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ABSTRACT 
 
 

A GENETIC ALGORITHM FOR STRUCTURAL OPTIMIZATION 
 
 
 

Taşkınoğlu, Evren Eyüp 

M.S., Department of Mechanical Engineering 

Supervisor      : Prof. Dr. Süha Oral 

 

December 2006, 93 pages 
 
In this study, a design procedure incorporating a genetic algorithm (GA) is 

developed for optimization of structures. The objective function considered is the 

total weight of the structure. The objective function is minimized subjected to 

displacement and strength requirements. In order to evaluate the design constraints, 

finite element analysis are performed either by using conventional finite element 

solvers (i.e. MSC/NASTRAN®) or by using in-house codes. The application of the 

algorithm is shown by a number of design examples. Several strategies for 

reproduction, mutation and crossover are tested. Several conclusions drawn from 

the research results are presented.  
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ÖZ 
 
 

GENETĐK ALGORĐTMA ĐLE YAPISAL OPTĐMĐZASYON 
 
 

 
Taşkınoğlu, Evren Eyüp 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Süha Oral 

 
Aralık 2006,  93  sayfa 

 
Bu çalışmada, yapıların optimizasyonunda kullanılmak üzere  Genetik Algoritma 

tabanlı bir tasarım prosedürü geliştirilmektedir. Amaç fonksiyonu yapıların toplam 

ağırlığıdır. Amaç fonksiyonu, deplasman ve dayanıklılık gerekleri baz alınarak 

azaltılmaktadır. Tasarım kısıtlamalarının değerlendirilmesinde, sonlu eleman 

analizleri, yaygın sonlu eleman çözücüleri  (MSC/NASTRAN® gibi) yada mevcut 

yazılmış programlar  kullanılarak yapılmaktadır. Algoritmanın uygulaması, bazı 

tasarım örnekleriyle gösterilmiştir. Birkaç reprodüksiyon, mutasyon ve crossover 

stratejisi denenmiştir. Araştırma sonuçlarından çıkarılan bazı yargılar sunulmuştur. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Structural design optimization is a critical and challenging activity that has received 

considerable attention in the last two decades. The main purpose in design 

optimization is to find the best ways so that a designer or a decision maker can derive 

a maximum benefit from the available resources. Genetic algorithm is one of the 

most popular optimization algorithms that is known for its robustness and ability to 

search complex and noisy search spaces. 

 

1.1 Objective and Scope of the Study 

 
The main aim of this study is to investigate Genetic algorithm as a structural 

optimization procedure. This has been done by considering several numbers of test 

and structural optimization problems. Test problems have been used for designing 

the algorithm and the final algorithm has been tested over structural optimization 

problems. All the results obtained have been compared with the results in literature 

or with the conventional optimization tools such as GENESIS. 

 

The study also includes development of a code for GA implementation. The name of 

the code developed is, GABSO: Genetic Algorithm Based Structural Optimizer. It 

can be used for any kind of structural optimization problem as long as the finite 

element model of the structure is available. The code uses MSC/NASTRAN® as 

finite element solver. But it also contains a subroutine for finite element analysis for 

2-D and 3-D truss structures. In this study, the structural optimization problems in 

consideration are mainly truss structures. The reason for this is the capability of the 

code to solve 2D and 3D truss structures. For other kind of structural problems, 

MSC/NASTRAN® has to be executed externally for fitness evaluation and this 

causes long runs that cannot be suitable for design parameter investigation. 
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1.2 Literature Survey 

 
A detailed literature survey has been performed in order to get into structural 

optimization as well as Genetic algorithms. The study has started with detailed 

investigation about optimization concepts and definitions used (objective function, 

design variable, constraints etc) in optimization. The major characteristics of 

structural optimization have been identified. The details of the objective function 

design and constraint handling have been examined. Several numbers of publications 

are read in order to obtain the preliminary background for optimization as well as 

structural optimization. 

 
In 1999, Belegundu and Chandrupatla [1] wrote a book on the implementation of 

optimization in engineering, offering a strong foundation and coverage of 

optimization theory. 

 

In 1992, Kamat [2] edited a book written by experts documenting the state of the art 

in structural optimization with a view to establishing some of the most promising 

directions for future research in the field. 

 

Haftka and Gürdal [3] wrote a book containing examples to present the application of 

various optimization methods. Optimization of both constrained and unconstrained 

problems are shown with emphasis on the variable types involved (i.e. continuous, 

discrete). 

 
Moore [7] wrote a book discussing the theoretical details of design sensitivity and 

optimization. 

 

After forming the necessary structural optimization background, a detailed 

investigation about Genetic algorithms has been started. The Genetic Algorithm 

concepts, operators and algorithm implementation are the main focus points for this 

part of the survey. The in-depth GA knowledge had been gained by examining the 

following papers and publications, 
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Dianati, Song, and Treiber [4] published a paper examining the history, theory and 

mathematical background, applications, and the current direction of both Genetic 

Algorithms and Evolution Strategies. 

 
In 2002, Charbonneau [5] published a paper providing a detailed comparison of 

genetic algorithm based optimization schemes against other optimization schemes 

and describing in full detail the use of a genetic algorithm. 

 

Said [6] published a paper describing the basic concepts and functionality of Genetic 

computation. 

 

Gantovnik, Anderson-Cook, Gürdal and Watson [11] published a paper describing a 

new approach for reducing the number of the fitness function evaluations required by 

a genetic algorithm for optimization problems with mixed continuous and discrete 

design variables. 

 

In 2005 McCall [19] published a paper demonstrating the structure of a Genetic 

Algorithm with simple examples and exploring the key advances that have been 

made in the theoretical understanding of how Genetic Algorithms operate. 

 
After forming the algorithm and developing a code based on this algorithm, GABSO, 

several test and structural optimization problems are solved. The papers and 

publications introducing these optimization problems are as follows: 

 

Charbonneau [5] wrote a paper demonstrating numerical optimization problems for 

testing the performance of optimization algorithms. 

 
In 2001, Nanakorn and Meesomklin [8] published a paper demonstrating a new 

penalty scheme capable of adjusting itself during the optimization process. 
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Rajeev and Krishnamoorty [12] published a paper presenting a simple genetic 

algorithm for optimizing structural systems with discrete design variables using a 

penalty-based transformation method on 1992. 

 
In 1992, Xicheng and Guixu [13] published a paper introducing a parallel iterative 

algorithm to solve constraint optimization problems in discrete design variable 

domains. 

 
Yu, Johnson, and Zhang [14] published a paper discussing design of experiments 

(DOE) and conservative discrete design (CDD) approaches to deal with discrete 

variables with limited computational cost. 

 
In 2002 Wang, Zhang and Jiang [15] published a paper presenting an evolutionary 

node shift method for truss shape optimization of weight minimization problems 

where the structure is subject to multiple displacement constraints under multiple 

load cases. 

 
A paper reviewing available methods for discrete variable structural optimization by 

solving a stepped cantilever beam design problem was published by Thanedar and 

Vanderplaats [16]. 

 

Rajan [18] published a paper demonstrating a procedure for the combined size, shape 

and topology design of space trusses on 1995. 
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CHAPTER 2 
 
 

OPTIMIZATION 
 

 

 

The goal of an optimization problem can be formulated as follows: find the 

combination of parameters (design variables) which optimize a given quantity, 

possibly subject to some restrictions on the allowed parameter ranges.  

 

The quantity to be optimized (maximized or minimized) is termed as objective 

function; the parameters which may be changed in the quest for the optimum are 

called design variables; the restrictions on allowed parameter values are known as 

constraints. 

 

The general optimization problem may be stated mathematically as: 

 

Maximize 

)(xf ,          ( ) N

N Rxxxx ∈= .......,........., 21 , 

 

Subject to 

 

0)( ≤xg i ,           ,.,,.........1 Ki =       

0)( ≤xhi ,           ,.,,.........1 Pi =       

 

)(xf  is the objective function. )(xgi  and )(xhi  are inequality and equality 

constraints, respectively. They represent constraints, which the design must satisfy, 

such as stress and displacements limits.  
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2.1 Objective function 

 

The objective function is a function returns a single value from which different 

designs can be compared. It is a scalar quantity that is either minimized or 

maximized by the optimizer. The optimal design is the design with a minimum (or 

maximum) value of the objective.  

 

A minimum and maximum formulation may be interchanged by simply changing the 

sign of the objective. Optimization with more than one objective is generally referred 

to as Multiobjective optimization. For structural optimization problems, weight, 

displacements, stresses, vibration frequencies, buckling loads and cost or any 

combination of these can be used as objective functions. 

