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ABSTRACT

SCHEDULING ALGORITHMS FOR GRID
COMPUTING

Kaya, Ozgur
M.S., Department of Computer Engineering
Supervisor: Prof. Dr. Muslim Bozyit
November 2006, 123 pages

Today many computing resources distributed geographically arenidié
of time. The aim of the grid computing is collecting thes®ueses into a single
system. It helps to solve problems that are too complex forgeesPC. The grid
applications can be used in financial services, industry, rgo;wvent services,
military, medicine, and many engineering applications. Schedplans a critical
role in the efficient and effective management of resourceschieve high
performance on grid computing environment. Due to the heterogeneity girigl hi
dynamic nature of grid, developing scheduling algorithms for grid peimg
involves some challenges. In this work, we concentrate onegftisicheduling of
distributed tasks on grid. We propose a novel scheduling heuristiadpof-tasks
applications. The proposed algorithm primarily makes use of hisasgd runtime
estimation. The history stores information about the applicatidrsse runtimes
and other specific properties are recorded during the previousutexes.
Scheduling decisions are made according to similarity betwesrapplications.

Definition of similarity is an important aspect of this amgeh, apart from the best



resource allocation. The aim of this scheduling algorithm A-sstory Injected

Scheduling Algorithm) is to define and find the similarity, asdign the job to the
most suitable resource, making use of the similarity. In oaluation, we use Grid
simulation tool called GridSim. A number of intensive experimenith various
simulation settings have been conducted. Based on the experime=utis$, the
effectiveness of HISA scheduling heuristic is studied and comiparehe other
scheduling algorithms embedded in GridSim. The results show thartyhigection

improves the performance of future job submissions on a grid.

Keywords: Grid, Grid Computing, Scheduling, Grid Scheduling, His®aged
Scheduling, Static and Dynamic Scheduling.
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GR D HESAPLAMA C N ZAMANLAMA
ALGOR TMALARI

Kaya, Ozgur
Yiksek Lisans, Bilgisayar MuhendisliBolum
Tez Yoneticisi: Prof. Dr. MUslim Bozyit
Kas m 2006, 123 sayfa

Bugun, corafik olarak datk halde bulunan hesaplama kaynaklar,
zamanlar n n buyudk bir k sm n ba harcamaktad rlar. Grid'in amac bu kaynaklar
tek bir sistem igerisinde toplamaktr. Bu durum, bir tek P@ iggzimui ¢ok zor
olan veya c¢ok vakit alan kompleks problemlerin ¢bzimine yard m edat. G
uygulamalar finansal servislerde, endustride, devletteyrsaa alanlar nda, t pta,
ve birgok muhendislik uygulamalar nda kullan labilir. Grid heaam ortam nda,
yuksek performansa ulaak icin kaynaklar n verimli ve etkili bir bigcimde
kullan Imas nda zaman kritik bir rol oynar. Grid’in yap s son derdmamik ve
farkl oldu undan, Grid hesaplama icin zamanlama algoritmalar n ntigéinesi
beraberinde ua trc zorluklar getirir. Bu ¢almada, Grid Uzerinde ddk i lerin
verimli zamanlamas Uzerine yanlatk. kimesi uygulamalar icin yeni bir
zamanlama algoritmas amaclad k. Amaclanan algoritmberin gecmiteki
i leyi lerini hesaba katmaktad r. Gegmuygulamalar n daha Onceki cahalar

boyunca kaydedilen cama-zamanlar ve der 6zellikleri hakk ndaki bilgileri

Vi



saklar. Zamanlama kararlar bu uygulamalar aras ndaki Heredrak larak al nr.
Benzerli in tan mlanmas , en iyi kaynak atamas bir tarafa, bu yaklda ortaya

¢ kan onemli bir niteliktir. Zamanlama algoritmas HISA'ramac bu benzerlin
tan mlanmas ve bulunmas, daha sonra da bu berizeulianarak iin atanaca

en uygun kaynan bulunmas d r. Bu deerlendirmemizde, GridSim diye bilinen bir
Grid simulasyon arac kulland k. Qi simulasyon ayarlar ile cok say da deneysel
cal ma yaptk. Bu deneylerin nda, kullanlan zamanlama algoritmas nn
etkilili i de erlendirildi. Test sonuglar, HISA'nn, geleceklearin bir Grid'e

atanmas ndaki performans gélidi ini gostermitir.

Anahtar Kelimeler: Grid, Grid Hesaplama, Zamanlama, ZaamaalAlgoritmalar ,

Gecmi Temelli Zamanlama, Statik ve Dinamik Zamanlama
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CHAPTER 1

INTRODUCTION

Today many computing resources distributed geographically arenidbé
of time. The aim of the grid computing is collecting thes®ueses into a single
system. It helps to solve problems that are too complex &ngle PC. In Grid
computing, the goal is to create the illusion of a simpldayge and powerful self
managing virtual computer out of a large collection of connectesfdygineous
systems sharing various combinations of resources. There gmactical tools for
transforming arbitrary applications to exploit the parallelatdjiies of a grid.
There are some practical tools that skilled application desigaersise to write a
parallel grid application. However, transformation of applicaticens be a difficult
task. In some cases, the burden of creating such environmerits onigace the

effort required to enhance the capabilities of such systems.

Scheduling plays a critical role in the efficient and efiectnanagement of
resources to achieve required performance on grid computingpemeént. Due to
the heterogeneity and highly dynamic nature of grids, developingdsiaing

algorithms for grid computing involves some further challenges



In this study, we attempt to develop a Grid scheduling algorithradbas
task execution history. We propose a novel scheduling heuristic fdb#ueof-
tasks” applications, HISA (History Injected Scheduling AlgorithkilSA uses task
properties and the accumulated earlier task execution data lo&isa so called

“similarity” factor between the individual tasks.

HISA assumes existence of a database on the applications wintisees
and other specific properties are recorded during the previousutexes.
Scheduling decisions are made according to similarity betweemethend earlier
applications. Definition of similarity is the most importantolplem of this
approach. On arrival of a new job, HISA defines and finds tiéasity, and uses

the computed similarity in assigning the job to the most Isleiteesource.

In order to develop, test and evaluate HISA, we need to ceed&ted
Scheduling Framework. Such a framework would have three parts: Resoadel,

application model, and scheduling policy.

In the resource model, we created nine resources with different
characteristic that are available in our department and Com@ataer at METU
(Middle East Technical University). Each single resource nvadeled after its real
world counter part. Because there is no free testbed infrasgudiuilding such a
testbed is expensive and time consuming and also in such a testlestigating
resource management and scheduling strategies for Grid commutiagder and
even near to impossible to trace. Moreover, it is impossiblereate a repeatable
and controlled environment for experimentation and evaluation of schegduli
strategies. In a real Grid testbed, we would also encoteitares and bugs that

may affect the experiments.

Secondly, we chose the application model as a BoT (Bag-of-TasH). B

applications are those applications composed of various taskse¢hatdapendent



of each other. That means at a point in time a bag of alailedependent tasks can
be scheduled in any order as there is no inter-task communicatjoreagdence
relationships between them.

And finally, a novel scheduling heuristic HISA was developedafbag-of-
tasks applications to be scheduled on a history aware Grid.iVéitope of HISA
the records of task execution histories are maintained, usdohdothe task
similarity, and then assign the job to the most suitable resoo@sed on this

similarity.

A number of experiments with various simulation settings have been
conducted. Based on the experimental results, the effectivehess scheduling

heuristic is studied and compared to the others scheduling higerit

The rest of this thesis is organized as follows. Chaptgiv@s detailed
information about Grid computing and its properties. The Grid scheguli
taxonomy for Grid scheduling, sample static and dynamic schedldjogthms are
described in Chapter 3. Simulation tools for Grid Computing are mexsen
Chapter 4. In Chapter 5, history based scheduling algorithm KH##ory Injected
Scheduling Algorithm) is detailed. Chapter 6 gives HISA sitmhaenvironment
and results of experimentations and evaluations acquired from deompaf HISA
with other scheduling algorithms. The conclusion and future work iaen gn
Chapter 7.



CHAPTER 2

INTRODUCTION TO GRID COMPUTING

“Grid computing is a form of distributed computing that involves
coordinating and sharing computing, application, data, storage, or ketwor
resources across dynamic and geographically dispersed organizaBois
technologies promise to change the way in which organizationsetackhplex
computational problems in scientific, engineering, and commeapglications
[44]".

Grid environment supports access to available resources in tefms
seamless manner. That's why differences between platforet®ork protocols,
and administrative boundaries become completely transparenfly BGeid is a
“middleware” and “services” infrastructure and it is used fonagéng, establishing
and evolving multi-organizational federation (Virtual Organaa-VO). It

provides an autonomous, dynamic, and domain independent system [38].

A virtual organization can be thought as a domain. Since all E=©are
geographically distributed, Grid provides scalahl&ttial organizations” in order

to share these resources among such organizations. In a Naygdtthere is no a



central location and control, total knowledge about all systemd, teusting
relationship, it persistently follows common goals. Users, métion providers,
and service providers like application, storage, and CPU caieer are main
elements of a VO. Actually, a VO can be thought as a nktwbiis not a real
environment like an office.  As seen from Figure 2.1, one oem&source can be

shared by one or more VOs.

Figure 2.1: The Virtual Organization [38].

2.1 Benefit of Grid Systems

Businesses use this technology to increase their computationat.pow
Supports data sharing and distributed workflow between users
Cooperative design and development are provided.

Idle, available, computational and data storage resources@licted.

With the help of Internet, scientific research is incredgiggne through
distributed global collaborations between people.

Large data collections, databases, large scale compusiagrees, and high

performance com power can be used.



Any grid can be easily expanded by plugging a resource to it.
Transparency is provided to hide the complexity from the useenwh
accessing the resources

Making it is cheaper than the supercomputers.

2.2 Grid Architecture

Grid protocol architecture is composed of five general typesmponents
[38]. It has layered architecture like Internet protocol architec Figure 2.2 shows
both arcihtectures side by side. Function of each grid layeia#ybpresented as

follows.

1- Grid Fabric Layer

2- Grid Connectivity Layer
3- Girid Resource Layer
4- Grid Collective Layer
5- Grid Application Layer

Application
l Application
Directory -
Brokering Collective
Monitorina
Secure access to resources 4-/ Resource
Authentication & Transport

Authorization \
Connectivity

Different Resources
PC, Server, Network,..

Internet

Fabric | | Data Link |

Figure 2.2: The layered Grid architecture and its relationship to the letern

protocol architecture adapted from [38].



2.2.1 Grid Fabric Layer

Fabric layer is composed of resource-specific and sitefgpeechanisms.
It has computers like low-end and high-end including clusters, netwasientific
instruments, and also resource management mechanisms. Examhpthese
mechanisms can include resource management, interfaces suppamtl advanced
reservation that makes it possible for higher-level sesvite aggregate (co-
schedule) resources in interesting ways that would otherwisenpessible to
achieve some network quality of service in routers. Fabrierlayso provides

administer sharing operations for resources at higher levels [38]

2.2.2 Grid Connectivity Layer

It describes authentication and authorization protocols and core
communication protocols for Grid-specific network transactions. s@he
communication protocols can be used between the fabric layer resotoc
exchange data. Connectivity layer also provides some secuwgtlganisims such as

single sign on, delagation, user-based trust relationship [38]

2.2.3 Girid Resource Layer

TheResource layer builds on Connectivity layer and it defines tieqwls
(APIs and SDKs) for secure negotiation, initiation, monitorgamtrol, accounting,
and payment of sharing operations on individual resources [38]. It afers of
remote process management, co-allocation of resourcesgetaccess, information

security, and Quality of Service like resource reservatiahtrading [97].



2.2.4 Grid Collective Layer

Collective layer focuses on protocol and services, like APISiDIds, which
are related to collections of resources. Some services ataeh users to query for
the availability of resources and current load are directeryices Co-allocation,
scheduling, and brokering servicalow users to request resources for their tasks
scheduling on suitable resources among available resouvt@sitoring and
diagnostics servicegrovide the monitoring of resources failure, intrusion detection,
network failures, current resource load, overload, Pata replication services
replicate data to increase data access performance ifkeizing response time,

maximizing reliability and minimizing cost.

2.2.5 Grid Application Layer

This last layer is composed of the applicaitons of usersatieatieveloped
using grid-enabled languages such as HPC++, and message pgstngs dike
MPL Specific Grid-aware application enforced with Grid Servjc&rid Fabric

mechanisms, and Application Toolkit components [38].

2.3 Usage Based Grid Categories

Grid systems can be grouped into seven categories accordingrtoshge.

These are as follows:

2.3.1 Traditional Grid

Traditional grid is a closed computer network that implies both its
availability to only a few consumers and its being maintaibgda single
administrator. For example traditional grids are often buildaf@pecific test e.g.

NASA Information Power Grid [5]It is used for official business and research that



is only open to scientists and engineers working for NASA. Taditigrids are
mostly homogenous. They offer maximum performance because iofsthgle
ownership. On the other hand, these systems have minimdlilitgxas they are

developed for specific goals [30]

2.3.2 Modern Grid

Opposed to traditional grid, it should be open, heterogeneous arudlexi
However these good properties bring some problems that need to éé. Sdtese
are secure negotiotion, authentication and authorization, sharingGwtent Grid

environments can be showed as examples for moders grid [30]

2.3.3 Computational Grid

A computational grid is consisted of resources that are spabtifdesigned
for computing power. It has mostly high-performance server. A ctatipoal Grid
is a system that provides higher aggregate computational gbesrany single
personal machine. According to how the computing power is utilized,
computational Grids can be further divided into two subcategodissributed
supercomputing and high throughput. A distributed supercomputing Grid utilizes
the parallel execution of applications over multiple machsiesultaneously to
reduce the execution time. On the other hand, the goal ofdhehmoughput Grid
is to increase the completion rate of a stream of jobs througtingt available idle
computing cycles as much as possible. A computational grid shoule ribbught
as a parallel computing because there is no single owner respdsibll system
[30].



2.3.4 Data Grid

The purpose of the data grids is to build the next generation computing
infrastructure supporting intensive computation and analysis of shengeldcale
databases across widely distributed scientific communitigs 8t can think data
grid is a large database. However, its data is storedferetit locations. In the data
grid, consumers are not concerned with where this data is doaatehow they can
access it. For example, more than two universities are wookiragspace research
that requires a large amount of data. To overcome this probewy,can build a
Data Grid to share their data, manage the data, and sdesugs. European Data

Grid Project [36] is one example of Data Grids.

2.3.5 Scavenging Grid

Our desktop PCs form this type of grids. In scavenging dratetis central
scheduler responsible for resources. When a desktop machinmdseddle, it
reports its idle time to the scheduler. For example in Seti@dH[6]project, when
a desktop machine becomes idle, Seti@Home’s client programs ehéeprocess
and connects the machine to the grid. Then all resources ofmaadre working
for the project. With scavenging grid, the user does not neeetup any OS or
middleware like Globus. In scavenging grid, a desktop machine viarkgsid on a

voluntary basis [30].

2.3.6 Storage Grid

A storage Grid attempts to aggregate the spare storagarces in Grid
environments and provides users transparent and secure storagess@@]. For
example, Network Attached Storage (NAS) and Storage Areavddet(SAN)
provide shared storage for multiple servers and multiple proto€ofsexample;

UC Berkeley Storage Area Network (SAN) provides more thanegfbytes of
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Premium and Enhanced storage to more than 20 clients and expeartangptint
to be closer to 100 TB. Advantages of SAN technology include irexeas
availability, increased performance, and better monitoring throwggtiratized

administration [89].

2.3.7 Peer to Peer Grid (P2P-G)

It is based on Peer to Peer and Grid technologies and it takegayvaf
both. Peer to Peer is a resource sharing mechanism availatile edge of the
internet through ad hoc overlay networks with symmetric commuaicafi P2P
computer network is a network that depends on the computing power and
bandwidth of the participants in the network. In P2P, insteacresiting a great
network of computers, like the internet, one should be able to cadinexty to the
system that can provide you need. This prevents overhead. Onpyimithat run
the same software (Chord, Pastry, BestPeer, Ares, andekta) can connect to
another one. P2P can be thought as a variant of data grids bduaase of it is
data exchange. Tasks are distributed to grid nodes in a deaeatradanner [51].
Because of its ability and robustness, it is widely used inyntases. However,
existing P2P networks do not guarantee shared data always |lsaateglace. This
is not important in industries like music. On the other hand, dsage in scientific
environments is different. In order to provide such a persistemtastable network
P2P-G is produced [47].

