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ABSTRACT 

EVOLUTIONARY ALGORITHMS IN DESIGN 
 

Çiftçi, Erhan 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Suha Oral 

 

December 2006, 60 pages 

 

Evolutionary Structural Optimization (ESO) is a relatively new design tool used to 

improve and optimise the design of structures. In this method, a few elements of an 

initial design domain of finite elements are iteratively removed. Such a process is 

carried out repeatedly until an optimum design is achieved, or until a desired given 

area or volume is reached. 

 

In structural design, there is the demand for the development of design tools and 

methods that includes optimization. This need is the reason behind the development 

of methods like Evolutionary Structural Optimization (ESO). It is also this demand 

that this thesis seeks to satisfy. This thesis develops and examines the program 

named EVO, with the concept of structural optimization in the ESO process. Taking 

into account the stiffness and stress constraints, EVO allows a realistic and accurate 

approach to optimising a model in any given environment.  

 

Finally, in verifying the ESO algorithm’s and EVO program’s usefulness to the 

practical aspect of design, the work presented herein applies the ESO method to 

case studies. They concern the optimization of 2-D frames, and the optimization of 

3-D spatial frames and beams with the prepared program EVO. Comparisons of 

these optimised models are then made to those that exist in literature. 

Keywords: ESO, evolutionary structural optimization, topology  
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ÖZ 

TASARIMDA EVRİMSEL ALGORİTMALAR 
 
 

 

Çiftçi, Erhan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Suha Oral 

 

Aralık 2006, 60 sayfa 

 

Evrimsel Yapısal Optimizasyon (EYO) yapı tasarımlarını iyileştirmede ve en uygun 

şekle getirmede kullanılan yeni sayılabilecek bir yöntemdir. Bu metodla, her 

tekrarlamada birkaç eleman tasarım evreninden çıkarılır. Bu iterasyonlar, sonunda 

optimum bir tasarım kalana dek ya da önceden belirlenmiş alan veya hacim elde 

edilene dek tekrar edilir. 

Yapısal tasarımda, tasarım iyileştirmesi için kullanılacak metod ve programlara olan 

ihtiyaç, EYO yönteminin doğmasındaki sebeptir. Bu tezde yapılan çalışma da bu 

ihtiyacı karşılayabilme amaçlıdır. Bu çalışma, 3 boyutlu yapıların tasarımında 

evrimsel algoritmalar kullanarak yapısal optimizasyonu gerçekleştirecek EVO 

isimli bir program geliştirilmesini kapsar. EVO, verilen tasarım evreninde, gerilim 

veya rijitlik kısıtlamalarını kullanarak yapıyı gerçekçi ve doğru olarak en uygun 

tasarıma getiren bir yaklaşım sağlar.  

Bu yöntemin ve geliştirilen programın yararlılığını ve pratik hayatta 

kullanılabilirliğini gösterebilmek için örnekler çözülmüştür. 2 boyutlu çerçeve 

optimizasyonları, ve 3 boyutlu çerçeve ve kiriş optimizasyonları çözülen 

örneklerdir. Elde edilen sonuçların diğer yöntemlerle olan karşılaştırmaları da 

literatürde yer alanlarla yapılmıştır.  

Anahtar Kelimeler: Evrimsel yapısal optimizasyon, topoloji 
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CHAPTER 1

 

1. INTRODUCTION 

1.1 Objective 

The objective of this thesis is to use the Evolutionary Structural Optimization 

algorithm for the topology optimization of elastic solid bodies. Topology 

optimization is used to find the optimal mass distribution such that an objective 

takes a minimum or maximum while satisfying constraints for the given predefined 

domain with boundary conditions and load. Evolutionary Structural optimization is 

a relatively new technique used for the topology optimization. In this method the 

body is discretized by finite element modeling. Therefore, in this study two 

important topics in engineering, namely finite element method and evolutionary 

structural optimization have been studied. 

 

Development of computers made it possible for engineers to analyze a structure in 

much more detail. FEM is a method where the structure is analysed by dividing it 

into very small elements and solving the equations of mechanics for each of those 

elements separately. This would be of course impossible to do by hand, so that is 

the reason why this method had to wait to be known until the development of 

computers. FEM is widely used especially in aerospace and automobile industries to 

analyse complex structures.  

 

This thesis develops and examines the program named EVO, with the concept of 

structural optimization in the ESO process. Taking into account the stiffness and 

stress constraints, EVO allows a realistic and accurate approach to optimising a 

model in any given environment. 

 



4 

1.2 Methodology  

The study includes a finite element analysis code and an optimization algorithm 

which is written in Fortran. Fortran is an easy to use robust and reliable 

programming language. The study also includes a preliminary user interface 

prepared in Matlab. The aim is to prepare the data file to be run by Fortran. The 

data file includes the node coordinates and element connectivities. The visualization 

is again done by a preliminary program written in Matlab making use of the 

program’s already defined visualization subroutines. 

 

1.3 Outline 

The finite element formulation of the element used in this study is explained in 

chapter 2. The element stiffness matrix formulation is described in this chapter. 

 

Chapter 3 identifies the evolutionary structural optimization algorithms used in this 

study. The algorithms used in reaching the fully stressed state and the algorithm to 

minimize compliance are given. To generalize the evolutionary optimization, the 

sensitivity based algorithm is also described 

 

Chapter 4 contains various case studies in which the results obtained within this 

study are compared to those in literature. To show the programs efficiency, some 

2D solid, 3D solid and beam examples are solved.  

 

Chapter 5 reviews and concludes the results of the chapters and presents 

recommendations for future work. 

 

In the Appendix , a typical data file, and a typical output file of the program is 

presented. The element stiffness matrix calculated in this study is also given. 
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1.4 Literature Review 

The desire and drive towards the improvement in the performance of any given 

object, set in a structural environment of loads and constraints is known as 

structural optimization. This improvement may be in anything related to the 

structure ranging from the need to reduce the structural weight without 

compromising structural integrity (Schmidt, 1981) to the need to reduce the 

combined manufacturing cost of the structure and its operational cost throughout its 

expected lifetime (Sheu and Prager, 1968). Over the past four centuries, as the areas 

of engineering, mathematics, science and technology have become better 

established, the implementation of structural optimization has become more 

profound. Much of the structural optimization work carried out at the beginning of 

this period largely consisted of trials and unintentional experiments. This included 

the works of Leonardo da Vinci, Galileo and Euler (Wasiutynski and Brandt, 1963). 

At the end of the 19th century and the turn of the 20th century, came the capability of 

engineers to combine optimization principles and analytical prowess. This saw the 

likes of Maxwell’s proved theorems (1872) leading the way for Michell (1904) to 

determine theories about the form of frames of minimum weight, known as Optimal 

Layout Theory. The next sixty years continued to contribute to the ever-growing 

database of structural optimization knowledge – specifically in the area of truss 

structures. It seemed to take on three directions: the minimization of the truss’s 

weight, the minimization of the strain energy design for a given material volume 

and the optimization of statically indeterminate structures of uniform strength. 

Significant contributors to these ideas were: Rabinovich (1933), Wasiutynski (1939) 

and Prager (1956). Many of these techniques were addressed by classical 

optimization i.e. calculus based optimization (Haftka et al., 1985). This work 

mainly concerned simple discrete or continuous structures that were optimized 

using classical techniques of ordinary differential calculus. Such work laid the 

foundation for certifying the validity of other more recent optimization methods. In 

the past fifty years, progress has seen the transition from this initial method to 

include a class of optimization where variables in the optimization equation are of a 

discrete nature. Mathematical programming has played a key role in this as seen by 
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the contribution of methods such as linear and non-linear mathematical 

programming (Haftka et al., 1985). Common to linear programming is the Simplex 

method (Van Der Veen, 1967). Constrained and non-constrained techniques have 

also been utilized in conjunction with mathematical programming. Such techniques 

have been presented in the form of the Lagrange Multiplier method and the Penalty 

Function method (Vanderplaats, 1984; Haftka et al., 1985). Many structural 

optimization methods have emerged in recent decades with the development of 

computer technology. A large proportion of these methods uses discrete finite 

elements. They can be broadly arranged into three main areas of optimization: 

topology optimization, shape optimization and size optimization. A description of 

these areas and a sample of some of the methods that encapsulate these areas are as 

follows.  

