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ABSTRACT

ACOUSTICAL ANALYSIS AND DESIGN OF HORN TYPE LOUDSPEAKERS

Unal, Ayhun
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. Mehmet CALISKAN
December 2006, 142 pages

Computer aided auto-construction of various types of folded horns and acoustic
analysis of coupled horn and driver systems are presented in this thesis. A new
procedure is developed for auto construction of folded horn shapes. Linear graph
modeling technique is employed for specification of horn driver output in terms of
diaphragm velocity or throat pressure. In the final phase of the design procedure,
acoustic analysis of folded horns is carried by means of finite element analysis. A
commercial software package MSC.ACTRAN is used to calculate directivity

patterns and resulting acoustic pressure in the free field.

Horn geometry consisting of linear, exponential, hyperbolic and tractrix shapes is
automatically constructed by parallel working of Delphi and finite element analysis
program. The enclosure bordering the horn contours are considered rigid in the
analyses. Maximum number of folding is limited to two. This study is made possible
to evaluate the performance of these four types of horn contours for a specified range

of frequencies.

Keywords: Horn Loudspeakers, Linear Graphs, Electro-Mechano-Acoustical

Circuits, Acoustic Finite Element Analysis.

v



(0Y/
BOYNUZ TiPI HOPARLORLERIN AKUSTIK ANALIZI VE TASARIMI

Unal, Ayhun
Yiiksek Lisans Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Mehmet CALISKAN
Aralik 2006, 142 sayfa

Bu ¢alismada, cesitli boynuz tipi hoparlorlerin bilgisayar destekli tasarimi ve siiriicii
ve hoparlorlerin bir biitiin olarak akustik analizi sunulmaktadir. Katlamali boynuz
tipi hoparlorlerin geometrilerinin otomatik olarak olusturulmasi icin yeni bir yontem
gelistirilmistir. Hoparlorler siiriiciisiiniin ¢iktisinin diyafram hizi veya giris basinct
olarak belirlenmesi icin ¢izge kurami uygulanmistir. Tasarim prosediiriiniin son
asamasinda, katlamali boynuz tipi hoparlorlerin akustik analizi i¢in sonlu eleman
analiz yontemi kullanilmistir. Yonelme bigimleri ve serbest alandaki akustik
basin¢clart  hesaplamak icin ticari bir yazilim paketi olan MSC.ACTRAN

kullanilmustir.

Konik, iistel, hiperbolik ve traktriks sekilli, boynuz tipi hoparlorler geometrisi Delphi
ve sonlu elemanlar analiz programlarinin birlikte calismasi ile otomatik olarak
tiretilmektedir. Boynuz hoparlorleri sinirlayan kenarlar analiz sirasinda kati olarak
farz edilmektedir. Azami katlama sayisi ikiyle simirlidir. Bu caligmayla dort tip
hoparlérlerin belirlenen calisma frekanslart i¢in performanslarimi degerlendirmek

miimkiindiir.

Anahtar Kelimeler: Boynuz Tipi Hoparlor, Cizge Kurami, Elektro-Mekano-Akustik

Devreler, Akustik Sonlu Eleman Analizi.
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CHAPTER 1

INTRODUCTION

Horns are considered as acoustic transformers matching the impedance of air to that
of the driver piston. Horns are used for increasing the radiation and control the
direction of the radiation from a sound source such as loudspeaker. Driver assembly,
front and back cavity and horn are the major parts of horn-loudspeakers (Fig. 1.1).
Driver assembly consists of diaphragm (cone) and suspension system. The horn

contour is the expansion (flare) rate of a horn.

. Axial Length R
) (Lt) g
Throat Mouth
Area (Sp) Area (Sy)
Driver
Front Cavity Horn Flare

Back Cavity (Vg) (Vp)

Fig. 1.1 Schematic drawing of a horn driver system

Loudspeakers are basic devices for generating sound through electrodynamic
transformation. Electric impulse is transformed through some kind of mechanical
system (for instance cone) into acoustic energy (also mechanical energy). Horn
loudspeakers have been used to produce higher acoustical powers efficiently and to
control the directivity pattern of radiated sound. One of the prominent advantages of

1



horn loudspeakers is their high efficiency. A horn system is a lot more efficient than
any other type of enclosure due to impedance matching characteristics. A horn can
be considered as an acoustic transformer. The horn permits the driver displacement
to be small without sacrificing acoustic output. This means lower distortion and/or
higher power handling. For example, while moving coil driver has a power
transmission efficiency of 10-50% when it is horn loaded, the efficiency is less than
1% when used as a direct radiator. A horn will be effective in any given frequency
range depending only on the size of its mouth and the rate of its flare. Acoustic size
is a wave of a certain frequency that has a wavelength equal to the speed of sound
divided by the frequency. If an object or dimension, like the diameter of the mouth of
a horn, is the about the same as or larger than the wavelength of a given frequency,
then that object or dimension is acoustically large at that frequency. The horn
contour is the expansion (flare) rate of a horn. There are typically different equations
mathematically describing the shapes of different flare types. The most appropriate
curves for audio application are conical, exponential, hyperbolic, tractrix contours
and permutations between them. Furthermore, cut-off frequency (or flare frequency)
is the lower frequency limit of the horn-driver combination. The flare frequency
really describes how fast the horn flare while the cut-off frequency describes how
low in frequency the horn / driver's response is usable, but in typical horns these
frequencies are fairly close. The throat of the horn can be as big as the transducer
(driver) cone or smaller. Horn size is determined by the unalterable wavelength of
sound. The lower the frequency is, the longer the wavelength. Because a horn
loudspeaker takes up quite a bit of space and physical dimensions of unfolded bass
horn (horns for low frequency) can be so large, which is non-practical, the horn

should be stuffed into a box which may require folding the horn one or more times.

Traditionally, loudspeaker driver parameters are derived through electrical
impedance measurement techniques. These parameters are commonly -called
Thiele/Small parameters, after Neville Thiele and Richard Small who are credited
with developing industry-standard loudspeaker modeling techniques. One of the
other methods to model electroacoustic transducers (loudspeakers) is to describe its

basic system components using lumped elements which are analogous to those in
2



electrical networks. The subject of electro-mechano-acoustics is the application of
electrical circuit theory to the solution of mechanical and acoustical problems. The
lumped element system modeling is then represented using an equivalent electrical
circuit representation. The goal of the equivalent circuit analysis is to solve for the

velocity of the cone.

Up to now there have been many efforts to generate horn contours and geometry,
indeed several commercial software have been developed. Furthermore,
loudspeakers have modeled by using impedance and mobility analogies. Despite of
all of these efforts, there is no full design and complete analysis process reported for
horn speakers from beginning to end. These are distinct studies and almost all
focused on whether construction of horn geometry or modeling the loudspeakers. In
addition, it is very rare to come across construction of three dimensional (3-D) horn
geometry especially folded horn geometries. Also there are no analyses open to the
public use showing the effects of folding. In many texts, horn is accepted as infinite
horn and its impedance is added to the equivalent circuit to realize complete acoustic
analysis. In this thesis, it is aimed to achieve computer aided parametric design and
acoustic analysis of horn loudspeakers as a whole for finite length horns of different
contours. A new procedure is developed for auto construction of folded or non-
folded finite length horn shapes. Some folding equations have been generated
according to various horn flare. A different loudspeaker modeling technique, linear
graph modeling technique, is also employed for the specification of horn driver
output in terms of diaphragm velocity or throat pressure. Finally, complete acoustic

analysis of (folded) horns is carried by means of acoustic finite element analysis.

The study consists of three main parts, namely (i) construction of various kinds of
horn geometries automatically in accordance with basic acoustic design
requirements, (ii) determination of electro-mechano-acoustical system outputs by
using linear graph technique and finally, (iii) applying finite element analysis to
obtain acoustical behavior of the constructed horns according to the first step due to

an input diaphragm ring velocity calculated in the second step.



For step (i), cut-off frequency, types of cross-sectional area of the mouth and throat,
maximum horn length are the primary designing parameters. A computer interface
called as “Folded Horn Design” has been developed to facilitate the construction of
the horn geometry by reducing the geometrical modeling time in a commercial finite
element modeling (FEM) software. This interface works jointly with the FEM code
and provides users opportunities such that they can change the primary design
parameters. Horns will be modeled according to these specified parameters. Codes
abide by acoustic design criteria have been written in Pascal language to achieve this
parametric design. In accordance with these codes, secondary and major designing
parameters such that flare rate, throat and mouth area of the horn, length of the horn
can be calculated and whether the folding is required or not will be determined.
Maximum number of folding is limited to two. After all, horn geometry consisting of
linear, exponential, hyperbolic and tractrix shapes are automatically constructed by
means of generation of a “*.proc file”. “*.proc file” is a procedure file which can be
run automatically on MSC.Marc-Mentat from the simple button “construction” on
the interface of Folded Horn Design. Construction of the finite element model of

horns made the acoustic analyses possible for a specified range of frequencies.

In order to model the loudspeaker, linear graph modeling which has the ability to
manage complex relationships between inputs and outputs is preferred in the second
step (ii). Because of the fact that the usage of linear graph modeling can enhance
simulation of the driver model and allow for accurate and simpler representations of
real life scenarios between different mediums (electrical, mechanical and acoustical).
The electrical and mechanical properties of the horn driver are modeled in terms of
lumped parameters by linear graph modeling technique. Linear graph models express
systems in terms of energy flow and can be used to identify key factors (state
variables) that influence system behavior. For each physical domain (electrical,
mechanical and/or acoustical in this case) the various parameters are grouped or
‘lumped’ and assigned to categories for 1-port elements if they supply store, or

dissipate energy, and a 2-port element if they convert energy.



Numerical calculation of the acoustic field radiated from a loudspeaker is a
computer-aided tool in loudspeaker design and development. The radiated sound
field expression depends on the velocity distribution on the loudspeaker vibrating
diaphragm. This velocity distribution is determined from lumped system linear graph
modeling of driver system. Since analysis of the impedance and radiation properties
of complex shaped acoustic horns is a very difficult task in the sense that the
computational complexity, finite element analysis (FEA) can be used to analyze the
acoustic radiation characteristics of any arbitrarily shaped object and the analysis of
the acoustical properties of the horns are easily performed by finite element method.
A commercial software package MSC.ACTRAN is used to calculate directivity
patterns and resulting acoustic pressure in the free field. For example, the magnitude
of the pressure field decays by the distance in radial direction. In polar direction the
variations of the pressure field are called directivity, and these variations are
typically constant with distance. In combination with a lumped-parameter linear
graph model of the loudspeaker driver, the FEM model will be used to calculate the
directivity and pressure distribution of the horns. The walls bordering horn contours

are considered rigid in the analysis.

The material in this dissertation is organized in six chapters. The second chapter will
briefly discuss some of the previous efforts and review of literature pertaining to

horn and loudspeaker design.

Chapter 3 is describes the design considerations and horn flare equations.
Methodology for the design and (auto-) construction of various kinds of horn
geometries in accordance with basic acoustic design requirements will be developed.
Horn geometries will be parametric and automatically constructed by proper

algorithms and software prepared within the context of this chapter.

Chapter 4 is a detailed overview of loudspeaker modeling techniques. Two
applications of loudspeaker modeling will be presented. One of them electro-
mechano-acoustic circuit modeling and the other one is linear graph modeling.

Driver cone velocity will be determined by using linear graph modeling technique.
5



Chapter 5 contains a series of acoustic finite element analysis that investigate the
acoustical performance, sound pressure levels and directivity characteristics of the

coupled horn and driver systems.

The final chapter is a summary and an evaluation of the work done in this thesis and
offers some suggestions for future work that could be undertaken to design and

analysis of horn type loudspeakers.

Appendices contain some parts of the source code developed during this study and

some useful information related with the concerned topics.



CHAPTER 2

LITERATURE SURVEY

2.1. Horn Speakers

Since high power audio-frequency amplifiers are costly, it is a requirement to reduce
the amplifier output to a minimum by use of high efficiency loudspeakers. Horn
loudspeakers have been used to obtain large acoustic power and to control of the
directivity pattern of radiated sound. A horn can be viewed as an acoustic
transformer that couples the air at the surface of the diaphragm with the air outside of
the horn, thus matching high pressure/low volume to low pressure/high volume. The
name acoustic (impedance) transformer derives from this model of description. The
horn contour is the expansion (flare) rate of a horn. There are few curves appropriate
for audio application; these are conical, exponential, hyperbolic, tractrix contour and
permutations between them depending on designer's needs. Parabolic horns are so
inefficient that they are really of no practical use. Horns require compression drivers.
These transducers produce high pressure but little displacement. The diaphragm
therefore moves very little, which results in less distortion than a conventional
radiating driver. Horn drivers need high magnet strengths to produce the high

pressure.

It is not aimed to find new practical formula for the transmission of sound waves
through different shaped horns, but because of changes of direction inherent in
folded horns new approaches will be developed to find proper function at the folding
parts. In this text, while construction of horn geometry, primary designs criteria and
solutions for the equations of acoustical waves to the conditions of a boundary of
arbitrary cross section S(x) will be applied. For some of the horn flare type (conical
and exponential) plane-wave propagation along the propagation axis will be
assumed. While for the tractrix horn the assumption is that, wavefront is spherical

and of the same radius throughout the sound progression. In addition to these, for the



hyperbolic horn exact solution of the hyperbolic horn will be carried out. Below,

contributors of horn equations and how they contribute will be discussed briefly.
2.2. Preliminary Studies on Horns

In the early days of sound reproduction, amplifiers supplied extremely modest
powers and loudspeakers were not very efficient at all. A horn was advised to
increase sound pressure of not very efficient driver. For example, Edison attached a
tin horn to his phonograph in 1877 to couple the small vibrations of the diaphragm to
the air load. Mainly straight conical horns were employed for the early horns, but the
later gramophones of that period employed large flaring horns with either straight or
curved axes depending on the overall length. After a while Lord Rayleigh analyzed
the transmission of acoustic waves in pipes of varying section and gave the analysis
of sound through a conical pipe [1]. Rayleigh also studied on bends in tubes of
constant cross section and effects of these bends on transmitted sounds for varying

range of wavelengths.

In the beginning of 1920s Webster [2], Hanna and Slepian [3] and Flanders [4]
carried out theoretical analyses based on the work of Lord Rayleigh, but extending
the work to the full audio range at domestic listening levels. These analyses were

mainly based on exponential contour.

In 1919 Webster wrote the fundamental paper on the theory of audio horns [2]. This
work was concerned with loading a diaphragm for maximum output. By applying the
fundamental properties of acoustical waves to the condition of a boundary of
arbitrary cross section S(x) and assuming plane-wave propagation along the axis of

the device, Webster developed the fundamental horn equation:
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Webster had also worked out an approximate theory for other types of horn and had
deduced that exponential was the optimum contour. Circular cross-section, straight
axis and plane wavefronts were major assumptions. Webster's equation models the
propagation of pressure waves in a horn assuming that no transverse modes exist.
Under this assumption any point within the horn falls on some isophase surface

which spans the cross section of the horn.

In 1927 Ballantine also expanded the theory by defining Bessel horns, adding them
to the known conical and exponential forms [6]. He did this by transforming
Webster’s equation into Bessel’s equation with the substitution of S(x)=x" in
Eqn.(2.1). Ballentine’s paper also contains an excellent discussion of the assumption
behind the linearization of the fluid dynamic equations, which are necessary to derive

the horn equation.

On the other hand Wilson [7] had independently derived the analysis of the
exponential horn working from Rayleigh’s treatise. According to his assumption the
wavefront had a spherical shape and always cutting the contour of the horn wall and
lateral axis of the horn at right angles This assumption, that initially flat wavefront at
the throat and the curvature of the wavefront would gradually increase, satisfies also
the condition specified Hanna and Slepian [3] and later by Crandall [8] that the
wavefront as it emerges from the open end will be equivalent to that provided by a

spherical surface, as opposed to that produced by a flat piston.

Voigt described TQWT/QWT (Tapered Quarter Wave Tube/ Quarter Wave Tube)
uses like a transmission line design pipe length of 1/4 wavelength of driver's
resonance frequency in 1930 [9]. TQWT and QWT stands for (tapered) quarter wave
tube and are also referred as Voigt Pipes. By its shape TQWT is a conical horn with
relatively high cutoff frequency. The driver is not placed at the apex of a horn as

usual but rather at 1/3 of horn's length. Voigt had commenced his analysis on the
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assumption that wavefront within the horn is spherical and of the same radius
throughout propagation through the horn. His approach was based on the assumption
that the entire wavefront must propagate at the speed of sound and constant
throughout the horn. This requires that the horn contour should be the tractrix. The
tractrix is sometimes called the tractory or equitangential curve. It is a curve well-
known in the world of mechanics. According to Bos [10], the tractrix was first
studied by Huygens in 1692, who gave it the name “tractrix”. Later, Leibniz, Johann
Bernoulli and others studied the curve. Different authors on loudspeaker horns have
proposed different ideas about approximating a square or rectangular horn shape to
the tractrix contour. Voigt preferred the section height to equal the diameter of the
(round) tractrix. The area of a square horn is then 1.27 times larger than the tractrix
contour, and the circumference, to which some researchers pay great attention, will
be even larger compared to the circular circumference. To calculate from the
circumference, on the other hand, would yield a smaller area from square horns than
the circular tractrix, and since the square and rectangular shapes are compromises

anyway, it seems safe not to complicate things more than necessary.

2.3. Works after the Webster Theory

Lindsay [11] employed the horn theory of Webster [2] for the connector in the form
of S=Spp(x). Transmission through conical connectors, Bessel connectors of higher
order, exponential connectors and the connectors whose generating curve have a

point of inflection had been analyzed.

