetti and F. Rapetti, Spectral element methods on triangles and

quadrilaterals: comparisons and applications, J. Comp. Physics, vol. 198, pg. 349-

362, 2004.

[25] D. Wilhelm and E. Meiburg, Three-dimensional spectral element simulations of

variable density and viscosity, miscible displacements in a capillary tube,

Computers&Fluids, vol. 33, Issue 3, pg. 485-508, 2004.

[26] J. de Frutos

and J. Novo, A postprocess based improvement of the spectral

element method, Appl. Num. Math.,vol. 33, pg. 217-223, 2000.

[27] O.Z. Mehdizadeh and M. Paraschivoiu, Investigation of a two-dimensional

spectral element method for Helmholtz’s equation, Journal of Comp. Physics, vol.

189, pg. 111-129, 2003.

 107

[28] G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for

incompressible Navier–Stokes equations, J. Computational Physics, vol. 97, pg. 414,

1991.

[29] S.J. Sherwin and M. Casarin, Low-Energy Basis Preconditioning for Elliptic

Substructured Solvers Based on Unstructured Spectral/hp Element Discretization,

Journal of Computational Physics, vol. 171, pg. 394–417, 2001.

[30] I. Bica, Iterative Substructuring Algorithms for the p-version Finite Element

Method for Elliptic Problems, Ph.D. thesis, Courant Institute of New York

University, 1997.

[31] J. L. Guermond and J. Shen, A new class of truly consistent splitting schemes

for incompressible flows, J. Computational Physics, vol. 192, pg. 262-276, 2003.

[32] L. F. Pavarino and O. B. Widlund, Iterative Substructuring Methods for Spectral

Elements: Problems in Three Dimensions Based on Numerical Quadrature,

Computers & Math. with Applications, vol. 33, No. 1/2, pg. 193-209, 1997.

[33] C. Evangelinos, S. J. Sherwin and G. E. Karniadakis, Parallel DNS algorithms

on unstructured grids, Comput. Methods Appl. Mech. Engrg., vol. 184, 401-425,

2000.

[34] S.J. Sherwin, G.E. Karniadakis, Tetrahedral hp finite elements: Algorithms and

flow simulations, J. Comput. Phys., vol. 122, pg. 191, 1995.

[35] S.J. Sherwin, Hierarchical hp finite elements in hybrid domains, Finite Elements

in Analysis and Design, vol. 27, pg. 109-119, 1997.

[36] Warburton, T. C., Spectral/hp methods on polymorphic multi-domains:

algorithms and applications, PhD Thesis, Brown University, 1998.

[37] F. P. Incropera and D.P. DeWitt, Fundamentals of heat and mass transfer, 4
th

edition, John Wiley & Sons, New York, 1996.

 108

[38] C. Sert and A. Beskok, Spectral element formulations on non-conforming grids:

A comparative study of pointwise matching and integral projection methods, Journal

of Comp. Physics, vol. 211, pg. 300-325, 2006.

 109

Appendix A: Results of 1D SEM solution

This problem is the 5
th

 homework of Tarman [8]. Figures A.1 and A.2 are my

homework results of problem (A) and (B).

 110

Figure A.1 Errors of the 1D spectral element solution of problem (A) for same

number of nodes in the interval [-1, 1]. 1 elm for N=24, 2 elm for

N=12, 3 elm for N=8 and 4 elm for N=6.

 111

Figure A.2 Errors of 1D spectral element solution of problem (B) for same

number of nodes in the interval [-1, 1]. 1 elm for N=24, 2 elm for

N=12, 3 elm for N=8 and 4 elm for N=6.

 112

Appendix B: 1D Expansion Bases

Most of the Appendix B belongs to Karniadakis and Sherwin [2]. Some of the parts

and equations of Appendix B.2.2 are from Tarman [8] and cited in the Appendix

B.2.2.

B.1 Expansion Bases: h-p type approximation

Essential part of constructing different expansion bases will be to introduce a

standard elemental region within which the standard expansions will be defined.

Assembly procedure of the global expansion bases from these local definitions. This

type of elemental construction also provides an efficient way to numerically

implement the spectral h-p element technique once integration and differentiation of

polynomial functions have been understood.