2.4 Types of Grid Topologies
We can build Grids in all size whatever we want. For exanaplgrid can

be a few machines in a department or campus networks or group of eosnput

organized as a hierarchy.

11



In general, there are three types of grid systems avasabterding to their

topologies. These are Intragrid, Extragrid and, Intergrid exs Beyure 2.3 [37].

Figure 2.3: Types of Gridg50].

As seen from Figure 2.4, the simplest type of grid is ¢mida In the
Intragrid, there is a single organization with multiple departis It provides single
security management. This type of grid supports high network bandwidtas la
simple design. The Intragrid consists of several machihat have the same
operating systems and hardware component all of which are coshreecee Local

Area Network (LAN). It is called homogeneous systems &i$o highly secure

Intragrid has also Network Attached Storage (NAS) and Storaga A
Network (SAN) to provide shared storage for multiple serverd multiple
protocols. For example; UC Berkeley Storage Area Network (S#bvides more
than 30 terabytes of Premium and Enhanced storage to more thaer2® ahd

expect long-term count to be closer to 100 TB. Advantages of Séhndégy

12



include increased availability, increased performance, anterbabonitoring

through centralized administration [89].

The second type of grid is Extragrid. It is composed of two or more
Intragrid. In this type of grid, there may be several partridrs Extragrid has more

than one security partner.

Figure 2.4: Intragrid [50].

The Extragrid consists of lots of machines that may haeesdme or
different operating systems and hardware component all of whectoanected via
virtual Private Network (VPN).We can call this type ofdgas heterogeneous. We
can use Extragrid in a B2B (business to business) capacity ortaboligs the

relationship of trusted business partners.
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The third type of grid is Intergrid. There are many organizatiand
multiple partners. All Grids or Grid testbeds are put togethéorm the InterGrid.
In an Intergrid, the data should be global data and also thieajpis used in this
case must be modified for global users. An Intergrid can be plymssed by
engineers firms, manufactures, life science industried, lay businesses in the

financial industry etc.

Figure 2.5: Extragrid [50]
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Figure 2.6: Intergrid [50]

2.5 Type of Resources in a Grid

There are several types of resources available in the @adhputation,
storage, data and databases, communications links, softwaleerses, special

equipment, capacities, architectures, and policies are ¢ypesources in the grid.

2.5.1 Computational Resources (Computational Grid)

Computational resources are the most common and important resiources
the grid. They can be varying in speed, architecture, sadtvpdatform and
connectivity. They enable CPU scavenging to better utiéizeurces. This means if

any computer becomes idle, it reports its state to the grith ihe help of this,
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users are encouraged to join to the Grid. At the end of this plemtesource used
for Grid. Computational grid aggregates the processing power fromstrébdied

collection of systems. They provide the computational power to daege scale
jobs. Computational resources satisfy the business requireonenstant access to

resources on demand [37].

In the grid system there are three major ways to utilieecthmputation

resources:

1. An existing parallel application can be run on the grid.

2. Applications or tasks can be divided into separate parts and execute

in parallel on different machines in the grid.

3. Application is run many times on many different machines at the

same time.

2.5.2 Data Storage Resource (Data Grid)

It is the second most common resource in the grid. It can be memory

attached to the processor or it can be secondary storageasudDD and type
driver to increase capacity, performance, sharing and iteljatf data. Data grid
provides a scalable storage and access to the dataseisatRdpicatalogued, and
even different datasets are stored in different locationsettecian illusion of mass
storage. Using unified file system such as Andrew File 8y¢fS) and Network
File System (NFS) with the storage on multiple machinessas® the capacity.
These advanced file systems can duplicate sets of data. Méanavhintelligent
grid scheduler can help chosen suitable storage device to holdegetiadthg on
usage job patterns. Moreover in the grid system, journaling eamfdlemented by
the grid file system so that the data can be recovered inargi@mble way after the
failures. Since data is shared and updated by lots of usetdilgystem performs

advanced synchronization mechanism to reduce contention betweenutieese

16



Also data striping in writing or reading successive recordfoto/ different

physical devices overlap the access for faster throughput [11].

Figure 2.7: Data Grid [11].

2.5.3 Communication

It becomes another resource in the grid when some jobs redatrefadata
to be processed since bandwidth can be critical resource thainiantilization of
the grid for such jobs. Sometimes to overcome potential netwibukefa and huge
data traffic, redundant communication paths e.g. VPNs are neledad Intergrid,
if it is assumed that we want to develop a search enginesitioatid access the
external Internet to provide connectivity among the grid mashime this case,
these connections do not want to share the same communicationarnzhttnen

they want to add the new total available bandwidth for acugéise Internet [11].
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Software and licenses, special equipment, capacities, aitgtture and
policies represent a different kind of resources. Installation of a too exgens
software on every grid machine increases cost. To preventtligssoftware is
installed on some particular machines that jobs requiring thiz/aef to be sent.
Therefore this method can decrease the cost for an organiZatiaghe other hand,
some software licensing arrangements allow the softveabe tinstalled on all of
the machines but may limit the number of software instancas ¢hn be
simultaneously executed at any given time. This limitat®enforced by license

management software [37].

Because of the heterogeneous and the dynamic nature of the drad it
often different architectures, operating systems, devi@gsotties, and policies.
Each of these items represents a different kind of resounde the grid assigns
jobs to machines since it can use #pgcial equipment, capacities, architecture
and policiesas criteria. For example there is several type of swéwunning on
different architecture such as x86, SGI origin, Sun Ultra®terefore users must

consider such characteristics when assigning the jobs toimeadn the grid [37].

In general, we can classify Grid resources as shown iné=&y8r

A Grid resource can have resource ID, resource name, cos)(paied

performance criteria.
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Figure 2.8: A classification of Grid resources
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CHAPTER 3

RELATED WORK

3.1 Grid Scheduling

The management of grid resources in a grid environment is \clearl
important. The overall aim is the efficient and effectivehezluling of the
applications that need to utilize the available resourceshe distributed
environment. Grid scheduling is essential to provide consisteht@ordinated use
of heterogeneous Grid. From a user’'s point of view, resource maesag and

scheduling should be transparent.

Because of the heterogeneous and the dynamic nature of thecheduling
is significantly complicated due to the difference in perforreageals by various
grid applications (users) and grid resources. Most grid systsmgrid scheduler
responsible for resource discovery and available resources)duyirsg the most
suitable resources that provide user’s request, and assignitaskhento selected

resources.
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A grid system responsible for executing a job does this in two iayke
simplest of grid system#)e user selects any machine or any resource suitable for
running his job. On the other hand, inneore advanced grid systenthe job

scheduler finds the most appropriate machine to run a gived1¢b [

There have been lots of scheduling algorithms introduced for homageneo
and dedicated resources such as computer clusters. Since diastnmsonotonic
performance goal, high speed interconnection network, dedicated aesour
homogeneity of resources and applications, these scheduling algofélgn&irst
Come First Serve, Minimal-Requested-Job-First, Shortest dsty Backfill and so
on) have a complete control over all computing nodes and the owdoaihation
about the pending jobs. Thus, the scheduler can schedule jobs onto tke clust
effectively and efficiently. However these algorithms carbetsuitable and work
well for today’s heterogeneous environments such as Grid. Ther&ace must
deal with large-scale heterogeneous resources across diffevanagement
boundaries. In such a dynamic distributed computing environment, resources
availability varies dramatically. For example, while somsources may go offline
because of some network and hardware failure, others may go. @dimexduling in
Grid environments is significantly more complicated thanttaditional scheduling
systems for distributed environments. Grid scheduling systems takes diverse
characteristics of both various Grid applications and various @sdurces into

account. Therefore, scheduling becomes quite challenging in %iid [

Ordering and mapping are two deterministic characters in ghddsiling.
Ordering is applied when there are more than one tasks waitirexéaution to
determine by which order the pending applications are arrangddriy must be
done according to applications’ priority or deadline factors. Thahsmaacess to
resources is typically subject to individual access, prioaity] deadline policies of
the resource owners. On the other hand, mapping is finding the suitable

resources and then assigning the applications to such resourcetheFbest
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scheduling, the performance potential should be estimated fonegmping [98].

Scheduling in grid computing means that one or more users’ taeksati
be submitted without knowing where the resources are or even who own the
resources. A Grid scheduler or scheduling algorithm has torgearthe quality of

service of a job’s execution. In this context the followingni@ology is used [35]:

A task is a single indivisible unit to be scheduled by any grid schesluler

The properties of a task are parameters like length, deadline, priorigt) C
requirement etc.

An application (or job) is composed of more than two tasks and each task
has sub-tasks that have an ability to decompose themselves funtther
atomic tasks

A resource is something that is required to carry out an operation, for
example; computational resource, network resource, softwarerces data,
database, instrument, code repository and storage space.

A node (or site) is composed of one or more grid resources.

Each job consists of a number of tasks. While scheduling this ttask

resources, we encounter several challenges:

Resource heterogeneity: How does the heterogeneity of resadi®etsthe
performance of a schedule?

Site Autonomy: How do the site's scheduling policy, local priprigd
security and management policy affect the quality of a schiedule
Non-Dedicated Resources: Here contention is a major issue aard exist

both on computational resources and network connections. Moreover a
resource may join multiple Grids simultaneously if it is til@dicated.

Application Diversity: In Grid, applications are from wide rangfeusers
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each of whom has its own special requirements.
Dynamic Behavior: In Grid, some resources may go off-line smwie

others may come on-line, any time.

Aim of the scheduling algorithms is to minimize make-spéle iime of
the available resources, turn-around time and meet the sgecifiplication

deadlines.

According to Casavant et al [23he scheduling problem consists of three
main components: consumers, resources and policies. The policgpeaify the
objectives that a scheduling system may satisfy. It mlag apecify, at the
implementation level, the method of mapping jobs to resourcespditey chosen
for implementing a scheduler affects both users and resourzielgns.

A scheduler is designed to satisfy one or more of the followingremm

objectives:

Maximizing resource utilizations,

Maximizing system throughput (it is the amount of work that a compute
can do in a given time period),

Maximizing economic gains (for system/resource owner perspecti
Minimizing the turn-around time for an application/job/metatask,
Minimizing the overall execution time of a job,

Balance the load among the grid resources,

Minimizing the makespan is the total time that lasts uhéllast task in the
job is done,

Minimizing the processors cost and economic cost (from the
users/consumers perspective),

Minimizing the communication cost,

Meet the users' QoS requirements (from the user perspgctiv
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[2].

Meet the users' deadline and budget request (from the uspegqtérs).

It is also possible to classify the scheduling according to phieirary object

1- Application Centric

a- Makespan

b- Economic Cost

2- Resource Centric

a- Resource Utilization

b- Economic Profit

In the most general case, scheduling algorithms have to be édapiiee

different optimization criteria that a user can specify facheparticular job. Some

of the most frequent optimization criteria for a user agfdowing[64]:

1- Optimizing performance without regard to the cost.

2- Optimizing cost without regard to the performance

3- Optimizing performance within a specific time constrain

4- Optimizing cost within a specific time constraint.

5- Optimizing performance within a specific time and custstraint.

6- Optimizing cost within a specific time and cost constraint.

3.2 Taxonomy for Grid Scheduling Algorithms

In general, Casavant et al [23] introduce a hierarchiagbrtomy for

scheduling algorithms and distributed computing systems. Sinces@ratluling is
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similar to this system, it can be thought a subset of this taxan@omytaxonomy is
based on this approach as shown in Figure 3.1.

In local scheduling also called centralized or cluster schegiulhere is a
central leader (main scheduler) responsible for scheduling.t¥ibe of scheduling
can only support uniform policy and suits well for cluster managemsgsiems
such as Condor [31], LSF (Load Sharing Facility) [41], Beowolf G2} Codine
[83] etc. While the centralized scheduling algorithms are imptged easily, they
may not support efficient load balancing, fault tolerance, andalstiy. The
centralized scheduling algorithms are not suitable for grid resousreagement
systems because grid systems are expected to abide by tlespblt are imposed
by resource owners. However, the centralized scheduling algordbnmet allow

local policies applied by local resource owners. Therefore tesalurce owners do
not want to join such organizations.
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Figure 3.1: A Taxonomy for Grid Scheduling adapted from [23]
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We can divide global scheduling into two sub categories. One of ihe
decentralized scheduling model. In this model, there is no césdd®r responsible
for scheduling. Therefore we do not encounter disadvantages of lizedtra
scheduling model. Decentralized scheduling strategy is suifablgrid systems
because resource owners can define their scheduling polieieschedulers can
enforce. However as the resource owners may not agree on a cqralicgrgoal
for resource management, development of scheduling algorithemss& be
difficult.

The hierarchical scheduling technique is the most suitable safgdul
scheme for grid systems because this model permits théereesmurce owners to
enforce their own local policy on external users. That meangetfitfeschedulers

may take independent decisions at each level of hierarchy [97]

Hierarchical scheduling can be divided into seven sub-categdtiese are
knowledge-based system, case-base reasoning, fuzzy methodolatapsyea

agent and multi-agent systems, static, and dynamic scheduling.

The aim of the knowledge-based system is to capture the exqgeenéthe
scheduling expert. In the knowledge-based system, there isaiadet used to gain

conclusions or recommendations regarding the scheduling problems [84].

Case-Based Reasoning (CBR) scheduling is an artificial irdaliig
method. In the CBR scheduling, reusing knowledge and experience aarned
solving previous problems are used to solve a new problem. A pteserof the
problem and its solution are saved as a case. All casguiaie a case base. The
CBR process has four phases: take the case most sintite t@w problem, reuse

and revision of its solution, and inclusion of the new casedrtase base [55].
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Fuzzy methodology is another traditional scheduling technique. Scheduling
models that use fuzzy methods have recently attracted mesati@is on
scheduling research communities [79]. In a busy Grid environm&nte
scheduling needs to be a continual, dynamic and uncertain process(Stise-
Level Agreements) are constantly added, altered or withdr@ame preliminary
work has been carried out to examine whether fuzzy methodsecasell in the
evaluation of Grid performance contract violations, however hibs been very

simplistic because it is based on 2 fuzzy rules withrialskes [90]

Adaptive scheduling technique is suitable for dynamic structur&raf
because it dynamically evaluates application efficiency anekgsution times, and
the number of resources is adapted with the help of this informatiofinafig the
applications are assigned to the resources [46]. According tuther in [43], with
adaptive scheduling technique scheduling strategy and paramateb® replaced

at runtime.

The researches have showed that to overcome a wide rangenpfex
distributed scheduling problems, Multi-agent systems may hawn hesed
successfully. Since Multi-agent systems both have autonomous arioutestrand
dynamic nature, they are robust against faults. Thereforesawebuild complex,
robust, and cost-effective next-generation scheduling systenfis Mutti-agent
systems. In [20], authors claim that the foundation for thatioe of Grid
scheduling systems that have capabilities of autonomy, heterpgemdiability,
maintainability, flexibility, and robustness can be provided by Nhdti-agents

systems.

Briefly, it seems hierarchical scheduling is the mostulgechnique for the
development of scheduling algorithms. We can classify hieicac scheduling
algorithms according to the system’s being dynamic or sthgcgdynamic case can
further be classified as distributed and centralized, asrshrowigure 3.1.
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In this thesis, we will focus on both dynamic and static scheduling

techniques.

3.3 Static Scheduling

In the static scheduling also called off-line scheduling teplmi all
decisions are done before the execution of a schedule. lttéblsuwhen all the
tasks (or applications) and resources are known in advance. Bskristassigned
once to a resource. Because both the foresight of knowledge of khéotae
assigned and the cost estimation of the tasks being simpiafes, the
development of algorithm in static scheduling is so simple. Howévsrtechnique
which uses cost estimation based on static information is not ajgteofo

situations where dynamic changes are significant and freq@8it. [

Static scheduling algorithms can be examined in two sub groups: Optimal
and sub-optimal. However, because of the NP-COMPLETE nature df suc
scheduling algorithms and complication of the implementation ofridlesgenarios,
optimal scheduling sounds unpractical. Hence, current research caterin

sub-optimal scheduling algorithms to some extent.

