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ABSTRACT

PATH EXTRACTION OF LOW SNR DIM TARGETS
FROM GRAYSCALE 2-D IMAGE SEQUENCES

Ergiliven, Sait
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Kerim Demirbag

September 2006, 101 pages

In this thesis, an algorithm for visual detecting and tracking of very low
SNR targets, i.e. dim targets, is developed. Image processing of single frame in
time cannot be used for this aim due to the closeness of intensity spectrums of the
background and target. Therefore; change detection of super pixels, a group of
pixels that has sufficient statistics for likelihood ratio testing, is proposed. Super
pixels that are determined as transition points are signed on a binary difference
matrix and grouped by 4-Connected Labeling method. Each label is processed to
find its vector movement in the next frame by Label Destruction and Centroids
Mapping techniques. Candidate centroids are put into Distribution Density
Function Maximization and Maximum Histogram Size Filtering methods to find
the target related motion vectors. Noise related mappings are eliminated by Range
and Maneuver Filtering. Geometrical centroids obtained on each frame are used as
the observed target path which is put into Optimum Decoding Based Smoothing

Algorithm to smooth and estimate the real target path.
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Optimum Decoding Based Smoothing Algorithm is based on quantization of
possible states, i.e. observed target path centroids, and Viterbi Algorithm.
According to the system and observation models, metric values of all possible
target paths are computed using observation and transition probabilities. The path
which results in maximum metric value at the last frame is decided as the estimated

target path.

Keywords: Dim Target, Super pixel, Likelihood Ratio Test, 4-Connected Labeling,
Distribution Density Function Maximization, Maximum Histogram Size Filtering,
Range and Maneuver Filtering, Optimum Decoding Based Smoothing Algorithm,

Viterbi Algorithm, Observation and Transition Metrics
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iKi"BQYUTLU GRi TONLAMALI GORUNTU DiZiSINDEN
DUSUK SNR’LI SOLUK HEDEFLERE AiT YOL TAYINIi

Ergiiven, Sait
Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Kerim Demirbas

Eyliil 2006, 101 sayfa

Bu tezde gorsel olarak ¢ok diisiik sinyal giiriiltii seviyeli soluk hedefleri
saptama ve izleme amach bir algoritma gelistirilmistir. Bu amag i¢in ¢evre ve hedef
yeginlik spektrumlarindaki yakinsaklik nedeniyle tek goriintii iizerinde goriintii
isleme yontemleri kullanilamaz. Bu nedenle, istatistiksel acidan yeterli bilgiye
sahip en kiigiik pixel grubu olan siiper pikseller {izerindeki olabilirlilik oran testine
bagl degisim algilamasi yontemi One siiriilmiistiir. Gegis noktalar1 olarak karar
verilen siiper pikseller ikili fark matrisi iizerine eslemlenerek 4°lii baglanti
etiketleme yontemi ile gruplanir. Her etiket hedefle iliskili vektorel hareketleri
bulmak icin Etiket Parcalama ve Merkezi Nokta Eslemleme teknikleri ile islenir.
Giiriilti iligkili hareketler Uzaklik ve Manevra Filtrelemesi ile elenir. Aday merkezi
noktalar Goriintii Dagilim Yogunlugu Fonksiyonu Enbiiyiiltme ve En Biiyiik
Histogram Biiyiikliik Filtrelemesi yontemleri ile islenir. Her goriintii iizerinde
hedefe ait olas1 geometrik merkezi noktalar birlestirilerek elde edilen goézlem yolu
bulunduktan sonra eniyi kod¢oziimleyici yontemine dayali yumugatma algoritmasi

ile gercek hedef yolu kestirmesi yapilir.
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Bu algoritma hedef yoluna ait durum nicemlemesi ve Viterbi Algoritmasina
dayalidir. Biitiin olasi hedef yollarina ait metrik degerleri; sistemin durum ve
gozlemleme modellerine dayali olan gozlem ve gecis olasiliklarindan yola ¢ikilarak
hesaplanir. En biiylik metrik degerine sahip yol, hedefin izledigi yol olarak

kestirilir.

Anahtar Kelimeler: Soluk Hedef, Siiperpiksel, Olabilirlik Oran Testi, 4’1ii baglanti
Etiketlemesi, Dagilim Yogunlugu Fonksiyonu Enbiiyiiltme, En Biiyiik Histogram
Biiyiikliik Filtrelemesi, Uzaklik ve Manevra Filtrelemesi, Eniyi Kod¢oziimleyici
Yontemine Dayali Yumusatma Algoritmasi, Viterbi Algoritmasi, Gozlem ve gegis

metrikleri
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CHAPTER 1

INTRODUCTION

Most target tracking algorithms focus on large targets, namely, targets large
enough for traditional automatic target recognition with a single frame of data. In
addition, SNR values of interested targets in these algorithms are high enough to
extract required information such as edge detection. The aim of this thesis is to
develop and implement a new visual dim single target tacking algorithm in low
observable and dense environments with a stationary camera looking at a fixed
region of interest. The target to be tracked has in general a size of maximum 100
resolution elements and an SNR value less than 2 dB. The related application areas
can be military and civilian depending on the targets to be tracked. The image
pixels are assumed to be gray scaled and each of them is affected by Additive
White Gaussian Noise with known statistics. The statistics of AWGN can be
estimated by different parameter estimation methods but these methods are out of
the scope of this thesis. The algorithm and simulation of environment is

implemented by MATLAB programming language.

In Chapter 2, Dynamic Vision [2] is represented, an image processing
technique developed for detecting very small and dim targets. It is based on
Likelihood Ratio Testing, Labeling of Super pixels, Label Destruction and
Centroids Mapping, Maximization of Distribution Density Functions, Maximum
Histogram Size Filtering and Range and Maneuver Filtering methods. The output
of dynamic vision algorithm is the observation of target centroids on each frame.
The effect of the noise at the output is the target false alarms and centroids

coordinate variation from the real target path.



In Chapter 3, Optimum Decoding Based Smoothing Algorithm [1] (ODSA)
is represented. This algorithm obtains a trellis diagram for the target motion and
estimates the target path by using the Viterbi Decoding Algorithm supporting both
linear and nonlinear models. The input of ODSA for dim target tracking is the
output of dynamic vision algorithm given in Chapter 2. The use of ODSA in this
thesis is to estimate the target path given observation points of target centroids on

each frame.

In Chapter 4, simulation results of the tracking algorithm are given, which
includes the performance under realistic conditions, the advantages and
disadvantages of the algorithm, the effects of the system parameters due to

environment, target, risk and ODSA parameters.

In Chapter 5, the conclusion of the thesis is given.



CHAPTER 2

DYNAMIC VISION

A vision system has to deal with moving and changing objects, changing
illumination, and changing view points. The input to a dynamic scene analysis
system is a sequence of image frames taken from a changing world. The camera
used to acquire image sequence may also be in motion. In this thesis the camera is
assumed to be stationary, looking to the same region continuously. This kind of
camera usually has civil and military applications for ground and air observation
systems in very low SNR situations that can be due to hard weather conditions,
poor quality of image sensing or far pursuit applications like satellite image
processing. Calibration of estimated target path has to be done with respect to
camera movement. Each frame represents an image of the scene at a particular
instant in time. The changes in the pixel values of the scene may be due to the
motion of objects, environmental or sensor noise on the camera. The aim of the
dynamic vision system is to characterize the motion and recognize moving objects.

There are four possibilities for the system. [2]

1) Stationary Camera-Stationary Objects (SCSO)
2) Stationary Camera-Moving Objects (SCMO)
3) Moving Camera-Stationary Objects (MCSO)

4) Moving Camera-Moving Objects (MCMO)



In many applications, it may be enough to process a single image to obtain
the necessary information. In this thesis, since environment intensity spectrum is
assumed to be very close to moving object intensity spectrum, the single image
processing methods are not applicable to characterize the motion. To give an
application example, in foggy and rainy hard weather conditions, it is hard to detect
moving objects far away from the stationary camera. In such cases, the object is
buried into the noise and impossible to detect by single image processing
techniques. Instead, comparison of two or more frames is necessary to detect

motion.

To give an example of intensity spectrums in grayscale, the environments
mean intensity maybe around 100 with noise variance 15 when the target intensity
is around 115. Figure 1 and Figure 2 shows the pixel intensity spectrum of the
target and background. In this example it is assumed that target is formed from one
characterized piece. In general, different-featured target pieces may form a single

target.

800 I
700
500
500
400

300

Intensity Histogram

200

100

50 1] 70 80 90 00 110 120 130 140 150
Grayscale Intensity

Figure 1Background Pixel Intensity Spectrum, N (100, 15)
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Figure 2 Target Pixel Intensity Spectrum, N (115, 15)

It is also possible that the background intensity spectrum can differ in
different local areas on the frame. However, general characteristics of the
distribution is assumed to be Gaussian in all sub regions, i.e. every pixel of the
camera is exposed to Additive White Gaussian Noise with zero mean and known

variance. This assumption covers almost all of the real world applications.

The moving objects are called as dim when a threshold value for single
image cannot be used to characterize the object properties. Although sequence of
frames gives much more information to aid in understanding a scene, it brings
together significantly increasing processing time. Fortunately, research in dynamic
scene analysis has shown that the recovery of information in many cases is easier in

dynamic scenes than in static scenes.

In dynamic scene analysis, SCMO scenes have received the most attention.
MCSO and MCMO scenes are very important in navigation applications. MCMO
is the most general and possibly the most difficult situation in dynamic scene

analysis.



Dynamic scene analysis has there phases:

1) Peripheral
2) Attentive
3) Cognitive

The peripheral phase is concerned with extraction of approximate
information which is very helpful in later phases of analysis. This information
indicates the activity in a scene and is used to decide which parts of the scene need
careful analysis. The attentive phase concentrates analysis on the active parts of the
scene and extracts information which maybe used for recognition of objects,
analysis of object motion, and preparation of a history of events taking place in the
scene or other related activities. The cognitive phase applies knowledge about
objects and other application dependent concepts to analyze the scene in terms of

the objects present and the events taking place.

The input to a dynamic scene analysis system is a frame sequence,
represented by F(x, y, t) where x and y are the spatial coordinates in the frame
representing the scene at time t. The value of the function represents the intensity

of the pixel.

The Figure 3 shows an example of a dim air target in a foggy environment
displayed by a mounted stationary camera on the ground. The target is surrounded

by a square on the upper left side.