B.1.1 Elemental Decomposition: h-type extension

In the h-type method, a fixed order polynomial is used in every polynomial and

convergence is achieved by reducing the size of the elements. This is the so-called h-

type extension, where h represents the characteristic size of an element (subdomain)

means its length in one dimension. This type of extension aids in geometric

flexibility, especially in high dimensions.

u is constructed from a class of functions which are 0
C continuous in the domain Ω ,

however at the boundary between the elements the derivative may be discontinuous.

It can be shown that, upon convergence to the exact solution when h become smaller

(as h→0) the jump in the in the derivative across inter element boundaries become

zero and that the Neumann condition is exactly satisfied.

 113

B.1.2 Polynomial expansion: the p-type extension

In the p-type method, a fixed mesh is used, it means h kept fixed and convergence is

achieved by increasing the order of the polynomial expansion in every element. This

is the so-called p-type extension where p represents the expansion order in the

elements.

If the whole solution domain is treated as a single element, then the p-type method

becomes a spectral method. [8, 16]

Recalling the definition of the standard element,
stΩ and the coordinate mapping

x(1 2,ξ ξ) from stΩ to an elemental region eΩ , if P
deg

()
N st

Ω denotes the space of all

polynomials of degree
degN defined on the standard element stΩ . The discrete h-p

expansion space Nχ is the set of all functions Nu which exists in 1H and that are

polynomials in
1 2,ξ ξ within every element which is written as

Nχ = { Nu | 1

Nu H∈ , 1 2((,))e

Nu x ξ ξ ∈ P
deg

()
N st

Ω , e=1,…, elN } (B.1.2.1)

This definition allows both the mapping x(1 2,ξ ξ) and the polynomial order degN to

vary within each element e thereby permitting both h-type refinement, which alters

x 1 2(,)e ξ ξ capability and elN , p-type refinement, which alters deg

e
N . This is known as

h-p type approximation.

Our main concern is polynomial expansion. Traditionally, the finite element method

has always used polynomial expansions. This may be attributed to the historical use

of Taylor series expansions which allow analytical functions to be expressed in terms

of polynomials.

 114

B.1.2.1 Modal and nodal expansions

To illustrate the difference between a modal and nodal polynomial expansion, three

expansion sets are introduced which are denoted by ()A

p xΦ , ()B

p xΦ and ()C

p xΦ

(0 p≤ ≤ P), in the region
stΩ ={x | -1 x≤ ≤ 1}. All of these expansions represent a

complete set of polynomials up to order P and are mathematically defined as

()A p

p x xΦ = , p = 0,…, P (B.1.2.2)

0,

0,

()

()

()

P

q

q q pB

p P

p q

q q p

x x

x

x x

= ≠

= ≠

−

Φ =

−

∏

∏
, p=0,…, P (B.1.2.3)

() ()C

p px L xΦ = , p=0,…, P (B.1.2.4)

The first expansion set simply increase the order of the x in a monomial fashion. It is

called moment expansion (each order contributing an extra moment the expansion).

This basis is referred to as a modal or a hierarchical expansion because the expansion

set of order P-1 contained within the expansion set of order P. There is a notion of

hierarchy in the sense that higher-order expansion sets are built from the lower-order

expansion sets.

The second polynomial ()B

p xΦ is a Lagrange polynomial which is based on a series

of P+1 nodal points qx which are chosen beforehand and could be, for example,

equispaced in the interval. The Lagrange polynomial is a non-hierarchical basis (that

is, 1

N N

P Pχ χ +⊄) because it consists of P+1 polynomials of order P. This can be

contrasted with hierarchical expansion ()A

p xΦ which consists of polynomials of

increasing order. The Lagrange basis has the notable property that ()B

p q pqx δΦ = ,

where pqδ represents the Kronecker delta. This property implies that

 115

0 0

ˆ ˆ ˆ() ()
P P

N B

q p p q p pq q

p p

u x u x u uδ
= =

= Φ = =∑ ∑ (B.1.2.5)

where it is seen that the expansion coefficient ˆ
pu can be defined in terms of the

approximate solution at the point qx .

The coefficients, therefore, have a physical interpretation in that represent the

approximate solution at the points qx . The point qx are referred to a node and the

Lagrange expansion basis is referred as a nodal expansion, linear finite elements are

an example of a nodal expansion where the nodal points are at the ends of the

domain.