In 1940 Freehafer [12] published an exact solution for a hyperbolic horn. It was the
first formulation of a horn that was not based on Webster’s equation. In 1946
Vincent Salmon returned to the plane-wave assumption and produced two significant
papers on horn theory [13], [14]. He generalized the plane wave horn theory and
unified estimating the performance of a given horn. He also obtained relations
among the admittance components and the shape parameters. The first paper has a
figure comparing the radiation impedance predicted by the exact theory of

Freehafer’s and the approximate Webster’s equation. The two results differ by as
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much as about 30% for a 30° horn at ka=0.6. Geddes [11] discussed the possibility
that this error is due to the approximate nature of Webster’s equation and also
dictated that Salmon was not concerned with, is that the two different wavefront

shapes.

Mawardi [15] tried to solve Webster’s equation for the arbitrary shape of horn
contours and tried to develop generalized methods of solution. In order to solve
Webster's equation for the approximate formulation of the propagation of sound
waves in horns, he used two methods of approach. The first method considered a
transmission line with variable parameters as the electrical analogue of the horn. This
approach was especially useful in yielding generalized solutions for horns of finite
length. Transmission line modeling of acoustic elements is a good compromise
between accuracy and computational complexity. The second method, based on an
investigation of the singularities of Webster's differential equation, lead to the
discovery of a great number of new families of horns. Locanthi used this approach
when he performed an analog computer simulation of horn-loaded compression

drivers [19].

Applicability of (2.1, 2.2) for engineering analysis of the acoustic horn is somewhat
explained by Eisner’s 1964 discussion [18] on the history of (2.1, 2.2), wherein
Eisner notes it was first developed and solved for an acoustic horn in a paper
published in 1764 by Daniel Bernoulli [19]. All this history aside, details on the
development of equations (2.1, 2.2) are readily available in basic textbooks on

loudspeakers, e.g. Beranek [16] and Olson [17].

2.4. Follow up Studies on Horns

In 1927, the wider bandwidth of the Rice-Kellogg [5] direct radiator loudspeaker and
availability of higher-power amplifiers all but removed the horn loudspeaker from
home audio systems. After 1927, horn loudspeakers were only found in theater
public announcement (PA) systems, until the introduction in the late '40s of the

Klipschorn, which spawned a revival of horn loudspeakers in the '50s. The
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introduction of high-power solid-state amplifiers and small bookshelf speakers in the
'60s removed horns from home audio systems. In the early '90s, the hipe of SET tube

amplifiers spurred a new interest in horn designs.

At the cut-off frequency (fc), the throat reactance peaks, whereas the throat resistance
is zero and rises to its maximum value above the cut-off frequency (Fig. 9.9, Beranek
[16]). This frequency fc is called the cut-off frequency because for frequency lower
than this no power will be transmitted down the horn and theoretically, a bass horn
should give response down to the flare frequency but, Edgar [26] observed that throat
reactance (which rises as the flare frequency is approached) choked off the low end
response of a horn before the flare frequency is reached. However, Wente and Thuras
[20] at Bell Labs and Klipsch [21] independently found that throat reactance could be
cancelled out by using sealed back chamber. Klipsch also stated that the volume of
the cavity behind the cone is given by the throat area multiplied by the speed of
sound divided by 2z times the cut-off frequency. This technique, which Plach [23]
termed “reactance annulling”, allows for bass response right down the flare
frequency. Leach [24] showed that, for a number of exponential horn examples
reactance annulling does not occur at the flare but a higher frequency. He eliminated
this problem by choice of a hyperbolic horn rather than exponential horn [25]. After
considering all above, Edgar [26] combined the Keele and Leach approach and
presented formulae for calculating the theoretical optimum throat size and back

chamber volume for a given driver/horn combination.

Horn-loaded loudspeakers, and particularly low frequency horn-loaded loudspeakers,
are commonly used in applications where large, linear sound outputs are needed such
as in sound reinforcement and active noise cancellation. For example, theater
loudspeakers as large as or larger than eight feet in length and four feet by four feet
in transverse physical dimensions were built in order to obtain reproduction of low
frequencies in the audible range. Because low frequency horns can be very large, the
physical dimensions of this kind of horn loudspeakers may be reduced by folding the
horn. Olson [17] (pp. 206-209); Klipsch [22], Olson and Massa [27], Wente and

Thuras [20], Hilliard [28] were the introduced some typical examples of the folding
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the horn. Prior art low frequency folded exponential horn loudspeakers, such as those
which are disclosed in the above-cited references, are, nevertheless, bulky and
structurally complex due to the structure of the folded exponential horn which
defines the sound path from the electroacoustic transducer to the volume into which

sound waves are radiated.

Even when size of a horn is reduced with folding(s), they are still pretty big. In order
to reduce horn size without loosing too much low bass performance, Klipsch brought
up a matter that horn mouth is placed into a corner to increase the acoustical output
of the horn mouth [21]. Klipsch was responsible for what is considered a mutually
accepted stereotype of a classic corner horn, with apparently the highest name
recognition associated with it. The Klipsch Corner Horn arrived in the mid 1940's,

and is still currently being manufactured.

Sheerin [37] investigated the bends of a horn. Time-waveform measurements were
taken at multiple points in a plane down the center of various bend shapes. These
measurements were then processed to allow visualization of sound waves of various
frequencies propagating through these bends. Finally he showed the deviation

between experiencing performance and predictions.

A horn provides more sound pressure level (SPL) at a given listening area by
increasing the directivity of the sound towards the listener. Early researcher generally
paid very little attention to the directivity of the horn, but Sherrer and his design team
at MGM (MGM turned to the Lansing Manufacturing Co. in Los Angeles that grew
into the Altec Lansing Co. by 1941 and JBL in 1955, the industry leader in motion
picture loud speakers) sound department worked on a development project that
considered directivity control as a primary factor in horn design. By assuming the
horn directional wide coverage could be obtained by using splayed array. It was a
large two-way system that had much in common with an earlier system that had been
designed for auditory perspective experiments at Bell Laboratories. The Shearer
system used high-frequency multicellular horns driven by a driver with an annular

slit phasing plug. On the other hand Keele considered the problem of designing a
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horn that had both good loading and directivity control in his paper on constant
directivity horn theory [29]. In this paper he proposed a horn in two sections. The
section near the throat was exponential for good loading while the outer section was
conical for good directivity control. This combined horn had two very sought after
traits. It presented good loading to the driver to which it was attached allowing for an
increase in the efficiency of the horn. It also maintained good directivity control over
a wide range of frequencies. He had also investigated optimum size of a horn mouth
[30] and for a number of different throat entry diameters and design coverage angles;
the size of the aperture between the two sections of the waveguide was near its

optimum size according to his work.

In 1977 Henricksen and Ureda [31] introduced what they called the Manta-Ray horn.
It was named for its shape. This horn had good loading as well as good directivity
control. However, it did suffer in some areas. One in particular was that it had rather
severe astigmatism in the curvature of its wavefront. The radius of curvature for the
wavefront was different for the horizontal and vertical planes. Accordingly, the shape
of the wavefront from such a device could, at best, be ellipsoidal. While this doesn’t
seem to be the cause for concern when the horn is used by itself, when more than one
horn is employed in an array it can be problematic. This astigmatism was common to

a number of horn designs within the industry at the times.

J. Dinsdale [38] had outlined the physical principles underlying the operation of
horns, and had shown how, provided basic rules were followed, sound reproduction

of startling clarity and realism is possible from horns.

The assumption of a piston-like motion is valid only at low frequencies. At higher
frequencies, this approximation may not hold, owing to the breakup modes of the
driver diaphragm. However, this assumption is still beneficial for determination of
loudspeaker’s sound radiation. Generally, the starting point to compute the sound
field at any spatial point inside a propagation medium is the evaluation of Rayleigh's
surface integral [1], which is a statement of Huygens’ principle that the total sound

field at an observing field point P into the propagation medium is found by summing
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the radiated hemispherical waves from all parts of the vibrating surface. It is difficult
to solve analytically Rayleigh surface integral except in very special cases such as
the acoustic pressure on the axis of a transducer. Various authors have proposed
different theoretical approaches to transform this integral into an analytically
tractable expression [32, 33]. Kaddour et al. [34] presented theoretical,
computational and visualization solutions for the sound (pressure) field in air,
produced by a loudspeaker, using a numerical method called Convolution Method
(CM). This method uses the convolution product of the acceleration function of the

radiating surface and the impulse response for a specific field.

Klippel [35, 36] has developed an acoustic transmission line model to describe finite-
amplitude sound in horns and ducts with reflection by using conical one dimensional
(1-D) elements. Each element is represented by a linear four-pole plus a nonlinear
source of volume velocity, derived from the nonlinear wave equation in Lagrangian

coordinates.

The derivation of Webster's equation carried out in Benade and Jansson [39] was
exceptionally illuminating. Their method allowed any choice of acoustic wavefronts
propagating in the bore as long as axial symmetry is preserved. One of the other
recent researchers who worked on Webster’s classic horn equation is Rienstra [40]
and he rederived some generalizations systematically, as an asymptotic perturbation

problem, from a number of modeling assumptions by the method of slow variation.

In recent years Geddes [41] and Putland [42] had put forth works on horns that have
the properties of propagating a one-parameter acoustic wave. The motion of such a
wave can be described by a single spatial coordinate. These types of horns have been
referred to as waveguides. A good differentiation between a horn and a waveguide
can be thought of as a horn being primarily concerned with the optimal loading of its

driver, while a waveguide is primarily concerned with its directional characteristics.

Geddes [41] examined the mathematical foundation of the horn theory, analyzed the

Webster’s horn equation for the directivity-controlling devices and developed
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another general formulation of the acoustic waveguide problem. He tried to
determine boundary contour shape that will allow an accurate prediction of the
acoustic variables, which are pressure contours, velocity vector, and acoustic
impedance, at any point in the device; and find a way to determine the optimum

shape.

Putland [49] seems to be the first author to actually specify the only three coordinate
systems that produce exact solutions for one parameter wavefields: planar (1-D),
cylindrical (2-D), and spherical (3-D). Putland noted that these and only these
coordinate systems are capable of exactly specifying all the acoustic quantities
(pressure, particle velocity, intensity, etc.) by a single spatial coordinate. When
predicting and comparing the acoustical properties of horns it is a customary practice
to formulate the propagation as a one-parameter plane wavefront problem. One-
parameter waves, however, are possible only in rectangular, circular cylindrical and
spherical coordinates, which correspond to pipes of uniform cross-section and
conical horns, respectively. However, when particular attention is paid to the rapid
flare near the mouth of a horn structure such as the tractrix, it also seems plausible to
formulate the propagation on the basis of a one-parameter spherical wavefront
theory. By visualizing the surfaces of constant phase as spheres of constant radii of a
and the flow lines as tractrix having a generating arm of length of a; one-parameter
wave equation and Ricatti impedance equation can be derived. Solutions to these
equations have been obtained by wave perturbation and by analog computer
techniques. Axial response and throat impedance measurements are compared with
theoretical calculations postulating first a hemispherical and then a plane piston
radiation pattern. It appears that the most satisfactory explanation lies somewhere in

between these two limiting cases.

Traditionally, the air chamber is treated as a boundary value problem which results in
the solution of the wave equation for the general case in which the horn throat enters
the air chamber in any circumferentially symmetrical manner. The following specific
cases were analyzed by Smith [43]; (1) the case in which the horn throat enters the

air chamber by means of a single orifice, (2) the horn throat enters the air chamber by
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means of a single annulus of radius r and width w, and (3) the horn throat enters the
air chamber in “m” annuluses of radii 1j......r,, and widths wj.....wy. His analysis
revealed that the radial perturbation caused by the horn throat excites higher order
modes. At the resonant frequencies of these modes the horn throat pressure becomes
zero and the loudspeaker does not radiate. By suitable choice of annulus radii and
widths the first "m" modes may be suppressed and the corresponding nulls in the

output pressure eliminated.

It was shown by Holland et al. [44] that a horn of arbitrary flare rate can be analyzed
by subdividing the horn into small sections of flare rate for which an analytical
solution to equation (2.1 or 2.2) is available. Short sections of cylindrical, conical, or
exponential curves may be fitted to some arbitrary and complex flare. The input and
transfer impedances of each of these sections can be determined analytically from
solutions to equation (2.1 or 2.2). These may be collected together as a sectioned
transmission line model of varying impedance, from which the total input and

transfer impedance may be calculated.

2.5. Loudspeaker Modeling

A horn loudspeaker consists of an electrically driven diaphragm coupled to horn. In
order to analyze horn speaker system, diaphragm (cone) velocity of loudspeaker or
sound pressure on the cone should be found. In this text these outputs will be found
by applying lumped-parameter linear graph modeling and there are many attempts to
generate equivalent circuit models in the literature. Various kinds of analogies
similar to linear graph have been performed so far. The purpose is the application of
electrical-circuit theory to obtain governing dynamic equations for mechanical and
acoustical systems. Not only a schematic representation of the components and their
connections make it possible to visualize and understand the system, but also the

differential equations can be formed directly from these schematic diagrams.
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2.6. Historical Development of Loudspeaker Modeling

Since the earliest days of electrical theory, electro-motive force became endowed
with the mechanical force of hydraulic pressure and electric current had been thought
as a mechanical velocity or the velocity of the fluid flow. Historically, the first
analogy to be used between electrical and mechanical systems was the force—voltage
analogy, as is readily seen in the early use of the term electromotive force. Firestone
[45] and others established another consistent system of analogies based upon certain
mathematical similarities between electrical current, force, and pressure on the one
hand, and voltage, velocity, and fluid flow on the other. The older “classical”
analogy is the “voltage-force-pressure” analogy while the Firestone analogy
(originally called “mobility” analogy) is often referred to “current-force-pressure”
analogy. Firestone also introduced the ideas of through and across variables which
provide a unifying framework to extend analogies to other contexts, e.g., acoustic,
thermal, fluid systems. On the other hand Olson used the impedance analogy in his
books [17]. Typical example of this was the analogous circuit for a bass reflex
loudspeaker. In 1954 Beranek [16] presented a very comprehensive acoustical circuit
derivation. He used impedance analogy for the electrical side but for the mechanical
side he preferred to mobility analogy and the voice coil acted as a transformer
between the mechanical and acoustical circuits. So, whole domains could have been
drawn as one circuit. In this work the diaphragm velocity, sound pressure and
efficiency for the low frequency response were developed. In 1959, Novak [46]
presented a generalized theory on the design and performance of vented and closed-

box loudspeaker enclosures.

The usual procedure for the loudspeaker system design is calculation of the driver’s
fundamental electro-mechanical parameters by using Thiele-Small parameters. The
Thiele-Small [47-53] approach is to first analyze the electro-mechanical behavior of
a speaker voice coil, magnet, and cone, interacting with the cone suspension and the
air in and outside the enclosure. The Thiele-Small method for speaker design
considers the linear loudspeaker model driven by voltage sources and operating in a

small signal environment. The resulting equation is mathematically identical to the
18



equation describing a purely electrical "equivalent circuit" consisting solely of
resistors, capacitors and inductors. The sound produced by the loudspeaker can then
be obtained via a relatively simple circuit analysis. The evolved theory of filter
synthesis can be used to adjust circuit parameters to obtain a desired frequency
response. The parameters can then be translated back into physical quantities, such as
enclosure size, to build the loudspeaker. This procedure provides a scientific
framework for the art of loudspeaker design. A very useful result is that after the
speaker has been assembled, the electrical impedance at the speaker terminals can be
measured and compared to the theory. In this method, the considered parameters are

linear and valid only for small signals.

While the electrical circuit approach was very suitable for simple loudspeaker
systems, complex acoustical loading was still difficult to include. In 1972 Howard
[54] modeled complex-loading conditions by converting the acoustical properties
into equivalent mechanical mass and compliance units and constructed analogous

acoustical circuits.

Thiele [51, 52] demonstrated the possibility of fitting a speaker adjusting the power
amplifier output resistance, making it positive or negative, according to the method

proposed by Werner and Carrel [55].

2.7. Studies on Loudspeakers after Thiele/Small parameters

At low frequencies, where the wavelength is much longer than the largest physical
dimension of the device, a distributed system can be lumped into idealized discrete
circuit elements. Generally, the successful models of moving-coil loudspeakers in
enclosures are based on equivalent circuits. These models have the convenient ability
to represent the complete signal path, from electrical input to acoustic output, in a
single circuit diagram. However, all such models are low-frequency approximations
developed for the purpose of calculating and optimizing the bass roll off of the
driver. Keele presented the first comprehensive and simplified design methodology

for bass horns [56]. He showed most horn design parameters could be calculated
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from Thiele/Small parameters for the driver. Leach [24] extended Keele’s work by
introducing losses into the model and constructed a standard equivalent circuit model
of a horn such as described in Olson's book [17], but substituted a gyrator for the
usual transformer between the electrical and mechanical sections of the model. He
then made some simplifying assumptions, such as the output impedance of the
driving source is negligible, and derives a set of equations based on Thiele / Small
parameters. Earlier analyses of horn loudspeakers [16] driven from amplifiers with
moderately high output impedances calculated the efficiency as the ratio of acoustic
output power to maximum power available from the source. The set of equations lets
one work from a given driver specification to design a horn to cover a specified
frequency range or work from a horn specification to design the optimal driver. One
thing to note is that the simplifying assumptions are significant. For example, Leach
assumes an infinite exponential horn as the load. For very small (undersized) horn,
Leach's equations will probably not predict the exact results. There is also no

provision made for such things as folds in the horn, parallel side walls, etc.

