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ABSTRACT 

 

SPECTRAL (h-p) ELEMENT METHODS APPROACH  

TO THE SOLUTION OF  

POISSON AND HELMHOLTZ EQUATIONS USING MATLAB 

 

 

MARAL, Tuğrul 

M.S., Department of Mechanical Engineering  

Supervisor : Asst. Prof. Dr. İlker TARI 

Co-Supervisor : Asst. Prof. Dr. Cüneyt SERT 

 

December 2006, 129 pages 

 

 

 

A spectral element solver program using MATLAB is written for the solution of 

Poisson and Helmholtz equations. The accuracy of spectral methods (p-type high 

order) and the geometric flexibility of the low-order h-type finite elements are 

combined in spectral element methods.  

 

Rectangular elements are used to solve Poisson and Helmholtz equations with 

Dirichlet and Neumann boundary conditions which are homogeneous or non 

homogeneous. Robin (mixed) boundary conditions are also implemented.  

 

Poisson equation is also solved by discretising the domain with curvilinear 

quadrilateral elements so that the accuracy of both isoparametric quadrilateral and 

rectangular element stiffness matrices and element mass matrices are tested. 

 



 v 

Quadrilateral elements are used to obtain the stream functions of the inviscid flow 

around a cylinder problem. Nonhomogeneous Neumann boundary conditions are 

imposed to the quadrilateral element stiffness matrix to solve the velocity potentials. 

 

 

Keywords: Spectral element method, Matlab, Poisson and Helmholtz equations. 
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ÖZ 

 

SPEKTRAL (h-p) ELEMAN METODU YAKLAŞIMIYLA  

POISSON ve HELMHOLTZ DENKLEMLERİNİN  

MATLAB KULLANILARAK ÇÖZÜMÜ 

 

 

MARAL, Tuğrul 

Yüksek Lisans,  Makine Mühendisliği Bölümü  

Tez yöneticisi  : Asst. Prof. Dr. İlker TARI 

Ortak Tez yöneticisi : Asst. Prof. Dr. Cüneyt SERT 

 

Aralık 2006, 129 sayfa 

  

 

 

Poisson ve Helmholtz denklemlerinin çözümü için MATLAB kullanılarak bir 

spektral eleman çözücü program yazılmıştır. Yüksek dereceli ve p tipindeki spektral 

metodun isabetliliği ve düşük dereceli h tipi sonlu elemanlar metodunun geometrik 

esnekliği spektral eleman metodlarinda birleştirilir.  

 

Homojen veya homojen olmayan Dirichlet ve Neumann sınır koşulları  içeren 

Poisson ve Helmholtz denklemleri, dikdörtgen elemanlar kullanılarak çözülmüştür. 

Ayrıca, Robin sınır koşulları da gerçekleştirilmiştir. 

 

Poisson denkleminin çözüm alanı, eğri kenarlı dörtgenlere bölünerek tekrar 

çözülmüştür. Bu sayede, izoparametrik eğri dörtgen ve dikdörtgen elemanların sertlik 

matrislerinin ve kütle matrislerinin isabetliliği test edilmiştir. 

 



 vii 

Silindir etrafındaki ideal akışın stream fonksiyonları, eğri kenarlı elemanlar 

kullanılarak elde edilmiştir. Homojen olmayan Neumann sınır koşulları, eğri kenarlı 

eleman sertlik matrisine yerleştirilerek hız potansiyelleri çözülmüştür.  

 

Anahtar Sözcükler: Spektral eleman metodu, Matlab, Poisson ve Helmholtz 

denklemleri. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Spectral element methods that combine the geometric flexibility of the finite element 

method with the pth order accurate spectral methods are investigated and 

implemented for the solution of Poisson and Helmholtz Equations using MATLAB. 

 

The idea of the Spectral Element method (SEM) is first introduced as a global 

element method with Gauss Chebyshev trial functions which are not 0C  continuous 

at the element boundaries. As a result, a single global element is used for the solution 

of elliptic equations like Poisson and Helmholtz in the earliest applications of Delves 

et al. [21, 22]. SEM can be referred with various names like domain decomposition 

pseudospectral and Legendre-Galerkin methods in various references. Both of them 

are features of the method but it is generally called as Spectral h-p element method. 

 

Spectral methods involve the expansion of the solution of a differential equation in a 

high-order orthogonal expansion, the coefficients of which are determined by a 

weighted residual projection technique. The schemes are “infinite order accurate” if 

the expansion functions are properly selected. 

 

The finite element procedure is, in the most general sense, a weighted residual 

technique applied to a series of expansions, each with support over only a small 

region of space (an “element”). When the weighted-residual technique is directly 

derived from an associated variational principle, continuity of natural boundary 

conditions is implicitly satisfied at element boundaries as part of the convergence 

process.  

 

Although the finite element and spectral methods are in fact related, but the 

practitioners and performers of the two methods had not dealed with each other’s 

work until 1984. In 1984 A. Patera, in his paper [10], remembers the finite element 
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and spectral methods come from the same family of Galerkin methods which are the 

specific application of the weighted residual methods. For spectral methods the trial 

functions are infinitely differentiable global functions. In finite element methods, the 

domain Ω is divided into elements, and trial functions are specified in each element 

and are local in character. 

 

Patera[10] showed the advantage and the effectiveness of the spectral element by 

first solving elliptic equations. Its main advantage is Gauss Lobatto Chebyshev 

polynomials used as trial functions which are 0C  continuous compared to the trial 

functions of the global element method. Most of the problems have worked on 

clusters of computers because of its parallel work availability. 

 

Ronquist’s thesis [16] presents a new optimal-order Legendre spectral element 

discretization and solution procedures for elliptic and parabolic equations. He first 

used Gauss Lobatto Legendre polynomials to solve 1D Helmholtz equations. The 

two dimensional Poisson Equation on a rectilinear domain with homogeneous 

Dirichlet boundary conditions is solved with GLL quadrature. Quadrilateral elements 

are formulated and used to solve 2D Poisson equation. 

 

The mortar element method is first presented as a new nonconforming discretisation 

in Mavriplis’s PhD thesis [9] in 1989. It improves the flexibility of spectral element 

approach in regards to the automatic mesh generation and the non-propagating local 

mesh refinement. Single mesh posteriori error estimators are developed to estimate 

the actual error incurred by the discretisation on a local elemental basis and predict 

the convergence behavior for decision between h and p refinement.  

 

Fischer presented high-efficiency medium grained parallel spectral element method 

[20] for solution of the incompressible Navier-Stokes equations in two and three 

dimensional domains. It is based upon naturally concurrent Uzawa and Jacobi-

preconditioned conjugate gradient iterative methods [9, 11]; data-parallel geometry-

based distribution work between processors; neighbor sparsity and high-order 

substructuring for minimum communication; general heterogeneous locally 

structured (vector) and globally unstructured (parallel) constructs; and efficient 

embedding of vector reduction operates for inner product and norm calculations. 
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An important consideration for using unstructured expansion of time-dependent 

computations that typically arise in fluid dynamics is the numerical efficiency of the 

algorithm which is in the context of cost per time step. To be competitive, an 

unstructured expansion must be as numerically efficient as the structured expansion 

arising from the tensor product construction. It will be better to use a similar 

procedure to construct expansions within the unstructured domains. A suitable modal 

basis was proposed by Dubiner [17] in two dimensions and extended to three 

dimensions in Sherwin and Karniadakis [18, 19].  

 

Karniadakis and Sherwin [2] presented the spectral element formulations for 

unstructured elements and provide many large scale applications of the partial-

differential equations. They introduced a complete formulation using a modal basis 

which has been implemented in a new code NEKTAR. Their basis has the following 

properties: Jacobi polynomials of mixed weights; semi-orthogonality; hierarchical 

structure; generalized tensor (warped) product; variable order; and a new apex 

coordinate system allowing automated integration with Gaussian quadrature. They 

have discussed the formulation using a matrix notation which allows for an easy 

interpretation of the forward and backward transformations [19]. 

 

Pathria and Karniadakis [23] investigated the methods for overcoming the geometric 

singularities. The advantages of the method of auxiliary mapping compared to the 

other ways (supplementary basis functions, eigenfunctions and graded meshs) are 

investigated. They studied the method of auxiliary mapping with the use of 

supplementary basis functions. The error estimates of combined approach were 

confirmed through a number of numerical experiments for the Laplace, Poisson and 

Helmholtz equations. The method is more effective for achieving exponential 

convergence and analytical solution. 

 

Pasquetti and Rapetti [24] discussed a straight edged triangle based spectral element 

method (SEM) with the classical quadrangle based SEM and with a standard spectral 

method. They solved Helmhotz equation (4.9) with both quadrangle and triangle 

elements for two different force functions. Because of having no Gauss quadrature 

rule for triangle with fekete points, the element mass matrices are full and 
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computational work is heavier than rectangular elements. They also proved that the 

condition number grows significantly faster for triangles than for quadrilaterals. 

 

Three dimensional time dependent simulations of variable density and viscosity, 

miscible flows in a circular tube were done by Wilhelm and Meiburg [25]. They used 

an approach based on a mixed (hybrid) spectral element and Fourier spectral scheme 

for the spatial discretisation. The result of the temporal discretisation done with a 

semi-implicit method made up of 2
nd

 order backward differencing and extrapolation 

is a Helmholtz equation which was solved by a fast diagonalization method. 

 

Frutos and Novo [26] presented an approximate inertial manifold based on 

postprocessing Galerkin method to enhance the accuracy of the spectral element 

method for evolutionary equations of dissipative type. The postprocess consists of 

the resolution of a discrete elliptic problem only once when the time evolution has 

been completed. A better accuracy has achieved with little increase in solution time. 

 

A spectral element method is used in Mehdizadeh and Paraschivoiu [27] for solving 

the two-dimensional Helmholtz’s equation, which is the equation governing time-

harmonic acoustic wave. They compared SEM and FEM with Green’s function, 

closed wave-guide and semi-infinite wave guide problem. The concluded that the 

omputational cost for solving Helmholtz’s equation with the Galerkin finite element 

method increases as the wave number increases, due to the pollution effect. Spectral 

element method needs fewer grid points per wavelength and less computational time 

for the same accuracy. 

 

Spectral h-p element discretisation was applied to the incompressible Navier–Stokes 

equations in three dimensions using a splitting approach in Karniadakis et al. [28] by 

Sherwin and Casarin[29]. After the time discretization which decouples the viscous 

and inviscid parts of the operator, the most computationally intensive parts of the 

solver are a series of elliptic equation solutions, namely one Poisson equation 

solution and three Helmholtz equation solutions, which are performed at each time 

step. Each of these elliptic solutions is preconditioned with an iterative substructuring 

type domain decomposition method which takes advantage of the natural splitting of 

the basis into interior, face, edge, and vertex basis functions. Currently, once a 
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suitable computational mesh has been generated the limiting computational cost of 

the algorithm is the solution of the four elliptic problems. They have builded an 

efficient preconditioning strategy for substructured solvers based on a transformation 

expansion basis to a low energy basis on the work of Bica [30]. By applying an 

additive Schwarz block preconditioner to the low-energy basis combined with a 

coarse space linear vertex solver they have observed reductions in execution time of 

up to three times for tetrahedral elements and 10 times for prismatic elements when 

compared to a standard diagonal preconditioner. 

 

Guermond and Shen[31] introduced a new class of splitting schemes based on a weak 

form of the pressure Poisson equation and, at each time step, they only require to 

solve a set of Helmholtz-type equations for the velocity and a Poisson equation (in 

the weak form) for the pressure, just as pressure-correction and velocity-correction 

schemes for incompressible flows. However, unlike pressure-correction and velocity-

correction schemes, the new splitting schemes are free of splitting errors and deliver 

full accuracy on the vorticity and the pressure. 

 

Pavarino and Widlund [32] considered two types of iterative substructuring methods. 

First is designed for the Galerkin formulation of the problem. The second applies to 

linear systems for a discrete model derived by using Gauss-Lobatto-Legendre 

quadrature. For both methods, it is established that the condition number of the 

relevant operator grows only in proportion to ( )
2

1+log p . 

 

Hybrid discretisations of complex domains include triangle and quadrilateral 

elements. Unstructured meshes based on triangles and tetrahedral were defined in 

Sherwin and Karniadakis [19, 34, 35] and their parallel code Nektar. Such an 

approach combines the simplicity and convenience of structured domains with the 

geometric flexibility of an unstructured discretisation. To increase the computational 

efficiency of the hybrid discretisation, a new coordinate transformation from master 

rectangle element to master triangle element was defined by Evangelinos et al. [33]. 

In order to evaluate the performance of the solver they conducted tests on a scalar 

Helmholtz problem which forms the backbone of a splitting scheme [28] used to 

solve the Navier-Stokes equations. 
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In his PhD thesis, Warburton [36] develops a unified description of hybrid basis 

functions following earlier developments in [17, 19, 34, 35]. He also develops five 

types of basis functions which are either modal or nodal or mixed and which may or 

may not be hierarchical. He shows how polymorphic elements can be built and 

interfaced to enhance the efficiency of the unstructured spectral element method. A 

discontinuous Galerkin formulation is developed with a discontinuous trial basis. 

This basis is orthogonal, hierarchical and maintains a tensor product property (even 

for non-orthogonal elements), a key property for efficient implementation of high-

order methods.  

 

Sert and Beskok [38] presented spectral element formulations on polynomial (p-type) 

and geometric (h-type) non-conforming grids using both the pointwise matching 

(also known as the Constrained Approximation) and integral projection (also known 

as the Mortar Element) methods. These formulations were tested to solve Poisson 

Equation with four different types of meshes including such as p-type and h-type 

non-conforming elements. 

 

A spectral method using MATLAB for the solution of the most of the PDEs 

including the Poisson and Helmholtz equations are discussed and implemented in 

Trefethen [1]. 

 

1.1 Objectives of the thesis 

 

1. Implementing a spectral element method using MATLAB for the solution of 

some fundamental problems. 

 

2.  Comparing the results with the the exact results to observe and appreciate the 

accuracy of the approach. 

 

3.    Element stiffness matrices K and element mass matrices M are evaluated for 

both of the quadrilateral and rectangular elements to form steady diffusion and 

Helmholtz operators. 
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4. Steady Diffusion operator, which is equal to rectangular element stiffness 

matrix for a single element is used to solve the Poisson problems including both of 

the Dirichlet and Neumann boundary conditions which are homogeneous or 

nonhomogeneous.  

 

5. In order to solve Poisson Equation with multi-elements, element stiffness 

matrices are assembled to form the global stiffness matrix (steady diffusion operator 

of multi-element domain). 

 

6. The mesh of domain with an inner corner is drawn to investigate the 

geometric singularity. The capacity and accuracy of curvilinear quadrilateral 

elements with single or two curvy edges investigated on this domain. 

 

7. After testing isoparametric quadrilateral element matrix evaluator program, it 

is used to solve inviscid flow over a cylinder problem. 

 

8. Helmholtz equations are solved with the Helmholtz operator evaluated for a 

single and multi-element. The effect of the Gauss Lobatto Legendre quadrature on 

the accuracy of the Helmholtz operator is investigated.  

 

1.2 Thesis Organization 

 

In this chapter, the results of the literature survey is presented. The importance of 

Poisson and Helmholtz equations is discussed for the solution of other PDE’s (like 

Navier-Stokes). 

 

In Chapter 2, the fundamentals of the spectral element method is investigated and 

discussed for the solution of Poisson and Helmholtz Equations with rectangular and 

quadrilateral elements. The evaluation process of element stiffness and mass matrices 

is formulated for both of the rectangular and quadrilateral (isoparametric) elements. 

Load vector and Helmholtz operator evaluation is formulated by using mass matrix 

formulas for both of the elements. Differentiation and integration within a 

quadrilateral element discussed in Section 2.5.3 and 2.5.4 contains Jacobi matrix and 
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Jacobian evaluation. Jacobi mapping is also formulated for quadrilateral (curvilinear 

edged) elements. 

 

In chapter 3, the implementations of spectral element methods for the Poisson and 

Helmholtz equations using MATLAB on rectangular and deformed domains 

discretised with a single and multi-element are discussed including the element 

stiffness and mass matrices evaluation discussed in Section 3.1 and 3.2. How to 

impose the Dirichlet and Neumann boundary conditions are also included for both 

kinds of the elements. The global node numbering of the elements is discussed in 

Connectivity matrix generation. The assembly (Direct Stiffness Summation) of 

element stiffness matrices to form global element stiffness matrix is implemented in 

Section 3.3.2. The assembly of element load vectors to form global load vector is 

implemented in Section 3.3.3. The implementation procedure for the SEM with two 

quadrilateral elements to the solution of theinviscid flow around a cylinder is 

discussed for a velocity potential equation including nonhomogeneous Neumann 

boundary conditions. The Helmholtz operator of quadrilateral elements is 

implemented for the solution of Helmholtz Equations in Section 3.4. 

 

In Chapter 4, the results and discussions of the SEM solution for the Poisson 

equation with single element using MATLAB on rectangular domains with all type 

of boundary conditions (zero or nonzero Dirichlet and Neumann) are discussed in 

Section 4.1. The comparison between finite element and SEM is also discussed in 

Section 4.1.2. The results and discussions of the Poisson equation (4.4) using 

MATLAB on multi-element domains are in Section 4.2. These discussions include 

how the solution and error results are affected from the domain discretisation with 

three types of mesh containing both of the rectangular and quadrilateral elements. A 

domain containing an inner corner is selected to discuss the effects of the geometric 

singularity on the solution. The results and discussions of the solution of the inviscid 

flow around a cylinder with two quadrilateral elements are presented in Section 4.3. 

Velocity potential and stream function results are discussed in Section 4.3.1 and 

4.3.2. The results and discussions of the solution of the Helmholtz equations on 

single and multi element domains are given in Section 4.4. Helmholtz equations are 

solved with the Helmholtz operator evaluated for a single and multi elements in 
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Section 4.4.1 and 4.4.2. The effect of the Gauss Lobatto Legendre quadrature on the 

accuracy of the Helmholtz operator is investigated.  

 

In Chapter 5, thesis is concluded with some comments and discussions especially on 

the ease of implementation of the algorithms using MATLAB. 
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CHAPTER 2 

 

CONFORMING SPECTRAL ELEMENT DISCRETISATION 

 

 

The application of the Uzawa algorithm [16, 20] to the steady stokes or Navier-

Stokes equations form a linear algebraic system. This discrete system includes 

element stiffness matrix called as discrete Laplacian operator [16], element mass 

matrix and a 2D first order differentiation matrix that is called the gradient operator 

[16, 20].  

 

The splitting approach of Karniadakis et al. [28], which is an alternative method, 

decouples the Navier-Stokes equations into four elliptic equations. Three of them are 

Helmholtz equations and one of them is a Poisson equation. Therefore, the 

fundamentals of the spectral element method is investigated and discussed for the 

solution of Poisson and Helmholtz Equations with rectangular and quadrilateral 

elements [3]. The evaluation process of element stiffness and mass matrices is 

formulated for both of the rectangular and isoparametric quadrilateral elements [2, 3]. 

Load vector and Helmholtz operator evaluation is formulated by using mass matrix 

formulas for both of the elements [3]. Differentiation and integration within a 

quadrilateral element is discussed in Section 2.5.3 and 2.5.4 for 2D first order 

differentiation matrix evaluation which contains Jacobi matrix and Jacobian 

evaluation [2]. Jacobi mapping is also formulated for isoparametric quadrilateral 

(curvilinear edged) elements [2]. Spectral element method begins with the spatial 

discretisation of the domain. 

 

Section 2.1 includes general discussions which are adapted from the book by 

Karniadakis and Sherwin[2], and by Sert[5]. Section 2.2, 2.3 and 2.4 are adapted 

mostly from Deville, Fischer and Mund [3] with some modifications. Head of the 

section 2.5 and sections from 2.5.1 to 2.5.4 are again mostly from Karniadakis and 

Sherwin[2]. Section 2.5.5 and 2.5.6 are mostly adapted from [3] and Fischer [20] 

with some modifications. 



 11

2.1 Spatial Discretisation 

 

In order to introduce the fundamentals of spectral element formulation, strong 

formulation of the Poisson equation will be discussed at the beginning. 

 

2.1.1 Strong Formulation of the Poisson equation 

 

2
u f−∇ =  on Ω  (2.1a) 

 

u g=  on gΓ the Dirichlet (essential) boundary conditions (2.1b) 

 

n u h⋅∇ =  on hΓ  the Neumann (natural) boundary conditions (2.1c) 

 

2∇ , 2
nd

 degree differentiation operator for PDE, is called Laplacian or diffusion 

operator, where u is the scalar unknown. Ω  is the domain of the problem and 

g hΓ = Γ Γ∪  is the boundary of Ω .They are the Dirichlet (essential) and Neumann 

(natural) boundary conditions. The unit normal n points outward from boundary hΓ , 

and f, g and h are known functions. 

 

2.1.2 Residual form 

 

The Poisson equation is written in the residual form as Equation (2.2) by equating 

left-hand side to zero. 