Sub-optimal static scheduling algorithms can be divided intoswibgroups:

- Approximate and

- Heuristics

An algorithm returning a near-optimal solution is called approxmat
algorithm. This technique does not guarantee the best solutorapproximate
algorithm is satisfied when a solution that is sufficiefijgod” is found. The goal

of an approximation algorithm is to come as close as possibleet@ptimum
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schedule in a reasonable amount of time. One example of gaifthah is TPCC
(Total Processor Cycle Consumpti¢42].

While approximate algorithms give near-optimal schedule, h@srist
algorithms find solutions among all possible ones, but they do nargearthat the
best will be found. Therefore these algorithms can be udatbta solution close to
the best one and they find it fast and easily. Due to thisrkeaf heuristic
algorithms and heterogeneity and dynamic structure of grid, tieemare practical

for grid scenarios.

3.3.1 Examples of Static Algorithms

Static scheduling heuristics are based on static processaynagnt
disciplines. It is priority list scheduling that ranks theks& in a priority list
according to a given heuristic. The task with the highest prigitassigned to a
processor according to a heuristic. In this approach, a task grapédgo represent

the tasks and their properties such as level and service defm@séts which is the

average time of the task to execute on the fastest procassbown in Figure 3.2

[62].
%} 10

s @ ®
@ @s

®:

Figure 3.2: A task graph
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Level of task is computed as follows.

I(t) = d
(t) prir;aé)tkws k)

where:

sdis service demand of a task. It is the average tifrtheotask to execute

on the fastest processor.

(t) is the set of paths in the task graph which start froknttasd to the
last task.

I(t) is level of a task. It is defined as the maximuinthe sum of the sd.

For example, let service demand of tasks 1 through 6 be 10,B33dnd 2
respectively as shown in Figure 3.2. According to this informnaand using
formula 1, we can compute level of task 1 as follow:

[(1) = max [path1(1,5,6), path2(1,2,4,6), path3(1,2,3,6)]

This is over all the paths from task 1 to task 6.

[(1) = max [(10+13+2),(10+8+4+2),(10+8+3+2)]
=25

Weighted level of a task is computed as follows.

t; 1 sucg (t) wi(})

max  wi(t;
t;1 suce () ®)

wit) = sd(t)+ max  wi(f )+
il sucg (t)
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where:

sucg (t) is the set of immediate successors of t intdis& graph.

wil(t) is weighted level of a task. It is the suntloé service demand of a task
with the maximum of the weighted levels of all sisccessors plus the sum of the
weighted levels of the successors of t normalizedhle maximum weighted level

among all successors of t.

In Figure 3.2, the weighted level of tasks 1, 2] &rare 85.85, 16.86, and 16
respectively.

In [62], Menasce et al proposed a static heuriptiacessor assignment
algorithm. Their algorithm is composed of two parts

- Envelope,

- Heuiristic.

First the subset of tasks called task domain aedstibset of processor
called processor domain are selected by the Engeddpeach step. And then an
appropriate (task and processor) pair is chosethdyheuristic from the task and
processor domain respectively. Therefore, a conibimaf Envelope and Heuristic

represents a static heuristic processor assignatgorithm.

Three static task scheduling heuristics can bengageexamples:

HLF (Highest Level First) chooses the task with tiighest levelrax I(t)

LTF (Largest Task First) selects the task with ldogest value of service
demand

WLF (Highest Weighted Level First) chooses the tagk the highest value
of weighted level.
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Whenever a task is selected from any one of theeabeuristic, the most
suitable processor is selected according to anythef following processors

disciplines:

SEET (Shortest Estimated Execution Time) sele@ptiocessor to execute
the selected task fastest.

MFT (Minimum Finish Time) chooses the processomirthe processors

domain that minimizes the completion time of sedddiask.

So, static scheduling heuristic are combination tadk and processor

selection disciplines.

From this perspective, soms&tatic grid scheduling algorithms are as

follows.

3.3.1.1 MET (Minimum Execution Time)

It assigns each task, in arbitrary order, to thet meachine with the best
execution time for that task regardless of thelakdity of that machine. The goal
of the MET is to give each task its best machineweler it does not consider the
availability time of the machine. Therefore, thisuses a severe load imbalance
across machines. Algorithms complexity is O(m) vehen is the number of
machines in heterogeneous environment. This algorits not suitable for grid
environment where resources and tasks are charaders consistent, that means if

a resource runs a task faster, it will run all otfeer tasks faster [39].
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3.3.1.2 OLB (Opportunistic Load Balancing)

It is also known First Come First Serve (FCFS)islcommonly used for
task scheduling. In contrast to the MET, OLB assigach task in arbitrary order to
the next available machine regardless of the erpeekecution time of the task
[12]. However OLB keeps all machines quite busy.ilé/implementation of OLB
is simple, it gives poor makespan which is thel tird@e that until the last task in the
metatask is done because it does not consider &xpémsk execution time [7],
[40].

3.3.1.3 MCT (Minimum Completion Time)

It assigns each task, in arbitrary order, to thehime with the minimum
expected completion time for that task.

It is only designed for independent tasks assignraed suitable for space-
shared systems. The aim of the MCT is to minintlee makespan of a set of
independent tasks. However, while MCT does thigaiises severe load on the
systems [19].

ct= bt + et

where;
ct is completion time of a task
bt is beginning time of a task on the machine

et is the execution time of a task

The MCT joins the benefits of MET and OLB. Thismdanation prevents
circumstances in which MET and OLB perform poori@omplexity of the
algorithm is also O(m), where m is the number ofchi@e in grid. MCT is
currently used in NetSolve [8].
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3.3.1.4 MAX-MIN

In Max-Min heuristic, U is the set of all unassigrtasks. Firstly, the set of
minimum completion times, M = {mini<, (ct (t, m)), for each;t U}, is found.
Next, the task with the overall maximum complettone from M is selected and
assigned to the corresponding machine (Hence thee ndax-Min). Finally, the
newly mapped task is removed from U, and procesepsated until U is empty,

that is, all tasks are assigned [48].

The advantage of the Max-min is to minimize thebpems incurred from
performing tasks that have longer execution tinfessigning the task to the best
machine which has the longer execution time alldhis task to be executed
concurrently with the remaining tasks which have shorter execution times [12].
The dynamic version is also available. This will lkeplained in dynamic

scheduling heuristic section.

forall task tin meta-task M(in an arbitrary order)
forall machines m(in a fixed arbitrary order)
G= e+
dountil all task in M are mapped
for each task tin M,find its earliest completion
time and the machine that obtains it
find the task twith themaximum earliest completion time
assignthe task;tto the machine nthat gives the earliest completion time
deletethe taskgfrom M,
updater,
updatect, forallt; M,

enddo

Figure 3.3: TheMax-Min Heuristic
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Where;

ct; is thecompletion time of tagkon machine m
ef; is the expected execution time of tagkntmachinem
r is next available oready timeof machinem

3.3.1.5 MIN-MIN

It is similar to the Max-Min. It calculates the rmimum completion time for
each task in the application that is currently gemapped. For example, U is the
set of all unassigned tasks. First the set of mimimcompletion times, M =
{ming j«u (ct(t,m)) ,for each it U}, is found. Next, the task with the overall
minimum completion time from M is selected and @ssd to the corresponding
machine (Hence the name Min-Min). Finally, the newlapped task is removed
from U, and procedure is repeated until U is emphgt is, all tasks are assigned
[48]. Min-min is developed on MCT, but while MCTkies only one task into
consideration at a time, Min-min takes all unasstyrtasks into consideration

during each mapping decision.

Min-Min firstly maps the task; ton an empty system. Assume thatisna
machine that finishes earliest and also executes it fastest. After assént of
for every task, the heuristic changes the avaitgistatus of mby the least possible
amount for every assignment. Therefore the pergentd tasks assigned to their
first choice (on the basis of execution time) lely to be higher than Max-min.
That means if more tasks are mapped to the machi@scomplete them the
earliest and also execute the fastest; a smallkespan can be obtained. However,
since Min-min first finishes the shorter tasks dhedn executes the longer one, it
increases the makespan compared to the Max-Min.dnamic version is also

available. This will be explained in dynamic schigdypheuristic section.
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for all task fin meta-task M(in an arbitrary order)
forall machines m(in a fixed arbitrary order)
G= el +
dountil all task in M are mapped
for each task;tin M, find its earliest completion
time and the machine that obtains it
find the task;twith theminimum earliest completion time

assignthe task;tto the machine nthat gives the earliest completion time
deletethe task;tfrom M,

updater,
updatect, for all t; M,
enddo

Figure 3.4: TheMin-Min Heuristic

Both Min-Min and Max-Min are implemented in SmaetN40].

3.3.1.6 QoS GUIDED MIN-MIN

In Grid computing, QoS may show differences in ®whdifferent types of
resources. Sometimes it can be CPU speed (MIPSyyorie bandwidth, or
sometimes utilization of CPU, or storage capacity.

QoS Guided Min-Min is a version of the Min-Min. bbth quarantines the
QoS requirements of particular tasks and minimittes makespan. In the Grid
systems, a task can be sent to a resource withitbow QoS requirements. For
example, if we send a task without QoS requeshay be assigned on both high
and low QoS resources. On the other hand, if wd agiask with high QoS request
it can only be executed on a high QoS resourcereftre, if a task with low QoS is
assigned to a resource with high QoS, other tagk lgh QoS will wait until the
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resource with high QoS remain idl€o prevent this shortcoming, in [934uthors
modify the Min-Min heuristic and develop a QoS GaddMin-Min scheduling
heuristic.

In this QoS guided Min-Min heuristic, authors calgsithe matching of the
QoS request and service between the tasks and bas¢sl on the conventional
Min-Min. The algorithm consists of the initializati of the completion time, and
two “do” loops that schedule the high QoS taskslandQoS tasks, respectively as
seen Figure 3.5.

for all tasks tiin meta-task Mv(in an arbitrary order)
for all hosts m (in a fixed arbitrary order)
cti=etj+rj
do until all tasks with high QoS request in Mvare mapped
for each task with high QoS in My, find a host in the QoS qualified
host set that obtains the earliest completion time
find the task twith the minimum earliest completion time
assign task tkto the host mthat gives it the earliest completion time
delete task tkfrom Mv
update r
update ctifor all i
end do
do until all tasks with low QoS request in Mvare mapped
for each task in Mvfind the earliest completion time and the
corresponding host
find the task tkwith the minimum earliest completion time
assign task t«to the host mthat gives it the earliest completion time
delete task tcfrom Mv
update n
update cti for all i

end do
Figure 3.5: TheQoS GuidedVin-Min Heuristic
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3.3.1.7 SEGMENTED MIN-MIN

In the Segmented-Min-min (S-Min-min) algorithm, ska are sorted
according to ETC (Expected Completion Time) Matiike tasks can be sorted into
an ordered list by the average ETC, the minimum E®ICthe maximum ETC.
Then, the task list is partitioned into segmenthhe equal size. The segment of
larger tasks is scheduled first and the segmensnudller tasks last. For each
segment, Min-min is applied in order to assign satk machines. The difference
between the Min-min and Segmented-Min-min algorghmthat Segmented-Min-
min performs task sorting before scheduling. Thal gg the sorting means that
larger tasks are promoted to be scheduled eaflrem, Min-min is applied locally
within each segment. The advantage of the Segmddited/in is if the lengths of

the tasks are strikingly different, the segmentrimps the performance [92].

3.3.1.8 SUFFERAGE

Before we explain the heuristic, we should defihe sufferage value.
Sufferage value of a task is defined as the diffeeebetween its best minimum
completion time (MCT) or earliest completion tima a machine mand second
best MCT on a machinegnHence we can say the sufferage heuristic maps eac
task based on the MCT. In the sufferage heuristitask can be assigned to a
machine according to its sufferage value. The k&arassigns the task with the
highest sufferage value first. That means the taish the high sufferage values

takes precedence [60].

However when there is input and output data fert#tsks and resources that
are clustered, this sufferage heuristic may hawblpm. For example a taskwith
large input file is already stored on a remote teludf this cluster contains two (or
more) hosts with almost alike performance, thermexdahis can achieve nearly the

same MCT for that task. Therefore these two hasdd ko give almost similar the
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best and second-best MCTs forTthis means that the sufferage value will be close
to zero and this gives the task low priority. Or tither hand, other tasks may be
mapped in its place. Since this generates loath@maosts in the cluster,i$ forced

to be scheduled on some other clusters. Therefisereéquires an additional file

transfer and eventually causes large makespan $ecdpoor file reuse [21].

for all task tin meta-task M(in an arbitrary order)
for all machines i(in a fixed arbitrary order)
ctij = etij +rj
dountil all task in M, are mapped

mark all machines as unassigned
for each taskgtin M, (in an arbitrary order)

find machine mthat gives the earliest completion time

sufferage value = best completion time — secorsi bempletion

time

if machine mis unassigned

assignt, to machine m delete ¢ from M, mark m
assigned
e
if sufferage value of taskalready assigned to;ns less than
the sufferage value of tagk t
unassign;t, add tback to M,
assigngto machine m
deletefrom M,

endfor
update the vector r for the tasks that were assignghe machines
update the ¢ matrix

enddo

Figure 3.6: The Sufferage Heuristic
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3.3.1.9 XSUFFERAGE

It is introduced by Casanova et al [21]. The puepos XSUFFERAGE is
scheduling applications by taking data transfets atcount. Casanova showed that
the Sufferage heuristic is not suitable for clusype of resources. The MCT on the
machines belonging to the same cluster might bé& qulose to each other. This
situation closes the sufferage value to zero amst@t machines are eliminated from
the selection [21]. The XSUFFERAGE uses clusteeleMCT, that is used to
calculate the sufferage value, rather than the MC3ufferage heuristic. That is,
MCTs are computed for tasks on each cluster th&éerage values are computed
for each cluster and finally SUFFERAGE heuristicaigplied to each of them.
Casanova et al showed that XSUFFERAGE defeats WH&ERAGE not only in
the large data files, but also when the resourternration cannot be predicted very
accurately. Contrary to this, XSUFFERAGE uses tdtdynamic information about
the grid environment and the applications. Sincs hard to acquire this type of

information, this heuristic sometimes gives poduson.

3.3.1.10 TASK GROUPING

It is introduced by Muthuvela et al [66]. The airhthe Task Grouping
heuristic is to cope with metatasks which do noteheonnection with each other
and cause a large number of lightweight jobs régmia high overhead cost when
scheduling and transmitting the applications térom Grid resources. Whenever a
set of fine-grained tasks (“Fine-grain”, or “tightcoupled, parallelism” means
individual tasks are relatively small in terms ofde size and execution time. The
data are transferred among processors infrequeathly)received, the scheduler
groups them into a few job groups according tortheguirements for computation
and processing capability of available Grid researthat can provide this in a
certain time period. After that all tasks in thensagroup are assigned to the same

resource which can finish them in the given timeiquk Therefore while task
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grouping heuristic increases the resources uiitimait also decreases the overhead

and job launching time (makespan) [66].

3.3.1.11 SA (Switching Algorithm)

It is created from the combination of MET and MCGSA uses the MCT and

MET in a switching fashion according to the loadtdbution across the machine.
For example; The MET heuristic may cause load iate between the resources
by mapping many more tasks to the same machinetiiemthers. On the other
hand, the MCT heuristic attempts to prevent loathalance by mapping tasks
according to the earliest completion time. For epl@m,.x is the maximum ready
time over all machines in the grid environment am@ versa #i, is the minimum
ready time. Then, the load balance index acrossnthehines is given by =
I'min/Tmax. The parameter can be interval [0, 1]. Two threshold values(low) and

n (high), for the ratio are chosen in [0, 1] where< . First is setto 0.0. The
heuristic begins with the MCT that assigns task®ating to minimum completion
time until the value of load balance index incrsase at least ,. As soon as
reaching this point, the SA heuristic starts theTMteuristic to map the tasks on
suitable resources. This decreases the load balade& until it reaches,, this

cycle continues until all tasks are mapped [76].

3.3.1.12 GA (Genetic Algorithms)

It is one of the Nature’s Heuristics. GA is based genetic process of
biological organisms. It is an evolutionary techugqused for large solution space to

find near-optimal solution. If we suitably code tB&, we can use them in solving

the real world problems.
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Figure 3.7: Iteration of GA [1]

The GA consists of four important phases.

