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ABSTRACT 

ACOUSTICAL ANALYSIS AND DESIGN OF HORN TYPE LOUDSPEAKERS 

 

Ünal, Ayhun 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Mehmet ÇALIŞKAN 

December 2006, 142 pages 

Computer aided auto-construction of various types of folded horns and acoustic 

analysis of coupled horn and driver systems are presented in this thesis. A new 

procedure is developed for auto construction of folded horn shapes. Linear graph 

modeling technique is employed for specification of horn driver output in terms of 

diaphragm velocity or throat pressure. In the final phase of the design procedure, 

acoustic analysis of folded horns is carried by means of finite element analysis. A 

commercial software package MSC.ACTRAN is used to calculate directivity 

patterns and resulting acoustic pressure in the free field. 

Horn geometry consisting of linear, exponential, hyperbolic and tractrix shapes is 

automatically constructed by parallel working of Delphi and finite element analysis 

program. The enclosure bordering the horn contours are considered rigid in the 

analyses. Maximum number of folding is limited to two. This study is made possible 

to evaluate the performance of these four types of horn contours for a specified range 

of frequencies.  

Keywords: Horn Loudspeakers, Linear Graphs, Electro-Mechano-Acoustical 

Circuits, Acoustic Finite Element Analysis. 
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ÖZ 

BOYNUZ TİPİ HOPARLÖRLERİN AKUSTİK ANALİZİ VE TASARIMI 

 

Ünal, Ayhun 

Yüksek Lisans Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mehmet ÇALIŞKAN 

Aralık 2006, 142 sayfa 

Bu çalışmada, çeşitli boynuz tipi hoparlörlerin bilgisayar destekli tasarımı ve sürücü 

ve hoparlörlerin bir bütün olarak akustik analizi sunulmaktadır. Katlamalı boynuz 

tipi hoparlörlerin geometrilerinin otomatik olarak oluşturulması için yeni bir yöntem 

geliştirilmiştir. Hoparlörler sürücüsünün çıktısının diyafram hızı veya giriş basıncı 

olarak belirlenmesi için çizge kuramı uygulanmıştır. Tasarım prosedürünün son 

aşamasında, katlamalı boynuz tipi hoparlörlerin akustik analizi için sonlu eleman 

analiz yöntemi kullanılmıştır. Yönelme biçimleri ve serbest alandaki akustik 

basınçları hesaplamak için ticari bir yazılım paketi olan MSC.ACTRAN 

kullanılmıştır. 

Konik, üstel, hiperbolik ve traktriks şekilli, boynuz tipi hoparlörler geometrisi Delphi 

ve sonlu elemanlar analiz programlarının birlikte çalışması ile otomatik olarak 

üretilmektedir. Boynuz hoparlörleri sınırlayan kenarlar analiz sırasında katı olarak 

farz edilmektedir. Azami katlama sayısı ikiyle sınırlıdır. Bu çalışmayla dört tip 

hoparlörlerin belirlenen çalışma frekansları için performanslarını değerlendirmek 

mümkündür. 

Anahtar Kelimeler: Boynuz Tipi Hoparlör, Çizge Kuramı, Elektro-Mekano-Akustik 

Devreler, Akustik Sonlu Eleman Analizi. 
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CHAPTER 1 

 

INTRODUCTION 

 

Horns are considered as acoustic transformers matching the impedance of air to that 

of the driver piston. Horns are used for increasing the radiation and control the 

direction of the radiation from a sound source such as loudspeaker. Driver assembly, 

front and back cavity and horn are the major parts of horn-loudspeakers (Fig. 1.1). 

Driver assembly consists of diaphragm (cone) and suspension system. The horn 

contour is the expansion (flare) rate of a horn. 

 

 

 

Fig. 1.1 Schematic drawing of a horn driver system 

 

 

 

Loudspeakers are basic devices for generating sound through electrodynamic 

transformation. Electric impulse is transformed through some kind of mechanical 

system (for instance cone) into acoustic energy (also mechanical energy). Horn 

loudspeakers have been used to produce higher acoustical powers efficiently and to 

control the directivity pattern of radiated sound. One of the prominent advantages of 
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horn loudspeakers is their high efficiency. A horn system is a lot more efficient than 

any other type of enclosure due to impedance matching characteristics. A horn can 

be considered as an acoustic transformer. The horn permits the driver displacement 

to be small without sacrificing acoustic output. This means lower distortion and/or 

higher power handling. For example, while moving coil driver has a power 

transmission efficiency of 10-50% when it is horn loaded, the efficiency is less than 

1% when used as a direct radiator. A horn will be effective in any given frequency 

range depending only on the size of its mouth and the rate of its flare. Acoustic size 

is a wave of a certain frequency that has a wavelength equal to the speed of sound 

divided by the frequency. If an object or dimension, like the diameter of the mouth of 

a horn, is the about the same as or larger than the wavelength of a given frequency, 

then that object or dimension is acoustically large at that frequency. The horn 

contour is the expansion (flare) rate of a horn. There are typically different equations 

mathematically describing the shapes of different flare types. The most appropriate 

curves for audio application are conical, exponential, hyperbolic, tractrix contours 

and permutations between them. Furthermore, cut-off frequency (or flare frequency) 

is the lower frequency limit of the horn-driver combination. The flare frequency 

really describes how fast the horn flare while the cut-off frequency describes how 

low in frequency the horn / driver's response is usable, but in typical horns these 

frequencies are fairly close. The throat of the horn can be as big as the transducer 

(driver) cone or smaller. Horn size is determined by the unalterable wavelength of 

sound. The lower the frequency is, the longer the wavelength. Because a horn 

loudspeaker takes up quite a bit of space and physical dimensions of unfolded bass 

horn (horns for low frequency) can be so large, which is non-practical,  the horn 

should be stuffed into a box which may require folding the horn one or more times. 

 

Traditionally, loudspeaker driver parameters are derived through electrical 

impedance measurement techniques. These parameters are commonly called 

Thiele/Small parameters, after Neville Thiele and Richard Small who are credited 

with developing industry-standard loudspeaker modeling techniques. One of the 

other methods to model electroacoustic transducers (loudspeakers) is to describe its 

basic system components using lumped elements which are analogous to those in 
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electrical networks. The subject of electro-mechano-acoustics is the application of 

electrical circuit theory to the solution of mechanical and acoustical problems. The 

lumped element system modeling is then represented using an equivalent electrical 

circuit representation. The goal of the equivalent circuit analysis is to solve for the 

velocity of the cone. 

