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ABSTRACT 

 
 
 

PATH EXTRACTION OF LOW SNR DIM TARGETS 
FROM GRAYSCALE 2-D IMAGE SEQUENCES 

 
 

 

Ergüven, Sait 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kerim Demirbaş 

 
September 2006, 101 pages 

 
 

In this thesis, an algorithm for visual detecting and tracking of very low 

SNR targets, i.e. dim targets, is developed. Image processing of single frame in 

time cannot be used for this aim due to the closeness of intensity spectrums of the 

background and target. Therefore; change detection of super pixels, a group of 

pixels that has sufficient statistics for likelihood ratio testing, is proposed. Super 

pixels that are determined as transition points are signed on a binary difference 

matrix and grouped by 4-Connected Labeling method. Each label is processed to 

find its vector movement in the next frame by Label Destruction and Centroids 

Mapping techniques. Candidate centroids are put into Distribution Density 

Function Maximization and Maximum Histogram Size Filtering methods to find 

the target related motion vectors. Noise related mappings are eliminated by Range 

and Maneuver Filtering. Geometrical centroids obtained on each frame are used as 

the observed target path which is put into Optimum Decoding Based Smoothing 

Algorithm to smooth and estimate the real target path.  
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Optimum Decoding Based Smoothing Algorithm is based on quantization of 

possible states, i.e. observed target path centroids, and Viterbi Algorithm. 

According to the system and observation models, metric values of all possible 

target paths are computed using observation and transition probabilities. The path 

which results in maximum metric value at the last frame is decided as the estimated 

target path. 

 

Keywords: Dim Target, Super pixel, Likelihood Ratio Test, 4-Connected Labeling, 

Distribution Density Function Maximization, Maximum Histogram Size Filtering, 

Range and Maneuver Filtering, Optimum Decoding Based Smoothing Algorithm, 

Viterbi Algorithm, Observation and Transition Metrics 
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ÖZ 

 
 
 
İKİ BOYUTLU GRİ TONLAMALI GÖRÜNTÜ DİZİSİNDEN 

DÜŞÜK SNR’LI SOLUK HEDEFLERE AİT YOL TAYİNİ  
 
 
 

Ergüven, Sait 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kerim Demirbaş 

 
Eylül 2006, 101 sayfa 

 
 

Bu tezde görsel olarak çok düşük sinyal gürültü seviyeli soluk hedefleri 

saptama ve izleme amaçlı bir algoritma geliştirilmiştir. Bu amaç için çevre ve hedef 

yeğinlik spektrumlarındaki yakınsaklık nedeniyle tek görüntü üzerinde görüntü 

işleme yöntemleri kullanılamaz. Bu nedenle, istatistiksel açıdan yeterli bilgiye 

sahip en küçük pixel grubu olan süper pikseller üzerindeki olabilirlilik oran testine 

bağlı değişim algılaması yöntemi öne sürülmüştür. Geçiş noktaları olarak karar 

verilen süper pikseller ikili fark matrisi üzerine eşlemlenerek 4’lü bağlantı 

etiketleme yöntemi ile gruplanır. Her etiket hedefle ilişkili vektörel hareketleri 

bulmak için Etiket Parçalama ve Merkezi Nokta Eşlemleme teknikleri ile işlenir. 

Gürültü ilişkili hareketler Uzaklık ve Manevra Filtrelemesi ile elenir. Aday merkezi 

noktalar Görüntü Dağılım Yoğunluğu Fonksiyonu Enbüyültme ve En Büyük 

Histogram Büyüklük Filtrelemesi yöntemleri ile işlenir. Her görüntü üzerinde 

hedefe ait olası geometrik merkezi noktalar birleştirilerek elde edilen gözlem yolu 

bulunduktan sonra eniyi kodçözümleyici yöntemine dayalı yumuşatma algoritması 

ile gerçek hedef yolu kestirmesi yapılır.  
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Bu algoritma hedef yoluna ait durum nicemlemesi ve Viterbi Algoritmasına 

dayalıdır. Bütün olası hedef yollarına ait metrik değerleri; sistemin durum ve 

gözlemleme modellerine dayalı olan gözlem ve geçiş olasılıklarından yola çıkılarak 

hesaplanır. En büyük metrik değerine sahip yol, hedefin izlediği yol olarak 

kestirilir. 

 

Anahtar Kelimeler: Soluk Hedef, Süperpiksel, Olabilirlik Oran Testi, 4’lü bağlantı 

Etiketlemesi, Dağılım Yoğunluğu Fonksiyonu Enbüyültme, En Büyük Histogram 

Büyüklük Filtrelemesi, Uzaklık ve Manevra Filtrelemesi, Eniyi Kodçözümleyici 

Yöntemine Dayalı Yumuşatma Algoritması, Viterbi Algoritması, Gözlem ve geçiş 

metrikleri 
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CHAPTER 1 
 
 

INTRODUCTION 

 

 

Most target tracking algorithms focus on large targets, namely, targets large 

enough for traditional automatic target recognition with a single frame of data. In 

addition, SNR values of interested targets in these algorithms are high enough to 

extract required information such as edge detection. The aim of this thesis is to 

develop and implement a new visual dim single target tacking algorithm in low 

observable and dense environments with a stationary camera looking at a fixed 

region of interest. The target to be tracked has in general a size of maximum 100 

resolution elements and an SNR value less than 2 dB. The related application areas 

can be military and civilian depending on the targets to be tracked. The image 

pixels are assumed to be gray scaled and each of them is affected by Additive 

White Gaussian Noise with known statistics. The statistics of AWGN can be 

estimated by different parameter estimation methods but these methods are out of 

the scope of this thesis. The algorithm and simulation of environment is 

implemented by MATLAB programming language. 

In Chapter 2, Dynamic Vision [2] is represented, an image processing 

technique developed for detecting very small and dim targets. It is based on 

Likelihood Ratio Testing, Labeling of Super pixels, Label Destruction and 

Centroids Mapping, Maximization of Distribution Density Functions, Maximum 

Histogram Size Filtering and Range and Maneuver Filtering methods. The output 

of dynamic vision algorithm is the observation of target centroids on each frame. 

The effect of the noise at the output is the target false alarms and centroids 

coordinate variation from the real target path. 
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In Chapter 3, Optimum Decoding Based Smoothing Algorithm [1] (ODSA) 

is represented. This algorithm obtains a trellis diagram for the target motion and 

estimates the target path by using the Viterbi Decoding Algorithm supporting both 

linear and nonlinear models. The input of ODSA for dim target tracking is the 

output of dynamic vision algorithm given in Chapter 2. The use of ODSA in this 

thesis is to estimate the target path given observation points of target centroids on 

each frame. 

In Chapter 4, simulation results of the tracking algorithm are given, which 

includes the performance under realistic conditions, the advantages and 

disadvantages of the algorithm, the effects of the system parameters due to 

environment, target, risk and ODSA parameters. 

In Chapter 5, the conclusion of the thesis is given. 
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CHAPTER 2 
 
 

DYNAMIC VISION 

 

 

 

A vision system has to deal with moving and changing objects, changing 

illumination, and changing view points. The input to a dynamic scene analysis 

system is a sequence of image frames taken from a changing world. The camera 

used to acquire image sequence may also be in motion. In this thesis the camera is 

assumed to be stationary, looking to the same region continuously. This kind of 

camera usually has civil and military applications for ground and air observation 

systems in very low SNR situations that can be due to hard weather conditions, 

poor quality of image sensing or far pursuit applications like satellite image 

processing. Calibration of estimated target path has to be done with respect to 

camera movement. Each frame represents an image of the scene at a particular 

instant in time. The changes in the pixel values of the scene may be due to the 

motion of objects, environmental or sensor noise on the camera. The aim of the 

dynamic vision system is to characterize the motion and recognize moving objects. 

There are four possibilities for the system. [2] 

 

1) Stationary Camera-Stationary Objects (SCSO)  

2) Stationary Camera-Moving Objects (SCMO) 

3) Moving Camera-Stationary Objects (MCSO) 

4) Moving Camera-Moving Objects (MCMO) 
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In many applications, it may be enough to process a single image to obtain 

the necessary information. In this thesis, since environment intensity spectrum is 

assumed to be very close to moving object intensity spectrum, the single image 

processing methods are not applicable to characterize the motion. To give an 

application example, in foggy and rainy hard weather conditions, it is hard to detect 

moving objects far away from the stationary camera. In such cases, the object is 

buried into the noise and impossible to detect by single image processing 

techniques. Instead, comparison of two or more frames is necessary to detect 

motion. 

To give an example of intensity spectrums in grayscale, the environments 

mean intensity maybe around 100 with noise variance 15 when the target intensity 

is around 115. Figure 1 and Figure 2 shows the pixel intensity spectrum of the 

target and background. In this example it is assumed that target is formed from one 

characterized piece. In general, different-featured target pieces may form a single 

target. 

 

 

 

Figure 1Background Pixel Intensity Spectrum, N (100, 15) 



 5

 

Figure 2 Target Pixel Intensity Spectrum, N (115, 15) 

 

 

It is also possible that the background intensity spectrum can differ in 

different local areas on the frame. However, general characteristics of the 

distribution is assumed to be Gaussian in all sub regions, i.e. every pixel of the 

camera is exposed to Additive White Gaussian Noise with zero mean and known 

variance. This assumption covers almost all of the real world applications.  

The moving objects are called as dim when a threshold value for single 

image cannot be used to characterize the object properties. Although sequence of 

frames gives much more information to aid in understanding a scene, it brings 

together significantly increasing processing time. Fortunately, research in dynamic 

scene analysis has shown that the recovery of information in many cases is easier in 

dynamic scenes than in static scenes.  

In dynamic scene analysis, SCMO scenes have received the most attention. 

MCSO and MCMO scenes are very important in navigation applications. MCMO 

is the most general and possibly the most difficult situation in dynamic scene 

analysis.  
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Dynamic scene analysis has there phases: 

 

1) Peripheral 

2) Attentive 

3) Cognitive 

 

The peripheral phase is concerned with extraction of approximate 

information which is very helpful in later phases of analysis. This information 

indicates the activity in a scene and is used to decide which parts of the scene need 

careful analysis. The attentive phase concentrates analysis on the active parts of the 

scene and extracts information which maybe used for recognition of objects, 

analysis of object motion, and preparation of a history of events taking place in the 

scene or other related activities. The cognitive phase applies knowledge about 

objects and other application dependent concepts to analyze the scene in terms of 

the objects present and the events taking place.  