A distinction between a nodal expansion and the collocation method (or collocation

projection) is drawn. In the collocation method, the equation being solved is exactly

satisfied at the collocation points where as in a nodal expansion the expansion

coefficients represent the approximate solution at a given set of nodes. However, a

nodal expansion can be used in different types of methods such as the Galerkin or

collocation method. It must be remembered that an approximate solution using a

nodal expansion base does not satisfy equation exactly at the nodal points.

The final expansion, ()C

p xΦ is also a hierarchical or modal expansion however, in this

case the expansion is the Legendre polynomial ()pL x . By definition, this polynomial

is orthogonal in the Legendre inner product

1

1

2
((), ()) () ()

2 1
p q p q pqL x L x L x L x dx

p
δ

−

= =
+∫ (B.1.2.6)

Orthogonality has important numerical implication for the galerkin method.

 116

B.1.2.2 Choice of an expansion set

Choice of an expansion set is influenced by its numerical efficiency, conditioning,

and the linear independence of the basis, as well as its approximation properties. To

illustrate some of these factors, the three expansion set ()A

p xΦ , ()B

p xΦ and

()C

p xΦ will be considered in Galerkin projection.

The Galerkin or 2L projection of a smooth function f(x) in the domain onto the

polynomial expansion ()N
u x is the solution to the following problem find N N

u χ∈

such that

The moment expansion ()A

p xΦ produces a mass matrix which has components

(0 ,p q≤ ≤ P) of the form

M[p][q]=(A

pΦ , A

qΦ) =

11 1

1 1
1

p q
p q x

x x dx
p q

+ +

− −

=

+ +
∫

 =

2
,

1

0,

p q even
p q

p q odd

+

+ +
 +

 (B.1.2.7)

Therefore, when constructing M using this basis we need only calculate half of the

components. However, the inverse will still be full and the cost of inverting the

matrix is typically the dominant operation.

The second expansion ()B

p xΦ is the Lagrange polynomial and so it is associated

with a set of nodal points qx . As a common feature of finite element the nodes are

defined equispaced in the domain stΩ , and so in the interval qx =2q/P-1. If Gaussian

quadrature is used, the mass matrix will be full. The reason discussed later. It causes

twice more time and memory consumption. Therefore, the construction of the mass

matrix ()B

p xΦ is twice as expensive as ()A

p xΦ , although the matrix inversion won’t

cause any change. [2]

 117

The third expansion ()C

p xΦ is the Legendre polynomial. If the gauss Legendre

quadrature nodes and weights are used for the numerical integration, the mass matrix

will be diagonal. The components of the matrix are

M[p][q] = (ΦC

p , ΦC

q) =

1

1

2
() ()

2 1
p q pqL x L x dx

p
δ

−

=
+∫ (B.1.2.8)

The construction and inversion of the diagonal mass matrix is the easiest as a result

()C

p xΦ is the best of the three expansions if only it is thought from the numerical

point of view. It is noted, however, that the basis can not be easily extended to an

elemental decomposition which is globally continuos since the continuity constraints

destroy the orthogonality of the global matrix structure.

If the local expansions were constructed so that only a few expansion modes have

magnitude at an elemental boundary then the matching condition can be imposed far

more easily. This type of decomposition is known as boundary and interior

decomposition. Boundary modes have magnitude at one of elemental boundaries and

are zero at all boundaries as a known feature of FEM. Interior modes sometimes

known as bubble modes, only have magnitude in the interior of the element are zero

along all boundaries. The equispaced Lagrange expansion ()B

p xΦ already satisfies

these conditions. If the nodal points did not include the end points then the boundary

interior decomposition would not be possible.

The poor conditioning of the basis ()B

p xΦ can be attributed to the high level of

oscillations towards the end of the region, which can be seen at the graph Lagrangian

interpolating polynomials for equispaced points in modes p=4 and p=6. These

oscillations can be prevented by a better choice of nodal points so to obtain

independently shaped modes with well-behave bounds, as shown by the modes of

()C

p xΦ will be possible.

 118

B.2 Nodal Polynomial expansions

Polynomial nodal expansions are based upon the Lagrange polynomials which are

associated with a set of nodal points. The nodal points must include the ends of the

domain if the expansion is to be decomposed into boundary and interior modes. The

choice of these points, however, plays an important role in the stability of the

approximation.