 

Up to now there have been many efforts to generate horn contours and geometry, 

indeed several commercial software have been developed. Furthermore, 

loudspeakers have modeled by using impedance and mobility analogies. Despite of 

all of these efforts, there is no full design and complete analysis process reported for 

horn speakers from beginning to end. These are distinct studies and almost all 

focused on whether construction of horn geometry or modeling the loudspeakers. In 

addition, it is very rare to come across construction of three dimensional (3-D) horn 

geometry especially folded horn geometries. Also there are no analyses open to the 

public use showing the effects of folding. In many texts, horn is accepted as infinite 

horn and its impedance is added to the equivalent circuit to realize complete acoustic 

analysis. In this thesis, it is aimed to achieve computer aided parametric design and 

acoustic analysis of horn loudspeakers as a whole for finite length horns of different 

contours. A new procedure is developed for auto construction of folded or non-

folded finite length horn shapes. Some folding equations have been generated 

according to various horn flare. A different loudspeaker modeling technique, linear 

graph modeling technique, is also employed for the specification of horn driver 

output in terms of diaphragm velocity or throat pressure. Finally, complete acoustic 

analysis of (folded) horns is carried by means of acoustic finite element analysis.  

 

The study consists of three main parts, namely (i) construction of various kinds of 

horn geometries automatically in accordance with basic acoustic design 

requirements, (ii) determination of electro-mechano-acoustical system outputs by 

using linear graph technique and finally, (iii) applying finite element analysis to 

obtain acoustical behavior of the constructed horns according to the first step due to 

an input diaphragm ring velocity calculated in the second step. 
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For step (i), cut-off frequency, types of cross-sectional area of the mouth and throat, 

maximum horn length are the primary designing parameters. A computer interface 

called as “Folded Horn Design” has been developed to facilitate the construction of 

the horn geometry by reducing the geometrical modeling time in a commercial finite 

element modeling (FEM) software. This interface works jointly with the FEM code 

and provides users opportunities such that they can change the primary design 

parameters. Horns will be modeled according to these specified parameters. Codes 

abide by acoustic design criteria have been written in Pascal language to achieve this 

parametric design. In accordance with these codes, secondary and major designing 

parameters such that flare rate, throat and mouth area of the horn, length of the horn 

can be calculated and whether the folding is required or not will be determined. 

Maximum number of folding is limited to two. After all, horn geometry consisting of 

linear, exponential, hyperbolic and tractrix shapes are automatically constructed by 

means of generation of a “*.proc file”. “*.proc file” is a procedure file which can be 

run automatically on MSC.Marc-Mentat from the simple button “construction” on 

the interface of Folded Horn Design. Construction of the finite element model of 

horns made the acoustic analyses possible for a specified range of frequencies.  

 

In order to model the loudspeaker, linear graph modeling which has the ability to 

manage complex relationships between inputs and outputs is preferred in the second 

step (ii). Because of the fact that the usage of linear graph modeling can enhance 

simulation of the driver model and allow for accurate and simpler representations of 

real life scenarios between different mediums (electrical, mechanical and acoustical). 

The electrical and mechanical properties of the horn driver are modeled in terms of 

lumped parameters by linear graph modeling technique. Linear graph models express 

systems in terms of energy flow and can be used to identify key factors (state 

variables) that influence system behavior. For each physical domain (electrical, 

mechanical and/or acoustical in this case) the various parameters are grouped or 

‘lumped’ and assigned to categories for 1-port elements if they supply store, or 

dissipate energy, and a 2-port element if they convert energy. 
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Numerical calculation of the acoustic field radiated from a loudspeaker is a 

computer-aided tool in loudspeaker design and development. The radiated sound 

field expression depends on the velocity distribution on the loudspeaker vibrating 

diaphragm. This velocity distribution is determined from lumped system linear graph 

modeling of driver system. Since analysis of the impedance and radiation properties 

of complex shaped acoustic horns is a very difficult task in the sense that the 

computational complexity, finite element analysis (FEA) can be used to analyze the 

acoustic radiation characteristics of any arbitrarily shaped object and the analysis of 

the acoustical properties of the horns are easily performed by finite element method. 

A commercial software package MSC.ACTRAN is used to calculate directivity 

patterns and resulting acoustic pressure in the free field. For example, the magnitude 

of the pressure field decays by the distance in radial direction. In polar direction the 

variations of the pressure field are called directivity, and these variations are 

typically constant with distance. In combination with a lumped-parameter linear 

graph model of the loudspeaker driver, the FEM model will be used to calculate the 

directivity and pressure distribution of the horns. The walls bordering horn contours 

are considered rigid in the analysis. 

 

The material in this dissertation is organized in six chapters. The second chapter will 

briefly discuss some of the previous efforts and review of literature pertaining to 

horn and loudspeaker design.   

 

Chapter 3 is describes the design considerations and horn flare equations. 

Methodology for the design and (auto-) construction of various kinds of horn 

geometries in accordance with basic acoustic design requirements will be developed. 

Horn geometries will be parametric and automatically constructed by proper 

algorithms and software prepared within the context of this chapter. 

 

Chapter 4 is a detailed overview of loudspeaker modeling techniques. Two 

applications of loudspeaker modeling will be presented. One of them electro-

mechano-acoustic circuit modeling and the other one is linear graph modeling. 

Driver cone velocity will be determined by using linear graph modeling technique. 
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Chapter 5 contains a series of acoustic finite element analysis that investigate the 

acoustical performance, sound pressure levels and directivity characteristics of the 

coupled horn and driver systems. 

 

The final chapter is a summary and an evaluation of the work done in this thesis and 

offers some suggestions for future work that could be undertaken to design and 

analysis of horn type loudspeakers. 

 

Appendices contain some parts of the source code developed during this study and 

some useful information related with the concerned topics. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1. Horn Speakers 

 

Since high power audio-frequency amplifiers are costly, it is a requirement to reduce 

the amplifier output to a minimum by use of high efficiency loudspeakers. Horn 

loudspeakers have been used to obtain large acoustic power and to control of the 

directivity pattern of radiated sound. A horn can be viewed as an acoustic 

transformer that couples the air at the surface of the diaphragm with the air outside of 

the horn, thus matching high pressure/low volume to low pressure/high volume. The 

name acoustic (impedance) transformer derives from this model of description. The 

horn contour is the expansion (flare) rate of a horn. There are few curves appropriate 

for audio application; these are conical, exponential, hyperbolic, tractrix contour and 

permutations between them depending on designer's needs. Parabolic horns are so 

inefficient that they are really of no practical use. Horns require compression drivers. 

These transducers produce high pressure but little displacement. The diaphragm 

therefore moves very little, which results in less distortion than a conventional 

radiating driver. Horn drivers need high magnet strengths to produce the high 

pressure. 

 

It is not aimed to find new practical formula for the transmission of sound waves 

through different shaped horns, but because of changes of direction inherent in 

folded horns new approaches will be developed to find proper function at the folding 

parts. In this text, while construction of horn geometry, primary designs criteria and 

solutions for the equations of acoustical waves to the conditions of a boundary of 

arbitrary cross section S(x) will be applied. For some of the horn flare type (conical 

and exponential) plane-wave propagation along the propagation axis will be 

assumed. While for the tractrix horn the assumption is that, wavefront is spherical 

and of the same radius throughout the sound progression. In addition to these, for the 
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hyperbolic horn exact solution of the hyperbolic horn will be carried out. Below, 

contributors of horn equations and how they contribute will be discussed briefly.  