 

When formulating the design objective, there are a couple of scaling-related issues 

that should be kept in mind since they affect overall performance. First, the design 

problem should be posed so that the objective function has sufficient sensitivity with 

respect to each of the design variables. The second item to consider is the absolute 

value of the response selected to be the objective function. Care should be taken so 

that this value is not too close to zero. If it is very close to zero, this will cause 

numerical difficulties in determination of weighting constants for constraint 

violations. 

 

2.2 Design Variables 

 

Design characteristics that are varied to achieve the objective are called as design 

variables. Design variables may take continuous or discrete values. Continuous 

design variables have a range of variation, and can take any value in that range. 

Discrete design variables can take only discrete values, typically from a list of 

permissible values.  
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In structural optimization, there are three types of design variable. These are; 
 

• Size design variables 

• Shape design variables 

• Topology design variables 

 

The notion of size design variable is related with cross-sectional quantities like area 

of bars, second moments of area of beams and thickness of plates and shells. The 

definition of size variable is related to the fact that the modeling domain is not 

changed. So, the line of the beam, rod or bar is unchanged, just like the reference 

surface of a plate or a shell is assumed unchanged when the concept of size design 

variable is used. The orientations of non-isotropic material can also be treated as size 

design variables. 

 

 

The notion of shape design variable is related to the reference domain of the actual 

model. For beams, rods and bars, the length can be thought as a design variable, 

which is then a shape design variable. For truss structures node coordinates of the 

truss elements can also be treated as shape design variables. Also the curvature of the 

reference line for these one-dimensional models is a shape design variable. For 2D-

models likewise the boundary curve or the curvature of the reference surface are 

shape design variables. For 3D-models the boundary surface (including internal 

boundaries like holes) is a shape design variable.  

 

 

Finally, the notion of topology design variable is related to presence or absence of a 

certain design aspect. The complications in treating topology design variables are 

due to the fact that a change in topology results in a discontinuous change in the 

design response, while a continuous change in size or shape design variables 

normally results in continuous change in the design response. 
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2.3 Design Constraints 

 

In optimization problems, there can be some constraints that have to be satisfied 

while minimizing (or maximizing) the objective function. Conditions that the designs 

must meet are called as design constraints. 

 

If there is no constraint imposed on the optimization problem then it is called as 

unconstrained optimization otherwise it is called as constrained optimization 

problem. 

In structural optimization problems, a constrained optimization problem arises in 

finding the minimum weight design of a structure subject to constraints on stress and 

deflection.  

 

2.4 Classification of Optimization Problems 

 

There are several classes of optimization problems. Knowing the type of 

optimization problem in consideration is critical, since the treatments of different 

class of optimization problems are not the same. The methodology to solve the 

optimization problem can be defined easily when the class of the problem is known. 

Optimization problems can be classified as follows: 

 

 Stochastic optimization refers to the minimization (or maximization) of a function in 

the presence of randomness in the optimization process. But in Deterministic 

optimization, the process followed to find the minimum (or maximum) for the given 

function is defined.  

 

An optimization problem can have some constraints defined which have to be 

satisfied while minimizing (or maximizing) the objective. These types of 

optimization problems are called Constrained Optimization Problems whereas the 

problems are called Unconstrained Optimization Problems when there’s no condition 

to be satisfied in the defined problem. 
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In some optimization problems, it is possible to have more than one objective. These 

kinds of optimization problems are called Multiobjective optimization problems. But 

in Single-objective problems, there is only one objective to be achieved. 
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CHAPTER 3 
 
 

GENETIC ALGORITHM 
 

 

 

There are several optimization techniques that are used in the context of engineering 

design optimization. Genetic Algorithm (GA) is one such technique that has been 

gaining substantial attention in recent years.  

 

Genetic algorithm is a search strategy based on the rules of natural genetic evolution.  

It is well known for its robustness and ability to search complex and noisy search 

spaces, phenomena which are frequently encountered in design and optimization 

problems.  

 

Genetic algorithm can be regarded as an expensive optimization tool that sometimes 

requires thousands of analyses to achieve convergence. However, there is a large 

amount of research work being done with GAs and it is continuing to grow, with 

many new ideas aimed at reducing computational cost. 

 

3.1 Genetic Algorithm Description 

 

Genetic Algorithms are nondeterministic stochastic search/optimization methods that 

utilize the theories of evolution and natural selection to solve a problem within a 

complex solution space. 

 

A genetic algorithm emulates biological evolution to solve optimization problems. It 

is formed by a set of individual elements (the population) and a set of biological 

inspired operators that can change these individuals. It simulates evolution of 

individual structures via processes of selection, mutation, and reproduction that are 

referred to as search operators.  
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Each individual in the population receives a measure of its fitness in the 

environment. Only the individuals that are the more suited in the population are 

likely to survive and to generate offsprings, thus transmitting their biological 

heredity to new generations. 

 

 

In computing terms, genetic algorithms map strings of numbers to each potential 

solution. Each solution becomes an individual in the population, and each string 

becomes a representation of an individual. There should be a way to derive each 

individual from its string representation. The genetic algorithm then manipulates the 

most promising strings in its search for an improved solution.  

 

3.2 History 

 

In the middle of the twentieth century some computer scientists worked on 

evolutionary systems with the notion that this will yield to an optimization 

mechanism for an array of engineering queries. GAs were invented and developed by 

John Holland, his students and his colleagues at the University of Michigan. His 

team’s original intentions were not to create algorithms, but instead to determine 

exactly how adaptation occurs in nature and then develop ways that natural 

adaptation might become a part of computer systems.  

 

This lead to Holland's book "Adaptation in Natural and Artificial Systems" published 

in 1975. GA, he stated, moves one population of bits (chromosomes and genes) to a 

new population using a type of natural selection along with genetic operators of 

crossover and mutation (all biological functions). These operators determine which 

chromosomes are the fittest and thus able to move on. Although some less fit 

chromosomes do move forward, on average the most fit chromosomes produce more 

offspring than their less fit counterparts. Biological recombination occurs between 

these chromosomes, and chromosomal inversion further completes the process of 

providing as many types as possible of recombination or crossover. This remarkable 
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quality that genetic algorithms have of focusing their attention on the fittest parts of a 

solution set in a population is directly related to their ability to combine strings, 

which contain partial solutions.  

 

In 1992 John Koza has used genetic algorithm to evolve programs to perform certain 

tasks. He called his method genetic programming (GP). 

 

3.3 Basic Structure of Genetic Algorithm 

 

In nature, a combination of natural selection and procreation permits the 

development of living species that are highly adapted to their environments. A GA is 

an algorithm that operates on a similar principle.  

 

The genetic algorithm (GA) is one of the probabilistic optimization algorithms 

generated on the basis of the theory of evolution. The optimization process is a 

model of the law of the survival of the fittest of actual creatures: the fittest adaptable 

individual can leave offspring. This survival-of-the-fittest process is modeled in a 

computer program. Those individual with the highest fitness within the given 

environment are selected at high probability for reproductions of next generation, 

and the rest of the individuals in the group are curtailed. From the selected elitist 

group, the genetic information of the next generation is produced by means of 

crossovers and mutations. 

 

In order to solve the optimization problems by means of GA, design variables must 

be coded into a list of genes (chromosome) and a design example must correspond to 

a chromosome or chromosomes that represent an individual. The complexity of an 

organism can be controlled by the length and number of chromosome and gene 

strings, and the size and number of gene alphabets. 

 

 A group is made from these individuals, and the optimization is performed for the 

group using genetic procedures like fitness evaluations, selections, crossover and 
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mutation. A genetic algorithm is usually made up of a group of organisms commonly 

referred to as a population of organisms. Although there exist many different 

algorithms, the basic structure is still the same as shown in Figure 3.1. 

 

 

 

Initial Population

Objective

Function
Fitness Evaluation

Selection

Crossover,

 Mutation

Gen > Max Gen

Gen = Gen + 1

Stop
Yes

No

 

Figure – 3.1 Outline of a basic genetic algorithm 
 

 

 

The main components of the basic genetic algorithms are the chromosome encoding, 

fitness evaluation, selection, crossover and mutation. 
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3.3.1 Chromosome Encoding 
 

A GA manipulates populations of chromosomes, which are string representations of 

solutions to a particular problem. A chromosome is an abstraction of a biological 

DNA chromosome, which can be thought of as a string of letters from the alphabet 

{A,C,G,T}.  A particular position or locus in a chromosome is referred to as a gene 

and the letter occurring at that point in the chromosome is referred to as the allele 

value or simply allele. Any particular representation used for a given problem is 

referred to as the GA encoding of the problem. The classical GA uses a bit-string 

representation to encode solutions. In binary encoding every chromosome is a string 

of bits, 0 or 1.  

 

 

 

1 0 0 0 1 0 11 0 0
 

Figure – 3.2 A binary encoded chromosome 
 

 

 

Encoding depends on the problem and also on the size of instance of the problem. 