The input to a dynamic scene analysis system is a frame sequence, 

represented by F(x, y, t) where x and y are the spatial coordinates in the frame 

representing the scene at time t. The value of the function represents the intensity 

of the pixel. 

The Figure 3 shows an example of a dim air target in a foggy environment 

displayed by a mounted stationary camera on the ground. The target is surrounded 

by a square on the upper left side. 
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Figure 3 Example of a dim air target in a foggy environment 

 
 

2.1 Change Detection 

Detection of changes in two successive frames of a sequence is a very 

important step for many applications. Any perceptible motion in a scene results in 

some changes in the sequence of frames of the scene. A good quantitative estimate 

of the motion components of an object maybe obtained if the motion is restricted to 

the 2-D plane. In this thesis, motion is assumed to be parallel to the image plane. 3-

D motion estimation is not the topics of this study. To decide whether a pixel value 

is changed due to motion, taking difference of pixel values one by one of two 

successive frames is a simple but most useful technique in many applications. 

However, since the aim of this study is to detect and track dim targets, difference 

picture method is not applicable for change detection of moving objects in very 

noisy environments. To make change detection more robust, intensity 

characteristics of groups of pixels at the same location in two frames maybe 

compared using either a statistical approach or an approach based on the local 

approximation of intensity distributions.  
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A straightforward domain independent method for comparing regions in 

images is to consider corresponding areas of the frames. These corresponding areas 

are the super pixels formed by pixels in no overlapping areas comprising of m rows 

and n columns. The values of m and n are selected to compensate for the aspect 

ratio of the camera. Therefore, a frame partitioned into disjoint super pixels is 

considered. Comparison is based on likelihood ratio test and the related calculation 

is given below:[2] 

 

2

21

21
2

21

.
2

)(
4

)(

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ +
+

−

=
σσ

σσµµ

λ   (2.1) 

 

where µ1 and µ2 denote the mean intensity gray values and σ1 and σ1 denote the 

gray intensity variance for the super pixels at the same location of the camera in 

two successive frames.  

After this computation, one can use a threshold value to decide whether a 

super pixel is changed or not. If λ is greater than the threshold, the algorithm 

decides that super pixel is changed and signs it. The threshold value is strongly 

related with SNR value of the target.  

In this thesis, the SNR value of the target is defined as: 

 

envenv

envett
T

SNR
22

2arg2
log10

σµ

σµ

+

+
=   (2.2) 

 

where µenv is the environment mean intensity, σenv is the environment noise 

intensity variance and µtarget is the target mean intensity. 
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There are also different SNR definitions based on the intensity 

characteristics. One of them is given below [19]: 

 

sbackground

backgroundett
motion

SNR
σ

µµ −
=

arg  (2.3) 

 

where µtarget is the average motion energy of pixels in the ground truth target 

region. Likewise µbackground is the average of motion energy of pixels in the ground 

truth region and σbackground is the standard deviation of motion energy of pixels in 

the ground truth background region. 

A measure of motion energy is estimated by considering a circular region 

centered at that pixel and computing the sum of contributions from individual pixel 

intensities in the region. Thus, for a given pixel location, the average motion 

energy computed from the circular region is: 

 

( )∑
=

+=
N

i
ii vu

N
e

1

221   (2.4) 

 

where the summation is carried out over the circular region, the index i 

specifies individual pixel location in the region and N is the total number of pixels 

in the region. This kind of computation makes use of non-directional nature of the 

circular region which makes it a robust choice to account for unknown target 

motion. However, this method is used for SNR of the motion and varies in time. 

Therefore, Equation 2.2 is chosen as the target SNR definition. 

In very low SNR values, low threshold values may cause unnecessary false 

alarms of change detection and give false motion directions. Therefore, robust 

change detection is necessary but not enough technique for tracking dim targets.  
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The performance of the likelihood ratio test can be increased significantly 

by using facets and quadratic surfaces to approximate the intensity values of pixels 

belonging to super pixels. These higher order approximations allow for better 

characterization of intensity values and result in more robust change detection. 

 

2.2 Connection Labeling Of Changing Super pixels 

After detection of change at super pixels, grouping of these super pixels is 

necessary to identify different target candidates. It is important to mention that very 

small targets whose sizes are less than “m x n”, i.e. super pixel size, cannot be 

detected. Similarly, targets that have very low velocities less than super pixel size 

cannot be detected. Therefore, according to the target characteristics desired to be 

tracked, an optimum super pixel size can be determined.  

Small super pixel size brings small and slow target motion detection in low 

SNR situations while it brings together extra computational load to the algorithm.  

Labeling of the binary difference matrix formed by LRT Change Detection 

can be defined as grouping connected changing super pixels with respect to the 

connection styles below: 

 

1) 4-Connection 

2) 8-Connection 

 

4-connection means a super pixel is in the same label with its upper, lower, 

right and left neighbors. For 8-connection, its upper/lower and right/left neighbor 

super pixels are also included [15]. 8-connection gives more information about the 

target shape but is not applicable in low SNR detection. Local area of the target 

gets bigger with unnecessary noise related changing super pixels as it can be 

observed from Figure 5. 

The  

Figure 4 shows 4-Connection and 8-Connection directions used to find labels. 
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Figure 4 4-Connected and 8-Connected Labeling Directions 

 

 
 

 

 
 

Figure 5 4-Connected and 8-Connected Label Matrix with SNR: 0.81 

 

 

The pixels with the same color are in the same label and processed together. 

It is observed that the real target cannot be detected by single image processing 

techniques. The low SNR results in shading to real targets on the whole label 

matrix. Furthermore, 8-Connected labeling jams the label matrix and hides the real 

target. Therefore, in dim target applications 4-Connected labeling should be used. 
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2.3 Label Destruction and Centroids Mapping 

Labels show candidate group movements at the scene. Analyzing labels 

includes extracting real target hidden in the label, mapping of the label to the next 

frame and filtering false alarms. Detecting changing super pixels in one label due to 

dim target motion is not necessary since the aim of the algorithm is to find motion 

not the target components. The algorithm doesn’t search target pieces, rather it 

finds possible vector movement of the label.  

Notice that all label movement doesn’t give the real target motion and may 

cause false results. Therefore, instead of all label analysis with each super pixel, 

labels are divided into subgroups, i.e. groups of super pixels, and these subgroups 

are searched for vector motion. Notice also that vector motion is not required in its 

own label but also jump to other labels. Therefore, the focus area of the analysis 

must be at least target velocity. A safety region is necessary for this aim. One can 

give the entire frame as the focus area also. Destruction of label also decreases 

unnecessary noise clouds that spread all around the frame. The method to destruct 

the label can be in similar way as the super pixel creation, but since the label is a 

quadratic surface, it’s meaningful to not increase the subgroup size. However, one 

super pixel is not enough to find real target movements since it doesn’t give the 

real target motion characteristics, which is “If two neighbor super pixels are pieces 

of a target, they map to same or close location in the next frame.” Therefore, 

minimum expected target area is used as the subgroup size. Changing super pixels 

that result from noise are highly probable to map to different locations.  

The aim of the centroids mapping is to find new candidate positions of each 

element of the subgroup in the next frame by using LRT Comparison and labeling. 

Figure 6 illustrates the centroids mapping of the target and noise related two 

neighbor super pixels. 
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Figure 6 Illustration of target and noise related neighbor super pixels 

 

 

Figure 7 shows an illustration of centroids that result from a label which 

includes the real target without destruction on it. The points that gather around the 

same center are the candidate target vectors. The points that become distinct from 

the others will be eliminated. Notice that noise related centroids are very probable 

to cause false alarms. 

 

 

 
Figure 7 Centroids Distribution without Label Destruction 
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Figure 8 Centroids Distribution with Label Destruction 

 

 

In Figure 8, it is clear that with label destruction, false alarms are eliminated 
considerably. 

 
The mathematical definitions for labeling and destruction are given below: 

Definition 1: Let nD  be the binary difference matrix whose elements are 

decided by LRT Change Detection method in thn  and thn )1( −  and image frames. 

An element of this matrix jid ,  is defined by: [2] 

 

⎩
⎨
⎧

=
1
0

, jid  
τλ
τλ

>
≤

  
kj
mi

,...,2,1
,...,2,1

=
=

           (2.5) 

 

where λ is the calculated LRT value of the super pixel which is given by the 

Equation 2.1, τ is the threshold value for comparison, m x k is the fixed size of the 

rows and columns in image frames. 

Definition 2: Let rL  be the set of coordinates of the thr  label which is 

decided by using 4-connected labeling in the set nD . An element of this set li is 

defined by: 
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},,{ )()( ryxDyx iiniiil ==     (2.6) 

 

where ( )iyix ,  are the Cartesian coordinate values of the super pixels in the set nD . 

Definition 3: rjS ,  is the thj  subgroup of the label rL , which is formed of 

groups of superpixels ( )iyix ,  that are interconnected with a rule iξ . This rule can be 

in shape or size manner geometrically.  

From this definition, rjS ,  can be written as: 

 

⎭
⎬
⎫

⎩
⎨
⎧ ≡⎟

⎠
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⎝
⎛∈⎟

⎠
⎞⎜

⎝
⎛∀= irj i

y
i

xS
i

y
i

xS rj ξξ ,, ,,   (2.7) 

 

where ( )iyix ,  is the Cartesian coordinates of the superpixels in nD . 

To give an example for iξ  : 

 

( ) ( )( ) 222: τξ ≤−+− yixi ryrxi    (2.8) 

 

where ( )yx rr ,  is the centre coordinates of the circle with radiusτ . 

The destruction method used in the algorithm is based on rectangular pieces of the 

bounding box of the label. If a piece includes a target element, it is evaluated for 

centroid mapping, otherwise ignored. 
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Figure 9 Illustration of Rectangular Label Destruction in the Bounding Box  

 

2.4 Maximization of Distribution Density Functions 

Every destructed label may give different, unrelated motion direction. This 

may be due to different targets in the label or false alarms. Subgroups of the label 

are analyzed to find their most probable direction. First of all, mapping of each 

superpixel of a subgroup in the next frame has to be done by the method similar in 

likelihood ratio test which is used for change detection. However, at this time it’s 

necessary to find similar statistical super pixels instead of searching dissimilarity in 

the superpixels. For each method, the same threshold value can be used due to 

same noise variance. Mapping of each super pixel gives many candidates of vector 

movements in terms of the centroids. Therefore, a selection method along mapping 

vectors has been offered. At this time, distribution density functions take very 

important role. Distribution density functions are used to find most probable vector 

movement of a subgroup in the searched label. The input to the distribution density 

function is the centroids of the candidate mapping labels. It is important to notice 

that the distribution density functions mentioned in this thesis is not related with 

the probability density functions which are used to characterize the probability of 

random variables. 