 

2.2. Preliminary Studies on Horns 

 

In the early days of sound reproduction, amplifiers supplied extremely modest 

powers and loudspeakers were not very efficient at all. A horn was advised to 

increase sound pressure of not very efficient driver. For example, Edison attached a 

tin horn to his phonograph in 1877 to couple the small vibrations of the diaphragm to 

the air load. Mainly straight conical horns were employed for the early horns, but the 

later gramophones of that period employed large flaring horns with either straight or 

curved axes depending on the overall length. After a while Lord Rayleigh analyzed 

the transmission of acoustic waves in pipes of varying section and gave the analysis 

of sound through a conical pipe [1]. Rayleigh also studied on bends in tubes of 

constant cross section and effects of these bends on transmitted sounds for varying 

range of wavelengths.  

 

In the beginning of 1920s Webster [2], Hanna and Slepian [3] and Flanders [4] 

carried out theoretical analyses based on the work of Lord Rayleigh, but extending 

the work to the full audio range at domestic listening levels. These analyses were 

mainly based on exponential contour. 

 

In 1919 Webster wrote the fundamental paper on the theory of audio horns [2]. This 

work was concerned with loading a diaphragm for maximum output. By applying the 

fundamental properties of acoustical waves to the condition of a boundary of 

arbitrary cross section S(x) and assuming plane-wave propagation along the axis of 

the device, Webster developed the fundamental horn equation:  
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Webster had also worked out an approximate theory for other types of horn and had 

deduced that exponential was the optimum contour. Circular cross-section, straight 

axis and plane wavefronts were major assumptions. Webster's equation models the 

propagation of pressure waves in a horn assuming that no transverse modes exist. 

Under this assumption any point within the horn falls on some isophase surface 

which spans the cross section of the horn. 

 

In 1927 Ballantine also expanded the theory by defining Bessel horns, adding them 

to the known conical and exponential forms [6]. He did this by transforming 

Webster’s equation into Bessel’s equation with the substitution of S(x)=x
n
 in 

Eqn.(2.1). Ballentine’s paper also contains an excellent discussion of the assumption 

behind the linearization of the fluid dynamic equations, which are necessary to derive 

the horn equation.  

 

On the other hand Wilson [7] had independently derived the analysis of the 

exponential horn working from Rayleigh’s treatise. According to his assumption the 

wavefront had a spherical shape and always cutting the contour of the horn wall and 

lateral axis of the horn at right angles This assumption, that initially flat wavefront at 

the throat and the curvature of the wavefront would gradually increase, satisfies also 

the condition specified Hanna and Slepian [3] and later by Crandall [8] that the 

wavefront as it emerges from the open end will be equivalent to that provided by a 

spherical surface, as opposed to that produced by a flat piston.  

 

Voigt described TQWT/QWT (Tapered Quarter Wave Tube/ Quarter Wave Tube) 

uses like a transmission line design pipe length of 1/4 wavelength of driver's 

resonance frequency in 1930 [9]. TQWT and QWT stands for (tapered) quarter wave 

tube and are also referred as Voigt Pipes. By its shape TQWT is a conical horn with 

relatively high cutoff frequency. The driver is not placed at the apex of a horn as 

usual but rather at 1/3 of horn's length. Voigt had commenced his analysis on the 
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assumption that wavefront within the horn is spherical and of the same radius 

throughout propagation through the horn. His approach was based on the assumption 

that the entire wavefront must propagate at the speed of sound and constant 

throughout the horn. This requires that the horn contour should be the tractrix. The 

tractrix is sometimes called the tractory or equitangential curve. It is a curve well-

known in the world of mechanics. According to Bos [10], the tractrix was first 

studied by Huygens in 1692, who gave it the name “tractrix”. Later, Leibniz, Johann 

Bernoulli and others studied the curve. Different authors on loudspeaker horns have 

proposed different ideas about approximating a square or rectangular horn shape to 

the tractrix contour. Voigt preferred the section height to equal the diameter of the 

(round) tractrix. The area of a square horn is then 1.27 times larger than the tractrix 

contour, and the circumference, to which some researchers pay great attention, will 

be even larger compared to the circular circumference. To calculate from the 

circumference, on the other hand, would yield a smaller area from square horns than 

the circular tractrix, and since the square and rectangular shapes are compromises 

anyway, it seems safe not to complicate things more than necessary. 

 

2.3. Works after the Webster Theory 

 

Lindsay [11] employed the horn theory of Webster [2] for the connector in the form 

of S=S0φ(x). Transmission through conical connectors, Bessel connectors of higher 

order, exponential connectors and the connectors whose generating curve have a 

point of inflection had been analyzed.  

 

In 1940 Freehafer [12] published an exact solution for a hyperbolic horn. It was the 

first formulation of a horn that was not based on Webster’s equation. In 1946 

Vincent Salmon returned to the plane-wave assumption and produced two significant 

papers on horn theory [13], [14]. He generalized the plane wave horn theory and 

unified estimating the performance of a given horn.  He also obtained relations 

among the admittance components and the shape parameters. The first paper has a 

figure comparing the radiation impedance predicted by the exact theory of 

Freehafer’s and the approximate Webster’s equation. The two results differ by as 
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much as about 30% for a 30
o
 horn at ka=0.6. Geddes [11] discussed the possibility 

that this error is due to the approximate nature of Webster’s equation and also 

dictated that Salmon was not concerned with, is that the two different wavefront 

shapes.  

 

Mawardi [15] tried to solve Webster’s equation for the arbitrary shape of horn 

contours and tried to develop generalized methods of solution. In order to solve 

Webster's equation for the approximate formulation of the propagation of sound 

waves in horns, he used two methods of approach. The first method considered a 

transmission line with variable parameters as the electrical analogue of the horn. This 

approach was especially useful in yielding generalized solutions for horns of finite 

length. Transmission line modeling of acoustic elements is a good compromise 

between accuracy and computational complexity. The second method, based on an 

investigation of the singularities of Webster's differential equation, lead to the 

discovery of a great number of new families of horns. Locanthi used this approach 

when he performed an analog computer simulation of horn-loaded compression 

drivers [19]. 

 

Applicability of (2.1, 2.2) for engineering analysis of the acoustic horn is somewhat 

explained by Eisner’s 1964 discussion [18] on the history of (2.1, 2.2), wherein 

Eisner notes it was first developed and solved for an acoustic horn in a paper 

published in 1764 by Daniel Bernoulli [19]. All this history aside, details on the 

development of equations (2.1, 2.2) are readily available in basic textbooks on 

loudspeakers, e.g. Beranek [16] and Olson [17]. 