Most of the earlier work in modeling low-frequency, voice-coil loudspeakers treated
them as lumped-parameter linear systems as Beranek described [16] for loudspeakers
without enclosures, Small [47], [48], and [49] for loudspeakers in sealed enclosures,
Thiele [51], [52], and [53] for loudspeakers in vented enclosures, and [46] and [57]
for loudspeakers in both sealed and vented boxes. The lumped-parameter
loudspeaker model, although simple, captured much of the nonlinear behavior of the
loudspeaker. In addition, the model formulation allowed a straightforward
application of modern control system methods and lent itself well to modern
parametric identification techniques. They are ground works and become industry
standards, but they are not sufficient in analyzing today's high-performance
loudspeakers, which are typically driven beyond their linear output range. More
significant was the work by [58], [59], and [60], where lumped-parameter nonlinear

models were analyzed.

In order to predict the internal resonances in the enclosure an equivalent-circuit

model can be modified to account for the effects of damping materials added in an
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effort to suppress resonances [47, 63]. However, when the original model is valid
only at low frequencies, the version with added damping can do no more than predict
the “side- effects” of damping on the low-frequency roll off; it cannot predict the
degree to which the damping material achieves its primary purpose of suppressing
resonances in the midband. These deficiencies are tried to overcome using the
“finite-difference equivalent-circuit” (FDEC) model by Putland [64]. He offered an
equivalent-circuit model of a loudspeaker which took account of the wave-like nature
of the acoustic field in the enclosure and the effects of the resulting resonances on the
system response. The differential equations describing an acoustic field have been
approximated by the finite-difference method and the resulting difference equations
have been written as the nodal equations of a three-dimensional L-C network. This
was shown before, for Cartesian and cylindrical coordinates, by Arai [65] in 1960.

Arai’s method is valid for general curvilinear orthogonal coordinates.

Linear modeling of the driver and the horn is likely to fail at high drive levels. The
various studies of nonlinearity in electroacoustic drive units have been summarized
in the papers of Sherman and Butler [66, 67]. For horn loudspeakers, the modeling of

driver nonlinearities has been discussed by Klippel [35, 36] and Schurer et al. [68].

In addition, Al-Ali [69] designed a low-frequency, feedback control method to
improve the nonlinear performance of the loudspeaker system and he evaluated
performance by developing a suitable distortion measure for use in design. Data from
experiments performed on a variety of actual loudspeakers have been used to
confirm that the methods can produce predictable and measurable improvements in
the nonlinear performance of a low-frequency, voice-coil loudspeaker (attached to
either vented or sealed enclosures). Furthermore, he studied on the linearizing effect

of feedback using a linear controller of nonlinear systems.

A method to modify the mechanical characteristics of a loudspeaker (seen by the
excitation source) through the amplifier output impedance has been considered by
Stahl [78]. This method consists of making the power amplifier output resistance

equal to the negative of the voice-coil resistance. In this way, the amplifier output
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and voice-coil resistance cancels each other and the amplifier sees the loudspeaker
mechanical circuit as a load. Normandin [79] has also exploited this method. The
circuit proposed by Stahl was only able to generate a negative output resistance
proportional to the voice-coil resistance, and not to the electric impedance. This fact
restricted such a solution to the low frequency domain, since the voice-coil inductive

reactance increases as frequency increases.

The radiated sound field expression depends on the velocity distribution on the
loudspeaker vibrating diaphragm. This velocity distribution is determined from a
complex computation and vibration analysis. Several authors have expanded the
velocity potential in spherical Bessel and Legendre functions, or used alternative

methods to calculate the sound radiation from a loudspeaker [70-77].

2.8. Recent Works

Since resent amplifiers have low output impedance, to design an enclosure means to
determine its intrinsic characteristics (internal volume, tuning, and absorption,
among others) to fit it with a loudspeaker or to adapt a loudspeaker to the enclosure,
or even to adopt both the procedures. For this reason, the process concentrates only
on the electro-acoustic side of the system. It does not consider the electric resistance
of the connections and cables between the amplifier and speaker, which can lead to a
considerable problem source [80]. Bortoni et al. [81] presented a comparative
analysis through simulations of the sound pressure level and cone displacement of
loudspeaker systems as an infinite baffle, a closed box, a vented box and band-pass
enclosure driven by voltage and current sources, under small (linear) and large (non-
linear) signals. The nonlinearities of the voice-coil, force factor and compliance of

the loudspeaker were considered.

Knowledge about the interface of horn and driving electro-acoustical system and the
description of the driving system are the keys to the simulation of horn driver and
horn. Couples of investigations concerning this interface and the electro-acoustical

source itself have been carried out by Behler and Makarski [82]. In this work, it was
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shown that the two-port approach leads to reliable simulation results. Furthermore a
measuring method to derive the driver’s two-port parameters was presented, but this
method suffered from the restricted frequency range of the used Kundt’s tube. In
order to extend the frequency range Makarski described two methods to obtain the
two-port parameters without using any acoustical measurements [83]. Electrical
impedance measurements and acoustical reference impedance as well known
acoustical load were used for the both methods. The driver’s two-port parameters
were presented in this method using only electrical measurements and an acoustical

reference impedance and this method was valid for wider frequency range.

2.9. Finite Element Models of Loudspeakers

After computers have allowed to the usage of complex models based on numerical
approximation like finite element models, traditional horns can be analyzed with the
boundary element method (BEM) or finite element method (FEM) instead of (or
together with) analytical or simple numerical tools. Since just using simple numerical
tools to analyze a folded horn is very complicated. Finite Element Method/Boundary
Element Method become more and more interesting for the simulation of
loudspeaker’s enclosures and horn geometry as the performance of computers
increases rapidly. BEM, also known as the Integral-equation method, it uses a
discretisation of the surface of an object and a set of velocity or pressure boundary
conditions to calculate an acoustic field, either into a free-field, or into an enclosed
space. In this study FEM will be used to analyze constructed folded or non-folded

horns.

A model was reported in 1984 by Sakai et al. [84], who used the finite-element
method to calculate the acoustic impedance presented by the enclosure to the back of
the diaphragm. Their model was fully three-dimensional and allowed the shape of a
conical diaphragm with a specified semi-apex angle to be accurately represented.
They also gave an equivalent-circuit model of the driver and enclosure, incorporating
the enclosure impedance. However, instead of solving the circuit with the computed

impedance in place, the authors used a mass-limited approximation to the circuit and
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assumed that the radiated pressure is proportional to the diaphragm acceleration,
obtaining a simple formula expressing the sound pressure level in terms of the

impedance of the enclosure.
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CHAPTER 3

CONSTRUCTION OF HORN GEOMETRY

In this chapter primary design criteria for acoustical waves confined to a solid
boundary of arbitrary cross section S(x) will be developed. For some type of the horn
flares (conical and exponential) plane-wave propagation along the propagation axis
will be assumed. While for the tractrix horn the assumption is that, wavefront is
spherical and of the same radius throughout the progression. In addition to these, for
the hyperbolic horn exact solution of the hyperbolic horn will be carried out. The
horn contour is the expansion (flare) rate of a horn. There are typically different
equations mathematically describing the shapes of different flare types. The most
appropriate curves for audio application are conical, exponential, hyperbolic, tractrix
contours and/or permutations between them. Construction of horn geometry will be

performed for the conical, exponential, hyperbolic and tractrix forms.

It is of significant importance to use as much as possible priori knowledge
comprising of geometrical pattern, frequency response range (upper and lower
frequency limits) and driver parameters. Frequency limits will be selected for the low
to mid band horn speakers. From these parameters and conditions one can decide on
the required horn length, mouth and throat sizes. If these dimensions (especially
length) are out of given required range, a geometrical modification such as folding
the horn should be performed. Horn geometries will be parametric and automatically
constructed by proper algorithms and software prepared within the context of this
chapter. A computer interface called as “Folded Horn Design” has been developed in
Delphi to facilitate the construction of the horn geometry by reducing the
geometrical modeling time in commercial finite element software. This interface
works jointly with MSC.Marc-Mentat and provides users opportunities such that they
can change the primary parameters and horns will be modeled according to these

parameters.
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3.1. Horns

Horns are considered as acoustic transformers matching the impedance of air to that
of the piston. They convert acoustic energy at high pressure and low velocity
(volumetric velocity) at the throat to energy at low pressure to high velocity at the
mouth. Horns have been used for increasing the radiation and control the direction of

the radiation from a sound source such as loudspeaker.

A horn system is a lot more efficient than any other type of enclosure. For the same
sound pressure level (SPL), the driver in horn has smaller excursion than the driver
in any other type of boxes or in open air. Therefore, the horn driver operates linearly
and produces less distortion. The horn permits the driver displacement to be small
without sacrificing acoustic output. This means lower distortion and/or higher power

handling.

For a horn loudspeaker, directivity and high efficiency are very important design
parameters. High efficiency can be achieved by various ways. One popular method is
to design the system so that driving force works against resistance instead of
reactance part of the vibrating diaphragm of driver. As a result, more power is

radiated at low frequencies for a given source strength (cone velocity).

A horn consists of a tube of varying sectional area. When sound passes through a
tube or conduit and if there is a change in the cross-sectional area, power
transmission should be considered. Neglecting the viscous damping, power

transmission ratio (P,) is given by

2

4q

p=——12
(> +1)

r

(3.1)

where, qz is the ratio of the two cross sectional area S»/S; and S;, S, are the cross-

sectional area of the first and second conduit (Fig.3.1).
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Fig. 3.1 Tube consisting of two different cross-sectional areas

The more gradually the transition from one cross-sectional area to the other, the
better transmission of sound is achieved [11]. Sound transmission should be unity or
approach to the unity as soon as possible for the working frequency range. This can
be done by choice of conical, exponential, hyperbolic or tractrix form as seen in

Fig.3.2.

Fig. 3.2 Different flare types of horns. (M: family parameter, M=1 means

exponential, M—oo means conical, 0<M<1 Hyperbolic and M=0 means catenoidal)
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For optimum loading of the driver, the impedance presented by the horn throat
should be (close to) entirely resistive and of constant value throughout the working
frequency range (Fig. 3.3). Below the cut-off frequency, the throat resistance is very
low or zero and rises rapidly to its ultimate value of S/pyc as the frequency increases
over the cut-off frequency. (Where S; is the throat area, pyis the density of air and c is
the speed of sound.) Especially the one whose rate of taper (flare) is small near the
throat region of the horn. From this point of view one can deduce from Fig.3.3 that
exponential and hyperbolic contours suit better. However, non-linear distortion
should be also taken into account before deciding. At the moment it can be said that

for minimum distortion at given power per unit area, the conical horn is the best.
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Fig. 3.3 Acoustical Resistance (Real) and Reactance (Imaginary) vs. Frequency

curve at the throats of infinite horns, [38]

For horns the fundamental physical principles of mass and momentum conservation

are expressed in terms of an acoustic pressure, p(x, t), by the Webster equation (3.2)

o PRI S Pyl
G PN =c' 5o ax[su) ax"(’"”j (32)
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which describes plane-wave propagation in a duct of slowly varying cross-sectional
area, S(x), where ¢ is the speed of sound in the ambient medium. The fluid is
compressible and ideal (homogeneous and non-viscous), adiabatic and low Mach
number disturbances, small p(x, t) compared to the bulk modulus of the medium, and

that the rigid tract walls are the linearizing assumptions.

X axis
(Lateral axis)

Fig. 3.4. Volume element S(x)dx of a horn

Consider the volume element of infinitesimal length dx and area S(x) within the horn
(Fig. 3.4.). The small air volume between the planes A and B moves to a new
position and now bounded by the planes A’ and B’. The mass of air in these two
volumes remains constant. In Fig. 3.4, it can be seen that the plane A has moved an
infinitesimal distance (&) and that the original length of the volume has increased
from dx to (dx + d&). Clearly the original mass of air expands as it moves in the
positive x direction to fill the increasing cross-sectional area of the horn. Fig. 3.4
shows the two positions for the small volume of air. By the way one should note that

dx > &> d&.
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The volumes Vg and V45 correspond to first and second locations respectively can

be expressed as;

Vg =S(x)dx 3.3)

Vg =S(x+E)dx+dE) (3.4)

where

S(x+&)=Sx)+ (;S(x)jé‘ (3.5)
X

An expression for the pressure distribution in a horn can be derived for function of
position and time. Using the above expressions for the two volumes, first the acoustic
strain can be calculated, then multiplying the acoustic strain (g,) by the bulk
modulus of air (), as defined in Kinsler and Frey [85], results in an expression for

the pressure.

p(x,1)=—pc’e, (x,1) (3.6)

Where

£, (x,t) = w (3.7)
AB

After substituting the equations for the volumes, doing a little algebra and canceling
the higher order terms, the acoustic pressure can be written as a function of the cross-

sectional area and the displacement.

pcz[(s S(x)jg‘(x, )+ S(x)(a E(x, l)D
X o0x

S(x)

p(x,t)=— (3.8)
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pcz(aa (S(x)é(x,n)j
X
S(x)

p(x,t)=— 3.9)

Because the internal pressure decreases when the incremental volume increases as it
moves from AB to A’B’, a negative sign is included in the above equation 3.6 and so
does equation 3.8. The forces acting on the volume AB generate the motion and the
resulting change in position to A’B’. Figure 3.4 presents a free body diagram

showing all of the forces acting on the small volume of air between planes A and B.
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Fig. 3.5 Free body diagram of a small volume of air between planes A and B.

Summing the forces, and setting the result equal to the inertial acceleration, results in

the equation of motion.

p(x,1)S(x)— (p(x, )+ (% p(x, t)JdXJS (x)—uS (X)dx(% E(x, t)j =
(3.10)

2

pS()c)d)c(a—2 f(x,t)J
ot

u is the damping coefficient acting on the volume. After some manipulation,
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d d 09’
—(gp(x,f)j—ﬂ(gf(%f)j—P(yf(%f)} (3.11)

Substituting Equation (3.8 or 3.9) to eliminate the pressure term in Equation (3.11)

produces the final differential equation of motion.

Throughout the text, the solution of several types of longitudinal section will be
shown and corresponding horn geometry will be constructed. Exponential, conical,
tractrix and hyperbolic type of horns with mouths of rectangular shapes are

considered in the study.
3.1.1. Exponential Horn Contour

In order horn to be a satisfactory transformer, its cross-sectional area should increase
gradually along its axis. Cross-sectional area of the ideal exponential horn increases
logarithmically along its length from throat to mouth. For this shape, the cross-

sectional area at any point along the x axis is given by the formula;

S(x)=8,e™ (3.12)
and
SO=S, SWL)=S, =STe’”L (3.13, 3.14)

Where S: cross-sectional area at x in square meters
S7: cross-sectional area of the throat in square meters
Sy cross-sectional area of the mouth in square meters
m: flare constant (1/meter)

x: distance from throat in meters

Substituting Equation (3.12) for S(x) value to Equation (3.8) gives Equation (3.15);
plx,0) = —pc{m&x,r) + (aif(x,z)D (3.15)
X
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Putting Equation 3.15 into Equation 3.11 provides the final differential equation of

motion for the exponential horn.

c([ o é(x,r)j + m((.f—x (f(x,z))ﬁ m =9 ) (3.16)

on*

After some manipulation and using separation of variables techniques and setting the
damping term p to zero leaves the classic exponential horn wave equation found in
most acoustics texts. The solution of displacement and pressure can be found as
functions of times and position. Detailed calculation of the differential equation is
not the aim of this text. In order to have detailed description, one can benefit King’s

[86] derivation.

f(x,t) — (Cle((*a*]ﬁ)x) + Cze((*o“r]ﬁ)x)k(jwr) (317)

p(rn) = joc?(C,(jar+ B)e =P —C, (= jor+ Bl 1P Jptien (3.18)

where o is an attenuation term arising from the expanding geometry.

. (3.19)

y="2 T C (3.20)

Up until now, wave equation is tried to be solved and calculations came to the
important point in the name of determining mouth area. y depends on the value of the
frequency. If (4ew”-m°c?)<0 then y is imaginary, resulting in an additional attenuation
term but no power will be transmitted because acoustic impedance is entirely
reactive. If (4a)2—m2c2) > 0 then y is real and wave motion exists in the horn. The
frequency at the limit of attenuation to wave motion is cut-off frequency and can be

calculated from (4a)2 —mzcz) =0.
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Since

w=27f (3.21)
mc
fo= iz (3.22)

By knowing desired cut-off frequency the flare constant () can be calculated and
the horn profile may then be constructed. Whether the horn mouth is circular or not
(square), horn mouth should have a circumference large enough so that the radiation
impedance is nearly resistive over the desired frequency range. In order to provide
this, as Beranek [16] shown, the relationship ka>1 or C/2>1 must hold. Where k is
wave number, a is radius of mouth, C is circumference and 4 is the wavelength. At
this condition horn starts to efficiently transfer energy into the environment. He
concluded this by finding mechanical impedance of the air load at the horn mouth,
using plane circular piston mounted in an infinite surface assumption. If mouth area
(Sy) is wanted to be find at this critical condition, Sy,= /162/47r should be solved. This
is the minimum mouth area. But, there is one more thing such that all of this
referring to the situation where the horn is suspended in a free space, meaning
radiation into an angle of 4z solid radians. If the horn placed on the ground the
mouth would only radiate into half a solid angle (2x solid radians), against a center
of a wall & solid radian and in a corner formed by two walls and the floor only /2
solid radians. The significance of this is the fact that, while minimum mouth area has
been shown to be A.*/41 when suspended in free space, this value may be divided by
a factor 2 when the solid angle is halved. This factor has an effect on radius in square

root. So the final equation for the horn mouth radius (ry) is,

(3.23)

r,

c
v 27rf(,\/ﬁ

Where plc is the placement factor and 1 for free space, 2 for radiation on ground, 4

for radiation on ground near the wall, 8 for radiation in the corner.
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While determining the throat area shunt capacitance is the important design criteria.
When a cavity is placed between the diaphragm and throat, it behaves as a shunt
capacitance across the throat itself. For high frequencies, the throat reactance
approaches zero and the resistance approaches pc/St. As Dinsdale [38] mentioned, by
making the cavity impedance equal to the throat impedance, the cavity-throat

combination acts as low pas filter. i.e.