The probability of one centroid is dependent on how close the other 

centroids gather around it. Distribution density functions are symmetric around the 

origin in both x and y directions and monotonically decreasing. Notice also that 

distribution density functions should have an optimum bandwidth with respect to 
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the noise variance in the environment. The bandwidth definition can be in different 

ways in terms of the energy percentage that fall into it. 

The Figure 10 and Figure 11 show three dimensional graphics of different 

types of distribution density functions in two axis with different bandwidths. 

 

 
Figure 10 Example of Exponential Distribution Density Function: e-r with “r2 = x2 + y2” 

 
 
 

 
Figure 11 Example of Linear Distribution Density Function: Max (10, 10-r) with “r2 = x2 + y2” 
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Definition 4: Let tM be the set of total mapping centroid coordinates of the 

subgroup tS  and pm  be the subset of mapping centroid coordinates of the single 

superpixel in this subgroup. 

 

t
p

p Mm =U   where snp ,....2,1=    (2.9) 

 

and sn  is the number of elements in the subgroup tS . It is important to mention that 

pm  sets that result from the elements of the subgroup tS  don’t have to be mutually 

exclusive. 

 

Definition 5: Let yx,ψ be the distribution density function (DDF) of the mapping 
centroid ( )yx,  given by the equation below: 

 

( )∑=
n nnyx yx ,, ψψ   smn .....3,2,1=   (2.10) 

 

where, n is the centroid index number excluding the index number of ( )yx,  in Mt 

which has total number of elements sm . It is also possible to filter out number of 

centroids instead of evaluating all of them, since DDF take very low accumulated 

values far away from the origin. 

Mt is the observation set which includes necessary and unnecessary 

mapping centroids. The aim of DDF is to filter out noise related unnecessary 

mapping points. In the area of mapping centroids, we can find a region that has the 

maximum number of hit points with minimum entropy. The entropy of a point in 

the area is defines as the summation of distances of the all points to the related 

point. 
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( ){ } ∑
=
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n

i
iii dyx

2
,  kn ,...,2,1=   (2.11) 

  

in the set of ( )ii yx ,  coordinates with total number of k elements. 

The combination of minimum entropy with maximum number of hit points is given 

by DDF. As the number of centroids gets bigger and entropy gets smaller, DDF 

output increases in the same manner. 

It is important to mention that coordinates of maximum likelihood point in 

the area does not have to be one of the elements in Mt. However, since the 

computational load for optimization increases very much and the distance error 

when one of the tM  elements is chosen is very small, it is more useful to search 

the maximum likelihood centroid point in the set Mt. The point found from DDF 

maximization is the centroid of the superpixels of the subgroup analyzed which 

have similar intensity characteristics. 

In order to find maximum likelihood mapping centroids point of the 

subgroup tS , it is necessary to define the probability of each element of the set tM . 

Definition 6: Let ( )yxP
tM ,  be the probability of mapping for the mapping centroid 

( )yx,  in tM . 

 

( ) yxtM n

i
iyix

yxP ,.1,

1
,

ψ
ψ∑

=

=     (2.12) 

 

yx,ψ  is directly related with the mapping probability. As the distribution of 

the mapping centroids gets closer to the mapping centroid ( )yx, , the probability of 

vectoral movement of the subgroup pm  to that point gets bigger. The mapping 

centroid which maximizes Ψ is chosen as the maximum probable subgroup 

vectoral movement max

−

S . 
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( )
tMPS maxargmax =

−

   (2.13) 

 

The Figure 12 shows graphical result when a frame part that includes the 

real target has been put into an exponential distribution density function. 

 

 

 
Figure 12 A real target that appears on DDF Maximization 

 

 

It is clear that the regions that include the real target results in higher DDF 

values which are related with number of hits to the same region and minimum 

entropy. 
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To summarize DDF Maximization, each candidate centroids of the mapped 

labels of the subgroup elements are taken as the origin of DDF for the evaluation. 

All other centroids that fall in the bandwidth are put into DDF to get the final 

summation value. The one that has the maximum value in DDF is taken as the 

maximum likelihood subgroup vector. 

It is important to notice that, if there does not exist enough superpixels that 

come from the target, DDF maximization gives false alarms. However it is possible 

to identify different targets in different locations by Maximum Histogram Size 

Filtering which is given in the next chapter. 

 

2.5 Maximum Histogram Size Filtering 

The next step in the algorithm is to find different target candidates by using 

subgroup mapping points max

−

S determined by DDF maximization. This step is 

necessary to differentiate different targets that gather around the same centroid. It’s 

also possible that noise clouds result in subgroup mapping points as if they are 

target elements. The mapping points of this kind of subgroups may be in the real 

target centroids, however it is not important for the algorithm to differentiate them 

from the real target vector movements because the algorithm uses the final filtered 

vector movement as the start point that result from subgroups for the next iteration. 

It is necessary to emphasize that the mapping points are the only important and 

enough result of the DDF maximization. The mission of finding target start point is 

related with the previous iteration of the algorithm. It takes importance only for the 

initial state but the algorithm uses ODSA for estimation. From the point of ODSA, 

the maximum metric in the last is the result of the estimated path not the initial 

point.  

The method used to differentiate different target groups strongly depends 

on determining different target mapping point clouds. The resolution to 

differentiate different targets can be increased with a good selection of grouping 

technique. This technique depends also on maximum target size. Maximum 

histogram size filtering has been developed for this aim.  
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This filtering method generates new classes of centroids and groups them 

by going back from the point that has the maximum value in the member 

histogram. 

The Figure 13 shows an example of differentiation of different targets on the image 

with maximum histogram size filtering. 

 

 

 
Figure 13 Differentiation of different targets for different size thresholds 

 

 

The general flowchart of the Maximum Histogram Size Filtering is given below: 

 

Step 1. Create a group for each centroid. Each group consists of other 

centroids which are closer than the size threshold value. 

Step 2. Find the number of elements for each group 

Step 3. Assign the group which has the maximum number of elements as a 

target. 

Step 4. Kill the group by zeroing the histograms of the centroids included in 

it. 

Step 5. Go back to Step 3 until all of the groups are killed. 
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2.6 Range and Maneuver Filtering 

The target candidates found by maximum histogram size filtering method 

can be in different directions and velocities with respect to last vector movement. 

Therefore, the algorithm takes maximum possible range and maneuver index 

acceptable for a target by using Equations 2.13 and 2.14. 

Range and maneuver index definitions are related to difference between two 

successive frames. The sampling time of the image sensor is important from this 

point of view. As the sampling time of the image sensor gets bigger, it’s not 

reliable to filter out targets that fall into maximum range and maneuver. 

Let mr  and im  be the maximum target movement range and maneuver 

index of the tracked target. The centroids of possible target movements, mC , are 

filtered by the following equations: 
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where k  indicates the related frame numbers. ( )yx,  is the Cartesian 

coordinate of the centroid. ( ).f  is the maneuvering filter function and ( ).g  is the 

range filter function. These functions are based on the system state transition 

model. ( ).f  defines the angle change and ( ).g  defines the relative velocity change, 

i.e. acceleration, of the target between three successive frames. Based on the 

system model defined, these functions are used to filter out non possible target 

movements.  
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Notice that “f” and “g” functions are defined adaptively, that is to say the 

inputs of these functions in the next step are the outputs of the last step. Therefore, 

slow target transition changes along the frames can be detected by changing the 

acceleration and maneuver parameters with respect to the last observed data. 

It is also possible to use Kalman or Extended Kalman Filters to predict the 

current and future states of the target. However, it is found to be enough to use 

second order adaptive filter to eliminate non possible target movements. The order 

of the filter is related with the maximum frame number difference between the 

current and past frames, which are used in “f(.)”and “g(.)” functions. The Equation 

2.14 and 2.15 use second order adaptive filter for this aim. 

 

 

 
Figure 14 Example of target range and maneuver filtering 

 
 

The surface that is enclosed by the green line is the possible target 

movement region for a linear state transition. Notice that system can be defined in 

any manner, i.e. constant or variable acceleration and maneuver parameters.  
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Below is the list of possible target state transition models: 

 

1. Constant Acceleration Constant Maneuver 

2. Variable Acceleration Constant Maneuver 

3. Constant Acceleration Variable Maneuver 

4. Variable Acceleration Variable Maneuver 

 

The algorithm cannot find the targets which has acceleration and 

maneuvering bigger than the limits. Even though giving more tolerance for the 

limits seems to increase probability of real target cover area, it is more realistic and 

useful to limit them to prevent false selection of the real target along the 

candidates.  From this point of view, it can be said that there exists maximum 

acceleration and maneuver limit for a given SNR value to extract the path.    

 

2.7 Position and Direction Calibration 

The algorithm uses center windowing method to focus on target. The 

method is based on locating the last observed target position at the center of the 

window with a predetermined size which is the maximum tolerable target velocity. 

The superpixels in the frame that are not in this window are ignored for the 

analysis. The reason of center windowing is to increase the time performance of the 

algorithm and prevent false alarms that cannot be related with focused target. This 

relation is about the maximum target velocity tolerable in the system. There exists 

a tradeoff between the performance of the algorithm and risk of missing the target 

that is not in the focus window. 

Centering the window for focusing on the target to be tracked necessitates 

position and direction calibration. Dim target tracking algorithm finds the 

maximum probable target movement in the focused window. This vector has to be 

mapped into real main frame of observation.  
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A reference of the target with respect to the focus window is used for 

calibration. This reference is the left-upper coordinates of the focus window at the 

main frame. At each observation interval, the focus window jumps to the new 

target-centered position and new observation matrix is given as the input to change 

detection. After dim target tracking algorithm finds the relative target movement 

with respect to the window position and then maps the target vector to the 

stationary camera coordinates. 

Figure 15 shows the vector sum of the relative target movement and focus 

window vectors. 