 

2.4. Follow up Studies on Horns 

 

In 1927, the wider bandwidth of the Rice-Kellogg [5] direct radiator loudspeaker and 

availability of higher-power amplifiers all but removed the horn loudspeaker from 

home audio systems. After 1927, horn loudspeakers were only found in theater 

public announcement (PA) systems, until the introduction in the late '40s of the 

Klipschorn, which spawned a revival of horn loudspeakers in the '50s. The 
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introduction of high-power solid-state amplifiers and small bookshelf speakers in the 

'60s removed horns from home audio systems. In the early '90s, the hipe of SET tube 

amplifiers spurred a new interest in horn designs. 

 

At the cut-off frequency (fc), the throat reactance peaks, whereas the throat resistance 

is zero and rises to its maximum value above the cut-off frequency (Fig. 9.9, Beranek 

[16]). This frequency fc is called the cut-off frequency because for frequency lower 

than this no power will be transmitted down the horn and theoretically, a bass horn 

should give response down to the flare frequency but, Edgar [26] observed that throat 

reactance (which rises as the flare frequency is approached) choked off the low end 

response of a horn before the flare frequency is reached. However, Wente and Thuras 

[20] at Bell Labs and Klipsch [21] independently found that throat reactance could be 

cancelled out by using sealed back chamber. Klipsch also stated that the volume of 

the cavity behind the cone is given by the throat area multiplied by the speed of 

sound divided by 2π times the cut-off frequency. This technique, which Plach [23] 

termed “reactance annulling”, allows for bass response right down the flare 

frequency. Leach [24] showed that, for a number of exponential horn examples 

reactance annulling does not occur at the flare but a higher frequency. He eliminated 

this problem by choice of a hyperbolic horn rather than exponential horn [25]. After 

considering all above, Edgar [26] combined the Keele and Leach approach and 

presented formulae for calculating the theoretical optimum throat size and back 

chamber volume for a given driver/horn combination. 

 

Horn-loaded loudspeakers, and particularly low frequency horn-loaded loudspeakers, 

are commonly used in applications where large, linear sound outputs are needed such 

as in sound reinforcement and active noise cancellation. For example, theater 

loudspeakers as large as or larger than eight feet in length and four feet by four feet 

in transverse physical dimensions were built in order to obtain reproduction of low 

frequencies in the audible range. Because low frequency horns can be very large, the 

physical dimensions of this kind of horn loudspeakers may be reduced by folding the 

horn. Olson [17] (pp. 206-209); Klipsch [22], Olson and Massa [27], Wente and 

Thuras [20], Hilliard [28] were the introduced some typical examples of the folding 
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the horn. Prior art low frequency folded exponential horn loudspeakers, such as those 

which are disclosed in the above-cited references, are, nevertheless, bulky and 

structurally complex due to the structure of the folded exponential horn which 

defines the sound path from the electroacoustic transducer to the volume into which 

sound waves are radiated.  

 

Even when size of a horn is reduced with folding(s), they are still pretty big. In order 

to reduce horn size without loosing too much low bass performance, Klipsch brought 

up a matter that horn mouth is placed into a corner to increase the acoustical output 

of the horn mouth [21]. Klipsch was responsible for what is considered a mutually 

accepted stereotype of a classic corner horn, with apparently the highest name 

recognition associated with it. The Klipsch Corner Horn arrived in the mid 1940's, 

and is still currently being manufactured. 

 

Sheerin [37] investigated the bends of a horn. Time-waveform measurements were 

taken at multiple points in a plane down the center of various bend shapes. These 

measurements were then processed to allow visualization of sound waves of various 

frequencies propagating through these bends. Finally he showed the deviation 

between experiencing performance and predictions. 

 

A horn provides more sound pressure level (SPL) at a given listening area by 

increasing the directivity of the sound towards the listener. Early researcher generally 

paid very little attention to the directivity of the horn, but Sherrer and his design team 

at MGM (MGM turned to the Lansing Manufacturing Co. in Los Angeles that grew 

into the Altec Lansing Co. by 1941 and JBL in 1955, the industry leader in motion 

picture loud speakers) sound department worked on a development project that 

considered directivity control as a primary factor in horn design. By assuming the 

horn directional wide coverage could be obtained by using splayed array. It was a 

large two-way system that had much in common with an earlier system that had been 

designed for auditory perspective experiments at Bell Laboratories. The Shearer 

system used high-frequency multicellular horns driven by a driver with an annular 

slit phasing plug. On the other hand Keele considered the problem of designing a 
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horn that had both good loading and directivity control in his paper on constant 

directivity horn theory [29]. In this paper he proposed a horn in two sections. The 

section near the throat was exponential for good loading while the outer section was 

conical for good directivity control. This combined horn had two very sought after 

traits. It presented good loading to the driver to which it was attached allowing for an 

increase in the efficiency of the horn. It also maintained good directivity control over 

a wide range of frequencies. He had also investigated optimum size of a horn mouth 

[30] and for a number of different throat entry diameters and design coverage angles; 

the size of the aperture between the two sections of the waveguide was near its 

optimum size according to his work.  

 

In 1977 Henricksen and Ureda [31] introduced what they called the Manta-Ray horn. 

It was named for its shape. This horn had good loading as well as good directivity 

control. However, it did suffer in some areas. One in particular was that it had rather 

severe astigmatism in the curvature of its wavefront. The radius of curvature for the 

wavefront was different for the horizontal and vertical planes. Accordingly, the shape 

of the wavefront from such a device could, at best, be ellipsoidal. While this doesn’t 

seem to be the cause for concern when the horn is used by itself, when more than one 

horn is employed in an array it can be problematic. This astigmatism was common to 

a number of horn designs within the industry at the times. 

 

J. Dinsdale [38] had outlined the physical principles underlying the operation of 

horns, and had shown how, provided basic rules were followed, sound reproduction 

of startling clarity and realism is possible from horns. 

 

The assumption of a piston-like motion is valid only at low frequencies. At higher 

frequencies, this approximation may not hold, owing to the breakup modes of the 

driver diaphragm. However, this assumption is still beneficial for determination of 

loudspeaker’s sound radiation. Generally, the starting point to compute the sound 

field at any spatial point inside a propagation medium is the evaluation of Rayleigh's 

surface integral [1], which is a statement of Huygens’ principle that the total sound 

field at an observing field point P into the propagation medium is found by summing 
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the radiated hemispherical waves from all parts of the vibrating surface. It is difficult 

to solve analytically Rayleigh surface integral except in very special cases such as 

the acoustic pressure on the axis of a transducer. Various authors have proposed 

different theoretical approaches to transform this integral into an analytically 

tractable expression [32, 33]. Kaddour et al. [34] presented theoretical, 

computational and visualization solutions for the sound (pressure) field in air, 

produced by a loudspeaker, using a numerical method called Convolution Method 

(CM). This method uses the convolution product of the acceleration function of the 

radiating surface and the impulse response for a specific field. 

 

Klippel [35, 36] has developed an acoustic transmission line model to describe finite-

amplitude sound in horns and ducts with reflection by using conical one dimensional 

(1-D) elements. Each element is represented by a linear four-pole plus a nonlinear 

source of volume velocity, derived from the nonlinear wave equation in Lagrangian 

coordinates. 