279(‘14‘/[7 ST

where Sp is the area of diaphragm, V is the volume of front cavity, Sy is the throat
area, f, refers to desired upper frequency limit.

Hence, the throat area of the horn can be calculated as,

s, =2 r (3.25)

In this text throat area will be calculated in terms of the Thiele/Small driver
parameters similar to Edgar [26] formula. Assuming the fact that Qums>>Qgs, then

Qrs=Qgs for all frequency range.

S, = M (3.26)

C

where Qgg is the electrical quality factor, Qys is the mechanical quality factor, f; is
the resonance frequency of driver in free-air and V,, is the equivalent volume of
suspension (m3)

The size of the compression chambers depends on the driver and the working
frequency range. For compression chamber volume Keele’s [56] formula can be
performed during calculation which is simple practical formula for the use of
fundamental electro-mechanical driver parameter, first derived by Klipsch [21]. Vg is

the back volume (volume of compression chamber next to horn throat).
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Vy=—-—"— 3.27
BET » (3.27)
erTS

or, to obtain the correct rear cavity volume for reactance annulling Vp (V,»Vp) can

be calculated in terms of the Thiele/Small driver parameters. Keele mentioned a

comparative listing of horn design equation for Sy and Vp in Table I [56].

— Vas fs QTS

Vs f.

(3.28)

Since ry can be calculated from equation (3.23). Area of the mouth can be found
either for the circular cross-section but then it can be turned to rectangular cross-
section for the equivalent area and one can find corresponding width (w) and height

(h) by knowing desired width to height ratio.

S, =7, (3.29)

w= S—M or h=./S, Ratioy,,, (3.30)
Ratioy,

Where Ratiow/y is the width-to-height ratio of the rectangular cross-section

All of the equations from equation (3.23) to equation (3.30) also valid for other type
of flare profiles. Therefore while deriving the equation of different type of horns,
these similar equations will not be repeated. Author will focus mainly on calculation
of flare contour. Continuing from exponential contour, the last important parameter
to find is axial length. After some modification on equation (3.14) and taking

logarithm of both side results the following equation (3.31);

an;M)
L= (3.31)
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Fig.3.6 Top view of a non-folded exponential horn contour

3.1.2. Conical Horn Contour

The conical horn is the easiest one to calculate and stuff into a box, but it's also the
least efficient. Conical contours are seldom employed for bass horns, because of the
poor response and the impossibly long horns that result. This type of horn is a

particular case of the Bessel horn and its shape is given by

S(x) =S, (3.32)

Xo

An alternative approach to the previous analysis of the acoustic horn is to express

equation (3.2) in terms of velocity potential ¢, and by using the transformations
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p=p? (3.33)

ot
And
o _ando_[par]oe 334
or 9gox | por|ox '

And finally the wave equation becomes

99 _p %i(logS(x))—cz

d°¢
=0 3.35
ot? ox dx ( )

a”
Inserting equation (3.32) to equation (3.35) for S(x) gives;

ﬁ:c{ﬁﬁa_q _ () (3.36)

ot? ox>  x ox x  ox?

In this text just the solution of this equation will be given, detailed calculation is out

of purpose and can be found in basic acoustic books.

b= ¢ ) LG ) (3.37)
X X

After putting velocity potential ¢ term into eqn. (3.33), the acoustic pressure at X can

be found. For the case of a very long horn, Olson [17] gave the real and imaginary

components at the acoustical throat.

So the acoustical resistance term Rz at the throat for the conical horn is

2
RT = ﬁ (kx—0)2 (3.38)
Syl 1+ (kxo)
and the reactance term X7 1s
X, :ﬁ{&z} (3.39)
Sp 1+ (kxo )
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Throat area and the mouth area calculated similar to exponential part. As mentioned
before equation (3.23) to equation (3.30) are all applicable to all kind of horns. The
difference is the fact that there is no specific cut-off frequency for the conical horn as
exponential has, but one can mention about critical frequency range at which the
resistance of the horn throat is bigger than the reactance of the horn throat. This can
be also concluded from Fig. 3.3.

In order to R>X7r

(kx,)* > kx, — kx, >1 (3.40)
since
k= 27” (3.41)

where k 1s the wave number and

A=— (3.42)
f

equation (3.40) corresponds to

27f c

—Xx,>1 or f> (3.43)
c

27x,

So, if the desired frequency range is given, one can calculate corresponding xo (in
fact minimum Xg). Higher the x( value, more resistive future the horn has. Due to the
limiting condition of horn dimensions, it isn’t meaningful to obtain very long horn.
For most practical conical horns, this condition is not well satisfied, because it would
require a very long horn. The accepted rule of thumb concerning horn length is that
the horn will work as intended provided the horn is no shorter than 1/4 wavelength of

Fc.

By knowing xy and rr (radius of the throat) and ry, (radius of mouth), flare constant

(m) and axial horn length (L) can be calculated as following,

— (3.44)

39



L, == (3.45)

Fig. 3.7 Isometric view of a non-folded conical horn, constructed in MSC.Marc.

3.1.3. Tractrix Horn Contour

There are many discussions about the wavefront shapes within the horn and
throughout the propagation through the horn. Some of the discussion based on the
increasing of curvature from plane waves at the throat to a certain curvature at the
mouth. But Voigt [9] claimed that wavefront within the horn must be spherical and
of the same radius through the horn. His reasoning is, if the curvature increases from

zero curvature at the throat to a certain curvature at the mouth, point in the axis
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should travel faster than point at the wall. Thereafter, he concluded that the horn

contour should be the tractrix.

The tractrix formulation is

x=r, In —(rM )| e —r (3.46)
r

X

Where, x is the distance from the mouth, 7, is the radius at the distance x from the
mouth. To use this formula, choose your ry,, select a value for r, of between zero and
rm, then calculate the distance from the mouth x (at this radius) and in order to find
axial length (L), rr should be put into equation (3.46) instead of r,. Since ry can be
calculated from equation (3.23) and r7 can be calculated from equation (3.26), there

is only one unknown left in the equation which is Ly.

As Dinsdale [83] stated that tractrix has a dominant exponential term for the first half
of its length from the throat to mouth, but thereafter it flares at an increasingly flaring
rate until 180° included angle. The tractrix horn is the shortest one for a given throat
and mouth dimensions. Again it can be turned into rectangular cross-section shape
after setting the throat and mouth area by using equation (3.29 and 3.30). Fig. 3.8

shows the tractrix horn constructed in MSC.Marc.Mentat.
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Fig.3.8 Isometric view of a tractrix horn, constructed in MSC.Marc.

3.1.4. Hyperbolic Horn Contour
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In 1940 Freehafer [12] published an exact solution for a hyperbolic horn whose

solution was not based on Webster’s equation. After a while Salmon synthesized a

new family of horns by using relations among the real and imaginary parts of the

reciprocal of the horn impedance and the shape parameter.

By looking fig. 3.3 it can be said that throat resistance for the hyperbolic horn

reaches the value of unity quicker than the other type of horns. From this aspect, for

best loading conditions over the frequency range over the cut-off frequency

hyperbolic horn should be preferred. However, non-linear distortion is higher for the

hyperbolic, because hyperbolic horns have a tube that flares very little until it gets to

the end where it flares suddenly. The problem with such a long tight flare is that as
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sound pressures increase, the restricted passage for the air causes it to compress and

distortion occurs.

The general hyperbolic horn contour formula is

2
S(x)=S, (cosh X 4 M sinh iJ (3.47)

Xo Xo

Where x: axial distance from the throat in meters
xo: reference axial distance from the throat in meters

M: family parameter whose value is between 0 and 1

and

_ C
27x,

fe (3.48)

By knowing St and Sy from eqn. (3.26, 3.29) length of the horn can be calculated by
a simple code written in Pascal language at Delphi (code 3.1, Appendix 1). After all

hyperbolic horn construction can be completed as in Fig. 3.9.
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Fig. 3.9 Top view of a meshed surface of hyperbolic horn with front cavity,

3.2. Foldings

Horn loudspeakers, and particularly low frequency horn loudspeakers, are commonly
used in applications where large, linear sound outputs are needed such as in sound
reinforcement and active noise cancellation. Because low frequency horns can be
very large, the physical dimensions of this kind of horn loudspeakers may be reduced
by folding the horn. There are many ways of folding horn. In this text, axial length is
taking into account and horn will be folded to fit into a box having a limited axial
dimension. If the bends are not sharp when their lateral dimensions approach half
wavelengths, sound transmission will be efficient. Beranek [16, Fig.9.16] gave some

data on the effect of bends of various types in rectangular ducts used in ventilating

constructed in MSC.Marc

systems which are shown in Fig. 3.10.
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Fig. 3.10 Attenuation of sound due to the introduction of 19° and 90° bends as a

function of frequency, [16].

Rayleigh [1] showed that bends in tubes of constant cross-section have no effect on
transmitted sounds if the wavelength is larger than the diameter. According to
Wilson [7] the horn diameter at bend must be less than 0.6 times the lowest
wavelength. It is also applicable for rectangular cross-section such that, width should

be less than 0.6 times the lowest wavelength.

The important factors taking into considerations are

a. At the bends, axial horn length needs to be modified through coordinate
transformation from cartesian to polar coordinate.

b. A relation for this coordinate transformation should be developed while
switching the coordinates

c. The arc length radius needs to be determined to calculate axial length of
the horn at the bends. In fact, plane of cross-section turns around the axis
and generally arc length radius (r) will be quarter of the corresponding
plane width (or diameter if it is circular cross-section) R.

d.  Cross-sectional area should be increased in accordance to horn contour

in turning the bends, so the arc length radius does.
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At the beginning of the bend, cross section (square) will be separated into 4 equal

triangles (fig. 3.11). In fact they are trapezoid in shape. Initial the top length is zero

and at the end top it reaches to the value of R,. Cross-sectional area will be increased

from S; to S, during bending.
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Fig. 3.11 Cross sectional view of horn at the beginning of the bending and at the end

of the bending

3.2.1. Folding in the Exponential and Hyperbolic Horns

For exponential and hyperbolic horns exponentially increasing curves are tried to be

fitted into polar equation. Then, arc length of the propagation curve will be found. It

is also the corresponding axial length for that particular turn. Finally cross sectional

areas will be compared.

46

(3.49)

(3.50)



Where 0: polar angle (angle of bend)

n: polar coordinate flare constant

The arc length Ly (axial length of the folding part) can be found from,

L :]r\/rz(a){d;(g)j de

For exponential horn, if there is no folding, S, will be,

_ m(Li+Lp) _ mLg
S, =S¢ =Se

For hyperbolic horn, if there is no folding, S, will be,
2
L +L L +L
S, =S, (cosh(¥] +M sinh[gﬁ
Xo Xo

Where L;: Axial length before the folding
Lg: Axial length of the folding part

For & radian turn one can find final radius (r,) by using eqn. (3.50)

_ nx
r, =ne

And
R(60) =4r(0)

Then area S, can also found as following;

S, :R22 _R12

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Comparing eqn. (3.52) or (3.53) with eqn. (3.56) gives the corresponding n value. By

knowing n value, radius of curvature can be found for different rotation angle from

eqn. (3.50), so do x, y, z components of the horn contour. Finally, corresponding

single-folded hyperbolic or exponential horn can be obtained as in Fig. 3.12.
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Fig.3.12 Single folded hyperbolic horn contour.

3.2.2. Folding in the Tractrix and Conical Horns

Bending contour calculation of conical horns are very similar to previous section

except radius of curvature formula, such that

r(@)=r(n6+1) (3.57)

For the tractrix case, it’s a little different since tractrix requires inverse calculation
and tractrix horn contour equation gives directly axial distance from the mouth. So
that, required bending length can be stated before and suitable radius of curvature
can be found from both tractrix formula and arc length formula. After all equate them

and try to error go to zero.

For example, let the bending length (Lr) is

L, =L (3.58)
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By using equation (3.46) for L, then R, and R; can be calculated, so do r; and r;.
Part of the calculation code written in Delphi is given in Appendix (Appendix 1,
code 3.2).

Sound Propagation

i
E
)

A
Ly
.

Fig. 3.13 Top view of double folded tractrix horn contour.

3.3. Distortions

There are some types of distortion in horn loudspeakers due to internal cross-

reflections and standing waves set up within the horn.
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The air overloaded distortion is caused by the non-linear relationship between
pressure and volume of the air in the throat of the horn as it undergoes adiabatic
compression and expansion. A sound wave of large amplitude cannot be propagated
in air without change in the wave form. The volume change for an increase in
pressure will be less than the volume change for an equal decrease in pressure.
Beranek showed that for large change of volume, the pressure built up in the throat
of the horn is no longer sinusoidal (Fig.3.14) even tough displacement of diaphragm
is sinusoidal [16, Fig.9.11] and he has also derived the relationship for 2" harmonic
distortion at the throat of an infinite exponential horn. If the horn were cylindrical
pipe, the distortion would increase the wave progressed towards the mouth. In the
case of exponential horn (flaring horn), the amplitude of the pressure wave decreases
as the wave travels away from the throat. In order to have low distortion the horn
should flare out rapidly to reduce to pressure amplitude, so that the second harmonic
distortion does not increase linearly with distance. From this point of view, conical

horns will generate the least distortion since it flares out rapidly.
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Fig.3.14 Adiabatic pressure/volume relationship for air.[16].
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Olson [17] stated that delivering large sound outputs with small distortion may
require large throat which should also suitably coupled to large diaphragm to obtain
high efficiency. He also showed that at low frequencies where the amplitude of the
diaphragm is large that volume of the air chamber becomes alternatively zero and
two times the normal value, the acoustical reactance of the acoustical capacitance is

very large compared to acoustical resistance of the horn.

Furthermore, stiffness of suspension systems of diaphragm may not be a constant,
but a function of the amplitude. The materials of the horn can also resonate and they
are also accentuated if the horn is folded, when wavefronts will be distorted at the
bends. These are the other factor create distortion. It’s good to choose properly
compliance of the suspension system and the compliance of the air chamber, so that

high efficiency obtained.

3.4. FEM Geometry of Horns

The previous sections have dealt in some detail with the basic theory of the various
kinds of horn. In this study, a computer interface (Fig.3.15) called as “Folded Horn
Design” has been developed in Delphi to facilitate the construction of the horn
geometry by reducing the geometrical modeling time in a commercial FEA program.
This interface works jointly with MSC.Marc-Mentat and provides users opportunities
such that they can change the primary parameters and horns will be modeled
according to these parameters. Cut-off frequency, types of cross-sectional area of the
mouth and throat, maximum horn length are the primary designing parameters. The
interface takes the essential geometric design parameters of the chosen horn as inputs
and calculates all the necessary data in conformity with the previously mentioned
horn design procedures. Codes abide by acoustic design criteria have been written in
Pascal language to achieve this parametric design. In accordance with these codes
secondary and the major designing parameters such that; flaring rate, throat and
mouth area of the horn, length of the horn can be calculated and whether the folding
is required or not will be determined. Maximum number folding is limited to two.

After calculating the required data, the interface creates a *.proc file which includes
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horn geometry creation commands and sends this file to MSC.Marc-Mentat. “*.proc
file” is a procedure file which can be run automatically at Mentat from the simple

button “construction” on the “Folded Horn Design” interface.

7' Folded Horn Design

Exponential  Tractiz l Conical ] Hyperbolic ] Diriver ]
i~ Geometric Parameters
f 80.4
Feut off [flare frequency] 200 14 Azt mrm
Radi th 2706
Placement: (1 free air, 2 flaor, 4 wall, 8 comer) [4 SRR mrm
AT throat area 245.4 o
‘width ta Height R atio 10 — cm’2
mouth area P
Speed of Sound 344 mds 2258 cm’2
Haom length 227
Driver Des 0.215 Ty
User Inputs “width of harn 1479_5
Drriver Fs 175 i Construction
) s Heigth of harm 1479_5 s
Diivver Yas 1] dma = .
Box Length 150 - 142 angle - Riadian
M ajor Design
Frimary D esign
o » [ 3 [rom) |2 [rarn] | o
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5 29 7a.2 79.2
g 57 801 801
13 85 il g1
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Fig. 3.15 Computer interface generated by using Delphi

Users have the possibility of changing primary design parameters easily by inserting
desired values to the “User Inputs” panel on the interface. These parameters are
called as ‘Variable parameters’. In this work, these variable parameters are divided
into three groups, which are main driver parameters, geometrical limitation of box
and acoustical parameters such as speed of sound and cut-off frequency. After the
appropriate values inserted, primary calculation will start as soon as the click on the
“Primary Design” button and at the right panel major parameters of the horn, namely

mouth area, throat area, axial length, flare constant if applicable will then be shown.
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Furthermore, at the left screen some useful information will be seen, such that how
many times it requires folding and total length after folding and etc. At the right
bottom table one of the horn contour coordinates can be seen after the “Major
Design” button is pressed. At this point horn is ready to be constructed, so “*.proc
file” can be constituted by means of “create proc” button. Finally, this file can be run
automatically at Mentat with the help of “construction” button and construction of

FEM geometry (Fig.3.16) will be completed.