 

 

 
Figure 15 The calibration of the real target position and direction 

 
 
 

where “r” is the vector between the center of the focus window and main 

frame left-upper corner, “t” is the relative motion of the target with respect to focus 

window, “z” is the final calibrated target position vector with respect to the left-

upper corner of the main frame.  
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( )cc YX ,  : Cartesian coordinates of the main frame left-upper corner 

( )ww YX ,  : Cartesian coordinates of the focus window left-upper corner 

( )ii YX ,   : Cartesian coordinates of the center of the focus window, also the   

final observed target position 

( )ff YX ,   : Cartesian coordinates of the relative vector movement of the target 

 

2.8 Assignment of the Next Iteration Label 

The final step of the dim target tracking algorithm is to provide continuity 

of the iteration by assigning the last observed target centroid to the most probable 

label in the next step. Due to the low SNR values, the point that is found to be the 

centre of the last label can no longer be seen by the algorithm as the centre of the 

next difference matrix label. The labels change their sizes and shapes in the next 

frame because the frames that are used for comparison have already been changed. 

Therefore it is necessary to match the target centroid with the most probable label. 

For this aim, the following criteria are presented: 

Let lr∆  be the distance between the last observed target centroid and the 

centroid of the thl  label of the next difference matrix and lA  be the area of the label 

which is defined as the number of pixels included in the label. 

The labels which have error tolerance of the last label area are filtered and 

the label which has the closest centroid to the target centroid is chosen as the next 

label for iteration. 

Let label xL  be the final decided label for the iteration. xL  has the 

following properties: 

 

( ){ }lxssxx rrAAL ∆=∆∩≤− min: ε   lNl ,....2,1=  (2.16) 
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where sA  is the area of the last analyzed label and sε is the maximum tolerable 

target size change between two successive frames. lN  is the number of labels in 

the binary difference matrix nD . 

 

2.9 Flowchart of the Dim Target Tracking Algorithm 

The aim of the dim target tracking algorithm is to get reasonable target path 

observation from the image sequences given. The result of the algorithm has at 

least the distance error as much as the superpixel size. Furthermore, there occur big 

fluctuations along the path from the real target centroid due to the low SNR 

condition. Therefore, the output of the dim target tracking algorithm has to be put 

into a smoothing algorithms to find more reliable path estimation. The effect of the 

high noise variance reflects to the deviation of the centroid of the observed path 

from the real target path, which usually results in discontinuities in the path. The 

risk of missing the target centroid in the next frame gets bigger if the observed path 

is not smoothed. Furthermore, it increases the performance of the algorithm from 

the computation time point of view. 

The Figure 16 shows the general flowchart of the dim target tracking 

algorithm and the relation of the algorithm with the Optimum Decoding Based 

Smoothing algorithm. 
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CHAPTER 3 
 

 

OPTIMUM DECODING BASED SMOOTHING ALGORITHM 

 

 

Optimum decoding based smoothing algorithm is an estimation algorithm 

which can be applied for both linear and nonlinear estimation problems modeled as 

below: 

 

 Motion model, ))(),(),(,()1( kwkukxkfkx =+  (3.1) 

 Observation model, ))(),(,()( kvkxkgkz =  

 

Where x(0) is an nx1 initial state Gaussian distributed random vector (which 

determines the considered target location at time 0); x(k) is an nx1 (target) state 

vector at time k; u(k) is a qx1 input at time k with known statistics; w(k) is a px1 

Gaussian distributed disturbance noise vector at time k with zero mean and known 

statistics; v(k) is an lx1 Gaussian distributed observation noise vector at time k with 

zero mean and known statistics; z(k) is an rx1 observation vector at time k. Time k 

is time t0 + kT0 where t0 and T0 are the initial time and the observation interval 

respectively. The random vectors x (0), w (k) and v (k) are assumed to be 

independent for all k. The goal is to estimate the state sequence {x (0), x (1)… x 

(L)} by using the observation sequence {z(1), z(2),…, z(L)}. [1] 
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3.1 Quantization of States and Transition Probabilities 

Due to some analytical difficulties, calculations should be performed numerically. 

Let x(k) be a random vector whose range is in the space Rn (n dimensional 

Euclidian space). Let us divide Rn into nonoverlapping subspaces Ri
n and assign a 

unique value xqi to each subspace Ri
n, where the subscript q is quantization. [1] 

Definition 3.1: A function xq(.)  Q{x(.)} is a quantizer for the state x(.) if 

the following hold: 

1) A function xq(.)  Q{x(.)} = xqi whenever x(.) є Ri
n; and 

2) xqi is unique for each Ri
n 

Definition 3.2: The function xq(.) is the quantized state vector at time (.), 

and its possible values are called quantization levels of the state x(.). 

Definition 3.3: Subspace Ri
n is called gate Ri

n. 

Definition 3.4: The value xqi is called the quantization level for the gate Ri
n. 

Definition 3.5: The transition probability Πjm(k) is the probability that the 

state x(k+1) will lie in the gate Rm
n when the state x(k) is in the gate Rj

n; i.e., 

 

 Πjm(k)  Prob { x(k+1) є Rm
n | x(k) є Rj

n } (3.2) 
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Figure 17 Quantization and transition probabilities 

 

 

Since the initial state vector x(0) and w(k) are Gaussian distributed and the 

random vectors x(0), w(k), and w(l) are assumed to be statistically independent for 

all k, l; x(k+1) and x(k) are linear transformations of the Gaussian random vectors 

x(0), w(1), …, and w(k). Thus, p(x(k)) and p(x(k+1)|x(k)) are normal density 

functions. Therefore, the evaluation of Πjm(k) is difficult. For this reason, we define 

a finite-state model described in section 2.3 by approximating the disturbance noise 

vector w(k) and the initial state vector x(0) by discrete random vectors, and by 

quantizing x(k) for all k. For this finite-state model, the transition probabilities can 

be easily calculated.  

 

Rm
n 

Rj
n Πjm(k)

Gate Ri
n 

xqi .

Rn
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3.2 Approximation of an Absolutely Continuous Random Vector by a 
Discrete Random Vector 

In order to find the optimum discrete random variable with n possible values that 

approximates an absolutely continuous random variable x with distribution function 

Fx(.), we must find a distribution function (.)
0yF  which minimizes the objective 

function J(.): 

 

 (.))(min(.))( (.)0 yFy FJFJ
y

=  (3.3) 

       (.))(min (.) gJg=  
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The aim is to find a step function g0(.) which minimizes the objective function J(.): 
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If g0(x) is a step function which minimizes (3.5), it must satisfy the following set of 

equations: 
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 (3.7) 

 

The discrete random variables which approximate the normal random 

variable with zero mean and unity variance are given in the References [20]. If the 

mean (µ) and the variance (σ) of the random variable are different than 0 and 1 

respectively, the new discrete values are computed according to the mean and 

variance of the random variable by using the formula given in 3.8.  

 

 niPPyy iii ,...,2,1. 0,0,0, ==′+=′ µσ  (3.8) 

 

The Figure 18 shows the distribution functions of the absolutely continuous 

normally distributed random variable x with zero mean and unity variance; and the 

distribution of the optimum discrete random variable which approximates x with 8 

possible values. 
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Figure 18 PDF of continuous random variable x and approximated discrete random variable 

 

 

The y and p values of approximated x are given at Table 1. 

Table 1 y and p values of discrete random variable with 8 possible values 

 1 2 3 4 5 6 7 8 

y -1.6990 -1.0250 -0.5700 -0.1840 0.1840 0.5700 1.0250 1.6990 

p 0.0922 0.1240 0.1394 0.1460 0.1460 0.1394 0.1240 0.0922 

 

3.3 A Finite State Model for the Target Model 

Gates are assumed to be generalized rectangles with origin R0
n. The quantization 

levels for gates are assumed to be the center of the gates. 

 

 Xq(.) Q(x(.))=xqi          if x(.)єRi
n, (3.9) 
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For each k the disturbance noise vector w (k) is approximated by a discrete random 

vector wd (k) and the initial state vector x (0) is approximated by a discrete random 

vector xd(0) as described in section 3.2. The number of discrete values for wd (k) 

and xd(k) are chosen such that w(k) and x(k) are satisfactorily approximated.  

Furthermore, by replacing w (k) and x (0) with discrete random vectors wd (k) and 

xd(0) respectively, and then quantizing the states by  (3.9), the target-motion model 

is reduced to a finite state model.  

 

 Xq(k+1)=Q(f(k, xq(k), u(k), wd(k)), (3.10) 

 

The number of quantization levels for k=0 is the number of discrete values 

of the initial state vector x (0), and the number of quantization levels for k=1, 2… L 

is limited because of the increase in the complexity of the algorithm. If the number 

of states were not limited, than the program computation time would increase 

dramatically with large k values.  

The transition probability Πjl(k), which is defined by the conditional 

probability that the quantized state vector xq(k+1) will be equal to the quantization 

level xql for gate Rl
n, given that the quantized state vector xq(k) is equal to the 

quantization level xqj for gate Rj
n is determined as follows: 

 

 Πjl(k)  Prob { xq(k+1)=xql | xq(k)=xqj } (3.11) 

 

Assume that the xq(k) is equal to xqj for gate Rj
n. The transitions from this 

quantization level to others are determined by wd (k) and the function Q (f (k, xq(k), 

u(k), wd(k)). If wd (k) has m discrete values (wd1 (k), wd2 (k),…,wdm (k)), then xq(k+1) 

can take at most m quantization levels. The probability of Πjl(k) is determined by 

the probability of wd(k) value (determined by corresponding p value) which results 

xql. If more than one values of wd (k) result xql than probabilities are added.  
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3.4 Approximate Observation Models 

Since the target-motion model is reduced to a finite-state model which uses 

the quantized state vector xq(.), the observation model is approximated as equation 

(3.12). 

 

 ))(),(,()( kvkxkgkz q=  (3.12) 

 

The motion model can be represented by a trellis diagram as shown in Figure 19. 

When the trellis diagram is drawn from time 0 to L, the target motion occurs along 

one of the possible paths through the trellis diagram. Based on the observation 

sequence z(1), z(2),…z(L), the most probable path followed by the target is 

determined by using the minimum error probability criterion, which is a special 

case of Bayes’ criterion in detection theory. Using this criterion reduces the 

problem of finding the path most likely followed by the target to a multiple 

hypothesis testing problem. 