Figure 3 Example of a dim air target in a foggy environment

2.1 Change Detection

Detection of changes in two successive frames of a sequence is a very
important step for many applications. Any perceptible motion in a scene results in
some changes in the sequence of frames of the scene. A good quantitative estimate
of the motion components of an object maybe obtained if the motion is restricted to
the 2-D plane. In this thesis, motion is assumed to be parallel to the image plane. 3-
D motion estimation is not the topics of this study. To decide whether a pixel value
is changed due to motion, taking difference of pixel values one by one of two
successive frames is a simple but most useful technique in many applications.
However, since the aim of this study is to detect and track dim targets, difference
picture method is not applicable for change detection of moving objects in very
noisy environments. To make change detection more robust, intensity
characteristics of groups of pixels at the same location in two frames maybe
compared using either a statistical approach or an approach based on the local

approximation of intensity distributions.



A straightforward domain independent method for comparing regions in
images is to consider corresponding areas of the frames. These corresponding areas
are the super pixels formed by pixels in no overlapping areas comprising of m rows
and n columns. The values of m and n are selected to compensate for the aspect
ratio of the camera. Therefore, a frame partitioned into disjoint super pixels is
considered. Comparison is based on likelihood ratio test and the related calculation

is given below:[2]

2
(4 _ILIZ)Z + (0,+0,)

A= 4 2 @.1)
0,.0,

where f; and (4, denote the mean intensity gray values and 07 and 0y denote the

gray intensity variance for the super pixels at the same location of the camera in

two successive frames.

After this computation, one can use a threshold value to decide whether a
super pixel is changed or not. If A is greater than the threshold, the algorithm
decides that super pixel is changed and signs it. The threshold value is strongly

related with SNR value of the target.

In this thesis, the SNR value of the target is defined as:

ﬂztarg et + O'2env

SNR . =10log (2.2)

2
H env + 0 eny

where eny 1s the environment mean intensity, Oeny 1S the environment noise

intensity variance and [lrge 1S the target mean intensity.



There are also different SNR definitions based on the intensity

characteristics. One of them is given below [19]:

H —H
SNR = target background 2.3)
motion

O-background\-

where [t 1 the average motion energy of pixels in the ground truth target
region. Likewise Upackeround 18 the average of motion energy of pixels in the ground

truth region and Gpackground 18 the standard deviation of motion energy of pixels in

the ground truth background region.

A measure of motion energy is estimated by considering a circular region
centered at that pixel and computing the sum of contributions from individual pixel
intensities in the region. Thus, for a given pixel location, the average motion

energy computed from the circular region is:

e= %Z(uz e (2.4)

where the summation is carried out over the circular region, the index i
specifies individual pixel location in the region and N is the total number of pixels
in the region. This kind of computation makes use of non-directional nature of the
circular region which makes it a robust choice to account for unknown target
motion. However, this method is used for SNR of the motion and varies in time.

Therefore, Equation 2.2 is chosen as the target SNR definition.

In very low SNR values, low threshold values may cause unnecessary false
alarms of change detection and give false motion directions. Therefore, robust

change detection is necessary but not enough technique for tracking dim targets.



The performance of the likelihood ratio test can be increased significantly
by using facets and quadratic surfaces to approximate the intensity values of pixels
belonging to super pixels. These higher order approximations allow for better

characterization of intensity values and result in more robust change detection.

2.2 Connection Labeling Of Changing Super pixels

After detection of change at super pixels, grouping of these super pixels is
necessary to identify different target candidates. It is important to mention that very
small targets whose sizes are less than “m x n”, i.e. super pixel size, cannot be
detected. Similarly, targets that have very low velocities less than super pixel size
cannot be detected. Therefore, according to the target characteristics desired to be

tracked, an optimum super pixel size can be determined.

Small super pixel size brings small and slow target motion detection in low

SNR situations while it brings together extra computational load to the algorithm.

Labeling of the binary difference matrix formed by LRT Change Detection
can be defined as grouping connected changing super pixels with respect to the

connection styles below:

1) 4-Connection

2) 8-Connection

4-connection means a super pixel is in the same label with its upper, lower,
right and left neighbors. For 8-connection, its upper/lower and right/left neighbor
super pixels are also included [15]. 8-connection gives more information about the
target shape but is not applicable in low SNR detection. Local area of the target
gets bigger with unnecessary noise related changing super pixels as it can be

observed from Figure 5.

The

Figure 4 shows 4-Connection and 8-Connection directions used to find labels.
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Figure 4 4-Connected and 8-Connected Labeling Directions

Figure 5 4-Connected and 8-Connected Label Matrix with SNR: 0.81

The pixels with the same color are in the same label and processed together.
It is observed that the real target cannot be detected by single image processing
techniques. The low SNR results in shading to real targets on the whole label
matrix. Furthermore, 8-Connected labeling jams the label matrix and hides the real

target. Therefore, in dim target applications 4-Connected labeling should be used.

11



2.3 Label Destruction and Centroids Mapping

Labels show candidate group movements at the scene. Analyzing labels
includes extracting real target hidden in the label, mapping of the label to the next
frame and filtering false alarms. Detecting changing super pixels in one label due to
dim target motion is not necessary since the aim of the algorithm is to find motion
not the target components. The algorithm doesn’t search target pieces, rather it
finds possible vector movement of the label.

Notice that all label movement doesn’t give the real target motion and may
cause false results. Therefore, instead of all label analysis with each super pixel,
labels are divided into subgroups, i.e. groups of super pixels, and these subgroups
are searched for vector motion. Notice also that vector motion is not required in its
own label but also jump to other labels. Therefore, the focus area of the analysis
must be at least target velocity. A safety region is necessary for this aim. One can
give the entire frame as the focus area also. Destruction of label also decreases
unnecessary noise clouds that spread all around the frame. The method to destruct
the label can be in similar way as the super pixel creation, but since the label is a
quadratic surface, it’s meaningful to not increase the subgroup size. However, one
super pixel is not enough to find real target movements since it doesn’t give the
real target motion characteristics, which is “If two neighbor super pixels are pieces
of a target, they map to same or close location in the next frame.” Therefore,
minimum expected target area is used as the subgroup size. Changing super pixels

that result from noise are highly probable to map to different locations.

The aim of the centroids mapping is to find new candidate positions of each
element of the subgroup in the next frame by using LRT Comparison and labeling.
Figure 6 illustrates the centroids mapping of the target and noise related two

neighbor super pixels.

12



[Two Neighbow Superpixels of Target Pleces Two Neighbom Superpixels due to noise

Figure 6 Illustration of target and noise related neighbor super pixels

Figure 7 shows an illustration of centroids that result from a label which
includes the real target without destruction on it. The points that gather around the
same center are the candidate target vectors. The points that become distinct from
the others will be eliminated. Notice that noise related centroids are very probable

to cause false alarms.
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Figure 7 Centroids Distribution without Label Destruction

13



16 :
+
141 .
12f ot + .
+
10 + o+ .
+ o+
B + + + .
+ +
E_ 4
+ o+ +
4 -+ .
2 + .
+
D 1 1 1 1 1
0 2 4 B ] 10 12

Figure 8 Centroids Distribution with Label Destruction

In Figure 8, it is clear that with label destruction, false alarms are eliminated
considerably.

The mathematical definitions for labeling and destruction are given below:

Definition 1: Let D, be the binary difference matrix whose elements are

decided by LRT Change Detection method in n” and (n—1)" and image frames.

An element of this matrix d, ; is defined by: [2]

(2.5)

0 ALt i=12,..,m
1 A>T j=12,...k

where A is the calculated LRT value of the super pixel which is given by the
Equation 2.1, T is the threshold value for comparison, m x k is the fixed size of the

rows and columns in image frames.

Definition 2: Let L, be the set of coordinates of the #™ label which is

decided by using 4-connected labeling in the setD, . An element of this set /; is

defined by:
14



ll' :{(xiayi)”Dn(xi:yj):r} (26)

where (xl. , yl.) are the Cartesian coordinate values of the super pixels in the set D, .

Definition 3: S, is the Jj" subgroup of the label L, which is formed of
groups of superpixels (xi, yl.) that are interconnected with arule &, . This rule can be

in shape or size manner geometrically.

From this definition, S, can be written as:

Sj,r = {V(xi,yij € Sj,r f(xl_,yl_j = fl} 2.7)

where (xl., yl.) is the Cartesian coordinates of the superpixels in D, .

To give an example for &, :

T (C e (T P 2.8)

where (r, r ) 1s the centre coordinates of the circle with radiusz .

x2'y

The destruction method used in the algorithm is based on rectangular pieces of the
bounding box of the label. If a piece includes a target element, it is evaluated for

centroid mapping, otherwise ignored.

15
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Figure 9 Illustration of Rectangular Label Destruction in the Bounding Box

2.4 Maximization of Distribution Density Functions

Every destructed label may give different, unrelated motion direction. This
may be due to different targets in the label or false alarms. Subgroups of the label
are analyzed to find their most probable direction. First of all, mapping of each
superpixel of a subgroup in the next frame has to be done by the method similar in
likelihood ratio test which is used for change detection. However, at this time it’s
necessary to find similar statistical super pixels instead of searching dissimilarity in
the superpixels. For each method, the same threshold value can be used due to
same noise variance. Mapping of each super pixel gives many candidates of vector
movements in terms of the centroids. Therefore, a selection method along mapping
vectors has been offered. At this time, distribution density functions take very
important role. Distribution density functions are used to find most probable vector
movement of a subgroup in the searched label. The input to the distribution density
function is the centroids of the candidate mapping labels. It is important to notice
that the distribution density functions mentioned in this thesis is not related with
the probability density functions which are used to characterize the probability of

random variables.

The probability of one centroid is dependent on how close the other
centroids gather around it. Distribution density functions are symmetric around the
origin in both x and y directions and monotonically decreasing. Notice also that

distribution density functions should have an optimum bandwidth with respect to

16



the noise variance in the environment. The bandwidth definition can be in different

ways in terms of the energy percentage that fall into it.

The Figure 10 and Figure 11 show three dimensional graphics of different

types of distribution density functions in two axis with different bandwidths.

0877

Figure 10 Example of Exponential Distribution Density Function: e” with “r* = x* + y*”

10 -
A S|
Jo
0. LS '
""’:‘:‘:””’"‘ 10
0 e

Figure 11 Example of Linear Distribution Density Function: Max (10, 10-r) with “r* = x> + y*”
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Definition 4: Let M, be the set of total mapping centroid coordinates of the
subgroup S, and m » be the subset of mapping centroid coordinates of the single

superpixel in this subgroup.