/

MSC A,

Fig.3.16 FEM geometry of single folded tractrix horn.
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CHAPTER 4

LUMPED PARAMETER SYSTEM MODELING OF HORN DRIVERS

This chapter discusses modeling of the loudspeaker driver. Horn loudspeakers
usually consist of a moving-coil driving unit coupled to horn. Moving coil driving
unit has a diaphragm attached to a cylindrical coil of wire that is suspended in a fixed
magnetic field. For the purposes of horn loudspeaker system analysis and design, it
has been found advantageous to model the driver in terms of lumped parameters. A
good model of a real system may be characterized by its simplicity and also its
ability to provide all the necessary information about the system. In the lumped
parameter system models the real system such as horn driver is modeled as a
collection of finite number of simple components. All of these components can either
store or dissipate or transform energy and they are assumed to have only one
property value for each component. The behavior of components and their
interconnections will then be described by linear algebraic and/or linear differential

equations.

Throughout this chapter, after some analogies mentioned a little, lumped parameter
electro-mechano-acoustical equivalent system and the corresponding linear graph of
the driver will be depicted. The main objective sought in the analysis is to find

diaphragm velocity or sound pressure at the throat.

4.1. Analogies

While working with multi-domain systems like the loudspeaker, transformation from
one domain to the other is required. For example, the equivalent electric circuit can
be constructed by transformation of mechanical and acoustical systems into electrical
domain. The following variable classification based on the type of measurement will
be used to classify physical variables:

a. Across variables (V)

b. Through variables (f)
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In the analysis of loudspeaker driver units it is popular to develop analogies. There
existed several types of analogy. Most common ones are impedance and mobility
analogies. For the mobility analogy; voltage, velocity, angular velocity and volume
velocity are treated as analogous to each other. Also current, force, torque and
pressure are analogous variables. On the other hand, for the impedance type analogy;
current, velocity, angular velocity and volume velocity are analogous to each other.
Whereas voltage, force, torque and pressure are analogous variables. With respect to
distinction between through and across variables; across variables are voltage,
velocity, angular velocity and pressure, while through variables are current, force,
torque and volume velocity. For this type of analogy, it can be said that it’s a mixture
of mobility and impedance type analogy, such that for the electrical and acoustical
domain it’s similar to impedance type but for the mechanical case it’s similar to

mobility type of analogy.

In this chapter successively electro-mechano-acoustical circuits will be constructed
then linear graph will be constructed. While constructing an electro-mechano-
acoustical equivalent circuit, for the mechanical part mobility analogy will be used
and for the electrical and acoustical part impedance analogy will be used. On the
other hand, for the linear graph modeling through and across variables analogy will

be preferred.

4.2. Electro-Mechano-Acoustical Circuits

Analogies mentioned in previous section are used to construct equivalent electrical
circuits for acoustical and mechanical systems. The purpose is the application of
electrical-circuit theory to obtain governing dynamic equations for mechanical and
acoustical systems. Not only a schematic representation of the components and their
connections make it possible to visualize and understand the system, but also the
differential equations can be formed directly from these schematic diagrams. Before
the construction of lumped element equivalent electro-mechano-acoustical circuit,
it’s better to designate simplified physical model of horn-loaded moving-coil

loudspeaker driver (or compression driver) (Fig.4.1).
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Front Cavity

Back Cavity

Fig.4.1 Simplified model of a horn-driver system

Vibrating diaphragm (cone) of a moving coil loudspeaker is appreciably larger than
the voice coil to enhance the efficiency of radiation at low frequencies. The time
required for a displacement of the cone center to propagate the rim is small compared
to the period of vibration at low frequencies, so that the cone may be assumed to
vibrate as a rigid surface. Nearly all modern power amplifiers used for loudspeakers
are regarded as low output impedance and constant voltage type. Thereby, output

impedance of the driving source is assumed to be negligible.

Loudspeaker impedance character is an important matter, for the aspect of the power
transfer and stability characteristics of the loudspeaker. The impedance curve of a
basic loudspeaker displays a peak at the first (bass) resonance frequency. The
electrical equivalent of the mechanical resonance of the cone and suspension at the
bass resonance is a series resonant circuit for the impedance type of analogy. It
shows minimum value of mechanical impedance at the resonance, as constant force

produces the maximum velocity or displacement at that frequency.

A moving-coil loudspeaker driver can be modeled with lumped-parameter
characteristics and with coupling between the electrical, mechanical, and acoustical
domains. There are two components transforming energy between two medium. The

first one is the coupling between the electrical domain and the mechanical domain
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due to the alternating Lorentz force acting on the voice coil. And the second one
involves the coupling between the mechanical and acoustical domains due to the
motional coupling of the cone and the air adjacent to the cone. For the first type
coupling, a transformer will be used, not the gyrator, since the voltage in the
electrical loop scales with the velocity (voltage in the mechanical loop). If all
domains were constructed based on the impedance analogy, the circuit would be
different like Leach’s complete electro-mechano-acoustical circuit [25, Fig. 2.] and

the first coupling transformer would be turned into gyrator.

The voice coil of a driver is initially modeled as a resistor Rg in series with an
inductor Lg in the electrical part with the impedance analogy. The moving-coil driver
connected to a driver of voltage e, which supplies a current i,. The diaphragm and
suspension system are modeled in the mechanical part with the mobility analogy as a
damped mass-spring system (with mass Myp, compliance Cyjp, and resistance Ryp).
In the mechanical part, across variable is driver velocity (vp) and through variable is
force (fp). In the acoustical part, after applying the impedance analogy, Rag and Cagp
represent the acoustical resistance and compliance of the box of volume Vg and Cxp
is the acoustical compliance of the front chamber (V). The radiation loading of the

horn is Zay (Fig. 4.2).
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Fig. 4.2 Complete electro-mechano-acoustical circuit of horn loudspeaker system.
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Behind the diaphragm, there is a space (cavity) that can be filled with soft acoustical
material and in mid frequency range this space adds the system a compliance Cap
and the resistance Rg. This back volume resistance and reactance combines with the
radiation loading of the horn throat since the diaphragm must develop power both to
its front and its back. Therefore, in the acoustical part of the circuit these terms are
shown as series branch. While air space compliance Car in front of the diaphragm is

parallel to the horn loading.

This circuit can be simplified to a single-domain representation by carrying the other
domain parts of the circuit into the one domain part by means of impedance

transformation from a transformer or gyrator.

For example, acoustic parts are converted through the area gyrator into the
mechanical mobility analogy then all the mechanical mobility parts are carried
through the transformer into the electrical impedance analogy. The result is shown in
Fig. 4.3. In a similar manner, electrical and mechanical parts can be transformed into

the acoustical part, given in Fig. 4.4.
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Fig. 4.3 Complete mobility type electrical equivalent circuit of horn speaker system
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Fig. 4.4 Complete impedance type acoustical equivalent circuit of horn speaker

system
Note that impedance Z is the inverse of mobility z. One circuit is known as the dual
of the other circuit. While converting a circuit from one analogy to the other type,
series element should be converted to parallel elements; capacitor is converted to
inductor and vice-versa.

4.2.1. Electrical Circuit

The electrical part shows the moving coil driver connected to a generator of voltage

e, which supplies a current i,.

VRE VLE

Fig. 4.5 Electrical circuit
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Equations for the electrical system:

v ()= Ryi, (1) @.1)
v, (=1, 2e? (4.2)
- dt

By using Kirchoff’s Voltage Law

e, (O)=vp +v, +Vpp =R () +L;

di (1)
§ " 4+ Blu(t) 4.3)
dt

4.2.2. Electro-Mechanical Transducer (Ideal Transformer)

Electro-magnetic part converts electrical energy into mechanical case by means of
transformer element. If both mechanical and electrical domain are constructed by
impedance analogy this transformer element is gyrator if electrical part is made with
impedance and mechanical circuit made with mobility analogy then it will be

transformer.

A permanent magnetic material produces a constant strength magnetic field B. When
an electric current i,(t) is supplied to the voice-coil, it produces an electro-magnetic
force Fpm(t) acting on the voice-coil and the mechanical system attached to voice
coil. The length of the wire on the voice coil called / and assumed constant. When
the voice-coil moves in the magnetic field, a EMF voltage vgme(t) proportional to the

velocity u(t), is produced across the terminals.
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Fig. 4.6 Electro-magnetic transducer (transformer)

F,(t) = Bli, (1)

Ve (8) = Blu(t)

4.2.3. Mechanical Circuit

The mechanical system is shown for the mobility analogy.
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Fig. 4.7 Mechanical circuit
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Equations for the mechanical system:

Fo, (t)=— j u(t)dt (4.6)

Frpy (1) = =R, u(t) 4.7)

FMD(I):MMDM (4.8)
dt

From Kirchoff’s Current Law;

fo@)=F,, )+ Fy, )+ F,, (t)+ F, (1) (4.10)

4.2.4. Mechano-Acoustic Transducer (Ideal Gyrator)

This type of transducer occurs at a junction point between the mechanical and
acoustical parts of an analogous circuit and it converts mechanical energy to

acoustical energy by means of turns ratio equals to piston area Sp.

Faum Up
—> —>
1 ZSD

u(t) P(t)

Fig. 4.8 Mechano-Acoustic Transducer (Gyrator)

Basic equations:
Fg, ()=S,P(t) 4.11)

U, ) =S,u(t) 4.12)
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4.2.5. Acoustical Circuit

In the acoustical part of the circuit pressure is the voltage (across variable) and
volume velocity is the current through variable. The current Up is volume velocity

emitted by the driver cone.

Pra Pca

K N\ K\
UD RAB CAB
— I

urt| ud

P(t) Cuar == ZaL Pcp
Fig. 4.9 Acoustical Circuit
Equations for the acoustical system:
Py (1) =R,,U , (1) (4.13)
1 1
Py(t)=——[U,(2)dz (4.14)
CAB
1 t
Py (t)=——[U,(0)dr=2,,U, (1) (4.15)
CAF
From Kirchoff’s Voltage Law;
P(t)= P, )+ P, )+ P, (t) (4.16)
Up)=U,(0)+U, (1) 4.17)
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By using equations given above and known driver parameters are sufficient to
determine diaphragm velocity, volume velocity of air and pressure fluctuation at
throat. At this point, it should be noted that a generalized analysis of horn-loaded
driver system is impossible because of the dependence of Za; (horn throat
impedance) on the horn geometry and on frequency. More detailed calculation will
not be given for electro-mechano-acoustical circuit, but it will be performed later

while linear graph model of the driver is being analyzed.

4.2.6. System Efficiency

As Keele [87] stated, maximum efficiency occurs at the driver’s resonance
frequency. If driver mechanical losses are neglected, the maximum nominal
efficiency can be obtained when the acoustic load resistance equals to the driver’s
voice-coil resistance and the maximum true efficiency occurs when the reflected
acoustical load resistance is much higher than the driver’s voice coil resistance. The
system efficiency is defined in the mid-frequency range. Because the fact that while
higher compression ratios will raise the high frequency efficiency, it may decrease
mid-frequency range efficiency.

The nominal efficiency of horn-driver system is calculated by dividing the acoustic
output power by the nominal electrical input power. True efficiency however is
calculated by dividing the acoustic output power by the true electrical input power.

Nominal electrical input power (Png) for compression driver:

P, = (4.18)

Since modern amplifiers exhibit very low output impedance, it provides constant-
voltage operation regardless of loudspeaker impedance. Various simplifications can
be made to determine the maximum efficiency. Keele [87] analyzed how to
maximum efficiency change with the corresponding simplification and displayed the

equations and results.
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4.3. Linear Graph Modeling

As stated before several different types of analogies between variables and elements
may be defined. In this section, generalized “through” (f) and “across” (v) variables
have been applied to relate elements associated with the linear graph system
representation. Linear graph allows to develop modeling methods that are similar to
well known techniques for electrical circuit analysis. There is also bond graph
modeling (Appendix 2, Fig. 1) similar to linear graph, based on the concepts of
“effort” and “flow” variables a little bit different from “through” and “across”
variables, such that for the first forces and electrical voltages are considered to be
analogous, while in the linear graph method forces and electrical currents are

considered to be analogous.

First, general theory of linear graph modeling will be given, and then application to
horn-loaded compression driver will be shown. Finally, driver will be analyzed by
using lumped parameter linear graph model in order to find diaphragm velocity or

sound pressure at the throat.

4.3.1. One-Port Elements

One port pure elements can be defined as the pure elements possessing only one
energy port for the energy exchange between their environments. According to their
energetic behavior they can be divided into two main groups

a. Active Elements

b. Passive Elements

There exist two versions of active elements,

i. A-Type Active Elements
The generalized across-variable (v) is defined function of time v,;=f(t) and is

independent of through variable (f).
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ii. T-Type Active Elements
The generalized through variable (f) is defined function of time f=f(t) and is

independent of across-variable (v).

For the horn loudspeakers case, since it’s driven by voltage source e,, it can be
considered as A-Type active elements. For the definitions of ideal source types refer

to Appendix 2 (Table 1).

There are one dissipative (D-Type) and two storage passive elements. Storage

elements are known as capacitive (A-Type) and inductive (T-Type).

i.  D-Type Passive Elements (Energy Dissipators)
They are defined by an algebraic relationship between the across and through

variables of the form:

vy =F(f) or  f=¢0,) (4.19)

where F and ¢ representing single valued function. Elemental equations of D-Type
passive elements and their corresponding power dissipated equations can be seen in

Appendix 2 in a tabular form (Table.2).

ii.  A-Type Passive Elements (Capacitive Stores)
These elements are characterized by their energy storage feature by virtue of
across variable associated with them. They are defined by a constitutive
relationship between the integrated through (h) and the across variable (v;;)

associated with as

h=¢(v,,) (4.20)
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where 1 representing a single valued monotonic function. Elemental and

constitutive equations of A-Type passive elements and their corresponding energy

storage equations can be seen in Appendix 2 in a tabular form (Table.3).

iii. ~ T-Type Passive Elements (Inductive Stores)
These passive pure elements are characterized by their energy storage feature by

virtue of through variable associated with them.

X =Y (f) (4.21)
where i representing a single valued monotonic function and x»; is the generalized
integrated across-variable. Elemental and constitutive equations of T-Type passive
elements and their corresponding energy storage equations can be seen in Appendix

2 in a tabular form (Table.4).

4.3.2. Two-Port Elements

The process of energy conversion between different domains is known as
transduction and elements that convert the energy are defined as transducers. There

are two ideal two-port transducers, namely transformer and gyrator.

i.  Transformers
Either the integrated across variables of the two ports are related by single valued
functions as
X, =4(x,) (4.22)
Or the integrated through variables of the two ports are related by single valued

functions as

by =v(h,) (4.23)

ii.  Gyrators
Integrated across variable of one of the ports is related to the integrated through
variable of the other port;
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x, =d(h,) (4.24)
or

h, =y(x,) (4.25)

4.3.3. Linear Graph of Horn Loudspeaker System

For horn loaded loudspeaker, there is electrical, mechanical and electrical domain.

In the electric part, there is one A-Type active element V, (driver voice coil input
voltage), one T-Type passive element Lg (voice coil inductance) and one D-Type

passive element Rg (voice coil resistance).

In the mechanical part, there is one A-Type passive element m,, (mechanical mass of
driver diaphragm assembly), one T-Type passive element k, (mechanical stiffness of
suspension system) and one D-Type passive element by, (damping coefficient of

suspension system).

Finally, in the acoustical part, there are two A-Type passive elements Cg, Cr (back
and front volume capacitance), two D-Type passive element Rp (back volume
resistance), Ray (resistance of the horn throat) and one A-Type passive elements MaL,

(capacitance of the horn throat).

Voice coil loudspeakers are also energy transduction devices for transduction
between electrical and mechanical translational system. Therefore, there is a
transformer with a turns ratio (TR) equal to 1/(Bl). Furthermore, driver cone acts as a
piston and provide transduction between mechanical translation and fluid systems.
So, there is also gyrator with a turns ratio equal to the piston area Sp.

Complete linear graph of horn-loaded loudspeaker system is given Fig. 4.10.
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Fig. 4.10 Complete linear graph model of horn-loaded loudspeaker.

In this graph Cp and Cr act as a capacitance. Principle of conservation of mass
requires;

d dp _dv
=S (pv)=vE 4 pLl 4.26
PO dt(/) ) i pdr (4.26)

where V is the volume, p is the mass density of the fluid. Since there is no external
flow (Q=0) into the volume box Vg and volume of front chamber V. Left side of the
Equation 4.26 is zero. It’s also known that

dv
=0 4.27)

And equation of state requires that;

Yol
dp=Lap (4.28)
B

where £ is the bulk modulus of elasticity [Pa] of the liquid. It’s important to note that

bulk modulus of gases can be expressed as

B =np (4.29)
By using above equations, it can be found that

V dp -
Q:EE:Cf |28 (4.30)

Therefore, acoustical compliance of air in box Cg and acoustical compliance of air in

front chamber Cr are considered as capacitive (A-Type passive) elements.
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Since the impedance of horn throat is hard to compute and dependent on the horn
geometry and frequency. Its effect will be analyzed later with the help of acoustic
finite element analysis software. For simplicity while finding cone velocity the
coupling between voice coil motion and horn loading is overlooked. The widely used
methods of direct-radiator loudspeaker system analysis, based on the pioneering
work of Thiele and Small, neglect the radiation impedance components in deriving
the system response functions [47-53]. Neglecting these components provides a very
powerful simplification of the equivalent circuit that helps the designer in deriving
the appropriate response functions and system relationships. One of the main effects
of not including the radiation terms in the analysis is that all derived responses are
high-pass functions. After simplifications, new linear graph (Fig. 4.11) will be
analyzed. Diaphragm velocity, or acoustic pressure at the throat area will be found by
means of linear graph model and this data will be used as input variable (source) for

the acoustic analysis of FEM geometry of the horns.