 

2 0u fℜ = ∇ + =  (2.2) 

 

2.1.3 Weighted Residual Formulation 

 

Weighted residual assumes that the solution u can be accurately represented by the 

approximate solution of the form 
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0

1

dofN

N i i

i

u u u
=

= + Φ∑  (2.3) 

 

where iΦ  are analytic functions called the trial (or expansion) functions, and iu  are 

the dofN  unknown coefficients. By definition iΦ  is equal to zero on Dirichlet 

boundaries to satisfy the homogeneous boundary conditions and 0u  is selected to 

satisfy the initial and non-zero Dirichlet boundary conditions [2]. 

 

To construct the weighted residual form the residual is multiplied with a weight (test) 

function w. The approximate solution is forced to satisfy the residual equation in a 

weighted integral sense [1, 2]. The below formulation is equivalent to forcing the 

residual to vanish when projected onto the test space [8]. 

 

2( ) 0u f vd
Ω

∇ + Ω =∫  (2.4) 

 

The approximate solution u and the weight function v belong to the following Hilbert 

spaces. The trial space is the Hilbert space where the approximate (trial) solutions 

are lied in and is denoted by χ .  

 

1{ : ( )u u Hχ = ∈ Ω , u =g on gΓ } (2.5) 

      

V
1{ : ( )= ∈ Ωw w H , v = 0 on gΓ } (2.6) 

     

The trial and test spaces χ  and V contain infinite number of functions, as a result it is 

an infinite dimensional problem. The trial and test subspaces, Nχ  and V N , are 

selected to contain finite number of functions and are considered as two finite 

dimensional approximation spaces that belong to the Nχ χ⊂ and V N ⊂V .  The test 

space V N,0  belongs to the V N ⊂V N,0  where the subscript 0 refers to the fact that it 
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satisfies the boundary conditions on gΓ . This means weight (test) function v (or w in 

[4]) is zero on all Dirichlet boundaries. 

 

The approximate solution N Nu χ⊂  is then rewritten as 

 

0

N

N i i

i

u u φ
=

=∑  (2.7) 

 

The trial functions iφ  are used as basis functions for a truncated series expansion of 

the solution. 

 

2.1.4 Weak formulation 

 

To construct the weak form, integration by parts is applied to the first term of 

Equation (2.4). 

 

h

u vd f vd hvds
Ω Ω Γ

∇ ⋅∇ Ω = ⋅ Ω +∫ ∫ ∫�  
(2.8) 

      

To impose the Neumann (natural) BC naturally and lower the order of the first term, 

integration by parts is applied; as a result linear order polynomials can be used for 

preconditioning the mesh. 

 

2.1.5 Domain Discretization 

 

It is an application of the weak formulation to each element individually.  

 

e
h

e e e e e e e e
u v d f v d h v ds

Ω Ω Γ

∇ ⋅∇ Ω = ⋅ Ω +∫ ∫ ∫�  
(2.9) 

 

2.1.5.1 Weak formulation for a single element 

 

The Equation (2.9) becomes  
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( , ) ( , )
e
h

e ev u v u
dxdy dxdy f x y v x y dxdy h v ds

x x y y
Ω Ω Ω Γ

∂ ∂ ∂ ∂
+ = ⋅ +

∂ ∂ ∂ ∂∫ ∫ ∫ ∫�  (2.10) 

 

If the whole solution domain is treated as a single element, then the p-type method 

becomes a spectral method [8, 16].  A lot of methods are produced by the choice of 

the expansion (trial) function 
iφ  and the test function v, for example least squares and 

collocation. Our main concern is the Galerkin method also known as Bubnov-

Galerkin. 

 

2.1.5.2 Weak Formulation for Homogeneous Neumann BC  

 

The last term of Equation (2.10) is the boundary term which is zero for homogeneous 

Neumann boundary conditions 0⋅∇ = =n u h  on hΓ .Thus, Equation (2.10) becomes 

 

( , ) ( , )
Ω Ω Ω

∂ ∂ ∂ ∂
+ = ⋅

∂ ∂ ∂ ∂∫ ∫ ∫
v u v u

dxdy dxdy f x y v x y dxdy
x x y y

 (2.11) 

 

As it is seen, natural boundary conditions are included in the solution naturally. 

 

2.2 Element Discretisation for 2D Problems 

 

Tensor product forms are used to develop steady diffusion operator and other spectral 

element operators for elliptic problems like Poisson equation in a rectangular 

domain. u is approximated in the element eΩ  by mapping each element in physical 

coordinate (x, y) to a master element in (
1 2,ξ ξ ) 2[ 1,1]∈ −  reference coordinate system 

(computational domain). Typical function u(x,y)∈  V N  has the representation 

 

u ( 1 2,ξ ξ ) = 1 2

0 0

( ) ( )
N N

ij i j

i j

u ψ ξ ψ ξ
= =

∑∑  (2.12) 
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2.2.1 Two dimensional differentiations in the computational domains 

 

The differentiations with respect to 1ξ  and 2ξ  are expressed in the reference 

coordinates as 

 

1
2

0 01 1

( )
( )

N N
i

ij j

i j

u
u

ψ ξ
ψ ξ

ξ ξ= =

∂∂
=

∂ ∂
∑∑  (2.13) 

 

2

1

0 02 2

( )
( )

N N
j

ij i

i j

u
u

ψ ξ
ψ ξ

ξ ξ= =

∂∂
=

∂ ∂
∑∑  (2.14) 

      

Here, it is needed to select expansion bases for trial and weight functions. Various 

expansion bases are discussed and compared with each other in Appendix B. 

 

2.3 Galerkin methods 

 

The test functions are chosen to be same as the trial (or expansion) functions. As a 

result the spaces χ  and V are chosen to be the same, and the weak formulation 

Equation (2.9) is used as a starting point of the method which is called a Galerkin 

weighted-residual method so the weight (test) function v is written as 

 

v= 1 2 1 2

0 0

( , ) ( ) ( )
N N

pq p q

p q

φ ξ ξ ψ ξ ψ ξ
= =

=∑∑  (2.15) 

    

2.4 Rectangular geometries 

 

In this section, 2D rectangular stiffness matrix and mass matrix evaluation are 

formulated. Helmholtz operator and variable-coefficient case is also formulated. 

 

2.4.1 2D Mass matrix Evaluation 

 

The 2D mass matrix is derived by simply evaluating (u, v) as seen in Equation (2.16) 

for all u, v∈  V N  for rectangular domains. Mass matrix is used for evaluating load 
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vector with force function and some operators like Helmholtz in some problems like 

Poisson, wave and advection-diffusion (Burgers) etc. 

 

1 2 1 2 1 2( ) ( ) ( ) ( )( , ) ( )p q i jpq q ij
pj iq

dxu v vudV v dx uψ ξ ψ ξ ψ ξ ψ ξ
ΩΩ

= = ∫∑∑∫  (2.16) 

 

For a rectangular domain [x,y]∈[ 0, 1 2] [0, ]×L L  

 

1 1

1 2
1 1 2 2 1 2ˆ

1 1

( ) ( ) ( ) ( )
2 2

ψ ξ ψ ξ ψ ξ ψ ξ ξξ
− −

= ∫ ∫ p i j qkk

L L
M dd  (2.17) 

 

1 2 ˆ ˆ
4

L L
M M M= ⊗  (2.18) 

    

1L  and 
2L  are the lengths of the edges of the rectangular element or domain. 

 

The availability of a diagonal mass matrix is a particularly useful feature in unsteady 

or temporal discretization problems that require frequent application of 1−M  because 

computational cost of inverting the mass matrix is an important issue. However, the 

most important cost is the computational cost of constructing the matrix system 

which involves numerical integration including the mass matrix.  

 

M̂  will be diagonal if the basis functions are orthogonal with respect to the inner 

product. One possibility is to choose { }
0

N

p i
ψ

=
 to be a set of orthogonal functions such 

as Legendre polynomials, which will be discussed as Modal Legendre expansion 

( )C

p xΦ  in Appendix B.1.2.2; however, this expansion will not automatically satisfy 

the essential boundary conditions. The difficulty arises when it is tried to ensure a 

degree of continuity in the global expansion at elemental boundaries.  For a domain 

with a single element, element and domain boundaries are the same. For accurate 

results, it is sufficient to guarantee Nu . Typically, in the finite element methods this 

is satisfied by imposing a 0C  continuity between elemental regions; that is, the global 
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expansion modes are continuous everywhere in the solution domain although the 

derivatives may not be. 

 

As an alternative to fully orthogonal basis, one can use localized Lagrangian 

interpolants coupled with mass lumping as FEM, in which the mass matrix is 

replaced by a diagonal matrix with an identical row sum. This is achieved by the 

SEM, which is discussed in Appendix B.2.2 in a more formal setting. 

The SEM is defined not only by its choice of Lagrangian basis functions,
i iLψ = , but 

also by the associated quadrature rule or inner product (.,.) of Equation (2.16) which 

is approximated by the discrete inner product (.,.)N  given by Gauss Lobatto 

quadrature in each spatial direction. For a single coordinate direction and with 

{ }0 1, ,..., Nξ ξ ξ  and { }0 1, ,..., Nw w w  denoting the quadrature nodes and weights 

respectively, the integral of g(ξ ) function can be defined as 

 

1

01

( ) ( )
N

k k

k

g d w gξ ξ ξ
=−

≈∑∫  (2.19) 

 

Each inner product in the SEM is computed by first evaluating the integrand, then 

substituting the quadrature (2.19) for integration. Thus, entries in M̂  become 

 

0

ˆ ( ) ( )
N

ij k i k j k

k

M w L Lξ ξ
=

=∑  (2.20) 

 

However, because the basis is Lagrangian [i.e., ( )i j ijL ξ δ= , where ijδ  is the 

Kronecker Delta], it is clear that due to the cardinality property of the Lagrangian 

basis on the GLL grid, for spectral elements, M̂  is diagonal 

 

ˆ ( )iM diag w=   (2.20a) 

 

The stiffness matrix K is derived in a similar manner. At first, p(x) and q(x) are 

defined as constant, leading to a particularly simple form that is amenable to both fast 

evaluation and fast inversion.  
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2.4.2 Rectangular Element Stiffness Matrix Evaluation 

 

In 2� , the energy inner product is 

A(u,v)=
v u v u

p p qvu dx
x x y y

Ω

 ∂ ∂ ∂ ∂
+ + 

∂ ∂ ∂ ∂ 
∫  (2.21) 

For Helmholtz problem, q has got a value. For Poisson problems p=1 and q=0, as a 

result last term of Equation (2.21) is zero for Poisson problems. 

 

Using the expansions Equations (2.12), (2.13), (2.14) and (2.15) for u and v, the first 

term on the RHS of Equation (2.21)  

 

1 1

2
2 1

1 1 11 1

p i
pq q j ij

pq ij

Lv u
p dx v p d d u

x x L

ψ ψ
ψ ψ ξ ξ

ξ ξ
Ω − −

∂  ∂∂ ∂
=   

∂ ∂ ∂ ∂  
∑∑∫ ∫ ∫   

Ω

∂ ∂
=

∂ ∂∫
v u

p dx
x x

2

1

ˆ ˆ
pq qj pi ij

pq ij

L
v p M K u

L
∑∑  (2.22) 

 

where K̂  is the one-dimensional stiffness matrix on [-1,1]. Using tensor notation as it 

is in Equation (2.18) gives 

 

( )2

1

ˆ ˆTLv u
p dx p v M K u

x x L
Ω

∂ ∂
= ⊗

∂ ∂∫  (2.22a) 

 

Using the expansions Equations (2.12), (2.13), (2.14) and (2.15) for u and v, the 

second term on the RHS of Equation (2.21) is 

1 1

1
2 1

2 2 21 1

q j

pq p i ij

pq ij

Lv u
p dx v p d d u

y y L

ψ ψ
ξ ψ ψ ξ

ξ ξ
Ω − −

∂ ∂  ∂ ∂
=   

∂ ∂ ∂ ∂  
∑∑∫ ∫ ∫   

                                = 1

2

ˆ ˆ
pq qj pi ij

pq ij

L
v p K M u

L
∑∑  (2.23) 

 

where K̂  is the one-dimensional stiffness matrix on [-1,1]. Using tensor notation as it 

is in equation (2.18) gives 
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( )1

2

ˆ ˆTLv u
p dx p v K M u

y y L
Ω

∂ ∂
= ⊗

∂ ∂∫  (2.23a) 

 

Numerical quadrature can be applied also for evaluation of K̂  

 

1' ' 1
1 1

0 0 1 1

( )( )ˆ ( ) ( )
N N

j ki k
ij k i k j k k

k k

K w w
ψ ξψ ξ

ψ ξ ψ ξ
ξ ξ= =

∂∂
= =

∂ ∂
∑ ∑   

 

11

0 1 1

( )( )ˆ
N

j ki k
ij k

k

LL
K w

ξξ

ξ ξ=

∂∂
=

∂ ∂
∑  (2.24) 

 

1kξ  is the tensor product matrix of the 1ξ  (local) coordinates of the element. Since the 

number of nodes in x and y direction is equal to each other, ˆ
pi

K  is equal to ˆ
qj

K . This 

equation is remembered as 1D stiffness matrix and its implementation is also similar. 

 

Exact evaluation of mass matrix means accurate evaluation of 1D stiffness matrix 

( ' '

i jψ ψ  has got a degree of 2N-2). Because the N+1 point Gauss-Lobatto Legendre 

quadrature rule is exact for all polynomials of degree 2N-1 or less. 

 

1

1

( )i kL ξ

ξ

∂

∂
 is the derivative of the Lagrangian polynomials. It will be the 

differentiation matrix (1)

,N ijD  and can be written from [3] as 

 

(1)

,

( ) 1
,

( )

( 1)
, 0

: 4

( 1)
,

4

0, 1,..., 1

i

N i

N j i j

j

N ij

L
i j

L

N NdL i j
D

d
N N

i j N

i j N

ξ ξ

ξ

ξ ξ ξ

ξ
=

 
→ ≠ −

 
 +
 − → = =

= =  
 +
 → = =
 
 → = = − 

 (2.24a) 

 

The matrix elements are the nodal values of the first derivative of the GLL 

Lagrangian polynomials. 



 20

 

Combining Equations (2.22a) and (2.23a) with a similar expression for the y-

derivatives and with the mass matrix derived in Equation (2.18) yields 

 

A ( ) ( ) ( )2 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ( , )
4

T L L L L
u v v p M K p K M q M M u

L L

 
= ⊗ + ⊗ + ⊗ 

 
 (2.25) 

 

At the RHS of Equation (2.11), Calculation of the force (load) matrix is needed for 

all of the PDE’s if there is a force function 

 

F(v)= ( )1 2 ˆ ˆ( , ) ( , )
4

TL L
f x y v x y dxdy v M M f

Ω

⋅ = ⊗∫   (2.26) 

 

The second expression results from the insertion of the interpolant of f(x) into the 

RHS of Equation (2.11). 

 

2.4.3 Helmholtz operator for a single element 

 

Equations from (2.18) to (2.26) describe the essential mechanics for evaluating the 

bilinear form (u,v), A(u,v) and F(v) for any element pair, where u,v NV∈ . The 

discrete Helmholtz operator 

( ) ( ) ( )2 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ:
4

L L L L
H p M K p K M q M M

L L

 
= ⊗ + ⊗ + ⊗ 

 
 (2.27) 

 

is sometimes referred as the Neumann operator, because it is the system governing 

the homogeneous Neumann problem. It is symmetric, positive and definite unless 

q=0, in which case it has 1D nullspace corresponding to the constant mode. 

 

2.4.4 Laplacian operator for a single element 

 

For q=0, the Laplacian operator, also called as Steady diffusion operator, will be 
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L ( ) ( )2 1

1 2

ˆ ˆ ˆ ˆ:
L L

p M K p K M
L L

 
= ⊗ + ⊗ 

 
 (2.28) 

      

For Laplacian problem, where L is Laplacian operator 

 

Lu=F(v) (2.29) 

 

Here, the local stiffness (element) matrix of rectangular element on the reference 

coordinates is calculated for steady diffusion (Laplacian) operator. Sometimes K is 

used as its symbol, because its name is stiffness matrix.  

 

All of the stiffness matrices of the square element with the same degree, which are on 

different physical coordinates, are the same. F(v) will be different, whether force 

function is dependent on x,y coordinates or not. These issues will be handled in the 

implementation Chapter 3.  

 

Dirichlet and Neumann boundaries are considered and discussed in Chapter 3 

implementation process.  

 

For nonzero Neumann if the domain is square, poldif.m can be used to find the 

differentiation matrix with respect to x or y of the element [7, 8 and 12]. 

 

2.4.5 The Variable-Coefficient Case 

 

To develop the system matrices for the case of variable p(x,y), evaluation of the 

integrals in the first term at the RHS of Equation (2.21) requires an evaluation once 

again. The reference and physical coordinates are the same. For two-dimensional 

domains, the first term of Equation (2.21) is written as 

 

A

1 1

1 2 1 2

1 11 1

( , ) : ( , )x

v u
u v p d dξ ξ ξ ξ

ξ ξ
− −

∂ ∂
=

∂ ∂∫ ∫  (2.30a) 

 



 22

which constitutes a single term in the energy inner product A(u,v). To generate the 

discrete operators, the equations of expansions (2.12), (2.13), (2.14) and (2.15) for u, 

v, and p are inserted into Equation (2.30a):  

 

A 

1 1

2 1

1 11 1

( , )
p i

x pq mn q j n m ij

pq ij mn

u v v p d d u
ψ ψ

ψ ψ ψ ξ ψ ξ
ξ ξ

− −

∂  ∂
=   

∂ ∂  
∑∑ ∑ ∫ ∫  (2.30b) 

 

If left in this form, the cross term mnp destroys the tensor-product form and leads to 

an unacceptable fill in the stiffness matrix  

 

A 

1 1

2 1

2 21 1

( , )
ψ ψ

ψ ξ ψ ψ ψ ξ
ξ ξ

− −

∂ ∂  
=   

∂ ∂  
∑∑ ∑ ∫ ∫

q j

pq mn n p i m ij

pq ij mn

y u v v p d d u  (2.30c) 

 

The SEM avoids this difficulty through the use of a high-order quadrature rule 

coupled with Lagrangian basis functions based on the Gauss Lobatto Legendre points 

iξ  by employing the basis functions 1( )i iLψ ξ=  described before. The first integral 

on the right in Equation (2.30c) is approximated as 

 

1 11 1
1

0 1 1 1 1

( ) ( )( ) ( ) ˆ ˆ( )
N

p k p mi k i m
m k k m mp mi m

k

dL dLdL dL
L w w D D w

d d d d

ξ ξξ ξ
ξ

ξ ξ ξ ξ=

= =∑  (2.31) 

 

where 
1

1

( )
ˆ :

p m

mp

dL
D

d

ξ

ξ
= . The second integral in Equation (2.30c) is approximated by 

 

1 1 1 1

0

( ) ( ) ( )
N

q k j k n k k qn jn n

k

L L L w wξ ξ ξ δ δ
=

=∑  (2.32) 

 

Let P:=diag( m̂p ) and W:=diag( m̂w ) be the diagonal matrices having entries 

m̂ mnp p=  and ˆ :m mn m nw p w w=  respectively, where m̂ =1+m+(N+1)n corresponds to 

the natural ordering of the nodes. W can be expressed in terms of tensor-product 

forms where ˆ ( )iM diag w=  
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ˆ ˆ( )W P M M= ⊗  (2.33) 

 

and the integral expression eqn. (2.30) recast in terms of W, 

A ( ) ( )ˆ ˆ( , )
T T

x u v v I D W I D u= ⊗ ⊗   (2.34) 

 

From this, the spectral–element stiffness matrix can be concluded for Equation (2.21) 

for q=0 with variable p(x,y) is of the form 

 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆT T
K I D W I D D I W D I= ⊗ ⊗ + ⊗ ⊗  (2.35) 

 

Dirichlet and Neumann boundary conditions are also an implementation issue. 

 

The presence of matrix P in Equation (2.33) is generally not in tensor form, and 

therefore the fast diagonalization method cannot be used to invert K . However, 

because the cost of applying the diagonal matrix W to a vector is only ( )dO N , the 

leading order of complexity of forward application of K  is governed by the 

differentiation associated with the matrices D̂  and ˆ T
D  and is only 1( )dO N + . Note 

that if W were full rather than diagonal, the cost of applying K  would be 2( )dO N . It 

is precisely the use of the diagonal mass matrix M̂  [the approximation equations 

(2.31) and (2.32)] that lead to a favorable complexity estimate in the variable –

coefficient case and that is central to the utility of the high-order methods in complex 

geometries. 

 

2.5 Local elemental operations for quadrilateral elements 

 

It is recalled that to solve the Galerkin formulation of the Laplace equation in 

deformed geometries, the inner products of the form within every elemental region is 

needed to evaluate. The equation (2.21) for q=0 can be written again like 

 

A ( , ) ( ) ( ) ( )
e

st

u v p v ud p v u J dξ ξ
ΩΩ

= ∇ ⋅∇ = ∇ ⋅∇∫ ∫x x x  
(2.36) 
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where eΩ  denotes the element region, stΩ  denotes the standard elemental region 

(computational domain),x denotes the Cartesian coordinates and J is the Jacobian of 

the mapping between these two regions. From the structure of the inner product, 

there are three important concepts First, integration within stΩ , second; 

differentiation in the standard region
stΩ  and, last, differentiation in the elemental 

region eΩ . To perform the differentiation and integration within the elemental region, 

a mapping between these regions is defined. It is called elemental mapping. 