Um, =M where p=1.2,..n, (2.9)

t
P

and ng is the number of elements in the subgroup S, . It is important to mention that
m, sets that result from the elements of the subgroup S, don’t have to be mutually

exclusive.

Definition 5: Let v, be the distribution density function (DDF) of the mapping

centroid (x, y) given by the equation below:

W= ;w(xn, V) n=123....m, (2.10)

where, nis the centroid index number excluding the index number of (x,y) in M,
which has total number of elements m. It is also possible to filter out number of

centroids instead of evaluating all of them, since DDF take very low accumulated

values far away from the origin.

M, is the observation set which includes necessary and unnecessary
mapping centroids. The aim of DDF is to filter out noise related unnecessary
mapping points. In the area of mapping centroids, we can find a region that has the
maximum number of hit points with minimum entropy. The entropy of a point in
the area is defines as the summation of distances of the all points to the related

point.

18



B,y )} =Yd  n=12...k @.11)
2

in the set of (xl. , y[) coordinates with total number of k£ elements.

The combination of minimum entropy with maximum number of hit points is given
by DDF. As the number of centroids gets bigger and entropy gets smaller, DDF

output increases in the same manner.

It is important to mention that coordinates of maximum likelihood point in
the area does not have to be one of the elements in M,. However, since the
computational load for optimization increases very much and the distance error

when one of the M, elements is chosen is very small, it is more useful to search

the maximum likelihood centroid point in the set M,. The point found from DDF
maximization is the centroid of the superpixels of the subgroup analyzed which

have similar intensity characteristics.

In order to find maximum likelihood mapping centroids point of the

subgroup S, it is necessary to define the probability of each element of the set M, .

Definition 6. Let PM (x, y) be the probability of mapping for the mapping centroid
t

(x,) inM,.

1
Py (y)=—v., (2.12)

¥, 1s directly related with the mapping probability. As the distribution of

the mapping centroids gets closer to the mapping centroid (x, y), the probability of

vectoral movement of the subgroup m p 10 that point gets bigger. The mapping

centroid which maximizes Wis chosen as the maximum probable subgroup

vectoral movement S max .
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S max = arg max(PMt ) (2.13)

The Figure 12 shows graphical result when a frame part that includes the

real target has been put into an exponential distribution density function.

2000 L
1500 J-~
1000 -4~

N

Figure 12 A real target that appears on DDF Maximization

It is clear that the regions that include the real target results in higher DDF

values which are related with number of hits to the same region and minimum

entropy.
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To summarize DDF Maximization, each candidate centroids of the mapped
labels of the subgroup elements are taken as the origin of DDF for the evaluation.
All other centroids that fall in the bandwidth are put into DDF to get the final
summation value. The one that has the maximum value in DDF is taken as the

maximum likelihood subgroup vector.

It is important to notice that, if there does not exist enough superpixels that
come from the target, DDF maximization gives false alarms. However it is possible
to identify different targets in different locations by Maximum Histogram Size

Filtering which is given in the next chapter.

2.5 Maximum Histogram Size Filtering

The next step in the algorithm is to find different target candidates by using

subgroup mapping points S max determined by DDF maximization. This step is
necessary to differentiate different targets that gather around the same centroid. It’s
also possible that noise clouds result in subgroup mapping points as if they are
target elements. The mapping points of this kind of subgroups may be in the real
target centroids, however it is not important for the algorithm to differentiate them
from the real target vector movements because the algorithm uses the final filtered
vector movement as the start point that result from subgroups for the next iteration.
It is necessary to emphasize that the mapping points are the only important and
enough result of the DDF maximization. The mission of finding target start point is
related with the previous iteration of the algorithm. It takes importance only for the
initial state but the algorithm uses ODSA for estimation. From the point of ODSA,
the maximum metric in the last is the result of the estimated path not the initial

point.

The method used to differentiate different target groups strongly depends
on determining different target mapping point clouds. The resolution to
differentiate different targets can be increased with a good selection of grouping
technique. This technique depends also on maximum target size. Maximum

histogram size filtering has been developed for this aim.
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This filtering method generates new classes of centroids and groups them
by going back from the point that has the maximum value in the member

histogram.

The Figure 13 shows an example of differentiation of different targets on the image

with maximum histogram size filtering.

Size Threshold: 15 pixel Size Threshold: 3 pixel

Figure 13 Differentiation of different targets for different size thresholds

The general flowchart of the Maximum Histogram Size Filtering is given below:

Step 1. Create a group for each centroid. Each group consists of other

centroids which are closer than the size threshold value.

Step 2.  Find the number of elements for each group
Step 3.  Assign the group which has the maximum number of elements as a
target.

Step 4. Kill the group by zeroing the histograms of the centroids included in
it.

Step5.  Go back to Step 3 until all of the groups are killed.
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2.6 Range and Maneuver Filtering

The target candidates found by maximum histogram size filtering method
can be in different directions and velocities with respect to last vector movement.
Therefore, the algorithm takes maximum possible range and maneuver index

acceptable for a target by using Equations 2.13 and 2.14.

Range and maneuver index definitions are related to difference between two
successive frames. The sampling time of the image sensor is important from this
point of view. As the sampling time of the image sensor gets bigger, it’s not

reliable to filter out targets that fall into maximum range and maneuver.
Let r, and m, be the maximum target movement range and maneuver

index of the tracked target. The centroids of possible target movements,C, , are

filtered by the following equations:

ym,k+1 -y

-1 m,k
m, 2 f||tan"( )

Yoo~V
—tan T (FhTmiy (2.14)
kel ~ Y Kok mk-1

2 2
\/(ym,k+l - ym,k) + (xm,k+l_xm,k)

2 2
\/(ym,k - ym,k—l) + (xm,k _xm,k—l)

v, 2g (2.15)

where k indicates the related frame numbers. (x,y) is the Cartesian
coordinate of the centroid. f(.) is the maneuvering filter function and g(.) is the
range filter function. These functions are based on the system state transition
model. f(.) defines the angle change and g(.) defines the relative velocity change,

i.e. acceleration, of the target between three successive frames. Based on the
system model defined, these functions are used to filter out non possible target

movements.
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Notice that “f” and “g” functions are defined adaptively, that is to say the
inputs of these functions in the next step are the outputs of the last step. Therefore,
slow target transition changes along the frames can be detected by changing the

acceleration and maneuver parameters with respect to the last observed data.

It is also possible to use Kalman or Extended Kalman Filters to predict the
current and future states of the target. However, it is found to be enough to use
second order adaptive filter to eliminate non possible target movements. The order
of the filter is related with the maximum frame number difference between the
current and past frames, which are used in “f{.)”and “g(.)”” functions. The Equation

2.14 and 2.15 use second order adaptive filter for this aim.

Figure 14 Example of target range and maneuver filtering

The surface that is enclosed by the green line is the possible target
movement region for a linear state transition. Notice that system can be defined in

any manner, i.e. constant or variable acceleration and maneuver parameters.
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Below is the list of possible target state transition models:

1. Constant Acceleration Constant Maneuver
2. Variable Acceleration Constant Maneuver
3. Constant Acceleration Variable Maneuver

4. Variable Acceleration Variable Maneuver

The algorithm cannot find the targets which has acceleration and
maneuvering bigger than the limits. Even though giving more tolerance for the
limits seems to increase probability of real target cover area, it is more realistic and
useful to limit them to prevent false selection of the real target along the
candidates. From this point of view, it can be said that there exists maximum

acceleration and maneuver limit for a given SNR value to extract the path.

2.7 Position and Direction Calibration

The algorithm uses center windowing method to focus on target. The
method is based on locating the last observed target position at the center of the
window with a predetermined size which is the maximum tolerable target velocity.
The superpixels in the frame that are not in this window are ignored for the
analysis. The reason of center windowing is to increase the time performance of the
algorithm and prevent false alarms that cannot be related with focused target. This
relation is about the maximum target velocity tolerable in the system. There exists
a tradeoff between the performance of the algorithm and risk of missing the target

that is not in the focus window.

Centering the window for focusing on the target to be tracked necessitates
position and direction calibration. Dim target tracking algorithm finds the
maximum probable target movement in the focused window. This vector has to be

mapped into real main frame of observation.
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A reference of the target with respect to the focus window is used for
calibration. This reference is the left-upper coordinates of the focus window at the
main frame. At each observation interval, the focus window jumps to the new
target-centered position and new observation matrix is given as the input to change
detection. After dim target tracking algorithm finds the relative target movement
with respect to the window position and then maps the target vector to the

stationary camera coordinates.

Figure 15 shows the vector sum of the relative target movement and focus

window vectors.

{Xe,Ye)

— z
T

(30w, Yw
(XL.YT)

t
(Xi.Yi)

r+t=z

Figure 15 The calibration of the real target position and direction

where “r” is the vector between the center of the focus window and main
frame left-upper corner, “t” is the relative motion of the target with respect to focus
window, “z” is the final calibrated target position vector with respect to the left-

upper corner of the main frame.
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(x..7) : Cartesian coordinates of the main frame left-upper corner

cr?te

(x,.7,) : Cartesian coordinates of the focus window left-upper corner

wadw

(x,,7,) : Cartesian coordinates of the center of the focus window, also the

final observed target position

(X Y f) : Cartesian coordinates of the relative vector movement of the target

2.8 Assignment of the Next Iteration Label

The final step of the dim target tracking algorithm is to provide continuity
of the iteration by assigning the last observed target centroid to the most probable
label in the next step. Due to the low SNR values, the point that is found to be the
centre of the last label can no longer be seen by the algorithm as the centre of the
next difference matrix label. The labels change their sizes and shapes in the next
frame because the frames that are used for comparison have already been changed.
Therefore it is necessary to match the target centroid with the most probable label.

For this aim, the following criteria are presented:

Let AI”[ be the distance between the last observed target centroid and the
centroid of the /" label of the next difference matrix and 4, be the area of the label
which is defined as the number of pixels included in the label.

The labels which have error tolerance of the last label area are filtered and
the label which has the closest centroid to the target centroid is chosen as the next

label for iteration.

Let label L, be the final decided label for the iteration. L_ has the

following properties:

(2.16)

li

L, : {ij “A|<e,nAr, = min(Ar, )} [=12,..N
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where 4; is the area of the last analyzed label and ¢, is the maximum tolerable
target size change between two successive frames. N, is the number of labels in

the binary difference matrix D, .