B.2.1 Lagrange polynomials

Given a set of P+1 nodal points, denoted by
qx (0 p≤ ≤ P), the Lagrange polynomial

()ph x is the unique polynomial of order P which has a unit value at
px and is zero at

qx (p q≠). This definition can be written as

()p q pqh x δ= (B.2.1.1)

where pqδ is the Kronecker delta. Implementation clues will be in the

implementation chapter. The Lagrange polynomial can also be written in product

form as

0,

0,

()

()

()

P

q

q q p

p P

p q

q q p

x x

h x

x x

= ≠

= ≠

−

=

−

∏

∏
 (B.2.1.1a)

If the polynomial of order P+1 with zeros at the P+1 nodal points qx is denoted g(x),

so ()qh x can be written as

()
()

'()()
p

p p

g x
h x

g x x x
=

−
 (B.2.1.2)

 119

The Kronecker delta property shown in eqn (B.2.1.1) makes the Lagrange

polynomial particularly useful as an interpolation basis. The Lagrange interpolant

through the P+1 nodal points qx is written as

I
0

ˆ() ()
P

p p p

p

h x u h x
=

=∑ (B.2.1.3)

The interpolation approximation requires that Iu(
qx) = u(

qx) and, because of the

property of ()B

p xΦ and Equation (B.2.1.1), this means that ˆ ()p pu u x= . The

interpolation approximation can be written as

I
0

() () ()
P

p p p

p

h x u x h x
=

=∑ (B.2.1.4)

If u(x) is a polynomial of order P then the relationship is exact.

B.2.2 Nodal p-type basis: spectral elements

A class of nodal p-type elements which is known and called as ‘spectral element’,

due to Patera [10], use the Lagrange polynomial the zeros of the Gauss Lobatto

polynomials. In the early version of the spectral element method the polynomials

were Chebyshev type [15,10], but in later versions Legendre polynomials were

selected for more accurate numerical quadratures [16]. This type of integration will

be discussed.

The elemental mass matrix using this expansion is full if the inner product is

evaluated exactly.

This type of integration is discussed in section 2.4.1, where using P+1 points give

nodal points at the roots of the polynomial g () (1)(1) ' ()PLξ ξ ξ ξ= − + . Substituting

this into Eqn. (B.2.1.2)the nodal p-type expansion in the standard element stΩ .

 120

'

1
() 0

(1)(1) ()

p

p p

P

h p P
L otherwise

ξ ξ
φ ξ

ξ ξ ξ

=
= ≤ ≤

− +
 (B.2.2.1)

where Eqn (B.2.2.2) is used to deduce . The derivative of the Legendre polynomial

' ()pL ξ can be related to the Jacobi polynomial 1,1

1()PP ξ− using the following equation

, 1, 1

1

1
() (1) ()

2
n n

d
P x n P x

dx

α β α βα β + +

−= + + + (B.2.2.2)

A class of nodal p-type elements, which are known as spectral elements due to

Patera[10], use the Lagrange polynomial through the zeros of the Gauss-Lobatto

polynomials, i.e

deg

,() (1)(1) (())N

d
g P

d

α βξ ξ ξ ξ
ξ

= − + (B.2.2.3)

where
deg

, ()NPα β ξ is the degN th order of Jacobi polynomial.

In the early version of the spectral element method, the polynomials were Chebyshev

type (1/ 2α β= = −) but in later versions Legendre polynomials (0α β= =) were

selected for more accurate numerical quadrature. [8]

Now, that a nodal p-type expansion within each elemental domain can be constructed

using the Lagrange interpolants through the zeros of the Gauss-Lobatto polynomials

[8],

()pφ ξ → ()pL ξ , deg0 p N≤ ≤ (B.2.2.4)

the local differentiation [8]

deg deg

0 0

()
() () ()

q

q

N N

N
p p qp p

p p

du d
u L D u

d d ξ ξ
ξ ξ

ξ
ξ ξ ξ

ξ ξ =
= ==

= =∑ ∑ (B.2.2.5)

 121

via the differentiation matrix D, and the local integration [8]

1 1

01

() () ()ξ ξ ξ
−

=−

= +∑∫
Q

N p p N

p

u d w u R u	 (B.2.2.6)

via the Gaussian quadrature with the number of quadrature points Q(= degN +1), can

be performed.Here, R(Nu)=0 if
deg2N 1N

u −∈ P for Gauss-Lobatto integration with

appropriate weights pw .