 

1.4.1 Topology Optimization 

Topology optimization describes the process that defines the topology relationship 

in a structure. The resulting optimized structure can be vastly different from the 

initial starting design and so is independent of it. The implication of this is that there 

is no restriction on the final form of the structure relative to the initial form. 

 

1.4.1.1 Optimality Criteria 

The Optimality Criteria method is one example implementing topology 

optimization (Prager and Rozvany, 1977; Rozvany et al., 1995). It is an alternative 

method to mathematical programming whereby it attempts to satisfy a set of criteria 

such as a fully stressed design or a set of Kuhn-Tucker conditions. The alteration or 

removal of elements in a finite element mesh achieves this. Such a method is 

capable of treating a large number of design variables with ease, but requires 

significant intuitive input from the user (Rozvany et al., 1995). 

 

1.4.1.2 Homogenisation Method 
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Topology optimization has greatly been impacted by the Homogenisation method 

(Bendsøe, 1995) in the past decade. This method simultaneously envelops the 

optimization of a structure’s topology, shape and size. It does so by assigning finite 

elements (with numerous local variables) to the whole domain of the structure. For 

each element, parameters of size and orientation of internal rectangular holes are 

varied, having the effect of a varying porous material over the whole structure. The 

basis with which this optimal material distribution is found, is by the use of 

mathematical programming techniques with sequential quadratic programming. 

Many publications and contributions have been made to progress this method – see 

Bendsøe and Kikuchi (1988), Allaire and Kohn (1993) and Maute and Ramm 

(1995). 

 

1.4.1.3 Evolutionary Structural Optimization 

The Evolutionary Structural Optimization method (ESO) (Xie and Steven, 1997) is 

also an effective tool that is capable of handling topology optimization. It is a 

heuristic process that uses discrete finite elements as its foundation. It uses the 

Finite Element method as its analysis engine. Its approach to optimising a structure 

is to remove elements iteratively, which has been set up in a particular environment 

of loads and constraints. It is based on the simple concept that by slowly removing 

inefficient material from a structure, the topology of the structure evolves towards 

an optimum. Here “inefficiency” is a very general term, meaning the sensitivity of 

the alteration of an element in a FEA mesh to the optimality criterion. This 

sensitivity can be a composite of several performance measures and the optimality 

criterion can be a composite of several individual physical criteria. Much work has 

been done on ESO where many detailed studies have established systematic rules 

that make the method work for a full range of structural situations (Xie and Steven, 

1997). 

 

1.4.1.4 Genetic Algorithms 

Topology optimization of structures can also be achieved using Genetic Algorithms 

(Goldberg, 1989). This involves the optimization of a population of chromosomes, 
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where each chromosome represents a possible optimal solution. This is done by 

defining each chromosome with a character string of binary digits i.e. 0’s and 1’s. 

An artificial genetransformation mechanism is applied where these chromosomes 

are ranked, with the more favourable ones being selected and reproduced. Some of 

the poorly ranked members are selected and mutated with the more favourable ones. 

This occurs until the GA principle, over its successive generations, produces an 

optimum topology (Woon et al., 2002). 

 

1.4.2 Shape Optimization 

Shape Optimization is a restricted form of topology optimization. It determines the 

optimal boundaries of a structure for the given fixed topology. In this form of 

optimization, the object is to find the best shape that will have the best objective 

outcome as defined by designer. 

 

1.4.2.1 Evolutionary Structural Optimization 

Shape optimization may be added to the ESO algorithm by adding a constraint to 

the method, which allows elements that exist only at the surface to be removed. 

This is known as the Nibbling constraint. In many design assignments, internal 

cavities are not allowed to be created, as only material is allowed to be nibbled 

away from the boundaries. Querin (1997) gives such an example, where shape 

optimization is applied to an object hanging under its own weight. There are also 

several benchmark types and illustrative examples in Xie and Steven (1997). 

 

1.4.2.2 Mathematical Programming Approach 

Mathematical programming is the most typical approach to shape optimization used 

in the 1970s and 1980s. In mathematical programming, the problem is defined 

mathematically by an objective function that is described in terms of a series of 

design variables. Differentials of the objective function are obtained directly or by 

computation with a finite difference form of the differential. Second differentials 

are obtained for the Hessian matrix. The design variables that fit the design criteria 
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are then found using the Conjugate gradient, steepest decent or quadratic 

programming search engines (Kristensen et al., 1976). Several categories of 

mathematical programming exist such as linear and non-linear, integer linear, 

sequential and stochastic programming (Haftka et al., 1985). 

 

1.4.2.3 Computer Aided Optimization 

The Computer Aided Optimization method or alternatively, Simulated Biological 

Growth deals with the optimization of structures specifically in the context of shape 

(Mattheck and Moldenhauer, 1990). It uses a discretised model of finite elements, 

and volumetrically ‘swells’ these structural elements using a swelling operation. 

This is done iteratively by thermally loading the structure proportional to the 

stresses created in the domain by normal loading. In addition to shape optimising a 

structure, it removes notch stresses and promotes a stress-state at the surface of the 

structure. 

 

1.4.3 Size Optimization 

Size optimization defines the approach to change the sizes and dimensions of a 

structure to achieve the optimum design. This is obtained by finding the best 

possible combination of these sizes and dimensions.  

 

As has been briefly reviewed, there are many structural optimization methods 

available. Each has their own advantages and disadvantages, and each is appropriate 

for specific optimization problems. In spite of this extensive array of methods in 

use, the studies conducted in this thesis shall all be based on Evolutionary Structural 

Optimization. This focus does not intend to undermine any of the other methods. 

Rather, it seeks to promote the capability and robustness of ESO amongst these 

other methods. 

 

1.4.4 Evolutionary Structural Optimization 
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Amongst the many structural optimization methods that have been developed, one 

remains continually attractive due to its simplicity and continues to grow in its 

development in recent years. It is the Evolutionary Structural Optimization (ESO) 

method. Since its inception back in 1992 by Xie and Steven (1997), ESO has grown 

to be a robust, yet simple design tool growing in its capabilities to serve the 

designer in a complex range of environments and objectives. In its original form, it 

had as its removal technique a condition to remove elements based on the von 

Mises stress level of each element. A general description of the original stress based 

ESO process is briefly outlined in chapter three. 

 

The optimality criterion used by ESO has included stiffness (Chu et al., 1996), 

stress minimization (Li et al., 1999a), strain (Xie and Steven, 1997), buckling 

(Manickarajah et al., 1998), torsional stiffness (Li et al., 1999b), heat transfer and 

conduction (Li et al., 1997), incompressible fluid flow problems (Li, 2000), 

electrostatic (Li, 2000) and magnetostatic (Li, 2000) problems.  

 
Many other features have been integrated into the ESO process. Multiple load cases 

and multiple support environments were first reported by Xie and Steven (1994) 

and Steven et al. (1995). This allowed for the optimization of structures that were 

subject to different load cases at different times, and structures that were held or 

supported in different ways and at different times.  