2.9 Flowchart of the Dim Target Tracking Algorithm

The aim of the dim target tracking algorithm is to get reasonable target path
observation from the image sequences given. The result of the algorithm has at
least the distance error as much as the superpixel size. Furthermore, there occur big
fluctuations along the path from the real target centroid due to the low SNR
condition. Therefore, the output of the dim target tracking algorithm has to be put
into a smoothing algorithms to find more reliable path estimation. The effect of the
high noise variance reflects to the deviation of the centroid of the observed path
from the real target path, which usually results in discontinuities in the path. The
risk of missing the target centroid in the next frame gets bigger if the observed path
is not smoothed. Furthermore, it increases the performance of the algorithm from

the computation time point of view.

The Figure 16 shows the general flowchart of the dim target tracking
algorithm and the relation of the algorithm with the Optimum Decoding Based

Smoothing algorithm.
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CHAPTER 3

OPTIMUM DECODING BASED SMOOTHING ALGORITHM

Optimum decoding based smoothing algorithm is an estimation algorithm
which can be applied for both linear and nonlinear estimation problems modeled as

below:

Motion model, x(k+1)= f(k,x(k),u(k),w(k)) 3.1

Observation model, z(k)= g(k,x(k),v(k))

Where x(0) is an nx/ initial state Gaussian distributed random vector (which
determines the considered target location at time 0); x(k) is an nx/ (target) state
vector at time k; u(k) is a gxI input at time k with known statistics; w(k) is a px1
Gaussian distributed disturbance noise vector at time k& with zero mean and known
statistics; v(k) is an Ix/ Gaussian distributed observation noise vector at time k with
zero mean and known statistics; z(k) is an rx/ observation vector at time k. Time &
1s time ¢y + kT, where ¢y and T, are the initial time and the observation interval
respectively. The random vectors x (0), w (k) and v (k) are assumed to be
independent for all k. The goal is to estimate the state sequence {x (0), x (1)... x
(L)} by using the observation sequence {z(1), z(2),..., z(L)}. [1]
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3.1 Quantization of States and Transition Probabilities

Due to some analytical difficulties, calculations should be performed numerically.
Let x(k) be a random vector whose range is in the space R" (n dimensional
Euclidian space). Let us divide R" into nonoverlapping subspaces R;" and assign a

unique value x,; to each subspace R;", where the subscript ¢ is quantization. [1]

Definition 3.1: A function x,(.) £ O{x(.)} is a quantizer for the state x(.) if
the following hold:

1) A function x,(.)2 Ofx(.)} = x4 whenever x(.) € R/"; and
2) x4; is unique for each R/

Definition 3.2: The function x,(.) is the quantized state vector at time (.),

and its possible values are called quantization levels of the state x(.).
Definition 3.3: Subspace R/" is called gate R/".
Definition 3.4: The value x,; is called the quantization level for the gate R,".

Definition 3.5: The transition probability /7;,(k) is the probability that the
state x(k+1) will lie in the gate R, when the state x(k) is in the gate R/"; i.e.,

(k) 2> Prob { x(k+1) € R," | x(k) ¢ R } (3.2)
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Figure 17 Quantization and transition probabilities

Since the initial state vector x(0) and w(k) are Gaussian distributed and the
random vectors x(0), w(k), and w(l) are assumed to be statistically independent for
all k, I; x(k+1) and x(k) are linear transformations of the Gaussian random vectors
x(0), w(l), ..., and w(k). Thus, p(x(k)) and p(x(k+1)|x(k)) are normal density
functions. Therefore, the evaluation of /7;, (k) is difficult. For this reason, we define
a finite-state model described in section 2.3 by approximating the disturbance noise
vector w(k) and the initial state vector x(0) by discrete random vectors, and by
quantizing x(k) for all k. For this finite-state model, the transition probabilities can

be easily calculated.
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3.2 Approximation of an Absolutely Continuous Random Vector by a
Discrete Random Vector

In order to find the optimum discrete random variable with n possible values that
approximates an absolutely continuous random variable x with distribution function

Fy(.), we must find a distribution function F, () which minimizes the objective

function J(,):
J(F, () =min, , J(F, () (33)
=min,, J(g(.))
Where
J(Fy(.))=_Z[Fx(a>—a<a>]2da (3.4)

The aim is to find a step function gy(.) which minimizes the objective function J{(.):

J(g() = TFJ(a)da+T[Fx(a>—11]2da+T[ﬂ(a)—fz]zdm..-
. A (3.5)
+ [[F@-P Jda+ [[F(a)-1]da

Oa X< yl,O’
go(x)= B, Vio SX< Ve I= 1,2,...,n—1 (3.6)
1, X2, 0,
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If go(x) is a step function which minimizes (3.5), it must satisfy the following set of

equations:
By =2F.(y,)
Fo+ Pi+1,0 =2F, (yi+1,0)> i=12,..,n-2

3.7)
1+P,, =2F.(y,)

Yit1,0

Py(io=¥io)= |Fl@da  i=12,.,n-1

Yio

The discrete random variables which approximate the normal random
variable with zero mean and unity variance are given in the References [20]. If the
mean (u) and the variance (o) of the random variable are different than 0 and 1
respectively, the new discrete values are computed according to the mean and

variance of the random variable by using the formula given in 3.8.

Y =0y, tu P,=P, i=12,.,n (3.8)

z,

The Figure 18 shows the distribution functions of the absolutely continuous
normally distributed random variable x with zero mean and unity variance; and the
distribution of the optimum discrete random variable which approximates x with 8

possible values.
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! — distribution functon of continugus random variable x |
distribution function of discrete random variable x|

Fx(x)

0% 4 -2 0

Figure 18 PDF of continuous random variable x and approximated discrete random variable

The y and p values of approximated x are given at Table 1.
Table 1 y and p values of discrete random variable with 8 possible values
1 2 3 4 5 6 7 8

vy | -1.6990 | -1.0250 | -0.5700 | -0.1840 | 0.1840 | 0.5700 | 1.0250 | 1.6990
0.1460 | 0.1394 | 0.1240 | 0.0922

0.0922 | 0.1240 | 0.1394 | 0.1460

3.3 A Finite State Model for the Target Model
Gates are assumed to be generalized rectangles with origin R,". The quantization

levels for gates are assumed to be the center of the gates.

X,()20(()=xs  ifx()eR/, (3.9)
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For each £ the disturbance noise vector w (k) is approximated by a discrete random
vector wy (k) and the initial state vector x (0) is approximated by a discrete random
vector x,(0) as described in section 3.2. The number of discrete values for wy (k)
and x4(k) are chosen such that w(k) and x(k) are satisfactorily approximated.
Furthermore, by replacing w (k) and x (0) with discrete random vectors wy (k) and
x4(0) respectively, and then quantizing the states by (3.9), the target-motion model

1s reduced to a finite state model.

Xo(k+1)=0(f(k, x4(k), u(k), wa(k)), (3.10)

The number of quantization levels for k=0 is the number of discrete values
of the initial state vector x (0)), and the number of quantization levels for k=1, 2... L
is limited because of the increase in the complexity of the algorithm. If the number
of states were not limited, than the program computation time would increase

dramatically with large k values.

The transition probability I7;(k), which is defined by the conditional
probability that the quantized state vector x,(k+17) will be equal to the quantization
level x,; for gate R/, given that the quantized state vector x,(k) is equal to the

quantization level x,; for gate R/" is determined as follows:

IIi(k) 2 Prob { xy(k+1)=xg1 | X4(k)=x4 } (3.11)

Assume that the x,(k) is equal to x, for gate R/". The transitions from this
quantization level to others are determined by wy (k) and the function Q (f (k, x4(k),
u(k), wa(k)). If wa (k) has m discrete values (wa; (k), waz (k), ..., Wam (k)), then x,(k+1)
can take at most m quantization levels. The probability of /7;(k) is determined by
the probability of wy(k) value (determined by corresponding p value) which results

x4 If more than one values of wy (k) result x,; than probabilities are added.
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3.4 Approximate Observation Models

Since the target-motion model is reduced to a finite-state model which uses
the quantized state vector x,(.), the observation model is approximated as equation

(3.12).

z(k) = g(k, x,(k),v(k)) (3.12)

The motion model can be represented by a trellis diagram as shown in Figure 19.
When the trellis diagram is drawn from time 0 to L, the target motion occurs along
one of the possible paths through the trellis diagram. Based on the observation
sequence z(1), z(2),...z(L), the most probable path followed by the target is
determined by using the minimum error probability criterion, which is a special
case of Bayes’ criterion in detection theory. Using this criterion reduces the
problem of finding the path most likely followed by the target to a multiple
hypothesis testing problem.

//-’ qu(L)

LI.* \ " — x (D)
11, 72
x,(0)=x,"(0) 2, =x,"(2) '
x,; (M
%,:(2)
anl (L)
X, (O) . —_—
¥ (2) End (Final) quantization levels
anl (1) Lo

Figure 19 Trellis diagram for the target motion
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3.5 Minimum Error Probability Criterion

Let the number of possible paths in the trellis diagram be M. Then, we
define M hypothesis for the M possible paths. Using the minimum error probability

criterion, we decide on one of the hypothesis to be the actual target path.

Let us develop a decision rule that assigns each point in the observation
space D into M subspaces D;, D, ..., Dy. If the observation fall in the subspace D;,
we decide that the target (most likely) followed path H;. Subspace D; is called the
decision region for hypothesis H;. We must choose the decision regions in such a
way that the overall error probability is minimized. The overall error probability,

sometimes called Bayes’ risk is defined by:

R/\ZZ{ [ p(H )p(z* |Hj)dzL} (3.13)

~.
(]

where
p(H) : Probability that the hypothesis H; (path H)) is true,
p(zL|H,) : Conditional probability of the observation sequence z* (z(1),
z(2),...,z(L)) given that hypothesis H, is true.

The optimum decision rule is

Choose H; if p(H,)p(z*|H,) > p(H )p(z*|H ) for all j#i, (3.14)

3.6 Optimum Decision Rule for the Target Paths

Let us consider the motion model in equation (3.10) and the observation
model in equation (3.12). Since the disturbance noise vector w (k) is assumed to be
independent of w (j) and x (0) for all j#k, the a priori probability of hypothesis H;

can be rewritten as:
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pH)=1]11,", (3.15)

where IT = prob(x,(k)=x, (k)\x,(k-1)=x, (k-1)), and x,(k-1) and x,(k) are the
quantization levels for the gates in which the target lies at time k-/ and k&

respectively when it follows path H,.