 

Operations within general-shaped elements 

 

To consider these cases a one-to-one mapping between the Cartesian coordinates 

( 1 2,x x ), and the Local Cartesian coordinates ( 1 2,ξ ξ ) which are denoted by 

1 1 2( , )e
x x ξ ξ= ,  2 1 2( , )e

y x ξ ξ=  (2.5.1) 

 

are defined in two dimensions, and similarly 

 

1 1 2 3( , , )e
x x ξ ξ ξ= ,  2 1 2 3( , , )e

y x ξ ξ ξ= , 3 1 2 3( , , )e
z x ξ ξ ξ=  (2.5.2) 

 

are defined in three dimensions. They have been called physical coordinates(x,y) and 

reference coordinates ( 1 2,ξ ξ ) as mentioned in Section 2.2. 

 

A mapping  e

ix  is defined from the elemental region to the standard region for 

straight–sided elements  

 

2.5.1 Elemental mappings for general straight-sided elements 

 

For elemental shapes with straight sides a simple mapping may be constructed using 

the linear vertex modes of a modified hierarchical modal expansion.  

 

Because of linear order elements, it is called bilinear mapping for an arbitrary-shaped 

straight-sided quadrilateral where only the Cartesian coordinates of the vertices need 
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to be prescribed. For the straight-sided quadrilateral with vertices labeled with letters 

have counter-clockwise order 

 

1 2 1 2
(1 ) (1 ) (1 ) (1 )

2 2 2 2

A B

i i ix x x
ξ ξ ξ ξ− − + −

= +  

1 2 1 2
(1 ) (1 ) (1 ) (1 )

2 2 2 2

D C

i ix x
ξ ξ ξ ξ− + + +

+ + , i=1, 2  

(2.37) 

 

For high-order element matrices, Equation (2.37) will be subparametric. When 

developing a mapping, it is important to ensure that the Jacobian (determinant of the 

Jacobi matrix) of the mapping to the standard region is nonzero and of the same sign. 

To ensure this condition that is satisfied when using the mappings given above, all 

elemental regions are required to have internal corners with angles that are less 

than180� . Accordingly, quadrilaterals must be convex. It is impossible to generate 

local stiffness (element) matrix for quadrilaterals with an interior angle greater than 

180�  (Concave quadrilateral elements). 

 

2.5.2 Elemental mappings for general curvilinear elements 

 

From Equation (2.37), it is seen that this simply involves the vertex modes of the 

modified hierarchical expansion basis within a quadrilateral domain. The mapping 

can be written as 

 

( )
1 2

1 1 1 2 1 1 2

0 0

( , ) ( , )
N N

e

pqpq
p q

x x xξ ξ φ ξ ξ
= =

= =∑∑  (2.38a) 

 

( )
1 2

2 2 1 2 2 1 2

0 0

( , ) ( , )
N N

e

pqpq
p q

x x xξ ξ φ ξ ξ
= =

= =∑∑  (2.38b) 

       

where 1 1( ) ( )a a

pq p qφ ψ ξ ψ ξ=  and i

pqx =0, except for the vertex modes which have a 

value of 

( )1 10,0

A
x x=   ( )

1
1 1,0

B

N
x x=  (2.38c) 
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( )
1 2

1 1,
= C

N N
x x   ( )

1
1 10,

D

N
x x=  

 

The construction of a mapping based upon the expansion modes in this form can be 

extended to include curved-sided regions using an isoparametric representation. In 

this technique this geometry is represented with an expansion of the same form and 

polynomial order as the unknown variables. 

 

To describe a curved region as seen in Fig. 2.1 requires more information than the 

values of the vertex locations as a straight-sided region. A definition of a mapping of 

the shape of each edge in terms of the local Cartesian coordinates is denoted by 

1 1 2( ), ( ), ( ),A B C

i i if f fξ ξ ξ  and 2( )D

if ξ . The process of defining the mapping functions 

is considered as part of mesh generation process of the isoparametric quadrilateral. 

 

Knowing the definition of the edges (or faces in three dimensions), a mapping for a 

curvilinear domains can be determined using the iso-parametric form of equation to 

include more nonzero expansion coefficients than simply the vertex contributions. If 

it isn’t represented by a polynomial of appropriate order, it is needed to approximate 

the shape mapping ( )if ξ . 

 

This can be done by approximating the edge function in terms of the Lagrange 

polynomial. The following approximations for 1( )A

if ξ  is 

 

1 1

0

( ) ( , ) ( )A A

i p

p

f f i hξ ξ ξ
=

∑�  (2.39a) 

 

 0 1

0

ˆ ( )i

p p

p

x ψ ξ
=

∑�  
(2.39b) 

       

One important feature of the approximation, and, consequently, the mapping ix  is 

that the vertices of each element coincide so that elements remain continuous. One 

way to ensure this is to use a collocation projection where the collocation points 

include the endpoints 1ξ ± 1. The Lagrange representation of Equation (2.39a) is, 



 27

therefore, a consistent way of approximating ( )A

if ξ . Using the Gauss-Lobatto 

Legendre quadrature points for the collocation projection is beneficial. By making 

collocation projections at a series of nodal points, the function Af  as a polynomial 

can be equivalently expressed in terms of a hierarchical expansion, ( )pψ ξ , to obtain 

the coefficients 0
ˆ i

px  in Equation (2.39b). This final transformation can be performed 

either by a collocation or Galerkin projection if the polynomials span the same space. 

If more collocation points are used, then a modified Galerkin projection can be 

applied. Having determined the coordinate expansion coefficients, 0
ˆ i

px , Equation 

(2.38) can be evaluated to determine the iso-parametric mapping from the standard 

region to the curvilinear region. 

 

 

 

 

Figure 2.1 A general curved quadrilateral element can be described in terms of a 

series of parametric functions 1 1 2( ), ( ), ( ),A B Cf f fξ ξ ξ  and 2( )Df ξ  [2]. 

Representing these functions as a discrete expansion, An isoparametric 

mapping 1 2( , )ξ ξe

ix relating the standard region 1 2( , )ξ ξ to the deformed 

region 1 2( , )x x can be constructed [2]. (Adopted from [8]) 

 

 

The form of the boundary-interior decomposition of the modal quadrilateral and 

hexahedral expansion is discretely equivalent to using a linear blending function, as 
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originally proposed by Gordon and Hall [13]. For the quadrilateral region shown in 

Figure 2.1 the linear blending function is written as  

 

2 2 1 1
1 1 2 2

(1 ) (1 ) (1 ) (1 )
( ) ( ) ( ) ( ) ( )

2 2 2 2

A C D B

i f f f f
ξ ξ ξ ξ

χ ξ ξ ξ ξ ξ
− + − +

= + + +   

   1 2 1 2(1 ) (1 ) (1 ) (1 )
( 1) (1)

2 2 2 2

ξ ξ ξ ξ− − + −
− − −A A

f f  

1 2 1
(1 ) (1 ) (1 )

( 1) (1)
2 2 2

ξ ξ ξ− + +
− − +C Cf f  

(2.40) 

 

where the vertex points are continuous (for example, ( 1)Af − , ( 1)Df − ). If the 

analytic curves 1 1 2( ), ( ), ( ),A B C
f f fξ ξ ξ  and 2( )D

f ξ  replaced in Equation (2.39a) and 

rearranged, the expansion of the form given by Eqn. (2.38a, b) can be obtained. The 

blending function Eqn. (2.40) with approximations of the form Eqn. (2.39a) to the 

mapped edges has been applied in spectral element methods. For curved triangular, 

tetrahedral or unstructured elements, the linear blending function expressed in terms 

of the local collapsed coordinates should not be used as this can generate a non-

smooth Jacobian at the singular vertices. 0
C  continuity can be lost. 

 

2.5.3 Integration within an elemental region 

 

After the coordinates of the element’s inner and surface (face) nodes, all the partial 

derivatives required to determine the Jacobian can be evaluated. 1

1x

ξ∂

∂
, 2

1x

ξ∂

∂
, 1

2x

ξ∂

∂
 and 

2

2x

ξ∂

∂
 must be calculated to find the Laplacian operator . 

 

1 1

1 2 1 2 1 2
2

2 2 1 2 2 1

1 2

ξ ξ

ξ ξ ξ ξ

ξ ξ

∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂

D

x x

x x x x
J

x x
 (2.41) 
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2.5.4 Differentiation within an elemental region 

 

To differentiate a function within the arbitrary elemental region eΩ , the chain rule is 

applied for the two-dimensional case, gives 

 

1 2

1 1 1 1 2

1 2

2 2 1 2 2

x x x

x x x

ξ ξ

ξ ξ

ξ ξ

ξ ξ

∂ ∂∂ ∂ ∂  
+  ∂ ∂ ∂ ∂ ∂

  ∇ = =
∂ ∂ ∂∂ ∂  

+  ∂ ∂ ∂ ∂ ∂   

 (2.42) 

 

In order to evaluate partial derivatives of the form 1

1x

ξ∂

∂
, they are expressed in terms 

of 
1ξ ,

2ξ  which is the terms of Jacobian. 

 

The total change 1 1 1 2( , )e
x x ξ ξ=  and 2 2 1 2( , )e

x x ξ ξ=  is 

 

1 1

1 21 1

2 22 2

1 2

x x

dx d

dx dx x

ξ ξ ξ

ξ

ξ ξ

∂ ∂ 
 ∂ ∂    =   ∂ ∂    
 ∂ ∂ 

 (2.42a) 

 

which can be inverted to obtain  

 

2 1

2 21 1

2 22 12

1 1

1

1

D

J

x x

d dx

d dxx xJ

ξ ξξ

ξ

ξ ξ

−

∂ ∂ 
− ∂ ∂    =   ∂ ∂    − ∂ ∂ ��������	

 
(2.43) 

 

However, as the mapping is assumed to be one to one and have an inverse 

 

( )
1

1 1 1 2
( , )ex x xξ

−

= , ( )
1

2 2 1 2
( , )ex x xξ

−

=  (2.5.4.1) 
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 and, as a result, it is obtained that 

 

1 1

1 21 1

2 22 2

1 2

x xd dx

d dx

x x

ξ ξ

ξ

ξ ξ ξ

∂ ∂ 
 ∂ ∂    =   ∂ ∂    
 ∂ ∂ 

 (2.44) 

 

which by comparison, finally gives 

1

1x

ξ∂

∂
= 2

2 2

1

D

x

J ξ

∂

∂
 1

2x

ξ∂

∂
= 1

2 2

1

D

x

J ξ

∂
−

∂
 

2

1x

ξ∂

∂
= 2

2 1

1

D

x

J ξ

∂
−

∂
 2

2x

ξ∂

∂
= 1

2 1

1

D

x

J ξ

∂

∂
 

(2.44b) 

 

The two-dimensional gradient operator can be evaluated as all the partial derivatives 

are expressed in terms of differentials with respect to 
1ξ , 

2ξ . 

 

2.5.5 Quadrilateral (Curvilinear Edged) Element Stiffness Matrix Evaluation 

for the Discretization of Deformed Geometries 

 

The case where Ω  may be deformed will be considered. After suitable 

transformations called mapping to the computational domain Ω̂ , the preceding 

methodology developed for the variable-coefficient case can be readily extended to 

develop a compact formulation of the stiffness matrix in the case of deformed 

geometries. To highlight the many symmetries in the problem, the results are derived 

for two dimensional domain (d=2).  

 

There exists an invertible map ( )ix ξ  from the physical deformed domain eΩ  to the 

reference domain stΩ  (standard elemental region) for which the Jacobian is 

nonvanishing and, therefore, of the same sign everywhere on stΩ . (Specifically all 

vertex angles should be bounded away 0 and 180� ). Without loss of generality, it is 

also assumed that the Jacobian (determinant of the Jacobi matrix) is positive, 

implying that an element volume in the transformed (mapped) coordinates is 

positive. 
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1 1

1

1

( ) det

d

d d

d

x x

J

x x

ξ ξ

ξ

ξ ξ

∂ ∂ 
 ∂ ∂
 
 =
 

∂ ∂ 
 ∂ ∂ 




� �




 (2.5.5.1) 

 

For 2D problems 

 

1 1

1 2

2 1 2

2 2

1 2

( , )D

x x

J
x x

ξ ξ
ξ ξ

ξ ξ

∂ ∂ 
 ∂ ∂
 =
 ∂ ∂
 ∂ ∂ 

 (2.5.5.2) 

 

Equation (2.21) for q=0 is remembered again like  

 

A
1

( , ) ( )
e e

d

k k k

u v
u v p v ud p d

ξ ξ=Ω Ω

∂ ∂
= ∇ ⋅∇ =

∂ ∂
∑∫ ∫x x x  (2.45) 

 

For d=2, 1 2d dx dxx = . Going from eΩ  to stΩ , partial derivatives of u are evaluated 

according to the chain rule 

 

1

d
i

ik i k

u u

x x

ξ

ξ=

∂∂ ∂

∂ ∂ ∂
∑=  k=1,…,d (2.5.5.3) 

 

Combining with a similar expression for v leads to 

 

A
1 1 1

( , ) ( )

st

d d d
ji

k i ii jk k

v u
u v p J d

x x

ξξ
ξ ξ

ξ ξ= = =Ω

  
    

  

∂∂∂ ∂
=

∂ ∂ ∂ ∂∑ ∑ ∑∫   

A
1 1 1

( , ) ( )

st

d d d
ji

i j ki k k j

v u
u v p J d

x x

ξξ
ξ

ξ ξ= = =Ω

∂ ∂∂ ∂
=  

∂ ∂ ∂ ∂ 
∑∑ ∑∫ ξξξξ   (2.46) 
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where in the last equation , 1 2d d dξ ξ=ξξξξ  and the geometric factors associated with 

the matrics i

kx

ξ∂

∂
, and the jacobian have been assembled within a set of functions 

 

G
1

( ) ( )
d

ji
ij

k k k

J
x x

ξξ
ξ ξ

=

∂∂
=

∂ ∂
∑ , 1 ,i j≤ ≤ d (2.47) 

 

It is seen that Equation (2.46) has a form similar to Equation (2.30a). As in that case, 

it is evaluated by using numerical quadrature on the tensor product of the Gauss-

Lobatto grid points, Equation (2.46) is calculated as  

 

A

( )1 1
, ,

( , )

mk l

d d

ij k l m

i j klm i j

v u
u v p w w w

ξ ξ ξ
ξ ξ= =

 ∂ ∂
=  

∂ ∂  
∑∑∑ G   (2.48) 

 

The coefficient p, geometric terms ijG , and the quadrature weights w can all be 

conveniently combined into a set of 2
d  diagonal matrices, ijG , { }

2
, 1,...,i j d∈ . Let 

 

( ) ( )ξ ξ ξ=
ˆˆ , ,: [ ]

mk l
ij ij k l mkk
G p w wwG  (2.49) 

 

For 2D and using equation (2.33), Equation (2.49) becomes 

 

( ) ( )ˆ ˆ ,
ˆ ˆ: ([ ] )( )

k l
ij ijkk

G diag p M Mξ ξ= ⊗G  (2.50) 

 

with 2ˆ 1 ( 1) ( 1)k k N l N m= + + + + + , k, l, m { }
3

0,..., N∈ ,defining a natural ordering of 

the quadrature points. Note that multiplication of u  by each  ijG  simply pointwise 

multiplication (collocation) of the nodal values klmu  with the terms on the right of 

Equation (2.49) are evaluated, the derivatives in Equation (2.48) are evaluated, for 

example, as 
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01

ˆ
N

kp plm

pklm

u
D u

ξ =

∂
=

∂
∑    k, l, m { }

3
0,..., N∈  

           = ( )ˆI I D u⊗ ⊗  

(2.51a) 

   

Defining  

 

( )1
ˆ:D I I D= ⊗ ⊗  ( )2

ˆ:D I D I= ⊗ ⊗  ( )3
ˆ:D D I I= ⊗ ⊗  (2.51b) 

 

For two dimensional problems 

 

( )1
ˆ:D I D= ⊗   ( )2

ˆ:D D I= ⊗   (2.51c) 

 

When the derivative operators Equation (2.51b) with the geometric factors Equation 

(2.50) to yield a final compact form, the energy product Equation (2.46) will be 

 

A

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

( , )

T

T

D G G G D

u v v D G G G D u

D G G G D

    
    

=     
    
    

 (2.52) 

 

            = T T
v D GDu             (2.52b) 

 

Since ij jiG G= , only six of the geometric factors need to be computed. The leading-

order storage requirement for the factored-stiffness matrix is thus only 6 ( )
3

1N + , 

compared with ( )
6

1N +  for the full matrix. 

 

For the case d=2 

 

1 11 12 1

2 21 22 2

( , )

T

T
D G G D

A u v v u
D G G D

    
=     

    
 (2.52a) 
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 1D I D= ⊗  and 2D D I= ⊗  is used. 

     

The work required for a matrix-product is similarly reduced. In applying : T
K D GD=  

to a vector u , one begins with d tensor-product based derivative evaluations, 

ˆ
j ju D u= , followed by multiplication with the geometric factors ˆ

i j ij ju G u=∑� , 

followed finally with a sum across the transposed derivative operators, 

T

i i iKu D u=∑ � for a total operation count of 12 4 3( 1) 15( 1)N N+ + + . This is a 

significant improvement over the 2 6( 1)N +  cost incurred if the stiffness matrix is 

computed and stored explicitly. 

 

2.5.6 Mass matrix evaluation for deformed geometries 

 

The extension of the mass matrix to the deformed geometry case is a straight-forward 

application of quadrature and leads (in 3R ) to the diagonal form 

 

ˆ̂ 1 2 3( , , )ıı i j k i j kM J w w wξ ξ ξ=   2ˆ : 1 ( 1) ( 1)ı i N j N k= + + + + +  (2.53) 

 

For two dimensional problem it will be 

 

( )ˆ̂ 2
ˆ ˆ= ⊗ıı DM J M M   (2.53b) 

 

Element load vector evaluation is 

 

F(v) ( )2
ˆ ˆT

Dv J M M f= ⊗  (2.54) 

 

For Helmholtz problems, the corresponding Helmholtz operator is created by 

augmenting the stiffness matrix K  as 

 

:H K QM= +  (2.55) 
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where Q is the diagonal matrix corresponding the nodal values q(x( , ,i j kξ ξ ξ )). 

Although the presence of the variable q and Jacobian degrades the accuracy of the 

quadrature somewhat, the fact that it is high-order tends to diminish the severity of 

the “variational crime” [14]. The possibility of using higher-order integration rules to 

overcome this difficulty, it was better to recover the accuracy by simply increasing N. 

 

In this chapter, element stiffness and mass matrices evaluation is discussed for the 

rectangular and isoparametric quadrilateral elements. Laplacian and Helmholtz 

operator equations are investigated for the rectangular and isoparametric quadrilateral 

elements. The evaluation of gradient operator (2D first order differentiation matrix) 

is also discussed for the rectangular and isoparametric quadrilateral elements in 

Sections 2.5.4 and 2.5.5. 

 

In Chapter 3, implementation of the equations of Chapter 2 will be discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36

      

 

CHAPTER 3 

 

IMPLEMENTATION 

 

 

High order finite element method was not famous until the 1980s because increasing 

the order means increasing the size of the element matrix. This increases the 

computation time. Reducing the band size of the assembled stiffness matrix has been 

a problem from the earliest times of the finite element. Therefore, a diagonal mass 

matrix is the dream of the most finite element people. Gauss Lobatto Legendre 

(GLL) Lagrangian polynomials and Gauss Lobatto Legendre quadrature is used 

because GLL Lagrangian polynomials are equal to kronecker delta at GLL nodes. 

This means identity matrix. If the same polynomials and quadrature is not used, the 

matrix will be full.  

 

All of the spectral element MATLAB codes can be run both of MATLAB 6.5 and 

7.0. Their built-in functions are also used like mesh.m. To see the results better, the 

Matlab 7.0 can be used because its capacity of array editor is larger than Matlab 6.5. 

 

3.1 Poisson Equation Solution with a single rectangular spectral element 

 

Rectangular element (local) stiffness matrix is found by using the Equation (2.28) 

with the formulas in Section 2.4 of Chapter 2. Rectangular element (local) stiffness 

matrix is equal to global stiffness matrix as a result local node numbering is the same 

as global node numbering.  

 

3.1.1 Evaluation of Gauss Lobatto Legendre nodes and weights 

 

Lobatto.m file function is used as [w,x]=Lobatto(N) to find the Gauss 

Lobatto Legendre weights and nodes from 1 to -1. The row vector x that found is 

also the roots of the Gauss Lobatto Legendre Lagrangian polynomials. Lobatto.m 

is written by Tarman [8] and is given in Appendix B and C. 
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3.1.2 Evaluation of mass and 1D stiffness matrices 

 

As mentioned before, ( )i j ijL ξ δ= , where 
ijδ  is the Kronecker Delta, it is clear that 

( )i jL ξ  is equal to I=eye(N+1); In Fig.  3.1, GLL polynomials with a degree of 

N=6 are plotted as an example. 