 

 

 

Figure 19 Trellis diagram for the target motion 
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3.5 Minimum Error Probability Criterion 

Let the number of possible paths in the trellis diagram be M. Then, we 

define M hypothesis for the M possible paths. Using the minimum error probability 

criterion, we decide on one of the hypothesis to be the actual target path.  

Let us develop a decision rule that assigns each point in the observation 

space D into M subspaces D1, D2,…, DM. If the observation fall in the subspace Di, 

we decide that the target (most likely) followed path Hi. Subspace Di is called the 

decision region for hypothesis Hi. We must choose the decision regions in such a 

way that the overall error probability is minimized. The overall error probability, 

sometimes called Bayes’ risk is defined by: 

 

 R ∑∑ ∫
=

≠
= ∈ ⎪⎭

⎪
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⎫
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⎪
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j
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ji
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jj

iL

L dzHzpHp
1 1

)|()(  (3.13) 

 

where  

 p(Hj) : Probability that the hypothesis Hj (path Hj) is true, 

  p(zL|Hj) : Conditional probability of the observation sequence zL (z(1), 

     z(2),…,z(L)) given that hypothesis Hj is true.  

The optimum decision rule is 

 

 Choose Hi if )()()()( j
L

ji
L

i HzpHpHzpHp >  for all j≠i, (3.14) 

 

3.6 Optimum Decision Rule for the Target Paths 

Let us consider the motion model in equation (3.10) and the observation 

model in equation (3.12). Since the disturbance noise vector w (k) is assumed to be 

independent of w (j) and x (0) for all j≠k, the a priori probability of hypothesis Hi 

can be rewritten as:  
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where Πk
i = prob(xq(k)=xq

i(k)|xq(k-1)=xq
i(k-1)), and xq

i(k-1) and xq
i(k) are the 

quantization levels for the gates in which the target lies at time k-1 and k 

respectively when it follows path Hi. 

The function p(zL|Hi) in equation (3.14) can be rewritten as: 
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Where ))()()(())()(( kxkxkzpkxkzp i
qq

i
q ==  

Since z(k) is a Gaussian distributed random variable, )()( kxkz i
q  is also a Gaussian 

distributed random variable with mean )0),(,( kxkg i
q  and variance σ2

v(k). Therefore, 

))()(( kxkzp i
q  can be computed according to the formula given in equation (3.17). 
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Substituting equation (3.15) and (3.16) into the optimum decision rule of equation 

(3.14), we obtain the following: 

Choose Hi if 
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ΠΠ>ΠΠ   (3.18) 

 

for all j≠i. 
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Since it is more convenient to perform summations than multiplications, and the 

natural logarithm function is monotonically increasing, taking the natural 

logarithms of both sides of the inequality in equation (3.18), we get the following: 

Choose Hi if  
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for all j≠i. 

 

3.7 Optimum Decoding Based Smoothing Algorithm 

The optimum decision rule for selecting the target path is the path in the 

trellis diagram which has the maximum probability. This can be handled by Viterbi 

decoding algorithm, which is the optimum decoding algorithm. The algorithm 

which obtains a trellis diagram for the target motion model, and which finds the 

path most likely followed by the target by using the Viterbi decoding algorithm is 

referred as the optimum decoding based smoothing algorithm. This method finds 

the most probable path by comparing the metric values of the quantization values 

of the states from time 0 to time L. Metric values are defined as below: 

Definition 3.6: The metric, denoted by MN(xqi(0)), of the initial node xqi(0) 

is defined by 

 

 MN(xqi(0)) = ln [prob(xq(0) = xqi(0)] (3.20)  

 

Consequently, MN(xq
m(0)) = ln (Π0

m). 
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Definition 3.7: The metric, denoted by M(xqj(k-1)→xqi(k)), of the branch 

which connects the quantization level xqj(k-1) to the quantization level xqi(k) is 

defined by 

 

 M(xqj(k-1) → xqi(k))  ln [prob(xq(k)=xqi(k)|xq(k-1)=xqj(k-1))] (3.21) 

 +ln p(z(k)|xqi(k)) 

 

Definition 3.8: The metric of a path from time 0 to time i is the summation 

of the metric of the initial node from which the path starts and the metrics of the 

branches of which the path consists of. 

The value of the input vector u(k) used in the motion model is assumed to 

be constant from time k=0 to time k=L and its probability density function fu(u) 

given in equation (3.22) is composed of discrete values with known probabilities.  

 

 )()(
1
∑
=

−=
N

i
iiu uuPuf δ  (3.22) 

 

Where  

 N : the number of possible values of u(k),  

 ui : the possible value of u(k), 

 Pi : the probability of ui. 

 

The vectors x(k), w(k), z(k), u(k) and v(k) are chosen to be one-dimensional 

for simplicity. Furthermore, the initial state x(0), distribution noise w(k), and the 

observation noise v(k) are chosen to be normally distributed random variables with 

given mean and variance. The mean of w(k) and v(k) are assumed to be 0. The 

probability density functions of x(0), w(k) and v(k) are given in equations (3.23), 

(3.24) and (3.25) respectively. 
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The program gives opportunity to the user to modify the algorithm 

parameters such as the gate size, the number of quantization values of x(0) and w(k) 

and the maximum number of states at each time step. These parameters are directly 

related with the algorithm performance. However, these values also determine the 

computational time. For example, smaller gate size value means higher precision, 

but it also means longer computation time. Moreover, increasing the number of 

quantization values of the initial state x(0) or the distribution noise w(k) improves 

the performance, but resulting slower program run. For high L values, the number 

of states at each time step augments dramatically which results more and more 

complex program. By discarding the quantization steps with lower metrics at each 

time step, the computational burden can be reduced. This can be achieved by 

limiting the maximum number of states and preserving only the most probable 

states which have the highest metric values.  
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3.8 An Example of the ODSA Algorithm 

Let us consider a target whose motion from time zero to time 2 is described 

by Figure 20. Using the ODSA, we would like to find the path in the trellis diagram 

which was most likely followed by the target from time zero to time 2. 

 

 

 

Figure 20 Trellis diagram for the target motion from time zero to time 2 

 
 

Preliminary step: To each initial node, assign its metric, i.e., 

MN(xqi(0))=Prob{xq(0 )= xqi(0)}, where i=1, 2, 3. From now on, the metric of the 

node xqi(k) is represented by MN(xqi(k)). 

Step 1: Consider the node xq1(1). The branches xq2(0)xq1(1) and xq3(0)xq1(1) 

are the only ones connecting the nodes at time zero to the node xq1(1). Hence 

calculate the metrics of these branches, then add these metrics to the metrics of the 

nodes xq2(0) and xq3(0) and obtain the following: 

 

A11  M(xq2(0) → xq1(1)) + MN(xq2(0)), (3.26) 

A12  M(xq3(0) → xq1(1)) + MN(xq3(0)). (3.27) 
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Further, assuming that A11 = A12, the path xq2(0)xq1(1) is chosen as the best 

path for the node xq1(1), and A11 is assigned to the node xq1(1) as its metric, i.e., 

MN(xq1(1)) = A11. The path xq3(0)xq1(1) is then discarded. Let us now assume that 

the following are similarly found for the node xq2(1): xq1(0)xq2(1) is the best path for 

xq2(1), and MN(xq2(1)) = M(xq1(0) → xq2(1)) + MN(xq1(0)). Hence, we have Figure 

21 at the end of step 1.   

 

 

 

Figure 21 Trellis diagram from time zero to time 2 at the end of first step 

 

 

Step 2: Consider the node xq1(2). The branches xq1(1)xq1(2) and xq2(1)xq1(2) are 

those connecting the nodes at time 1 to the node xq1(2). Hence, calculating the 

metrics of these branches and adding these metrics to the metrics of the nodes 

xq1(1) and xq2(1), we obtain the following: 

 

A21  M(xq1(1) → xq1(2)) + MN(xq1(1)), (3.28) 

A22  M(xq2(1) → xq1(2)) + MN(xq2(1)). (3.29) 
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Further, assuming that A22 ≥ A21, the path xq1(0)xq2(1)xq1(2) is chosen as the 

best path for the node xq1(2), and A22 is assigned to the node xq1(2) as its metric, 

i.e., MN(xq1(2)) = A22. The path xq2(0)xq1(1)xq1(2) is then discarded. Let us now 

assume that the following are similarly found for the node xq2(2): xq2(0)xq1(1)xq2(2) 

is the best path for xq2(2), and MN(xq2(2)) = M(xq1(1) → xq2(2)) + MN(xq1(1)). 

Hence, we have Figure 22 at the end of step 2. In addition, assuming that 

MN(xq2(2)) ≥ MN(xq1(2)), the path xq2(0)xq1(1)xq2(2) is chosen as the path followed 

by the target from time zero to time 2. 

 

 

 

Figure 22 Trellis diagram from time zero to time 2 at the end of second step 
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CHAPTER 4 
 

 

SIMULATION RESULTS FOR DIM TARGET TRACKING 

ALGORITHM 

 

 

 

In order to check the performance of the algorithm, the actual dim targets 

are necessary with different parameters. The parameters are grouped in four parts 

in the list below with respect to their relations. 

 

a. Observation Parameters 

b. Target Parameters 

c. ODSA Parameters 

d. Risk Parameters 

 

Observation parameters are related to image sensor and environment 

specifications. The list below gives observation parameters. 

 

i. Environment Noise Statistics 

ii. Image Size 

iii. Illumination 
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Target parameters are related to dim moving objects that is to be tracked by 

the image sensor. These parameters are unknown and can’t be measured by the 

algorithm. The list below gives target parameters. 

 

i. Target Size and Shape 

ii. Target Motion Model  

iii. Target Motion Parameters 

 

Risk parameters are related to missing of targets to be tracked. These 

parameters are application dependent and chosen by the user knowing what kind of 

targets to be tracked. The list below gives risk parameters. 

  

i. Superpixel Size 

ii. LRT Change Detection Threshold 

iii. Distribution Density Function 

iv. Minimum and Maximum Expected Target Areas 

 

ODSA parameters are related to estimation of the path based on the 

observations that is given by the dim target tracking algorithm. These parameters 

are performance dependent and can be changed to get more accurate results. There 

exists a tradeoff between the time consumption of ODSA and average estimation 

error. The list below gives ODSA parameters. 