There are many other ways of encoding. 

 

3.3.2 Fitness Evaluation 

 

GAs typically work by iteratively generating and evaluating individuals using an 

evaluation function. The fitness function is a computation that evaluates the quality 

of the chromosome as a solution to a particular problem 
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Generally, an optimization problem using GAs can be expressed as: 

 

Maximize  

[ ])()( xfFxF = ,          ( ) N

N Rxxxx ∈= .......,........., 21 , 

under constraints defined as 

0)( ≤xg i ,           ,.,,.........1 Ki =       

 

0)( ≤xhi ,           ,.,,.........1 Pi =       

 

For structural design optimization, x is an N- dimensional vector called the design 

vector, representing design variables of N structural components to be optimized, and 

)(xf  is the objective function. In addition, )(xgi  and )(xhi  are inequality and 

equality constraints, respectively. They represent constraints, which the design must 

satisfy, such as stress and displacements limits. Moreover, [ ])(xfF  is the fitness 

function that is defined as a figure of merit.  

 

It is not possible to directly utilize GAs to solve the constrained problems. In GAs, 

constraints are usually handled by using the concept of penalty functions, which 

penalize infeasible solutions. If any constraints are violated, a penalty is applied to 

the objective function, with the value of the penalty related to the degree in which the 

constraints are violated. The resulting penalized objective function quantitatively 

represents the extent of the violation of constraints and provides a relatively 

meaningful measurement of the performance of each solution string.  Consider a 

problem where displacement and stress constraints are imposed. Each element is 

checked for stress violation, and each model node is checked for displacement 

violation. If no violation is found, then no penalty is imposed on the objective 

function. If a constraint is violated then the penalty is defined on the objective 

function. 
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There are several penalty methods. These are; 

 

• Death Penalty  
• Static Penalties  
• Dynamic Penalties  
• Annealing Penalties  
• Adaptive Penalties  
• Segregated GA 
• Co-evolutionary Penalties  
 

 

In this study, static penalty method is used. In this method, penalty parameters don’t 

depend on the current generation number and a constant penalty is applied to 

unfeasible solutions. The individuals are simply evaluated by using  

∑
=

×+=
N

i

L

ii CRxfxeval
1

)()(  

where R  indicates the penalty coefficient, N indicates the number of constraint 

types in consideration, C is number of constraint violation and L is the 

proportionality constant.  

 

3.3.3 Selection 

 

A GA uses fitness as a discriminator of the quality of solutions represented by the 

chromosomes in a GA population. The selection component of a GA is designed to 

use fitness to guide the evolution of chromosomes by selective pressure. 

Chromosomes are therefore selected for recombination on the basis of fitness. Those 

with higher fitness should have a greater chance of selection than those with lower 

fitness, thus creating a selective pressure towards more highly fit solutions. Selection 

is usually with replacement, meaning that highly fit chromosomes have a chance of 

being selected more than once or even recombined with themselves. There are many 

different selection schemes. Most common selection schemes are Rank selection and 

Tournament selection. 
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In Rank selection, all designs in the population must be ranked from best to worst 

according to the value of each designs fitness. A roulette wheel is implemented 

where the ith ranked design in the population is given an interval [ 1−Φ i ; iΦ ) , whose 

size depends on the population size, P, and its rank, i, in the population: 

 

( )
( )1

12
1 +⋅

+−⋅
+Φ=Φ −

PP

iP
ii  

 

 

where 00 =Φ ; and Pi ..,,.........1= . A random number is generated between 0 and 1; 

design i is selected as a parent if the number lies in the interval [ 1−Φ i ; iΦ ). 

 
When the wheel is spun (simulated by using a random number generator between 0 

and 1, where the circumference of the wheel is normalized to be 1), those designs 

that occupy larger slices of the wheel have a better chance to be chosen as parent 

designs. 

 

 
 

 

Figure – 3.3 Roulette Wheel 
 

 

 

The Tournament selection is very simple and needs less processes. In this selection 

scheme, a number of individuals (typically between 2 and 7 individuals) are chosen 

randomly from the population and the best individual from this group is selected as 

parent. This process is repeated as often as individuals must be chosen. Tournament 

Selection is naturally elitist.  
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3.3.4 Crossover and Mutation 
 

Selection alone cannot introduce any new individuals into the population (i.e., it 

cannot find new points in the search space). These are generated by genetically 

inspired operators, of which the most well known are crossover and mutation. 

Crossover is sometimes referred to as recombination. 

 

The crossover and mutation are the most important part of a genetic algorithm. The 

performance of the algorithm is mainly influenced by these two operators. Usually, 

there is a predefined probability of procreation via each of these operators. 

Traditionally, these probability values are selected such that crossover is the most 

frequently used, with mutation being resorted to only relatively rarely. This is 

because the mutation operator is a random operator and serves to introduce diversity 

in the population. The kind of operator to be applied to each member of the gene 

pool is determined by random choice based on these probabilities. 

 

The crossover operator functions on the breeding pool. Crossover is one of the 

genetic operators used to recombine the population genetic material. It takes two 

chromosomes and swaps part of their genetic information to produce new 

chromosomes. This operation is similar to sexual reproduction in nature. There are 

several types of crossovers that include single crossover also known as one-point 

crossover, two-point crossover, and uniform crossover among others. 

 

In one-point crossover, a crossover point is selected randomly within a chromosome, 

and then the two parent chromosomes at this point are interchanged to produce two 

new offspring. 
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Figure – 3.4 One-Point Crossover 
 

 

Similarly, in two-point crossover, two crossover points are selected randomly within 

a chromosome, then the two parent chromosomes between these points are 

interchanged to produce two new offspring. 

 

 

 

Figure – 3.5 Two-Point Crossover 
 
 
Uniform crossover is a crossover operator that decides (with some probability) which 

parent will contribute each of the gene values in the offspring chromosomes. This 

allows the parent chromosomes to be mixed at the gene level rather than the segment 

level (as with one and two point crossover).  

 

 

 

Figure – 3.6 Uniform Crossover 
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In mutation, instead of exchanging cross-sections of a given two strings, the mutation 

operator randomly alters each gene with a small probability (i.e. 0.001). The main 

objective of the mutation operator is to produce a variety of different strings. The 

traditional view is that crossover is more important of the two techniques for rapidly 

exploring a search space. Mutation provides a small amount of random search, and 

helps ensure that no point in the search space has a zero probability of being 

examined. 

 

 

 
Figure – 3.7 Mutation 

 
 

3.3.5 Termination criteria 

 

There are several termination criterias used in GAs .The most common termination 

criteria is to put a limit on the maximum number of generation. When the number of 

generations reaches to a predefined value then the optimization process stops. 

Another common criterion is based on the percentage of identical solutions in the 

population. If the percentage of identical solutions are higher or equal to the 

predefined percentage value then the optimization process is terminated. 

 

A criterion based on no improvement tolerance can also be used in GAs. This 

criterion checks for the number of generations with no improvement in the best 

solution obtained and it terminates the optimization process based on the predefined 

tolerance. 
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3.3.6 GA Implementation 
 
 
The pseudo-code for GA approach is as follows: 

 

• Define the objective function (environment). Objective function is used in 

evaluating the designs fitnesses. 

 

• Define the chromosome structure (genetic representation of the system) 

suitable for the problem in consideration. The characteristics of an organism are 

provided in the gene strings of each chromosome. All the design variables 

should be placed somewhere inside chromosome structure. 

 

• Generate a random population of specific size (Initial population). The 

population size affects the efficiency and performance of GA. GA does poorly 

for very small size of populations and very large population size impacts 

performance of the algorithm. For typical applications, the suggested range is 

between 10-160 chromosomes. 

 

• Evaluate the fitness of every solution over the objective function. Each 

organism is then placed into a common environment where it competes and 

breeds with other members of the population 

 

• Select two parent chromosomes for mating from a population according to their 

fitness (the better fitness, the bigger chance to be selected) by a random 

selection method e.g. tournament selection and rank selection. The fittest 

organisms in the population are given the best opportunity to become parents of 

a child and may survive into the next generation. 

 

• Apply crossover operation on the selected pairs if they have been chosen for 

crossover (based on probability of crossover). The main objective of crossover 

is to take good characteristics from organisms in the parent population and 
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create child organisms which will hopefully be better suited to their 

environment than their predecessors 

 

• Based on the probability of mutation, mutate new offsprings at each locus 

(position in chromosome). Once offsprings have been created, they may be 

exposed to a mutation operator that allows for the introduction of new, random 

information that may aid the algorithm in creating stronger organisms. 

 

• Replace the initial population with new generated population. 

 

• Go through all the steps until the termination criteria met. 