 

D=poldif(x,1); this finds the differentiation matrix. Its component in 1st row 

and 1st column is derivative of  1 1( )L ξ  at x=1( 1 1( 1)L ξ = is equal to 1 at x=1). D(:,p) is 

the derivative of ( )i jL ξ  at all points between [1,-1] and means the matrix’s pth 

column.. The first collocation point is 1. It is seen from the graph of lagrangian 

polynomials pth lagrangian polynomial’s derivative is equal to 0 at pth collocation 

point except 1st and last. Example D=poldif(x,2); this finds the second order 

differentiation matrix. The poldif.m belongs to Weideman and Reddy [7]. 

 

3.1.2.1 Evaluation of 1D mass matrix 

 

Both of the equation (2.20) and (2.20a) can be used. Equation (2.20a) is implemented 

as RHS2=diag(w); Equation (2.20) implemented as 

 

Mathematical Formulation Numerical implementation 

0

ˆ ( ) ( )
N

ij k i k j k

k

M w L Lξ ξ
=

=∑  

for p=1:N+1 

for q=1:N+1 

L=I(:,q).*I(:,p); 

RHS2(p,q)=dot(w,L);end  

end 

ˆ ( )iM diag w=  RHS2=diag(w); 

 

w is the kw  and L is the ( ) ( )i k j kL Lξ ξ . Here, w and L are column vectors with 

same size. For array multiplication “.*” is used. I(:,q).*I(:,p)is the entry-by-

entry product of I(:,q) and I(:,p).  The dot product is 

 

dot(w,L)=w(1)*L(1)+w(2)*L(2)+...+ w(N+1)*L(N+1)  
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4
th

 GLL Lagrangian polynomial seen in Fig. 3.1 oscillates less than 4
th

 equispaced 

Lagrangian polynomial at the boundaries. 
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Figure 3.1 The plot of the Gauss Lobatto Legendre Lagrangian polynomials 

( )pL ξ (p=1,…, N+1) with a degree of N=6. There are 7 collocation 

points between 1 and-1. p = i 

 

 

3.1.2.2 Evaluation of 2D mass matrix 

 

Equation (2.18) implemented as 

 

1 2 ˆ ˆ
4

L L
M M M= ⊗  s=kron(RHS2,RHS2); 

 

2D mass matrix is diagonal. Here, the lengths 1L  and 2L  of the standard (master) 

element are equal to 2. 

 



 39

The kronecker product of two matrices A and B is denoted by A B⊗  and is 

computed by the matlab built-in function kron(A,B). If A and B have dimensions 

of p q×  and r s× , then A B⊗  is the matrix of dimension pr qs×  with p q×  block 

form and is written as [1] 

 

2 2

1 2 2 2

3 4 3 3 4 4

3 3 4 4

a b a b

a b c d c d

c d a b a b

c d c d

 
 

     ⊗ =        
 
 

 (3.1.1) 

 

3.1.2.3 Evaluation of 1D stiffness matrix 

 

Equation (2.24) is used for the evaluation of 1D stiffness matrix. It is implemented as 

 

Mathematical Formulation Numerical implementation 

11

0 1 1

( )( )ˆ
N

j ki k
ij k

k

LL
K w

ξξ

ξ ξ=

∂∂
=

∂ ∂
∑  

for p=1:N+1 

for q=1:N+1 

Ae=D(:,q).*D(:,p); 

df2(p,q)=dot(w,Ae);end 

end 

 

The implementation of Equation (2.20) and (2.24) looks same because of GLL 

quadrature. 

  

3.1.3 Construction of the grid 

 

The master element’s local coordinates are calculated by Lobatto.m. It has same 

collocation points in both of the x and y direction for N=24, but having same degree 

for all directions is not an obligation because of having a single element. 

 

[xx,yy] = meshgrid(x(1:N+1),y(1:N+1)); returns the local 

coordinates of each node of the master element in Fig. 3.2. 
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3.1.3.1 Plotting the grid 

 

The master element grid is plotted by the matlab command 

plot(xx,yy,xx’,yy’) 
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Figure 3.2 The plot of the spectral element grid for a single element with a degree 

of N=24. The bold lines are also 1ξ  and 2ξ  axis of the reference 

coordinates. There is a node at each intersection. 

 

The grid becomes denser through the direction from the center of the element to the 

edges or the vertices of the element. 

 

The distance between the nodes near the edges (boundary) or the vertices of the 

element (domain) is less than the distance between the nodes near the intersection of 

the midlines, because of the orthogonality property of GLL polynomials.   
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3.1.4 Evaluation of load vector 

 

Both of the equation (2.18) and (2.26) are the same except the force function in 

Equation (2.26) The force function is calculated at xx = xx(:); yy = yy(:); 

which are the vectorized xx and yy and column vectors with sizes of 625. 2D mass 

matrix M is used for implementation as s; Equation (2.26) implemented as 

 

Mathematical Formulation Numerical implementation 

F(v) ( )1 2 ˆ ˆ
4

TL L
v M M f= ⊗  

for p=1:(N+1)^2 

for q=1:(N+1)^2 

if (p==q) 

RHS(q)=s(p,q).*f(q);end 

end 

end 

 

3.1.5 Evaluation of steady diffusion operator 

 

1D mass matrix M̂  and 1D stiffness matrix K̂  has been evaluated for the 

implementation of Equation (2.28). It is used for the evaluation of steady diffusion 

operator. Equation (2.28) is implemented as  

 

Mathematical Formulation Numerical implementation 

L ( ) ( )2 1

1 2

ˆ ˆ ˆ ˆ:
L L

p M K p K M
L L

 
= ⊗ + ⊗ 

 
 delta=kron(RHS2,df2)+kron(df2,RHS2); 

 

Kron.m file is used to implement the Equation (2.28) to evaluate the steady diffusion 

operator. 2D Rectangular Element Stiffness matrix equals to the steady diffusion 

operator for a single element. 

 

3.1.6 Imposing the homogeneous Dirichlet BC 

 

Homogeneous Dirichlet boundary conditions can be implemented for a single 

rectangular SEM by deleting (discarding) the first and/or last rows of K̂  the 1D 
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stiffness calculated by using Equation (2.24) and M̂  the 1D mass matrices evaluated 

from Equation (2.20). The steady diffusion operator Equation (2.28) is implemented 

as 

 

delta=kron(RHS2,df2(2:N,2:N))+kron(df2(2:N,2:N),RHS2); 

 

In Fig. 3.3, the sparsity graph of the calculated delta (The steady diffusion 

operator) is plotted. From Fig. 3.3, delta has got a size of 529×529, the for loop 

counters in load vector evaluation are changed to 529. Black regions correspond to 

non-zero matrix elements as seen in Fig. 3.3. From Fig. 3.3, there are 23805 non-zero 

(nz) elements in delta. An example problem from [1] will be discussed as 

Equations (4.1) and (4.2) in Chapter 4.  
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Figure 3.3 Sparsity plot of the element stiffness matrix evaluated with Equation 

(2.28). No threshold is used because it is kronecker delta 
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3.1.7 Imposing the nonhomogeneous Dirichlet BC 

 

Poisson Equation with all nonzero Dirichlet boundaries is discussed in Section 4.1.4 

with a problem from [5], The global node number of the nodes at the 

nonhomogeneous Dirichlet boundary are found by the MATLAB command 

b=find(abs(xx)==1 | abs(yy)==1); All components of the related rows 

defined by b is denoted as 0.  

 

delta(b,:) = zeros(4*N,(N+1)^2); 

 

The related components of related rows are equal to 1.  

 

delta(b,b) = eye(4*N); 

 

The related components of the column vector RHS’ is changed with the value of u 

at the Dirichlet BC. There are 4*N nodes at the Dirichlet boundary. 

 

RHS(b)=sin(4*pi*sqrt((xx(b)-2).^2+(yy(b)-2).^2)); 

 

3.1.8 Imposing the zero and nonzero Neumann BC 

 

Zero Neumann BC’s do not need implementation. Adding 0 to the load vector will 

not cause any change. As it is said in Section 2.1.5.2, natural boundary conditions are 

included naturally in the solution. 

 

3.1.8.1 Imposing the nonzero Neumann BC 

 

For nonzero Neumann there is another method for only 2D rectangular elements to 

change the related row of the steady diffusion operator (element stiffness matrix) 

with related row of the 2D first order differentiation matrix.  

 

DNBC = kron(I,D)+kron(D,I); 

 



 44

All square element stiffness matrices evaluation and the master element matrix 

evaluation for the domain spans the area {-1 ≤ x ≤ 1,-1 ≤ y ≤ 1} is done by the same 

Equations (2.20), (2.24) and (2.28). If the domain isn’t [1,-1], for problems in 

Sections 4.1.2 and 4.1.4, D must be calculated at 1D mapped nodes from [1,-1] to   

[0, 1]. The differentiation matrix D used for calculation of the steady diffusion 

operator and 2D first order differentiation matrix must be same.  

 

The related components of the column vector RHS’ is changed with the value of u 

at the Neumann BC. Do not add it. . It is a trick from spectral method. [1] 

 

RHS(c)=h; 

 

Here, c is the node numbers of the Neumann boundaries. For problems in Sections 

4.1.2 and 4.1.4, F(v) will be different from problem in Section 4.1.1, whether if force 

function is dependent on x,y coordinates or not. 1 2

4

L L
 must not be used 

 

3.1.9 Evaluation of the u values in Poisson Equations 

 

un=-delta\RHS'; 

 

\ is the Backslash used for matrix left division. For problem 1, delta is a 529×529 

matrix and RHS’ is a column vector with n components, then un=-delta\RHS'; 

is the solution to Lu=F(v) the equation (2.29) computed by Gaussian elimination. A 

warning message is displayed if delta is badly scaled or nearly singular.  

 

The time used for  un=-delta\RHS'; is 0.09880954 seconds. The time used for  

un=-inv(delta)*RHS'; is 0.22994469 sec., which is three times slower than 

the backslash. 

 

3.1.10 Plotting the 3D graph of the solution 

 

The part of program 16 in [1] is used for plotting the Fig 4.1. 
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uu=reshape(un,N+1,N+1); 

[xx,yy] = meshgrid(x,y); 

value = uu(N/4+1,N/4+1); 

% Interpolate to finer grid and plot: 

[xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1); 

uuu = interp2(xx,yy,uu,xxx,yyy,'cubic'); 

figure(2), clf,  

mesh(xxx,yyy,uuu), colormap(1e-6*[1 1 1]); 

xlabel x, ylabel y, zlabel u 

 

Here, interp2.m is used to calculate the u values on an equispaced grid. xxx 

and yyy are the interpolation points where xx and yy are interpolated.  

 

uuu = interp2(xx,yy,uu,xxx,yyy,'cubic'); returns matrix uuu 

containing elements corresponding to the elements of xxx and yyy and determined 

by interpolation within the two-dimensional function specified by matrices xx, yy, 

and uuu. x and y must be monotonic, and have the same format ("plaid") as if they 

were produced by meshgrid. Matrices xx and yy specify the points at which the data 

uu is given. Out of range values are returned as NaNs. Cubic interpolation is used, as 

long as data is uniformly-spaced. Otherwise, this method is the same as 'spline'. 

 

A mesh is drawn as a surface graphics object with the viewpoint specified by 

view(3). Mesh.m create wireframe parametric surfaces specified by X, Y, and Z, with 

color specified by C.  

 

mesh(xxx,yyy,uuu) draws a wireframe mesh with color determined by uuu as a 

result color is proportional to surface height. If xxx and yyy are vectors, 

length(xxx) = n and length(yyy) = m, where [m,n] = size(uuu). 

xxx and yyy are the intersections of the wireframe grid lines. 
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3.2 Deformed Geometries 

 

This is the situation where the physical domain is different from the computational 

domain. The formulas used are isoparametric. Same degree of GLL polynomials used 

to define the coordinate transformation from physical to computational domain. [4] 

The geometry is represented by the same order quadrilateral elements that are used to 

approximate the dependent variables.  

 

3.2.1 2D Quadrilateral Element Stiffness matrix evaluation 

 

Elematrstmquad.m is given in Appendix D. It is written by using the following 

equations. If the order of the element is same, the matrix size of the quadrilateral 

element is the same as the rectangular element 

 

The first row of the program is  

 

function[delta,Xesit,Yesit,Jab]=elematrs(N,xna,xnb,xnc, 

xnd,yna,ynb,ync,ynd,orderofedge,yeqa,yeqc,xeqd,xeqb) 

 

Left hand side is the output of the function. delta is the  quadrilateral element 

stiffness matrix. Xesit,Yesit are the physical coordinates of the element which 

are vectorized column vectors. Jab is the determinant of the Jacobi matrix 

(Jacobian). Jab will be used to find the mass matrix. Mass matrix is used for the 

evaluation of the load vector. 

 

Right hand side is the input of the function. N is the degree of the element in both of 

the x and y directions. xna and yna are the left and down vertices of the element. 

xnb and ynb are the right and down vertices. xnc and ync are the right and up 

vertices. xnd and ynd are the left and up vertices of the element.  If the order of 

edge is 0, there is no need to input yeqa, yeqc, xeqd and xeqb. Thus, to 

describe a straight-sided region only the values of the vertex locations are necessary.  
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3.2.2 Evaluation of the physical coordinates of the nodes at the edges of the 

element 

 

We expect to be given the shape of each edge in terms of a series of parametric 

functions, 1 1 2 2( ), ( ), ( ), ( )A C D B
f f f fξ ξ ξ ξ  

 

 1( )Af yeqaξ = , 1( )Cf yeqcξ = , 2( )Df xeqdξ =  and 2( )Bf xeqbξ =  

 

[w, xs] = Lobatto(N); xs = xs'; w = w';  

ys = xs; [XS, YS] = meshgrid(xs,ys); 

Dxs = poldif(xs,1); Dxs = Dxs(:,:,1); Dys = Dxs; 

LXS1 = (1-XS)/2; LXS2 = (1+XS)/2;%  >> xna=0;xnb=0.5;xnc=0.5;xnd=0; 

LYS1 = (1-YS)/2; LYS2 = (1+YS)/2;%  >> yna=0;ynb=0;ync=0.5;ynd=0.5; 

 

LXS1, LXS2, LYS1 and LYS2 are known as the linear edge functions of the master 

rectangular element of the spectral element methods. These matrices store the values 

of the edge functions at the nodes of the master element seen as an example in      

Fig. 3.2 for N=24. From FEM for mapping, it is also remembered to multiply the 

nodes with edges that can not be neighbor of the edge the node found. XS and YS are 

the local Cartesian coordinates of the nodes of the master element. 

 

1 1, 1

0

( ) ( ) ( )
N

A A

i i q q

q

f f Lξ ξ ξ
=

=∑   

 

The physical coordinates of nodes at all edges of the quadrilateral element must be 

found. As it is said, GLL points are attractive. The parametric representation begins 

by expressing 

 

a i bx x x≤ ≤  ⇐  
(1 ) (1 )

2 2

i i

i a b
x x x

ξ ξ− +
= +  ⇒  1 1iξ− ≤ ≤  

 

Above Equation is implemented by a modification of [8] as 

 

if(orderofedge==0) 
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XA = xna*LXS1 + xnb*LXS2; YA = yna; % down face 

XC = xnd*LXS1 + xnc*LXS2; YC = ync; % up face  

YD = yna*LYS1 + ynd*LYS2; XD = xnd; % left face 

YB = ynb*LYS1 + ync*LYS2; XB = xnb; % right face 

else 

XA = xna*LXS1 + xnb*LXS2; YA = subs(yeqa); % The value in the subs() 

XC = xnd*LXS1 + xnc*LXS2; YC = subs(yeqc); % paranthesis can be  

YD = yna*LYS1 + ynd*LYS2; XD = subs(xeqd); % a symbolic equation or 

YB = ynb*LYS1 + ync*LYS2; XB = subs(xeqb); % a number 

end 

% XA = 0*LXS1 + 0.5*LXS2; YA = 0; 

% XC = 0*LXS1 + 0.5*LXS2; YC = 0.5; 

% YD = 0*LYS1 + 0.5*LYS2; XD = 0; 

% YB = 0*LYS1 + 0.5*LYS2; XB = 0.5; 

   

3.2.3 Evaluation of the physical coordinates of the interior nodes of the element 

 

The sparsity and the accuracy of the local stiffness matrices which are evaluated by 

elemental mapping for curvilinear Equation (2.40) and straight-sided elements 

Equation (2.37) are similar for quadrilateral elements with straight sides. 

 

Both of the curvilinear and straight-sided element’s local stiffness (element) matrices 

are evaluated with Equation (2.40). 

 

There are two xna, one is from XA and the other is from XD. So the term xna 

multiplied by the edges is subtracted in the linear blending function, which xna is not 

found. For the other coordinates we do the same. The equation (2.40) for linear 

blending function is implemented with a modification of [8] as  

 

X = XA.*((1/2)*(1 - YS)) + XC.*((1/2)*(1 + YS)) + ... 

XD.*((1/2)*(1 - XS)) + XB.*((1/2)*(1 + XS)) - ... 

(xna)*((1/2)*(1 - XS))  .*   ((1/2)*(1 - YS)) - ... 

(xnb)*((1/2)*(1 + XS))  .*   ((1/2)*(1 - YS)) - ... 

xnd*((1/2)*(1 - XS))  .*   ((1/2)*(1 + YS)) - ... 

(xnc)*((1/2)*(1 + XS))  .*   ((1/2)*(1 + YS)); 

 

Y = YA.*((1/2)*(1 - YS)) + YC.*((1/2)*(1 + YS)) + ... 

YD.*((1/2)*(1 - XS)) + YB.*((1/2)*(1 + XS)) - ... 
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(yna)*((1/2)*(1 - XS))  .*   ((1/2)*(1 - YS)) - ... 

(ynb)*((1/2)*(1 + XS))  .*   ((1/2)*(1 - YS)) - ... 

(ynd)*((1/2)*(1 - XS))  .*   ((1/2)*(1 + YS)) - ... 

(ync)*((1/2)*(1 + XS))  .*   ((1/2)*(1 + YS)); 

 

After finding the coordinates of the element nodes, all the partial derivatives can be 

evaluated, which is required to determine the Jacobian. To find the laplacian operator 

1

1x

ξ∂

∂
, 2

1x

ξ∂

∂
, 1

2x

ξ∂

∂
 and 2

2x

ξ∂

∂
 must be found. 

 

3.2.4 Evaluation of the Jacobian 

 

Following equation is used 

 

1 1

1 2 1 2 1 2

2 2 1 2 2 1

1 2

x x

x x x x
J

x x

ξ ξ

ξ ξ ξ ξ

ξ ξ

∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂

 

  

It is implemented in [8] as 

 

J = (Dxs * X')' .* (Dys * Y) - (Dys * X) .* (Dxs * Y')'; 

 

3.2.5 Benchmarks 

 

Jacobi matrix is used to find the local stiffness matrix of the quadrilateral element. To 

control its accuracy, the exact area of the element must be found by using the 

determinant of the Jacobi matrix.  

 

1 1

1 1

( )A J r drds
− −

= ∫ ∫  

 

Here, the Jacobian J(r) is the determinant of Jacobi matrix. It is implemented in [8] as  

 

Area = w' * J * w 
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Dividing rectangular domain to rectangular elements is not an obligation. Changing 

size or the type of the element like quadrilateral element is a way to achieve or obtain 

better results. Rectangular domain is divided to complex elements to control the 

success of the Jacobi mapping. 

 

Example problem is solved from [4]. For the physical domain seen in Fig. 3.4, the 

equations of the edges are yeqa=-XA/5; yeqc = 1/3*XC+11/3; xeqd = 

YD/4; xeqb =(29-YB)/6; Subs will be input XA,XC,YD and YB values to 

find  YA,YC,XD and XB. The x coordinates of the vertices are xna=0, xnb=5, xnc=4 

and xnd=1. The y coordinates of the vertices are yna=0, ynb=-1, ync=5 and ynd=4. 

Jacobian is calculated for N=6. The element has 49 nodes. The area calculated by 

Jacobian is equal to 20. The area calculated by geometry is equal to 20 as a result the 

accuracy of Jacobian has been controlled. The element is seen in Fig. 3.4. 
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Figure 3.4 The grid of coordinate transformation from physical domain to 

computational domain for an element of N=6 
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3.2.6 The implementation of the Jacobian matrix 

 

Mathematical Formulation Numerical implementation 

1 1

1 2

2 1 2

2 2

1 2

( , )D

x x

J
x x

ξ ξ
ξ ξ

ξ ξ

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂

 

Jlast=[(Dxs * X')' (Dys * X); 

 

(Dxs * Y')' (Dys * Y)]; 

 

1

1

x

ξ

∂

∂
 J11y=Jlast(1:(N+1),1:(N+1))'; 

1

2
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ξ
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∂
, 2

1

x

ξ

∂

∂
 and 2

2

x

ξ

∂

∂
 

J12y=Jlast(1:(N+1),N+2:2*N+2)'; 

J21y=Jlast(N+2:2*N+2,1:(N+1))'; 

J22y=Jlast(N+2:2*N+2,N+2:2*N+2)'; 

 

3.2.7 Evaluation of the geometric terms 

 

The inverse of the Jacobi matrix must be found to evaluate the geometric terms in 

Equation (2.47). 