 

i. Gate Size 

ii. Quantization Number of the Initial Target Path Vector 

iii. Quantization Number of the Disturbance Noise 
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iv. Initial Target Path Vector Variance 

v. Disturbance Noise Variance 

vi. Observation Noise Variance 

vii. Limiting the Maximum Possible Target Points Number 

 

In order to check the performance of the algorithm, the actual observations 

and targets with desired parameters are needed. Therefore, a simulation algorithm 

is implemented to handle the parameters given at  

Table 2 with the help of MATLAB function randn(.). 

 

Table 2 Simulation Algorithm Input Parameters 

TARGET PARAMETERS SENSOR AND ENVIRONMENT PARAMETERS 

Motion Model Image Size 

Start and Last Point Pixel Size 

Velocity Maximum Number of Frames 

Acceleration Environment Intensity Mean and Variance 

Initial Direction Illumination Function and Rate 

Maneuver Ratio  

Intensity Mean and Variance  

Shape and Size  

 

The simulation results given below show the effects of the parameters of 

the algorithm described in Chapter 2 and 3. Simulations are performed for 250 

program executions. For each execution, the related parameters are regenerated 

with the same values. Moreover, results acquired from different model parameters 

or SNR values are plotted on the same graph to increase the comprehension. 
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4.1 Effect of Observation Parameters 

4.1.1 Effect of Environment Noise Statistics 
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Figure 23 Plot of Minimum Tolerable Difference of Target and Environment Mean Intensity vs.  

Noise Variance 

 
 
 

 

Figure 24 Plot of ∆µ Intensity vs. RMS Target Path Error 
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Comment:  

It can be seen from Figure 23 that minimum tolerable difference of target 

and environment mean intensity is linearly related with the noise variance. As the 

mean difference increases the noise variance also increases up to a saturation value 

which is approximately around the value “40”. After this point on, it is not 

important for the algorithm to increase the mean difference. It can handle the target 

detection and tracking independent of noise variance. Furthermore, the minimum 

mean difference that can be handled is “2” with no noise variance. If the 

environment noise takes into account, the minimum noise difference is “5”. The 

linear interpolation of the graphic in the non saturated region results in the equation 

below: 

 

2
min 2σµ ≈∆    (4.1) 

 

From Figure 24, it is observed that estimation error of the algorithm 

significantly depends on the noise variance. The tolerance of the mean difference 

between target and environment degrades as the noise variance increase. It is also 

clear that after a satisfactory mean difference, the RMS error saturates around 

“0.7”.  

Furthermore, if the mean difference is under a tolerable value with respect 

to the noise variance, it is impossible to track the target. 
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4.1.2 Effect of Image Size 
 

Image Size vs. Time Span
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Figure 25 Plot of Image Size vs. Time Consumption in 50 frames for different SNR values  

 

 

Comment:  

It can be seen from Figure 25 that image size of the observation frames 

significantly effects the time to complete the analysis. The time span formula in 

seconds with respect to the image size when a curve fitting algorithm applied for an 

exponential approximation is given below: 

 

Xe
s

82.19.03.1=Τ    (4.2) 

 

where X is the number of pixels along one dimension of the frame and Ts is the 

time spanned for the analysis. 
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From Figure 25, it is also observed that The SNR value of the target for a 

fixed image size effects slightly the time spanned by the algorithm. The reason of 

change is due to the increase in possible target candidates for low SNR values. 

Therefore, the algorithm is more useful for non real time applications such as 

satellite image analysis for space researches. 

 

4.1.4 Effect of Illumination 
 
 

 
 

Figure 26 Plot of Probability of Detection for different illumination functions 

 

 

Comment:  

It can be seen from Figure 26 that if there exists an illumination source on 

the path of the target, the probability of target detection degrades significantly after 

some illumination rate value. The rate of illumination is defined as the pixel 

intensity change in two successive frames. The parameter X is the frame number in 

Figure 26.  
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The reason of the performance reduction is due to the illumination clouds 

that hide the real target in LRT Difference Matrix. In average, after a pixel intensity 

change of approximately 10, it is impossible to identify the target in the 

illumination cloud. It is also observed that probability of target detection can differ 

according to the illumination function.  triang(.) is the Matlab function to create 

triangular waveforms. 

 

4.2 Effect of Target Parameters 

4.2.1 Effect of Target Size and Shape 
 
 

 
 

Figure 27 Plot of Target Area for different shapes vs. Minimum Tolerable Target SNR 
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Table 3 Minimum Tolerable SNR for detection with different sizes and shapes 

SNR Dimensions Area Diagonal
0.81 [19 19] 360 26.87 
1.55 [7 7] 50 9.89 
2.24 [6 6] 35 8.48 

Quadrangle 

2.88 [4 4] 15 5.65 
0.81 radius = 14 600 28 
1.55 radius = 5 80 10 
2.24 radius = 3.5 40 7 

Circular 

2.88 radius = 2,5 20 5 
0.81 Extent ratio = 0.4 1250 70 
1.55 Extent ratio = 0.4 115 15 
2.24 Extent ratio = 0.4 50 10 

Irregular 

2.88 Extent ratio = 0.4 40 8 

 

The meaning of parameters used in Table 3 is given below. 

 

1. Diagonal: Maximum distance along the peripheral coordinates of the target 

 

2.  
 

box bounding the of Area
target  the of AreaRatioExtent =    (4.3) 

 

where bounding box is the minimum rectangular area that encapsulates the 

target. 

 

Comment:  

It can be seen from Figure 27 that minimum tolerable target SNR for the 

dim target tracking algorithm is indirectly proportional with target area. It is also 

clear that quadrangle targets result in the best performance of detection. As the 

complexity of the shape of the target increases, it is hard to detect in low SNR 

situations. The reason for this comes from the superpixel size and shape. At the 

target edges, the probability of covering the target in the related superpixel gets so 

small that it becomes almost impossible to extract the maximum distribution of the 

related target piece in the second frame. However, it is also important to notify that 

minimum tolerable target area for all SNR values is constant, approximately 25 

pixel2. 
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4.2.2 Effect of Target Motion Model 
 

The target motion models studied are listed below: 

I. LCV          : Linear Constant Velocity 

II. LCA          : Linear Constant Acceleration 

III. CMCV      : Constant Maneuver Constant Velocity 

IV. CMCA      : Constant Maneuver Constant Acceleration 

V. VMCV      : Varying Maneuver Constant Velocity 

VI. VMVV      : Varying Maneuver Varying Velocity 

 

Table 4 Target Motion Models and Estimated RMS Errors 

MOTION MODEL TARGET PARAMETERS 
RMS 

ERROR 
Target Intensity mean 125 
Target size [8 8] 
Target velocity 25 
Target maneuver Index NA 
Target acceleration NA 
Image Size [1024 1024] 
Number of Frame 30 
Noise Intensity mean 100 

LCV 

Noise Intensity variance 15 

1.631 

Target Intensity mean 125 
Target size [8 8] 
Target velocity 25 
Target maneuver Index NA 
Target acceleration 2 
Image Size [1024 1024] 
Number of Frame 30 
Noise Intensity mean 100 

LCA 

Noise Intensity variance 15 

1.759 

Target Intensity mean 125 
Target size [8 8] 
Target velocity 25 
Target maneuver Index 0.05 
Target acceleration 2 
Image Size [1024 1024] 
Number of Frame 30 
Noise Intensity mean 100 

CMCA 

Noise Intensity variance 15 

2.234 
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MOTION MODEL TARGET PARAMETERS RMS 
ERROR 

Target Intensity mean 125 
Target size [8 8] 
Target maneuver Index 0.05 
Target acceleration NA 
Target size [8 8] 
Target velocity 25 
Image Size [1024 1024] 
Number of Frame 30 
Noise Intensity mean 100 

CMCV 

Noise Intensity variance 15 

1.815 

Target Intensity mean 125 
Target size [8 8] 
Target velocity 25 
Target maneuver Index 0.05+randn (.) 
Target acceleration NA 
Image Size [1024 1024] 
Number of Frame 30 
Noise Intensity mean 100 

VMCV 

Noise Intensity variance 15 

2.261 

MOTION MODEL TARGET PARAMETERS 
RMS 

ERROR 
Target Intensity mean 125 
Target size [8 8] 
Target velocity 25 
Target maneuver Index 0.05+randn (.) 
Target acceleration 2+randn (.) 
Image Size [1024 1024] 
Number of Frame 30 
Noise Intensity mean 100 

VMVV 

Noise Intensity variance 15 

2.349 
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Figure 28 Plot of Estimated Path RMS Error for different Target Motion Models 

EPR : Estimated Path RMS Error 

 

Comment:  

It can be seen from Table 4 and Figure 28 that as the complexity of target 

motion increases, the error that results from the algorithm also increases. The 

function used for variable acceleration and maneuver is the Matlab function 

“randn(.)” which generates random numbers with zero mean and unit variance.  

The effect of maneuver index is given by the formula below: 

 

π
β 180.m=∆Φ    (4.4) 

 

where “∆Φ ”is the angle change in degrees between two consecutive 

frames and “ mβ ” is the maneuver index written at 

In Table 4 the velocity and acceleration parameters are in terms of pixel 

distance. “NA” is used for “Not Applicable”. 
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4.2.3 Effect of Target Motion Parameters 

 
 

  
Figure 29 Plot of Target Label (white) in the Difference Matrix Target Velocity: 20 Pixels / Frame 

SNR: 2.24 and Size: [8 8] 

 
 
 

 
Figure 30 Plot of Target Label (white) in the Difference Matrix Target Velocity: 15 Pixels / Frame 

SNR: 2.24 and Size: [8 8] 
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Figure 31 Plot of Target Label (white) in the Difference Matrix Target Velocity: 10 Pixels / Frame 

SNR: 2.24 and Size: [8 8] 

 
 
 

 
Figure 32 Plot of Target Label (white) in the Difference Matrix Target Velocity: 7 Pixels / Frame 

SNR: 2.24 and Size: [8 8] 
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Figure 33 Plot of Target Label (white) in the Difference Matrix Target Velocity: 20 Pixels / Frame 

SNR: 1.55 and Size: [8 8] 

 
 
 

 
Figure 34 Plot of Target Label (white) in the Difference Matrix Target Velocity: 15 Pixels / Frame 

SNR: 1.55 and Size: [8 8] 
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Comment:  

It can be seen from Figure 29-Figure 34 that as the SNR is decreased for 

low velocity targets, old and new target positions gets closer  to each other in the 

label matrix and finally become a single target label. Therefore for each target SNR 

value, there exists a breakpoint that the algorithm can separate the old and new 

target positions from the image frames. As the SNR value is decreased, it can be 

also seen from Figure 33 and Figure 34 that the target velocity must increase above 

a critical value to differentiate the target labels. 