The first phase of the GA algorithms is populaty@meration. A population
consists of a set of chromosomes. Each chromoseiireed a possible solution that
assigns a task to a resource. Firstly, all chrommesoare randomly generated from
a uniform distribution. Alternatively one chromoserns generated using by other
scheduling heuristic like Min-Min, and the otherra@mosomes are generated
randomly. This method is also called seeding thpufaion with a Min-min

chromosome.

The second phase is chromosome evaluation. Eaaimosome has a
fitness value. This fitness value represents thieesy@an which is the total time that
until the last task in the metatask is done (matgland scheduling). Therefore we

can say the goal of the GAs is to acquire the ssathakespan.

The third phase is crossover and mutation operationthe crossover
operation, a random pair of chromosomes is chosentlaen a random point is
selected in the first chromosome. For the sectairisoth chromosomes from that
point to the end of each chromosome, machine assigts are exchanged by the
crossover between corresponding tasks. After thessower operation, a
chromosome is randomly selected by the mutationatio&. And then a task within

the chromosome is randomly selected and assignettietanew machine again
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randomly. Every chromosome is considered for momatvith some probability. A
chromosome is transformed by the mutation proceethar valid one that may or
may not already be in the current population. Andlfy, one iteration of the GA is
completed with the chromosomes from this modifiegylation is evaluated again.
When a predefined number of evolutions are reachedl chromosomes cause the
same mapping, the GA is stopped [91].

Several types of GA algorithms are developed fedaling algorithms in
literature. Some of them are found in [96], [3]d462].

In summary, the steps that are taken to implem&ias

1- an encoding

2- an initial population

3- an evaluation using a fitness function
4- a selection procedure

5- a crossover procedure

6- a mutation procedure

7- a set of stopping criteria.

Figure 3.8: General Procedure for a Genetic Algorithm

3.3.1.13 SA (Simulated Annealing)

Simulated annealing is a generalization of a Mo@&rlo method for
examining the equations of state and frozen st#tesbody systems [63]. It is an
iterative technique based on the physical prockasmealing. The physical process
of annealing is the thermal process of acquiring émergy crystalline states of a
solid. In this process, if we increase temperatilre solid is melted. For example if

we decrease the temperature slowly, the meltedclemtof the solid arrange
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themselves locally. The solid will reach an optinslution, if we decrease
temperature sufficiently. If we want to adapt thechnique to the SA grid
scheduling heuristic, this optimal solution is goiimal task-machine mapping, that
is, the optimization criteria. Therefore the totabmpletion of a metatask,
makespan, is the temperature and the process giingaphange is the change of
temperature. For example; the next temperaturegld@igh means worse mapping,
in this case the next state is accepted because therse states can be used to

escape local optimality [13].

In the SA heuristic, only one possible solution gmiag or scheduling) is
considered for each metatask (application or jaba @éime. If we want a better
solution, the initial implementation of the SA isstly evaluated and then modified

and finally refined. The makespan of the initial ppeg is the initial system

temperature.
Input and asses Estimate Initial Generate Assess Accept New
nitial solution TEMP. » New Solutior || New Solutior Solution

NO

STOP Terminate Adjust

YES TEMP. )
Update

Stores

Figure 3.9: Iteration of SA [1]

The SA heuristic has two procedures: The initial final procedures.
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In the initial procedure, a uniform random disttibn is used to generate
the first mapping. Mutation procedure is appliedtb@ mapping as the GA. After
that the generated new makespan is evaluated. atpint, this new mapping
changes the old one if and only if the new makespdetter. On the other hand, if
the new makespan is worse, a uniform random nummbeiO, 1] is selected and

then z is compared with y, where

1

old makespan - new makespa
temperature

y:

1+ e

if z<y then the new mapping is rejected, othenitise accepted (poorer) [1]. After
that the algorithm keeps old mapping. Finally thstem temperature is reduced to
%90 of its current value after each mutation procedThe iteration of heuristic is
continued until the system temperature approackesar there is no change in the

makespan, heuristic is stopped.

In [94], a scheduling in GrADS (Grid Application Developmeftware)
using SA is an example of Simulated Annealing rstigti The scheduler uses the
Metacomputing Directory Service to get a list of #vailable machines, and uses
the Network Weather Service to get CPU load, mermaoy communication details

for the machine.

In [95], another variation of SA is used to chods®v many resources a

Grid application should be split over.
Since, in the SA heuristic, very poorer solutions accepted in the initial

levels and it does not correct this problem dutimg heuristic, GA (or Min-min)

gives better solution than SA [1].
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3.3.1.14 TS (Tabu Search)

It is a classical optimization method often enceuedtl when faced with the
difficulty of solving hard problems plentiful in ¢hreal world. Tabu search (TS)
goes beyond the classical design to provide a rdetlnamatically changing our
ability to solve problems of practical significar&8].

We can define Tabu Search as a solution of (mappipace search. It is an
iterative technique. The solution space searchesrabe regions of the solution
space that have already been searched so as mepietat a search near these areas.
As in GA heuristic, chromosomes are used as solytigapping) representations.
The initial solution is created by a uniform distriion. A short hop is defined by
the Tabu Search to find the nearest local minimoiati®n in the solution space
and to manipulate the current solution. Also iuged to move current solution
through the solution space. A short hop is perfarimea way that each possible
pair of tasks and each possible pair of machingig@snents are considered. While
this is done, the other assignments are unchariged. procedure is applied for
every possible pair of tasks. The heuristic saliesnew solution by replacing the
current solution, if the new makespan is betten tha& old one. Whether every pair-
wise remapping does not produce better makespancoessful hops reached limit,
the short hop procedure is ended. When the shqgrtpnocedure ends, the final
mapping is added to the tabu list. After that agltwop is applied. The aim of the
long hop is to generate a new mapping that mugtrdifom each mapping in the
tabu list. The Tabu search heuristic repeats tluet dhop procedure after each
successful long hop procedure. When both total murobshort hop and long hop
reach the limit, entire heuristic is stopped. Hin#he best mapping in the tabu list
is the final answer [58].
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3.3.1.15 Hybrid GA with SA and TS

The hybrid mode heuristic can be generated as dication of SA and TS
with GA. This combination can be done in two waysst combination is GA with
SA and the second one is GA with TS.

The GA and SA combination is called The Genetic (Bated Annealing
(GSA) [75], [26]. GSA very similar to GA heuristiut for the selection process, It
chooses the SA rather than GA. In the selectiorge®, to accept or reject a new
chromosome, GSA uses system temperature, the SAngoschedule, and a

simplified SA decision process.

The other combination is GA and TS that is callelSGThe researches
show that while TS provides very flexible, powerfahd easy to implement,
performance of TS mostly relies on the selectionpafameters and qualified
information of the problem required to be solvedhefiefore combination of GA
with TS makes the heuristic more robust than GAB&dReproduction, crossover,
and mutation process that in the GA heuristic iplased by reproduction,
crossover, and Tabu Search process. Rather thtatiomichanges, in the hybrid
GA-TS each member of the population goes througiorae apart optimization

process. This optimization process is described bgbu algorithm in [1].

3.3.1.16 HMM (Heterogeneoud/ulti-phase Mapping)

It is a static graph-based mapping algorithm calederogeneous Multi-
phase Mapping (HMM). HMM is the combination of TalBearch and meta-
heuristic. By using these local search techniqitesd|lows a sub-optimal mapping
of a parallel application on heterogeneous systéiWiM assigns parallel tasks by
exploiting the information embedded in the para@hel forms used to implement an
application [10].
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3.3.1.17 LMT (The Levelized Min Time Algorithm)

The LMT is a combination of the Level Sorting hetidc and Min-Time
heuristic. Actually it has two phases. The Levatiag is the first phase and Min-
Time is second phase. In the Level sorting phds@epdes are put in order on the
basis of their precedence constraints. Tasks wihith level have no precedence
constraints between them as seen in the Figure S8olfasks are clustered to able to
execute in parallel. After that each task is as=iglevel by level using Min-Time
heuristic. In Min-Time each task is mapped to testbmachine that runs it fastest
[49].

Level O

Level 1

Level 2

Figure 3.10:LMT heuristic

3.3.1.18 Cluster-M Mapping Heuristic

In the Cluster-M mapping heuristic, the mapping cess (matching +
scheduling) is defined in a way that it represenset of subtasks (task graph) onto
a graph and the set of machines in grid environnfgygtem graph). Cluster-M
Mapping heuristic has two phases; tasks clusteaimdymachines clustering phase.
In the first phase, the system and task graphlasteced separately. The aim of the

task graph clustering is not only to combine comitation intensive subtasks into

48



the same cluster but also to combine the machimegsatre tightly coupled (small
inter-machine communication times) into the samestek. The second phase is
mapping. The heuristic maps the clustered taskhgoapa clustered system graph.
The clustering improves the quality of mapping dedreases the complexity of the
mapping problem. Moreover clustering is an effitieay to reduce communication
delay in DAGs (Directed Acyclic Graph) because ligasommunicating tasks can

be grouped into to the same clusters [61].

3.3.1.19 K-Distributed Heuristic

In K-Distributed Model, there is a metaschedulespamnsible for all local
scheduler. It is introduced by Subramani et al .[8d]this heuristic there are K
distinct distributed sites. Initially, each jobgent to the K least loaded sites. K can
be varied according to the required scalabilityfteAthat each of these K sites
schedule the job locally. If a job is started ay af the sites, this site informs the
other K-1 sites to remove the job from their resipecqueues. Therefore all jobs
are cancelled. This improves the resources uiitinaand reduces makespan. This
algorithm does not use performance prediction t&kemscheduling, whereas all
algorithms we showed above use performance estimaiihe idea behind the K-
Distributed heuristic is duplication. [81].

3.3.1.20 WQR (Workqueue with Replication)

WQR is developed by Silvia et al [78]. It is bas®d classical workqueue
algorithm. Workqueue is a knowledge-free schedinar does not need any kind of
information for task scheduling. In the workquewetistic, initially all tasks are
grouped into a bag and then send to the availadeurce. Whenever a resource
finished its task, another task is sent to theussoby the scheduler. However, the
resource waits idle during this time interval. lhet WQR heuristic, the

heterogeneity of resources and tasks can be achiaseg task replication.
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Moreover task replication can be used to deal wihith dynamic variation of
resource availability because of load imbalances.thHe classical workqueue
algoritm, when the resource finishes the task gsesdito it, the resource waits idle.
However in the WQR heuristic, all these idle resesrare asssigned to the replicas
of tasks that are still running. Tasks replicatioontinues until the maximum
number or replicas defined beforehand is achielfed. resource finishes a task,
other replicas of the task are cancelled. The adgenof this approach is that it
does not need to use information of about speedaautiof resources and length of
tasks. However, when tasks replicas are cancéhesl causes wasted CPU cycle
[78].
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3.4 Dynamic Scheduling

In dynamic scheduling technique, also called oe-Boheduling, some or all
the decisions are done during the execution. suitable when jobs and machines
are coming online, or going offline due to failuréle processor speed of each
processor vary during the scheduling and difficuity predicting the cost of
applications. Moreover dynamic mapping is perfornadeen the arrival of tasks is

not known beforehand.

Since grid has changing resource availability, wekwperformance, user
requirements, and system workload, dynamic scheglufeacts on following

situations:

- Resource or job failure
- Resource or job changes
- Critical job arrivals

- Performance contract violation

In brief, dynamic scheduling algorithms study effetrun-time changes in
grid resource properties and user requirements ysters performance. These
situations are mostly job or grid related. In jatuation, some job failures can
occur, or a high priority job can arrive, or sonfmaiwging can occur in job priorities
and deadlines. On the other hand, in grid relatddle some resource failure may
occur, new resources may come online, or resouar&lead can change. These
dynamic situations can cause inefficient resoursaga which decreases the
resource utilization. Moreover they can lead joltufa and do not provide users’

QoS requirements [27].

Dynamic scheduling algorithms can be divided im tsubgroups, as
shown in Figure 3.1.
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- Distributed Dynamic Scheduling Algorithms

- Centralized Dynamic Scheduling Algorithms.

v

Retrieve jobs
from queue

v

Gather progress| Gather information

information on on available resources
running jobs

A 4

Schedule new
jobs/
reschedule
running jobs

Figure 3.11:Generic Dynamic Scheduling Procedure

In dynamic case, scheduling decision may be dongé wne general
centralized scheduler, or multiple distributed sthers. While the centralized
scheduling algorithms are implemented easily, theyot support up-to-date load
balancing, fault tolerance, and scalability. Theref this type of scheduling
technique gives a performance bottleneck. In disted model, there is no central
leader responsible for scheduling. Therefore waaloencounter disadvantages of
centralized scheduling model. Decentralized sclmglstrategy is suitable for grid
systems because resource owners can define thkeddag policies that

schedulers can enforce at will. However, resouresens do not agree on a
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common policy goal for resource management, so lderent of scheduling

algorithms seems to be difficult [35].

We can investigate Distributed Dynamic Scheduliniggofithms in two

subcategories.

- Cooperative

- Non-Cooperative

In the cooperative case, each scheduler has twls.gde first is acquiring
its own system goal, and the second is to providenamon global goal with all the
schedulers in the grid. That means there is a lpcdicy for each local grid
scheduler to achieve some global goal. Howevetheénnon-cooperative case, each
scheduler is responsible for their own goal (optenitheir private individual
objects) and does not consider the rest of theesysThat means there is no a
common global goal for the entire grid. Applicatitewvel schedulers are good

example of this type of grid scheduling.

3.4.1 Examples of Dynamic Scheduling Algorithms

3.4.1.1 DFPLTF (Dynamic Fastest Processor to Largest Tagkrst)

It is based on static FPLTF (Fastest Processor amgdst Task First)
heuristic introduced by Silva et al [78]. It is @defor BoT (Bag-of-Task)
applications. BoT applications are composed of aitsasks that are completely
independent and do not need inter-task communitall&PLTF heuristic assigns a
task according to its priority is defined by theuhstic. The largest task is assigned
the highest priority. Hence, the heuristic assitpestask with the highest priority to
the fastest processor. However DFPLTF must nee#ribelledge about the speed

of processors and length of tasks in advance [28].
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3.4.1.2 Chang’s Algorithm

It is suitable for soft real-time systems that dexkthe value of an operation
steadily after the deadline expires. That meankstase completed after their
respective deadlines are less important than thdsese deadlines have not yet
expired. This leads to some tasks not being peddrnf the system load is too
high. This algorithm has a two phase polling stgtelt is based on Shortest
Processing Time First local scheduling heuristiclafe job may give harmful
outcomes in the hard real-time systems. A softtiesd system functions correctly
as long as the deadline miss ration and the expéateness are below pre-defined
levels [25].

3.4.1.3 Shin’s Heuristic

It is also called Load Sharing Method with Stateaide Broadcast
(LSMSCB) [74]. It is a load sharing method for distited real-time systems. Each
node in the systems maintains state informatiothé@ small set of nodes in its
physical proximity which is called a buddy set. Ttineee threshold values are
defined as the load state of the node and QL imegfas the queue length. JH
THs, and TH are these three thresholds.

In this algorithm, each node must maintain and teptize state information
of other nodes. An overloaded node can transfexssk to another node based on

state information without any probing delay

For instance;

If a node’s QL is less than or equal to ,JIQL TH, the node is said to be
underloaded. If it's QL greater than JTHNd less than or equal to Tkhe node is

said to be fully loaded. And finally, QL is greatddan TH and less than or equal
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TH,, the node is said to be overloaded. If new arrijgd and/or completion of
tasks make the node fully loaded, the node brogslitaschange of the state to all
the other nodes in its buddy set. After that evege in the buddy set that receives
this information updates its ordered list (prefdriest) of available receivers. If
there is an overloaded node in the buddy setnitsedect the first underloaded node
in its ordered list and then send a task to salestwle. This cycle continues until
all tasks are finished. This heuristic can comptéte tasks before their deadlines
[74].

3.4.1.4 Ramamritham’s Heuristic

It is a distributed scheduling heuristic that salled tasks according to their
deadlines and resource requirements. This heunsés both local and global
scheduling approaches in distributes systems. lsisd for both periodic and
aperiodic tasks. Local scheduling techniques aeel figr periodic tasks and global
scheduling techniques are used for aperiodic talskghe local scheduling, all
periodic tasks are known in advance and can alwayscheduled locally. On the
other hand in the global scheduling, an aperioalék tmay arrive at a node at any
time and if its deadline can be met this node,ilt be scheduled locally on the

node, if not; task will be transferred to remote@$70].