 

Mathematical Formulation Numerical implementation 

2 1

2 2

2 12

1 1

1

D

x x

x xJ

ξ ξ

ξ ξ

∂ ∂ 
− ∂ ∂

 
∂ ∂ 

− ∂ ∂ 

 

Jinv=[J22y(:)./Jab(:) -J12y(:)./Jab(:); 

 

-J21y(:)./Jab(:) J11y(:)./Jab(:)]; 

1
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ξ∂

∂
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∂
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ξ∂

∂
  

and 2

2x

ξ∂
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J11inv=Jinv(1:(N+1)^2,1); 

J12inv=Jinv(1:(N+1)^2,2); 

J21inv=Jinv((N+1)^2+1:2*(N+1)^2,1); 

J22inv=Jinv((N+1)^2+1:2*(N+1)^2,2); 

 

J12y and J21y or J12inv and J21inv are not equal to each other for quadrilaterals. All 

of them must be calculated. 

 

The geometric terms Equation (2.47) can be written for two dimensional elements as 
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G
11 12 21 22

1

( ) ( )
d

ji
ij

k k k

J
x x

ξξ
ξ ξ

=

∂∂
= = + + +

∂ ∂
∑ G G G G  (3.2.7.1) 

 

Mathematical Formulation Numerical implementation 

1 1 1 1
11

1 1 2 2

( ) ( ) ( )J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G  

Gk11=J11inv.*J11inv.*Jab(:) 

      +J12inv.*J12inv.*Jab(:); 

1 2 1 2
12

1 1 2 2

( ) ( ) ( )J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G  

Gk12=J11inv.*J21inv.*Jab(:) 

      +J12inv.*J22inv.*Jab(:); 

2 1 2 1
21

1 1 2 2

( ) ( ) ( )J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G  

Gk21=J21inv.*J11inv.*Jab(:) 

      +J22inv.*J12inv.*Jab(:); 

2 2 2 2
21

1 1 2 2

( ) ( ) ( )J J
x x x x

ξ ξ ξ ξ
ξ ξ ξ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
G  

Gk22=J21inv.*J21inv.*Jab(:) 

      +J22inv.*J22inv.*Jab(:); 

 

3.2.8 Evaluation of the geometric factor  

 

ˆ ˆ( )M M⊗  must be evaluated. 

for p=1:N+1 

for q=1:N+1 

L=I(:,q).*I(:,p); 

RHS2(p,q)=dot(w1,L);end % RHS2 is equal to 1D mass matrix 

end 

s=sparse(kron(RHS2,RHS2)); 

 

As it was said before, 11G , 12G , 21G , and 22G  are vectors. Therefore, they must be 

diagonalized to be a diagonal matrix. Equation (2.50) is implemented as 

 

( ) ( )ˆ ˆ ,
ˆ ˆ: ([ ] )( )

k l
ij ijkk

G diag p M Mξ ξ= ⊗G  

G11=sparse(s*diag(Gk11)); 

G12=sparse(s*diag(Gk12)); 

G22=sparse(s*diag(Gk22)); 

G21=sparse(s*diag(Gk21)); 
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Since G12 and G21 are equal to each other, G11, G12 and G22 are needed to be 

evaluated. To dictate like G12=G21; is enough.  

 

3.2.9 Evaluation of 
1ξD  and 

2
Dξ   

 

The master element has same degree in the both of the x and y direction. Thus, 
1

Dξ  

and 
2

Dξ are same. Equation (2.51c) is implemented as 

 

Mathematical Formulation Numerical implementation 

( )1
ˆ:D I D= ⊗  and ( )2

ˆ:D D I= ⊗  
D1=sparse(kron(I,D)); 

D2=sparse(kron(D,I)); 

 

Sparse matrices are a special class of matrices that contain a significant number of 

zero-valued elements. This property allows MATLAB to store only the nonzero 

elements of the matrix, together with their indices. It reduces computation time by 

eliminating operations on zero elements. 

 

Global stiffness matrix memory usage is 1850.9 KB. By the matlab command of 

Stiff2=sparse(stiff2); the memory used is reduced to 678.5 KB. Time consumed for 

matrix left division is reduced from 0.05093(full) to 0.02878 seconds with sparse. 

Without sparse CPU usage for left division has reached to a peak value of %50. 

 

The result of assembly or multiplication of sparse matrices is a normal matrix.  Using 

sparse for normal matrices is needless memory usage. For a 169×169 matrix, 

memory usage of sparse is 343.4 KB and the normal one uses 228.5 KB. 

 

3.2.10 Evaluation of the 2D quadrilateral element stiffness matrix 

 

Equation (2.52a) is implemented as 

  

1 11 12 1

2 21 22 2

T
D G G D

D G G D

    
    
    

 

DekT=[D1;D2]'; 

G=[G11 G12;G21 G22]; 

delta=DekT*G*[D1;D2]; 
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3.2.11 Evaluation of the element load vector 

 

As mentioned before, the mass matrix for the quadrilateral element must be found. 

To have an element load vector, the element mass matrix is needed to be evaluated. 

The equation (2.54) is implemented as 

 

F(v) ( )2
ˆ ˆT

Dv J M M f= ⊗  

for p=1:(N+1)^2 

for q=1:(N+1)^2 

if (p==q) 

RHS(q)=Jab(p).*s(p,q).*f3(q);end 

end 

end 

 

3.3 Poisson Equation Solution with more elements 

 

Problem in Section 4.1.4 will be solved with more than one element. The domain 

[0,1] [0,1]Ω∈ ×  is sliced to four elements and the element at the left and up corner is 

cut away. The solution domain is seen in Fig. 3.5. The global stiffness matrix is the 

steady diffusion operator which is the result of the assembly. Connectivity matrix is 

required to assemble the local stiffness matrices.  

 

3.3.1 Connectivity Matrix Generation 

 

Elnode.m is the code which generates a connectivity matrix for Fig. 3.5. The 

connectivity matrix generated for N=2 is seen in Table 3.1. In the connectivity matrix 

pth row is the node numbers of the pth element. Gauss Lobatto Legendre points 

evaluated with Lobatto.m are from 1 to -1, so the order of the local node numbering 

begins from 1
st
node at the highest right corner, goes left through the line, and passes 

the node under the 1
st
node, last node is the node at the lowest left corner. This is the 

order of local node numbering.  

 

For global node numbering the highest right element is numbered first, so global 

node numbers and local node numbers of the first element are identically same. The 

order of the global node numbering is as same as the local node numbering.  
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The node numbers of the first element nodes on the joint lower edge of the first is 

same as the upper edge of the second element, the global node numbering continues 

from the node under the local 1
st
node. By numbering the second, the left edge of the 

second and the right edge of the third element have same global node numbers, so the 

global node numbering of third element is done in the same order without numbering 

the right edge as seen in Fig.3.5. 

 

Table 3.1 Global node numbering of Mesh 1 for N=2 

 

Local Node 

numbering 
1 2 3 4 5 6 7 8 9 

Element 1 1 2 3 4 5 6 7 8 9 

Element 2 7 8 9 10 11 12 13 14 15 

Element 3 9 16 17 12 18 19 15 20 21 

 

 

Numbering the edge nodes first can help to reduce the band size of the assembled 

stiffness matrix like Karniadakis and Sherwin [2]. The program elnode.m is N 

independent so it doesn’t need modifications for different N’s. N is the only input 

and the matrix of the global node numbers of the elements is the only output. For 

different mesh types, different mesh generators must be used or written. 

Elematrstmquad.m program in Appendix D gives also the coordinates of x and y of 

the element’s nodes and also the determinant of the Jacobi matrix to evaluate the load 

vector (RHS) of the problem. In Table 3.1, the output of elnod=elnode(N); is 

seen for N=2. 

 

3.3.2 Assembly of spectral element stiffness matrix 

 

Assemblies of the 2D rectangular spectral element and the 2D quadrilateral spectral 

element’s local stiffness matrices are all same because they must have the same size 

if they are at the same order.  
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Figure 3.5 The grid of the Mesh 1 made up of three elements with a degree of 12. 

The global node numbers of the element’s vertices are seen. 

 

 

Local stiffness matrix of the curvilinear quadrilateral element is full matrix. Using 

curvilinear elements increase the band size and density of the global stiffness matrix 

as seen in Figures 3.11 and 3.13. 

 

3.3.2.1 Evaluation of the Steady Diffusion operator 

 

Steady diffusion operator is the global stiffness matrix. It is the result of the assembly 

of the local stiffness matrix. The program that is written to assemble the local 

stiffness matrices to form the global stiffness matrix  

 

for i=1:(N+1)^2 

for j=1:(N+1)^2 

if(abs(delta(i,j))>=1e-15) 

stiff2(elnod(e,i),elnod(e,j))=stiff2(elnod(e,i), ... 

elnod(e,j))+delta(i,j); 
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end 

end 

end 

 

The global stiffness matrix is stiff2. Here, 1e-15 within if statement is the 

threshold value; which is used as computation zero by the definition. It is used with if 

statement to decide which component of the element stiffness matrix is zero. If a 

component of the element stiffness matrix is smaller than the threshold value, it will 

be assumed as zero and won’t be assembled into the global stiffness matrix. Sparsity 

plot of the Mesh1’s elements is seen for the threshold value of 1.0 1510−×  in the 

following Fig. 3.6. The white areas are the zero components of the element stiffness 

matrix. 
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Figure 3.6 Sparsity plot of the element stiffness matrix for N=12. Computation 

zero is defined as 1.0 1510−× . 

 

 

Element stiffness matrices calculated for rectangular elements with straight sided 

quadrilateral element formula are as sparse as quadrilateral element formula. Both of 



 58

them needed threshold value to be like in Fig. 3.3. The diagonal lines near the main 

band-diagonal are not clearly seen in Fig 3.6. As it is seen, the sparsity plot of the 

rectangular element’s local stiffness matrix is not like Fig. 3.3. Both of them are 

square elements, as a result they must have same sparsity. So a threshold value will 

be 1.0 1310−× . Here, the local stiffness matrix is seen for Fig. 3.7. 

 

For Fig. 3.7, the diagonal lines and the square matrices in the main band-diagonal are 

clearly seen. Contrary to Fig.3.6, all of the diagonal lines are clearly seen in Fig. 3.7. 
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Figure 3.7 Sparsity plot of the element stiffness matrix for N=12. Computation 

zero is defined as 1.0 1310−× . 

 

 

The sparsity of the global stiffness matrices evaluated for both of the threshold values 

of 1.0 1310−× and 1.0 1510−×  is plotted in Fig. 3.8 and Fig. 3.9. Choosing a threshold 

value of 1.0 1310−×  decrease the band size and density, as a result matrix is sparser 

and narrower.  This means economic usage of implementation time and memory. 
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Figure 3.8 Sparsity plot of the global (assembled) stiffness matrix for N=12. 

Computation zero is defined as 1.0 1310−× . 

 

 

 

Figure 3.9  Sparsity plot of the global (assembled) stiffness matrix for N=12. 

Computation zero is defined as 1.0 1510−× . 
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Figure 3.10  The grid of the Mesh 2 made up of a square and two quadrilateral 

elements with a degree of 12.  
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Figure 3.11  Sparsity plot of the global (assembled in Fig. 3.10) stiffness matrix for 

N=12. Computation zero is defined as 1.0 1510−× . 
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Figure 3.12 The grid of the Mesh 3 made up of a three quadrilateral elements with 

a degree of 12.  
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Figure 3.13 Sparsity plot of the global stiffness matrix of the mesh in Fig. 3.12 for 

N=12. Computation zero is defined as 1.0 1310−× . 
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In Fig. 3.10, right face of the 3rd element is an arc drawn at the center of (0, 0) with a 

radius of 2 /2. In Fig. 3.12, down face of the 1st element is an arc drawn at the 

center of (1, 1) with a radius of 2 /2.  

 

3.3.3 Evaluation of the global load vector 

 

The program part written looks like the program part written for global stiffness 

matrix. 

 

for j=1:(N+1)^2 % j can be i, it will be better 

load(elnod(e,j))=load(elnod(e,j))+RHS(j); 

end 

 

Now, Global stiffness matrix and load vector is evaluated. Imposing the boundary 

conditions will be our next issue. For imposing the boundary conditions, the global 

node numbers of the element’s nodes at the domain boundaries must be found. 

 

3.3.4 Imposing the Nonhomogeneous Dirichlet Boundary Conditions 

 

The local node numbers of the element’s Dirichlet boundary nodes must be found. 

Poisson Equation (4.4) in Section 4.1.4 is solved on mesh 1 seen in Fig. 3.5. From 

Fig 3.5, up, right and left face of the first element is Dirichlet boundaries. Right and 

down faces of the second element and up, down and left faces of the third element 

are Dirichlet boundaries. The Dirichlet boundaries is found like that 

 

nodirichel1es = find(abs(yy)==1 | xx==1); % 1st element 

nodirichel2es = find(xx==-1 | yy==1); % 2nd element 

nodirichel3es = find(abs(xx)==1 | yy==-1); % 3rd element 

 

Their global node numbers will be  

 

for i=1:3*N+1 

assemel3(i)=elnod(3,nodirichel3es(i)); 

end 
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for i=1:3*N+1 

assemel1(i)=elnod(1,nodirichel1es(i)); 

end 

for i=1:2*N+1 % Shows how many nodes are on the Dirichlet 

% boundaries 

assemel2(i)=elnod(2,nodirichel2es(i)); 

end 

 

The Dirichlet boundary conditions can be imposed like 

 

stiff2(assemel2,:) = zeros(2*N+1,3*(N+1)^2-2*(N+1)); 

stiff2(assemel2,assemel2) = eye(2*N+1); 

stiff2(assemel1,:) = zeros(3*N+1,3*(N+1)^2-2*(N+1)); 

stiff2(assemel1,assemel1) = eye(3*N+1); 

stiff2(assemel3,:) = zeros(3*N+1,3*(N+1)^2-2*(N+1)); 

stiff2(assemel3,assemel3) = eye(3*N+1); 

load(assemel1)=uex(nodirichel1es,1); 

load(assemel2)=uex(nodirichel2es,2); 

load(assemel3)=uex(nodirichel3es,3); 

 

Since the domain boundaries are the same, these implementation features of 

imposing Dirichlet boundaries are the same for both of the meshes in Fig. 3.10 and 

Fig. 3.12 

 

3.3.5 Imposing the Nonhomogeneous Neumann Boundary Conditions 

 

The example problem will be inviscid flow around a cylinder from [4]. The 

irrotational flow of an ideal fluid about a circular cylinder, placed with its axis 

perpendicular to the plane of the flow between two long horizontal walls. 
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Figure 3.14  The mesh of the inviscid flow around a cylinder drawn on the upper 

right quadrant of the domain. 

 

 

The mesh is seen in Fig. 3.14. The domain is divided from the diagonal between (0,2) 

and (4,0). The node A is the 169
th

 node, not the 1
st
 node. A, B, C, and D are defined 

through counter clockwise as FEM in Fig. 2.1. As discussed before 1
st
 node is upper 

and most right so 1st element is the upper and the most right in the figure the mesh 

and global node numbers are seen in Table 3.2. Blue lines are element boundaries. 

The equations of the element’s edges are 

 

yeqc = [2 -1/2*XC+2]; 

xeqd = [4-2*YD 0]; 

xeqb = [4 -sqrt(1-YB.^2)+4]; 

yeqa = [sqrt(1-(XA-4).^2) 0]; 

 

The left edge of the 1st element is adjacent to the up edge of the 2
nd

 element. Because 

of that, the global numbers of the nodes on them are the same. The mesh generation 

is done for global node numbering will be handled differently. The connectivity 

matrix generated for N=2 is seen in Table 3.2. 
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Table 3.2 Global node numbering of Mesh seen in Fig. 3.14 for N=2 

 

Local Node 

numbering 
1 2 3 4 5 6 7 8 9 

 Element 1 1 2 3 4 5 6 7 8 9 

 Element 2 9 6 3 10 11 12 13 14 15 

 

 

From Figure 4.15, it is seen that the left face of domain or 2
nd

 element is 

nonhomogeneous Neumann boundary. It is a linear edge, but its 2D first order 

differentiation matrix can not be evaluated with the formulas for rectangular 

elements. Therefore, there are two choices. Evaluation of the surface Jacobian is 

done and it is added to the related rows of the related element’s load vector or 

assembled load vector [2]. The related row should not be changed. 

 

The second choice is the evaluation of the 2D first order differentiation matrix for 

quadrilateral element. This is discussed in following Section 3.3.5.1.  

 

3.3.5.1 Differentiation within an elemental region 

 

The second choice is the evaluation of the 2D first order differentiation matrix for 

quadrilateral element and replacing it into the element stiffness matrix. Equation 

(2.42) is implemented as 

 

Dksi=diag(J11inv(:))*kron(I,Dxs)+diag(J21inv(:))*kron(Dxs,I); 

 

The local and global node numbers of the nodes on the nonzero Neumann boundary 

(2
nd

 element’s left face seen in Fig. 3.14) is found as 

 

localnodenum2ndelleft=find(yy==-1 ); %  

for i=1:N+1 

globalnodenum2ndelleft(i)=elnod(2,localnodenum2ndelleft(i)); 

end 
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Then it is replaced in the 2
nd

 element stiffness matrix’s related rows stored by 

localnodenum2ndelleft. It is implemented as 

 

for i=1:13 

delta(localnodenum2ndelleft,:) = Dksi(localnodenum2ndelleft,:); 

end 

 

After the Dirichlet boundary conditions have already been imposed. The sparsity plot 

of the global stiffness matrix is seen in Fig. 3.15. 
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Figure 3.15 Sparsity plot of the same assembled (global) stiffness matrix that 

imposed all of the boundary conditions for the mesh of the stream 

function seen in Fig. 3.14. 
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3.4 Evaluation of the Helmholtz operator 

 

Element stiffness matrices and mass matrices have been evaluated for quadrilateral 

and rectangular element. Mass matrix and Helmholtz operator of the quadrilateral 

element is evaluated with Equations (2.54) and (2.55). They are implemented as 

 

for p=1:(N+1)^2 

for q=1:(N+1)^2 

if (p==q) MwJ(p,q)=1*Jab(p).*s(p,q);end 

end 

end 

delta=delta+MwJ; 

 

In this chapter, the implementation of spectral element method for the Poisson and 

Helmholtz equations using MATLAB on rectangular and deformed domains 

discretised with a single and multi-element are discussed including the element 

stiffness and mass matrices evaluation. Imposing the homogeneous or non-

homogeneous Dirichlet and Neumann boundary conditions into the global stiffness 

matrix and load vector are also discussed for domains discretised with rectangular 

and isoparametric quadrilaterals. The global node numbering of the elements is 

discussed in Connectivity matrix generation. Assembly (Direct Stiffness Summation) 

of element stiffness matrices to form global element stiffness matrix is implemented. 

Assembly of element load vectors to form global load vector is implemented. The 

implementation procedure for the SEM solution with two quadrilateral elements to 

the inviscid flow around a cylinder is discussed for velocity potential equation 

including nonhomogeneous Neumann boundary conditions. Helmholtz operator of 

quadrilateral elements is implemented for the solution of Helmholtz. 

 

The elematrstmquad.m written for the evaluation of isoparametric quadrilateral 

element stiffness matrix is first verified by evaluating rectangular element stiffness 

matrix.  
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 

 

Poisson and Helmholtz equations are solved with single and multi-elements 

including both of the rectangular and isoparametric quadrilaterals. Inviscid flow 

around a cylinder is also solved. Spectral element results will be compared with the 

the exact results to observe and appreciate the accuracy of the approach. Also, Single 

spectral element results will be compared with finite element or spectral collocation 

(pseudospectral) solutions.   

 

4.1 Poisson Equation Solution with a single rectangular spectral element 

 

Four different Poisson Equations including different types of boundary conditions 

(such as Dirichlet (zero or non-zero), Neumann and Robin) are solved. 

 

4.1.1 Poisson equation with all zero Dirichlet boundaries 

 

Our first program’s purpose is to solve the Poisson Equation below 

  

2 2

2 2
10 sin(8 ( 1))

u u
x y

x y

∂ ∂
+ = × × −

∂ ∂
 on [ 1,1] [ 1,1]Ω∈ − × −  (4.1) 

 

u(-1, y) = 0, u(1, y) = 0 (4.2) 

  

u(x, -1)= 0, u(x, 1) = 0 on the Dirichlet(essential) boundaries (4.2a) 

  

The problem is taken from [1]. It is on a rectangular domain. From Fig 3.2, the grid’s 

middle part is sparser than equispaced grid, because the nodes are collocated near the 

boundaries as a feature of the roots of the orthogonal polynomials. For plotting, the 

problem is interpolated to more equispaced points. (Section 3.1.10) 
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Domain with a single rectangular spectral element is a problem that element stiffness 

matrix equals to the assembled stiffness matrix. Spectral method is used as 

benchmark for some problems especially domain with a single rectangular spectral 

element. Both of the methods have got a degree of N=24. For domains x∈ [1,-1] and 

y∈ [1,-1] the solution is calculated at same collocation points for both of the 

methods. The results must be same for same collocation points (Gauss Lobatto 

Legendre points). For N=24 degree of polynomials 625 collocation points are on the 

solution domain, 96 of the collocation points belong to the zero Dirichlet boundaries. 