 

3.3.7 GA Comparison with Other Optimization Techniques 

 

Under the umbrella of evolutionary computation also referred to as evolutionary 

algorithms (EAs) are the areas of evolutionary programming and evolution strategies. 

Each of these methods of evolutionary computation simulate the process of evolution 

through the mutation, selection, and/or reproduction processes and rely on perceived 

performance of individual structures assigned by the environment. Evolutionary 

algorithms support population structures, which progress to the rules of selection 

using genetic operators. Genetic operators determine which structures will move on 

to the next level and which will not. In essence, the individuals in the population 

obtain a degree of fitness from the environment. Reproduction concentrates on high 

fitness individuals. GAs are one of many that have been grouped in a class of search 

and optimization schemes called evolutionary algorithms (EAs). 

 

GAs form a subset field of evolutionary computation, inspired by biological and 

evolutionary systems and provide an approach to learning that is based on simulated 

evolution. Genetic algorithms are a new generation for optimization and search 
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techniques. They have become very popular because of their efficiency, power, 

utility, and accessibility.  

 

GAs function in a totally different way compared to the traditional search and 

optimization algorithms. There are major points that make the Genetic algorithms 

unique. First of all, The GA does not operate directly with the design variables, but 

with a coding of the design variables (typically string representations). 

 

Secondly, The GA only requires evaluation of the objective function and does not 

require gradients of the object or constraint equations. Thus, GAs can be used to 

solve design problems in which discontinuous functions must be evaluated. Gradient-

based optimization schemes are ideally suited to smooth functions with a single 

optimum point but would have difficulty with the non-smooth functions. Conditions 

on continuity and the existence of derivatives necessary for optimization and search 

methodologies limit the use of Derivative-based optimization techniques to a certain 

domain of problems. This brings us to the conclusion that calculus-based schemes 

lack the power to provide robust search through optimization techniques. 

 

Thirdly, The GA evaluates the objective function for several randomly selected 

design points rather than sequentially stepping from one point to the next based on 

gradient information (i.e. hill climbing). . With this property, a genetic algorithm can 

search many areas of the design space at once. While one design area that contains 

good information is being exploited, other areas of the design space can be explored. 

Working with a population of designs also makes GAs less susceptible to difficulties 

encountered in problems with noisy design spaces. On the other hand, calculus-based 

methods work with a single point at a time and may have problems with functions 

with local optimum points. 

 

Finally, The GA simulates the rules of natural genetic evolution by systematically 

applying selection, evaluation, crossover, and mutation operations. By making 

random moves in the design space, a GA can avoid local optima points easier. 
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However, it is important to note that GAs are not random searches, but use random 

information to help guide an organized search scheme toward an optimum point of 

coded parameter space. Unlike gradient-based methods, a GA can be initialized with 

the same population and converge to different solutions also.  



 25 

CHAPTER 4 
 
 

GABSO: GENETIC ALGORITHM BASED STRUCTURAL OPTIMIZER 
 

 

 

GABSO is a genetic algorithm based optimization code. It is written in FORTRAN. 

It can be used for any kind of optimization problem. It is capable of using 

MSC/NASTRAN® or any in-house code for constraint evaluation. 

 

All the examples demonstrated in the next section had been solved by using GABSO. 

The code gives two output files, a file containing the population information in each 

generations   and a summary file containing the optimization parameters list, 

objective function history and the best design in each generation.  

 

The code consists of one main code and five subroutines. And it also contains a finite 

element solver for 2D and 3D truss structures. Namely, the main code and these 

subroutines are; 

 

• GABSO - main code 

• INPUT 

• INITIAL_POP 

• FITNESS 

• TRUSS 

• CROSSOVER. 

• MUTATION 

4.1 Input.f90 

 

This subroutine is used for input file reading. The input file have two parts, the first 

part contains detailed information about the Finite element model and mainly used 

for truss optimization. In this part, the coordinates of the nodes, DOFs, the element 
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connectivities, the element property coupling information, the element properties and 

also the loading conditions are listed. 

 

The second part of the file contains detailed information about optimization 

parameters. The number of design variables, population size, selection type, 

crossover type, crossover and mutation probabilities, number of elite designs, no 

improvement tolerance, design variables weight constants and also the discrete value 

list are read through this section.  

 

4.2  Initial_Pop.f90 

 

In this subroutine, initial population of designs is formed. This procedure is a random 

procedure, in each run the code forms a new set of designs based on the time of the 

computer in use. The code obtains the seed number by combining the current hour, 

minute and seconds information. 

 

According to number of design variables, initial population size and the number of 

discrete design variable values read from the input file, the code forms an initial 

population.  

 

4.3 Fitness.f90 

 

By using this subroutine, the fitnesses of all individuals in the population are 

evaluated. The fitness evaluation is done by considering the objective function value. 

The constraints are represented in the objective function by penalty terms defined 

according to the problem.  

 

For constraint violations, the FEA must be performed. This is done either by using 

TRUSS.f90 subroutine, for truss structures or by using MSC/NASTRAN® finite 

element solver. This capability of the code makes it possible to solve all kinds of 
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structural optimization problems. The code updates the bdf file based on the design 

in consideration, MSC/NASTRAN®  input file, and execute MSC/NASTRAN®  by 

this bdf file. After waiting the finalization of MSC/NASTRAN® run, the code opens 

the f06 file and gets the necessary information to evaluate the constraint violation. 

 

GA is an optimization algorithm that needs lots of function evaluation (or FEA). This 

is the reason of huge time consumption associated with GAs. In order to minimize 

the effect of this disadvantage; a cache system is introduced in the code. A database 

is formed by the elements for which function evaluation is performed and this 

database is used for the fitness evaluations of the repeated designs. This prevents the 

unnecessary function evaluations for the repeated designs and leads to a considerable 

reduction in runtime. 

 

Mutation probability variation is a unique tool used in GABSO. The mutation rate 

can be varied during the optimization process according to the population fitness 

characteristics. There is an adaptive mutation probability algorithm in the code which 

is activated when the process stucks. Most of the time, this is a situation encountered 

when Rank selection and Elitisizm are used in the optimization process, the 

algorithm may converge to a local optimum very quickly, and stucks at that point. So 

in order to achieve the necessary variation in the population to jump from local 

optimum, the mutation probability is increased. After obtaining the variation, the 

mutation probability is set to its predefined value. 

 

4.4 Truss.f90 

 

This is a subroutine used for optimization of 2D and 3D truss structures. All the 

necessary details about the Finite element model are read from the FEM part of the 

input file. The subroutine calculates the element stresses and nodal displacements. 
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4.5 Crossover.f90 

 

Crossover is one of the genetic operators used to recombine the population genetic 

material. It takes two chromosomes and swaps part of their genetic information to 

produce new chromosomes. This operation is similar to sexual reproduction in 

nature. There are several types of crossovers that include single crossover also 

known as one-point crossover, two-point crossover, and uniform crossover among 

others. 

 

This subroutine used for crossover operation. In GABSO, It is possible to select any 

of these 3 types of crossover, one-point crossover, two-point crossover and uniform 

crossover. According to the type of the problem in consideration, the appropriate 

crossover type should be selected. 

 

And also two type of selection scheme are available in GABSO, Rank selection and 

Tournament selection. The selection and crossover type is read from the input file. 

4.6 Mutation.f90 

 

In this subroutine, mutation is applied. Instead of exchanging cross-sections of a 

given two strings, the mutation operator randomly alters each gene with a small 

probability (i.e. 0.001). The main objective of the mutation operator is to produce a 

variety in the population. 

 

In GABSO, there are two types of mutation, random mutation and creep mutation. 

The probability of using one of these mutation types is defined within the code. The 

probability is the same for both of these mutation types. So half of the mutation 

operations in the code is random mutation and the other half is creep mutation. 
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4.7 Gabso.f90 

 

This is the main code. It controls all the optimization process. Also, The Elitisizm 

and the Tunning operations are done by the main code.  

 

Simply, the Elitisizm can be defined as cloning some of the best designs to the next 

population directly. This leads to fast convergence but the algorithm generally stucks 

at local optimums when elitisizm is used. 

 

Tunning is another unique tool of GABSO, and it searchs the neighborhood of the 

optimum, obtained by the algorithm and checks the possibility to have a better 

solution in the neighborhood. This utility is activated at the end of the optimization 

process. 
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CHAPTER 5 
 
 

DESIGN EXAMPLES 
 
 
 

In this section, first, four test problems are demonstrated in order to test the 

performance of the optimization algorithm. Secondly, structural optimization 

problems are solved and compared with the previous results in literature or with the 

results obtained by using conventional optimization programs (i.e. GENESIS)  

5.1 Test Problems 

 
The four test problems in this section are all very difficult global optimization 

problems, on which most conventional local optimization algorithms would fail 

miserably. 