 

4.3 Effect of Risk Parameters 

4.3.1 Effect of Superpixel Size 
 
 

Superpixel Size vs Centroid Errors for different targets
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Figure 35 Plot of Superpixel Size vs. Centroid Errors for different targets 
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Superpixel Size vs Number of Labels
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Figure 36 Plot of Superpixel Size vs. Number pf Labels for different targets 
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Figure 37 Plot of Superpixel Size vs. Time of Analysis for different targets 
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Figure 38 Effect of Superpixel Size to Number of Centroids 

T1: Target Position at time k, T2: Target Position at time k+1 

 

 

Comment:  

It can be seen from Figure 35 that as the superpixel size used for motion 

detection algorithm increases, the centroid error which is defined as difference 

between the label geometric centroid and real target centroid increases. Therefore, 

the probability of missing the target in the next iteration step also increases rapidly. 

However, as it can be seen from Figure 36 and Figure 37 that the increase of 

superpixel size decreases number of candidate labels that the target can move to. 

Furthermore, the time spanned by the algorithm used for motion detection analysis 

also decreases sharply. In Figure 38, the difference matrix caused by LRT detection 

in two successive frames is given for different superpixel size values. According to 

these results, it is clear that the superpixel size has to be optimized with respect to 

the tradeoff between centroid error and number of possible target label candidates. 

Too small superpixel size causes more time consumption while results in more 

accurate centroid estimations. 
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4.3.2 Effect of LRT Change Detection Threshold 
 
 

 
Figure 39 Plot of Estimated Target Path with Motion Model: LCV, Start:[0,0] Finish:[500, 500] 

Change Detection Threshold: 15 and SNR: 1.9 dB 

 
 
 

 
Figure 40 Plot of Estimated Target Path with Motion Model: LCV, Start: [0, 0] Finish: [500, 500] 

Change Detection Threshold: 30 and SNR: 1.9 dB 
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Figure 41 Plot of Estimated Target Path with Target Motion Model: LCV, SP: [0, 0] LP: [500 500] 

Change Detection Threshold: 40 and SNR: 1.9 dB 
 
 
 
 

 
Figure 42 Plot of Estimated Target Path with Target Motion Model: LCV SP: [0, 0] LP: [500 500] 

Change Detection Threshold: 70 and SNR: 1.2 dB 
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Comment:  

It can be observed from Figure 39 - Figure 42 that there exists an inverse 

proportion between SNR and LRT threshold. The false alarms of target centroids 

are decreased considerably by increasing the LRT threshold. However, it is also 

necessary to mention that increasing the threshold above a value which eliminates 

also the target, causes overall miss of the target. Therefore an optimum value for 

the threshold exists. The optimization criterion is between ODSA and detection. As 

the false alarms get effective with decreased threshold for low SNR targets, the 

ODSA can smooth the target path up to a tolerable value. In Figure 42, ODSA can 

not smooth the path since the target path has already been deflected too much from 

the real one. 

 

4.3.3 Effect of Distribution Density Function 
 
 

 
Figure 43 Plot of Estimated Target Path RMS vs. Distribution Density Function Variance 
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Table 5 Different Types of DDF with their Estimated Path RMS Errors 

Distribution Density Function Threshold SNR RMS Error 
    
exp(-x)/(0.2) 10 2.24 1.215 
exp(-x)/(0.1) 10 2.24 0.859 
exp(-x)/(0.02) 10 2.24 0.600 
Max(-10x+50,0) 10 2.24 0.948 
Max(-20x+50,0) 10 2.24 0.698 
Max(-50x+50,0) 10 2.24 0.592 
45(1-Stepfun(x,10)) 10 2.24 1.356 
45(1-Stepfun(x,5)) 10 2.24 1.093 
45(1-Stepfun(x,1)) 10 2.24 0.932 

 
 
 

 

Figure 44 Plot of Different Distribution Density Functions along X axis 
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Figure 45 Plot of scattered mapping centroids in the focus window  

 

 

 

 
Figure 46 Plot of Step DDF outputs for Figure 45 with different bandwidths 
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Figure 47 Plot of Exponential DDF outputs for Figure 45 with different bandwidths 

 

 

 

 
Figure 48 Plot of Exponential DDF outputs for Figure 45 with different bandwidths 

 



 70

Comment:  

In Figure 43, it can be seen that as the energy of distribution function 

spreads around its central point estimated target path RMS error gets larger. Table 

5 also shows that different types of Distribution Density Functions result in 

different performances in the algorithm. Some of the Distribution Density 

Functions used at Table 5 are given in Figure 44. The best performance along these 

three functions is given by the exponential function since the standard deviation of 

the exponential function is the minimum. The worst performance comes from the 

step function. 

The second simulation result is related with Figure 45. When the scattered 

centroids that result from LRT matching of the subgroup elements is filtered with 

different kinds of DDF, the result of the maximization gives the same target 

centroid, which is shown by the black circles. The bandwidth of the DDF is very 

important to prevent false alarms. 

 

4.3.4 Effect of Minimum and Maximum Expected Target Areas 
 
 

 
Figure 49 Plot of Minimum Expected Target Area vs. Probability of Detection  

Target Area: 100 pixel2 
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Minimum Target Area vs Average Number Of Targets
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Figure 50 Plot of Minimum Target Area vs. Average Number of Targets 

 

 

Comment:  

In Figure 49, it can be seen that the probability of detecting the target for a 

fixed target SNR is independent of the minimum expected area up to the real target 

area. However, the number of possible targets decreases as the minimum expected 

target area gets closer to the real target area, which is given in Figure 50. The less 

the target candidates, the better performance for the algorithm is. The algorithm 

eliminates the targets that are smaller than the minimum expected target area. 

Therefore; according to the applications, the minimum expected target area should 

be less than the real target area to be in the safety region. It is also important to 

notice that as the SNR of the target degrades, the probability of detection for a 

fixed minimum expected target area reduces. 
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Figure 51 Plot of Maximum Expected Target Area vs. Number of Target Candidates 

Target 1: Circle, Target 2: Airplane, Target 3: Battle Tank 
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Figure 52 Plot of Maximum Expected Target Size vs. Minimum Identification Distance 
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Comment:  

In Figure 51, it can be seen that the number of target candidates by using 

Maximum Histogram Size Filtering reduces significantly as the maximum expected 

target area decreases since this value is used as the size threshold for filtering in the 

algorithm. To get better performance from the algorithm without missing the target, 

it is necessary to decide an optimum maximum expected target area value. Notice 

that as the shape complexity of the target increases, the number of target candidates 

seen by the algorithm also increases approximately up to the real target size. 

However, from this point on, no matter what the target is, the algorithm can detect 

the target.  

The target identification resolution in a group of targets strongly depends on 

maximum expected target area as it is observed from Figure 52. To get better target 

identification, it is necessary to reduce the maximum expected target area, although 

the time spanned for the analysis gets larger. If size threshold is less than the real 

target size, the target is broken into small sub targets by this filtering. 
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4.4 Effect of ODSA Parameters 

The observation and state transition models used for the simulations are 

given by the equations below: 

 

kkk vxz +=   Lk ,...,2,1=   (4.5) 
 

kkk vxx +=+1   1,...,1,0 −= Lk  (4.6) 

 

where kz  is the observed target centroid, kx  is the real target centroid, kv  

is the observation noise and kw  is the disturbance noise. The initial position 0x  is 

taken as the initial observation. No other affects such as extra input or interference 

are used in the models. 

The parameter used for ODSA performance is the average estimation error 

which is given by the equation below: 

 

L

CC
AEE i

ii

2~
∑ −

=   Li ,...,2,1=  (4.7) 

 

where AEE is the average estimation error, iC  is the real target centroids 

along the path, 
~

i
C is the estimated target centroids and L is the total number of 

frames. 
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4.4.1 Effect of the Gate Size 
 

 

Figure 53 Plot of Frame Number vs. Average Estimation Error for Different Gate Sizes 

 

 

Comment:  

It can be observed from Figure 53 that the gate size is directly proportional 

with the algorithm performance. The target path estimation error reduces as the 

gate size becomes smaller. The gate size defined for image processing is related 

with the pixel size. Therefore, it is clear that as the pixel size of the image sensor 

gets smaller, the average estimation error reduces in the same manner. Gate size 

must be smaller than the superpixel size in order to smooth target centroid variation 

by ODSA. 
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4.4.2 Effect of the Quantization Number of the Initial Target Path Vector 
 

 

Figure 54 Plot of Frame Number vs. Estimation Error with respect to Initial Quantization Number 

 

 

Comment:  

It can be observed from Figure 54 that the number of the quantization levels 

of the initial target path vector slightly affects the performance of the algorithm. 

The mean value of the initial state should be chosen around the initial target 

movement coming from the dynamic vision algorithm which provides the 

observation values for ODSA. 
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4.4.3 Effect of the Quantization Number of the Disturbance Noise 
 

 

Figure 55 Plot of Frame Number vs. Estimation Error with respect to Disturbance Noise 
Quantization Number  

 

 

Comment: 

 It can be observed from Figure 55 that increasing the number of the 

quantization levels of the disturbance noise improves the performance of the 

algorithm significantly. However, time consumption of the algorithm increases in 

the same manner. Therefore, as it is discussed in 4.4.7, limiting the maximum 

number of possible target points is necessary. 
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4.4.4 Effect of the Initial Target Path Vector Variance 
 

 

Figure 56 Plot of Frame Number vs. Estimation Error with respect to Initial Target Path Vector 
Variance 

 

 

Comment: 

It can be observed from Figure 56 that the variance of the initial target path 

vector only affects the initial time. As expected, the initial target path error 

increases with increasing the initial target path vector variance. For higher frame 

numbers, the average estimation error is not affected. 
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4.4.5 Effect of the Disturbance Noise Variance 
 

 

Figure 57 Plot of Frame Number vs. Estimation Error with respect to Disturbance Noise Variance 

 

 

Comment:  

When Figure 57 is analyzed, the effect of increasing the variance of the 

disturbance noise variance increases the average target path estimation error as 

expected. 
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4.4.6 Effect of the Observation Noise Variance 
 

 

Figure 58 Plot of Frame Number vs. Estimation Error with respect to Observation Noise Variance 

 

 

Comment:  

Decreasing the observation noise variance reduces the average target path 

estimation error as expected at Figure 58. It is important to mention that for the dim 

target tracking algorithm, observation and disturbance noise statistics can be same, 

since the noise defined for the overall system only comes from AWGN which 

affects pixel intensity value. The result of pixel intensity change from the real value 

is the centroid variation along the target path. Furthermore, effect of noise variance 

for both types is very close in average estimation error.  
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4.4.7 Effect of Limiting the Maximum Possible Target Points Number 
 
 

 

Figure 59 Plot of Frame Number vs. Estimation Error with respect to Maximum Target Points 
Number 

 

 

Comment:  

It can be observed from Figure 59 that changing the number of states did 

not affect the algorithm performance. The average estimation error does not 

degrade with limiting the possible target points. Since the program computation 

time is directly related with the Maximum Possible Target Points Number, the 

computation time can be reduced significantly by decreasing it. 
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4.5 Comparison of Kalman Filter with ODSA for Different Target 
Dynamics 

4.5.1 Linear Motion 
 

Let the target motion be given by the following state and observations 

equations for a “Linear Constant Velocity” Model: 
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where m and r are the constant angle and distance values of the target in 

two successive frames and can be given by the following equations: 
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(4.10) 
 
 
 
The input is known for this model and given by the equation below: 
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where ns is the number of observation frames. 
 