Four algorithms were used to select a remote nadeach aperiodic task.

The random scheduling algorithm: The aperiodic t@skent to a remote

node randomly.
The focused addressing algorithm: The aperiodik tassent to a remote

node that is estimated to have sufficient excessotoplete the task before its
deadline.
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The bidding algorithm: The aperiodic task is senatremote node based on

the bids received for the task from remote nodekarsystem.

The flexible algorithm: The aperiodic task is senf remote node based on

a technique that combines bidding and focused aduhg [70].

3.4.1.5 Zhang’s Heuristic

Zhang proposed a general three level dynamic stihgdalgorithm [97]. It
is based on the Shin’s heuristic [74]. In this mpdbe grid has M clusters
connected by the Internet and each cluster is ceagpof Ni nodes. To collect the
information of the grid, a set of thresholds anébimation lists are used. Six
thresholds values are defined. Three of them CTHH;, and CTH are used for
cluster and the others NTHNTH;, and NTH for nodes. Therefore according to

these values;

There are four states for each cluster and each imdthe grid.
A cluster is said to be underloaded if the numbetasks in it, N, is less

than or equal to CTH

N. CTH,
Is medium loaded if CTiH N CTH;
Is fully loaded if CTH< N, CTH,
Is overloaded if N> CTH,
A node is said to be underloaded if if number sks&ain it, N, is less than or
equal NTH,
N, NTH,
Is medium loaded if NTH< N, NTH;
Is fully loaded if NTH<N, NTH,
Is overloaded if N> NTH,

57



In this heuristic, there is one server for eachstelu Both the state
information of other cluster and the state infoliorabf each node of this cluster are
collected by that server. Heuristic is workingelithat: If a node gets fully loaded,
its change of state will be sent to the serveri{adigster has a server) and then the
server updates its state information table. If @mgnge occurs in the state of cluster
e.g. from fully loaded to the overloaded, it widlral this alteration to the all other
clusters in its buddy set. After that every clusidrich receives this information
updates its ordered list (preferred list) of adagareceivers. This heuristic is
applied to three levels. In the first level alsdleth node scheduling, when a task
arrive at the node, the scheduler acquire the redunformation about the task and
node’s state and then uses these information tiolel@dether the execution of the
task is guaranteed on this node. If time constrainask can be met, this task is
scheduled on this node. If not, the cluster schiegijthe second level) is started. In
this level, the sate information about the cluskert too near the node is used to
decide whether the new task is accepted or nottatidhe constraint is provided by
this cluster. After that if the new task is accept®y/ this cluster, the scheduler
transfer this task to one underloaded node indhister. The task execution is done
on this node. Finally if the cluster does not atctye new task, third level
scheduling is started. It is called grid scheduliipge scheduler find a remote
cluster in the grid to accept new task by usingrimiation list and then new task is

executed on that remote cluster [97].

3.4.1.6 Gu’s Heuristic

While most scheduling algorithms do not take actqarformance issues,
the aim of the Gu’'s heuristic is adopting the perfance of the grid system by
performance evaluation and optimization. It is ¢nel workflow based scheduling
heuristic. The performance arguments are addedetoigtic for the resource
management and to evaluate the execution perfoenaingrid service in order to

facilitate next scheduling.
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A set of activities (grid service)i@=1,- - -,n) defines a grid workflow, where
n is the sum of the number of activities. Resowar be defined as a list of
resource class Jg&=1,- - -,m), where m is the sum of resource classd k
composed of Kk=1,- - -j) that is containing same type of reses R. Moreover
each grid services consist of one or more resouiides engine schedule, not only
matches performance arguments between the resocamcegrid service, but also
selects the required type of resources. The typeztlires of the heuristic are like
as follows:
1. The engine is multi-thread. Hence it schedules marsfances
simultaneously.
2. If the workflow model can be added QoS, the engicleedules the
resources according the QoS and performance.
3. While the algorithm omits the detail of QoS, butdees on the

performance issues [45].
3.4.1.7 MECT (Minimum Execution Completion Time)
It can be thought as the combination of MET and MCT
& execution time,
bj  begin time of task bn machine m
cj  completion time of task bn machine m

The completion time of a taskan machine ms computed as follows:

Cj= by +eq
In MECT heuristic, the inputs consist of executtone of each task on all

machines. That is

Ti={en, a2... @m}
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MECT firstly finds bnhax which is maximum begin time between the all
machines’ begin time. And then it determines Mttisaa subset of machines which
has all ¢ like gj < bmax Thirdly, if there are s like that M’ is not empty, MECT
finds a machine Mk with minimum execution time tceeute the task.tlf M’ is
empty means that there is nplike that, MECT finds the machine Mn M with
minimum completion time to execute the taskarid then index of machine k is
returned by the MECT [53].

According to [60] dynamic scheduling algorithmsidae grouped into two
sub-groups.
- Batch Mode

- Immediate (on-line) mode

While batch mode heuristic considers a subset sistaimmediate-mode
(online-mode) heuristics only consider newly ardivasks. Studies show that batch
mode heuristics give higher performance than imatedinode heuristic. On the
other hand, immediate-mode heuristics provide shatinning times than batch-

mode heuristic.

3.4.1.8 Max-Max

It is based on greedy concept. In this heuristicc@mputation is done on
the basis of fitness value of the task. The fitnedae of a task can be computed as
the value of the task divided by the estimated ettex of the task. On the other
hand the value of the task can be computed by tiw pveight of the task
multiplied by the deadline factor of the task. E&s value is used to select the task

that being mapped. Moreover the fithess value tatles the worth per unit time.

When a new task arrives and generates a mappingt, e Max-Max

heuristic starts. The new task and tasks that a#ing to be executed in the
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machine queue are called mappable task. The hHeucesh be examined by the
following six steps.

1- All the mappable tasks are defined by generatitaghklist.

2- Find the machine that gives the task with the marmifitness value, for
each task in the task list, (this is the first “Max the Max-Max.) and
pair this task and machine.

3- Find the task/machine pair with maximum fithessuealthis is the
second “Max”) among the all task/machine pairs.

4- Founded task with maximum fitness value is remofrech mappable
task list and assigned to its paired machine.

5- Machine available status is updated

6- Steps 2 to 5 are repeated until all tasks are ntappe

After every task mapping, the worth values fortaflk on all machines are
recalculated. Moreover in step 5, to calculate dbadline factor, the availability
status of all machines is updated. The availabtiitye of the machine plus the
estimated execution time of the task gives us thadlihe factor for a given

task/machine pairs [54].

3.4.1.9 Max-Min

The completion time for task i on machine j is cddted as the machine
availability time (mat(j)) plus ETC(i, j). Max-miheuristic finds the machine that
gives the minimum completion time for each taskerhfrom these task/machine
pairs, a pair with the maximum completion timeeasested by the heuristic. When a
new task arrives and generates a mapping eventMtheMin heuristic starts.

Initially all machines’ queues are empty.

The heuristic can be examined by the followingsseps [54].
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1- All the mappable tasks are defined by generatitaghklist.

2- Find the machine that gives the task with the mimmcompletion time
for each task in the task list (this is “Min”) armhir this task with
machine.

3- Find the task/machine pair that gives the maximompmletion time (this
is “Max”) among all task/machine pairs.

4- The found task with maximum completion time is remw from
mappable task list and assigned to its paired machi

5- Machine available status is updated

6- Steps 2 to 5 are repeated until all tasks are nehppe

7- Reschedule the tasks in the machine queue accomlitigeir worth, if
there are tasks in the machine queue. Do thisafch enachine.

8- If all machines queues are rescheduled, stop gueitiim.

In step 5, the availability status of all machinesipdated to calculate the

minimum completion time over all machines for etatk in step 2.

The rescheduling of tasks in step 7 can be expla@sein the following six

steps:

1- Initialize the machine availability time to the cpletion time of
the very next task that is waiting to be executed

2- The tasks are grouped by using the priority levékhe tasks.

3- For the tasks in the high priority level group, jieg their relative
ordering from the machine queue, one by one, iemidsert the
tasks that can finish by their primary deadlineithe machine
gueue. Whenever scheduling is done, heuristic resiav task
from the group and updates the machine availalstayus.

4- Step 3 is repeated for 50% deadline and 25% deadlin

5- Steps 3 to 4 are repeated for the medium prioaisks and then

repeated for the low priority tasks.
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6- If high priority tasks cannot finish by the 25% dbae, they are
added to end of the machine queue. On the othe, lifamedium
priority tasks cannot finish by the 25% deadlireyt are added
next and then the low priority tasks are addedhi machine
queue.

Min-min heuristic is very similar to the Max-min excepathin step 3,

instead of selecting pair that gives the maximurmgletion time, the pair that

gives the minimum completion time is selected [54].

3.4.1.10 Percent Best

It is based on KPB (k-Percent Best) heuristic. Theuristic not only
considers the tasks completion times on the mastioealso tries to map the tasks
onto the machine with minimum execution time. Tlaalgof the heuristic is to
collect the top m machines with the best executiime for a task so that the task
can be assigned to one of its best execution tirmehmes. However in this
heuristic, system may become unbalanced becaudeniting the number of
machines that a task can be mapped. To preventtileiscompletion time of the

tasks should be considered by the heuristic [54].

When a new task arrives and generates a mappingt, eve Max-Min

heuristic starts.

The heuristic can be summarized by the followintersteps [54].
1- All the mappable tasks are defined by generatitaglalist.

2- Heuristic groups the tasks according to their jisidevel.

3- In the high priority level, the top m machines witie best execution
time are found for each task.
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4- Machines with the minimum completion time in stepr}l the machines
that are idle are found.

5- Tasks are mapped with no contention that is thexena other tasks with
the same minimum completion time machine. Aftett timapped tasks
are removed from the priority level group.

6- On the other hand, if there is a task with contemtthe task with the
earliest primary deadline is mapped and then rechdnem the priority
level group.

7- Machine availability status is updated.

8- Steps 3 to 7 are repeated until all tasks in tbemare assigned.

9- Steps 3 to 8 are also repeated for tasks in theumednd low priority
level groups.

3.4.1.11 Queuing Table

This heuristic maps a task to a resource by usioglkup table. This lookup
table is constructed by using priority level, tie¢ative speed of execution, and the
nearness of deadline (NOD). The ratio of the aweragecution time of a task
across all machines to the overall average taséutiom time for all tasks across all
machines in the heterogeneous environment is ctilkedelative speed of execution
(RSE) [54].

In this heuristic, tasks are classified into ondvad categories: “slow” and
“fast”. To do this, the heuristic uses the abovénit®n and RSE-cutoff is called

constant.
The heuristic can be summarized by the followingersteps [60].

1- The NOD is calculated for all mappable tasks.

2- RSE is calculated for new task
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3- The new task is compared with the tasks in the mathqueue. If the
machine’s queue has not a task with the similauingeorder to the new
task, the new task’s position is in front of thesffitask with the higher
numbered queuing order. If the machine’s queue thaks that it's
queuing order same as the new task, the new tpskition is in front of
the first task that has a higher NOD value thah dfizhe new task. This
is done for each machine.

4- The completion time on all machines is calculatgdibing the position
on each machine. The position is also used to rhapnew task to
machine with minimum completion time.

5- The heuristic check whether any tasks will missrtpemary deadline
for each machine.

6- Find the first task that misses its deadline amalhthe tasks that missed
its primary deadline.

7- A machine is found for the task is found in stepvBere

a- The task’ priority is equal to or greater than #mg task with the
highest priority on that machine and

b- The task is moved to the front of that machine gueithout
causing any task to miss its primary deadline

8- The machine with the minimum completion time isrfdwand the task is
moved to the head otherwise the task is not movétbut the machine
in step 7.

9- Machine availability status is updated

10-Steps 5 to 9 are repeated until all machines arekeu.

3.4.1.12 Relative Cost

It uses combination of worth and suffrage ideasagsign the tasks. The
heuristic calculates the relative cost (RC) by cotimg the minimum completion

time of that task over all machines and then dwitlds value with the average
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completion time of that task on all machines. Téddculation is done for each
mappable task. If RC is low, the minimum completiione is too different from the
average completion time. Otherwise, the minimum gletion time is similar to the
average completion time and we can say most ofctimpletion times on all
machines are similar. For example; the best maahimepreferred by tasks x and y
for mapping. If it is assumed that there is a largédference between the
completion times of the best and the second beshimes, task x is to suffer more
than task y. The RC is an approximation of thifedénce. We can say a task will
suffer less than a task that has a low RC, wheiR@édor a task is high [54].

3.4.1.13 The History Based Approach for Run-Time Estimatin

Run time estimation based on history has beenlojgse by Shonali et all
[57]. It uses run time estimation is based upondRo8ets theory [56], [57], and
[68]. In this approach, authors aim that if two kgadions are similar to their
characteristics, then their runtimes are also amillo do this, a history of
applications that have already executed is recordad maintained. These
characteristics are called applications’ attribufEsey are classified into two sub
groups: Condition and Decision attributes. Conditiattributes represent the
applications characteristic like length, input andput size etc. On the other hand,
Decision attribute is the runtime of the applicaioThere is a strong relationship
between the decision attribute and condition aiteb. Indeed, condition attributes

play an important and active role while defining #pplications runtime.

Moreover, according to Aggarwal et all [4] there &awo methods to store
the history information of a job execution: Cenadl history for all site, and
decentralized history at each site. The differdme®veen these two methods is the
number of history. In the centralized case, thermftion is stored in a central job
history database. In the decentralized case, eaatution sites its own job history.

Their approach is also based on Rough Set thedrgy Teveloped a prediction
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engine works as a part of Grid scheduler. This iptieth engine will provide
estimates of the resources required by job subamssiased upon historical

information.
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CHAPTER 4

STUDY OF MIDDLEWARE AND SIMULATION TOOLS
FOR GRID COMPUTING

4.1 Introduction

Grid computing, most simply stated, is distributsmputing taken to the
next evolutionary level. The goal is to create ithesion of a simple yet large and
powerful self managing virtual computer out of ag& collection of connected

heterogeneous systems sharing various combinasfaesources.

There are many factors to consider in grid-engblm application. One
must understand that not all applications can &estormed to run in parallel on a
grid and achieve scalability. Furthermore, there@ amo practical tools for
transforming, arbitrary applications to exploit tharallel capabilities of a grid.
There are some practical tools that skilled appboadesigners can use to write a
parallel grid application. However, automatic tf@nsiation of applications can be
a difficult task.
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In some cases, the burden of creating such enveahmight outpace the
effort required to enhance the capabilities of ssigdtems. In the following section
4.2, a brief introduction to few well known gridais will be given for completeness
Globus, GridBus, and NetSolve/GridSolve. However,gnd environment will be
created. Instead a simulation tool will be usedcomcentrate on the particular

history injected scheduling concept will be disaass Chapter 4.3.8.

In Chapter 4.3, a survey on simulation tools tivausate grid environments
is presented, which provide enough information ¢gide on the simulation tool
best studied to our algorithm. The simulation todiscussed are OptorSim,
ChicSim (The Chicago Grid Simulator), EDGSim (Ewrap Data Grid Simulator),
GridNet, Bricks, SimGrid, MicroGrid, GridSim. Frorthese, we have chosen
GridSim for testing the performance of HISA (Histoinjected Scheduling
Algorithm) algorithm.

4.2 Study of Grid Middleware for Grid Computing

In order to build Grid systems and applicationspyniolkits are developed
by different commercial or non-commercial compani€obus, GridBus, and

NetSolve/GridSolve are some of such toolkits.

4.2.1 Globus

Globus is an open source toolkit allows peoplereshieir databases,
applications, computational power and others taser the Internet in terms of
secure and seamless manner. The Globus can behthasiga middleware that
includes software services and libraries for reseumonitoring, discovery, and
management, and also security and file managertestbeing developed by the
Globus Alliance which is an active member in thenomunity of Grid Software

developers and many others all over the world [R7$ a portable so it can be used
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for any platform. Resource and data managemereatitation and authorization,
security, communication, and fault detection arppsuted by the Globus. It also
provides Web services mechanisms to create disédbsystem framework. Any
local scheduling mechanism (e.g. Condor, LSF, P8BS ean easily be used with

Globus. Globus can be run on any operating systems.