5.1.1 Test Problem 1 

f  

Figure – 5.1 Test Problem 1 
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The first test problem is defined as follows: 

( ) 







⋅⋅⋅=

2

2
2 expcos),(

σ
π

r
rnyxf  

( ) ( )222 5.05.0 −+−= yxr ,            [ ]1,0, ∈yx  , 

 

where, 9=n  and 15.02 =σ  are constants. The objective is to maximize the function 

defined above. The design variables are x and y. 

 

The algorithm gives the maximum at point ( ) ( )5.0,5.0, =yx  with 1),( =yxf . This 

can also be observed from Figure 5.1. The optimization parameters used in the 

calculation are as follows: 

 

Number of design variables : 2  

Number of genes : 6 

Initial population : 20 

Selection type : Rank Selection 

Crossover type : Single-Point crossover 

Crossover probability: 0.9 

Mutation probability : 0.05 

Elitist selection : None 

 

The genetic algorithms use discrete domains for the optimization problems. In order 

to solve this continuous optimization problem, 2 design variables in consideration are 

represented by using 6 genes giving an accuracy of 0.001.  

 

The convergence is obtained at generation number 100. The search space is 610 . The 

convergence is obtained by only considering less than 2.0100
10

10020
6

=⋅
×

% of the 

search space. 
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Figure – 5.2 Genes History for Test Problem 1 
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Figure – 5.3 Design Variables History for Test Problem 1 
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Figure – 5.4 Objective Function History for Test Problem 1 
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5.1.2 Test Problem 2 
 

f  

Figure – 5.5 Test Problem 2 
 
 
The second test problem is defined as follows: 

( ) ( ) 
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The objective is to maximize the function defined above. The design variables are x 

and y. 

The algorithm gives the maximum at point ( ) ( )1.0,6.0, =yx  with 1),( =yxf . The 

optimization parameters used in the calculation are as follows: 
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Number of design variables : 2  

Number of genes : 6 

Initial population : 20 

Selection type : Tournament Selection 

Crossover type : Single-Point crossover 

Crossover probability: 0.9 

Mutation probability : 0.06 

Elitist selection : 1 

 

The genetic algorithms use discrete domains for the optimization problems. In order 

to solve this continuous optimization problem, 2 design variables in consideration are 

represented by using 6 genes giving an accuracy of 0.001. The convergence is 

obtained at generation number 70. The search space is 610 . The convergence is 

obtained by only considering less than 14.0100
10

7020
6

=⋅
×

% of the search space. 
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Figure – 5.6 Genes History for Test Problem 2 
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Figure – 5.7 Design Variables History for Test Problem 2 
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Figure – 5.8 Objective Function History for Test Problem 2 
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5.1.3 Test Problem 3 

 

f  

Figure – 5.9 Test Problem 3 
 
 
The third test problem is defined as follows: 

2
2

2
3

2
4

21
2

1
3

1
4

121 1311325.01311325.0),( XXXXXXXXXXf ⋅−⋅+⋅−⋅+⋅−⋅+⋅−⋅=  

Subject to 

 

( ) 04 211 ≤−−≡ XXXg  

 

The objective is to minimize the function defined above. The design variables are 1X  

and 2X . 
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The algorithm gives the maximum at point ( ) ( )330.5,330.5, 21 =XX  with 

568.18),( 21 −=XXf . The optimization parameters used in the calculation are as 

follows: 

 

Number of design variables : 2  

Number of genes : 8 

Initial population : 20 

Selection type : Tournament Selection 

Crossover type : Single-Point crossover 

Crossover probability: 0.85 

Mutation probability : 0.05 

Elitist selection : None 

 

The genetic algorithms use discrete domains for the optimization problems. In order 

to solve this continuous optimization problem, 2 design variables in consideration are 

represented by using 8 genes giving an accuracy of 0.001.  

 

The convergence is obtained at generation number 81. The search space is 810 . The 

convergence is obtained by only considering less than 01.0100
10

8120
8

<⋅
×

% of the 

search space. 
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Figure – 5.10 Genes History for Test Problem 3 
 
where design variables are defined as; 

001.01401.0131.012111 ×+×+×+= DVDVDVDVableDesignVari  
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Figure – 5.11 Design Variables History for Test Problem 3 
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Objective Function History
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Figure – 5.12 Objective Function History for Test Problem 3 
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5.1.4 Test Problem 4 (Six-hump Camel Back Function) 
 

f  

Figure – 5.13 Test Problem 4 
 
The last test problem is defined as follows: 

( ) 222
4

2 44
3

1.24),( yyyxx
x

xyxf ⋅⋅+−+⋅+⋅







+⋅−= ; 

where 33 ≤≤− x  and 22 ≤≤− y  

 

Within the bounded region six local minima are located; two of them are global 

minima with 0316.1),( −=yxf  

 

The objective is to minimize the function defined above. The design variables are x  

and y . 

 

The algorithm gives the maximum at point ( ) ( )7127.0,0897.0, −=yx  

with 0316.1),( −=yxf . The optimization parameters used in the calculation are as 

follows: 
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Number of design variables : 2  

Number of genes : 10 

Initial population : 20 

Selection type : Tournament Selection 

Crossover type : Uniform crossover 

Crossover probability: 0.96 

Mutation probability : 0.08 

Elitist selection : 1 

 

The genetic algorithms use discrete domains for the optimization problems. In order 

to solve this continuous optimization problem, 2 design variables in consideration are 

represented by using 10 genes giving an accuracy of 0.0001. The convergence is 

obtained at generation number 62. The search space is 1010 . The convergence is 

obtained by only considering less than 01.0100
10

6220
10

<⋅
×

% of the search space. 
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Figure – 5.14 Genes History for Test Problem 4 
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5150001.014001.01301.0121.0111 −+×+×+×+×= DVDVDVDVDVableDesignVari  

5250001.024001.02301.0221.0212 −+×+×+×+×= DVDVDVDVDVableDesignVari
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Figure – 5.15 Design Variables History for Test Problem 4 
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Figure – 5.16 Objective Function History for Test Problem 4 
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5.2 Structural Optimization Problems 

 
In this section, 9 structural optimization problems are demonstrated. Structural 

optimization problems are solved and compared with the previous results in literature 

or with the results obtained by using conventional optimization programs (i.e. 

GENESIS)  

 

5.2.1 6-bar truss 

 

The first problem to be considered is the 6-bar truss as shown in Figure 5.17. The 

design variables are six sectional areas of the six members of the truss. There are two 

types of constraint in this problem, i.e., stress and displacement constraints. 

 

 

 

 

Figure – 5.17 6-bar truss 
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Design parameters are: 

Modulus of Elasticity :                    68.95 GPa  

Density :                                        2767.99 kg/m3  

Allowable tensile stress  :             172.37 MPa  

Allowable compressive stress  :    172.37 MPa 

Maximum y-displacement :              5.08 cm 

 

The optimization parameters used in the calculation are as follows: 

Number of design variables : 6  

Number of genes : 12 

Initial population : 100 

Selection type : Tournament Selection 

Crossover type : Uniform crossover 

Crossover probability: 1.00 

Mutation probability : 0.08 

Elitist selection : 1 

 

The convergence is obtained at generation number 93. The search space is 125 . The 

convergence is obtained by only considering less than 01.0100
5

93100
12

<⋅
×

% of the 

search space. 

Table 5.1 – Comparison of results with Ref [8] 

Size of member (cm
2
) Ref [8] Present 

A1   193.55 180.64 

A2   128.39 154.84 

A3  100.00 90.32 

A4 46.58 38.71 

A5 141.94 148.39 

A6  141.94 135.48 

Total Weight (N) 22072.52 21892.37 
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Figure – 5.18 Genes History for 6-bar truss 
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Figure – 5.19 Design Variables History for 6-bar truss 
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Objective Function History

52

53

54

55

56

57

58

59

0 10 20 30 40 50 60 70 80 90

No Generations

O
b
je
c
ti
v
e
 F
u
n
c
ti
o
n
 V
a
lu
e

Objective Function

 
 

Figure – 5.20 Objective Function History for 6-bar truss 
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5.2.2 25-bar space truss 
 

The 25-bar space truss problem is solved by considering weight minimization as the 

objective and cross sectional areas of the truss members as design variables. Due to 

symmetry of the 25-bar truss, only eight different member sizes are allowed, and 

hence eight independent design variables are selected by linking various member 

sizes. 