 

The derivation of Webster's equation carried out in Benade and Jansson [39] was 

exceptionally illuminating. Their method allowed any choice of acoustic wavefronts 

propagating in the bore as long as axial symmetry is preserved. One of the other 

recent researchers who worked on Webster’s classic horn equation is Rienstra [40] 

and he rederived some generalizations systematically, as an asymptotic perturbation 

problem, from a number of modeling assumptions by the method of slow variation. 

 

In recent years Geddes [41] and Putland [42] had put forth works on horns that have 

the properties of propagating a one-parameter acoustic wave. The motion of such a 

wave can be described by a single spatial coordinate. These types of horns have been 

referred to as waveguides. A good differentiation between a horn and a waveguide 

can be thought of as a horn being primarily concerned with the optimal loading of its 

driver, while a waveguide is primarily concerned with its directional characteristics.  

 

Geddes [41] examined the mathematical foundation of the horn theory, analyzed the 

Webster’s horn equation for the directivity-controlling devices and developed 
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another general formulation of the acoustic waveguide problem. He tried to 

determine boundary contour shape that will allow an accurate prediction of the 

acoustic variables, which are pressure contours, velocity vector, and acoustic 

impedance, at any point in the device; and find a way to determine the optimum 

shape. 

 

Putland [49] seems to be the first author to actually specify the only three coordinate 

systems that produce exact solutions for one parameter wavefields: planar (1-D), 

cylindrical (2-D), and spherical (3-D). Putland noted that these and only these 

coordinate systems are capable of exactly specifying all the acoustic quantities 

(pressure, particle velocity, intensity, etc.) by a single spatial coordinate. When 

predicting and comparing the acoustical properties of horns it is a customary practice 

to formulate the propagation as a one-parameter plane wavefront problem. One-

parameter waves, however, are possible only in rectangular, circular cylindrical and 

spherical coordinates, which correspond to pipes of uniform cross-section and 

conical horns, respectively. However, when particular attention is paid to the rapid 

flare near the mouth of a horn structure such as the tractrix, it also seems plausible to 

formulate the propagation on the basis of a one-parameter spherical wavefront 

theory. By visualizing the surfaces of constant phase as spheres of constant radii of a 

and the flow lines as tractrix having a generating arm of length of a; one-parameter 

wave equation and Ricatti impedance equation can be derived. Solutions to these 

equations have been obtained by wave perturbation and by analog computer 

techniques. Axial response and throat impedance measurements are compared with 

theoretical calculations postulating first a hemispherical and then a plane piston 

radiation pattern. It appears that the most satisfactory explanation lies somewhere in 

between these two limiting cases. 

 

Traditionally, the air chamber is treated as a boundary value problem which results in 

the solution of the wave equation for the general case in which the horn throat enters 

the air chamber in any circumferentially symmetrical manner. The following specific 

cases were analyzed by Smith [43]; (1) the case in which the horn throat enters the 

air chamber by means of a single orifice, (2) the horn throat enters the air chamber by 
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means of a single annulus of radius r and width w, and (3) the horn throat enters the 

air chamber in “m” annuluses of radii r1…...rm and widths w1…..wm. His analysis 

revealed that the radial perturbation caused by the horn throat excites higher order 

modes. At the resonant frequencies of these modes the horn throat pressure becomes 

zero and the loudspeaker does not radiate. By suitable choice of annulus radii and 

widths the first "m" modes may be suppressed and the corresponding nulls in the 

output pressure eliminated. 

 

It was shown by Holland et al. [44] that a horn of arbitrary flare rate can be analyzed 

by subdividing the horn into small sections of flare rate for which an analytical 

solution to equation (2.1 or 2.2) is available. Short sections of cylindrical, conical, or 

exponential curves may be fitted to some arbitrary and complex flare. The input and 

transfer impedances of each of these sections can be determined analytically from 

solutions to equation (2.1 or 2.2). These may be collected together as a sectioned 

transmission line model of varying impedance, from which the total input and 

transfer impedance may be calculated. 

 

2.5. Loudspeaker Modeling 

 

A horn loudspeaker consists of an electrically driven diaphragm coupled to horn. In 

order to analyze horn speaker system, diaphragm (cone) velocity of loudspeaker or 

sound pressure on the cone should be found. In this text these outputs will be found 

by applying lumped-parameter linear graph modeling and there are many attempts to 

generate equivalent circuit models in the literature. Various kinds of analogies 

similar to linear graph have been performed so far. The purpose is the application of 

electrical-circuit theory to obtain governing dynamic equations for mechanical and 

acoustical systems. Not only a schematic representation of the components and their 

connections make it possible to visualize and understand the system, but also the 

differential equations can be formed directly from these schematic diagrams. 
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2.6. Historical Development of Loudspeaker Modeling 

 

Since the earliest days of electrical theory, electro-motive force became endowed 

with the mechanical force of hydraulic pressure and electric current had been thought 

as a mechanical velocity or the velocity of the fluid flow. Historically, the first 

analogy to be used between electrical and mechanical systems was the force–voltage 

analogy, as is readily seen in the early use of the term electromotive force. Firestone 

[45] and others established another consistent system of analogies based upon certain 

mathematical similarities between electrical current, force, and pressure on the one 

hand, and voltage, velocity, and fluid flow on the other. The older “classical” 

analogy is the “voltage-force-pressure” analogy while the Firestone analogy 

(originally called “mobility” analogy) is often referred to “current-force-pressure” 

analogy. Firestone also introduced the ideas of through and across variables which 

provide a unifying framework to extend analogies to other contexts, e.g., acoustic, 

thermal, fluid systems. On the other hand Olson used the impedance analogy in his 

books [17]. Typical example of this was the analogous circuit for a bass reflex 

loudspeaker. In 1954 Beranek [16] presented a very comprehensive acoustical circuit 

derivation. He used impedance analogy for the electrical side but for the mechanical 

side he preferred to mobility analogy and the voice coil acted as a transformer 

between the mechanical and acoustical circuits. So, whole domains could have been 

drawn as one circuit. In this work the diaphragm velocity, sound pressure and 

efficiency for the low frequency response were developed. In 1959, Novak [46] 

presented a generalized theory on the design and performance of vented and closed-

box loudspeaker enclosures. 