U is calculated at 529 collocation points. The results are same up to 14 decimal 

digits. 

 

If an even number N=24 was not chosen as the degree of the method, there wouldn’t 

be any nodes (collocation points) on the midlines of the domain which are x=0 and 

y=0. 
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Figure 4.1 3D Solution graph of (4.1) for N=24 with a single rectangular spectral 

element. The bold line is u(0,y)=0 line.  
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Figure 4.1b Contour plot of the solution of (4.1) for N=24 with a single rectangular 

spectral element. The midline is u(0,y)=0 line.  
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Figure 4.1c Contour plot of the solution of (4.1) for N=24 with a single rectangular 

spectral element. The contour lines are less curvy.  
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Figure 4.1d 3D Solution graph of (4.1) plotted on Gauss Lobatto Legendre grid for 

N=24 with a single rectangular spectral element. The u(0,y)=0 line is 

smooth.  

 

 

The contours at the edges of the domain must not be broken. These errors seen in 

Fig. 4.1b are interpolation errors caused by interp2.m matlab built-in function. 

Because of that, the same graphs are plotted without interpolation. In Fig. 4.1c none 

of the contour lines are broken at y=0 line. On the midline u(0,y)=0 line the 

computation zeros change within the interval of -1.8788 1510−×  and near the 

boundary -1.4084 1510−×  . 

 

4.1.2 Poisson equation with zero Neumann boundaries 

 

Our second purpose is to solve the problem from [4] 

 

2 2

2 2
1

u u

x y

∂ ∂
+ = −

∂ ∂
 (4.3) 
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u (1,y)=0,  u(x,1)=0, 0<x, y<1 on the Dirichlet(essential) boundaries (4.3a) 

xu (0, y)=0 yu (x, 0) =0 as shown in the FEM solution of the graph (4.3b) 

 

4.1.2.1 The comparison of FEM and SEM     
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Figure 4.2 Finite element solution of Equation (4.3) with 16 linear rectangular

  element 

 

Low order finite element method solutions can be used as a preconditioner for SEM. 

The vertical and horizontal lines are boundaries (edges) of the linear elements and the 

intersections of the lines are the nodes of the elements. From Figure 4.2, the plot of 

the solution has one hill at the coordinate of (0, 0). The value of u increases from    

(1, 1) to (0, 0) through the diagonal. There are five nodes on this diagonal and the 

increase is from 0 to 0.3125.  
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In this example, FEM has achieved the success of finding the characteristic of the 

solution. However, there is a problem at zero Neumann boundaries. The contours of 

0.25, 0.2 and 0.15 are not perpendicular to x=0 and y=0 line. As a result of using first 

order FEM, the contours are made up of linear lines. It’s like a light ray has broken 

while changing its environment. 
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Figure 4.3 Contour graph of the spectral element solution of (4.3) with a single 

rectangular element for the order of N=24. 

 

All of the contours are perpendicular to the zero Neumann boundaries at the solution 

graph of domain with a single spectral element. The graphs of SEM and FEM looks 

like same except this feature. The vertical and horizontal lines were drawn to show 

the success of FEM as a preconditioner.  
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Figure 4.3b 3D graph of the solution of (4.3). 

 

In Fig. 4.3b, the solution at (0, 0) is parallel to the x-y plane at the intersection of 

zero Neumann boundaries because the derivative of u to x and y is equal to zero. 

From both of the Figures 4.2 and 4.3, the solution of u is symmetric to the diagonal 

between (0, 0) and (1, 1) so this line is line of symmetry. On lines of symmetry the 

normal derivative of the solution is zero [4] as a result the solution contours are 

perpendicular to the line of symmetry in both of the Figures 4.2 and 4.3. 

 

4.1.3 Steady Conduction Equation with a Convection face (Robin BC)   

 

Consider the following two-dimensional steady conduction equation with a thermal 

conductivity k=20 /W mK and heat generation 115 10 sin(8 ( 1))q x y= × × × − 3/W m . 

 

2k T q− ∇ =   on [ 1,1] [ 1,1]Ω ∈ − × −  (4.1.3.1) 

          

T(-1,y) = 300 K     on Γ (left face) (4.1.3.2a) 
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  T(1,y) = 400 K     on Γ ( right face) (4.1.3.2b) 

( , 1)T x

y

∂ −

∂
 = 0     on Γ ( down face is insulated) (4.1.3.2c) 

 

Robin (mixed) BC is up face with convection heat transfer and written as 

( ,1)
( ( ,1) )

T x
k h T x T

y
∞

∂
= −

∂
 on Γ (up face) (4.1.3.3) 

 

Up face is exposed to a convection process with T∞ =300K and h=100 W/ 2
m K. 

Domain’s area is 4 mm 2 . The steady conduction equation will be 

 

2 2000 sin(8 ( 1))T x y∇ = − × × −   on [ 1,1] [ 1,1]Ω∈ − × −  (4.1.3.1a) 

 

Convected face forming Robin BC Equation (4.1.3.3) combines the Neumann and 

Dirichlet boundary conditions as a result its implementation will be a modification 

and connection of them. Poisson equations with Robin boundary conditions are 

implemented like 

 

upface=find(yy==1); 

upface=upface(2:N); 

DNBC = kron(D,I); 

for i=1:23 

DNBC(upface(i),upface(i))=DNBC(upface(i),upface(i))-5; 

end 

delta(upface,:)=DNBC(upface,:); 

RHS(upface)=-1500; 

 

The temperature contours are called as isotherms. The angle between the up edge and 

the isotherms of T=380, 360, 340 and 320 K over hill are less than right angle as seen 

in Fig. 4.4a. This feature is similar to the Table 2.1 of Incropera and DeWitt [37]. 

The isotherms are turning around themselves at the local maximum (heat generation) 

and minimum (heat sink) values of the q heat generation function to form a bottom at 

(-0.4649, 0.6264) and a hill by closing as seen in Fig. 4.4. The directions of the heat 
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fluxes at T=420 K isotherm are from hill to up face and bottom in the hollow of the 

T=240 K isotherm. The direction of the heat flux is always from hot places to cold 

places. Therefore, all of the heat flux vectors are perpendicular (normal) to isotherms. 

The ends of the isotherms at the down face are perpendicular to the y = 0 line (down 

face) as a feature of homogeneous Neumann boundary conditions. 
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Figure 4.4a Isotherms of the spectral element solution of Equation (4.1.3.1a) with 

a single rectangular element for the order of N=32. The solution is 

plotted without interpolation. 
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The negative values of q function are called as heat sink where thermal energy is 

being consumed. The positive values of q heat generation function are also called as 

energy source term where thermal energy is being generated. The plot of the q/k 

function is anti-symmetric about x=0 line as seen in Fig. 4.4b. 
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Figure 4.4b Contour graph of the RHS of Equation (4.1.3.1a) with a single 

rectangular element for the order of N=32. The solution is plotted 

without interpolation. 
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Figure 4.4c 3D spectral element solution graph of Equation (4.1.3.1) for N=32 

with a single rectangular spectral element.  
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4.1.4 Poisson Equation with all nonzero Dirichlet boundary conditions 

 

Consider the following two-dimensional steady Poisson equation with Dirichlet 

boundary conditions from [5] 

 

2u f−∇ =   on [0,1] [0,1]Ω ∈ ×  (4.4a) 

          

exactu u=  on Γ  (4.4b) 

 

The following force function 

2 2 2 2

2 2
4 sin(4 ) 4 cos(4 )π π π π

   ∂ ∂ ∂ ∂   
= + + +       ∂ ∂ ∂ ∂      

A A A A
f A A

x x x y
 (4.4c) 

 

Results in the exact solution of 

sin(4 )exactu Aπ=  (4.4d) 

        

where  

       

2 2( 2) ( 2)A x y= − + −  (4.4e) 

 

From Equation (4.4d), the exact solution is a sine function so it is periodic as a result 

periodicity is seen at the diagonal line between (0, 0) and (1, 1) in Fig. 4.5. 
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Figure 4.5 SEM solution for a single element with a degree of N = 24.  

 

4.2 Poisson Equation solution with multi elements 

 

Three meshes are used as seen in Fig. 3.5, 3.10 and 3.12. All of the global stiffness 

matrices of the three meshes are made up of assembling same size of matrices but 

Rectangular element stiffness matrices are sparser than quadrilateral element stiffness 

matrices. If a stiffness matrix has a value or values smaller than 1.0 1510−×  this value 

won’t be assembled to the assembled stiffness matrix as a result Mesh1’s assembled 

stiffness matrix is sparser than the assembled quadrilateral element stiffness matrices. 

For N=12 local stiffness matrices have got a size of 169×169. After assembling local 

stiffness matrices and local load vectors, the size of the assembled stiffness matrix is 

481×481 for all of them.  

 

Point per wavelength (ppw) is an important issue for spectral methods. At first mesh 

there are three same rectangular elements. The number of nodes per area is all same 

for both of the elements of Mesh 1. On the line of x=0.75 three half wavelength is 
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seen in Fig. 4.6 and for degree of N=12 or larger the largest error is seen at the 2nd 

element. That’s why the errors at x=0.75 have been plotted. In mesh2 right face of 

the 1st element is drawn at the center of (0, 0) with a radius of 2 /2. While 

decreasing the area of 2
nd

 element, Node per area of 2nd element increased. 

2 1 3EL EL ELNPA NPA NPA< <  
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Figure 4.6 The results of the solution for the Mesh 1 made up of three elements 

with a degree of 12. Blue lines are element boundaries. 

 

4.2.1 Arc edged Curvilinear Quadrilateral Element 

 

Jacobi matrix is used to find quadrilateral element’s local stiffness matrix. By using 

the determinant of the Jacobi matrix the exact area of the element must be found.  

 

1 1

1 1

( )A J r drds
− −

= ∫ ∫  
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Here J(r) is the determinant of Jacobi matrix. Dividing rectangular domain to 

rectangular elements is not an obligation. Changing size or the type of the element 

like quadrilateral element is a way to achieve or obtain better. Rectangular domain is 

divided to complex elements to control the success of the Jacobi mapping. 

 

Figure 4.7, the contour graph of the solution is smoother than the Figure 4.8. The 2nd 

element with two arc face has the same area as the rectangular one. Arc upper face is 

needless because of the accuracy decreased by Jacobi mapping. Calculating element 

matrices will consume much more time if more face needs Jacobi mapping. 

-0.8

-0.8

-0.8

-0.8

-0.8

-0.8

-0.8

-0.6

-0.6

-0.6 -0.6

-0.6

-0.6

-0.6
-0.4

-0.4

-0.4
-0.4

-0.4

-0.4

-0.4 -0.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0.2 0

0

0
0

0

0

0
0.2

0.2
0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

0.4
0.6

0.6

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

0.8

0.8

-0.8

-0.8

-0.8

-0.8

-0.6

-0.6

-0.6

-0.6

-0.4

-0.4-0.4

-0.4

-0.2

-0.2

-0.2

-0.2

-0.2

0

0

0

0

0

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

y

x

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Figure 4.7 The results of the solution for the Mesh 2 made up of three elements 

with a degree of 12 as seen in Fig. 3.10. Blue lines are element 

boundaries. 

 

The results are better and Fig 4.9 looks like 1D SEM solution in Fig. A.1. The Jacobi 

mapping is tested by dividing the domain to arc faced elements as a benchmark. 
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Figure 4.8 The results of the solution for the Mesh 2 made up of three elements 

with a degree of 12 as seen in Fig. 3.12. Blue lines are element 

boundaries. 
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Figure 4.9 The errors of the results at x=0.75 line for mesh seen in Fig.3.5. 
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Figure 4.10 Spectral convergence obtained for Mesh 1 and 2 seen in Fig. 3.5 and 3.10 
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Figure 4.11 H1 errors for mesh 2 seen in Fig. 3.10. 
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The area of the domain of the single element and the other three meshes are different, 

so the Table 4.1 is not drawn for degree of freedom. The mesh of Fig. 4.5 with a 

degree of N=24 is as same as Fig. 3.2 except the domain of Fig. 4.5 spans the area 

[0,1] [0,1]Ω∈ ×  and the mesh of Fig. 4.6 is the Fig. 3.5 with an element degree of 

N=12. Both of the meshes of the Fig 4.5 and Fig. 4.6 have same number of nodes per 

unit area. The accuracy achieved with less nodes for a single element. This is not 

amazing, 1D SEM solution with a single element is also better than domain with 

more elements for 1D periodic problem. It is seen in Fig. A.1 in Appendix A. It is 

normal because it is first designed to solve channel expansion. Its capacity is seen a 

problem like in Fig. A.2 or discontinuous problems like 1D shock. SEM is not 

invented for steady diffusion problems. 

 

Table 4.1 Maximum absolute relative error of Poisson Equation (4.4)               

for the entire domain 

 

N Single 

element 

Mesh 1 

(Fig. 3.5) 

Mesh 2  

(Fig. 3.10) 

Mesh 3 

(Fig.3.12) 

2  1.1403 1.5663 1.6623 

4 0.4404 1.2798 1.4389 0.2263 

6 0.0724 0.0089 0.0069 0.1404 

8 0.0548 1.8059 410−×  5.6197 410−×  0.0572 

10 0.0029 2.4784 610−×  3.0437 510−×  0.0148 

12 1.2073 410−×  4.5781 710−×  2.6920 610−×  5.7047 610−×  

16 3.7225 710−×  2.5270 1110−×  2.0046 810−×  4.8677 810−×  

20 4.0880 1010−×  2.0249 1210−×  1.4206 1010−×  1.4862 1010−×  

24 2.6689 1110−×  2.6145 1010−×  3.7651 1110−×  1.2995 910−×  

28 1.2045 1110−×  2.5300 1110−×  2.3118 1110−×  1.1142 1010−×  

32 4.3815 1210−×  1.8417 1010−×  2.4370 1110−×  2.4050 1110−×  

36 3.6459 1110−×  2.0805 810−×  1.3703 810−×  5.5512 1110−×  

40 2.4293 1210−×  1.0802 910−×  9.2790 1110−×  6.8234 1010−×  
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Needless curvilinear quadrilateral element usage causes extra time consumption. The 

comparison for the accuracy of the second element is seen in Table 4.2. Mesh1 

reaches the lowest error for 2
nd

 element with a degree of N=20. Mesh2 passes mesh1 

only for N=12. Mesh1 is the first which reaches the computation zero for N=16. 

Curvy elements must only be used to discretize the curvy boundaries of the domain.  

 

Table 4.2 Maximum absolute relative error for the entire of the second element 

 

N Mesh 1 

(Fig. 3.5) 

Mesh 2  

(Fig. 3.10) 

Mesh 3 (Fig.3.12) 

2 0.5167 0.3723 0.2168 

4 0.0606 0.0206 0.1006 

6 0.0090 0.0016 0.0061 

8 1.8824 510−×  2.0467 510−×  1.0748 410−×  

10 1.4186 710−×  4.4625 710−×  3.4713 510−×  

12 4.5781 710−×  7.2291 810−×  1.0107 610−×  

16 8.0173 1410−×  1.3504 1010−×  1.1937 910−×  

20 5.8280 1410−×  5.1680 1310−×  2.2909 1110−×  

24 1.0122 1210−×  1.5530 1310−×  2.2068 1310−×  

28 4.7380 1310−×  6.3631 1310−×  1.7309 1310−×  

32 1.4405 1210−×  2.8633 1210−×  1.3065 1310−×  

36 3.0318 1110−×  1.5288 1110−×  4.3030 1310−×  

40 8.4921 1110−×  6.9665 1210−×  3.2235 1210−×  

 

The accuracy of four element passes the accuracy of a single element for DOF=28 in 

Table 4.3. Four element reaches the computation zero for DOF=32. However, mesh1 

and mesh with four elements have equal degree and node per area, mesh with four 

elements is better. The question is why mesh1 can not reach this accuracy and 

computation zero. Mesh1 in Fig.3.5 has an inner corner like lid-driven cavity 

problem. The effect of the geometric singularity is occurred at the inner corner of the 

three meshes of the Poisson Equation so it can not reach the computation zero. To 

increase the node per area, the area of the 2
nd

 element is decreased by changing its 
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shape as seen in Fig. 3.10. Constructing mesh2 in Fig. 3.10 or mesh3 in Fig.3.12 

causes higher errors like 2.4370 1110−×  or 2.4050 1110−×  as seen in Table 4.1 for the 

entire domain and the little fluctuations have seen at the contour lines of the Fig. 

4.18, so usage of the curvilinear quadrilateral element is not a solution for the 

geometric singularity. It increases the band size and density as seen in the sparsity 

graphs of Fig. 3.11 and Fig. 3.13 as a result the evaluation time is increased.   

 

Spectral and spectral element methods suffer more from the geometric singularities 

such as corners or discontinuities inherent in the solution such as shock waves. Here, 

all boundaries are continuous (u=uexact), therefore singularities are due to the inner 

corner in the domain of Fig. 4.6, 4.7 and 4.8. Pathria and Karniadakis [23] suggests 

auxiliary mapping to achieve exponential convergence. 

 

 

Table 4.3 Maximum absolute relative error for DOF in the entire domain 

 

Degree of 

freedom (DOF) 

Single element 

DOF=N 

Four element 

DOF=N/2 

4 0.4404 1.0265 

8 0.0548 0.0247 

12 1.2073 410−×  4.5853 410−×  

16 3.7225 710−×  6.1216 610−×  

20 4.0880 1010−×  6.6509 810−×  

24 2.6689 1110−×  5.7290 1010−×  

28 1.2045 1110−×  5.1903 1210−×  

32 4.3815 1210−×  8.9262 1410−×  

36 3.6459 1110−×  6.8945 1410−×  

40 2.4293 1210−×  2.0461 1310−×  

 

 

Meshes with same DOF have same number of nodes in each direction and the entire 

of the domain. Four element mesh seen in Fig. 4.11b have 625 number of nodes like 
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the single element with an element degree N = 24. For single element, element 

degree and DOF are equal to each other. 
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Figure 4.11b The grid of the Mesh for DOF = 24 made up of four rectangular 

elements. The degree of each element is N = 12.  

 

 

4.3 Inviscid Flow Around a Circular Cylinder 

 

The irrotational flow of an ideal fluid about a circular cylinder, placed with its axis 

perpendicular to the plane of the flow between two horizontal walls. [4] 

          

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 (4.5) 

  

u(x,y)=0,      -1<x,y<1 on the Dirichlet(essential) boundaries (4.5a) 

 

The exact solution is found for the center of the circle as origin from [6].  
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2

2 2

2
sinh ( )sin( )

2

cosh ( ) cos ( )

H b y

H HU y
x y

H H

π π

πψ
π π

 
 

= − 
 −
 

 (4.6) 

 

   

H is the vertical distance between the two plates and b is the radius. Chung [6] 

warned that this analytical solution is not accurate for large values b/H ratio. For this 

problem b/H is 0.25 and the error is 2.34%. SEM solution is far more accurate so the 

comparison is needless to have an idea.  

 

 

 

Figure 4.12 Domain for the stream function and velocity potential formulations of 

inviscid (irrotational) flow about a cylinder. 

 

 

4.3.1 Stream function formulation 

 

Because of symmetry about horizontal and vertical lines, a quadrant is enough to 

model the solution.  

 

The boundary conditions on the stream function ψ  can be determined as follows in 

Fig 4.13. Streamlines have the property that flow perpendicular to them is zero. 
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Figure 4.13 Computational domain and boundary conditions for the stream 

function formulation irrotational flow around a cylinder.  

 

 

All contour lines should go to the up. Any line mustn’t be seen as going down. It is 

seen at lower order FEM solution [4]. The domain is sliced two quadrilateral spectral 

elements from the diagonal passes through the center of the circle. From Fig. 4.14, 

none of the contour lines are seen broken down through the element boundary 

diagonal. 
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Figure 4.14 SEM solution of stream function with the BC’s shown for two 

elements with the order of N=12. 
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From Fig. 4.14, all contour lines are perpendicular to zero Neumann BC at the x=4 

line. All contour lines are smooth, no fluctuations are seen. Stream function is 

implemented and plotted by streamfunction.m as seen in Appendix E. 

 

4.3.2 Velocity potential formulation 

 

2 2

2 2
0

x y

φ φ∂ ∂
+ =

∂ ∂
 (4.7) 

 

The boundary conditions are shown in Fig. 4.15. The nonzero Neumann boundary is 

the EA edge of the quadrant domain. 
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∂
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Figure 4.15 Computational domain and boundary conditions for the velocity 

potential formulation around cylinder.  

 

 



 92

0
0

0

0
.5

0
.5

1
1

1
. 5

1
.5

2
2

2

2
.5

2
. 5

3
3

3
. 5

4

4
.5

2
.5

3
3

3
.5

3
. 5

4
4

4

4
.5

4
.5

4
.5

y

x

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

Figure 4.16 Velocity potentials are plotted for N=12. Same mesh is used in Fig. 

3.15. 