The function p(z“|H;) in equation (3.14) can be rewritten as:

pCEH) =TT PG, (k) (3.16)

Where p(z(k)[x, (k) = p(z(k)[x, (k) = x, (k)

Since z(k) is a Gaussian distributed random variable, z(k)(x qi(k) is also a Gaussian
distributed random variable with mean g(k, xqi (k),0) and variance azv(k). Therefore,

p(z(k)|xqi(k)) can be computed according to the formula given in equation (3.17).

P . (et~ gk, (1).0)) o)

2wo 20,

p(z(k)

v

Substituting equation (3.15) and (3.16) into the optimum decision rule of equation

(3.14), we obtain the following:

Choose H; if
[ 11, pzh) |x, (k) >T1 T[T pz(h) |, (k) (3.18)
k=1 k=1
for all j#i.
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Since it is more convenient to perform summations than multiplications, and the
natural logarithm function is monotonically increasing, taking the natural

logarithms of both sides of the inequality in equation (3.18), we get the following:

Choose H; if

In(IT, )+i{ 1n(n,j)+1n(p(z(k) xq"(k)))}>1n(nof ) +i {m(n,j )+1n(p(z(k)\xqf (k))) } (3.19)

for all j#i.

3.7 Optimum Decoding Based Smoothing Algorithm

The optimum decision rule for selecting the target path is the path in the
trellis diagram which has the maximum probability. This can be handled by Viterbi
decoding algorithm, which is the optimum decoding algorithm. The algorithm
which obtains a trellis diagram for the target motion model, and which finds the
path most likely followed by the target by using the Viterbi decoding algorithm is
referred as the optimum decoding based smoothing algorithm. This method finds
the most probable path by comparing the metric values of the quantization values

of the states from time 0 to time L. Metric values are defined as below:

Definition 3.6: The metric, denoted by MN(x,(0)), of the initial node x,,(0)
is defined by

MN(xyi(0) = In [prob(x,(0) = x,i(0)] (3.20)

Consequently, MN(x,"(0)) = In (I1,").
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Definition 3.7: The metric, denoted by M(x,(k-1)—x,i(k)), of the branch
which connects the quantization level x,(k-1) to the quantization level x,(k) is

defined by

M(xgi(k-1) — xqi(k)) = In [prob(xy(k)=xi(k)|xy(k-1)=xy(k-1))] (3.21)

+in p(z(k)|x4i(k))

Definition 3.8: The metric of a path from time 0 to time i is the summation
of the metric of the initial node from which the path starts and the metrics of the

branches of which the path consists of.

The value of the input vector u(k) used in the motion model is assumed to
be constant from time k=0 to time k=L and its probability density function f,(u)

given in equation (3.22) is composed of discrete values with known probabilities.
N
f,w)=2 PSu~u,) (3.22)
i=1

Where
N : the number of possible values of u(k),
u; :the possible value of u(k),

P; : the probability of u;

The vectors x(k), w(k), z(k), u(k) and v(k) are chosen to be one-dimensional
for simplicity. Furthermore, the initial state x(0), distribution noise w(k), and the
observation noise v(k) are chosen to be normally distributed random variables with
given mean and variance. The mean of w(k) and v(k) are assumed to be 0. The
probability density functions of x(0), w(k) and v(k) are given in equations (3.23),
(3.24) and (3.25) respectively.
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fxo(x)=—1 e (3.23)
27[0');
1 _2:-.2
f,(W)=—F———e 7, (3.24)
270!
1 72;2
S (V) =———e ™ (3.25)
2o,

The program gives opportunity to the user to modify the algorithm
parameters such as the gate size, the number of quantization values of x(0) and w(k)
and the maximum number of states at each time step. These parameters are directly
related with the algorithm performance. However, these values also determine the
computational time. For example, smaller gate size value means higher precision,
but it also means longer computation time. Moreover, increasing the number of
quantization values of the initial state x(0) or the distribution noise w(k) improves
the performance, but resulting slower program run. For high L values, the number
of states at each time step augments dramatically which results more and more
complex program. By discarding the quantization steps with lower metrics at each
time step, the computational burden can be reduced. This can be achieved by
limiting the maximum number of states and preserving only the most probable

states which have the highest metric values.
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3.8 An Example of the ODSA Algorithm

Let us consider a target whose motion from time zero to time 2 is described
by Figure 20. Using the ODSA, we would like to find the path in the trellis diagram

which was most likely followed by the target from time zero to time 2.

Time zero Time 1 Time 2

MN(x,,(0))
%, (0)

MN(x,,(0))
X;(0)

MN(x5(0))
x;:(0)

Figure 20 Trellis diagram for the target motion from time zero to time 2

Preliminary step: To each initial node, assign its metric, i.e.,
MN(x,4i(0))=Prob{x,(0 )= x,(0)}, where i=1, 2, 3. From now on, the metric of the
node x,(k) is represented by MN(x,i(k)).

Step 1: Consider the node x,;(1). The branches x,2(0)x,:(1) and x,43(0)x4:(1)
are the only ones connecting the nodes at time zero to the node x,;(1). Hence
calculate the metrics of these branches, then add these metrics to the metrics of the

nodes x,2(0) and x,3(0) and obtain the following:

A1 = M(x42(0) = x41(1)) + MN(x42(0)), (3.26)

A1z 2 M(xy3(0) — x41(1)) + MN(x,5(0)). (3.27)
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Further, assuming that 4;; = A4,,, the path x,,(0)x,;(1) is chosen as the best
path for the node x,;(1), and A4,; is assigned to the node x,;(1) as its metric, i.e.,
MN(x41(1)) = A;;. The path x,3(0)x,;(1) is then discarded. Let us now assume that
the following are similarly found for the node x,2(1): x4:(0)x42(1) is the best path for
xq42(1), and MN(x,2(1)) = M(x41(0) — x42(1)) + MN(x4;(0)). Hence, we have Figure
21 at the end of step 1.

Time zero Time 1 Time 2
k. MN(x, (1)
(0) w »
= %,2) @
MN(x,,(1))
%@

Figure 21 Trellis diagram from time zero to time 2 at the end of first step

Step 2: Consider the node x,;(2). The branches x,;(1)x4:(2) and x,2(1)x4:(2) are
those connecting the nodes at time 1 to the node x,;(2). Hence, calculating the
metrics of these branches and adding these metrics to the metrics of the nodes

x41(1) and x,>(1), we obtain the following:

Aoy 2 M(xyi(1) = x41(2)) + MN(xgi(1)), (3.28)

A22 2 M{xo(1) = x41(2)) + MN(x,o(1)). (3.29)
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Further, assuming that 4,, > 4,,, the path x,;(0)x,2(1)x4:(2) is chosen as the
best path for the node x,;(2), and A4, is assigned to the node x,;(2) as its metric,
i.e., MN(x41(2)) = Az:. The path x42(0)x4:(1)x4:(2) is then discarded. Let us now
assume that the following are similarly found for the node x42(2): x42(0)x41(1)x42(2)
is the best path for x,2(2), and MN(x,2(2)) = M(x4(1) — x42(2)) + MN(x4:(1)).
Hence, we have Figure 22 at the end of step 2. In addition, assuming that
MN(x42(2)) = MN(x4:(2)), the path x,,(0)x4:(1)x42(2) 1s chosen as the path followed

by the target from time zero to time 2.

Time zero Time 1 Time 2
MN(x,,(2))
(@ v
©
= x,2(1) e
MN(x,(2))
x5

Figure 22 Trellis diagram from time zero to time 2 at the end of second step
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CHAPTER 4

SIMULATION RESULTS FOR DIM TARGET TRACKING
ALGORITHM

In order to check the performance of the algorithm, the actual dim targets
are necessary with different parameters. The parameters are grouped in four parts

in the list below with respect to their relations.

a. Observation Parameters

S

Target Parameters
c. ODSA Parameters

d. Risk Parameters

Observation parameters are related to image sensor and environment

specifications. The list below gives observation parameters.

i. Environment Noise Statistics

ii. Image Size

ii1. Illumination
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Target parameters are related to dim moving objects that is to be tracked by
the image sensor. These parameters are unknown and can’t be measured by the

algorithm. The list below gives target parameters.

i. Target Size and Shape
ii. Target Motion Model

iii. Target Motion Parameters

Risk parameters are related to missing of targets to be tracked. These
parameters are application dependent and chosen by the user knowing what kind of

targets to be tracked. The list below gives risk parameters.

i. Superpixel Size
ii. LRT Change Detection Threshold
iii. Distribution Density Function

iv. Minimum and Maximum Expected Target Areas

ODSA parameters are related to estimation of the path based on the
observations that is given by the dim target tracking algorithm. These parameters
are performance dependent and can be changed to get more accurate results. There
exists a tradeoff between the time consumption of ODSA and average estimation

error. The list below gives ODSA parameters.

1. QGate Size

ii. Quantization Number of the Initial Target Path Vector

iii. Quantization Number of the Disturbance Noise
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iv. Initial Target Path Vector Variance

v. Disturbance Noise Variance

vi. Observation Noise Variance

vii. Limiting the Maximum Possible Target Points Number

In order to check the performance of the algorithm, the actual observations

and targets with desired parameters are needed. Therefore, a simulation algorithm

is implemented to handle the parameters given at

Table 2 with the help of MATLAB function randn(.).