 

The usual procedure for the loudspeaker system design is calculation of the driver’s 

fundamental electro-mechanical parameters by using Thiele-Small parameters. The 

Thiele-Small [47-53] approach is to first analyze the electro-mechanical behavior of 

a speaker voice coil, magnet, and cone, interacting with the cone suspension and the 

air in and outside the enclosure. The Thiele-Small method for speaker design 

considers the linear loudspeaker model driven by voltage sources and operating in a 

small signal environment. The resulting equation is mathematically identical to the 
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equation describing a purely electrical "equivalent circuit" consisting solely of 

resistors, capacitors and inductors. The sound produced by the loudspeaker can then 

be obtained via a relatively simple circuit analysis. The evolved theory of filter 

synthesis can be used to adjust circuit parameters to obtain a desired frequency 

response. The parameters can then be translated back into physical quantities, such as 

enclosure size, to build the loudspeaker. This procedure provides a scientific 

framework for the art of loudspeaker design. A very useful result is that after the 

speaker has been assembled, the electrical impedance at the speaker terminals can be 

measured and compared to the theory. In this method, the considered parameters are 

linear and valid only for small signals.  

 

While the electrical circuit approach was very suitable for simple loudspeaker 

systems, complex acoustical loading was still difficult to include. In 1972 Howard 

[54] modeled complex-loading conditions by converting the acoustical properties 

into equivalent mechanical mass and compliance units and constructed analogous 

acoustical circuits.  

 

Thiele [51, 52] demonstrated the possibility of fitting a speaker adjusting the power 

amplifier output resistance, making it positive or negative, according to the method 

proposed by Werner and Carrel [55].  

 

2.7. Studies on Loudspeakers after Thiele/Small parameters 

 

At low frequencies, where the wavelength is much longer than the largest physical 

dimension of the device, a distributed system can be lumped into idealized discrete 

circuit elements. Generally, the successful models of moving-coil loudspeakers in 

enclosures are based on equivalent circuits. These models have the convenient ability 

to represent the complete signal path, from electrical input to acoustic output, in a 

single circuit diagram. However, all such models are low-frequency approximations 

developed for the purpose of calculating and optimizing the bass roll off of the 

driver. Keele presented the first comprehensive and simplified design methodology 

for bass horns [56]. He showed most horn design parameters could be calculated 
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from Thiele/Small parameters for the driver. Leach [24] extended Keele’s work by 

introducing losses into the model and constructed a standard equivalent circuit model 

of a horn such as described in Olson's book [17], but substituted a gyrator for the 

usual transformer between the electrical and mechanical sections of the model. He 

then made some simplifying assumptions, such as the output impedance of the 

driving source is negligible, and derives a set of equations based on Thiele / Small 

parameters. Earlier analyses of horn loudspeakers [16] driven from amplifiers with 

moderately high output impedances calculated the efficiency as the ratio of acoustic 

output power to maximum power available from the source. The set of equations lets 

one work from a given driver specification to design a horn to cover a specified 

frequency range or work from a horn specification to design the optimal driver. One 

thing to note is that the simplifying assumptions are significant. For example, Leach 

assumes an infinite exponential horn as the load. For very small (undersized) horn, 

Leach's equations will probably not predict the exact results. There is also no 

provision made for such things as folds in the horn, parallel side walls, etc. 

 

Most of the earlier work in modeling low-frequency, voice-coil loudspeakers treated 

them as lumped-parameter linear systems as Beranek described [16] for loudspeakers 

without enclosures, Small [47], [48], and [49] for loudspeakers in sealed enclosures, 

Thiele [51], [52], and [53] for loudspeakers in vented enclosures, and [46] and [57] 

for loudspeakers in both sealed and vented boxes. The lumped-parameter 

loudspeaker model, although simple, captured much of the nonlinear behavior of the 

loudspeaker. In addition, the model formulation allowed a straightforward 

application of modern control system methods and lent itself well to modern 

parametric identification techniques. They are ground works and become industry 

standards, but they are not sufficient in analyzing today's high-performance 

loudspeakers, which are typically driven beyond their linear output range. More 

significant was the work by [58], [59], and [60], where lumped-parameter nonlinear 

models were analyzed. 

 

In order to predict the internal resonances in the enclosure an equivalent-circuit 

model can be modified to account for the effects of damping materials added in an 
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effort to suppress resonances [47, 63]. However, when the original model is valid 

only at low frequencies, the version with added damping can do no more than predict 

the “side- effects” of damping on the low-frequency roll off; it cannot predict the 

degree to which the damping material achieves its primary purpose of suppressing 

resonances in the midband. These deficiencies are tried to overcome using the 

“finite-difference equivalent-circuit” (FDEC) model by Putland [64]. He offered an 

equivalent-circuit model of a loudspeaker which took account of the wave-like nature 

of the acoustic field in the enclosure and the effects of the resulting resonances on the 

system response. The differential equations describing an acoustic field have been 

approximated by the finite-difference method and the resulting difference equations 

have been written as the nodal equations of a three-dimensional L-C network. This 

was shown before, for Cartesian and cylindrical coordinates, by Arai [65] in 1960. 

Arai’s method is valid for general curvilinear orthogonal coordinates.  

 

Linear modeling of the driver and the horn is likely to fail at high drive levels. The 

various studies of nonlinearity in electroacoustic drive units have been summarized 

in the papers of Sherman and Butler [66, 67]. For horn loudspeakers, the modeling of 

driver nonlinearities has been discussed by Klippel [35, 36] and Schurer et al. [68]. 

 

In addition, Al-Ali [69] designed a low-frequency, feedback control method to 

improve the nonlinear performance of the loudspeaker system and he evaluated 

performance by developing a suitable distortion measure for use in design. Data from 

experiments performed on a variety of actual loudspeakers have been used to 

confirm that the methods can produce predictable and measurable improvements in 

the nonlinear performance of a low-frequency, voice-coil loudspeaker (attached to 

either vented or sealed enclosures). Furthermore, he studied on the linearizing effect 

of feedback using a linear controller of nonlinear systems. 

 

A method to modify the mechanical characteristics of a loudspeaker (seen by the 

excitation source) through the amplifier output impedance has been considered by 

Stahl [78]. This method consists of making the power amplifier output resistance 

equal to the negative of the voice-coil resistance. In this way, the amplifier output 
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and voice-coil resistance cancels each other and the amplifier sees the loudspeaker 

mechanical circuit as a load. Normandin [79] has also exploited this method. The 

circuit proposed by Stahl was only able to generate a negative output resistance 

proportional to the voice-coil resistance, and not to the electric impedance. This fact 

restricted such a solution to the low frequency domain, since the voice-coil inductive 

reactance increases as frequency increases. 

 

The radiated sound field expression depends on the velocity distribution on the 

loudspeaker vibrating diaphragm. This velocity distribution is determined from a 

complex computation and vibration analysis. Several authors have expanded the 

velocity potential in spherical Bessel and Legendre functions, or used alternative 

methods to calculate the sound radiation from a loudspeaker [70–77]. 

 

2.8. Recent Works 

 

Since resent amplifiers have low output impedance, to design an enclosure means to 

determine its intrinsic characteristics (internal volume, tuning, and absorption, 

among others) to fit it with a loudspeaker or to adapt a loudspeaker to the enclosure, 

or even to adopt both the procedures. For this reason, the process concentrates only 

on the electro-acoustic side of the system. It does not consider the electric resistance 

of the connections and cables between the amplifier and speaker, which can lead to a 

considerable problem source [80]. Bortoni et al. [81] presented a comparative 

analysis through simulations of the sound pressure level and cone displacement of 

loudspeaker systems as an infinite baffle, a closed box, a vented box and band-pass 

enclosure driven by voltage and current sources, under small (linear) and large (non-

linear) signals. The nonlinearities of the voice-coil, force factor and compliance of 

the loudspeaker were considered. 