 

 

 

 

Figure – 5.21 25-bar space truss 
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Design parameters are: 

Modulus of Elasticity :                                                68.95 GPa 

Density :                                                                   2767.99 kg/m3  

Allowable tensile stress  :                                          275.79 MPa  

Allowable compressive stress  :                                 275.79 MPa  

Maximum (x, y) displacements in joints 1&2  :             0.89 cm  

 

The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 8  

Number of genes : 16 

Initial population : 50 

Selection type : Tournament Selection 

Crossover type : One-point crossover 

Crossover probability: 0.95 

Mutation probability : 0.05 

Elitist selection : 1 

 

 

Loading inputs : 

 

Table 5.2 – Loading inputs for 25-bar space truss 

Case number Node number x(N) y(N) z(N) 

1 1 4448 -44480 -44480 

 2 0 -44480 -44480 

 3 2224 0 0 

 6 2668.8 0 0 
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The truss members are divided into eight groups, according to Table 5.3. 

Table 5.3 – Group membership for 25-bar space truss 

Group Number Members 

1 A1 

2 A2  -  A5 

3 A6  -  A9 

4 A10  ,  A11 

5 A12  ,  A13 

6 A14  - A17 

7 A18  - A21 

8 A22  - A25 

 

 

The convergence is obtained at generation number 221. The search space is 166 . The 

convergence is obtained by only considering less than 01.0100
6

50221
16

<⋅
×

% of the 

search space. 

Table 5.4 – Comparison of results with Ref [12] 

Size of group (cm
2
) Ref[12] Present 

G1   0.65 0.65 

G2   11.61 3.23 

G3  14.84 21.94 

G4 1.29 0.65 

G5 0.65 12.26 

G6  5.16 6.45 

G7 11.61 2.58 

G8 19.35 21.94 

Total Weight (N) 2428.77 2157.61 
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The results obtained give less weight than Ref [12] results, approximately 11.2%. If 

the design variables upper limit is extended from 21.94 cm2 to 23.23 cm2, the results 

obtained give less weight than Ref [12] results, approximately 13.3% listed in the 

table 5.5. 

Table 5.5 – Comparison of results with Ref [12] (2) 

Size of group (cm
2
) Ref [12] Present 

G1   0.65 0.65 

G2   11.61 1.94 

G3  14.84 23.23 

G4 1.29 0.65 

G5 0.65 12.90 

G6  5.16 5.81 

G7 11.61 1.29 

G8 19.35 23.23 

Total Weight (N) 2428.77 2106.63 
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Figure – 5.22 Design Variables History for 25-bar space truss 
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Figure – 5.23 Objective Function History for 25-bar space truss 
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5.2.3 72-bar space truss 
 

The 72-bar space truss structure, shown in Figure 5.24, is a relatively large size 

problem. Weight minimization is the objective while the cross sectional areas of the 

members are design variables. The number of the design variables is 72 and the 

number of constraints is found to be 152. However, by linking the design variables 

into 16 groups, the number of design variables becomes 16 and the associated 

number of the constraints reduces to 40. The structure is subjected to two different 

loading inputs. 

 

 

 

 

Figure – 5.24 72-bar space truss 
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Design parameters are: 

 

Modulus of Elasticity :                                                 68.95 GPa  

Density :                                                                    2767.99 kg/m3  

Allowable tensile stress  :                                          172.37 MPa  

Allowable compressive stress  :                                 172.37 MPa  

Maximum (x, y) displacements in nodes 1&4  :             0.64 cm  

 

Loading inputs : 

Table 5.6 – Loading inputs for 72-bar space truss 

Case number Node number x(N) y(N) z(N) 

1 1 22240 22240 -22240 

2 1 0 0 -22240 

 2 0 0 -22240 

 3 0 0 -22240 

 4 0 0 -22240 

 

The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 16 

Number of genes : 16 

Initial population : 80 

Selection type : Tournament Selection 

Crossover type : One-point crossover 

Crossover probability: 0.95 

Mutation probability : 0.07 

Elitist selection : 1 
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The truss members are divided into eight groups, according to Table 5.7. 

 

 

Table 5.7 – Group membership for 72-bar space truss 

Group Number Members 

1 A1  -  A4 

2 A5  -  A12 

3 A13  -  A16 

4 A17  ,  A18 

5 A19  -  A22 

6 A23  - A30 

7 A31  - A34 

8 A35  ,  A36 

9 A37  - A40 

10 A41  - A48 

11 A49  - A52 

12 A53  ,  A54 

13 A55  - A58 

14 A59  - A66 

15 A67  - A70 

16 A71  ,  A72 

 

 

 

The convergence is obtained at generation number 269. The search space is 1625 . 

The convergence is obtained by only considering less than 01.0100
25

80269
16

<⋅
×

% of 

the search space. 
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Table 5.8 – Comparison of results with Ref [13] 

Size of group (cm
2
) Ref [13] Present 

G1   1.01 0.99 

G2   3.46 3.55 

G3  2.65 2.65 

G4 3.68 3.42 

G5 3.28 3.42 

G6  3.37 3.29 

G7 0.65 0.65 

G8 0.65 1.00 

G9 8.30 8.13 

G10 3.33 3.35 

G11 0.65 0.65 

G12 0.65 0.65 

G13 12.29 12.19 

G14 3.34 3.29 

G15 0.65 0.65 

G16 0.65 0.65 

Total Weight (N) 1694.061 1692.37 
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Figure – 5.25 Design Variables History for 72-bar space truss 
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Figure – 5.26 Objective Function History for 72-bar space truss 
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5.2.4 18-bar truss 
 

In the 18 bar truss structure, the design variables are the cross sectional areas of the 
truss elements and the Y components of the nodes 3, 5, 7 and 9. Thus, this problem is 
a size and shape optimization problem. 
 
 
 

 
Figure – 5.27 18-bar space truss 

 

 

Design parameters are: 

 

Modulus of Elasticity :                                      68.95 GPa  

Density :                                                         2767.99 kg/m3  

Allowable tensile stress  :                                137.90 MPa  

Allowable compressive stress  :                       137.90 MPa  

 

Loading inputs : 

 

P = 88964.43 N acting on the upper nodal points of the truss, as illustrated in Figure 

5.27 
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The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 8 

Number of genes : 8 

Initial population : 100 

Selection type : Tournament Selection 

Crossover type : Uniform crossover 

Crossover probability: 0.95 

Mutation probability : 0.08 

Elitist selection : 1 

 

The groups for the sizing variables are listed in table  

 

Table 5.9 – Group membership for 18-bar truss 

Group Number Members 

1 A1, A4, A8, A12, A16 

2 A2, A6, A10, A14, A18 

3 A3, A7, A11, A15  

4 A5, A9, A13, A17 

 

 

The shape variables are the Y components of the nodes 3, 5, 7 and 9. 

The convergence is obtained at generation number 93. The search space is 815 . The 

convergence is obtained by only considering less than 01.0100
15

10093
8

<⋅
×

% of the 

search space. 

 

 

 

 



 60 

Table 5.10 – Comparison of results with Ref [14] 

 (cm
2
) or (cm) Ref [14] Present 

G1   83.87 83.87 

G2   100.00 100.00 

G3  9.68 9.68 

G4 19.35 19.35 

Y3 584.2 584.2 

Y5  482.6 482.6 

Y7 342.9 342.9 

Y9 152.4 152.4 

Total Weight (N) 1776.18 1776.18 

 

The results obtained are exactly the same with Ref [14] results. 

 

 

 

 

Figure – 5.28 Final shape of the 18-bar space truss 
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 Figure – 5.29 Design Variables History for 18-bar truss 
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Figure – 5.30 Objective Function History for 18-bar truss 
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5.2.5 Simply supported bridge shape optimization 
 
In this problem, the objective is to minimize the weight of the simply supported 

bridge structure by considering the vertical coordinates of the upper nodes as design 

variables.  

 

 

                              

Figure – 5.31 Simply supported bridge structure 
 

 

Design parameters are: 

 

Modulus of Elasticity :                                                 2.1 107 Pa 

Density :                                                                       7800 kg/m3 

Poisson’s ratio :                                                                 0.3 

Maximum y displacements in nodes  8&10  :                  1 cm 

Rod elements (marked by 1 on the figure) with cross sectional area of 5 cm2 

Beam elements (marked by 2 on the figure) with rectangular cross section having 

dimensions b = 8 cm and h = 5 cm 

 

Loading inputs : 

There are two load cases considered in this problem. 

Table 5.11 – Loading inputs for Bridge structure 

Case number Node number x(N) y(N) z(N) 

1 2,4,6,8,1012,14,16,18 0 -10000 0 

2 8 0 -100000 0 
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The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 5 

Number of genes : 15 

Initial population : 100 

Selection type : Tournament Selection 

Crossover type : Uniform crossover 

Crossover probability: 0.95 

Mutation probability : 0.08 

Elitist selection : 1 

 

Both of the load cases are considered in the optimization process. Since the loading 

(in case 1) and geometry of the bridge structure are symmetric, the number of design 

variables is taken as 5. During the optimization process, the constraints are evaluated 

by both considering loadcase-1 and loadcase-2. 