4.2.2 GridBus

It is also an open source toolkit. GridBus is deped by Grid Computing
and Distributed Systems (GRIDS) Laboratory at Ursitg of Melbourne [88]. It is
composed of middleware, tools, and applicationsdBirs provides economic grid
scheduler, cluster type scheduler, grid modelind simulation tool, Grid Bank,
and GUI for workflow management. Actually it is mbi focused on Grid
Economy model. For example; while Libra is useddoonomy based scheduler for
clusters, GridSim is used for modeling and simatatf Global Grids. Moreover,
in economic model Grid, GridBank is used for grat@unting, authentication, and
payment management. GridBus provides service brfikescheduling distributed

data oriented applications across different tygagid resources [88].

4.2 .3 NetSolve/GridSolve

It is a client/agent/server system based on GridRR@IRPC is based on
traditional Remote Procedure Call (RPC) programnpagadigm. The purpose of
NetSolve/GridSolve is to create a Grid middlewastween the computational

resources in the Grid environments.

NetSolve/GridSolve has four main components: NetS@lient, Servers,
Agent, and Monitoring. Client is a library and isedl with the applications of users
to call NetSolve’s API. Currently NetSolve clieiitbriary supports C, FORTRAN,

Matlab, Mathmatica, and Ocatave. NetSolve servepards the clients’ requests.
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With the server any type of architectures from EndPC to symmetric
multiprocessor or machines with massively parallelcessor can be run. NetSolve
agent acts as a Resource Broker. It has a schadsjgonsible for job assignment.
It has also a database containing the resourcemation. This information can be
load on servers, available bandwidth, current leed the resources, installed
software etc. All resources in the Grid registamtiselves to the agent and then the
agent chooses the best resource, sends the jotbdjnaily collects the results.
Monitoring service is used with NWS (Network Weatl8ervice) to monitor the
CPU and network connections load. This providesnbest sophisticate information

and forecasts of both resource and network stadisaailability [67].

4.3 Study of Simulation Tools for Grid Computing

To prove the effectiveness of the scheduling #gms, and their
performance, one needs to evaluate, and then ffeeedi scenarios with varying
number of resources and users with different Qg8irements. To build a Grid test
bed is expensive and time consuming. In such abedt investigating and testing
resource management and scheduling strategiesihic@mputing are too difficult
and also impossible to trace. Moreover, executioapplications is continuing for
hours, days, and months, that is, testing schegialgorithm can be time-intensive.
Finally experiments are limited to the test bederBifiore we chose our test bed to

be a simulating Grid environment.

4.3.1 OptorSim

It is time-based simulation systems that useddod simulation. Actually
OptorSim focuses on data replication. With OptorSamious replica optimization
algorithms can be evaluated. Computing and StoEgenents can be modeled
according to real computing and storage resoudmgsscheduling is controlled by a

Resource Broker. Each site has a Replica Optimized to create and delete
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replicas. Currently OptorSim is used by UK Grid Rarticle Physics (GridPP) and
European DataGrid (EDG) projects for replica managya [18].

4.3.2 ChicSim (The Chicago Grid Simulator)

It is a discrete-event data location-based griautator. It is built on Parsec
that is a simulation language based on C langu&yg8p]. ChicSim can be
optimized across multiple tasks and it is easilged to the changes in the Grid
environment. The primary of aim of the ChicSim © évaluate replication
strategies. It supports a framework to implementide variety of scheduling and
replication algorithms and also evaluates the #ffescess of these different
approaches/algorithms for scheduling. The ChicSiodets a Grid as a collection
of sites and a certain number of processors of lexpacity and limited storage
that is identical in each site. Before a job startstain data-files are required to
present it locally. Also the job’s completion shdbide on a single processor. In
ChicSim, job scheduling algorithms run a job ataadomly chosen site, at least
loaded site, or where input data that is requitedHe job is, already available. On
the other hand, data scheduling replicates poplalt files at random site or at the
least loaded neighbor [71], [69].

4.3.3 EDGSim (European Data Grid Simulator)

It is a simulation of the European Data Grid pcojB3]. The aim of the
EDGSim is to replicate the communication betweendbmponents of the EDG,
instead of reproducing their complex functionalityexact detail. It is a discrete-
event simulator and developed with Ptolemy |l jimased object oriented software.
Ptolemy Il application consists of objects knowrAasors representing nodes in the
grid. They are managed by a Director object thatkh both the system parameters
and the event queue. The Actors communicate byaexghg Data Tokens which

are wrapper objects containing anything from aeget to a complex object in its
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own right [34]. This is necessary because in theukited system, any change in
state (e.g. a job being generated, a file transéginning, and an information
update) is recorded as a time-stamped event ineaeguand then the events are
coped with in chronological order. In the EDGSirfiena job is created, firstly it is
scheduled, secondly submitted, thirdly queued|lfirran and completed. Each site
has Storage Element (SE) and Compute Element (Q&f)nbanages the worker
machine. Also there is a Replica Catalog and a &esoBroker in each site.
Initially, the job is sent to the Resource Brokaed @hen it passes the logical names
and required data files of job to the Replica GagallThe Resource Broker assigns
the job to a free machine at the CE. If there isamailable machine, the job is
queued until one becomes available. The job cay bagin to run, whenever at
least one of the required data files is presetfieatocal SE. If the data files are not
present, the SE may attempt to get them. Whenbegpob is finished, it is removed
from the system. The results of the run with infation about the performance of
individual jobs as well as the system as a whoteaautput to a plain text file. This
information is sent to other EDG component in thetems. This provides
coordinating the transfer of large data files reeglito run a job, and the jobs are

dispensed effectively between available machingg [3

4.3.4 GridNet

It is @ modular replica simulator based on NSwoek simulator) [24]and

written with C++. NS provides generation of diffetenetwork topologies.

GridNets applications level services are implemented gm @b existing NS
protocols. The main goal of GridNet is to createegtain number of replicas on a
given node to guarantee minimal availability regments. In order to provide this,

different replication and caching strategies areetigped. With GridNet different

Data Grid configurations, resources, nodes, ligks] messages can be modeled.
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Each node in the Grid can manage its storage dgpaojanizes its local data files,

specifies its neighbors, and peer replica nodes.

In GridNet, Grid user requests are representethéypackets. These packets
are also used to represent the start and the egddofiata transmission in NS that
transfer control of the simulation to GridNet. Tlater simulates the replication
decision at each node and generates new NS tth#tdorwards request from one

node to the other or sends the requested date ti#mt.

GridNet has a replication service. The missiorhefreplication service is to
start data replication when needed. Moreover, fachedata request, multiple
replicas are created on multiple nodes so thisigesvthe shortest access time to
the requested data. In order to access existinicaey creating a new one or

deleting some of them, the replication service lmamnsed.

4.3.5 Bricks

It is a performance evaluating system that work dgscrete-event simulator
of a queuing system. The Bricks is written in Javais developed by the Tokyo
Institute if Technology [85]. With Bricks, one camalyze and compare various
scheduling heuristic on a Grid system. It focusesomparison and evaluation of
different scheduling heuristics. Network topologiesesource architecture,
communication models, and scheduling strategy ecambdeled by the user by
using Bricks scripts. Therefore Bricks providesyeaeation of any type of Grid
systems. In Bricks, there is a scheduling unit cosed of scheduler, network
monitor, predictor (network and server), networkl aerver monitor. With Bricks,
one can easily monitor, predict and schedule trek tay using its defaults
components such as Bricks network monitor and semenitor. Actually it
supports centralized global scheduling method ecetlis a central resource broker

that is responsible for all systems. On the otlrdhin our simulation model, each
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user has its own resource broker that managescatiph scheduling. That means
we used decentralized scheduling model, in whigreths no central scheduler.

Therefore Bricks is not suitable for our simulatioodel [85].

4.3.6 SimGrid

It is a C language based simulation toolkit todgtiand evaluate the
scheduling algorithms for distributed and Grid syss. With SimGrid, resources
and tasks can be modeled via provided C APIs. kcyteamd service rate are two
features that define the resource performance ctastic. In the SimGrid,
resources are modeled as time-shared systemseacdeated in terms of a standard
machine capability and also tasks are created rimsteof their execution time.
Simulation of multiple competing users, applicatipand schedulers and recovery
from the resource failures with SimGrid is difficu'he current version of SimGrid

does not provide evaluation of scheduling algorgfi22].

4.3.7 MicroGrid

It is developed by University of California at Sddego. MicroGrid
provides systematic design and evaluation of middte, applications, and network
services for the heterogeneous Computational G8dentific and recurring
experimentation will be supported by these toolertMGrid is used with Globus to
provide the illusion of virtual Grid. Heterogeneaisucture in the virtual Grid can
be modeled using a global virtual time modelingsiBaesource simulation models
for computing resources, memories and networkirg @ovided by MicroGrid.
Also MicroGrid is able to explore a wide range ekwource (network, compute,

storage) environments, dynamic competitive loa@$.[8



4.3.8 GridSim

It is a discrete-event simulation tool and writtenJava. With GridSim

different class of schedulers, resource brokersterbgeneous resources,

applications, users, and networks can be simuldfidieover information service

for resource discovery interfaces for assigningliegfion tasks to resources, and

monitoring and managing their execution are alswviged by the GridSim. All

these properties can be used to simulate resouoers (like Condor/G, Nimrod

etc.) or Grid schedulers for evaluating performan€escheduling algorithms or

heuristics [14]. It is also suitable for singleroultiple administrative domains and

distributed computing systems such as P2Ps, ctystad Grids.

The some important features of GridSim are as\it

Heterogeneous types of resources can be modelgokasting under space-
shared and time-shared mode.

GridSim support time zone feature so resourcesbealocated in any time
zone.

Each resource capability can be defined with rdaspecthe standard
machine, MIPS (Million Instructions per Second) SPEC (Standard
Performance Evaluation Corporation) benchmark.

According to owners requests’, holidays (weekenus$ any formal and
religion holidays) can be mapped relying on resesirtocal time to model
local (non-Grid) workload.

Various application models like parallel applicatimodel can be simulated
and application jobs without limitations can be ipeghto a resource. These
application jobs can be heterogeneous.

Various tasks from multiple user entities can bsigagged to a resource
simultaneously.

Networking can be simulated with GridSim. For exdémpetwork speed

between resources.
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With GridSim static and dynamic schedulers and dalieg policies can be

simulated.

For statistical purposes all operations or onlyeseld operations can be

recorded and analyzed by the GridSim statisticalysis methods. [14].

Among these simulation tools we choosed the GridS&rause it provides
us some powerful features while creating of oud gimulation environment. First
of all, because it is a JAVA based, we can useadeu any operating system. In this
study, we attempt to simulate a computational gad our university METU
(Middle East Technical University). Because allowges used for specific jobs by
the owner in METU, with GridSim he/she may wanuge his/her machine only for
specific purpose. Therefore, in the GridSim, a wes® can be modeled according to
user requests. With GridSim anyone can easily sitawd grid environment because
creating of application model, tasks, resourced, retwork model is too simple.
We can choose any type of application model foet®ing scheduling algorithms.
Moreover, any type of scheduling heuristic can bsilg embedded in GridSim.
GridSim provides statistical analysis model, tiiattire is important for us since we
develop a history based scheduling algorithm; wedusis statistical information
for testing our scheduling algorithm. Also GridSsrcoming with some scheduling
algorithms so we can compare our scheduling algoritvith these scheduling
algorithms to measure the efficiency of our aldorit
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CHAPTER 5

SCHEDULING IN GRID COMPUTING USING HISA (HISTORY
INJECTED SCHEDULING ALGORITHM)

5.1 Introduction

In this work, in order to test and evaluate HIS¥e need to create a Grid
Scheduling Framework. Through this Chapter, oud goheduling framework will
be explained in detailed. In this framework, fiysile created our Resource Model.
In the resource model, we created nine resourcts different characteristic that
are available in our department and Computer CeateMETU (Middle East
Technical University). Each single resource was et after its real world
counter part by using GridSim. After that we sedectn application model for
suitable our framework and scheduling policy. Aithfly we decided a scheduling

policy that will be used in scheduling algorithm.

5.2 Simulation Environment for METU Computational Grid

Our complete Grid scheduling framework for METUc@mposed of three

parts:
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1- Resource Model
2- Application Model
3- Scheduling Policy

5.2.1 Resource Model

The aim of the Grid resource model is defining tharacteristics of Grid
resources. A resource is a space/time shared emtityh may differ from each
other in many aspects. It may be dedicated to d,@riPC that volunteers to the

Grid or any other.

The description of a Grid resource can be eithee-§rained or coarse-
grained. A coarse-grained can only define the Qf @nd hardware architecture.
On the other hand, a fine-grained resource cameledil detailed information
related to the resource. These are CPU speeduthber of CPUs, memory size,

parallelism they supported and so on.

Our Grid model has a number of sites composemwiputational hosts. All
sites connect together with a WAN and each of whiak its own local users with
their resources and policies. In this model, treeeno dedicated resources which
mean they are used for both local and grid apjinat Neither resource failures

nor communication costs are considered in our study

As we design computational Grid, we consider a agatpnal resource and
its capability, measured by its CPU speed. We ceate any type of Grid Resource
such as a machine with a single processor, disétboemory cluster of computers,
or SMP (Shared Memory Multiprocessor). A resourae be managed by time-
shared or space-shared operating systems. These ¢§perating systems use a
round-robin scheduling policy for multitasking. @re other hand, cluster type Grid

resource can be managed by space-shared schethdersse queuing systems.
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Moreover with space-shared systems, First-Come-5igsve (FCFS), back filling,

and Shortest-Job-First-Served (SJFS) resource adilboc policies can be used.
While in time-shared resources, one PE can berassigiore than one tasks, that is,
a PE can be shared by several tasks, in spacedsheseurces, one PE can be

assigned only one task at a time [14].

We created nine resources that are time and sgzeed with different
characteristic. Each resource can be modeled vafiource name, number of
machines and MIPS rating of each machines, baed catrent peak load, off-peak
load, and holiday peak load. The resource’s archite (e.g. Intel Pentium, Sun
Ultra, SGI origin, Compaq Alpha Server, AMD Turiett.), operating system (e.qg.
IBM Irix, Linux, Windows, Solaris, OSF1 etc.), cogt terms of Grid $ /
Application, time zone (GMT) that show its locatioand application policy

(time/space-shared) can also be defined by the user

5.2.2 Application Model

An application model is used to define the chanastic of applications that

will be used in Grid environment.

In a Grid environment, fine-grained applicatiomnfois used to process the
jobs. This means each job is sent one at a timidoyesource broker to the Grid
resource. After that each job processed one by ame then sent back to the user
again individually. Therefore these processes (sgngrocessing, and receiving
the jobs one at a time) increment the total amotitime that is required to execute
all the jobs from a user. The time for transmitteagh job to the Grid resource plus
the overhead processing time for each job at thd f@source gives us the total
execution time. If we send a small job that requloev processing capabilities to a
resource with a very high processing capabilitis till lead to poor utilization of

the resource.
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An application model can be in task-farming, pracesrallelism, DAG
(Directed Acyclic Graph), divide and conquer, pipelg and ring-based,
speculative parallelism etc., as described in [F8). example in a coarse-grained
form [65], small jobs of the users are grouped tiogie according to a particular
Grid resource processing capability by the schadydolicy and then these grouped
jobs are sent to this resource. Moreover all jalugs are submitted and received

to/from the Grid resource by the scheduler (resobroker).

In this thesis, we used bag of task (BoT) applweti model. BoT
applications are those applications composed abwartasks that are independent
of each other. That means the independent taskbeaxecuted in any order and
there is no inter-task communication between thd&ecause of this, BoT
applications are the most suitable application rhéatecurrent Grid environments
rather than tightly-coupled parallel applicatiohattmay easily cause a bottleneck
[29].

We can use BoT applications in a variety of arezsabse of its simplicity
and usefulness. For example, currently BoT apptinatare used by SETI@home
[6], [73], Nimrod-G [15], and MyGrid [32] to schedule rapute-intensive or
parameter-sweep applications to resources. More®o@rapplications can also be
used in data mining practices, parameter sweepsjlaions, fractal calculations,

computer imaging, and computational biology.