In this case, the elemental mass matrix will be [8]

1

1

()() (,) () ()ξ ξ ξ
−

= = ∫
e

p q p qM p q L L L L d

0 0

() ()ξ ξ δ δ δ
= =

= =∑ ∑�
P P

i p i q i i p q p pq

i i

w L L w w (B.2.2.7)

and turns out to be diagonal. [2] and [8]

Recall [8] that Legendre-Lobatto points { }
0

N

j j
x

=
 are the roots of

q(x)= ()21 ()− N

d
x P x

dx
 (B.2.2.8)

where ()NP x is the Legendre polynomial of degree [8]. Gauss Lobatto Legendre

weights can be calculated as

2

2
0,

(1)

2
[()] 1,... 1

(1)

−

= +

=
 = −
 +

j

N j

j N
N N

w

P x j N
N N

 (B.2.2.9)

 122

may be used to set up a Gaussian quadrature approximation [8]

1

01

() ()
N

j j

j

f x dx w f x
=−

≈∑∫ (B.2.2.10)

which is exact for f(x) 2 1−∈ NP (the space of polynomials of degree ≤ 2N-1)

A Newton iteration [8] can be set up

()

(1) ()

()

()

'()

k

jk k

j j k

j

q x
x x

q x

+ = − (B.2.2.11)

to compute the Legendre-Lobatto points from the initial guesses (0)

jx =cos(jπ /N)

(Chebyshev points). It can be shown from [8] that

q(1 1) () ()j N j N jx P x P x− += − =0 (B.2.2.12)

which follows from the recurrence relation [8]

[]2

1 1

(1)
(1) () () ()

2 1
n n n

d n n
x P x P x P x

dx n
− +

+
− = −

+
 (B.2.2.13)

'() (2 1) ()j n jq x N P x= − + (B.2.2.14)

which follows from the recurrence relation [8]

' '

1 1

1
() () ()

2 1
n n nP x P x P x

n
− +

 = − − +
 (B.2.2.15)

The mathematical formulation of Lobatto.m of [8] is discussed.

 123

Appendix C: Lobatto.m

function [w, y] = Lobatto(n)

% The Legendre-Lobatto points y(1:n+1) are the roots of f(x) = (1-

x^2) dP_n/dx,
% with the weights w(1:n-1) = 2/n(n+1) P_n(y(1:n-1))^-2 and w([0 n]

= 2/n(n+1).
% where P_n(x) is the nth degree Legendre polynomial.
%
% This routine uses Newton iteration to find the roots to 10 digit

accuracy.
% Only symmetric half is computed.
% The initial estimates are the Chebyshev points cos((pi/n)*(0:n)).
%
% By using the two relations
% (1-x^2)(dP_n/dx) = n(n+1)/(2n+1) (P_(n-1) - P_(n+1))
% P_n = -1/(2n+1) (dP_(n-1)/dx - dP_(n+1)/dx)
% we identify
% f = P_(n-1) - P_(n+1) and df/dx = -(2n+1)P_n.

if n==1, w = [1 1]; y = [1 -1]; return, end
if n==2, w = [1/3 4/3 1/3]; y = [1 0 -1]; return, end

s = 2/(n*(n+1));
m = ceil(n/2) - 1; % # of half-internal points except zero.
for i=1:m
z = cos((pi/n)*i); d = 1;
while abs(d) >= 5e-11
 Lnm1 = legendre(n-1,z); Lnp1 = legendre(n+1,z); Ln =

legendre(n,z);
 fz = Lnm1(1,1) - Lnp1(1,1); fpz = -(2*n+1)*Ln(1,1);
 d = -(fz/fpz); z = z + d;
end
yh(i) = z;
wh(i) = 1/Ln(1,1)^2;
end
if 2*ceil(n/2)==n,
 Ln = legendre(n,0); w0 = 1/Ln(1,1)^2;
 w = s*[1 wh(:)' w0 fliplr(wh(:)') 1];
 y = [1 yh(:)' 0 -fliplr(yh(:)') -1];
else
 w = s*[1 wh(:)' fliplr(wh(:)') 1];
 y = [1 yh(:)' -fliplr(yh(:)') -1];
end

 124

Appendix D: elematrstmquad.m

function [delta,Xesit,Yesit,Jab]=elematrs(N,xna,xnb,xnc,

xnd,yna,ynb,ync,ynd,orderofedge,yeqa,yeqc,xeqd,xeqb)