 

Knowledge about the interface of horn and driving electro-acoustical system and the 

description of the driving system are the keys to the simulation of horn driver and 

horn. Couples of investigations concerning this interface and the electro-acoustical 

source itself have been carried out by Behler and Makarski [82]. In this work, it was 
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shown that the two-port approach leads to reliable simulation results. Furthermore a 

measuring method to derive the driver’s two-port parameters was presented, but this 

method suffered from the restricted frequency range of the used Kundt’s tube. In 

order to extend the frequency range Makarski described two methods to obtain the 

two-port parameters without using any acoustical measurements [83]. Electrical 

impedance measurements and acoustical reference impedance as well known 

acoustical load were used for the both methods. The driver’s two-port parameters 

were presented in this method using only electrical measurements and an acoustical 

reference impedance and this method was valid for wider frequency range.  

 

2.9. Finite Element Models of Loudspeakers 

 

After computers have allowed to the usage of complex models based on numerical 

approximation like finite element models, traditional horns can be analyzed with the 

boundary element method (BEM) or finite element method (FEM) instead of (or 

together with) analytical or simple numerical tools. Since just using simple numerical 

tools to analyze a folded horn is very complicated. Finite Element Method/Boundary 

Element Method become more and more interesting for the simulation of 

loudspeaker’s enclosures and horn geometry as the performance of computers 

increases rapidly. BEM, also known as the Integral-equation method, it uses a 

discretisation of the surface of an object and a set of velocity or pressure boundary 

conditions to calculate an acoustic field, either into a free-field, or into an enclosed 

space. In this study FEM will be used to analyze constructed folded or non-folded 

horns.  

 

A model was reported in 1984 by Sakai et al. [84], who used the finite-element 

method to calculate the acoustic impedance presented by the enclosure to the back of 

the diaphragm. Their model was fully three-dimensional and allowed the shape of a 

conical diaphragm with a specified semi-apex angle to be accurately represented. 

They also gave an equivalent-circuit model of the driver and enclosure, incorporating 

the enclosure impedance. However, instead of solving the circuit with the computed 

impedance in place, the authors used a mass-limited approximation to the circuit and 
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assumed that the radiated pressure is proportional to the diaphragm acceleration, 

obtaining a simple formula expressing the sound pressure level in terms of the 

impedance of the enclosure. 
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CHAPTER 3 

 

CONSTRUCTION OF HORN GEOMETRY 

 

In this chapter primary design criteria for acoustical waves confined to a solid 

boundary of arbitrary cross section S(x) will be developed. For some type of the horn 

flares (conical and exponential) plane-wave propagation along the propagation axis 

will be assumed. While for the tractrix horn the assumption is that, wavefront is 

spherical and of the same radius throughout the progression. In addition to these, for 

the hyperbolic horn exact solution of the hyperbolic horn will be carried out. The 

horn contour is the expansion (flare) rate of a horn. There are typically different 

equations mathematically describing the shapes of different flare types. The most 

appropriate curves for audio application are conical, exponential, hyperbolic, tractrix 

contours and/or permutations between them. Construction of horn geometry will be 

performed for the conical, exponential, hyperbolic and tractrix forms.  

 

It is of significant importance to use as much as possible priori knowledge 

comprising of geometrical pattern, frequency response range (upper and lower 

frequency limits) and driver parameters. Frequency limits will be selected for the low 

to mid band horn speakers. From these parameters and conditions one can decide on 

the required horn length, mouth and throat sizes. If these dimensions (especially 

length) are out of given required range, a geometrical modification such as folding 

the horn should be performed. Horn geometries will be parametric and automatically 

constructed by proper algorithms and software prepared within the context of this 

chapter. A computer interface called as “Folded Horn Design” has been developed in 

Delphi to facilitate the construction of the horn geometry by reducing the 

geometrical modeling time in commercial finite element software. This interface 

works jointly with MSC.Marc-Mentat and provides users opportunities such that they 

can change the primary parameters and horns will be modeled according to these 

parameters.  
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3.1. Horns 

 

Horns are considered as acoustic transformers matching the impedance of air to that 

of the piston.  They convert acoustic energy at high pressure and low velocity 

(volumetric velocity) at the throat to energy at low pressure to high velocity at the 

mouth. Horns have been used for increasing the radiation and control the direction of 

the radiation from a sound source such as loudspeaker.  

 

A horn system is a lot more efficient than any other type of enclosure. For the same 

sound pressure level (SPL), the driver in horn has smaller excursion than the driver 

in any other type of boxes or in open air. Therefore, the horn driver operates linearly 

and produces less distortion. The horn permits the driver displacement to be small 

without sacrificing acoustic output. This means lower distortion and/or higher power 

handling. 

 

For a horn loudspeaker, directivity and high efficiency are very important design 

parameters. High efficiency can be achieved by various ways. One popular method is 

to design the system so that driving force works against resistance instead of 

reactance part of the vibrating diaphragm of driver. As a result, more power is 

radiated at low frequencies for a given source strength (cone velocity). 

 

A horn consists of a tube of varying sectional area. When sound passes through a 

tube or conduit and if there is a change in the cross-sectional area, power 

transmission should be considered. Neglecting the viscous damping, power 

transmission ratio (Pr) is given by 

 

( )22

2

1

4

+
=

q

q
Pr                           (3.1) 

 

where, q
2
 is the ratio of the two cross sectional area S2/S1 and S1, S2 are the cross-

sectional area of the first and second conduit (Fig.3.1). 
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Fig. 3.1 Tube consisting of two different cross-sectional areas 

 

The more gradually the transition from one cross-sectional area to the other, the 

better transmission of sound is achieved [11].  Sound transmission should be unity or 

approach to the unity as soon as possible for the working frequency range. This can 

be done by choice of conical, exponential, hyperbolic or tractrix form as seen in 

Fig.3.2.  

 

 

 

Fig. 3.2 Different flare types of horns. (M: family parameter, M=1 means 

exponential, M→∞ means conical, 0<M<1 Hyperbolic and M=0 means catenoidal) 

x 
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For optimum loading of the driver, the impedance presented by the horn throat 

should be (close to) entirely resistive and of constant value throughout the working 

frequency range (Fig. 3.3). Below the cut-off frequency, the throat resistance is very 

low or zero and rises rapidly to its ultimate value of St/ρ0c as the frequency increases 

over the cut-off frequency. (Where St is the throat area, ρ0 is the density of air and c is 

the speed of sound.) Especially the one whose rate of taper (flare) is small near the 

throat region of the horn. From this point of view one can deduce from Fig.3.3 that 

exponential and hyperbolic contours suit better. However, non-linear distortion 

should be also taken into account before deciding. At the moment it can be said that 

for minimum distortion at given power per unit area, the conical horn is the best. 