While defining the jobs that are independenthia GridSim, we can use
Gridlet object which is a package that contains all resglinformation about a job.
This information includes the number of Gridlesndth (defined in MIPS), disk
I/O operations, the size of the input and outplesfi and the job owner or
originator. Thus, the properties of a job are pgekihas a Gridlet. To determine
execution time, the time required to transport trgiod output files between users

and resources, and the time required to send baciesults to the originator (job’s
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owner) are added up. In GridSim, the job lengttléBned in terms of time that it
takes to run on a standard resource PE with a WIS/ rating of 100. For
example, for a Gridlet that requires many ProcesElements (PEs) or CPUs, the
Gridlet length is calculated only for 1 PE for siijy.

5.3 Scheduling Policy

In this work, we will take advantage of History BdsApproach for finding

the most suitable resource and run time estimdbioa task.

5.3.1 History Injected Job Scheduling

In this thesis, we propose a scheduling algorithased on historical
information that provides us the estimation of tesources required by the job
submission. This scheduling algorithm has abilityind the most suitable resource.
For this purpose, we develop an interface acting asstory management engine
that collects resources load information on aé#slty using monitoring service GIS
(Grid Information Service), and also uses SimRegntity to record all information
about Gridlet during the simulation. History managat engine maintains
execution history file. This history information regists of former Gridlets id or
name; length, input and output file size, owneradlme and budget values,
resource consumption, run times, and cost. Thamtion used to select the most
suitable and optimum resource for a future Gridletording to the scheduling
policy HISA.

5.3.2 The History Based Approach

The use of history for run time estimation is insg by the past history of
the applications and the systems. In system cdme,béhavior of the system

observed or recorded in the past for a certain wofixapplications, type of
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applications, input output patterns, and/or timesdoh pattern will be used to
estimate the present applications runs. In casapglications, the behavior of
application run observed under certain system cheniatics such as processing and
memory capacities, system load, mix of load, etclmused to estimate the present
application. One of the problems in such case ientww if the present application
has a recorded history. The similarity conceptimdifig if an application has a
similarity with a recorded application in the pasin be used. A history based
approach for run time estimation has been introdune Shonali et all [57]. This
based on the idea that if two applications are lamthen their runtimes are also
similar. There are various views for definitionsimilarity. For example we can say
that two applications are similar, if their lengére the same, or they have the same
input or output file size. Moreover, we can say @applications are similar since the
same user on the same machine submitted themaar thiay are required to operate

on the same-sized data.

Centralized and decentralized job history dagalsre two ways to store the
history information from job. In the central appcba there is a single history
database for the grid environment maintained byptieeliction engine. When a job
is arrived to the scheduler, the scheduler immebljigbasses it to the prediction
engine. The centralized job history database i$/aed by the prediction engine to
identify similar job. Then the prediction engindatdates the estimated run time by
using applications attributes of the similar jobsurid in the history. In the
decentralized approach, each site (resource) hestaxy of jobs that were executed
on that site. When a job is arrived to the schedide scheduling, the scheduler
immediately passes it to the prediction engine Wil in turn passes to a broker
at the job submission site. In this study, HISAb&sed on a centralized history

model that makes us of similarity.

Overview of simulation model is presented as iruFeg5.1. There may be

number of k domains. Moreover, there are sevemisuger domain each of whom
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has its own resource broker, and resources. ThaeHistory Management Engine
(HME) with scheduling heuristics HISA implementegdach Resource Broker.

The procedures between entities are working agvistl

1. Users send their jobs (Gridlets in GridSim) to thgxioker.

2. As soon as simulation is started each resourcetseji® configurations
and availability to all of the GISs (Grid Informaii Service).

3. The Broker queries and gets available resourcesh wheir
characteristics from the GIS.

4. After that it gets the Gridlets from the UserEnfipacked in BoT).

5. The Broker assigns tasks to the appropriate regswaccording to HME
decisions. HME decides these mappings accordingsdieeduling
heuristic. All tasks are processed by the resources

6. And then the Broker collects the results from adrese after execution
of an assigned job is complete.

7. When ajob is finished, the Broker sends it tmiser, i.e. UserEntity.
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5.4 HISA (History Injected Scheduling Algorithm)

In this study, to find a similarity between two &pations, we created a
history file that stores all information generatedm the beforehand simulation
results. All resources and the list of all Gridl#tat assigned to each resource and
average value of each significant attribute areestdn the history. And the history
is used for computing the owner factor to decidestvér it is important or not
while defining the value of the similarity. The tasy is also used for finding the
most suitable resource with the help of the sintylaralue. Newly arrived attributes
of Gridlets are compared with those already stamettie history, to find similarity

value with the existing ones in the history.

Moreover, history.conf file stores the weight vatfeGridlets attributes and
initial value of TH (Threshold). These weight paetars are tuned manually by
recurring experiments. After each experiment, sinty value is changed according
to Gridlets attributes so weight of each attributeslso changed. According to
simulation results, while the significances of soatieibutes may be increased, the

others may be decreased.

Before we give the algorithm in Figure 5.2, defonit of some expressions

and formulas are given as follows:

Computation of the average value of each Gridlets attribute®n each

resource.

Mi . is the number of Gridlets assigned to the resouicel.....M
N . is the number of machines, i =1......N

K . I1s the number of attributes, k = 1...... K

i . j" gridlet previously assigned to resource i.
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gij[k] : k™ attribute of gridlet g.

C : the new gridlet that sholud be assigned to a resou
Clk] : K" attribute of gridlet C.

. is a multiplier denoting weight of'¥attribute. Manually assigned

Wi :
fixed value.

M
Avi[K]= ;[ isthe average of thé'lattribute of all Gridlets assigned
j=1

to resource i

So, the average value of the newly arrived Gridktisbute is computed by
recomputing the average after adding the valueehew Gridlet as:

M- Avi[k] Id + gi,M+1
AVi [k] new = M0+1

This operation is used for computation of the ager value of each
attributes of newly arrived Gridlet in each res@uné/ith the help of this value, we
can measure frequency of the Gridlets attributegasd in a resource and all these

average values will be used for finding of the ity value.

userNameis the owner of the newly arrived Gridlet.
ownerNameis the owner of the Gridlets that already assigged executed

on the resource in the history.

ownerCount
N

Ow = 1-
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This formula is used to compute the number of @tgllassigned to a
resource by a user until that time. It also compdhe owner of newly arrived
Gridlets with the owner of Gridlets that alreadgigeed to resources in the history.
Hence,Ow is the owner value that defines how often the ovafiehe Gridlet uses
this resource. It is computed between the [0, flthe owner factor close to 0, this
signifies the owner is highly important when defigithe similarity. We know that
a user generally works on the same application raales the same tests on it.
Another words, length, inputSize, and outputSizehef user’'s application can be
mostly same and so its runtime can also be the.sBaneexample; a user assigned
only one Gridlet to a resource and also the totall€s assigned to this resource is
just one. Contrary to this, the same user assi@@e@ridlets to another resource
and the total Gridlets assigned to this resourcBO& In the first case the owner
value is computed as 0, and in the second casecamputed as 0.2. According to

these results, HISA assigns newly arrived Gridighe second resource.

W is the Gridlet’s attributes weight value acquifeaim thehistory.conffile
defines the attribute significance. Weight paramsetge tuned manually according
to experiments results. When this factor is incedasthe significance of the
attributes used for definition of the similaritysalincreases. Contrary to this, if the
factor is decreased, the significance of the atteibs also decreased. That is, the
values of the attribute significance factor changenually according to the results
of the simulations. For example, after a few sirates we assume that the owner
factor does not affect the similarity between tive aipplications. The owner value
computed in step 8 in part C. If this value is elts 1 that means the owner value is
not important. Hence, we assign zero to the oviaetior in the history.conf file,

and while defining the similarity value or vice sar
_ N
sim= " |av[{- q§|" wK
k=1
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This formula is computed for each resource in tis¢ohy. It takes absolute
value of difference between the value of eachhatteés of newly arrived Gridlet
and the average value of this attribute in theussoand then multiplies this value
by the weight of corresponding attribute. Thisaguired to compute the similarity
between the newly arrived Gridlet and the Gridisigned to the resources in the
history.i is chosen such that sits maximum.
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The HISA Algorithm

(A) Initialization

Q) a={a, &, &, ..... , &} is the set of Gridlets’ attributes
(2) let TH = Threshold

(3) let H = History Database

(4) Read from H and get initial value of Gridlets dttites

(B) Definition of Similarity
(5) For each attribute compute its average value ferdbrresponding
machine
For (k = 1; k <= n; k++) {where n is the number @ridlet

attributes

M’ Avi[k] Id + gi,M+l
AVi [k] new = MO+1

(C) Finding of Owner Factor whether it is important or not.
(6) Let ownerCount=0
(7) Let Ow be ownerFactor
(8) Let current user name be userName and ownerNaen&ridlet
owner in the H

For (j =1; j<= m; j++) {where m is the number of Galets in the

H
If (username=ownerName) {

ownerCount++; }

}

ow = 1- ownerCouni
N

return Ow;
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(The suitable resource is found andl@sis returned for job assignment)

(D) Finding of Similarity

(9) let sim = currentSimilarity

(10) let initial similarity similarityValue = -1
(11) let initial selectedEntry = null (it storesnanformation about &

history entry whose value |

[

smaller than the value of TH whigh
is the most similar to the current
Gridlet)
While (no Resource are left) {
int sim = 0;
Get Next element (resource) from H

currentElement = nextElement;
N

sim, = ) Av[K- d ¢

k

- w(R

M is the number of the attributes of the Gridietshe history
(12) If (sim < TH) {
If (selectedEntry==null || sim < similagiValue) {

If there is the current similarity is smaller thahe TH value, thg
resource of the Gridlets which is the most simtlarthe newly arrived
Gridlets is selected. If not, the resource is deledirectly.

selectedEntery=currentEntry;
similarityValue=sim;
3}
If (selectedEntry == null) {
return -1  (No suitable resource is found)

return selectedEntry.geesourcell)

Figure 5.2: The definition and computation of Similarity in FAS
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CHAPTER 6

EXPERIMENTATION AND EVALUATION

6.1 Simulation Model in General in GridSim

GridSim has multi-threaded entities that each oictvinuns in parallel in its
own thread. These entities are used for simulatifodifferent types of processors
like single or multiple processors, heterogeneessurces, users, resource brokers

(grid schedulers), information service, networkdahBO, and statistics [14].

We can summarize these entities and their feafgésllows:

1. User Entities: A Grid user is represented by a wsdity. Each user has
some characteristic that separates from the ottsmrsuin the Grid

environment. For example; a user is separated fhenother one:

a. The types of jobs are created like job length, aien time, number
of replications etc.
b. Time zone, that is, different time zones show gaplgic distribution

of users
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c. Activity rate shows how often a user creates a jodw
d. Budget and deadline factor. They are measuredenrdahge [0,1].
For example if a deadline factor close to 0, usant& the slowest
resources because of low priority deadline, ondtieer hand if a
budget factor is close to 1, user wants the mgstmesive and fastest
resources because he/she is willing to spend a$h maney as
possible.
2. Resource Entities: A Grid resource is representgdrb instance of the
Resource entity. Each resource entity has somecteaistics:
a. Each resource may have different number of processo
b. Processors' speed and cost can be different onreaolrce. The
processor or resource speed can be defined in @#rM&PS, SPEC,
and the standard machine.
Different local load factor can be assigned onueses.
d. Each resource can be modeled with time-shared acesghared
systems.
e. Each resource can be located in a different tinmezo
3. Resource Broker Entities: It is also called grithestuler. Each user first
submits its job to its broker that is connectedh® user. Then the broker
gets a list of available resources from the grfdrimation service. After that
the task is scheduled to the most suitable resdayr¢iee broker according to
the user's scheduling policy. There is always ap=iition while the brokers
access the resources. Because the aim of eachrhisoko optimize the
policy of its users.
4. Grid information Service: All resources in thedyenvironment register
themselves to the Grid Information Service. loakeeps track of a list of
available resources. This list can be queried bybtiokers to gain contacts,

configurations, and status information of the afal# resources [14].

These GridSim entities communicate using eventenivare used for
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service request and delivery. There are two typewahts; internal and external
event. Internal events are created by the sam¢ye@ontrary to this, external
events are originated from external entities. lmdéevents must be asynchronous to
avoid the deadlock. On the other hand, an extewaht can be both synchronous
and asynchronous. An asynchronous event is an eveaited by the entity, such as
the entity is continues with its other activitiegheut waiting the completion of the

asynchronous event. However, a synchronous musgtdvedr until its completion.

To create and simulate a Grid environment and aealgcheduling

algorithms, we should do following steps:

1- Firstly, Grid resources are created with differeonfigurations and
capabilities. And then users are also created aiffarent requirements
such as QoS requirements.

2- Secondly, a number of Gridlets are created for agplications with
all the associated parameters.

3- Thirdly, a GridSim user entity is defined to created interact with the
resource broker scheduling entity which is usecdomrdinate execution.
To submit or receive processed Gridlets and acdgiir@ information, it
can directly interact with GIS and resource erditie

4- Finally, a resource broker entity is implementeg#ésform application

scheduling on Grid resources.

In order to simulate a Grid environment, a geneiaiulation model is
created as seen from Figure 6.1. In a general ationl model, each user has its
own resource broker with 1/0O queue responsible dssignment of jobs and
optimization of their requirements and objectivd$e resource broker entity
gueries GIS entity for discovery of the availabésaurces and selects suitable
resources according to user’s request. The GlSyemtiurns a list of registered

resources, and their contact details. And thenuress send dynamic information
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such as resources cost, capability, availabilityrent load, and other configuration
parameters to the resource broker. The resourdebgets all jobs from the users
and puts them in a job queue according to FCFSthée jobs in the queue are
scheduled according to scheduling policy embeddethé resource broker. And
then the appropriate resources are selected byewirce broker, and user jobs
(Gridlets) are sent to the I/O queue of the resmufor execution. The resources
send back the processed Gridlets to the 1/0 quétieedoroker entity. Finally, the
processed Gridlets are collected from the 1/0 quBughe user.

Figure 6.1: A general simulation model in GridSim with its eies$ [14].
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6.2 HISA Simulation Environment

When we develop HISA, we created a simulation @ngironment like in
the general simulation model in GridSim given igu¥e 6.1.

We craeted data from 4 users to 100 users witkrdiftt Gridlets proporties,

length, size and different scheduling policies.wes mentioned eralier, in GridSim

the properties of a task is repsresented by a &ridiject as seen from Table 6.1.

Table 6.1:A Sample Gridlet Object.

Gridlet ID Gridlet Lengt (MI) | Input File Size (byte Output File Size (byte
1 3955 58 5

These Gridlets are owned by a user with differequirements. That means
while we created a user, we also defined its nunobésridlets, connection speed
(baud rate), maximum time to run simulation (adfudlis the deadline when the
simulation will end no matter what is the Gridleeeution status), and scheduling
policy like our HISA, Time, Cost, and Cost-Time nnrization as seen from Table
6.2.
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Table 6.2: A Sample User Object.

User Name Baud Rate | Max. Simulation | Scheduling Policy # of Gridlets
(Mbit/s) Time (hour)
User_1 213 13 hour HISA 63
User N | .. | o e

In this work, we used GridSim default broker aseaource broker. We
create a history management engine method resperisibhistory and embeded it
in scheduler adviser method in GridSim broker cl&8SA finds the most suitable
resource based on the similarity value and sende the history management

engine. And then it assigns the Gridlet to the tbresource.

Before the simulation start, a user creates anragrpat that acts as a
placeholder. It is composed of GridletList thatreg a set of Gridlets to be
processed and user requirements with a schedubligyp Whenever simulation
start the broker creates a resource list to stoypamic information and
characteristic properties of available resourcepliiaed from the GIS. During the
simulation each broker continuously queries the &18 gets dynamic information
about the available resources and load on theseineess. And then user sends its
application to its resource broker via the appiaainterface. The broker of each
user gets their Gridlets from its experiment objaatexperiment interface of that
broker. After that the broker of user puts all Gid to be sent for execution into
the unfinished GridletList. In our design, therexstime management; that means
each user wait specific delay and then sends @lll€®s at one moment packed in
experiment object to its brokers. This delay isirted when the users are created.
Since we developed a static scheduling algorithiraret will not be a new Gridlet

during the simulation. That means new users carseontl new Gridlets until this
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simulation finishes. Then the broker starts schiaguind schedules all of Gridlets
one by one. The Gridlets in each broker are sclkedatcording to the requested
scheduling heuristic, status of resources and tlemilability. Our history
management engine selects the most suitable reséarthe Gridlets according to
similarity value computed by the HISA. And then dets that are mapped to a
specific resource are added to the GridletList bhg troker. A distpatcher
embedded in each broker selects the number of ésidfom the GridletList and
assigns them to the reosurce according to thatiresas not overloaded. And also
it decides how many Gridlets to be send based ®tyfte of resources. Because we
created different type of resources in terms oktiamd space shared, all Gridlets
executed depending on the resource type that &skignthem. For example, if a
new job arrive a space-shared system, the jobasutad if and only if there is a
free PE available in the resource. If there is wailable PE for the newly arrived
job, it is sent resource queue. On the other hanphb arrives at a time-share
system, the execution of jobs is started immedidiglthe time-shared system. All
resources in the systems are shared between theHebce a new Gridlet assigned
to a resource according to its current load. Whenew Gridlet arrives, the
processing time of existing Gridlets is updatedteAthat the newly arrived job is
added to the execution set. The resource sendsthaatompleted Gridlets to the
receptor of its broker created when the simulatgiart. And then updated
experiment data with processed Gridlets are retubaek to the user entity by the

broker.