[w, xs] = Lobatto(N); xs = xs'; w = w'; ys = xs;

[XS, YS] = meshgrid(xs,ys);

Dxs = poldif(xs,1); Dxs = Dxs(:,:,1); Dys = Dxs;

LXS1 = (1-XS)/2; LXS2 = (1+XS)/2;

LYS1 = (1-YS)/2; LYS2 = (1+YS)/2;

% >> xna=0;xnb=0.5;xnc=0.5;xnd=0;

% >> yna=0;ynb=0;ync=0.5;ynd=0.5;

% the vertices of a rectangular element for benchmark

if(orderofedge==0)

XA = xna*LXS1 + xnb*LXS2; YA = yna; % down face

XC = xnd*LXS1 + xnc*LXS2; YC = ync; % up face

YD = yna*LYS1 + ynd*LYS2; XD = xnd; % left face

YB = ynb*LYS1 + ync*LYS2; XB = xnb; % right face

else

XA = xna*LXS1 + xnb*LXS2; YA = subs(yeqa);

XC = xnd*LXS1 + xnc*LXS2; YC = subs(yeqc);

YD = yna*LYS1 + ynd*LYS2; XD = subs(xeqd);

% The value in the subs() paranthesis can

% be a symbolic equation or a number

YB = ynb*LYS1 + ync*LYS2; XB = subs(xeqb);

end

X = XA.*((1/2)*(1 - YS)) + XC.*((1/2)*(1 + YS)) + ...

XD.*((1/2)*(1 - XS)) + XB.*((1/2)*(1 + XS)) - ...

(xna)*((1/2)*(1 - XS)) .* ((1/2)*(1 - YS)) - ...

(xnb)*((1/2)*(1 + XS)) .* ((1/2)*(1 - YS)) - ...

xnd*((1/2)*(1 - XS)) .* ((1/2)*(1 + YS)) - ...

(xnc)*((1/2)*(1 + XS)) .* ((1/2)*(1 + YS));

 125

Y = YA.*((1/2)*(1 - YS)) + YC.*((1/2)*(1 + YS)) + ...

YD.*((1/2)*(1 - XS)) + YB.*((1/2)*(1 + XS)) - ...

(yna)*((1/2)*(1 - XS)) .* ((1/2)*(1 - YS)) - ...

(ynb)*((1/2)*(1 + XS)) .* ((1/2)*(1 - YS)) - ...

(ynd)*((1/2)*(1 - XS)) .* ((1/2)*(1 + YS)) - ...

(ync)*((1/2)*(1 + XS)) .* ((1/2)*(1 + YS));

% XA = 0*LXS1 + 0.5*LXS2; YA = 0;

% XC = 0*LXS1 + 0.5*LXS2; YC = 0.5;

% YD = 0*LYS1 + 0.5*LYS2; XD = 0;

% YB = 0*LYS1 + 0.5*LYS2; XB = 0.5;

% X = XA.*((1/2)*(1 - YS)) + XC.*((1/2)*(1 + YS)) + ...

% XD.*((1/2)*(1 - XS)) + XB.*((1/2)*(1 + XS)) - ...

% (0)*((1/2)*(1 - XS)) .* ((1/2)*(1 - YS)) - ...

% (0.5)*((1/2)*(1 + XS)) .* ((1/2)*(1 - YS)) - ...

% 0*((1/2)*(1 - XS)) .* ((1/2)*(1 + YS)) - ...

% (0.5)*((1/2)*(1 + XS)) .* ((1/2)*(1 + YS));

% Y = YA.*((1/2)*(1 - YS)) + YC.*((1/2)*(1 + YS)) + ...

% YD.*((1/2)*(1 - XS)) + YB.*((1/2)*(1 + XS)) - ...

% (0)*((1/2)*(1 - XS)) .* ((1/2)*(1 - YS)) - ...

% (0)*((1/2)*(1 + XS)) .* ((1/2)*(1 - YS)) - ...

% (0.5)*((1/2)*(1 - XS)) .* ((1/2)*(1 + YS)) - ...