Vi

Fig. 4.11 Linear graph model of horn driver.

Number of branch (B) is equal to 13, number of node (N) is 7, and there is one A-

type active element (A,=1).
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4.3.4. Analysis of Linear Graph Model

For the analysis of Fig. 4.11, first appropriate normal tree should be constructed.
Procedure to form normal tree is

i.  Entering all A-Type active elements

ii.  Completing the tree by using maximum number of A-type passive elements

iii.  If the not complete at step ii., complete it by using D-Type passive elements.

_ Fundamental Cutsets
Vi )

Fig.4.12. Normal tree and fundamental cutsets

With the normal tree, state equations can be derived for the systems with two port
elements by choosing the primary variables as the across-variables on all branches of
the normal tree and the through-variables on all normal tree links, including those
associated with the two- port elements. The system state variables are the across-
variables of the A-type passive elements in the normal tree, and the through-variables

of the T-type passive elements in the normal tree links.

From the normal tree in Fig.4.12:
Primary Variables: V(), Vi, Pcp, Pcr, Vi Voo Pa, VrE TLE for fom fim OrB
Secondary Variables: ig(1), fum Ocs QcF iw foo Qa ire VLE Voo Vo Vi Pra

State Variables: Vs PCB; PCF) iLE) fkm
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The B-A=12 elemental equations written in terms of primary variables are:

Do o 1 (o (4.31)
d m,

dP.,, 1

e - 4.32
d  C, Qe (*-32)

dP., 1

ZeF 4.33
d C, Qe (*-33)

Moving coil loudspeaker is considered as an ideal electro-mechanical transducer for

which the following constitutive relationship can be written;

V. =(Bl)v, (4.34)

f, =—=(BD)i, (4.35)

Considering the combined fluid and mechanical system, coupled by driver, act as a
hydraulic ram (piston). Thereby it’s regarded as a gyrator and the following

constitutive relationship can be written;

1
T 436
=7%) Q, (4.36)
p, =1 (4.37)
SD
Viee = Relge (4.38)
di,, 1
=—V 4.39
a L (4.39)
fbm = bm vhm (440)
df,
TR 4.41
dl m " km ( )
1
QRB = R_B PRB (442)
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The N-1=6 continuity equations are:

i, (1) = —igy (4.43)
e =l (4.44)
i, =i, (4.45)
P P e e (4.46)
Q) =—Qcs —Ors (4.47)
Ors = Qer (4.48)
The B-N+1=7 compatibility equations are,

Vieg=V,(0)=V, =V (4.49)
Vo = Vim (4.50)
Vim = Vium 4.51)
Vin = Voum (4.52)
Ve = Vom (4.53)
P, =Py (4.54)
Prp =Py = Fer (4.55)

There are 25 equations. On the other hand, the number of unknowns is equal to
summation of two variables per passive element (2(B-A)=24) and one variable per
active element (A=1). Hence, there are 25 (2(B-A)+A=25) unknowns which is the
same as the supplied equations. The secondary variables can be directly eliminated
from elemental equations and by direct substitution the twelve elemental equations
can be reduced to five state equations and placed in the standard form. At this point
before going on the manipulations, linear graph can be simplified more by using

simplified mechanical model of compression driver (Fig. 4.13).
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Spider+Surround+ Diaphragm+Voice Coil+
Back air suspension Air Load

| K m"/
—A\N\— (@)
fh|=> M’
T N T

Front air suspension

/b
Driver+box losses L’

Frame Vi
(Chasis)

OO

Fig. 4.13. Mechanical part of simplified model of a loudspeaker.

Cr (kp) in the acoustical part and Lg in the electrical part will be omitted. In front of
the diaphragm there is an air space with compliance Cr and at low to mid
frequencies the air in this space behaves like an incompressible fluid, that is, ®wCr is
small, and all air displaced by the diaphragm passes into the throat of the horn. The
voice coil inductance Lg is neglected as in the most loudspeaker analyses for low to
mid frequencies. When this is done, new linear graph can be constructed again, such

as Fig. 4.14.
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Fig. 4.14 Simplified linear graph of compression driver

Number of branch (B) is 7, number of node (N) is 4 and there is one A-type active

element (A,=1).

Vi

Fig. 4.15 Corresponding normal tree of the simplified linear graph.
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From the normal tree in Fig. 4.15.:
Primary Variables: V(t), Vim, Va, irg, o, fom, fkm
Secondary Variables: ig(t), fnm, 12, VRE, Vb, Voms Vkm

State Variables: vium, fim

The B-A=6 elemental equations written in terms of primary variables are:

av,, 1

dt - mm fmm
V,=(Bl)v,
fy =B,
Ipp = Vﬁ

RE

fbm = bmvbm
d
ﬂ = kmvkm

dt

The N-1=3 continuity equations are:

i, (1) =iy,

I, =g

(4.63)
fmm :_fb _fkm _fbm

The B-N+1=4 compatibility equations are,

Ve =V, () -V, (4.65)
vb me

vhm = me

vkm = me

The secondary variables can be directly eliminated from elemental equations:
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(4.57)
(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.64)

(4.66)
(4.67)
(4.68)



dv 1

— = ———(f, + fon + fon) (4.69)
dt m,

v, =(Bhyv,, (4.70)

Jp =—(BDig, 4.71)

V.()-V,

lpe = gR—E (472)

fbm = bmvmm (473)

Gin _ KoV i 4.74)
dt

By direct substitution the six elemental equations can be reduced to two state

equations and placed in the standard form.

J [V } (_ (B1) bmJ o, _ Bl
o = mmRE mm mm |: mmi| + mmRE Vg (t) (475)
dt fkm k 0 fkm 0

One way of solving the equation (4.75) is to use “Euler Method” applied to a system
of first order differential equations and given initial condition, so that v,,,(t) and
Jim(t) can be found at any time. The other way is to assume a sinusoidal input V,(t) of
frequency @ and amplitude V,, and found the steady state response at varying

frequencies.

V,(t)=V,, sin(ar) (4.76)

And the Laplace transform V(s) of this input can be written as;

V,(5) =V, () 4.77)
K )

Applying Laplace Transforms and gathering the outputs v,,,(s) and fi.(s) on the left

side of the equation;
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? Bl
s+ (B  bw L Voun (5) @
mmRE mm mm = mm RE Vga 2 2 (478)
"k C fin (8) 0 )

Taking the inverse of the left most matrices and multiplying both sides with the

inverse gives a general equation in the form of equation 4.79;
X(5) =G,y (8)Y(s) 4.79)

where X symbolizes the output (viu,), Y symbolizes the input (V,) and Gyy
symbolizes the transfer function (Gy). After some manipulation, the transfer function

G, between v,,, and V, takes the form, such as:

s(BI)

G,(s)=
s*m, R, +s((BI) +b,R, )+k,R,

(4.80)

At this point

> - has not been added to the equation, since it will be accounted
sTt+a

while obtaining complex frequency response G(jw), such as

D e wzmnf)ﬁ(fz((m)z +b,R,) 80
Amplitude (magnitude) of G(jo) is given by
s
and the phase is defined as

-,
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Then, the output expression (v,,,) at steady state can be calculated from

v, ()= Vga

G( ja)] sin(ar + ¢(w)) (4.84)

Finally, by using equation (4.84) in the “Folded Horn Design” interface with the
driver model equation algorithm, diaphragm ring (cone) velocity (Fig. 4.16) and
phase angle can be found depending on the frequency. ‘“Folded Horn Design”
interface takes the essential driver design parameters of the chosen driver as inputs
and calculates all the necessary data in conformity with the previously mentioned
driver design procedures (Fig.4.17). Users have the possibility of changing driver
design parameters easily by inserting desired values to the left panel on the interface.
After the appropriate values inserted, primary calculation will start as soon as the
click on the “Primary Design” button and at the right panel major parameters of the
driver will be shown. The sample primary design parameters for compression driver
are taken from the ElectroVoice Loudspeaker Company. In primary design stage
while obtaining mechanical mass and stiffness of the driver corresponding Leach
[24] equations will be used. At the right bottom table diaphragm (cone) velocity and

phase angles can be seen after the “Major Design” button is pressed.

Cone Velocity
(Vinm)
4—\-4———>
<« >
<« >
>
Driver \

Front Cavity

Fig. 4.16 Schematic view of the applied cone velocity
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olded Horn Design
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Upper midband cut-off frequency of spstem 12000—H2
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0.
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0.02
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0.03
0.03
0.03
0.03

Fig. 4.17 Driver module of “Folded Horn Design” interface
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CHAPTER 5

ACOUSTICAL FINITE ELEMENT ANALYSIS OF HORNS

After 3D model of horns are constructed automatically using MSC.Marc Mentat by
parallel working with Folded Horn Design interface developed in Delphi software
and diaphragm velocity (or pressure at the throat) is calculated, these data will be
used as input variables (source) for the acoustic analysis of the horns FEM geometry.
Natural frequencies of air inside the horn envelope along with the corresponding
mode shapes as well as directivity characteristics and sound pressure level
distributions for various types of horns can be analyzed and compared with each
other. Effects of folding and flare rate will also be studied and evaluated. These
analyses are carried by means of computational complete acoustic and vibro-acoustic
software, MSC.Actran. In this part, the horns designed for a cut-off frequency of 200
Hertz and with square horn mouth shapes will be considered. The effect of front
cavity Car is also taken into consideration by adding the finite element model of the
front cavity into the finite element model of the horns. Diaphragm (cone) also
attached to the complete model. Chosen diaphragm material is polypropylene and
input material properties of polypropylene entered in the finite element model can be

seen in Appendix 3.

Firstly, natural frequencies and corresponding mode shapes of cavities (Fig. 5.1-
5.12) will be found. These frequencies give some helpful information about how the
cavity behaves. The knowledge of number of natural frequencies and the way they
are distributed in the frequency range of interest is very useful to evaluate
performance of different horn shapes. This information will be listed in tabular

(Table 5.1-5.4) forms.

Secondly, acoustic pressure in terms of its rms value will be calculated. Calculated
frequencies and mode shapes are post processed by using the interface software
MSC. Patran (Actran preference for MSC.Patran) and sound pressure levels (SPL)

are compared for different type of horns in the frequency range of interest (Fig. 5.14-
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5.19). Pressure predictions will be performed out of the horn cavity for two points.
One of the points is taken on the lateral axis of the horn and 2 meter away from the
mouth to find on-axis responses. The other one is again two meter away from the
horn, but located at 30 degree angle with the lateral axis of the horn to find off-axis

responses.

Thirdly, directivity characteristics of the horns will be calculated and compared with
each other in the Fig. 5.21 to Fig. 5.35. Horns are desired to have directionally wide
coverage. This will be evaluated at field points near the exit of the horn mouth for a

radius of two meters.

Finally, general information (number of elements and nodes, calculation times, cpu
specifications) for the computational analysis will be presented in tabular form in

order to show feasibility of these analyses.

5.1. Natural Frequencies

Modal analysis by finite elements is a numerical method to determine natural
frequencies and corresponding mode shapes of a dynamic system by discretization of
the studied geometry. From natural frequency standpoint of cavity it can be said that
the lower the number of natural frequencies in the working frequency range, the
better the horn pressure transmission. In this part horns designed with respect to cut-
off frequency of 200 Hz and upper frequency of 2000 Hz will be analyzed and their
mode shapes at corresponding frequency will be illustrated. Actran uses Modal
Extraction for Eigen value solver. Fig. 5.1 to Fig. 5.4 show a typical mode shapes for
each non-folded horn shapes. Fig. 5.5 to Fig. 5.8 show a typical mode shapes for
each single-folded horn shapes and lastly, Fig. 5.9 to Fig. 5.12 show a typical mode
shapes for each double-folded horn.

These analyses are performed for the first 20 natural frequencies inside horn cavities.
Then, comparison tables will be presented to show the differences in the behavior of

natural frequencies from non-folded to double folded horns in Table 5.1-5.4.
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3.19+003
MSC Patran 2006 r2 06-Nov-06 14:09:08 0 97+003

Fringe: C. result0010_876 4500008 Tnod, Pressure, RMS, | (NON-LA _?-5@ 2 76+003

2bb+003
2.34+003
2.12+003
1.91+003
1.70+003
1.49+003
1.27+003
1.06+003
8.49+002
6.37+002
4.25+002
2.12+002],

5.24-002
default_Fringe :

Max 3.19+003 @Nd 100k
Min b 24-002 @MNd 1474

Fig. 5.1 A typical mode shape of the non-folded conical horn cavity at 876.5 Hz

4.74+003
MSC Patran 2005 r2 06-Now-06 17:29:42 4 424003

Fringe: T, result0003_571.6300008 1nod, Pressure, RMS, , (NON-LAYERED] 411+0083

3.79+003
3.48+003
3.16+003
2.84+003
253+003
2.21+003
1.90+003
1.58+003
1.26+003
9.49+002
5.33+002
3.18+002]

1.95+000
default_Fringe :

Y\ZF Max 4.74+003 @MNd 20b%
Min 1 95+000 @Nd 197

Fig. 5.2 A typical mode shape of the non-folded tractrix horn cavity at 571.5 Hz
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5.33+003
4.97+003
4.62+003
4.26+003
3.91+003
3.56+003
3.20+003
2.84+003
2.49+003
2.13+003
1.78+003
1.42+003
1.07+003
7.12+002)
3.57+002

1.68+000
default_Fringe
Max 5.33+003 @Nd 941
Min 1 hE+000 @MNd 347

MSC Patran 2006 r2 06-Nov-06 14:21:31
Fringe: E. result0005_5817.1100008.1nod. Pressure, RMS, | (NO

Fig. 5.3 A typical mode shape of the non-folded exponential horn cavity at 817.1 Hz

3.64+003
MSC Patran 2005 r2 06-Nov-06 145430 3 40+003

Fringe: H. result0005_734.3400008 Tnod, Pressure, RMS, | (NON-LAYERED) 3 16+003

3.64+003 2 92+003
267+003
2.43+003
2.19+003
1.94+003
1.70+003
1.46+003
1.22+003
9.72+002
7.29+002)
4.87+002
2.44+002¢

8.66-001
default_Fringe
Max 3.64+003 @Nd 8kE
Min 8 66-001 @Nd 187F

Fig. 5.4 A typical mode shape of the non-folded hyperbolic horn cavity at 734.1 Hz
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The modal analysis gave the information on the number of natural frequencies in the
frequency range of interest, i.e., 1 to 2000 Hz. Acoustically speaking the most
prominent effect of these natural frequencies is coloration. Each horn speaker has its
own characteristic coloration. Many bass horns have resonance problems. At natural
frequencies unexpected pressure peaks are appear adversely affecting the response.
Mode shapes figures can be viewed as 3D maps of the rms value of the pressure
inside the horn cavities. Such data is especially important while interpreting the SPL

values of the horns and directivity characteristics.

Table 5.1 to Table 5.4 show the series of harmonically related resonant peaks,
different resonance frequencies of one kind of horns and for the all type (non-folded
to double folded). As folding numbers increase, first natural frequencies getting
smaller values and first 20 natural frequencies range retreats (drops) to range 0-1000
hertz, while in non-folded case 20" resonances reach up to 1168-1569 Hz, in single
folded case they only reach 954-1138 Hz and in double folded case they reach 783-
910 Hertz. This is the proof of increasing the number of folding also increase the

number of resonances (colorations).

In real life applications excessive vibration may be caused by acoustical modes
triggered by structural defects. At the point where the sound comes out of the mouth
of the horn, the edge of the mouth can vibrate in a bell mode. In this study horn walls

are considered as rigid and thereby such defects are neglected.