 

The convergence is obtained at generation number 67. The search space is 1510 . The 

convergence is obtained by only considering less than 01.0100
10

10067
15

<⋅
×

% of the 

search space. 

 

Table 5.12 – Comparison of results with Ref [15] 

 (m) Ref [15] Present 

Y11 2.544  2.530 

Y13 (Y9) 2.449  2.400 

Y15 (Y7) 2.172  2.070 

Y17 (Y5) 1.646  1.610 

Y19 (Y3) 1.042  1.000 

Total Mass(kg) 489.60 485.95 
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Figure – 5.32 Final shape of the bridge structure 
 
 
 
The shape of the bridge structure in Ref [15] is shown in red. 
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Figure – 5.33 Design Variables History for Bridge Structure 
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Figure – 5.34 Objective Function History for Bridge Structure 
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5.2.6 Stepped Cantilever Beam 
 

In the stepped cantilever beam, the height and width of the beam, in all five steps of 

the cantilever beam, are taken as design variables. The volume of the beam is to be 

minimized, subject to the bending stress constraints in all five steps of the beam, to 

be less than allowable stress, the displacement constraint on the tip deflection is to be 

less than the allowable deflection and a specified aspect ratio has to be maintained 

between the height and width of beam cross sections. 

 

 

 

                            

Figure – 5.35 Stepped Cantilever Beam 
 

 

 

Design parameters are: 

 

Modulus of Elasticity :                                                   200 GPa 

Allowable tensile stress  :                                              140 MPa 

Allowable compressive stress  :                                     140 MPa 

Maximum displacement at the tip  :                                2.7 cm 

Aspect ratio H/B :                                                             <20         

      

Loading inputs : 

P = 50 KN 
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The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 10 

Number of genes : 10 

Initial population : 40 

Selection type : Tournament Selection 

Crossover type : One-point crossover 

Crossover probability: 1.00 

Mutation probability : 0.06 

Elitist selection : 1 

 

The convergence is obtained at generation number 42. The search space is 1010 . The 

convergence is obtained by only considering less than 01.0100
10

10042
10

<⋅
×

% of the 

search space. 

 

Table 5.13 – Comparison of results with Ref [16] 

 (cm) Ref [16] Present 

B1   3 3.2 

B2   3 2.9 

B3 3 2.6 

B4 3 2.3 

B5 2 2 

H1  60 60 

H2 57 56 

H3 49 52 

H4 38 44 

H5 33 36 

Total Volume (cm3) 67.80 66.28 
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 Figure – 5.36 Design Variables History for Cantilever Beam 
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 Figure – 5.37 Objective Function History for Cantilever Beam 
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5.2.7 Portal Frame 
 
The volume of a three-bar portal frame is minimized in this problem. There are stress 

and displacement constraints in the problem. The design variables are the geometric 

dimensions of the cross sections of the three bars. 

 

 

 

 

Figure – 5.38 Portal Frame 
 
 
 
 
 
 



 70 

Design parameters are: 

 

Modulus of Elasticity :                                                  7.06 MPa 

Allowable Axial  stress  :                                              20,000 Pa 

Maximum displacement x direction  :                            4.8 cm 

Loading inputs : 

P = 50 KN 

 

The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 18 

Number of genes : 18 

Initial population : 80 

Selection type : Tournament Selection 

Crossover type : One-point crossover 

Crossover probability: 0.95 

Mutation probability : 0.07 

Elitist selection : 1 

 

 

The convergence is obtained at generation number 112. The search space is 1810 . 

The convergence is obtained by only considering less than 01.0100
10

80112
18

<⋅
×

% of 

the search space. 

 

Table 5.14 – Comparison of results with GENESIS results 

Bar No (cm) GENESIS Present 

1 Height 100.885 100 
1 b1 6.86 6.3334 
1 b2 6.9 7 
1 tw 0.1 0.2 
1 t1 0.438 0.46664 
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1 t2 0.447 0.43331 
2 Height 100.616 100 
2 b1 6.08 5.2224 
2 b2 6.264 5.4446 
2 tw 0.1 0.1 
2 t1 0.294 0.23333 
2 t2 0.322 0.2 
3 Height 96.5679 80.00002 
3 b1 5.56 5.2224 
3 b2 6.05 5.2224 
3 tw 0.1 0.1 
3 t1 0.2645 0.2 
3 t2 0.3034 0.2 
 Total Volume (cm3) 45073.1 42781.4 
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  Figure – 5.39 Design Variables History for Portal Frame 
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Figure – 5.40 Objective Function History 
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5.2.8 Bridge size, shape and topology optimization 
 
This example involves a ground structure that includes the cost of placing a pier in 

the middle of the span of a bridge. The objective is to minimize the weight of bridge 

structure by considering size, shape and topology variables.  

 

The ground structure for this example is shown in figure below. 
 
 

                               

Figure – 5.41 Bridge ground structure 
 
Because the structure is considered symmetric, joints A, B, C, E, and F are the same 

on both sides of member DG. Member DH simulates the cost of placing a pier in the 

middle of the span. 

 

Design parameters are: 

Modulus of Elasticity :                                                 199.95 GPa 

Weight Density :                                                          7750.37 kg/m3 

Maximum x and y displacements :                                25.40 cm  

Normal allowable stress :                                            413.69 Mpa 

 

The point loads at joints B, C, and D are 22240 N downward. This load is the dead 

load of the roadway as well as the live loads the bridge will need to carry. 
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The two shape variables will be linked to joints E and F. Their vertical coordinates 

are allowed to vary with a minimum value of 0.24 cm and a maximum value of 120 

cm. 

 

The sizes available for this example are the AISC Standard Weight Steel Pipes. 

Below table summarizes their properties. 

Table 5.15 – Available Discrete Sizes for AISC Standard Weight Steel Pipe 

Diameter Area(cm
2
) Weight(N/cm) 

½ 1.61 0.12 

¾ 2.15 0.16 

1 3.19 0.25 

1 ¼ 4.32 0.33 

1 ½ 5.15 0.40 

2 6.90 0.53 

2 ½ 10.97 0.85 

3 14.39 1.11 

3 ½ 17.29 1.33 

4 20.45 1.58 

5 27.74 2.13 

6 36.00 2.77 

8 54.19 4.17 

10 76.77 5.91 

12 94.19 7.24 

 

This example uses size variable linking. Table 5.16 indicates which members are 

linked to the 4 size variables. Each member is linked to its own topology variable 

except members AB, BC, and CD. These members are linked to the same topology 

variable. 

Table 5.16 – Group membership for Bridge structure 

Group Number Members 

1 AB, BC, CD 

2 AE, EF, FG 

3 BE, CF, BF, CE, CG, DF  

4 DG, DH 
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The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 11 

Number of genes : 11 

Initial population : 120 

Selection type : Tournament Selection 

Crossover type : Uniform crossover 

Crossover probability: 0.95 

Mutation probability : 0.08 

Elitist selection : 1 

 

 

The convergence is obtained at generation number 29. The search space is 56 216 ⋅ . 

The convergence is obtained by only considering less than 23.0100
216

12029
56

<⋅
⋅

×
% of 

the search space. 

 

 

Table 5.17 – Comparison of results with Ref [17] 

 cm/ cm
2
 Ref [17] Present 

YE 0.30988 43.18 

YF 42.60596 1.27 

A1 - - 

A2 2.15 1.61 

A3 1.61 1.61 

A4 5.15 2.15 

Total Mass(N) 247.77 227.08 

 
 
 
 
 



 76 

 
Figure – 5.42 Final shape of the bridge structure 

 
 
 
The shape of bridge structure in Ref [17] is shown with dash-lines in the above 

figure. 
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Figure – 5.43 Design Variables History for Bridge Structure-1 
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Figure – 5.44 Design Variables History for Bridge Structure-2 
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Figure – 5.45 Objective Function History for Bridge Structure 
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5.2.9 Rajan’s Truss 
 
This example involves shape, size and topology design variables. Rajan optimized a 

14-node truss with shape, size and topology as the design variables [18]. 

 

The ground structure for this example is shown in figure below. 
 
 
 

 
Figure – 5.46 Rajan’s truss ground structure 

 
 
 
 

Design parameters are: 

 

Modulus of Elasticity :                                                    210 GPa 

Maximum y displacement :                                               1 cm 

Allowable tensile stress :                                                104 Mpa 

Allowable compressive stress :                                       130 Mpa 

 

Loading conditions are shown in the table below. 

Table 5.18 – Loads for Rajan’s Truss Example 

Load case Joint no Direction Load (N) 

1 4 y -3000000 

2 6 y -3000000 

3 8 y -3000000 

4 10 y -3000000 

5 12 y -3000000 
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There are 4 shape variables. Vertical coordinates for the top joints (B, D, F, H, J, L, 

and N) can vary between 2 m and 8 m. The structure is symmetric about middle 

member GH. Therefore joints B and N will have the same vertical coordinate, joints 

D and L will have the same vertical coordinate, and joints F and J will have the same 

vertical coordinate. Joint H is allowed to vary as well. 