% (0.5)*((1/2)*(1 + XS)) .* ((1/2)*(1 + YS));

J = (Dxs * X')' .* (Dys * Y) - (Dys * X) .* (Dxs * Y')';

Area = w' * J * w

Xesit=X';

Xesit=Xesit(:);

I=eye(N+1);

Dx = kron(Dxs,I);

Dy = kron(I,Dys);

Yesit=Y';

Yesit=Yesit(:);

Dy = kron(Dys,I);

Dx = kron(I,Dxs);

Jlast=[(Dxs * X')' (Dys * X);(Dxs * Y')' (Dys * Y)];

Jab=J';

J11y=Jlast(1:(N+1),1:(N+1))';

J12y=Jlast(1:(N+1),N+2:2*N+2)';

 126

J21y=Jlast(N+2:2*N+2,1:(N+1))';

J22y=Jlast(N+2:2*N+2,N+2:2*N+2)';

Jinv=[J22y(:)./Jab(:) -J12y(:)./Jab(:);-J21y(:)./Jab(:)

J11y(:)./Jab(:)];

J11inv=Jinv(1:(N+1)^2,1);

J12inv=Jinv(1:(N+1)^2,2);

J21inv=Jinv((N+1)^2+1:2*(N+1)^2,1);

J22inv=Jinv((N+1)^2+1:2*(N+1)^2,2);

Gk11=J11inv.*J11inv.*Jab(:)+J12inv.*J12inv.*Jab(:);

Gk12=J11inv.*J21inv.*Jab(:)+J12inv.*J22inv.*Jab(:);

Gk21=J21inv.*J11inv.*Jab(:)+J22inv.*J12inv.*Jab(:);

Gk22=J21inv.*J21inv.*Jab(:)+J22inv.*J22inv.*Jab(:);

D=poldif(xs,1);

w1=w(1:N+1);

I=eye(N+1);

for p=1:N+1

for q=1:N+1

L=I(:,q).*I(:,p);

RHS2(p,q)=dot(w1,L);end % RHS2 equals to 1D mass matrix.

end

s=sparse(kron(RHS2,RHS2));

G11=sparse(s*diag(Gk11));

G12=sparse(s*diag(Gk12));

G22=sparse(s*diag(Gk22));

G21=sparse(s*diag(Gk21));

D1=sparse(kron(I,D));

D2=sparse(kron(D,I));

DekT=[D1;D2]';

G=[G11 G12;G21 G22];

delta=DekT*G*[D1;D2];

 127

Appendix E: streamfunction.m

clear

N=12;

syms XA XC YD YB

yeqc = [2 -1/2*XC+2];

xeqd = [4-2*YD 0];

xeqb =[4 -sqrt(1-YB.^2)+4];

yeqa = [sqrt(1-(XA-4).^2) 0];

elnod=elnode(N); % elnode.m is seen in Appendix E.

elnod=elnod([1 2],:); % we have two elements

stiff2=zeros(2*(N+1)^2-1*(N+1),2*(N+1)^2-1*(N+1));

% second element last node is 325

elnod(2,1:13)=[169:-13:13];

elnod(2,14:(N+1)^2)=[(N+1)^2+1:2*(N+1)^2-1*(N+1)];

% elnod is the connectivity matrix generated.

f3=zeros((N+1)^2,1);

load=zeros(2*(N+1)^2-1*(N+1),1);

[w,x]=Lobatto(N);

w1=w(1:N+1);

I=eye(N+1);

for p=1:N+1

for q=1:N+1

L=I(:,q).*I(:,p);

RHS2(p,q)=dot(w1,L);end % RHS2 equals to 1D mass matrix.

end

s=sparse(kron(RHS2,RHS2));

uex=[];allxx=[];allyy=[];

xna=[4-2/sqrt(5) 0];

xnb=[4 3]; % which one is first don't forget

xnc=[4 4-2/sqrt(5)]; % which one is first don't forget

xnd=[0 0]; % which one is first don't forget

yna=[1/sqrt(5) 0];

ynb=[1 0];

ync=[2 1/sqrt(5)];

ynd=[2 2];

for e=1:2

[delta,xx,yy,Jab,Jlast,Dxs]=elematrstmquad(N,xna(e),

xnb(e),xnc(e),xnd(e),yna(e),ynb(e),ync(e),ynd(e)...