The process and measurement noise covariance data are given by Equation 4.X.  
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When the state and observation models are applied to ODSA and Kalman 

Filter with same parameters an observation values, the estimated path and the 

estimation error are given in the Figure 60 and Figure 61. 

 
 
 
 
 

 
Figure 60  Estimated Path for Linear Motion using ODSA 

Average Estimation Error: 0.996 
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Figure 61  Estimated Path for Linear Motion using Kalman 

Average Estimation Error: 1.023 
 
 

4.5.1 Nonlinear Motion 

 

For discrete nonlinear target motions, the path can be assumed to be 

piecewise linear between two time intervals.  In this section, coordinates of the 

target is used as the state vector of the system. State and observation equations are 

driven according to piecewise linearity assumption. 

 

1) Suppose that the target traverse a circle of radius r, starting at time 0=t  

on the positive x axis. The direction of the target is counter clockwise and 

the angular velocity per frame, w, is constant. For ns frames, the target path 

can be described parametrically by: 
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[ ]).cos().cos(.1 kwwkwrXX kk −+=−+   snk ,...2,1=   (4.13) 
 

[ ]).sin().sin(.1 kwwkwrYY kk −+=−+   snk ,...2,1=   (4.14) 

 

The state and observation models of the system can be given by the 

following equations: 
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When the state and observation models are applied to ODSA and Kalman 

Filter with same parameters an observation values, the estimated path and the 

estimation error are given in  

Figure 62 and Figure 63. 
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Figure 62  Estimated Path for Circular Motion using ODSA 
Average Estimation Error: 0.644 

 
 
 
 

 
 

Figure 63  Estimated Path for Circular Motion using Kalman 
Average Estimation Error: 3.067 
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Figure 64  Plot of Angular Velocity per frame w (k) with respect to time k 

 

 

 

Figure 65  Estimated Path for Circular Motion with Changing Angular Velocity using ODSA 
Average Estimation Error: 0.601 
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Figure 66  Estimated Path for Circular Motion with Changing Angular Velocity using Kalman 
Average Estimation Error: 1.673 

 

 

2) Suppose that the target traverse a parabolic path with its focus point 

(0, c). The equation of the parabola is given below: 

 

c
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Let the target start to motion from the point: ⎟⎟
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The state and observation equations of the motion are given by the following 

equations: 
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snk ,...2,1=  and ns is the total number of frames. 

 

 

Figure 67  Estimated Path for Parabolic Motion using ODSA 
Average Estimation Error: 0.918 
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Figure 68  Estimated Path for Parabolic Motion using Kalman 
Average Estimation Error: 1.837 

 

 

3) Suppose that the target traverse a half elliptic path with its major and minor 

axis lengths a and b  respectively. The equation of the upper half of the 

ellipse is given below: 
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Let the target start to motion from the point: ( )0,a  
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snk ,...2,1=  and ns is the total number of frames. 

 

 

Figure 69  Estimated Path for Elliptic Motion using ODSA 
Average Estimation Error: 0.591 
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Figure 70  Estimated Path for Elliptic Motion using Kalman 
Average Estimation Error: 1.123 

 

 

4) Suppose that the target traverse a polynomial path with the equation given 

below: 

 

( )( )( ) 23211 ... arxrxrxay +−−−=     (4.26) 

 

 

Let the target start to motion from the point: ( )21 ,ar  
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snk ,...2,1=  and ns is the total number of frames. 

The equation used for the simulation is given below: 

 

( )( )( ) 400450.200.50.10.5 5 +−−−= − xxxy     (4.30) 

 

 

 

Figure 71  Estimated Path for Changing Maneuver Motion using ODSA 

Average Estimation Error: 1.934 
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Figure 72  Estimated Path for Changing Maneuver Motion using Kalman 
Average Estimation Error: 2.865 

 

 

4.5.1 Maximum Tolerable Noise 

 

 

Figure 73  Plot of Minimum Tolerable Difference of Target and Environment Mean Intensity vs.  
Noise Variance for ODSA and Kalman 
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Comment:  

From Figure 60 and Figure 61 , it can be observed that average 

estimation errors for linear motion of the target when ODSA and Kalman Filter 

are used are very close. However, in the circular motion case, and, Kalman 

Filter performance degrades as compared with ODSA from  

Figure 62 and Figure 63. 

If the angular velocity of the circular motion is subject to change in 

Figure 64, the estimated path of the target can be observed from Figure 65 and 

Figure 66. Again performance of ODSA is better when compared to Kalman 

Filter.  

From Figure 67 and Figure 68 is related parabolic motion. Figure 69 

and Figure 70 shows the elliptic path of the target. Polynomial, i.e. changing 

maneuver is implemented in Figure 71 and Figure 72. In all of these different 

motion dynamics, the average estimation error is less for ODSA when 

compared to Kalman Filter. 

 Furthermore, the effect of the noise variance is investigated for both of 

the estimation algorithms. ODSA endures more noise variance for the same 

target and background mean difference when compared to Kalman Filter as 

can be seen from Figure 73. 

Finally, it is important to mention that ODSA gives estimation data 

after more number of observation samples as compared to Kalman. The 

estimation error difference comes from this more computational load. 

Nevertheless, Kalman is more useful for real time applications which require 

fast computation. The prediction concept is not applicable for ODSA also. On 

the other hand, Kalman Filter can be used in the area of next step estimation 

applications.
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CHAPTER 5 
 
 

CONCLUSIONS 

 

 

 

In this study, a visual dim single target tacking algorithm is developed for 

low observable and dense environments with a stationary camera looking at a fixed 

region of interest. Methodologies of the Dynamic Vision and Optimum Decoding 

Based Smoothing Algorithms are explained and some simulations are performed 

displaying the performances of the algorithm. 

Dynamic Vision Algorithm consists of 8 main parts: 

 

1.Change Detection by Likelihood Ratio Testing 

2.Labeling and Destruction of Difference Matrix to Subgroups  

3.Subgroup Centroid Mapping 

4.Maximization of Distribution Density Functions for Centroids 

5.Size Filtering by Maximum Histogram Method 

6.Range and Maneuver Filtering  

7.Target Vector Calibration with respect to the focus window 

8.Consecutive Label Decision  
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Change Detection by Likelihood Ratio Testing is the statistical comparison 

of the two consecutive image frames to detect changing regions. The superpixel, a 

group of pixels which has the sufficient statistics for comparison, is introduced. 

The threshold value used for comparison is adaptive for the elimination of false 

alarms. 

 Labeling and Destruction of Difference Matrix to Subgroups is the 

grouping of changing regions in a 4-connected geometrical manner. The label that 

is to be analyzed is destructed to subgroups for the reduction of effect of noise on 

candidate target movement vectors in the next frame.  

Subgroup Centroid Mapping is the matching of each subgroup superpixel 

element to the candidate centroid points of the labels in the next frame. For 

matching, LRT is used in a reverse manner of change detection.  

Maximization of Distribution Density Functions for Centroids is the 

decision of maximum probable target movement for a subgroup superpixel element 

by using two dimensional image filters. 

Size Filtering by Maximum Histogram Method is the target extraction 

method from a given centroid point distribution which is the output of 

Maximization of Distribution Density Functions for Centroids for all subgroups in 

the analyzed label. 

Range and Maneuver Filtering is the filtering of impossible target 

movements according to the last movement. 

 Target Vector Calibration with respect to the focus window is the mapping 

of decided target vector to the main frame coordinates from the focus window 

coordinates. 

Consecutive Label Decision is the assignment of next iteration label 

according to the last observed target centroid. 
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The output of the Dynamic Vision Algorithm, observation centroids of the 

tracked target, is used as the input for ODSA which is based on Viterbi decoding 

algorithm. By reducing the target motion to a finite state model which uses the 

quantized state vector, a trellis diagram is obtained; and then, the state vector and 

target centroid points are estimated by finding the most probable path in the trellis 

diagram. 

The aim of the simulations is to investigate the effects of the observation, 

target, risk and ODSA parameters. When the simulations performed for the overall 

algorithm are considered, the results can be summarized as below: 

• The algorithm can tolerate target SNR values down to ±0.8 dB and 

target size of 10 pixel2, 

•  The algorithm can track targets which has different types of motion 

characteristics with maximum RMS error of 2.5 pixels 

approximately, 

• Minimum detectable target velocity is around 10 pixels, 

• Maximum tolerable illumination rate is approximately 10 pixel 

intensity, 

• The risk parameters affect the probability of detection. As the risk 

gets higher, the computation time decreases with the tradeoff 

decrease in the probability of detection, 

• Image Size, superpixel size, gate size affects algorithm complexity 

significantly. As the gate size becomes smaller, the estimation 

performance increases, 

• The quantization number of the initial state vector is effective for 

initial times, 

• The quantization number of the disturbance noise vector affects the 

estimation performance significantly,  

• Increasing the disturbance noise variance degrades the performance 

significantly,  



 99

• The initial state variance affects only the performance for small 

frame numbers 

• Increasing the observation noise variance degrades the estimation 

performance,  

• The maximum number of possible target points can be limited 

without degrading the estimation performance. 
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