6.3 Comparison of HISA with Three Scheduling Algorithms Embdded
in GridSim

In order to evaluate and analysis our schedulirgpradhm HISA, we

compared it with there scheduling algorithms emleedd GridSim simulation tool.

These are Time Minimization, Cost Minimization, &dst-Time Minimization.
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6.3.1 Time Minimization

The aim of the Time Minimisation scheduling algiom is to complete the
task as quickly as possible within the budget awdd [16]. This algorithm has four
steps:

1- For an assigned job, the next completion time Isutated taking the

previously assigned job into account. This procedsrdone for each

resource.

2
3

All resources are sorted according to the next detigm time.

A job is assigned to the first resource in theilstvhich the remaining

budget per job is greater than the cost per job.

4- The steps are repeated until all jobs are finished.

6.3.2 Cost Minimization

In the Cost Minimization scheduling algorithm, tfab is completed as
economically as possible within the given dead[ib&]. This algorithm has two

steps:
1- All resources are sorted according to the costéneiasing order.
2- As many as possible jobs are assigned to the msowithin the
deadline. This is done for each resource in therord

6.3.3 Cost-Time Minimization

The purpose of the Cost-Time Minimization schedwlinlgorithm is

optimizing the time without incurring additionalqmessing expenses [17].

This algorithm has nine steps:
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All resources are sorted by increasing order of.clistwo or more
resources have the same cost, order them by imtgeaisler of MIPS.
The resources with the same cost are grouped.

The resources in the group are sorted by increasuhgy of cost.

If any jobs that are assigned to the resourcembudispatched to the
resource for execution, a number of jobs are mduetie Unassigned-
Job-List. This is used in updating the whole scledased on latest
resource availability information.

A job is selected from the Unassigned-Job-List.

For an assigned job, the next completion time isutated/predicted
taking the previously assigned job into accounisTdrocedure is done
for each resource.

All resources are sorted according to the next detigm time.

If the predicted job completion time is less thha teadline, the job is
assigned to the first resource and then removed fiee Unassigned-
Job-List.

Repeat from step 4 to step 8 for each job in thaddigned-Job-List
depending on the processing cost and the budgialaility.

Our evaluation and analysis consist of three different parts:

1-

2-

The first part is comparison of Gridlets completitme on each
reosurce. In this simulation, we performed nea@l§ 8imulations.

The second part is comparing of total number ofd@ts assigned
succesfuly. In this part, we also performed ne&@@ simulations.

The last part is computation of simulation duratibome for each
algorithm, analysis of the results and then caipgeof the algorithms
in terms of simulation duration time. Actually teemulation duration
time is the wall clock time of these algorithms. dmthis, we performed

nearly 400 simulations.
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The first part is comparing of Gridlets completitime. In this simulation,
we performed nearly 800 simulations. Moreover, wedi9 resources with different
characteristics. Each of them has different MIP8ga CPU models, number of
PEs, and operating systems. MIPS rating of all Eaquired from the SPEC CPU
(INT) 2000. These resources are used for all sitiwnla. The aim of this simulation
is to compare the completion time of Gridlets oa thsources between HISA and

other three algorithms.
In this simulation, we performed different valuesGridlets for a single

user. The Gridlet’s length is varied from 100 MIZ0000 MI. Gridlets’ length and

their completion time obtained from the experimeam plotted in Figure 6.2.

HISA vs TIME

HISA
[ frive

Figure 6.2: Comparison of Gridlets completion time: HISA animé&
Minimization

It can be observed that at the begining of the kitimn, both algorithms
showed nearly same performance. However, when tingbar of experiments is

increased, we observed that HISA pointed out bptteiormance. Because HISA is
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based on history aproach, after each experimentiitery file gets rich. It means
that, after each simulation HISA writes beforehangberiments’ results in this
history file. Before the algorithm assigns the @il in the subsequent simulation,
it makes a deep analysis through this file to timel most suitable resource by using
the similarity value. It is more likely that thegalithm finds the most suitable
resource assigned to Gridlet by using such an aghhistory file. The resource is
found executing the Gridlets fastest. Thereforaglléis assigned by the HISA to be
completed as fast as possible. The Figure 6.2 shtimatghe application scheduling
using HISA is more successful than the othersimgeof Gridlets completion time.
The data on which Figure 6.2 is based is givenahl& 6.3. For example; as seen
from the Table 6.3 while the Gridlet with 9813.Kil length is completed by the
HISA in 15.32 ms, it is completed in 20.27 ms Ine tTime Minimization
scheduling algorithm. Moreover as seen from Figu& HISA is more successful

than the others when the Gridlet size increases.

Table 6.3 shows the Gridlets completion time fothbalgorithms. The
column 1 depicts the simulation order and the colihdepicts length of Gridlets
in terms of MI (Million of Instructions) each of wdh has the same characteristic.
The others columns show completion time of Gridiatthe reosurces for each

algorithm in terms of millisecond.

Moreover, we can see such favourable results betwd&A and Cost
Minimization, and Cost-Time Minimization algorithpfsom Figure 6.3, Figure 6.4

and Table 6.4, Table 6.5 respectively.



Table 6.3: Comparison data on the Gridlets completion timekSAHand Time

Minimization.

Sim. Order | Gridlet length (MI) | HISA (msec) | TIME (msec)

1 116.23 1.52 0.38
2 510.21 2.01 1.45
3 782.09 2.51 3.34
4 882.78 2.88 3.77
5 1698.61 3.04 4.41
6 2124.29 4.89 5.56
7 2142.26 4.99 6.12
8 2512.66 5.98 9.57
9 3901.53 7.12 11.14
10 4528.58 9.38 11.85
11 5478.93 11.31 14.33
12 6470.97 12.78 19.49
13 9813.41 15.32 20.27
14 9937.33 16.01 28.39

WHisa
I cosT

Gridlets Lenath

Figure 6.3: Comparison of Gridlets completion time: HISA anasC

Minimization
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Table 6.4: Comparison data on the Gridlets completion timelSAdand

Cost Minimization.

Sim. Order  Gridlet Length (MI) HISA (msec) COST (msec)

1 116.23 1.52 0.31
2 510.21 2.01 1.33
3 782.09 251 2.23
4 882.78 2.88 2.52
5 1698.61 3.04 4.41
6 2124.29 4.89 6.06
7 2142.26 4.99 5.61
8 2512.66 5.98 5.28
9 3901.53 7.12 10.21
10 4528.58 9.38 12.93
11 5478.93 11.31 14.33
12 6470.97 12.78 16.93
13 9813.41 15.32 25.68
14 9937.33 16.01 26.01

HISA vs COST-TIME

W HISA
I COST-TIME

Figure 6.4: Comparison of Gridlets completion time: HISA andsEGTime

Minimization.

104



Table 6.5: Comparison data on the Gridlets completion timel§AHand

Cost-Time Minimization.

Sim. Order Gridlet Length (MI) HISA (msec) = COST-TIME (msec)

1 116.23 1.52 0.68
2 510.21 2.01 2.93
3 782.09 2.51 4.91
4 882.78 2.88 5.54
5 1698.61 3.04 9.7
6 2124.29 4.89 13.33
7 2142.26 4.99 12.32
8 2512.66 5.98 11.62
9 3901.53 7.12 22.46
10 4528.58 9.38 28.45
11 5478.93 11.31 31.53
12 6470.97 12.78 37.25
13 9813.41 15.32 56.5
14 9937.33 16.01 57.22

In the second part of simulation, we compared tHese algorithms in
terms of a number of Gridlets assigned succesdsfdyeach algorithm, we created
data from 4 users to 100 users with same Gridletpgsties and different
scheduling policies. The aim of this simulation ts test the achievement of
algorithms in terms of the number of Gridlets assd) successfuly. In the
beginning of this simulation, firstly the number@®fidlets created for each user and
then all are summed for each simulation. After eaghulation, according to
simulation results, we computed the number of @t&dhassigned successfuly and.
When we averaged all test results for each algariind each simulation, we
observed that HISA gave the second best result grttue others in terms of the

humber of Gridlets assgined successfuly. While Glost Minimization algorithm
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was the best one, the Time Minimization algorithrasvihe worst. On the other
hand, Cost and Time algoritm was close to our #@lyoras seen from Figure 6.5,
Table 6.6 and Table 6.7.

Figure 6.5: Comparison of number of Gridlets assigned sucalys$1SA,

Time, Cost, and Cost and Time.

In Table 6.6, the first column shows the simulatoder, the second column
shows the number of users used in each simulatidrtfse third column shows the
number of Gridlets produced by each user. The atblermns show the number of

Gridlets processed successfuly by each algorithm.
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Table 6.6: The number of Gridlets assigned successfuly bl algorithms.

Sim. Order | # of Users |Total Gridlets | History Time Cost |Cost-Time

1 4 173 100 52 77 77
2 5 244 190 88 181 181
3 7 323 319 269 304 304
4 8 416 354 324 354 353
5 10 456 174 52 173 173
6 13 768 645 401 642 642
7 15 501 390 366 428 416
8 17 767 549 404 550 550
9 20 979 679 579 692 653
10 23 1192 1192 1176 1184 1183
11 28 1405 887 811 884 891
12 30 1399 1042 680 1202 1132
13 40 1952 1257 673 1605 1464
14 50 2113 1132 833 1275 1244
15 60 2845 1733 1411 1686 1754
16 70 4067 2707 2045 2935 2829
17 80 3746 967 727 869 877
18 90 5008 2690 1765 2717 2390

On the other hand, in the Table 6.7, the samelation results, this time,

are given as the success percentage for eachthfgori

In Table 6.7, the first column shows the simulatioder, the second column
shows the number of users used in each simulatidrttee third column shows the
number of Gridlets produced by each user as thee SanTable 6.6. The other
columns show the number of Gridlets assigned ssbdgsby each algorithms in

terms of the success percentage for each algorithm.



Table 6.7: The number of Gridlets assigned successfuly b edgorithms

in terms of the success percentage for each digorit

Sim. Order | #ofUsers | HISA (%) | TIME (%) COST (%) COST-TIME (%)

1 4 57.8% 30.06 % 44.51 % 44.51 %
2 5 77.87 % 36.07 % 74.18 % 74.18 %
3 7 98.76 % 83.28 % 94.12 % 94.12 %
4 8 85.1 % 77.88 % 85.1 % 84.86 %
5 10 38.16 % 114 % 37.94 % 37.94 %
6 13 83.98 % 52.21 % 83.59 % 83.59 %
7 15 77.84 % 73.05 % 85.43 % 83.03 %
8 17 71.58 % 52.67 % 71.71 % 71.71 %
9 20 69.36 % 59.14 % 70.68 % 66.7 %
10 23 100 % 98.66 % 99.33 % 99.24 %
11 28 63.13 % 57.72 % 62.92 % 63.42 %
12 30 74.48 % 48.61 % 85.92 % 80.91 %
13 40 64.4 % 34.48 % 82.22 % 75 %
14 50 53.57 % 39.42 % 60.34 % 58.87 %
15 60 60.91 % 49.6 % 59.26 % 61.65 %
16 70 66.56 % 50.28 % 72.17 % 69.56 %
17 80 25.81 % 19.41 % 23.2% 2341 %
18 90 53.71 % 35.24 % 54.25 % 47.72 %
AVERAGE % 67.95 % 50.51 % 69.27 % 67.8 %

In the last part of simulation, for each algorithme craeted the same data,
from 4 users to 100 users with different Gridlatsgerties and scheduling policies.
Each of user has its own characteristics. For el@egch user has different Gridlet

length, input, and output size etc.

The aim of this simulation is to measure the simmoaduration time of

each algorithms in terms of the wallclock time.
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Figure 6.6 depicts comparison of simulation duratione between HISA
and the other three scheduling algorithms. As daeRigure 6.6, HISA shows
poorer performance than Time minimisation. Becads®8A is based on history
approach, it makes a deep search through a fifasndothe most suitable resource
with the help of similarity value. Whenever simidat starts, HISA creates a
history file that stores all information about siation results. The results produced
after each simulation are stored at the end offisabry file. Therefore the history
file gets bigger after each simulation. Becausesterch and comparisons take a
long time in such a big file, simulation time of$A is expected to be longer which

is confirmed by these experiments.

[ cosT

I TIME

[l Cost_Time
W HisA

Figure 6.6: Comparison of simulation duration times in terofsvallclock

time: HISA, Time, Cost, and Cost-Time minimization.

The data on which Figure 6.6 is based is giveraible 6.8.



In the Table 6.8, the first column shows the satioh order, the second
column shows the number of users and the othersme@ show the simulation
completion time in terms of milliseconds for eaddoaithm. Each user has different

number of Gridlets.

Table 6.8: Comparison data on the simulation duration timeteims of wallclock

time: HISA, Time, Cost, and Cost-Time minimization.

Sim. Order | #of Users |COST (msec)  TIME (msec) CO&ZQ)ME HISA (msec)
1 4 3.60 3.40 3.75 4.14
2 5 6.70 5.60 3.59 6.50
3 7 6.20 6.80 3.91 2.50
4 8 10.10 4.75 5.67 0.98
5 10 15.70 7.79 7.66 8.76
6 13 19.20 12.58 7.50 21.17
7 15 23.40 3.60 7.81 9.40
8 17 29.80 9.62 10.94 26.83
9 20 35.90 7.62 17.56 13.90

10 23 43.90 2.40 34.21 44.88
11 28 51.60 13.56 49.25 66.18
12 30 60.10 26.68 51.16 153.09
13 40 67.90 32.45 60.12 152.01
14 50 74.50 41.92 71.23 205.92
15 60 82.90 50.41 77.29 250.68
16 70 90.02 69.54 87.16 324.56
17 80 98.34 78.97 99.18 412.21
18 90 127.56 123.25 112.51 512.58
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CHAPTER 7

CONCLUSION

In this study, a history based scheduling algoritivas designed and
implemented for heterogeneous Grid computing systérhe proposed algorithm
primarily makes use of history based runtime ediwna The history stores
information about the previous executions of thpliaptions. The aim is to define
and find similarity between the new application@x@n requests and the previous

application executions to assign the job to thetraogable resource.

The effectiveness of our scheduling heuristic wdadied through
comparison of its performance with that of the otlseheduling algorithms
embedded in GridSim. A number of intensive expentsewith various test
configurations have been conducted. The simulagsnlts presented clearly show
that our scheduling algorithm HISA has better perfance than the other three
algorithms in terms of Gridlets completion time. idover, we show that the
proposed algorithm gives better results than therst especially when the history
file gets rich in terms of number of re-executioBs. the other hand, it gives poorer
results than the others in terms of simulation tiomatime. This occurs when the

history file gets bigger and search in a big fdkes longer time. We also observed
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that our history based scheduling algorithm gawestcond best result among the
others in terms of number of Gridlets assigned essftilly.

As the future work, a more elaborate runtime edimnaalgorithm may be
developed making use of HISA. Moreover, the simofatduration time of HISA
may be decreased using efficient data structureseacth algorithms. For example
grouping the history entries according to theirikinties and when one entry does
not match, skipping the similar history entriesheiit comparing with the Gridlet
to be scheduled would cut down the simulation tidmethis case however, an
advanced calculation needs to be done to guaratheemismatch. Hashing
resources in the history file can also greatly iowprthe performance regarding the

simulation time.
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