 

Similar to shape optimization, another innovation has been ESO Morphing (Querin, 

1997). This is where, rather than completely remove elements as in classical ESO, 

the elements are removed gradually. For the case of beams this graduation could be 

applied to a variation in cross-sectional area: for plates – to a set of varying 

thickness’, modulus of elasticity or density; and for bricks – to a range of modulus 

of elasticity or density.  

 

To overcome any doubts about the question of material being inappropriately 

removed in ESO, a Bi-directional Evolutionary Structural Optimization (BESO) has 

been formulated (Querin, 1997; Young et al., 1999). This method allows the 
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addition of material as well as the removal of material to take place simultaneously. 

Those regions of high stress for example, are attended to by the addition of material 

to those areas in need. Thus the evolutionary process can start from the smallest 

possible structural kernel and grow towards an optimum. Such a final optimum 

design is the same as that obtained by removal evolution.  

 

One of the latest innovations to ESO has been the introduction of Configurational 

Optimization - alternatively known as Group ESO (Lencus et al., 1999a). This is 

where rather than considering each element as a design variable, groups or 

configurations of elements are put under scrutiny for removal, Morphing (Lencus et 

al., 1999b) or Nibbling. This allows for layout optimization and can be used at an 

early stage of the design process where the configuration of the structural entities, 

holes, stiffeners and skin thickness values are not fixed.  

 

Many other optimization characteristics have been created to exist inside the ESO 

regime to extend its capabilities. Some of these are ESO applied to composite 

panels (Falzon et al., 1996), topology optimization with material and geometric 

non-linearities (Querin et al., 1996), Intelligent Cavity Creation (ICC) (Kim et al., 

1998), Post processing of 2-D topologies (Kim et al., 2000) and shape design for 

elastic contact problems (Li et al., 1998a).  The repertoire of ESO has been 

extensive in its practical applications as well. A sample of these applications 

include the optimization of wheels (Guan et al., 1997), spanners (Steven et al., 

1997), bikes (Steven et al., 1997), milk crates (Barton et al., 1998), generic aircraft 

spoilers (Lencus et al, 1999b) and aircraft airframes (Lencus et al., 2000).  

 

As can be seen, ESO has been developed to be used in many different contexts and 

for many purposes. This section has sought to identify some of these developments.  
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CHAPTER 2 

FINITE ELEMENT FORMULATION 
 

Finite Element Analysis is a computer-based numerical technique for calculating 

the strength and behavior of structures. It can be used to calculate deflection, stress, 

vibration, buckling behavior and many other phenomena. Computers are required 

for solving these large numbers of calculations, needed to analyse a large structure. 

The power and low cost of modern computers has made finite element analysis 

available to many disciplines and companies. 

 

In finite element method, a structure is divided into small and simple elements. The 

behavior of each element can be described with a simple set of equations. Just as the 

set of elements would be joined together to build the whole structure, the equations 

describing the behaviors of the individual elements are joined into an extremely 

large set of equations that describe the behavior of the whole structure. The 

computer can solve this large set of simultaneous equations. From the solution, the 

computer extracts the behavior of the individual elements. From this, it can get the 

stress and deflection of all the parts of the structure. The stresses will be compared 

to allowed values of stress for the materials to be used, to see if the structure is 

strong enough. 

 

Finite Element Analysis made it possible to analyze complex structures in a 

computer before actually building the structure. Before the development of this 

method, analyzing the structures needed to be based on hand calculations only. For 

complex structures, the simplifying assumptions were required to make any 

calculation possible and this lead to conservative and heavy designs. Also a lot of 

expensive tests had to be performed.  
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With Finite Element Analysis, more efficient designs are possible with fewer 

experiments.  

 

In FEA, the static behaviour of a structure is represented by the following 

equilibrium equation; 

[ ].{ } { }K u F=  

 

where [ ]K  is the global stiffness matrix, { }u is the nodal displacement vector and 

{ }F  is the nodal load vector.  

 

Once the global stiffness matrix is formed, this equilibrium equation is solved to get 

the displacements. Then the stresses and the strain energy are easily formed. This 

chapter will describe the element stiffness matrix calculation of the hexahedron 

element used in this study and stress and strain energy calculations will be 

explained in the next chapter.  

 

The element used in this study is an eight noded hexahedron element. A three-

dimensional (3D) solid element can be considered to be the most general of all solid 

finite elements because all the field variables are dependent of x, y and z. The force 

vectors can be in any arbitrary direction in space. A 3D solid can also have any 

arbitrary shape, material properties and boundary conditions in space. As such, 

there are altogether six possible stress components, three normal and three shear, 

that need to be taken into consideration. Typically, a 3D solid element can be a 

tetrahedron or hexahedron in shape with either flat or curved surfaces. Each node of 

the element will have three translational degrees of freedom. The element can thus 

deform in all three directions in space. 

 

Since the 3D element is said to be the most general solid element, the truss, beam, 

plate, 2D solid and shell elements can all be considered to be special cases of the 

3D element. Theoretically, the 3D element can actually be used to model all kinds 

of structural components, including trusses, beams, plates, shells and so on. 



 14

However, it is very tedious in geometry creation and meshing. Furthermore, it is 

also most demanding on computer resources. But for the sake of showing the 

programs applicability for solids, the hexahedron element is used in meshing the 

structures. 

 

Consider a 3D domain, which is divided in a proper manner into a number of 

hexahedron elements with eight nodes and six surfaces, as shown in Figure 2.1. 

Each hexahedron element has nodes numbered 1, 2, 3, 4 and 5, 6, 7, 8 in a counter-

clockwise manner, as shown in Figure 2.2. 

 

As there are three DOF’s at one node, there is a total of 24 DOF’s in a hexahedron 

element. It is useful to define a natural coordinate system (ξ, η, ζ) with its origin at 

the centre of the transformed cube, as this makes it easier to construct the shape 

functions and to evaluate the matrix integration.  

 

 

 

Figure 2.1. Solid block divided into eight nodal hexahedron elements 

P1 

P2 
P3 
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Figure 2.2. An eight nodal hexahedron element and its coordinate system 
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where ( , , )i i iξ η ζ denotes the natural coordinates of node i . From Eq. (2.2), it can be 

seen that the shape functions vary linearly in the ξ, η and ζ directions. Therefore, 

these shape functions are sometimes called tri-linear functions. The tri-linear 

elements possess the delta function property. In addition, since all these shape 

functions can be formed using the common set of eight basis functions of  

 

1, , , , , , ,ξ η ζ ξη ξζ ηζ ξηζ      (2.3)  

 

(2.2)
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which contain both constant and linear basis functions. Therefore, these shape 

functions can expect to possess both partitions of the unity property as well as the 

linear reproduction property. 