 

The available cross-sectional areas are listed in the table below. 
 

Table 5.19 – Available Discrete Areas 

No Area(m
2
) 

1 0.01 

2 0.016 

3 0.022 

4 0.028 

5 0.034 

6 0.04 

7 0.046 

8 0.052 

9 0.058 

10 0.064 

11 0.07 

12 0.076 

13 0.082 

14 0.088 

15 0.094 

16 0.1 

 

This example uses size variable linking. Table 5.20 indicates which members are 

linked to the 4 size variables.  

Table 5.20 – Group membership for Rajan’s truss structure 

Group Number Members 

1 BD, DF, FH, HJ, JL, LN 

2 AC, CE, EG, GI, IK, KM 

3 BC, AD, DE, CF, FG, EH, 
HI, GJ, JK, IL, LM, KN 

4 
AB, CD, EF, GH, IJ, KL, 
MN, AF, CH, BE, DG, 

AH, GL, IN, JM, HK, HM 
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The optimization parameters used in the calculation are as follows: 

 

Number of design variables : 19 

Number of genes : 19 

Initial population : 100 

Selection type : Tournament Selection 

Crossover type : Single-point crossover 

Crossover probability: 0.95 

Mutation probability : 0.08 

Elitist selection : 1 

 

 

The convergence is obtained at generation number 213. The search space is 118 216 ⋅ . 

The convergence is obtained by only considering less than 01.0100
216

100213
118

<⋅
⋅

×
% 

of the search space. 

 

Table 5.21 – Comparison of results with Ref [18] 

 m/ m
2
 Ref [18] Present 

YB 2.33 2 

YD 4.31 4.8 

YF 6.68 7.2 

YH 7.66 8 

A1 0.053 0.04 

A2 0.016 0.022 

A3 0.022 0.016 

A4 0.034 0.010 

Total Volume (m3) 5.1 4.42 
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Figure – 5.47 Final shape of the bridge structure 
 

 

 

 
Figure – 5.48 Shape of the bridge structure in Ref [18] 

 
 
 
To investigate the stability of the algorithm, 10 consecutive runs have been 

performed using the same optimization parameters. The results obtained are listed in 

the table below. 
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Table 5.22 – Results obtained at consecutive runs 

Run Volume(m
3
) 

1 4.42 

2 4.42 

3 4.47 

4 4.44 

5 4.43 

6 4.42 

7 4.42 

8 4.53 

9 4.42 

10 4.53 

 
 
 

The topologies obtained in these runs are shown below. 
 
 
 
 
 

 

Figure – 5.49 Shape of the bridge structure for runs 1, 2, 6, 7 and 9 
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Figure – 5.50 Shape of the bridge structure for run 3 
 
 
 
 

 

Figure – 5.51 Shape of the bridge structure for run 4 
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Figure – 5.52 Shape of the bridge structure for run 5 
 
 
 
 

 

Figure – 5.53 Shape of the bridge structure for runs 8 and 10 
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Figure – 5.54 Design Variables History for Rajan’s truss-1 
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Figure – 5.55 Design Variables History for Rajan’s truss-2 
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Figure – 5.56 Objective Function History for Rajan’s truss 
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CHAPTER 6 
 
 

DISCUSSION AND CONCLUSION 
 

 

 

6.1 Discussion 

 
The aim of this study is to get into Genetic algorithms and investigate the 

effectiveness of the algorithm by experimenting it on several test and structural 

optimization problems. A FORTRAN code, GABSO, has been developed for this 

purpose.  

 

In order to test the algorithm, first a set of numerical test problems has been solved. 

These problems are difficult optimization problems in which there are more than one 

local optima. In the first test problem, the global maximum is surrounded by 

concentric rings of second, third and fourth level maximums. For a gradient-based 

algorithm, the probability of a randomly chosen starting point to give the global 

maximum is 1% [5]. There are two local maxima in the second test problem and the 

global maximum covering only 1% of the parameter space. The global maximum is 

located in a very small region when compared with the secondary maximum. This is 

a very difficult optimization problem when the algorithm used is gradient based. A 

constrained multimodal function was used as a third test problem. The function has 

multiple relative minima. The linear constraint for the problem only excludes one 

relative minimum from the feasible space. And the last test problem is the six-hump 

camel back function. Within the bounded region six local minima are located; two of 

them are global minima. 

 

The test problems show the capability of the algorithm to avoid the local optima 

points. And also these examples show that Genetic algorithm can also be used not 

only for discrete optimization but also for continuous optimization. 
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In the structural optimization problems presented in this study, the objective is to 

minimize the weight of the structure. And mainly this is achieved by considering the 

cross sectional properties of the bars or beams. For the shape optimization problems, 

the nodal coordinates are also used as design variables. All the problems considered 

are constrained optimization problems in which there are stress, displacement and 

geometrical constraints. 

 

Optimization problems start with 6-bar truss structure. It is followed by 25-bar truss 

and 72-bar truss structures. In these problems, the objective is to minimize the weight 

of the structure by using the cross sectional areas of the bars as design variables. In 

25 and 72 bar space structures, number of design variables is reduced by linking 

various member sizes. There are two types of constraints used in theses problem, 

stress and displacement constraints. 

 

In the 18-bar truss structure, the nodal coordinates are also taken as design variables 

as well as the cross sectional areas of the bars. This problem is a combined 

optimization problem, size and shape optimization. Only the nodal coordinates are 

taken as design variables in the shape optimization of bridge structure. Both of the 

optimization problems are chosen in order to show the shape optimization capability 

of the algorithm. 

 

Next, the stepped cantilever beam and portal frame design problems are solved. In 

these problems, the design variables are the geometric dimensions of the cross 

sections and the objective is weight minimization. Finally, the Pier-cost and Rajan’s 

truss examples are solved. These problems also include topology variables as well as 

size and shape design variables. The topology variables are used to determine the 

presence or absence of truss members. By using these variables, the element 

connectivities are updated in each run. 
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In all truss structures except 72-bar space structure, TRUSS.f90 is used as finite 

element solver. For the rest of the design problems, MSC/NASTRAN® is used. All 

the structural and test problems are solved by using GABSO.  

 

6.2 Conclusion 

 

During this study, mainly two major characteristic of Genetic algorithm have been 

observed. First of all, the Genetic algorithm is a stochastic search algorithm. This 

means that there is randomness in the optimization process. So each run of the 

optimization process is unique. Secondly, by making random moves in the design 

space, a GA can avoid local optima points easier than the gradient based 

optimization techniques.  

 

In all the problems, the optimum had been obtained by only considering a very small 

percentage of the design space. Mainly, Tournament selection is used in the 

optimization process and Elitisizm is activated. The Tournament selection used in 

these problems creates a high variation in the generations. And the Elitisizm results 

in a fast convergence. But using the Elitisizm can also cause the algorithm to stuck at 

local optimums. So it is logical to use Elitisizm with tools that creates high variations 

in the populations like Tournament selection, uniform crossover and mutation with 

high probability. Creep mutation is also an important tool that can be used for 

jumping the Hamming walls 

 

When Rank selection and Elitisizm are used in the optimization process, the 

algorithm may converge to a local optimum very quickly, and stucks at that point. So 

in order to achieve the necessary variation in the population to jump from local 

optimum, the mutation probability is increased. After obtaining the variation, the 

mutation probability is set to its predefined value. Mutation probability variation is a 

characteristic feature of the GA used in this study. 
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Selecting improper set of optimization parameters may result in immature solutions 

at the end of the optimization process. These results can be improved by searching 

the neighborhood of the optimum, obtained by the algorithm. A scatter search 

algorithm can be activated to check the possibility to have a better solution in the 

neighborhood. This is a unique feature used in the current algorithm.  

 

It is also observed that, the initial population is crucial in the optimization process. 

Since, the individuals in the population lead the process. Increasing the size of the 

population creates high probability of convergence but it also cause the number of 

function calls to be increased, so an increase in running time.  

 

The GA parameters and also the weight terms in fitness function used should be 

chosen carefully according to the physics of the problem. These parameters directly 

affect the optimization process. Wrong choices for these parameters can lead to 

meaningless results. In the fitness function, the constraint violation terms should be 

treated very carefully, since some infeasible designs can create very fit individuals 

due to the nature of crossover and mutation processes. But also it must be kept in 

mind that, penalizing the constraint violations by ineffective penalties can lead to 

infeasible designs at the end of the optimization process. So in the design of the 

fitness function, a balance must be obtained. 
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