Table 2 Simulation Algorithm Input Parameters

TARGET PARAMETERS SENSOR AND ENVIRONMENT PARAMETERS
Motion Model Image Size
Start and Last Point Pixel Size

Velocity

Maximum Number of Frames

Acceleration

Environment Intensity Mean and Variance

Initial Direction

[llumination Function and Rate

Maneuver Ratio

Intensity Mean and Variance

Shape and Size

The simulation results given below show the effects of the parameters of

the algorithm described in Chapter 2 and 3. Simulations are performed for 250

program executions. For each execution, the related parameters are regenerated

with the same values. Moreover, results acquired from different model parameters

or SNR values are plotted on the same graph to increase the comprehension.
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4.1 Effect of Observation Parameters

4.1.1 Effect of Environment Noise Statistics

Min Ap vs o’

80

70 —

60
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30 e

10 /

2 3 4 5 10 15 20 25 30 35 40 45 50
Min Ap

Figure 23 Plot of Minimum Tolerable Difference of Target and Environment Mean Intensity vs.
Noise Variance

2 R S B B
—®— Ploise Variance = 1 m‘
411 ——Nnise Variance =& [T TTiTTITT o s n
—#— Moise Variance = 10 : : :
=) [ . . [ [ I O O _
T e S S S e St -
i
£ 25f--- e [ rrerrcr s e ] — (N — -
a :
® :
Z 2r----- e boomees e Lo e i et e
] [ENSSNSES SN, NSNS SN SN SS—— | NS - — -

5 10 15 20 25 0 35 40 45
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Figure 24 Plot of Ap Intensity vs. RMS Target Path Error
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Comment:

It can be seen from Figure 23 that minimum tolerable difference of target
and environment mean intensity is linearly related with the noise variance. As the
mean difference increases the noise variance also increases up to a saturation value
which is approximately around the value “40”. After this point on, it is not
important for the algorithm to increase the mean difference. It can handle the target
detection and tracking independent of noise variance. Furthermore, the minimum
mean difference that can be handled is “2” with no noise variance. If the
environment noise takes into account, the minimum noise difference is “5”. The
linear interpolation of the graphic in the non saturated region results in the equation

below:

A/umin ~ 20—2 (41)

From Figure 24, it is observed that estimation error of the algorithm
significantly depends on the noise variance. The tolerance of the mean difference
between target and environment degrades as the noise variance increase. It is also
clear that after a satisfactory mean difference, the RMS error saturates around

“0.7,’.

Furthermore, if the mean difference is under a tolerable value with respect

to the noise variance, it is impossible to track the target.
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4.1.2 Effect of Image Size

Image Size vs. Time Span

100

80 /‘
60 /

——SNR: 2.27

Time Span(sn)

40 —=—SNR:1.58
SNR:3.52
16x16 32x32 64x64 128x128 | 256x256 512x512 |1024x1024
—e—SNR:2.27 1.281 2.688 5578 10.922 31.64 43.531 89.127
—=—SNR:1.58 1.345 2.88 6.347 11.233 32.156 45.468 97.843
SNR :3.52 0.98 2.456 5.46 9.87 29.945 41.921 87.123

Number of Pixels

Figure 25 Plot of Image Size vs. Time Consumption in 50 frames for different SNR values

Comment:

It can be seen from Figure 25 that image size of the observation frames
significantly effects the time to complete the analysis. The time span formula in
seconds with respect to the image size when a curve fitting algorithm applied for an

exponential approximation is given below:

T =1.03!982X

(4.2)
s

where X is the number of pixels along one dimension of the frame and T} is the

time spanned for the analysis.
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From Figure 25, it is also observed that The SNR value of the target for a
fixed image size effects slightly the time spanned by the algorithm. The reason of
change is due to the increase in possible target candidates for low SNR values.
Therefore, the algorithm is more useful for non real time applications such as

satellite image analysis for space researches.

4.1.4 Effect of Illumination
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Figure 26 Plot of Probability of Detection for different illumination functions

Comment:

It can be seen from Figure 26 that if there exists an illumination source on
the path of the target, the probability of target detection degrades significantly after
some illumination rate value. The rate of illumination is defined as the pixel
intensity change in two successive frames. The parameter X is the frame number in

Figure 26.
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The reason of the performance reduction is due to the illumination clouds
that hide the real target in LRT Difference Matrix. In average, after a pixel intensity
change of approximately 70, it is impossible to identify the target in the
illumination cloud. It is also observed that probability of target detection can differ
according to the illumination function. triang(.) is the Matlab function to create

triangular waveforms.

4.2 Effect of Target Parameters

4.2.1 Effect of Target Size and Shape
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Figure 27 Plot of Target Area for different shapes vs. Minimum Tolerable Target SNR
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Table 3 Minimum Tolerable SNR for detection with different sizes and shapes

SNR Dimensions Area | Diagonal
0.81 [19 19] 360 26.87
Quadrangle | 1.55 [77] 50 9.89
2.24 [6 6] 35 8.48
2.88 [4 4] 15 5.65
0.81 radius = 14 600 28
. 1.55 radius =5 80 10
Circular -
2.24 radius = 3.5 40 7
2.88 radius = 2,5 20 5
0.81 | Extentratio=0.4 | 1250 70
1.55 | Extentratio=0.4 115 15
Irregular -
2.24 | Extentratio = 0.4 50 10
2.88 | Extentratio =0.4 40 8

The meaning of parameters used in Table 3 is given below.

1. Diagonal: Maximum distance along the peripheral coordinates of the target

Area of the target

Extent Ratio = 4.3)

Area of the bounding box

where bounding box is the minimum rectangular area that encapsulates the

target.

Comment:

It can be seen from Figure 27 that minimum tolerable target SNR for the
dim target tracking algorithm is indirectly proportional with target area. It is also
clear that quadrangle targets result in the best performance of detection. As the
complexity of the shape of the target increases, it is hard to detect in low SNR
situations. The reason for this comes from the superpixel size and shape. At the
target edges, the probability of covering the target in the related superpixel gets so
small that it becomes almost impossible to extract the maximum distribution of the
related target piece in the second frame. However, it is also important to notify that
minimum tolerable target area for all SNR values is constant, approximately 25

pixel’.
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4.2.2 Effect of Target Motion Model

The target motion models studied are listed below:
I. LCV : Linear Constant Velocity
II. LCA : Linear Constant Acceleration
.  CMCV : Constant Maneuver Constant Velocity
IV. CMCA : Constant Maneuver Constant Acceleration
V. VMCV : Varying Maneuver Constant Velocity

VL. VMVV  : Varying Maneuver Varying Velocity

Table 4 Target Motion Models and Estimated RMS Errors

RMS
MOTION MODEL TARGET PARAMETERS ERROR

Target Intensity mean 125
Target size [8 8]
Target velocity 25
Target maneuver Index NA

LCV Target acceleration NA 1.631
Image Size [1024 1024]
Number of Frame 30
Noise Intensity mean 100
Noise Intensity variance 15
Target Intensity mean 125
Target size [8 8]
Target velocity 25
Target maneuver Index NA

LCA Target acceleration 2 1.759
Image Size [1024 1024]
Number of Frame 30
Noise Intensity mean 100
Noise Intensity variance 15
Target Intensity mean 125
Target size [8 8]
Target velocity 25
Target maneuver Index 0.05

CMCA Target aF:ceIeration 2 2234
Image Size [1024 1024]
Number of Frame 30
Noise Intensity mean 100
Noise Intensity variance 15
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RMS

MOTION MODEL TARGET PARAMETERS ERROR

Target Intensity mean 125
Target size [8 8]
Target maneuver Index 0.05
Target acceleration NA

cMCV Target size : [8 8] 1.815
Target velocity 25
Image Size [1024 1024]
Number of Frame 30
Noise Intensity mean 100
Noise Intensity variance 15
Target Intensity mean 125
Target size [8 8]
Target velocity 25
Target maneuver Index 0.05+randn (.)

VMCV Target apceleration NA 2.261
Image Size [1024 1024]
Number of Frame 30
Noise Intensity mean 100
Noise Intensity variance 15

RMS

MOTION MODEL TARGET PARAMETERS ERROR

Target Intensity mean 125
Target size [8 8]
Target velocity 25
Target maneuver Index 0.05+randn (.)

VMVV Target acceleration 2+randn (.) 2.349
Image Size [1024 1024]
Number of Frame 30
Noise Intensity mean 100
Noise Intensity variance 15
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Motion Model vs EPR

25

: A
R

15

EPR

0.5

LCV LCA CMCA CMCV VMCV VMW
Motion Models

Figure 28 Plot of Estimated Path RMS Error for different Target Motion Models
EPR : Estimated Path RMS Error

Comment:

It can be seen from Table 4 and Figure 28 that as the complexity of target
motion increases, the error that results from the algorithm also increases. The
function used for variable acceleration and maneuver is the Matlab function

“randn(.)” which generates random numbers with zero mean and unit variance.

The effect of maneuver index is given by the formula below:

= Par180
T

(4.4)

where “ AD ”is the angle change in degrees between two consecutive

frames and “ /3’ is the maneuver index written at

In Table 4 the velocity and acceleration parameters are in terms of pixel

distance. “NA” is used for “Not Applicable”.

57



4.2.3 Effect of Target Motion Parameters

Figure 29 Plot of Target Label (white) in the Difference Matrix Target Velocity: 20 Pixels / Frame
SNR: 2.24 and Size: [8 8]

Figure 30 Plot of Target Label (white) in the Difference Matrix Target Velocity: 15 Pixels / Frame
SNR: 2.24 and Size: [8 8]

58



|
||
[ |
[ |
|
-

B

Figure 31 Plot of Target Label (white) in the Difference Matrix Target Velocity: 10 Pixels / Frame
SNR: 2.24 and Size: [8 8]

Figure 32 Plot of Target Label (white) in the Difference Matrix Target Velocity: 7 Pixels / Frame
SNR: 2.24 and Size: [8 8]
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Figure 33 Plot of Target Label (white) in the Difference Matrix Target Velocity: 20 Pixels / Frame
SNR: 1.55 and Size: [8 8]

Figure 34 Plot of Target Label (white) in the Difference Matrix Target Velocity: 15 Pixels / Frame
SNR: 1.55 and Size: [8 8]
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Comment:

It can be seen from Figure 29-Figure 34 that as the SNR is decreased for
low velocity targets, old and new target positions gets closer to each other in the
label matrix and finally become a single target label. Therefore for each target SNR
value, there exists a breakpoint that the algorithm can separate the old and new
target positions from the image frames. As the SNR value is decreased, it can be
also seen from Figure 33 and Figure 34 that the target velocity must increase above

a critical value to differentiate the target labels.