 

From Fig. 4.16, all contours are perpendicular to zero Neumann BC at the y=0 line 

and the arc line. At point (3, 0) there is a connection of zero Neumann BC’s as a 

result the contour seems like that.  
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Figure 4.17 The figures of 4.14 and 4.16 plotted together to show the accuracy. 

 

From Fig. 4.17, velocity potentials are perpendicular to the streamlines as expected. 
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4.4 Helmholtz Equation 

 

4.4.1 Helmholtz Equation with a single element 

 

A variation of the Poisson equation is the Helmholtz equation from [1]. 

 

2 ( , )xx yyu u k u f x y+ + = , -1 < x, y < 1, on the boundary u = 0 k=9 (4.8) 

 

The problem is on the rectangular domain. This equation arises in the analysis of 

wave propagation governed by the equation 

 

( , )ikt

tt xx yyU U U e f x y− + + =  4.4.1.1 

 

after separation of variables to get ( , , ) ( , )iktU x y t e u x y= . Program of Helmhholtz 

equation is a minor modification of Poisson Equation on the rectangular geometry to 

solve such a problem for the particular choices 

 

k = 9, 

2

2 1
( , ) exp( 10[( 1) ])

2
f x y y x

 
= − − + − 

 
 (4.8a) 

 

The modification on the code 

 

delta=-(kron(RHS2,df2(2:N,2:N))+kron(df2(2:N,2:N),RHS2))+k^2*s; 

 

Degree of GLL polynomials is chosen as even number to have odd number of nodes. 

Element with odd numbered nodes have a node at the midpoint of the element. We 

delete the rows and columns belong to the Dirichlet boundary condition in the 

differentiation matrix. Solution graphs are plotted as two types. One is 2D contour 

the other is 3D graph of the results on the solution domain. Our domain is x = [-1, 1] 

and y = [-1, 1]. Therefore, it’s important what happened at x=0, y=0. Therefore, the 

even number is chosen because of this.   
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The solution appears as a 3D mesh plot in Fig. 4.18 and as a contour plot in Fig. 4.19. 

It is clear that the response generated by this forcing function f(x, y) for this value 

k=9 has approximately the form of a wave with three half-wavelengths in the x 

direction and five half-wavelengths in the y direction. This is easily explained. Such 

a wave is an eigenfunction of the homogeneous Helmholtz problem  
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Figure 4.18  3D graph of the solution of 2 ( , )xx yyu u k u f x y+ + =  
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Figure 4.19 Contour graph of the solution of 2 ( , )
xx yy

u u k u f x y+ + =  

 

4.4.2 Helmholtz Equation with more elements 

 

Consider the following two-dimensional Helmholtz equation with Dirichlet boundary 

conditions and λ =1 

2 2

2 2

u u
u f

x y

∂ ∂
+ + =

∂ ∂
  on [ 1,1] [ 1,1]Ω∈ − × −  (4.9) 

        

exactu u=  on Γ  (4.9a) 

 

Results in the exact solution of 

 

sin( )cos( )exactu x yπ π=  (4.9b) 

 

Helmholtz Equation (4.9) that we know its exact solution is a problem from 

Karniadakis’s book [2]. Helmholtz equation’s f function has been calculated from a 
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known u function ( , ) sin( ) cos( )u x y x yπ π=  by using symbolic differentiation feature 

of MATLAB as f=-(diff(u,xx,2)+diff(u,yy,2))+u . 

 

The domain is sliced from x and y axis so four elements are used to represent the 

solution domain. From Fig. 4.20 the function’s solution is symmetric to x axis.  

 

The highest error is at x=0.5 and y=0.076826, and the second highest is at x=-0.5 and 

y=0.076826 in Fig. 4.21 for N=12. The highest error is found at the local x axis of 

the element and lower part. Examining the results from array editor of The Matlab, 

the largest errors are near the top of the hill and near the lowest part of the hollow. 

The peak of the hills and the bottom of the hollows are at the middle of the boundary 

(connection) line of the elements. The contour graphs seen in Figures 4.20, 4.21 and 

4.22 are including four quarter wave-lengths and two half wave-lengths. 

 

Also at the hill or at the bottom points of the contour graphs seen in Figures 4.20, 

4.21 and 4.22 the derivative of the exact solution is equal to zero. When thinking the 

first element sliced from local x and y axis, lower left part looks like FEM example 

so the mesh is not dense enough at these hills and hollows. 

 

From Fig. 4.20 it is seen that there are zero lines at y=0.5, y=-0.5 and x = 0. From 

Figures 4.21 and 4.22 it is seen that there is a gap between the zero lines for N=12 

and N=18. The gaps of N=12 is wider than the gaps of N=18. At x=0 u=0, at y=0.5 

and y=-0.5 u=0 so there must be a zero line. For N=32 the zero line is continuous in 

Fig. 4.20. For N=18 there is not an intersection plus at (0, 0.5) and (0, -0.5) but the 

error found is less than N=32. 

 

Spectral methods have some difficulties to solve problems with sharp corners like hat 

function. For N=12 and N=18 the same difficulty has been seen at the coordinates of 

(0,-0.5) and (0, 0.5). These are the middle of the boundary line of the element. 
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Figure 4.20 Spectral Element Solution graph of the Helmholtz equation 

( , )xx yyu u u f x yλ+ + = with 4 elements with the order of N=32. Blue 

lines are element boundaries. 

 

u=0 lines must intersect with a right angle. It is seen at the Fig. 4.20 for N=32. The 

edges of the 0.8 contour circle couldn’t intersect with a right angle for Fig 4.21 of N 

= 12 which means the solution is not enough. The smooth 0.8 curve contour is seen 

for Fig. 4.20 of N = 32. For N=32 the contour lines are seen clearly perpendicular to 

the x axis as a feature of line of symmetry. 
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Figure 4.21 Spectral Element Solution graph of the Helmholtz equation 

( , )xx yyu u u f x yλ+ + = with 4 elements with the order of N=12. 

Element boundaries are same so they are not drawn to see the graph 

better. 

 

For Fig. 4.21, at the coordinates of (-0.5, 0) and (0.5, 0) a point is seen as contour 

have a value of 1. From Fig. 4.22 the solution loses hill point at (0.5, 0) as for N=32. 

None of the hills can be seen in Fig. 4.20 for N=32.  
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Figure 4.22 Spectral Element Solution graph of the Helmholtz equation 

( , )xx yyu u u f x yλ+ + = with 4 elements with the order of N=18. 

Element boundaries are same so they are not drawn to see the graph 

better. 
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N=18 

 

Figure 4.23 The figures of 4.21 and 4.22 are drawn together to see the difference. 
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Another difference is zero lines surrounding the hill. For N=12 zero lines surround 

the negative hill at the negative x. For N=18 zero lines surround the positive hill at 

the positive x. 
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Figure 4.24 3D graph of the solution to the Equation (4.9), (4.9a) and (4.9b) to 

show the hills and hollows 

 

The Dirichlet BC’s are included in the solution by making the related row and 

column 1 and the others in the related row is zero. Therefore, the related rows of the 

RHS are equal to uexact. 
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CHAPTER 5 

 

CONCLUSION 

 

 

A spectral element solver program using MATLAB is developed for the solution of 

Poisson and Helmholtz equations. Element stiffness matrices and element mass 

matrices are evaluated for both of the isoparametric quadrilateral and rectangular 

elements to form steady diffusion and Helmholtz operators with this program. 

 

The steady diffusion operator, which is equal to rectangular element stiffness matrix 

for a single element is used to solve the Poisson problems including both of the 

Dirichlet and Neumann boundary conditions which are homogeneous or 

nonhomogeneous. The steady diffusion operators of domains with more than one 

element are solved with the global stiffness matrix, which is the result of assembled 

element stiffness matrices. 

 

The implementation of the quadrilateral element stiffness matrix evaluation is 

presented. Quadrilateral element formula is first tested on the mesh with rectangular 

elements. The results are discussed. The contour lines are smooth and there are no 

broken line is seen at the common element boundaries.  

 

The local stiffness matrices of square element that are calculated with the 

quadrilateral element formulas are full matrices. When the rectangular element 

formulas are used, the matrices will have less band size and density. If a component 

of the matrix is less than a threshold value, it is declared as zero. With this threshold 

value of 1.0 1310−× , both of the element matrices will be the same and have the same 

sparsity shown in Fig 3.7. The computation zero is 1.0 1310−× . 
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The features, capacity and accuracy of curvilinear quadrilateral elements with single 

or two curvy edges investigated. As a result curvilinear quadrilateral elements have 

to be used to discretise curvy boundaries of the deformed domains. 

 

The accuracy of the four element solution passes the single element for DOF=28. 

The four element reaches the computation zero for DOF=32 in Table 4.3. This means 

the assembly of the local stiffness matrices are done correctly.  

 

Inviscid flow around a cylinder is a problem that the use of curvilinear quadrilateral 

is a must. From he contour graph of the stream function, it is seen that all contours 

are perpendicular to zero Neumann BC at the y=0 line and the arc line. The contour 

lines are smooth and no broken line is seen at the common element boundaries. 

Velocity potential formulation is a problem with nonhomogeneous Neumann 

boundary conditions. Here, two dimensional first order differentiation matrix is 

successfully evaluated and used. The obtained velocity potentials are perpendicular 

to the streamlines. 

 

Helmholtz equation is solved with a single rectangular element. The formulas for the 

evaluation of Helmholtz operator are discussed. The implementation of Helmholtz 

equation is presented. Rectangular element formulas are used to evaluate Helmholtz 

operator. The results are plotted as both 3D and contour graphs. 

 

The accuracy of the Helmholtz operator that is evaluated by quadrilateral element 

formulas for the domain with more elements is tested. All obtained u=0 lines 

intersect with a right angle for N=32. For N=32, the contour lines are seen clearly 

perpendicular to the x axis as a feature of the line of symmetry. 

 

The element load vectors of Poisson and the Helmholtz equation are evaluated and 

assembled to construct the global load vector. This is also an important part of the 

solution of the Partial Differential Equations.  

 

Developed spectral element code is benchmarked. For the implementation of spectral 

element methods, MATLAB built-in functions and MATLAB function libraries of 

the spectral methods in the literature are used. MATLAB is a powerful tool that 
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lowers the implementation work load. Especially, the implementations of matrix 

operations are easy with its built-in functions. The suitability of MATLAB for 

spectral element methods is investigated. MATLAB is ready for the spectral element 

method with its matlab built-in functions and its spectral methods library provided by 

scientists and researchers. Also, its plotting feature is useful for post-processing the 

results. 

 

The main background of the spectral element methods is discussed. Therefore, this 

thesis can be easily developed and expanded for the solution of Stokes, Advection-

diffusion and Navier-Stokes Equations.  
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Appendix A: Results of 1D SEM solution 

 

 

 

This problem is the 5
th

 homework of Tarman [8]. Figures A.1 and A.2 are my 

homework results of problem (A) and (B). 
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Figure A.1 Errors of the 1D spectral element solution of problem (A) for same 

number of nodes in the interval [-1, 1]. 1 elm for N=24, 2 elm for 

N=12, 3 elm for N=8 and 4 elm for N=6. 
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Figure A.2 Errors of 1D spectral element solution of problem (B) for same 

number of nodes in the interval [-1, 1]. 1 elm for N=24, 2 elm for 

N=12, 3 elm for N=8 and 4 elm for N=6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 112 

 

 

 

 

Appendix B: 1D Expansion Bases 

 

Most of the Appendix B belongs to Karniadakis and Sherwin [2]. Some of the parts 

and equations of Appendix B.2.2 are from Tarman [8] and cited in the Appendix 

B.2.2. 

 

B.1 Expansion Bases: h-p type approximation 

 

Essential part of constructing different expansion bases will be to introduce a 

standard elemental region within which the standard expansions will be defined. 

Assembly procedure of the global expansion bases from these local definitions. This 

type of elemental construction also provides an efficient way to numerically 

implement the spectral h-p element technique once integration and differentiation of 

polynomial functions have been understood. 

 

B.1.1 Elemental Decomposition: h-type extension 

 

In the h-type method, a fixed order polynomial is used in every polynomial and 

convergence is achieved by reducing the size of the elements. This is the so-called h-

type extension, where h represents the characteristic size of an element (subdomain) 

means its length in one dimension. This type of extension aids in geometric 

flexibility, especially in high dimensions. 

 

u is constructed from a class of functions which are 0
C continuous in the domain Ω , 

however at the boundary between the elements the derivative may be discontinuous. 

It can be shown that, upon convergence to the exact solution when h become smaller 

(as h→0) the jump in the in the derivative across inter element boundaries become 

zero and that the Neumann condition is exactly satisfied. 
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B.1.2 Polynomial expansion: the p-type extension 

 

In the p-type method, a fixed mesh is used, it means h kept fixed and convergence is 

achieved by increasing the order of the polynomial expansion in every element. This 

is the so-called p-type extension where p represents the expansion order in the 

elements. 

 

If the whole solution domain is treated as a single element, then the p-type method 

becomes a spectral method.  [8, 16] 

 

Recalling the definition of the standard element, 
stΩ  and the coordinate mapping 

x( 1 2,ξ ξ ) from stΩ to an elemental region eΩ , if P
deg

( )
N st

Ω  denotes the space of all 

polynomials of degree 
degN defined on the standard element stΩ . The discrete h-p 

expansion space Nχ  is the set of all functions Nu  which exists in 1H  and that are 

polynomials in 
1 2,ξ ξ  within every element which is written as 

 

Nχ = { Nu | 1

Nu H∈ , 1 2( ( , ))e

Nu x ξ ξ ∈ P
deg

( )
N st

Ω , e=1,…, elN  } (B.1.2.1) 

 

This definition allows both the mapping x( 1 2,ξ ξ ) and the polynomial order degN  to 

vary within each element e thereby permitting both h-type refinement, which alters  

x 1 2( , )e ξ ξ  capability and elN , p-type refinement, which alters deg

e
N . This is known as 

h-p type approximation. 

 

Our main concern is polynomial expansion. Traditionally, the finite element method 

has always used polynomial expansions. This may be attributed to the historical use 

of Taylor series expansions which allow analytical functions to be expressed in terms 

of polynomials. 
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B.1.2.1 Modal and nodal expansions 

 

To illustrate the difference between a modal and nodal polynomial expansion, three 

expansion sets are introduced which are denoted by ( )A

p xΦ , ( )B

p xΦ  and ( )C

p xΦ  

(0 p≤ ≤ P), in the region 
stΩ ={x | -1 x≤ ≤ 1}. All of these expansions represent a 

complete set of polynomials up to order P and are mathematically defined as 

 

( )A p

p x xΦ = , p = 0,…, P (B.1.2.2) 

       

0,

0,

( )

( )

( )

P

q

q q pB

p P

p q

q q p

x x

x

x x

= ≠

= ≠

−

Φ =

−

∏

∏
, p=0,…, P (B.1.2.3) 

 

( ) ( )C

p px L xΦ = , p=0,…, P (B.1.2.4) 

  

The first expansion set simply increase the order of the x in a monomial fashion. It is 

called moment expansion (each order contributing an extra moment the expansion). 

This basis is referred to as a modal or a hierarchical expansion because the expansion 

set of order P-1 contained within the expansion set of order P. There is a notion of 

hierarchy in the sense that higher-order expansion sets are built from the lower-order 

expansion sets. 

 

The second polynomial ( )B

p xΦ  is a Lagrange polynomial which is based on a series 

of P+1 nodal points qx  which are chosen beforehand and could be, for example, 

equispaced in the interval. The Lagrange polynomial is a non-hierarchical basis (that 

is, 1

N N

P Pχ χ +⊄ ) because it consists of P+1 polynomials of order P. This can be 

contrasted with hierarchical expansion ( )A

p xΦ which consists of polynomials of 

increasing order. The Lagrange basis has the notable property that ( )B

p q pqx δΦ = , 

where pqδ represents the Kronecker delta. This property implies that 
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0 0

ˆ ˆ ˆ( ) ( )
P P

N B

q p p q p pq q

p p

u x u x u uδ
= =

= Φ = =∑ ∑  (B.1.2.5) 

 

where it is seen that the expansion coefficient ˆ
pu  can be defined in terms of the 

approximate solution at the point qx . 

 

The coefficients, therefore, have a physical interpretation in that represent the 

approximate solution at the points qx . The point qx  are referred to a node and the 

Lagrange expansion basis is referred as a nodal expansion, linear finite elements are 

an example of a nodal expansion where the nodal points are at the ends of the 

domain. 

 

A distinction between a nodal expansion and the collocation method (or collocation 

projection) is drawn. In the collocation method, the equation being solved is exactly 

satisfied at the collocation points where as in a nodal expansion the expansion 

coefficients represent the approximate solution at a given set of nodes. However, a 

nodal expansion can be used in different types of methods such as the Galerkin or 

collocation method. It must be remembered that an approximate solution using a 

nodal expansion base does not satisfy equation exactly at the nodal points. 

 

The final expansion, ( )C

p xΦ  is also a hierarchical or modal expansion however, in this 

case the expansion is the Legendre polynomial ( )pL x . By definition, this polynomial 

is orthogonal in the Legendre inner product 

  

1

1

2
( ( ), ( )) ( ) ( )

2 1
p q p q pqL x L x L x L x dx

p
δ

−

= =
+∫  (B.1.2.6) 

 

Orthogonality has important numerical implication for the galerkin method. 
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B.1.2.2 Choice of an expansion set 

 

Choice of an expansion set is influenced by its numerical efficiency, conditioning, 

and the linear independence of the basis, as well as its approximation properties. To 

illustrate some of these factors, the three expansion set ( )A

p xΦ , ( )B

p xΦ  and 

( )C

p xΦ will be considered in Galerkin projection. 

 

The Galerkin or 2L  projection of a smooth function f(x) in the domain onto the 

polynomial expansion ( )N
u x  is the solution to the following problem find N N

u χ∈  

such that 

 

The moment expansion ( )A

p xΦ  produces a mass matrix which has components 

(0 ,p q≤ ≤ P) of the form 

 

M[p][q]=( A

pΦ , A

qΦ ) =

11 1

1 1
1

p q
p q x

x x dx
p q

+ +

− −

 
=  

+ + 
∫   

                                     =

2
,

1

0,

p q even
p q

p q odd

 
+ 

+ + 
 + 

 (B.1.2.7) 

 

Therefore, when constructing M using this basis we need only calculate half of the 

components. However, the inverse will still be full and the cost of inverting the 

matrix is typically the dominant operation. 

 

The second expansion ( )B

p xΦ   is the Lagrange polynomial and so it is associated 

with a set of nodal points qx . As a common feature of finite element the nodes are 

defined equispaced in the domain stΩ , and so in the interval qx =2q/P-1. If Gaussian 

quadrature is used, the mass matrix will be full. The reason discussed later. It causes 

twice more time and memory consumption. Therefore, the construction of the mass 

matrix ( )B

p xΦ is twice as expensive as ( )A

p xΦ , although the matrix inversion won’t 

cause any change. [2] 



 117 

 

The third expansion ( )C

p xΦ  is the Legendre polynomial. If the gauss Legendre 

quadrature nodes and weights are used for the numerical integration, the mass matrix 

will be diagonal. The components of the matrix are 

 

M[p][q] = (ΦC

p , ΦC

q ) =

1

1

2
( ) ( )

2 1
p q pqL x L x dx

p
δ

−

=
+∫   (B.1.2.8) 

 

The construction and inversion of the diagonal mass matrix is the easiest as a result 

( )C

p xΦ  is the best of the three expansions if only it is thought from the numerical 

point of view.  It is noted, however, that the basis can not be easily extended to an 

elemental decomposition which is globally continuos since the continuity constraints 

destroy the orthogonality of the global matrix structure. 

 

If the local expansions were constructed so that only a few expansion modes have 

magnitude at an elemental boundary then the matching condition can be imposed far 

more easily. This type of decomposition is known as boundary and interior 

decomposition.  Boundary modes have magnitude at one of elemental boundaries and 

are zero at all boundaries as a known feature of FEM. Interior modes sometimes 

known as bubble modes, only have magnitude in the interior of the element are zero 

along all boundaries. The equispaced Lagrange expansion ( )B

p xΦ  already satisfies 

these conditions. If the nodal points did not include the end points then the boundary 

interior decomposition would not be possible. 

 

The poor conditioning of the basis ( )B

p xΦ  can be attributed to the high level of 

oscillations towards the end of the region, which can be seen at the graph Lagrangian 

interpolating polynomials for equispaced points in modes p=4 and p=6. These 

oscillations can be prevented by a better choice of nodal points so to obtain 

independently shaped modes with well-behave bounds, as shown by the modes of 

( )C

p xΦ  will be possible. 
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B.2 Nodal Polynomial expansions 

 

Polynomial nodal expansions are based upon the Lagrange polynomials which are 

associated with a set of nodal points. The nodal points must include the ends of the 

domain if the expansion is to be decomposed into boundary and interior modes. The 

choice of these points, however, plays an important role in the stability of the 

approximation.  