 

In a hexahedron element, the displacement vector U  is a function of the 

coordinates x, y and z, and as before, it is interpolated using the shape functions  

 eU Nd=  (2.4) 

where the nodal displacement vector, ed  is given by 

 

 

1

2

3

4

5

6

7

8

e

e

e

e

e

e

e

e

e

d

d

d

d
d

d

d

d

d

 
 
 
 
 
 

=  
 
 
 
 
 
 

Displacement components at nodes 1 to 8 (2.5) 

in which  

   

 ( 1, 2,..,8)
i

ei i

i

u

d v i

w

 
 

= = 
 
 

  (2.6) 

is the displacement at node i. The matrix of shape functions is given by 

  

 [ ]1 2 3 4 5 6 7 8iN N N N N N N N N=  (2.7) 

 
in which each sub-matrix, iN , is given as 

 

0 0

0 0 ( 1, 2,...,8)

0 0

i

i i

i

N

N N i

N

 
 

= = 
 
   

(2.8) 
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In this case, the strain matrix can be expressed as  
 

[ ]1 2 3 4 5 6 7 8iB B B B B B B B B=
  

(2.9) 

  

whereby 
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 = =
 
 
 
 
 
 
 
 
    

(2.10) 

 

As the shape functions are defined in terms of the natural coordinates, ξ, η and ζ to 

obtain the derivatives with respect to x, y and z in the strain matrix, the chain rule of 

partial differentiation needs to be used: 

 

 

i i i i

i i i i

i i i i

N N N Nx y z

x y z

N N N Nx y z

x y z

N N N Nx y z

x y z

δ δ δ δδ δ δ
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δ δ δ δδ δ δ

δη δ δη δ δη δ δη

δ δ δ δδ δ δ

δζ δ δζ δ δζ δ δζ

= + +

= + +

= + +

 (2.11) 
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which can be expressed in the matrix form 

 

 

i i

i i

i i

N N

x

N N
J

y

N N

z

δ δ
δξ δ

δ δ

δη δ

δ δ

δζ δ

   
   
   
   

=   
   
   
   

  

 (2.12) 

 
 
where J is the Jacobian matrix defined by 
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=  
 
 
 
 

 (2.13) 

 
 
The coordinates, x, y and z are interpolated by the shape functions from the nodal 

coordinates. Substituting the interpolation of the coordinates, Eq. (2.1), into Eq. 

(2.13), gives  
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(2.14) 

or 
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 (2.15) 

 

 
Equation (2.12) can be re-written as  

 1

ii

i i

ii

NN
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N N
J

y

NN

z

δδ
δξδ

δ δ

δ δη

δδ

δζδ

−

  
  
  
  

=   
   
   
   
   

 (2.16) 

which is then used to compute the strain matrix, B, in Eqs. (2.9) and (2.10), by 

replacing all the derivatives of the shape functions with respect to x, y and z to 

those with respect to ξ, η and ζ. 

 
Once the strain matrix, B, has been computed, the stiffness matrix, ek , for 3D solid 

elements can be obtained by substituting B into Eq. 
e

T

e

V

k B cBdV= ∫  

 

 
1 1 1

1 1 1

det[ ]
e

T T

e

V

k B cBdV B cB J d d dξ η ζ
+ + +

− − −

= =∫ ∫ ∫ ∫  (2.17) 

Where c is the matrix of material constants and normally obtained through 
experiments. For a fully anisotropic material c matrix is given as; 
 

 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

c c c c c c

c c c c c

c c c c
c

c c c

c c

c

 
 
 
 

=  
 
 
 
  

 (2.18) 

sym. 
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Noting that  ij jic c= , there are altogether 21 independent material constants. For an 

isotropic material, c can be reduced to 
 

 

11 12 12

11 12

11

0 0 0

0 0 0

0 0 0

0 0

0

c c c

c c

c
c

l

l

l

 
 
 
 

=  
 
 
 
  

   where 11 12( ) / 2l c c= −  (2.19) 

 
  

11

(1 )

(1 2 )(1 )

E v
c

v v

−
=

− +
;   12 ;

(1 2 )(1 )

Ev
c

v v
=

− +
    11 12

2

c c
G

−
=   (2.20) 

  

There are only two independent constants among these three constants. The 
relationship between them is 
 

 
2(1 )

E
G

v
=

+
 (2.21) 

 
The element stiffness matrix of the 1x1x1 element used in this study is obtained by 

following these steps and given in the appendix. 

sym. 
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CHAPTER 3 

DESIGN OF STRUCTURES WITH ESO 

 

3.1. Overall Stress Constraint 

The stress based version of ESO method uses the von Mises stress to guide 

removal. The aim is not only to remove low stressed material but to reach a fully 

stressed state. 

 

It is interesting to notice that structural components of the skeleton of living beings 

in nature have optimum shapes. These shapes are such that they neither have stress 

concentrations nor weak places. The load is fairly distributed and there is a uniform 

stress distribution under the external loading. The bones of living beings have such 

a shape that the material is broken down in order not to carry excess load around. 

The idea of obtaining a structural form that has a uniform stress distribution is 

simulated into a numerical technique by making use of a finite element method. 

This technique is called evolutionary structural optimization due to that fact that 

optimum form under the external loading gradually evolves and takes its final shape 

during the design cycles. The design domain in this method is first discretized using 

finite element meshes and stresses are computed in each element. Those elements 

with lower stress density are then removed from the domain. The design domain 

with a new shape is once more analyzed and stresses are calculated in the finite 

elements and those elements with lower stresses are also removed from the design 

domain. This process is continued until all the remaining elements in the design 

domain have almost uniform stress distribution. The structural form obtained at this 

stage is accepted as the optimum shape. 

 

This chapter describes the ESO procedures for the simultaneous shape and layout 

optimization of structures with stress constraints. 
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3.1.1. Determination of Elements to be Removed 

The determination of elements to be removed was originally made by comparing 

the von Mises stress of each element vm

eσ  to the maximum von Mises stress that 

exists in the whole structure max
vmσ . At the end of each finite element analysis, all 

the elements that satisfy the following condition were deleted from the model: 

 

 max.vm vm

e RRσ σ<  (3.1) 

 
 

Here, RR  is the current Rejection Ratio. It is used to dampen or delay the element 

removal process and is confined to the condition (0.0 1.0)RR≤ ≤ . The same cycle 

of removing elements using the inequality of Equation (3.1) is repeated until no 

more elements are able to be removed (with the given RR). When this situation 

occurs, a Steady State has been reached. The RR is then updated with a counter 

function using a Steady State (SS) number:  

 

 2
0 1 2 ...RR a a SS a SS= + + +  (3.2) 

 
 

The SS number is an integer counter that varies by increments of one, and is 

confined to the condition (0 )SS≤ < ∞ . The variables a0, a1, a2 etc are coefficients 

that determine the nature of the variation in the RR number. Usually, they are set as 

a0 = a2 = 0.0 and a1 = 0.001. Thus the increase of the RR is linear. Having updated 

the RR number, another comparison is made amongst the elements using Equation 

(3.1) to determine element removal. The RR is increased until elements are 

removed. When elements satisfy this inequality and are removed, another FEA is 

carried out on the now modified structure. This process is repeated until a desired 

volume fraction is obtained – for example, 50 % of the initial design domain. This 

process is illustrated in the flow chart given by Figure 3.1. 
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Figure 3.1. Flow chart depicting the logical steps of the stress based ESO 
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3.2. Overall Stiffness Constraint 

Stiffness is one of the key factors that need to be taken into account in the design of 

structures such as bridges and buildings. It is often required that a structure be stiff 

enough so that the maximum deflection is within the prescribed limit. This chapter 

describes the ESO procedures for the simultaneous shape and layout optimization of 

structures with stiffness constraints. 

 

3.2.2. Determination of Sensitivity Numbers for Element Removal 

In FEA, the static behaviour of a structure is represented by the following 

equilibrium equation; 

[ ].{ } { }K u F=       (3.3) 

 

where [ ]K  is the global stiffness matrix, { }u is the nodal displacement vector and 

{ }F  is the nodal load vector.  

The strain energy  of the structure is defined as; 

 

1
{ } .{ }

2
TC F u=       (3.4) 

 

and is commonly used as the inverse measure of the overall stiffness of the 

structure. C is also known as the compliance. It is obvious that maximizing the 

overall stiffness is the same minimizing the strain energy. 

Consider the removal of the thi  element from a structure comprising n  finite 

elements. The stiffness matrix will change by  

 

*[ ] [ ] [ ] [ ]iK K K K∆ = − = −       (3.5) 
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where *[ ]K  is the stiffness matrix after the removal of the thi  element  and [ ]iK  is 

the stiffness matrix of the thi  element. 