For a bass horn can radiate at low frequencies, it should be long enough. Due to size
limitations it should be folded. The net result is long, folded and slowly expanding
tube that sounds more like a resonant tube than a wide band bass horn. Typical mode
shapes of single folded horns are given below from Fig. 5.5 to Fig. 5.12. Horn
geometries are cut from mid plane to be able to show the internal pressure

distribution patterns.
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MSC.Patran 2005 r2 06-Nov-06 17:57.19
Fringe: e, result0004_499 5000008.1nod. Pressure, RM3, | (NON-LAYERED) 2 34+005

8.46-002]
z default_Fringe :

Maw 2.70+003 @Nd 802
Min 8 46-002 @ Nd 298¢

Fig. 5.5 Typical mode shape of the single folded exponential horn cavity at 499.5 Hz

MSC Patran 2006 r2 06-Nov-06 18:04:26
Fringe: h, result0013_873.8600008.1nod. Pressure, RMS, , (NON-LAYERED) 5 384003

5.00-001
default_Fringe

Max 6.20+003 @Nd 926¢

Min B 00-001 @Nd G847

Fig. 5.6 A typical mode shape of the single folded hyperbolic horn cavity at 873.9 Hz
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4.256+003

3.96+003
(NON-LAYERED] 368+003

MSC Patran 2005 r2 06-Now-06
Fringe: 1. result0008_788 800000

3.40+003
311+003
2.83+003
256+003
227+003
1.98+003
1 70+003
1.42+003
1.13+003
8b0+002
5.66+002
2.83+002

1.92-001
default_Fringe
Max 4 25+003 @Nd 665
Min 1 92-001 @MNd 7360

Fig. 5.7 A Typical mode shape of the single folded tractrix horn cavity at 788.8 Hz

3.09+003
MSC Patran 2006 r2 06-Nov-06 175233 2 89+003

Fringe: C. result0006_617 9300008 Tnod. Pressure, RM, C(NON-LAYERED]) 2 68+003
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§.2b+002)
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default_Fringe :
Max 3.09+003 @Nd 981
Min 1 94-001 @Nd 11525

Fig. 5.8 A Typical mode shape of the single folded conical horn cavity at 617.9 Hz
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MSC. Patran 2005 r2 06-Now-06 18:15:16
Fringe: ¢, result0003_331 4100008 1nod, Pressure, RMS. | (NON-LAYERED) 1974003

1.86-001
. default_Fringe :
Max 2.28+003 @Nd 89¢

Min 1 §8-001 @Nd 783F

Fig. 5.9 A typical mode shape of the double folded conical horn cavity at 331.4 Hz

2.86+003
MSC. Fatran 2006 r2 06-MNov-06 18:19:17 2 20+003]
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2.94—002
default_Fringe :
z Max 2.36+003 @Nd 17024
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Fig. 5.10 A typical mode shape of the double folded exponential horn cavity at 663.3
Hz
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3.33+003 3.33+003
MSC Patran 2006 r2 06-Nov-06 18:24:24 311+003

Fringe: h. resulto007_475.1000008 1 nod, Pr \MS. . (NON-LAYERED) 5 894003

727001
default_Fringe

Max 3.33+003 @Nd 18337

Min 7 27-001 ERNd 19076

Fig. 5.11 A typical mode shape of the double folded hyperbolic horn cavity at 475.1

Hz
3.34+003
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1.86-002
default_Fringe

Max 3.34+003 @Nd 1564C
Min 1 86-002 @Nd 2879

Fig. 5.12 A Typical mode shape of the double folded tractrix horn cavity at 820.3 Hz
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Table 5.1 First 20 natural frequencies inside the conical horns cavities between the

frequencies of 1-2000 Hz

#" Mode Non-Folded Single Folded Double Folded
Shape (Hz) (Hz) (Hz)
1 409.1 331.1 250.1
2 434.0 331.2 250.1
3 434.1 399.2 331.4
4 565.2 512.8 383.3
5 594.2 617.9 489.8
6 728.1 665.8 551.2
7 728.4 676.2 551.3
8 810.2 676.3 600.4
9 836.9 798.8 615.9
10 876.5 799.0 616.1
11 917.8 812.9 721.6
12 918.7 862.7 735.8
13 924.5 963.9 765.8
14 971.3 967.6 765.9
15 973.1 989.1 779.2
16 1121.4 989.2 827.4
17 1159.3 1066.5 840.2
18 1163.8 1066.6 874.3
19 1164.5 1138.8 910.8
20 1168.2 1138.9 910.9
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Table 5.2 First 20 natural frequencies inside the exponential horns cavities between

the frequencies of 1-2000 Hz

#" Mode Non-Folded Single Folded Double Folded
Shape (Hz) (Hz) (Hz)
1 475.2 285.0 195.7
2 475.3 285.1 195.8
3 476.4 406.8 286.5
4 630.3 499.5 362.0
5 817.1 572.4 399.5
6 900.7 605.0 438.3
7 914.2 605.1 438.4
8 915.0 681.1 503.9
9 1024.8 741.5 568.1
10 1035.2 741.7 568.2
11 1037.2 752.6 597.1
12 1155.1 778.9 638.9
13 1226.2 889.5 663.3
14 1227.2 892.9 664.1
15 1228.2 893.0 664.2
16 1366.3 933.8 734.8
17 1375.1 945.0 758.0
18 1378.1 952.5 763.0
19 1378.9 952.8 763.1
20 1400.8 954.5 783.3
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Table 5.3 First 20 natural frequencies inside the hyperbolic horns cavities between

the frequencies of 1-2000 Hz

#" Mode Non-Folded Single Folded Double Folded
Shape (Hz) (Hz) (Hz)

1 393.9 289.3 210.8
2 474.3 289.4 210.9
3 474.6 417.7 312.1
4 629.6 427.4 376.1
5 734.3 580.9 434.0
6 898.4 601.3 475.0
7 900.1 601.4 4751
8 900.7 609.5 522.5
9 929.2 713.5 618.5
10 1010.7 714.0 618.6
11 1011.2 714.1 635.1
12 1135.7 739.5 696.2
13 1169.9 873.8 699.5
14 11711 873.9 715.5
15 1198.6 904.7 715.6
16 1239.9 921.7 780.0
17 1312.0 922.5 797.8
18 13124 949.0 823.7
19 1362.9 951.8 823.8
20 1369.3 955.8 838.7
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Table 5.4 First 20 natural frequencies inside the tractrix horns cavities between the

frequencies of 1-2000 Hz

#" Mode Non-Folded Single Folded Double Folded
Shape (Hz) (Hz) (Hz)
1 526.9 323.8 225.1
2 527.1 323.9 225.2
3 571.5 468.5 330.6
4 686.2 571.4 384.9
5 913.5 649.8 454.2
6 987.6 707.7 499.6
7 988.2 707.8 499.7
8 990.5 788.8 565.2
9 1148.5 822.6 616.2
10 1149.9 823.7 616.4
11 1225.0 826.2 679.3
12 1240.5 873.7 724.9
13 1326.8 1014.4 725.1
14 1327.6 1014.7 731.1
15 1373.3 1033.3 739.6
16 1475.6 1053.2 820.2
17 1513.5 1064.2 820.3
18 1514.8 1072.3 820.4
19 1536.0 1072.5 832.8
20 1569.1 1091.8 858.9

From Table 5.1 to Table 5.4 show the modal density of corresponding horns and
their coloration frequencies. Frequencies, at which sound waves in a horn resonate,

based on the horn dimensions. The acoustic modes will "color" the sound, i.e.
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enhance certain frequencies and dull others. There are three types of modes. These
are axial, tangential and oblique modes. Since the horns have three dimensional
complex shapes, it’s difficult to distinguish the one from the other. The primary
"axial" resonances involve reflections from two opposing surfaces. Since the horns
are axisymmetrical frequency pairs highlighted bold in table can be considered as
axial modes shape frequencies. Coloration is important when considering sound
propagation within the volume of horn. At these frequencies unexpected pressure
peaks appear and can adversely affect the response. It has been observed that as the
number of folding increase there appears more coloration in frequency range of 100
to 1000 Hz. These colorations frequencies will make sense while interpreting the

SPL and directivity characteristics.

5.2. Acoustic Pressure, SPL

In real life applications, the levels and directivity of sound radiated through horn
should be determined by measurements of sound levels at predefined points away
from the horn mouths. Test procedures are developed to specify measurement
conditions as well as locations of microphones. Measurement environment is often
specified as anechoic space. In numerical studies to predict the sound levels and
directivity characteristics radiation into free field is considered. Field points in the far
field can be assigned to calculate these characteristics. They can be located anywhere

inside any (acoustic or not) finite or infinite elements.

Analysis software MSC.Actran is capable of using finite and infinite elements
together. Infinite elements allow for sound pressure levels calculation even far from
the source. The discrete model of the surrounding air combines finite element
modeling for the horn-shaped air cavity in the near field and infinite element
modeling for the far field radiation. Fig. 5.13 shows the representation of the both

domains covering the source.
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Fig. 5.13 Representation of the model for near to far field analysis

Frf (frequency response function) file of MSC.Actran can directly be plotted by any

plotting tool (Patran) or loaded into Matlab or Excel (as ASCII file) in order to

generate SPL vs. frequency curves. MSC.Actran uses direct sequential solver for the

linear systems solver. There are three types of direct sequential solver are available.

These are

i.  Skyline
ii.  Sparse

iii.  Krylov

Analyses have been performed to found SPL values for two points, Pt.1 and Pt.2 as

shown in Fig. 5.13 for each horn. One of the points is at 2 meter away from the

center of the mouth plane which is on the lateral axis (on-axis) of the horn and the

other point is again 2 meter away from the center of the mouth plane making 30

degree angle with lateral axis (off-axis). For these analyses, Krylov solver is used

because of its high speed of analysis.
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Used driver design parameters of the chosen driver to find the cone velocity for the

analysis can be seen in the driver module of “Folded-Horn-Design” interface from

Fig. 5.14. Applied input power of the driver is calculated from Equation 5.1 as 0.01
Watt.

P=

V2
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R, 2R, 2x8

Exponential] Tractrix] Conical] Hyperbolic  Driver |
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Fig. 5.14 Driver design parameters and input power
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Fig. 5.15 SPL values at Pt.1 for non-folded horns
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Fig. 5.16 SPL values at Pt.2 for non-folded horns
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Fig. 5.17 SPL values at Pt.1 for single folded horns
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Fig. 5.18 SPL values at Pt.2 for single folded horns
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Fig. 5.19 SPL values at Pt.1 for double folded horns
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Fig. 5.20 SPL values at Pt.2 for double folded horns

Fig. 5.15 shows that in the frequency range between 300-1000 Hz hyperbolic and

exponential non-folded horns yield better response than their counterpart since they
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have smoother curve along the frequency range with generally higher average SPL.
This implies these horns are more efficient and free from coloration in the specified

frequency range.

In Fig. 5.16 all the horn responses show similar characteristics with no significant
difference at all between each other. Responses decrease with increasing frequency

as the frequency increase.

When these figures are compared it seems very difficult to predict the best horn
flares types. The sharp peaks and dips need to be interpreted together with the natural
frequencies. For example, there is sharp increase in the tractrix curve in Fig. 5.17
around 710 Hertz which may be attributed to pair of axial mode frequencies of 707.7
and 707.8 Hz (Table 5.4). In Fig. 5.18 the steady decrease on the SPL values of the
hyperbolic horn frequencies 900-960 Hz can be observed. This drop may also be
attributed to the mode shapes (there is 6 mode shapes) in this range (900-960 Hz).
Coloration in this range can trigger the decrease on the SPL values. Similar
observations can be also viewed in the other curves and graphs. Again, conical horn
curve increases sharply at around 720 Hz and drops suddenly at around 840 Hz in
Fig. 5.19. These frequencies are also coloration frequencies 728.1, 728.4, 810.2 and
836.9 Hz as shown in Table 5.1.

There have been no significant differences on SPL responses between each different
flare horn. So it is also preferred to compare non-folded and folded cases besides
making a comparison between different flare rates. Bends caused more distortions
and affected SPL adversely. From below graphs (Fig. 5.21-5.28), the effects of
folding can be observed and compared for each horn separately. All the non-folded
horns show more uniform responses. Less fluctuation is observed at conical horns
with folding (Fig.5.21 and Fig.5.22), while tractrix responses worsen much more

than the others with the folding (Fig. 5.27 and 5.28).
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Fig. 5.21 Responses of conical horn types at Pt.1
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Fig. 5.22 Responses of conical horn types at Pt.2
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Fig. 5.23 Responses of exponential horn types at Pt.1
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Fig. 5.24 Responses of exponential horn types at Pt.2

102




SPL Hyperbolic Horns for Pt.1
(dB)

Non-Folded
— Single Folded
—— Double Folded
f (Hz)
100 300 500 700 900
Fig. 5.25 Responses of hyperbolic horn types at Pt.1
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Fig. 5.26 Responses of hyperbolic horn types at Pt.2
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Fig. 5.27 Responses of tractrix horn types at Pt.1
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Fig. 5.28 Responses of tractrix horn types at Pt.2
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Since the effective length increase with the foldings, SPL values can be higher in
some ranges of frequencies because they behave more like infinite horns and
transmission efficiency increases a bit. But because of higher extent of coloration,
responses are not uniform and fluctuate considerably from uniform behavior. For
horns with finite lengths, resonance results from reflection waves from mouth (also
from bordering enclosures), causing irregularities in the SPL characteristics. It’s also
observed that on axis SPL behaviors (at Pt.1) do not deteriorate as much as the one

off-axis SPL behaviors (at Pt.2). Average on-axis SPL values are listed in Table 5.5.

These values are lower than the real life situations, because input driver voltage has
been taken as 0.4 Volt (then V,,,=0.28 Volt) and driver coil resistance has been
taken as 8 ohm. These values correspond to 0.01 Watt, 100 times smaller than the
standard applications driver input power value (I Watt). In order to find
corresponding values of SPL for 1 Watt power, sensitivity ratings can be used.
Ratings based on the sound pressure level for a given input voltage or power is
known as sensitivity ratings. The sensitivity is usually defined as (dB/W-m) decibels
output for an input of one nominal watt or a specified input voltage. The rms value of
voltage used is often 2.83V, which happens to be 1 watt at a nominal 8 ohms.

Measurements taken with this reference are quoted as (dB/2.83V-m).
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Table 5.5 Average on-axis SPL values of all kinds of horns

Horn Type Average SPL Values (dB)
Non-Folded Conical 81.3
Non-Folded Exponential 80.3
Non-Folded Hyperbolic 80.5
Non-Folded Tractrix 78.9
Single Folded Conical 80.0
Single Folded Exponential 80.8
Single Folded Hyperbolic 81.4
Single Folded Tractrix 80.4
Double Folded Conical 79.9
Double Folded Exponential 79.6
Double Folded Hyperbolic 79.5
Double Folded Tractrix 77.9

Since the SPL analyses are performed at 2 meters away () from the mouth, firstly
corresponding average SPL (SPL;) values at 1 meter (r;) should be found. The
inverse square distance law in the free field for the sound pressure p is inverse-
proportional to the distance r of a point sound source. The pressure at 2 meter is pz
and pressure at 1 meter is pj, then p; can be calculated in terms of p, (Equation 5.2).

By using SPL equation (Equation 5.3) p, values can be found from average SPL

values.
P_n_, (5.2)
P, n
p’ p
SPL = 1010g10(—2J =20log,,(-—) (5.3)

where p is either p; or p, and p, is the reference sound pressure (=1x10® Pascal), and

SPL; is SPL values at 1 meter.
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After calculations all the SPL values 1 meter away from the mouth can be found and
given in Table 5.6. It is also derived from Equation (5.3) that doubling the pressure

corresponds to an increase of 6 dB in SPL.

Table 5.6 SPL values at one and two meter away from the horn mouths

Horn Type Average SPL Values at | Average SPL Values at
2 meter (dB) 1 meter (dB)

Non-Folded Conical 81.3 87.3
Non-Folded Exponential 80.3 86.3
Non-Folded Hyperbolic 80.5 86.5
Non-Folded Tractrix 78.9 84.9
Single Folded Conical 80.0 86.0
Single Folded Exponential 80.8 86.8
Single Folded Hyperbolic 81.4 87.4
Single Folded Tractrix 80.4 86.4
Double Folded Conical 79.9 85.9
Double Folded Exponential 79.6 85.6
Double Folded Hyperbolic 79.5 85.5
Double Folded Tractrix 77.9 83.9

Finally, normalization is needed for the input electrical power. Initial power (P;=0.01
watt) is modified for 1 watt power input (P,). This implies an increase of 100 times.
Then, new SPL values (SPL,) can be calculated from equation (5.4). Corresponding

SPL values for 1 watt driver input (electrical) power are listed in Table 5.7.

P 100P, P
SPL, =10log,, ?2 =10log,, Tl =10log,, Fl +101og100 = SPL, +20 (5.4)

r r r
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Table 5.7 Corresponding normalized SPL values for 1 watt driver input power

(Sensitivity Ratings, SR)

Horn Type SPL2 (4B)

or SR (dB/W.m)
Non-Folded Conical 107.3
Non-Folded Exponential 106.3
Non-Folded Hyperbolic 106.5
Non-Folded Tractrix 104.9
Single Folded Conical 106.0
Single Folded Exponential 106.8
Single Folded Hyperbolic 107.4
Single Folded Tractrix 106.4
Double Folded Conical 105.9
Double Folded Exponential 105.6
Double Folded Hyperbolic 105.5
Double Folded Tractrix 103.9
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5.3. Directivity Characteristics

Complete directivity analysis start with finding sound pressure levels (SPL) at all
points on a sphere surrounding the loudspeaker system. In other words, the
loudspeaker is at the center of that sphere, and the distance between the loudspeaker
and the surface of this sphere would be equal at all points and should be large when
compared to the loudspeaker's dimensions. In order to achieve this, a field point
mesh has been generated and it is used for the analysis of directivity. Because while
measuring directivity, there should be circular shape of field points on x-y plane (or
x-z plane), which is perpendicular to mouth plane of the horns (Fig.5.29). It can be
performed for different axial distance from the throat. Measurements have been

made certain frequencies from 250 Hertz to 2000 hertz and for the radius of 2 meters.

Ee

Finite Element
Domain
(Horn)

Field Points

< Infinite Element
Domain

£

Fig. 5.29 Complete finite element model for prediction of Directivity Characteristics
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Fig. 5.30 Directivity patterns of non-folded horns at 250 Hz
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Fig. 5.31 Directivity patterns of non-folded horns at 500 Hz
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Fig. 5.32 Directivity patterns of non-folded horns at 1000 Hz
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Fig. 5.33 Directivity patterns of non-folded horns at 2000 Hz
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Fig. 5.35 Directivity patterns of single folded horns at 500 Hz
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Fig. 5.37 Directivity patterns of single folded horns at 2000 Hz
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Fig. 5.38 Directivity patterns of double folded horns at 250 Hertz
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Fig. 5.39 Directivity patterns of double folded horns at 500 Hertz
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Fig.5.40 Directivity patterns of double folded horns at 1000 Hertz
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Fig.5.41 Directivity patterns of double folded horns at 2000 Hertz
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By looking at the directivity characteristics plots (from Fig.5.30 to Fig.5.41), it can
be deduced that the higher the frequency the worse is the directivity characteristics.
There appear more lobes in directivity characteristics. With regard to higher
frequencies, non-linearities become more apparent especially after four times the cut-
off frequencies. This rule of thumb comes from the phenomenon of air overload
distortion and Beranek [16, Fig.9.12] showed the percentage of distortion change
according to different f/f;. In this case, f. equals to 200 Hz and 4xf, equals to 800 Hz
and above 800 Hz (at 1000 Hz and 2000 Hz) directivity characteristics heavily
distort. Distortion also increases with folding(s) since the wavefronts at the higher
frequencies can be distorted at bends. Furthermore, at high frequencies the vibration
of a loudspeaker cone takes complex shape, so that normal variations in the
uniformity of cones result in substantial differences in the radiation. This effect may
result to a very irregular and unpredictable response curve and directivity pattern at

high frequencies such as 1000 Hz and 2000 Hz.