 

B.2.1 Lagrange polynomials 

 

Given a set of P+1 nodal points, denoted by 
qx  (0 p≤ ≤ P), the Lagrange polynomial 

( )ph x is the unique polynomial of order P which has a unit value at 
px  and is zero at 

qx  ( p q≠ ). This definition can be written as 

 

( )p q pqh x δ=  (B.2.1.1) 

 

where pqδ  is the Kronecker delta. Implementation clues will be in the 

implementation chapter. The Lagrange polynomial can also be written in product 

form as 

 

0,

0,

( )

( )

( )

P

q

q q p

p P

p q

q q p

x x

h x

x x

= ≠

= ≠

−

=

−

∏

∏
 (B.2.1.1a) 

 

If the polynomial of order P+1 with zeros at the P+1 nodal points qx  is denoted g(x), 

so ( )qh x  can be written as 

 

( )
( )

'( )( )
p
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 (B.2.1.2) 
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The Kronecker delta property shown in eqn (B.2.1.1) makes the Lagrange 

polynomial particularly useful as an interpolation basis. The Lagrange interpolant 

through the P+1 nodal points qx  is written as 

 

I
0

ˆ( ) ( )
P

p p p

p

h x u h x
=

=∑  (B.2.1.3) 

 

The interpolation approximation requires that Iu(
qx ) = u(

qx ) and, because of the 

property of ( )B

p xΦ  and Equation (B.2.1.1), this means that ˆ ( )p pu u x= . The 

interpolation approximation can be written as 

 

I
0

( ) ( ) ( )
P

p p p

p

h x u x h x
=

=∑  (B.2.1.4) 

 

If u(x) is a polynomial of order P then the relationship is exact. 

 

B.2.2 Nodal p-type basis: spectral elements 

 

A class of nodal p-type elements which is known and called as ‘spectral element’, 

due to Patera [10], use the Lagrange polynomial the zeros of the Gauss Lobatto 

polynomials. In the early version of the spectral element method the polynomials 

were Chebyshev type [15,10], but in later versions Legendre polynomials were 

selected for more accurate numerical quadratures [16]. This type of integration will 

be discussed.  

 

The elemental mass matrix using this expansion is full if the inner product is 

evaluated exactly. 

 

This type of integration is discussed in section 2.4.1, where using P+1 points give 

nodal points at the roots of the polynomial g ( ) (1 )(1 ) ' ( )PLξ ξ ξ ξ= − + . Substituting 

this into Eqn. (B.2.1.2)the nodal p-type expansion in the standard element stΩ . 
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'

1
( ) 0

( 1)( 1) ( )

p

p p

P

h p P
L otherwise

ξ ξ
φ ξ

ξ ξ ξ

= 
= ≤ ≤ 

− + 
  (B.2.2.1) 

 

where Eqn (B.2.2.2) is used to deduce . The derivative of the Legendre polynomial 

' ( )pL ξ can be related to the Jacobi polynomial 1,1

1( )PP ξ−  using the following equation 

 

, 1, 1

1

1
( ) ( 1) ( )

2
n n

d
P x n P x

dx

α β α βα β + +

−= + + +  (B.2.2.2) 

 

A class of nodal p-type elements, which are known as spectral elements due to 

Patera[10], use the Lagrange polynomial through the zeros of the Gauss-Lobatto 

polynomials, i.e 

 

deg

,( ) (1 )(1 ) ( ( ))N

d
g P

d

α βξ ξ ξ ξ
ξ

= − +  (B.2.2.3) 

 

where 
deg

, ( )NPα β ξ  is the degN th order of Jacobi polynomial. 

 

In the early version of the spectral element method, the polynomials were Chebyshev 

type ( 1/ 2α β= = − ) but in later versions Legendre polynomials ( 0α β= = ) were 

selected for more accurate numerical quadrature. [8] 

 

Now, that a nodal p-type expansion within each elemental domain can be constructed 

using the Lagrange interpolants through the zeros of the Gauss-Lobatto polynomials 

[8], 

 

( )pφ ξ  →  ( )pL ξ , deg0 p N≤ ≤  (B.2.2.4) 

 

the local differentiation [8] 
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via the differentiation matrix D, and the local integration [8] 

 

1 1

01

( ) ( ) ( )ξ ξ ξ
−

=−

= +∑∫
Q

N p p N

p

u d w u R u	  (B.2.2.6) 

 

via the Gaussian quadrature with the number of quadrature points Q(= degN +1), can 

be performed.Here, R( Nu )=0 if 
deg2N 1N

u −∈ P  for Gauss-Lobatto integration with 

appropriate weights pw . 

 

In this case, the elemental mass matrix will be [8] 
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0 0
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i i
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and turns out to be diagonal. [2] and [8] 

 

Recall [8] that Legendre-Lobatto points { }
0

N

j j
x

=
 are the roots of  

  

q(x)= ( )21 ( )− N

d
x P x

dx
 (B.2.2.8) 

       

where ( )NP x  is the Legendre polynomial of degree [8]. Gauss Lobatto Legendre 

weights can be calculated as  
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may be used to set up a Gaussian quadrature approximation [8] 
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j
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≈∑∫  (B.2.2.10) 

which is exact for f(x) 2 1−∈ NP  ( the space of polynomials of degree ≤ 2N-1) 

 

A Newton iteration [8] can be set up 
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to compute the Legendre-Lobatto points from the initial guesses (0)

jx =cos(jπ /N) 

(Chebyshev points). It can be shown from [8] that 

 

q( 1 1) ( ) ( )j N j N jx P x P x− += − =0 (B.2.2.12) 

 

which follows from the recurrence relation [8] 
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'( ) (2 1) ( )j n jq x N P x= − +  (B.2.2.14) 

  

which follows from the recurrence relation [8] 

 

' '

1 1

1
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2 1
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n
− +
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 (B.2.2.15) 

 

The mathematical formulation of Lobatto.m of [8] is discussed. 
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Appendix C: Lobatto.m 

 

function [w, y] = Lobatto(n) 

  
% The Legendre-Lobatto points y(1:n+1) are the roots of f(x) = (1-

x^2) dP_n/dx, 
% with the weights w(1:n-1) = 2/n(n+1) P_n(y(1:n-1))^-2 and w([0 n] 

= 2/n(n+1). 
% where P_n(x) is the nth degree Legendre polynomial. 
% 
% This routine uses Newton iteration to find the roots to 10 digit 

accuracy. 
% Only symmetric half is computed. 
% The initial estimates are the Chebyshev points cos((pi/n)*(0:n)). 
% 
% By using the two relations 
% (1-x^2)(dP_n/dx) = n(n+1)/(2n+1) (P_(n-1) - P_(n+1)) 
% P_n = -1/(2n+1) (dP_(n-1)/dx - dP_(n+1)/dx) 
% we identify 
% f = P_(n-1) - P_(n+1) and df/dx = -(2n+1)P_n. 

  
if n==1, w = [1 1]; y = [1 -1]; return, end  
if n==2, w = [1/3 4/3 1/3]; y = [1 0 -1]; return, end  

  
s = 2/(n*(n+1));  
m = ceil(n/2) - 1; % # of half-internal points except zero.  
for i=1:m 
z = cos((pi/n)*i); d = 1;  
while abs(d) >= 5e-11 
    Lnm1 = legendre(n-1,z); Lnp1 = legendre(n+1,z); Ln = 

legendre(n,z); 
    fz = Lnm1(1,1) - Lnp1(1,1); fpz = -(2*n+1)*Ln(1,1);  
    d = -(fz/fpz); z = z + d; 
end 
yh(i) = z;  
wh(i) = 1/Ln(1,1)^2; 
end 
if 2*ceil(n/2)==n,  
    Ln = legendre(n,0); w0 = 1/Ln(1,1)^2; 
    w = s*[1 wh(:)' w0 fliplr(wh(:)') 1];  
    y = [1 yh(:)' 0 -fliplr(yh(:)') -1];  
else 
    w = s*[1 wh(:)' fliplr(wh(:)') 1];  
    y = [1 yh(:)' -fliplr(yh(:)') -1];  
end  
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Appendix D: elematrstmquad.m 

 

function [delta,Xesit,Yesit,Jab]=elematrs(N,xna,xnb,xnc, 

xnd,yna,ynb,ync,ynd,orderofedge,yeqa,yeqc,xeqd,xeqb)  

 

[w, xs] = Lobatto(N); xs = xs'; w = w'; ys = xs;  

[XS, YS] = meshgrid(xs,ys); 

Dxs = poldif(xs,1); Dxs = Dxs(:,:,1); Dys = Dxs; 

LXS1 = (1-XS)/2; LXS2 = (1+XS)/2;  

LYS1 = (1-YS)/2; LYS2 = (1+YS)/2; 

%  >> xna=0;xnb=0.5;xnc=0.5;xnd=0; 

%  >> yna=0;ynb=0;ync=0.5;ynd=0.5; 

% the vertices of a rectangular element for benchmark 

if(orderofedge==0) 

XA = xna*LXS1 + xnb*LXS2; YA = yna; % down face 

XC = xnd*LXS1 + xnc*LXS2; YC = ync; % up face  

YD = yna*LYS1 + ynd*LYS2; XD = xnd; % left face 

YB = ynb*LYS1 + ync*LYS2; XB = xnb; % right face 

else 

XA = xna*LXS1 + xnb*LXS2; YA = subs(yeqa);  

XC = xnd*LXS1 + xnc*LXS2; YC = subs(yeqc);  

YD = yna*LYS1 + ynd*LYS2; XD = subs(xeqd); 

% The value in the subs( ) paranthesis can  

% be a symbolic equation or a number 

YB = ynb*LYS1 + ync*LYS2; XB = subs(xeqb);  

end 

X = XA.*((1/2)*(1 - YS)) + XC.*((1/2)*(1 + YS)) + ... 

XD.*((1/2)*(1 - XS)) + XB.*((1/2)*(1 + XS)) - ... 

(xna)*((1/2)*(1 - XS))  .*   ((1/2)*(1 - YS)) - ... 

(xnb)*((1/2)*(1 + XS))  .*   ((1/2)*(1 - YS)) - ... 

xnd*((1/2)*(1 - XS))  .*   ((1/2)*(1 + YS)) - ... 

(xnc)*((1/2)*(1 + XS))  .*   ((1/2)*(1 + YS)); 
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Y = YA.*((1/2)*(1 - YS)) + YC.*((1/2)*(1 + YS)) + ... 

YD.*((1/2)*(1 - XS)) + YB.*((1/2)*(1 + XS)) - ... 

(yna)*((1/2)*(1 - XS))  .*   ((1/2)*(1 - YS)) - ... 

(ynb)*((1/2)*(1 + XS))  .*   ((1/2)*(1 - YS)) - ... 

(ynd)*((1/2)*(1 - XS))  .*   ((1/2)*(1 + YS)) - ... 

(ync)*((1/2)*(1 + XS))  .*   ((1/2)*(1 + YS)); 

% XA = 0*LXS1 + 0.5*LXS2; YA = 0; 

% XC = 0*LXS1 + 0.5*LXS2; YC = 0.5; 

% YD = 0*LYS1 + 0.5*LYS2; XD = 0; 

% YB = 0*LYS1 + 0.5*LYS2; XB = 0.5; 

% X = XA.*((1/2)*(1 - YS)) + XC.*((1/2)*(1 + YS)) + ... 

% XD.*((1/2)*(1 - XS)) + XB.*((1/2)*(1 + XS)) - ... 

% (0)*((1/2)*(1 - XS))  .*   ((1/2)*(1 - YS)) - ... 

% (0.5)*((1/2)*(1 + XS))  .*   ((1/2)*(1 - YS)) - ... 

% 0*((1/2)*(1 - XS))  .*   ((1/2)*(1 + YS)) - ... 

% (0.5)*((1/2)*(1 + XS))  .*   ((1/2)*(1 + YS)); 

% Y = YA.*((1/2)*(1 - YS)) + YC.*((1/2)*(1 + YS)) + ... 

% YD.*((1/2)*(1 - XS)) + YB.*((1/2)*(1 + XS)) - ... 

% (0)*((1/2)*(1 - XS))  .*   ((1/2)*(1 - YS)) - ... 

% (0)*((1/2)*(1 + XS))  .*   ((1/2)*(1 - YS)) - ... 

% (0.5)*((1/2)*(1 - XS))  .*   ((1/2)*(1 + YS)) - ... 

% (0.5)*((1/2)*(1 + XS))  .*   ((1/2)*(1 + YS)); 

J = (Dxs * X')' .* (Dys * Y) - (Dys * X) .* (Dxs * Y')'; 

Area = w' * J * w 

Xesit=X'; 

Xesit=Xesit(:); 

I=eye(N+1); 

Dx = kron(Dxs,I); 

Dy = kron(I,Dys); 

Yesit=Y'; 

Yesit=Yesit(:);  

Dy = kron(Dys,I); 

Dx = kron(I,Dxs); 

Jlast=[(Dxs * X')' (Dys * X);(Dxs * Y')' (Dys * Y)]; 

Jab=J'; 

J11y=Jlast(1:(N+1),1:(N+1))'; 

J12y=Jlast(1:(N+1),N+2:2*N+2)'; 
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J21y=Jlast(N+2:2*N+2,1:(N+1))'; 

J22y=Jlast(N+2:2*N+2,N+2:2*N+2)'; 

Jinv=[J22y(:)./Jab(:) -J12y(:)./Jab(:);-J21y(:)./Jab(:) 

J11y(:)./Jab(:)]; 

J11inv=Jinv(1:(N+1)^2,1); 

J12inv=Jinv(1:(N+1)^2,2); 

J21inv=Jinv((N+1)^2+1:2*(N+1)^2,1); 

J22inv=Jinv((N+1)^2+1:2*(N+1)^2,2); 

Gk11=J11inv.*J11inv.*Jab(:)+J12inv.*J12inv.*Jab(:); 

Gk12=J11inv.*J21inv.*Jab(:)+J12inv.*J22inv.*Jab(:); 

Gk21=J21inv.*J11inv.*Jab(:)+J22inv.*J12inv.*Jab(:); 

Gk22=J21inv.*J21inv.*Jab(:)+J22inv.*J22inv.*Jab(:); 

D=poldif(xs,1); 

w1=w(1:N+1); 

I=eye(N+1); 

for p=1:N+1 

for q=1:N+1 

L=I(:,q).*I(:,p); 

RHS2(p,q)=dot(w1,L);end % RHS2 equals to 1D mass matrix. 

end 

s=sparse(kron(RHS2,RHS2)); 

G11=sparse(s*diag(Gk11)); 

G12=sparse(s*diag(Gk12)); 

G22=sparse(s*diag(Gk22)); 

G21=sparse(s*diag(Gk21)); 

D1=sparse(kron(I,D)); 

D2=sparse(kron(D,I)); 

DekT=[D1;D2]'; 

G=[G11 G12;G21 G22]; 

delta=DekT*G*[D1;D2]; 
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Appendix E: streamfunction.m 

 

clear 

N=12; 

syms XA XC YD YB 

yeqc = [2 -1/2*XC+2]; 

xeqd = [4-2*YD 0]; 

xeqb =[4 -sqrt(1-YB.^2)+4]; 

yeqa = [sqrt(1-(XA-4).^2) 0]; 

elnod=elnode(N); % elnode.m is seen in Appendix E. 

elnod=elnod([1 2],:); % we have two elements 

stiff2=zeros(2*(N+1)^2-1*(N+1),2*(N+1)^2-1*(N+1)); 

% second element last node is 325 

elnod(2,1:13)=[169:-13:13]; 

elnod(2,14:(N+1)^2)=[(N+1)^2+1:2*(N+1)^2-1*(N+1)]; 

% elnod is the connectivity matrix generated. 

f3=zeros((N+1)^2,1); 

load=zeros(2*(N+1)^2-1*(N+1),1); 

[w,x]=Lobatto(N); 

w1=w(1:N+1); 

I=eye(N+1); 

for p=1:N+1 

for q=1:N+1 

L=I(:,q).*I(:,p); 

RHS2(p,q)=dot(w1,L);end % RHS2 equals to 1D mass matrix. 

end 

s=sparse(kron(RHS2,RHS2)); 

uex=[];allxx=[];allyy=[]; 

xna=[4-2/sqrt(5) 0]; 

xnb=[4 3]; % which one is first don't forget 

xnc=[4 4-2/sqrt(5)]; % which one is first don't forget 

xnd=[0 0]; % which one is first don't forget 

yna=[1/sqrt(5) 0]; 

ynb=[1 0]; 

ync=[2 1/sqrt(5)]; 

ynd=[2 2]; 

for e=1:2 

[delta,xx,yy,Jab,Jlast,Dxs]=elematrstmquad(N,xna(e), 

xnb(e),xnc(e),xnd(e),yna(e),ynb(e),ync(e),ynd(e)... 

,2,yeqa(e),yeqc(e),xeqd(e),xeqb(e)); 

u=sin(4*pi*sqrt((xx-2).^2+(yy-2).^2));uex=[uex u]; 

allxx=[allxx xx]; allyy=[allyy yy]; 

for p=1:(N+1)^2 

for q=1:(N+1)^2 

if (p==q) RHS(q)=Jab(p).*s(p,q).*f3(q);end 

end 

end 



 128 

for i=1:(N+1)^2 

for j=1:(N+1)^2 

if(abs(delta(i,j))>=1e-15) 

stiff2(elnod(e,i),elnod(e,j))=stiff2(elnod(e,i), 

elnod(e,j))+delta(i,j); 

end 

end 

end 

for j=1:(N+1)^2 load(elnod(e,j))=load(elnod(e,j))+RHS(j); 

end 

end 

[w,x]=Lobatto(N); 

y=x; 

[xx,yy] = meshgrid(x(1:N+1),y(1:N+1)); 

xx = xx(:); yy = yy(:); 

nodenum1steldown = find( xx==-1);  

% local xx’s of the down edge. 

% nodenum1steldown = find( xx==-1);  

% 1steldownedge of the element 

for i=1:13 

stiff2(nodenum1steldown,:) = zeros(N+1,2*(N+1)^2-

1*(N+1)); stiff2(nodenum1steldown,nodenum1steldown) = 

eye(N+1); 

end 

nodenum1stelup = find( xx==1); % local xx must be found. 

for i=1:13 

stiff2(nodenum1stelup,:) = zeros(N+1,2*(N+1)^2-1*(N+1)); 

stiff2(nodenum1stelup,nodenum1stelup) = eye(N+1); 

end 

localnodenum2ndelleft=find(yy==-1 ); for i=1:N+1 

globalnodenum2ndelleft(i)=elnod(2,localnodenum2ndelleft(i

)); 

end 

for i=1:13 

stiff2(globalnodenum2ndelleft,:) = zeros(N+1,2*(N+1)^2-

1*(N+1)); 

stiff2(globalnodenum2ndelleft,globalnodenum2ndelleft) = 

eye(N+1); 

end 

localnodenum2ndelright = find( yy==1); % local yy. 

for i=1:N+1 

globalnodenum2ndelright(i)=elnod(2,localnodenum2ndelright

(i)); 

end 

for i=1:13 

stiff2(globalnodenum2ndelright,:) = zeros(N+1,2*(N+1)^2-

1*(N+1)); 

stiff2(globalnodenum2ndelright,globalnodenum2ndelright) = 

eye(N+1); 

end 

localnodenum2ndeldown = find( xx==-1); % local xx. 
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for i=1:N+1 

globalnodenum2ndeldown(i)=elnod(2,localnodenum2ndeldown(i

)); 

end 

for i=1:13 

stiff2(globalnodenum2ndeldown,:) = zeros(N+1,2*(N+1)^2-

1*(N+1)); 

stiff2(globalnodenum2ndeldown,globalnodenum2ndeldown) = 

eye(N+1); 

end 

for i=1:13 

load(nodenum1stelup(i))=2;  

end 

for i=1:13 

load(globalnodenum2ndelleft(i))=allyy(localnodenum2ndelle

ft(i),2);  end 

un=stiff2\load; 

min(un) 

ert=un(elnod(2,:)); 

ert13e13el2=reshape(ert,N+1,N+1); 

xx1=reshape(allxx(:,1),N+1,N+1); 

xx2=reshape(allxx(:,2),N+1,N+1); 

yy1=reshape(allyy(:,1),N+1,N+1); 

yy2=reshape(allyy(:,2),N+1,N+1); 

contour(xx2,yy2,ert13e13el2) 

un169_13e13el1=reshape(un(1:169),N+1,N+1); 

hold on 

contour(xx1,yy1,un169_13e13el1) 

axis([0 4 0 2]) 

line(xx2(1:13,1),yy2(1:13,1)) 

ert=un(elnod(2,:)); 

ert13e13el2=reshape(ert,N+1,N+1); 

xx1=reshape(allxx(:,1),N+1,N+1); 

xx2=reshape(allxx(:,2),N+1,N+1); 

yy1=reshape(allyy(:,1),N+1,N+1); 

yy2=reshape(allyy(:,2),N+1,N+1); 

contour(xx2,yy2,ert13e13el2) 

un169_13e13el1=reshape(un(1:169),N+1,N+1); 

hold on 

contour(xx1,yy1,un169_13e13el1) 

axis([0 4 0 2]) 

line(xx2(1:13,1),yy2(1:13,1)) 

 

% command lines more than one row must be connected 

because of the margins of the paper aren’t enough. The 

second row must be added to the end of the first row. Or 

Use three blue points. 