 

It is assumed that the removal of the element has no effect on the load vector. By 

ignoring a higher order term, we obtain the change of the displacement vector from 

equation (3.5) as; 

 

1{ } [ ] .[ ].{ }u K K u−∆ = − ∆      (3.6) 

 

From equations (3.4) and (3.6) we have  

 

11 1 1
[ ] .{ } [ ] .[ ] .[ ].{ } { } .[ ].{ }

2 2 2
T T i T i iC F u F K K u u K u−∆ = ∆ = − ∆ =    (3.7) 

     

The above equality indicates the change in the strain energy as a result of removing 

the thi  element. In fact it is the element strain energy and it can be easily calculated 

at the element level using the element stiffness matrix and the displacement vector 

of the element. 

 

1
{ } .[ ].{ }

2
i T i i

i
SE u K u=      (3.8) 

 

 It is worth pointing out that both C and iSE  always have positive values. 

 

The optimization objective is to find the lightest structure while satisfying the 

stiffness constraints, typically given in the form  

*C C≤       (3.9) 

where *C  is a prescribed limit for C . In general, when an element is removed, the 

overall stiffness of a structure reduces and correspondingly the strain energy C  

increases. To achieve the optimization objective through element removal, it is 
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obviously most effective to remove the element which has the lowest value of iSE  

so that the increase in C  is minimum. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. Flow chart depicting the logical steps of the strain energy based ESO 
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3.3. Overall Sensitivity Constraint 

Today, ESO is still heavily based on the FEA computational engine, the basis with 

which to remove elements for stiffness or stress has progressed from that of the 

objective to examine individual performance characteristics of other engineering 

problems with optimum material distrubution throughout the structure. It now 

includes the option of sensitivity numbers (based on many individual criteria) for 

the element removal process. Some examples of other performance characteritics 

investigated to date are; 

 

• Frequency 

• Buckling 

• Thermal stress 

• Electrostatic 

• Magnetostatic 

• Shape optimization for fluid regions with optimality criterion of minimizing 

pressure drop   for same mass flow rate. 

 
 

Thus, Equation (3.1) has been converted to include the sensitivity numbers of one 

of many different optimality criteria. It may be presented as: 

 

 max
crit crit

e iRRα α<  (3.10) 

 

The term crit

eα  is the sensitivity number of the eth element for the crit criterion in 

question, and the term max
critα is the maximum sensitivity value that exists for that 

criterion. The sensitivity number calculated for each element represents the 

influence of that element on the overall magnitude of the structure’s criterion. 
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Figure 3.3. Flow chart depicting the logical steps of the sensitivity based ESO 
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CHAPTER 4 

1. CASE STUDIES 
 
4.1 Evolutionary Structural Optimization of 2 D Solids  

One area of application where ESO finds play is in the design of bridges and 

buildings. Two different blocks of 2-D solids are optimized. In the first example, 

both of the stress based and strain energy based rejection criterion are applied to see 

their effects. The design domain is simply supported at the corner nodes of the 

bottom face and a load to the middle of the top face is applied. The topology for 

both rejection criterion evolved to the same 2-D frame.  

 

In the second example, a larger block is loaded again at the middle of the top face. 

This time all the bottom face nodes are simply supported. Two cases are solved as 

follows. In the first case the boundary condition applied elements are not allowed to 

be removed. In the second case the boundary condition applied elements are 

allowed to be removed. These two cases are solved to see the effect of the design 

domain magnitude, on the final topology. 

 

Finally the results are compared to those in literature. 

 

4.1.1. Modelling Procedure 

In the first example, the designable domain was discretized with 200 brick 

elements. Each element is of dimensions 1x1x1 while the material properties are 

given as E=200000 Mpa and v=0,3. The solid is a block of dimensions 20x10x1 in 

x, y and z axes respectively. The nodes on the four bottom corners are not allowed 

to move in any direction while the force is applied to the middle of the top face. The 

figure 4.1 displays the design domain. (1,2,3 meaning x,y,z displacements are zero) 
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In the second example, the designable domain was discretized with 300 brick 

elements. Each element is of dimensions 1x1x1 while the material properties are 

given as E=200000 Mpa and v=0,3. The solid is a block of dimensions 30x10x1 in 

x, y and z axes resectively. The figure 4.5 displays the design domain. 

 

 

 

 

Figure 4.1. Design Domain of the 2-D Solid 

 

4.1.2 Results 

In both cases, although the mesh is very course , the results obtained are 

interpretable.  

1,2,3 1,2,3 
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For the first example solved, the final topologies are displayed in the following 

figures. M is the Mass of the ersulting topology and M0 as the initial Mass of the 

design domain.  

 

Figure 4.2 shows the optimization results after 23 iterations when the M/M0 value is 

equal to 0.25. ,the optimization result after 39 iterations when the M/M0 value is 

equal to 0,50. and the optimization result after 78 iterations when the M/M0 value is 

equal to 0,75.  

 

Figure 4.3 shows the optimization results after 16 iterations when the M/M0 value is 

equal to 0.25. ,the optimization result after 29 iterations when the M/M0 value is 

equal to 0,50. and the optimization result after 131 iterations when the M/M0 value 

is equal to 0,75. 

 

As can be seen from the figures, the both criterion gave the same final topology 

however there are small differences in the evolution progresses. Evolutions of stress 

and strain energy based optimizations are given in figure 4.4. 

 

One important point to note is that the final topology is strongly affected by the 

boundary conditions. The frame elements end on the bottom face are where the 

boundary conditons are applied. This is not the only possible method to define the 

boundary conditions in EVO. In EVO the optimum material distribution is done 

regarding the choice of the boundaries from a possible set of boundaries. The 

following example is given to illustrate this topic. 
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Figure 4.2. Obtained stress based topologies for 0.25, 0.50 and 0.80 M/M0 values 

respectively 
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Figure 4.3 Obtained strain energy based topologies for 0.25, 0.50 and 0.80 M/M0 

values 
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Figure 4.4. Evolutions of stress and strain energy based optimizations. 
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The second example design domain, the boundary conditions and forces are given 

in figure 4.5. The following figure 4.6 displays the topologies for 0.25, 0.50 and 

0.75 M/M0 values. As can easily be recognized, however the bottom face members 

still exist in the final design, they do not contribute to the overall stiffness. 

 

In the second case, the boundary condition applied elements are allowed to be 

removed and the final topology is different than the one obtained before. The width 

of the design reduced to 20 and the elements not contributing to overall stiffness are 

removed. This example shows that, by using ESO, starting with an unnecessarily 

big design domain will not cause any problem for the final topology if the boundary 

conditions and forces are defined properly. However, creating such a big design 

domain will increase the solution time. With EVO, the best placement of boundary 

conditions is selected from the set of possible places defined by the user. 

 

 

 

Figure 4.5 Design domain of the second example 

 

1,2,3 1,2,3 
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Figure 4.6 Obtained stress based topologies for 0.25, 0.50 and 0.80 M/M0 values 

respectively 
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Figure 4.7 Obtained stress based topologies for 0.25, 0.50 and 0.80 M/M0 values 

respectively 
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Figure 4.8. The stress and strain energy based optimizations taken from [ref 8].  

 

 

The results may well be compared to those obtained from the literature. In the 

example from the literature given above, the initial design domain consists of 25x60 
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quadrilateral plane stress elements. There is a force at the middle of the top face 

which is directed downwards.  