4.3 Effect of Risk Parameters

4.3.1 Effect of Superpixel Size

Superpixel Size vs Centroid Errors for different targets

16

14 —e&— Circular
—m— Rectangular

121 Irregular

Centroid Error
oo

0 Superpixel Size
2 4 8 16

—&— Circular 1.41421356|3.60555128| 5.65685425|12.8062485
—— Rectangular | 3.60555128|3.60555128|6.40312424|13.6014705
Irregular 4 4.47213595 5 12.0415946

Figure 35 Plot of Superpixel Size vs. Centroid Errors for different targets
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Superpixel Size vs Number of Labels
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Figure 36 Plot of Superpixel Size vs. Number pf Labels for different targets

Superpixel Size vs Time of Analysis for different targets
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Figure 37 Plot of Superpixel Size vs. Time of Analysis for different targets

62




SUPERPIXEL SIZE : 4

SUPERPIXEL SIZE : 8 SUPERPIXEL SIZE :16

Figure 38 Effect of Superpixel Size to Number of Centroids
T1: Target Position at time k, T2: Target Position at time k+1

Comment:

It can be seen from Figure 35 that as the superpixel size used for motion
detection algorithm increases, the centroid error which is defined as difference
between the label geometric centroid and real target centroid increases. Therefore,
the probability of missing the target in the next iteration step also increases rapidly.
However, as it can be seen from Figure 36 and Figure 37 that the increase of
superpixel size decreases number of candidate labels that the target can move to.
Furthermore, the time spanned by the algorithm used for motion detection analysis
also decreases sharply. In Figure 38, the difference matrix caused by LRT detection
in two successive frames is given for different superpixel size values. According to
these results, it is clear that the superpixel size has to be optimized with respect to
the tradeoff between centroid error and number of possible target label candidates.
Too small superpixel size causes more time consumption while results in more

accurate centroid estimations.

63



4.3.2 Effect of LRT Change Detection Threshold

Figure 39 Plot of Estimated Target Path with Motion Model: LCV, Start:[0,0] Finish:[500, 500]
Change Detection Threshold: 15 and SNR: 1.9 dB

i 1 1
] 0 100 140 200 240 300 340 400 440
x

Figure 40 Plot of Estimated Target Path with Motion Model: LCV, Start: [0, 0] Finish: [500, 500]
Change Detection Threshold: 30 and SNR: 1.9 dB
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Figure 41 Plot of Estimated Target Path with Target Motion Model: LCV, SP: [0, 0] LP: [500 500]
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Figure 42 Plot of Estimated Target Path with Target Motion Model: LCV SP: [0, 0] LP: [500 500]



Comment:

It can be observed from Figure 39 - Figure 42 that there exists an inverse
proportion between SNR and LRT threshold. The false alarms of target centroids
are decreased considerably by increasing the LRT threshold. However, it is also
necessary to mention that increasing the threshold above a value which eliminates
also the target, causes overall miss of the target. Therefore an optimum value for
the threshold exists. The optimization criterion is between ODSA and detection. As
the false alarms get effective with decreased threshold for low SNR targets, the
ODSA can smooth the target path up to a tolerable value. In Figure 42, ODSA can

not smooth the path since the target path has already been deflected too much from

the real one.

4.3.3 Effect of Distribution Density Function

13 s

Path RMS Error

0s | | | |
1 1.5 2 248 3 35 4 45 ) 2.5 G
DOF Variance

Figure 43 Plot of Estimated Target Path RMS vs. Distribution Density Function Variance
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Table 5 Different Types of DDF with their Estimated Path RMS Errors

Distribution Density Function | Threshold | SNR RMS Error
exp(-x)/(0.2) 10| 224 1.215
exp(-x)/(0.1) 10 2.24 0.859
exp(-x)/(0.02) 10| 224 0.600
Max(-10x+50,0) 10| 224 0.948
Max(-20x+50,0) 10| 224 0.698
Max(-50x+50,0) 10| 2.24 0.592
45(1-Stepfun(x,10)) 10| 224 1.356
45(1-Stepfun(x,5)) 10 2.24 1.093
45(1-Stepfun(x,1)) 10 2.24 0.932
Ihfferent DFFs

; ; == 45*(1-stepfim(x.1}))
S S e 2 —erneae ]

Figure 44 Plot of Different Distribution Density Functions along X axis
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Figure 47 Plot of Exponential DDF outputs for Figure 45 with different bandwidths
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Figure 48 Plot of Exponential DDF outputs for Figure 45 with different bandwidths
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Comment:

In Figure 43, it can be seen that as the energy of distribution function
spreads around its central point estimated target path RMS error gets larger. Table
5 also shows that different types of Distribution Density Functions result in
different performances in the algorithm. Some of the Distribution Density
Functions used at Table 5 are given in Figure 44. The best performance along these
three functions is given by the exponential function since the standard deviation of
the exponential function is the minimum. The worst performance comes from the

step function.

The second simulation result is related with Figure 45. When the scattered
centroids that result from LRT matching of the subgroup elements is filtered with
different kinds of DDF, the result of the maximization gives the same target
centroid, which is shown by the black circles. The bandwidth of the DDF is very

important to prevent false alarms.

4.3.4 Effect of Minimum and Maximum Expected Target Areas

Minimum Expected Target Area vs Probability Of Detection
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Figure 49 Plot of Minimum Expected Target Area vs. Probability of Detection

Target Area: 100 pixel
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Minimum Target Area vs Average Number Of Targets
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Figure 50 Plot of Minimum Target Area vs. Average Number of Targets
Comment:

In Figure 49, it can be seen that the probability of detecting the target for a
fixed target SNR is independent of the minimum expected area up to the real target
area. However, the number of possible targets decreases as the minimum expected
target area gets closer to the real target area, which is given in Figure 50. The less
the target candidates, the better performance for the algorithm is. The algorithm
eliminates the targets that are smaller than the minimum expected target area.
Therefore; according to the applications, the minimum expected target area should
be less than the real target area to be in the safety region. It is also important to
notice that as the SNR of the target degrades, the probability of detection for a

fixed minimum expected target area reduces.
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Maximum Expected Target Area vs. Number of Target
Candidates for Different Targets
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Figure 51 Plot of Maximum Expected Target Area vs. Number of Target Candidates
Target 1: Circle, Target 2: Airplane, Target 3: Battle Tank
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Figure 52 Plot of Maximum Expected Target Size vs. Minimum Identification Distance
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Comment:

In Figure 51, it can be seen that the number of target candidates by using
Maximum Histogram Size Filtering reduces significantly as the maximum expected
target area decreases since this value is used as the size threshold for filtering in the
algorithm. To get better performance from the algorithm without missing the target,
it is necessary to decide an optimum maximum expected target area value. Notice
that as the shape complexity of the target increases, the number of target candidates
seen by the algorithm also increases approximately up to the real target size.
However, from this point on, no matter what the target is, the algorithm can detect

the target.

The target identification resolution in a group of targets strongly depends on
maximum expected target area as it is observed from Figure 52. To get better target
identification, it is necessary to reduce the maximum expected target area, although
the time spanned for the analysis gets larger. If size threshold is less than the real

target size, the target is broken into small sub targets by this filtering.
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4.4 Effect of ODSA Parameters

The observation and state transition models used for the simulations are

given by the equations below:

Z,=x, +V, k=12,..,L (4.5)

X, =%, 4V, k=0,,.,L—1 (4.6)

where z, is the observed target centroid, x

. is the real target centroid, v,

k

is the observation noise and w,_is the disturbance noise. The initial position x is

taken as the initial observation. No other affects such as extra input or interference

are used in the models.

The parameter used for ODSA performance is the average estimation error

which is given by the equation below:

AEE = f i=12,..,L (4.7)

where AEE is the average estimation error, C, is the real target centroids

along the path, C is the estimated target centroids and L is the total number of
i

frames.
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4.4.1 Effect of the Gate Size
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Figure 53 Plot of Frame Number vs. Average Estimation Error for Different Gate Sizes

Comment:

It can be observed from Figure 53 that the gate size is directly proportional
with the algorithm performance. The target path estimation error reduces as the
gate size becomes smaller. The gate size defined for image processing is related
with the pixel size. Therefore, it is clear that as the pixel size of the image sensor
gets smaller, the average estimation error reduces in the same manner. Gate size
must be smaller than the superpixel size in order to smooth target centroid variation

by ODSA.
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4.4.2 Effect of the Quantization Number of the Initial Target Path Vector
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Figure 54 Plot of Frame Number vs. Estimation Error with respect to Initial Quantization Number

Comment:

It can be observed from Figure 54 that the number of the quantization levels
of the initial target path vector slightly affects the performance of the algorithm.
The mean value of the initial state should be chosen around the initial target
movement coming from the dynamic vision algorithm which provides the

observation values for ODSA.
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4.4.3 Effect of the Quantization Number of the Disturbance Noise
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Figure 55 Plot of Frame Number vs. Estimation Error with respect to Disturbance Noise
Quantization Number

Comment:

It can be observed from Figure 55 that increasing the number of the
quantization levels of the disturbance noise improves the performance of the
algorithm significantly. However, time consumption of the algorithm increases in
the same manner. Therefore, as it is discussed in 4.4.7, limiting the maximum

number of possible target points is necessary.
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4.4.4 Effect of the Initial Target Path Vector Variance
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Figure 56 Plot of Frame Number vs. Estimation Error with respect to Initial Target Path Vector
Variance

Comment:

It can be observed from Figure 56 that the variance of the initial target path
vector only affects the initial time. As expected, the initial target path error
increases with increasing the initial target path vector variance. For higher frame

numbers, the average estimation error is not affected.
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4.4.5 Effect of the Disturbance Noise Variance
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Figure 57 Plot of Frame Number vs. Estimation Error with respect to Disturbance Noise Variance

Comment:

When Figure 57 is analyzed, the effect of increasing the variance of the
disturbance noise variance increases the average target path estimation error as

expected.
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4.4.6 Effect of the Observation Noise Variance

Average Estimation Error
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Figure 58 Plot of Frame Number vs. Estimation Error with respect to Observation Noise Variance

Comment:

Decreasing the observation noise variance reduces the average target path
estimation error as expected at Figure 58. It is important to mention that for the dim
target tracking algorithm, observation and disturbance noise statistics can be same,
since the noise defined for the overall system only comes from AWGN which
affects pixel intensity value. The result of pixel intensity change from the real value
is the centroid variation along the target path. Furthermore, effect of noise variance

for both types is very close in average estimation error.
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4.4.7 Effect of Limiting the Maximum Possible Target Points Number
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Figure 59 Plot of Frame Number vs. Estimation Error with respect to Maximum Target Points
Number

Comment:

It can be observed from Figure 59 that changing the number of states did
not affect the algorithm performance. The average estimation error does not
degrade with limiting the possible target points. Since the program computation
time is directly related with the Maximum Possible Target Points Number, the

computation time can be reduced significantly by decreasing it.
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4.5 Comparison of Kalman Filter with ODSA for Different Target
Dynamics

4.5.1 Linear Motion

Let the target motion be given by the following state and observations

equations for a “Linear Constant Velocity” Model:

X 1 olx 2
&MQ{ k“}:[ ﬂ k}+ L+ m ’?”}+{Mk} (4.8)
Vi 0 1] Y 0 rm (U] Wk

) zZX, 1 0] X, 0 Of u, 12
Observation: = + + 4.9
zY, 0 1|7Y, 0 O u,, Var

where m and r are the constant angle and distance values of the target in

two successive frames and can be given by the following equations:

MZM and rz\/(Yk+1 —Yk)z +(Xk+1 _Xk)2

X1 =X
(4.10)

The input is known for this model and given by the equation below:

1
{”“}:{} Yk =12,.n, @.11)
qu 1
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where 5, 1s the number of observation frames.