,2,yeqa(e),yeqc(e),xeqd(e),xeqb(e));

u=sin(4*pi*sqrt((xx-2).^2+(yy-2).^2));uex=[uex u];

allxx=[allxx xx]; allyy=[allyy yy];

for p=1:(N+1)^2

for q=1:(N+1)^2

if (p==q) RHS(q)=Jab(p).*s(p,q).*f3(q);end

end

end

 128

for i=1:(N+1)^2

for j=1:(N+1)^2

if(abs(delta(i,j))>=1e-15)

stiff2(elnod(e,i),elnod(e,j))=stiff2(elnod(e,i),

elnod(e,j))+delta(i,j);

end

end

end

for j=1:(N+1)^2 load(elnod(e,j))=load(elnod(e,j))+RHS(j);

end

end

[w,x]=Lobatto(N);

y=x;

[xx,yy] = meshgrid(x(1:N+1),y(1:N+1));

xx = xx(:); yy = yy(:);

nodenum1steldown = find(xx==-1);

% local xx’s of the down edge.

% nodenum1steldown = find(xx==-1);

% 1steldownedge of the element

for i=1:13

stiff2(nodenum1steldown,:) = zeros(N+1,2*(N+1)^2-

1*(N+1)); stiff2(nodenum1steldown,nodenum1steldown) =

eye(N+1);

end

nodenum1stelup = find(xx==1); % local xx must be found.

for i=1:13

stiff2(nodenum1stelup,:) = zeros(N+1,2*(N+1)^2-1*(N+1));

stiff2(nodenum1stelup,nodenum1stelup) = eye(N+1);

end

localnodenum2ndelleft=find(yy==-1); for i=1:N+1

globalnodenum2ndelleft(i)=elnod(2,localnodenum2ndelleft(i

));

end

for i=1:13

stiff2(globalnodenum2ndelleft,:) = zeros(N+1,2*(N+1)^2-

1*(N+1));

stiff2(globalnodenum2ndelleft,globalnodenum2ndelleft) =

eye(N+1);

end

localnodenum2ndelright = find(yy==1); % local yy.

for i=1:N+1

globalnodenum2ndelright(i)=elnod(2,localnodenum2ndelright

(i));

end

for i=1:13

stiff2(globalnodenum2ndelright,:) = zeros(N+1,2*(N+1)^2-

1*(N+1));

stiff2(globalnodenum2ndelright,globalnodenum2ndelright) =

eye(N+1);

end

localnodenum2ndeldown = find(xx==-1); % local xx.

 129

for i=1:N+1

globalnodenum2ndeldown(i)=elnod(2,localnodenum2ndeldown(i

));

end

for i=1:13

stiff2(globalnodenum2ndeldown,:) = zeros(N+1,2*(N+1)^2-

1*(N+1));

stiff2(globalnodenum2ndeldown,globalnodenum2ndeldown) =

eye(N+1);

end

for i=1:13

load(nodenum1stelup(i))=2;

end

for i=1:13

load(globalnodenum2ndelleft(i))=allyy(localnodenum2ndelle

ft(i),2); end

un=stiff2\load;

min(un)

ert=un(elnod(2,:));

ert13e13el2=reshape(ert,N+1,N+1);

xx1=reshape(allxx(:,1),N+1,N+1);

xx2=reshape(allxx(:,2),N+1,N+1);

yy1=reshape(allyy(:,1),N+1,N+1);

yy2=reshape(allyy(:,2),N+1,N+1);

contour(xx2,yy2,ert13e13el2)

un169_13e13el1=reshape(un(1:169),N+1,N+1);

hold on

contour(xx1,yy1,un169_13e13el1)

axis([0 4 0 2])

line(xx2(1:13,1),yy2(1:13,1))

ert=un(elnod(2,:));

ert13e13el2=reshape(ert,N+1,N+1);

xx1=reshape(allxx(:,1),N+1,N+1);

xx2=reshape(allxx(:,2),N+1,N+1);

yy1=reshape(allyy(:,1),N+1,N+1);

yy2=reshape(allyy(:,2),N+1,N+1);

contour(xx2,yy2,ert13e13el2)

un169_13e13el1=reshape(un(1:169),N+1,N+1);

hold on

contour(xx1,yy1,un169_13e13el1)

axis([0 4 0 2])

line(xx2(1:13,1),yy2(1:13,1))

% command lines more than one row must be connected

because of the margins of the paper aren’t enough. The

second row must be added to the end of the first row. Or

Use three blue points.