 

The optimization convergences, taking into account the stress based evolution and 

stiffness based evolution are compared on this figure. On the left side column, the 

ratios of volumes after iterations, to the initial volume of the design domain are 

given. There is a noticeable difference at the resulting topologies of 50% ratio of 

resulting topology volume over initial volume. This is an indicator that, not all the 

time should the stress based and stiffness based optimizations converge to the same 

topologies. The idea in using these two algorithms is not always to arrive at the 

same final topology but to find the optimum topologies depending on the main 

criterion taken into account which can be stress or displacement. Namely, when the 

search is for small deflections, the criteria should be stiffness and when the critical 

parameter is stress, should the stress based algorithm be employed. 

 

Although the dimensions of the design domains in the examples solved in this study 

and of the example found from the literature are different, the solutions obtained are 

similar.  

 

One other important point to note is that the elements used for this problem are 

quadrilateral plane stress elements. The elements used in this thesis are 3 

dimensional 8 nodal brick elements. As mentioned before, these elements may be 

used to model plates, beams, bars and so on, but the disadvantage of using 3D 

meshes is that the solution time and the number of equations to be solved increase 

greatly compared to those simplification assumptions.  

 

To show the versatility of these elements, some 3D solids are examined and 

optimized in the following examples. The comparisons of the solutions obtained to 

the ones in literature are given.  
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4.2 Evolutionary Structural Optimization of 3 D Continuum Solids 

In this chapter the design of a 3-D space frame structure is accomplished from 

evolving from a block of 3-D solid elements.  The results are obtained using the 

basic ESO method with stress and stiffness constraint. 

 

4.2.1 Modelling Procedure 

In this study, the designable domain was discretized with 4000 brick elements. Each 

element is of dimensions 1x1x1 while the material properties are given as 

E=200000 Mpa and v=0,3. The solid is a block of dimensions 20x20x10. The four 

bottom corners are fixed while the force is applied to the middle of the top floor.  

The figure 4.1 displays the design domain. 

 

 

Figure 4.9. Design Domain of the 3-D Spatial Frame 
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4.2.2 Results 

Although the mesh is course , the result obtained is interpretable. The solution is 

displayed in the following figures. 

 

 

 

Figure 4.10. 3_D Display of Topology after 211 iterations 
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Figure 4.11. Side views of the topology after 211 iterations 
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Following examples are about the design of 3D Beams. The first example is solved 

to make it possible to compare the results with that found in literature. The example 

found in literature is taken from a product development conference and the design is 

accomplished by using MSC Nastran. The optimization is accomplished in the 

paper with the algorithm of compliance minimization. The study of this thesis 

solved the example with using both of the convergence criterions. 

 

The second and third examples are other beam examples.  

 

The design domain in the first example is a solid of dimensions 10x10x20 in x, y 

and z dimensions respectively. The example in literature uses a solid of dimensions 

17x17x33.  

 

Although the dimensions are not the same, the results obtained seem to be in well 

agreement. The aim in all cases is to minimize compliance until the mass is reduced 

to 20% of the initial mass. 

 

 
 

Figure 4.12. Design domain of a 3D beam taken from [ref 35] 
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Figure 4.13. Stress based and Strain energy based convergences of the beam 
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Figure 4.14. Side views of stress based and strain energy based convergences of the 

beam 
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There is an unneglicable difference between the stress based and strain energy 

based convergences. This difference may result from the evolution rates employed. 

The ratio of the maximum stress to the minimum stress is not equal to the ratio of 

the maximum strain energy to the minumum strain energy ratio in all iterations and 

when different number of elements are removed from the structure at each iteration, 

the convergences differ. As presented earlier in the 2D solid examples there were 

quiet differences in the removed elements at the given iterations. However because 

of the reason that there were a small amount of members, the optimum topologies 

were the same. In this example the total number of elements are 2000 therefore it is 

not a surprise to see a difference in the convergences.  

 

 
Figure 4.15. Topology optimization of a 3D beam taken from [ref 28] 

 

The difference between the convergences of this study and the one from the 

literature is because of the number of elements used and the removal rate 

differences. The one in literature uses a finer mesh with 9537 elements and the 

removal criterion is not given. However the solution of this study still seems to be 

in agreement with the one from the literature. 
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In these two examples a beam of dimensions 6x12x48 is investigated. The nodes on 

the small faces of the beam in the first example are not allowed to move in any 

direction and the force is applied to the center of gravity of the beam. The following 

figures show the topology after 80% of the initial design domain is removed. 

 

 

 
 

Figure 4.16. Topology optimization of a 3D beam  
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In the second example, the nodes on one of the small faces of the beam are not 

allowed to move in any direction as a boundary condition and the force is applied to 

the center of the other small face. The following figures show the topology after 

80% of the initial design domain is removed. 

 

 

 

 
 

Figure 4.17. Topology optimization of another 3D beam  
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CHAPTER 5 

 
7. SUMMARY AND CONCLUSION 

 

In this chapter, the work done in the thesis study is summarized focusing on the 

algorithm developed. The major achievements of the study are concluded and some 

recommendations for the future work are given. 

 

5.1. Summary 

The aim of this study is to apply evolutionary structural optimization algorithm for 

the topology optimization of 3-D solids. To develop the program that evolves a 

solid to optimum topology, two main programs are written. The first one is a FEA 

code that solves the matrix equations to give displacements and stresses on the 

elements. The other main program is the optimization program that rejects the 

elements that are of very small contribution to the overall structural stiffness or that 

are subjected to relatively low von Mises stress.  

 

The design domain to be evaluated in the code is prepared by another code that is 

written in MATLAB. This code generates the number of nodes, number of 

elements, element connectivities and node positions that are needed by the Fortran 

code.   

 

In order to visualize the results, another MATLAB code is written that displayed the 

topology of the structure after each iteration. The results are displayed in figure 

windows which can be zoomed in and out and rotated to grasp the layout of the 

final structure.  

 

5.2. Conclusions 
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The prepared program EVO lets the designer to define the design domain with the 

loads and possible boundary conditions. Once the program is run, the optimization 

iterations continue until the objective function is satisfied. The program may also 

terminate the iterations before the objective is reached if there is no more removable 

element. That is to say, when the rejection criteria is increased so much that the 

structure breaks, the program stops saying that there is a problem in one of the 

equations to be solved but still outputs the last possible optimization.. 

 

The case studies in this study are selected such that the comparison of the resulting 

topologies could be compared to those that exist in literature. There is enough 

number of examples in literature for plane stress problems. In this study some 2d 

plane stress problems are formulated with the 3D elements and the solutions 

obtained are compared to those with the original formulations topologies. The 

resulting topologies are the same. This shows that the formulation of finite element 

code and the optimization algorithm is well working for 3D elastic solid bodies. 

One example for a 3D design domain had been found in literature and the finalizing 

topology was similar. More 3D examples that are interpretable are also solved. 

 

5.3. Recommendations for Future Work  

It is possible to list some recommendations for the improvement of the models and 

software developed: 

• An optimization algorithm that not only removes elements but also adds 

elements may be added to the program. 