The process and measurement noise covariance data are given by Equation 4.X.

T T T )
Wor | Wak Vor || Vaok Wor || Vo 0 o

When the state and observation models are applied to ODSA and Kalman
Filter with same parameters an observation values, the estimated path and the

estimation error are given in the Figure 60 and Figure 61.

500 ' r . . .
=+ Real Path
: Estimated Path
T

30 I T S— — S i
= 200 | : [— e SR _

100 . : S, ~ S R -

600

Figure 60 Estimated Path for Linear Motion using ODSA

Average Estimation Error: 0.996
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Figure 61 Estimated Path for Linear Motion using Kalman

Average Estimation Error: 1.023

4.5.1 Nonlinear Motion

For discrete nonlinear target motions, the path can be assumed to be
piecewise linear between two time intervals. In this section, coordinates of the
target is used as the state vector of the system. State and observation equations are

driven according to piecewise linearity assumption.

1) Suppose that the target traverse a circle of radius r, starting at time ¢ =0
on the positive x axis. The direction of the target is counter clockwise and
the angular velocity per frame, w, is constant. For n, frames, the target path

can be described parametrically by:
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X4y — X = rfcos(wk +w) — cos(w.k)] k=12,.n, (4.13)

Yia1 =Y = rlsin(wik + w) —sin(w.k)] k=12,..n (4.14)

N

The state and observation models of the system can be given by the

following equations:

+

Xin I 0| X, cos(w)— 1 - sin(w) Uy, Wy,
State: = + i (4.15)
Y., 0 1|71 sm(w) cos(w)—l Uy, Wy,
) zZX, 1 02X, 0 Of u, Vi
Observation: = + + (4.16)
zY, 0 1|7V, 0 O u,, Vo

][]

When the state and observation models are applied to ODSA and Kalman
Filter with same parameters an observation values, the estimated path and the

estimation error are given in

Figure 62 and Figure 63.
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Figure 62 Estimated Path for Circular Motion using ODSA
Average Estimation Error: 0.644
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Figure 63 Estimated Path for Circular Motion using Kalman
Average Estimation Error: 3.067
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Figure 64 Plot of Angular Velocity per frame w (k) with respect to time k
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Figure 65 Estimated Path for Circular Motion with Changing Angular Velocity using ODSA
Average Estimation Error: 0.601
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Figure 66 Estimated Path for Circular Motion with Changing Angular Velocity using Kalman
Average Estimation Error: 1.673

2) Suppose that the target traverse a parabolic path with its focus point

(0, ¢). The equation of the parabola is given below:

y=- (4.18)

2
. . m
Let the target start to motion from the point: (m,4—j
.c

The state and observation equations of the motion are given by the following

equations:

88



Xia 0 0| X, 1 Of u, Wi
State: = + + (4.19)
Y 0 0] Y, 0 1] uy Wak
, ZX, I 0] X, 0 Ofu, Vi
Observation: = + + (4.20)
zY, 0 1]Y, 0 Ofu,, Vy,

u k+m
{ "f}: (k+m) (4.21)
Hak 4.

k =1,2,..n; and ny is the total number of frames.
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Figure 67 Estimated Path for Parabolic Motion using ODSA
Average Estimation Error: 0.918
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Figure 68 Estimated Path for Parabolic Motion using Kalman
Average Estimation Error: 1.837

3) Suppose that the target traverse a half elliptic path with its major and minor
axis lengths @ and b respectively. The equation of the upper half of the

ellipse is given below:
y=>b,1-— (4.22)

Let the target start to motion from the point: (a,O)
X 0 0| X 1 0

State: |~ 1 | = an i | | M (4.23)
Yia 0 0 Y 0 T juy Wak
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i ZX, I 0] X, 0 Ofu, Vi
Observation: = + + (4.24)
zY, 0 1]Y, 0 Ofu,, Vy,

Uy | : 2
L”} = (_ 2., 1)+“J (4.25)
b\1-
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Figure 69 Estimated Path for Elliptic Motion using ODSA
Average Estimation Error: 0.591
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Figure 70 Estimated Path for Elliptic Motion using Kalman
Average Estimation Error: 1.123

4) Suppose that the target traverse a polynomial path with the equation given

below:

y=a, .(x—r1 ).(x—r2 )(x—r3)+ a, (4.26)

Let the target start to motion from the point: (r,,a,)

Xk | |0 O X, 10w, Wik
State: = + + (4.27)
Y., 0 0|| ¥, 0 1 u,, Wy
.| ZX, ] |1 0) X, 0 Off u, Vi
Observation: = + + (4.28)
zY, 0 1Y, 0 O uy Vs
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1= v 4.29
Uy, B al.k..(x—rz),(x—r3)+a2 (4.29)

k =1,2,...n and n, is the total number of frames.

The equation used for the simulation is given below:

y=5.10"(x = 50)(x — 200)(x — 450)+ 400 (4.30)
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Figure 71 Estimated Path for Changing Maneuver Motion using ODSA

Average Estimation Error: 1.934
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Figure 72 Estimated Path for Changing Maneuver Motion using Kalman
Average Estimation Error: 2.865
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Comment:

From Figure 60 and Figure 61 , it can be observed that average
estimation errors for linear motion of the target when ODSA and Kalman Filter
are used are very close. However, in the circular motion case, and, Kalman

Filter performance degrades as compared with ODSA from
Figure 62 and Figure 63.

If the angular velocity of the circular motion is subject to change in
Figure 64, the estimated path of the target can be observed from Figure 65 and
Figure 66. Again performance of ODSA is better when compared to Kalman

Filter.

From Figure 67 and Figure 68 is related parabolic motion. Figure 69
and Figure 70 shows the elliptic path of the target. Polynomial, i.e. changing
maneuver is implemented in Figure 71 and Figure 72. In all of these different
motion dynamics, the average estimation error is less for ODSA when

compared to Kalman Filter.

Furthermore, the effect of the noise variance is investigated for both of
the estimation algorithms. ODSA endures more noise variance for the same
target and background mean difference when compared to Kalman Filter as

can be seen from Figure 73.

Finally, it is important to mention that ODSA gives estimation data
after more number of observation samples as compared to Kalman. The
estimation error difference comes from this more computational load.
Nevertheless, Kalman is more useful for real time applications which require
fast computation. The prediction concept is not applicable for ODSA also. On
the other hand, Kalman Filter can be used in the area of next step estimation

applications.
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CHAPTER 5

CONCLUSIONS

In this study, a visual dim single target tacking algorithm is developed for
low observable and dense environments with a stationary camera looking at a fixed
region of interest. Methodologies of the Dynamic Vision and Optimum Decoding
Based Smoothing Algorithms are explained and some simulations are performed

displaying the performances of the algorithm.

Dynamic Vision Algorithm consists of 8 main parts:

1.Change Detection by Likelihood Ratio Testing

2.Labeling and Destruction of Difference Matrix to Subgroups
3.Subgroup Centroid Mapping

4.Maximization of Distribution Density Functions for Centroids
5.Size Filtering by Maximum Histogram Method

6.Range and Maneuver Filtering

7.Target Vector Calibration with respect to the focus window

8.Consecutive Label Decision
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Change Detection by Likelihood Ratio Testing is the statistical comparison
of the two consecutive image frames to detect changing regions. The superpixel, a
group of pixels which has the sufficient statistics for comparison, is introduced.
The threshold value used for comparison is adaptive for the elimination of false

alarms.

Labeling and Destruction of Difference Matrix to Subgroups is the
grouping of changing regions in a 4-connected geometrical manner. The label that
is to be analyzed is destructed to subgroups for the reduction of effect of noise on

candidate target movement vectors in the next frame.

Subgroup Centroid Mapping is the matching of each subgroup superpixel
element to the candidate centroid points of the labels in the next frame. For

matching, LRT is used in a reverse manner of change detection.

Maximization of Distribution Density Functions for Centroids is the
decision of maximum probable target movement for a subgroup superpixel element

by using two dimensional image filters.

Size Filtering by Maximum Histogram Method is the target extraction
method from a given centroid point distribution which is the output of
Maximization of Distribution Density Functions for Centroids for all subgroups in

the analyzed label.

Range and Maneuver Filtering is the filtering of impossible target

movements according to the last movement.

Target Vector Calibration with respect to the focus window is the mapping
of decided target vector to the main frame coordinates from the focus window

coordinates.

Consecutive Label Decision is the assignment of next iteration label

according to the last observed target centroid.

97



The output of the Dynamic Vision Algorithm, observation centroids of the

tracked target, is used as the input for ODSA which is based on Viterbi decoding

algorithm. By reducing the target motion to a finite state model which uses the

quantized state vector, a trellis diagram is obtained; and then, the state vector and

target centroid points are estimated by finding the most probable path in the trellis

diagram.

The aim of the simulations is to investigate the effects of the observation,

target, risk and ODSA parameters. When the simulations performed for the overall

algorithm are considered, the results can be summarized as below:

The algorithm can tolerate target SNR values down to 0.8 dB and

target size of 10 pixel®,

The algorithm can track targets which has different types of motion
characteristics with maximum RMS error of 2.5 pixels

approximately,
Minimum detectable target velocity is around 10 pixels,

Maximum tolerable illumination rate is approximately 10 pixel

intensity,

The risk parameters affect the probability of detection. As the risk
gets higher, the computation time decreases with the tradeoff

decrease in the probability of detection,

Image Size, superpixel size, gate size affects algorithm complexity
significantly. As the gate size becomes smaller, the estimation

performance increases,

The quantization number of the initial state vector is effective for

initial times,

The quantization number of the disturbance noise vector affects the

estimation performance significantly,

Increasing the disturbance noise variance degrades the performance

significantly,
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The initial state variance affects only the performance for small

frame numbers

Increasing the observation noise variance degrades the estimation

performance,

The maximum number of possible target points can be limited

without degrading the estimation performance.
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