As mentioned in the previous section, dB values are evaluated for a driver having
0.01 watt input power. For this reason in evaluation of plots relative levels are
considered instead of the absolute values. It is also possible to add 20 dB to each

point to normalize the results.

5.4. CPU Times and Computer Specifications

All of these calculations have been performed at the computer specifications given

blow:
RAM: 1 Gb (512x2) TwinMos Dual DDR 400 MHz

Processor: AMD Athlon 64 3000+ VENICE (1.8GHz, 512K, S939)
Motherboard: MSI K8N Neo4 Platinium
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Table 5.8 Element and node numbers of all type horns

Finite Element Infinite Total Element
Horn Type Total Node #
# Element # #
Non-Folded
9044 21420 5854 30465
Conical
Non-Folded
9605 25150 6612 34756
Exponential
Non-Folded
9264 12977 4453 22242
Hyperbolic
Non-Folded
9129 39050 8916 48180
Tractrix
Single Folded
54380 25550 16073 79929
Conical
Single Folded
53350 25549 15681 78900
Exponential
Single Folded
58072 25548 16718 83621
Hyperbolic
Single Folded
47643 26268 14517 73912
Tractrix
Double Folded
96090 25526 24976 121617
Conical
Double Folded
93779 24266 23537 118046
Exponential
Double Folded
102748 24669 25494 127418
Hyperbolic
Double Folded
85208 25015 22115 110224
Tractrix

Note: There is also one source element and field points (extra nodes)
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For natural frequency analysis there is no infinite elements, these type of analysis are
just performed for finite elements. Table 5.6 shows the required CPU times for
corresponding horns and memory usage. All the three dimensional elements are

tetrahedral and two dimensional elements are triangular in the finite element model.

Table 5.9 Required CPU Times for the natural frequency analyses
for frequency of 1 Hz to 2000 Hz

Horn Type MEM Usage CPU Times (minutes)
Non-Folded Conical 700 34
Non-Folded Exponential 700 4.1
Non-Folded Hyperbolic 700 3.8
Non-Folded Tractrix 700 3.7
Single Folded Conical 700 15.2
Single Folded Exponential 700 15.1
Single Folded Hyperbolic 700 15.9
Single Folded Tractrix 700 16.8
Double Folded Conical 700 28.8
Double Folded Exponential 700 28.1
Double Folded Hyperbolic 700 31.2
Double Folded Tractrix 700 27.6

While obtaining SPL values of single folded horn in the frequency range 100-1000
Hz, due to time limitations frequency increase steps have been taken as 2. So that,
direct computation for 451 frequencies (100, 102, 104 ...1000 Hz) have been
performed. In a similar manner Frequency increase steps have been taken as 5 for the
double folded horn shapes and by doing that direct computation for 181 frequencies
(105, 110, 115 ...1000 Hz) have been performed (Table 5.7). The higher the node and

element number, the more CPU times are required and/or more memory allocation.
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Since the CPU memory is limited to RAM of computer that the analyses are
performed, time is an important criteria and in order to decrease required time one
should decrease steps as told above. All the SPL analyses have included to total

elements (finite and infinite) and nodes.

Table 5.10 Required CPU times for the SPL analyses for the frequencies of 100 Hz

to 1000 Hz
Horn Type MEM Usage CPU Times | Frequency
(hours) Number
Non-Folded Conical 700 1.6 901
Non-Folded Exponential 700 1.7 901
Non-Folded Hyperbolic 700 1.2 901
Non-Folded Tractrix 700 22 901
Single Folded Conical 700 12.5 451
Single Folded Exponential 700 12.2 451
Single Folded Hyperbolic 700 13.1 451
Single Folded Tractrix 700 11.8 451
Double Folded Conical 700 25.2 181
Double Folded Exponential 700 24.6 181
Double Folded Hyperbolic 700 25.1 181
Double Folded Tractrix 700 23.7 181

Finally, directivity analyses have been performed for different frequencies. These are
250, 500, 1000, 2000 Hz. In order to achieve these analyses field points (extra nodes)
should be added to the geometry. For the frequencies of 250 Hz to 1000 Hz, only 19
field points have been used while for the frequency of 2000 Hz 73 field points have
been used in order to have more accurate graphs. Since at high frequencies there are
much more loops and it requires more field numbers to be able to indicate these

lobes. Table 5.8 shows the average required times for just one frequency.
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Table 5.11 Required time range for each directivity plot analyses

Horn Type MEM Usage CPU Times | Frequency
(minutes) Number

Non-Folded Conical 700 3.2-3.5 1
Non-Folded Exponential 700 2.5-2.8 1
Non-Folded Hyperbolic 700 2.1-2.4 1
Non-Folded Tractrix 700 3.5-39 1
Single Folded Conical 700 12.5-16.2 1
Single Folded Exponential 700 11.8-15.9 1
Single Folded Hyperbolic 700 14.2-16.7 1
Single Folded Tractrix 700 14.5-15.2 1
Double Folded Conical 700 18.2-19.5 1
Double Folded Exponential 700 18.5-19.8 1
Double Folded Hyperbolic 700 21.4-25.4 1
Double Folded Tractrix 700 23.4-26.3 1
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

Computer aided auto-construction of various types of folded horns and acoustic
analysis of coupled horn and driver systems have been presented in this thesis. A

new procedure has been developed for auto construction of folded horn shapes.

A computer interface called as “Folded Horn Design” has been developed in Delphi
to facilitate the construction of the horn geometry by reducing the geometrical
modeling time in a commercial FEA program. By arranging the primary design
parameters four different types of horns have been analyzed. To obtain folded to
double folded horns, different axial length limitations were designated. After all,
horn geometry consisting of linear (conical), exponential, hyperbolic and tractrix
shapes were automatically constructed by activating the interface of “Folded Horn
Design”. FEM geometries of horn were constructed in MSC.Marc-Mentat and then
these geometries were exported to acoustic finite element analysis software,
MSC.ACTRAN, to calculate mode shapes, natural frequencies, directivity patterns
and resulting sound pressure level (SPL) in the free field. Since radiated sound field
expression depends on the velocity distribution on the loudspeaker vibrating
diaphragm, the velocity distribution should have been determined. In order to model
the loudspeaker linear graph modeling, which has the ability to manage complex
relationships between inputs and outputs, was preferred. The electrical and
mechanical properties of the horn driver were modeled with lumped elements for the
linear graph modeling technique. Finally, driver cone ring velocity (source) and finite
element models of horns were coupled. The walls bordering horn contours were
considered rigid in the analysis. Cone geometry and front cavity were also included

in the model.
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6.2 Conclusions

Acoustically speaking the most prominent effect of natural frequencies associated
with air entrapped in the horn boundaries is coloration. Each horn speaker has its
own coloration characteristic. Coloration enhances certain frequencies and dulls
others. Many bass horns have resonance problems. At natural frequencies
unexpected pressure peaks appear adversely affecting the response. It has been
observed that as the number of foldings increase, first natural frequencies getting
smaller values and first 20 natural frequencies range has retreated to the range of 0
Hz to 1000 Hz. In non-folded case 20™ resonance has reached up to 1168-1569 Hz,
whereas in single folded case they have only reached to 954-1138 Hz and in double
folded case they have reached to 783-910 Hz. This is the proof of increasing the
number of folding also increase the number of natural shapes (colorations). From
standpoints of natural frequencies and corresponding mode shapes, non-folded horns
have been the best. Non-folded and single folded tractrix and exponential horns have
been observed to have less number of coloration than conical and hyperbolic. For the
double folded case, the situation has differed a bit and the conical horn has exhibited
the less extent of coloration. Then, the tractrix, hyperbolic and exponential horns
have exhibited colorations in ascending order. These colorations have affected the
SPL responses. In relation with the coloration frequencies, sharp peaks and dips on

the SPL curves have been experienced.

Because of the increase in the effective length with the foldings, horns behave more
like infinite horns and transmission efficiency rises a bit. It has been observed that
SPL values of folded horns were higher than non-folded horns in some ranges of
frequencies. But responses were not uniform and fluctuated considerably from
uniform behavior because of higher extent of coloration. On the other hand, for horns
with finite lengths, coloration results from reflection waves from mouth (also from

bordering enclosures), causing unexpected irregularities in the SPL characteristics.

As expected from the coloration characteristics, non-folded tractrix and exponential

horns have result more uniform on-axis response of pressure distribution at one
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meter away from the horn mouth, again exponential type horns are better. It’s known
that throat resistance for the tractrix and hyperbolic horn reaches the value of unity
quicker than the other type of horns. This condition could have affected the results
for the sake of hyperbolic and tractrix horns. However, non-linear distortion is higher
for the Tractrix and Hyperbolic as Beranek [16] stated, because these horns have a
tube that flares very little until it gets to the end where it flares suddenly. The
problem with such a long tight flare is that as sound pressures increase, the restricted
passage for the air causes it to begin to compress and this causes distortion. It’s
called as second harmonic distortion at throat. Therefore, second harmonic distortion
at throat could have affected the hyperbolic and tractrix horn adversely. It has been
also noted that there has been no significant differences on SPL responses between
each different flare horn. So it was preferred to compare non-folded and folded cases
instead of making a comparison between different flare rates. Bends caused more
distortions and affected SPL adversely. All the bends were m radian but not sharp.
It’s important for sound transmission arranging lateral dimension (axial length) of
horn up to bend is not at half wavelengths. In order to achieve smooth transmission,
at bends cross-sectional area continue to change in a similar manner i.e. at the same

rate the area as change before the bends.

There are several important factors causing distortion and nonuniformity in the
directivity characteristics. These are nonuniformity of the velocity distribution in the
cone especially at high frequencies and nonlinearity of air. It was concluded that, the
higher the frequency is, the worse the directivity characteristics will be. Non-linearity
became more apparent especially after four times of the cut-off frequencies. Beranek
[16, Fig.9.12] had showed the percentage of distortion change according to different
f/f.. In this case, f. was equal to 200 Hz for all kind of horns and 4xf. was equal to
800 Hz. Above 800 Hz (at 1000 Hz and 2000 Hz) directivity characteristics have
heavily distorted. Distortion also increased with folding(s) since the wavefronts at
the higher frequencies could have been distorted at bends. Furthermore, at high
frequencies the vibration of a loudspeaker cone takes complex shapes, so that normal

variations in the uniformity of cones have resulted in substantial differences in the
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radiation. This effect may result to a very irregular and unpredictable response

curves, and directivity patterns at high frequencies such as 1000 Hz and over.

SPL values are evaluated for a driver having 0.01 watt sine input power. For this
reason sensitivity ratings gave more logical information about how the designed
horns would response. These ratings calculated and tabulated for the average SPL
values of horns and it was seen that the values of sensitivity ratings have been in the
range of 103.9 to 107.4 (dB/W.m). These values were obtained for one meter

distance and for 1 watt driver sine input power.

6.3 Future Works

One possible future work is, in addition to auto construction of horn geometry, auto
analysis can be achieved. Furthermore, acoustical analyses have been performed for
rigid and non-absorbing enclosure assumption. The absorption of sound by the walls
and the effect of their stiffness introduce attenuations. Vibration of the walls distorts
the frequency characteristic and introduces reverberation. These can be also studied
and appropriate boundary conditions can be specified between horn cavity and walls
and their effects can be analyzed. The effect of wall materials and thickness can also

be observed.

Another future work involves slight modifications in the algorithms to accommodate
different bending for one type horn. Different function and relations can be
developed while switching the coordinates, i.e. from rectangular to polar.
Comparisons can be made between the folding techniques and folding functions. In
addition, it may very insightful to evaluate the restriction of horn width at a bend to
specific number times the highest wavelength and the axial length that folding(s) can

be attempted.

While horn mouths with different width to height ratio can be constructed by using
designed interface, analyses have been only performed for the width to height ratio

of 1 and for rectangular mouth shapes. Analysis can be performed for horn mouths
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with different width to height ratio. Then these analyses can be compared for the

optimum shape of the horn mouths.
Horns with two different flare sections (permutation forms) can also be constructed
by a small modification in the algorithm. In practice, these types of horns are

commonly considered as horns with good loading and directivity control.

Finally, all the designed and constructed horns can be manufactured to test in an

anechoic chamber to compare and validate the results of FEA obtained.
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Appendix A

Sample Codes Written in Pascal Language

Code A.1

Sx:=St; (dummy variable)

Lt:=0.01; (mm)

while Sx<Sm do

begin
Sx:=St*sqr(cosh(Lt/x0)+T4*sinh(Lt/x0));
Lt:=Lt+0.01;

end;

Code A.2

L1:=2/5*Lt; (Length of horn until the bending part)
Lp:=1/5*Lt; (Length of bending part)

R2:=R1;

Repeat (Calculation of R2)

err:=RM*Ln((RM+Sqrt(RM* RM-RT* RT))/ RT)-Sqrt(RM*RM - RT*RT))-
RM*Ln((RM +Sqrt(RM * RM -R2*¥R2))/R2)+Sqrt((RM*RM-R2*R2))-L1-LF;
R2:=R2+0.001;

until abs(err)<0.01;

RM2:=LF/pi; (transformation egn. from the Cartesian to the polar coord.)

For i:= 40 To 59 do

begin

R2[i]:=R2-(R2-R1)*(59-1)/19;

d[i]:=(Rm2+Sqrt(Rm2*Rm?2-R2[i]*R2[i]))/R2[i];
x1[i]:=Rm2*Ln((Rm2+Sqrt(Rm2*Rm2-Rt2*Rt2))/Rt2)-Sqrt((Rm2*Rm2-Rt2*Rt2))-
(Rm2*Ln(d[i])-Sqrt((Rm2*Rm2-R2[i]*R2[i])))-L1;
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(x1 is the arc length calculated from tractrix formulae)
tetali]:=x1[i]/RM2; (appropriate bend angle for the arc length)
x[i]:= L1+R2[i]*sin(teta[i]); (x coordinates of horn contour during the bend)
R22[i]:=sqrt(pi*sqr(R2[i]))/2;
ylil:= R22[40]-R22[i]*cos(tetali]); (y coordinates of horn contour during the bend)
z[i]:= R22[40]-R22[i]*cos(tetali]); (z coordinates of horn contour during the bend)

end;
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Appendix B

Bond Graph Model of Loudspeaker

R:A. C:Chs

1 1

pbl
Mesupply I—A 1:elec H GY:HIA 1:mec|1—$‘ LMo

Lk

Linductance R:fn,

Fig. B.1 Example of a bond graph model of a loudspeaker. [88, Fig. 3]
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Appendix C

Definitions and Equations for Linear Graph Modeling

Table C.1 Definition of ideal source type [89, Table 2.1]

Energy Domain

A-Type Active Elements

T-Type Active Elements

Across Variable vy

Through Variable f

Mechanical Translation
Mechanical Rotation
Electrical

Fluid

Velocity v(t)
Angular velocity (t)
Voltage e(t)

Pressure p(t)

Force f(t)
Torque T(t)
Current i(t)
Flow Q(t)

Table C.2 Elemental relationships for ideal D-Type element. [89, Table 2.2]

Element Elemental Equations Power Dissipated
1 1, 2
f:EVZI vy = Rf P:E"m:Rf
Translational 1 o1,
F =bu u=—F P=bu’=—F
Damper b b
. 1 2 | .
Rotational Damper | T =b, @ w= b_T P=b.w" = b_T
Electrical
I=—e e=Ri P:lezlez
Resistance R
1
Fluid Resistance O=—p P=R.0 PZR—P2 ZRsz
! !
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Table C.3 Elemental relationships for ideal A-Type elements. [89, Table 2.2]

Constitutive Elemental
Element ) _ Energy Stored
Equations Equations
dV 1 2
h=Cv =C—*% E=—Cv
21 f dt 2 21
. _ dv 1
Translational Mass | p=mv F=m— E=—my
dt 2
1
Rotational Inertia h=Jw T=J da E=—Jw’
dt 2
Electrical
g=Ce I= de E= 1 Ce’
Capacitance dt 2
. . dp 1 2
Fluid Capacitance |V =C,p 0=C, o E = EC /D
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Table C.4 Elemental relationships for ideal T-Type elements. [89, Table 2.2]

Constitutive Elemental
Element _ Energy Stored
Equations Equations
af >
Xy =L v, =L— E=—L
n=Lf a =L f
Translational
x= l F = ld_F E = L F?
Spring k k dt 2k
1 1 dT 1
- - O=—T = E=—T"
Rotational Spring k. k. di 2%
Electrical ;
x=Li o= E=L1ri
Inductance dt 2
. _ do 2
Fluid Inductance I'=1,0 =1, o E=—1,0
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Appendix D
Typical Properties of Polypropylene

Density: 0.905 g/cm3

Tensile Strength: 4800 psi / 33.1 MPa

Tensile Modulus: 195000 psi / 1344.5 MPa
Tensile Elongation at Yield: 12 %

Flexural Strength: 7000 psi / 48.3 MPa
Flexural Modulus: 180000 psi/ 1241.1 MPa
Compressive Strength: 7000 psi / 48.3 MPa
Hardness Rockwell R: 92

IZOD Notched Impact: 1.9 ft-Ib/in / 101.4 J/m
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