• Multicriteria optimization may be investigated with adding some 

subroutines to the program  

• The display of the results is done by MATLAB program. The results may be 

formatted in such a way that a model builder builds the results for better and 

faster display. 
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APPENDIX 

TYPICAL PROGRAM INPUT AND OUTPUT FILES 

 

Iteration No  
Number of 

Elements Removed 
at the Iteration 

 
Total Number of 

Elements 
Removed 

 
Rejection 
Ratio RR 

1  0  0  0.05 

2  56  56  0.05 

3  8  64  0.05 

4  4  68  0.05 

5  0  68  0.06 

6  48  116  0.06 

7  16  132  0.06 

8  8  140  0.06 

9  0  140  0.07 

10  52  192  0.07 

11  8  200  0.07 

12  0  200  0.08 

13  48  248  0.08 

14  16  264  0.08 

15  0  264  0.09 

16  72  336  0.09 

17  52  388  0.09 

18  0  388  0.1 

19  40  428  0.1 

20  28  456  0.1 

21  16  472  0.1 

22  0  472  0.11 

23  52  524  0.11 

24  8  532  0.11 

25  0  532  0.12 

26  96  628  0.12 

27  88  716  0.12 

28  40  756  0.12 

29  32  788  0.12 

30  16  804  0.12 

31  16  820  0.12 

32  8  828  0.12 

33  8  836  0.12 

 

Table A.1. Element removal after each iteration 
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Node- 6 U= 0 V= 0 W= 0 

Node- 7 U= 0 V= 0 W= 0 

Node- 7 U= 0 V= 0 W= 0 

Node- 8 U= 0 V= 0 W= 0 

Node- 8 U= 0 V= 0 W= 0 

Node- 9 U= 0 V= 0 W= 0 

Node- 23 U= 0 V= 0 W= 0 

Node- 24 U= 0 V= 0 W= 0 

Node- 24 U= 0 V= 0 W= 0 

Node- 25 U= 0 V= 0 W= 0 

Node- 25 U= 0 V= 0 W= 0 

Node- 26 U= 0 V= 0 W= 0 

Node- 37 U= -0.00005 V= -0.000016 W= -0.00001 

Node- 38 U= -0.000072 V= -0.000025 W= -0.00001 

Node- 38 U= -0.000072 V= -0.000025 W= -0.00001 

Node- 38 U= -0.000072 V= -0.000025 W= -0.00001 

Node- 39 U= -0.000091 V= -0.000031 W= -0.000012 

Node- 39 U= -0.000091 V= -0.000031 W= -0.000012 

Node- 39 U= -0.000091 V= -0.000031 W= -0.000012 

Node- 39 U= -0.000091 V= -0.000031 W= -0.000012 

Node- 40 U= -0.000114 V= -0.000046 W= -0.000016 

        

Element-     6   Svm=       4.819   

Element-     7   Svm=       6.189   

Element-     8   Svm=       8.144   

Element-    23   Svm=       8.144   

Element-    24   Svm=       6.189   

Element-    25   Svm=       4.819   

Element-    37   Svm=       5.923   

Element-    38   Svm=       6.916   

Element-    39   Svm=       7.688   

Element-    52   Svm=       7.688   

Element-    53   Svm=       6.916   

Element-    54   Svm=       5.923   

Element-    68   Svm=       6.724   

Element-    69   Svm=       7.291   

Element-    70   Svm=       6.217   

 

Table A.2. A typical output data of the program EVO 
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8 27 . 1 1 1 0    

0.01 0.005         

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 

3 0 0 0 2 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 

5 0 0 0 1 1 0 0 0 0 

6 0 0 0 2 1 0 0 0 0 

7 0 0 0 0 2 0 0 0 0 

8 0 0 0 1 2 0 0 0 0 

9 0 0 0 2 2 0 0 0 0 

10 0 0 0 0 0 1 0 0 0 

11 0 0 0 1 0 1 0 0 0 

12 0 0 0 2 0 1 0 0 0 

13 0 0 0 0 1 1 0 0 0 

14 0 0 0 1 1 1 0 0 0 

15 0 0 0 2 1 1 0 0 0 

16 0 0 0 0 2 1 0 0 0 

17 0 0 0 1 2 1 0 0 0 

18 0 0 0 2 2 1 0 0 0 

19 0 0 0 0 0 2 0 0 0 

20 0 0 0 1 0 2 0 0 0 

21 0 0 0 2 0 2 0 0 0 

22 0 0 0 0 1 2 0 0 0 

23 0 0 0 1 1 2 0 0 0 

24 0 0 0 2 1 2 0 0 0 

25 0 0 0 0 2 2 0 0 0 

26 0 0 0 1 2 2 0 0 0 

27 0 0 0 2 2 2 0 0 0 

1 1 2 5 4 10 11 14 13 1 

2 2 3 6 5 11 12 15 14 1 

3 4 5 8 7 13 14 17 16 1 

4 5 6 9 8 14 15 18 17 1 

5 10 11 14 13 19 20 23 22 1 

6 11 12 15 14 20 21 24 23 1 

7 13 14 17 16 22 23 26 25 1 

8 14 15 18 17 23 24 27 26 1 

 

Table A.3. A typical input data for the program EVO 
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4.70E+04 1.60E+04 1.60E+04 -2.14E+04 3.21E+03 3.21E+03 -1.71E+04 -1.60E+04 1.60E+03 1.07E+04 -3.21E+03 8.01E+03 

1.60E+04 4.70E+04 1.60E+04 -3.21E+03 1.07E+04 8.01E+03 -1.60E+04 -1.71E+04 1.60E+03 3.21E+03 -2.14E+04 3.21E+03 

1.60E+04 1.60E+04 4.70E+04 -3.21E+03 8.01E+03 1.07E+04 -1.60E+03 -1.60E+03 -1.07E+03 8.01E+03 -3.21E+03 1.07E+04 

-2.14E+04 -3.21E+03 -3.21E+03 4.70E+04 -1.60E+04 -1.60E+04 1.07E+04 3.21E+03 -8.01E+03 -1.71E+04 1.60E+04 -1.60E+03 

3.21E+03 1.07E+04 8.01E+03 -1.60E+04 4.70E+04 1.60E+04 -3.21E+03 -2.14E+04 3.21E+03 1.60E+04 -1.71E+04 1.60E+03 

3.21E+03 8.01E+03 1.07E+04 -1.60E+04 1.60E+04 4.70E+04 -8.01E+03 -3.21E+03 1.07E+04 1.60E+03 -1.60E+03 -1.07E+03 

-1.71E+04 -1.60E+04 -1.60E+03 1.07E+04 -3.21E+03 -8.01E+03 4.70E+04 1.60E+04 -1.60E+04 -2.14E+04 3.21E+03 -3.21E+03 

-1.60E+04 -1.71E+04 -1.60E+03 3.21E+03 -2.14E+04 -3.21E+03 1.60E+04 4.70E+04 -1.60E+04 -3.21E+03 1.07E+04 -8.01E+03 

1.60E+03 1.60E+03 -1.07E+03 -8.01E+03 3.21E+03 1.07E+04 -1.60E+04 -1.60E+04 4.70E+04 3.21E+03 -8.01E+03 1.07E+04 

1.07E+04 3.21E+03 8.01E+03 -1.71E+04 1.60E+04 1.60E+03 -2.14E+04 -3.21E+03 3.21E+03 4.70E+04 -1.60E+04 1.60E+04 

-3.21E+03 -2.14E+04 -3.21E+03 1.60E+04 -1.71E+04 -1.60E+03 3.21E+03 1.07E+04 -8.01E+03 -1.60E+04 4.70E+04 -1.60E+04 

8.01E+03 3.21E+03 1.07E+04 -1.60E+03 1.60E+03 -1.07E+03 -3.21E+03 -8.01E+03 1.07E+04 1.60E+04 -1.60E+04 4.70E+04 

1.07E+04 8.01E+03 3.21E+03 -1.71E+04 1.60E+03 1.60E+04 -1.18E+04 -8.01E+03 8.01E+03 -1.07E+03 -1.60E+03 1.60E+03 

8.01E+03 1.07E+04 3.21E+03 -1.60E+03 -1.07E+03 1.60E+03 -8.01E+03 -1.18E+04 8.01E+03 1.60E+03 -1.71E+04 1.60E+04 

-3.21E+03 -3.21E+03 -2.14E+04 1.60E+04 -1.60E+03 -1.71E+04 8.01E+03 8.01E+03 -1.18E+04 -1.60E+03 1.60E+04 -1.71E+04 

-1.71E+04 -1.60E+03 -1.60E+04 1.07E+04 -8.01E+03 -3.21E+03 -1.07E+03 1.60E+03 -1.60E+03 -1.18E+04 8.01E+03 -8.01E+03 

1.60E+03 -1.07E+03 1.60E+03 -8.01E+03 1.07E+04 3.21E+03 -1.60E+03 -1.71E+04 1.60E+04 8.01E+03 -1.18E+04 8.01E+03 

-1.60E+04 -1.60E+03 -1.71E+04 3.21E+03 -3.21E+03 -2.14E+04 1.60E+03 1.60E+04 -1.71E+04 -8.01E+03 8.01E+03 -1.18E+04 

-1.07E+03 1.60E+03 1.60E+03 -1.18E+04 8.01E+03 8.01E+03 -1.71E+04 -1.60E+03 1.60E+04 1.07E+04 -8.01E+03 3.21E+03 

-1.60E+03 -1.71E+04 -1.60E+04 8.01E+03 -1.18E+04 -8.01E+03 1.60E+03 -1.07E+03 -1.60E+03 -8.01E+03 1.07E+04 -3.21E+03 

-1.60E+03 -1.60E+04 -1.71E+04 8.01E+03 -8.01E+03 -1.18E+04 1.60E+04 1.60E+03 -1.71E+04 -3.21E+03 3.21E+03 -2.14E+04 

-1.18E+04 -8.01E+03 -8.01E+03 -1.07E+03 -1.60E+03 -1.60E+03 1.07E+04 8.01E+03 -3.21E+03 -1.71E+04 1.60E+03 -1.60E+04 

-8.01E+03 -1.18E+04 -8.01E+03 1.60E+03 -1.71E+04 -1.60E+04 8.01E+03 1.07E+04 -3.21E+03 -1.60E+03 -1.07E+03 -1.60E+03 

-8.01E+03 -8.01E+03 -1.18E+04 1.60E+03 -1.60E+04 -1.71E+04 3.21E+03 3.21E+03 -2.14E+04 -1.60E+04 1.60E+03 -1.71E+04 

 

Table A.4. Columns 1 to 12 of the Element Stiffness matrix of the hexahedron 

element used in this study 

 

1.07E+04 8.01E+03 -3.21E+03 -1.71E+04 1.60E+03 -1.60E+04 -1.07E+03 -1.60E+03 -1.60E+03 -1.18E+04 -8.01E+03 -8.01E+03 

8.01E+03 1.07E+04 -3.21E+03 -1.60E+03 -1.07E+03 -1.60E+03 1.60E+03 -1.71E+04 -1.60E+04 -8.01E+03 -1.18E+04 -8.01E+03 

3.21E+03 3.21E+03 -2.14E+04 -1.60E+04 1.60E+03 -1.71E+04 1.60E+03 -1.60E+04 -1.71E+04 -8.01E+03 -8.01E+03 -1.18E+04 

-1.71E+04 -1.60E+03 1.60E+04 1.07E+04 -8.01E+03 3.21E+03 -1.18E+04 8.01E+03 8.01E+03 -1.07E+03 1.60E+03 1.60E+03 

1.60E+03 -1.07E+03 -1.60E+03 -8.01E+03 1.07E+04 -3.21E+03 8.01E+03 -1.18E+04 -8.01E+03 -1.60E+03 -1.71E+04 -1.60E+04 

1.60E+04 1.60E+03 -1.71E+04 -3.21E+03 3.21E+03 -2.14E+04 8.01E+03 -8.01E+03 -1.18E+04 -1.60E+03 -1.60E+04 -1.71E+04 

-1.18E+04 -8.01E+03 8.01E+03 -1.07E+03 -1.60E+03 1.60E+03 -1.71E+04 1.60E+03 1.60E+04 1.07E+04 8.01E+03 3.21E+03 

-8.01E+03 -1.18E+04 8.01E+03 1.60E+03 -1.71E+04 1.60E+04 -1.60E+03 -1.07E+03 1.60E+03 8.01E+03 1.07E+04 3.21E+03 

8.01E+03 8.01E+03 -1.18E+04 -1.60E+03 1.60E+04 -1.71E+04 1.60E+04 -1.60E+03 -1.71E+04 -3.21E+03 -3.21E+03 -2.14E+04 

-1.07E+03 1.60E+03 -1.60E+03 -1.18E+04 8.01E+03 -8.01E+03 1.07E+04 -8.01E+03 -3.21E+03 -1.71E+04 -1.60E+03 -1.60E+04 

-1.60E+03 -1.71E+04 1.60E+04 8.01E+03 -1.18E+04 8.01E+03 -8.01E+03 1.07E+04 3.21E+03 1.60E+03 -1.07E+03 1.60E+03 

1.60E+03 1.60E+04 -1.71E+04 -8.01E+03 8.01E+03 -1.18E+04 3.21E+03 -3.21E+03 -2.14E+04 -1.60E+04 -1.60E+03 -1.71E+04 

4.70E+04 1.60E+04 -1.60E+04 -2.14E+04 3.21E+03 -3.21E+03 1.07E+04 -3.21E+03 -8.01E+03 -1.71E+04 -1.60E+04 -1.60E+03 

1.60E+04 4.70E+04 -1.60E+04 -3.21E+03 1.07E+04 -8.01E+03 3.21E+03 -2.14E+04 -3.21E+03 -1.60E+04 -1.71E+04 -1.60E+03 

-1.60E+04 -1.60E+04 4.70E+04 3.21E+03 -8.01E+03 1.07E+04 -8.01E+03 3.21E+03 1.07E+04 1.60E+03 1.60E+03 -1.07E+03 

-2.14E+04 -3.21E+03 3.21E+03 4.70E+04 -1.60E+04 1.60E+04 -1.71E+04 1.60E+04 1.60E+03 1.07E+04 3.21E+03 8.01E+03 

3.21E+03 1.07E+04 -8.01E+03 -1.60E+04 4.70E+04 -1.60E+04 1.60E+04 -1.71E+04 -1.60E+03 -3.21E+03 -2.14E+04 -3.21E+03 

-3.21E+03 -8.01E+03 1.07E+04 1.60E+04 -1.60E+04 4.70E+04 -1.60E+03 1.60E+03 -1.07E+03 8.01E+03 3.21E+03 1.07E+04 

1.07E+04 3.21E+03 -8.01E+03 -1.71E+04 1.60E+04 -1.60E+03 4.70E+04 -1.60E+04 -1.60E+04 -2.14E+04 -3.21E+03 -3.21E+03 
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-3.21E+03 -2.14E+04 3.21E+03 1.60E+04 -1.71E+04 1.60E+03 -1.60E+04 4.70E+04 1.60E+04 3.21E+03 1.07E+04 8.01E+03 

-8.01E+03 -3.21E+03 1.07E+04 1.60E+03 -1.60E+03 -1.07E+03 -1.60E+04 1.60E+04 4.70E+04 3.21E+03 8.01E+03 1.07E+04 

-1.71E+04 -1.60E+04 1.60E+03 1.07E+04 -3.21E+03 8.01E+03 -2.14E+04 3.21E+03 3.21E+03 4.70E+04 1.60E+04 1.60E+04 

-1.60E+04 -1.71E+04 1.60E+03 3.21E+03 -2.14E+04 3.21E+03 -3.21E+03 1.07E+04 8.01E+03 1.60E+04 4.70E+04 1.60E+04 

-1.60E+03 -1.60E+03 -1.07E+03 8.01E+03 -3.21E+03 1.07E+04 -3.21E+03 8.01E+03 1.07E+04 1.60E+04 1.60E+04 4.70E+04 

 

Table A.5. Columns 13 to 24 of the Element Stiffness matrix of the hexahedron 

element used in this study 