 

 

 

 

Fig. 3.3 Acoustical Resistance (Real) and Reactance (Imaginary) vs. Frequency 

curve at the throats of infinite horns, [38] 

 

For horns the fundamental physical principles of mass and momentum conservation 

are expressed in terms of an acoustic pressure, p(x, t), by the Webster equation (3.2) 
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which describes plane-wave propagation in a duct of slowly varying cross-sectional 

area, S(x), where c is the speed of sound in the ambient medium. The fluid is 

compressible and ideal (homogeneous and non-viscous), adiabatic and low Mach 

number disturbances, small p(x, t) compared to the bulk modulus of the medium, and 

that the rigid tract walls are the linearizing assumptions. 

 

 

 

Consider the volume element of infinitesimal length dx and area S(x) within the horn 

(Fig. 3.4.). The small air volume between the planes A and B moves to a new 

position and now bounded by the planes A’ and B’. The mass of air in these two 

volumes remains constant. In Fig. 3.4, it can be seen that the plane A has moved an 

infinitesimal distance (ξ) and that the original length of the volume has increased 

from dx to (dx + dξ). Clearly the original mass of air expands as it moves in the 

positive x direction to fill the increasing cross-sectional area of the horn. Fig. 3.4 

shows the two positions for the small volume of air. By the way one should note that 

dx > ξ > dξ. 

dx 

S(x) 

Fig. 3.4. Volume element S(x)dx of a horn 

x axis 

(Lateral axis) 

x 

x+ ξ 

dx+dξ 
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B’ 
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The volumes VAB and VA’B’ correspond to first and second locations respectively can 

be expressed as; 

 

dxxSVAB )(=                                (3.3) 

( )ξξ ddxxSV BA ++= )(''                          (3.4) 
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An expression for the pressure distribution in a horn can be derived for function of 

position and time. Using the above expressions for the two volumes, first the acoustic 

strain can be calculated, then multiplying the acoustic strain (εac) by the bulk 

modulus of air (β), as defined in Kinsler and Frey [85], results in an expression for 

the pressure. 
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After substituting the equations for the volumes, doing a little algebra and canceling 

the higher order terms, the acoustic pressure can be written as a function of the cross-

sectional area and the displacement. 
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Because the internal pressure decreases when the incremental volume increases as it 

moves from AB to A’B’, a negative sign is included in the above equation 3.6 and so 

does equation 3.8. The forces acting on the volume AB generate the motion and the 

resulting change in position to A’B’. Figure 3.4 presents a free body diagram 

showing all of the forces acting on the small volume of air between planes A and B. 

 

 

Fig. 3.5 Free body diagram of a small volume of air between planes A and B. 

 

Summing the forces, and setting the result equal to the inertial acceleration, results in 

the equation of motion. 
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µ is the damping coefficient acting on the volume. After some manipulation, 
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Substituting Equation (3.8 or 3.9) to eliminate the pressure term in Equation (3.11) 

produces the final differential equation of motion.  

 

Throughout the text, the solution of several types of longitudinal section will be 

shown and corresponding horn geometry will be constructed. Exponential, conical, 

tractrix and hyperbolic type of horns with mouths of rectangular shapes are 

considered in the study. 

 

3.1.1. Exponential Horn Contour 

 

In order horn to be a satisfactory transformer, its cross-sectional area should increase 

gradually along its axis. Cross-sectional area of the ideal exponential horn increases 

logarithmically along its length from throat to mouth. For this shape, the cross-

sectional area at any point along the x axis is given by the formula; 
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Where S: cross-sectional area at x in square meters 

 ST: cross-sectional area of the throat in square meters 

SM: cross-sectional area of the mouth in square meters 

m: flare constant (1/meter) 

x: distance from throat in meters 

 

Substituting Equation (3.12) for S(x) value to Equation (3.8) gives Equation (3.15); 
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Putting Equation 3.15 into Equation 3.11 provides the final differential equation of 

motion for the exponential horn. 
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After some manipulation and using separation of variables techniques and setting the 

damping term µ to zero leaves the classic exponential horn wave equation found in 

most acoustics texts. The solution of displacement and pressure can be found as 

functions of times and position. Detailed calculation of the differential equation is 

not the aim of this text. In order to have detailed description, one can benefit King’s 

[86] derivation. 
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where α is an attenuation term arising from the expanding geometry. 
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Up until now, wave equation is tried to be solved and calculations came to the 

important point in the name of determining mouth area. γ depends on the value of the 

frequency. If (4ω
2
-m

2
c

2
)<0 then γ is imaginary, resulting in an additional attenuation 

term but no power will be transmitted because acoustic impedance is entirely 

reactive. If (4ω
2
-m

2
c

2
) > 0 then γ is real and wave motion exists in the horn. The 

frequency at the limit of attenuation to wave motion is cut-off frequency and can be 

calculated from (4ω
2
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2
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2
) = 0.  
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Since  

fπω 2=                      (3.21) 

π4

mc
f c =                                           (3.22) 

 

By knowing desired cut-off frequency the flare constant (m) can be calculated and 

the horn profile may then be constructed. Whether the horn mouth is circular or not 

(square), horn mouth should have a circumference large enough so that the radiation 

impedance is nearly resistive over the desired frequency range. In order to provide 

this, as Beranek [16] shown, the relationship ka>1 or C/λ>1 must hold. Where k is 

wave number, a is radius of mouth, C is circumference and λ is the wavelength. At 

this condition horn starts to efficiently transfer energy into the environment. He 

concluded this by finding mechanical impedance of the air load at the horn mouth, 

using plane circular piston mounted in an infinite surface assumption. If mouth area 

(SM) is wanted to be find at this critical condition, SM= λc
2
/4π should be solved. This 

is the minimum mouth area. But, there is one more thing such that all of this 

referring to the situation where the horn is suspended in a free space, meaning 

radiation into an angle of 4π solid radians. If the horn placed on the ground the 

mouth would only radiate into half a solid angle (2π solid radians), against a center 

of a wall π solid radian and in a corner formed by two walls and the floor only π/2 

solid radians. The significance of this is the fact that, while minimum mouth area has 

been shown to be λc
2
/4π when suspended in free space, this value may be divided by 

a factor 2 when the solid angle is halved. This factor has an effect on radius in square 

root. So the final equation for the horn mouth radius (rM) is, 
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Where plc is the placement factor and 1 for free space, 2 for radiation on ground, 4 

for radiation on ground near the wall, 8 for radiation in the corner. 
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While determining the throat area shunt capacitance is the important design criteria. 

When a cavity is placed between the diaphragm and throat, it behaves as a shunt 

capacitance across the throat itself. For high frequencies, the throat reactance 

approaches zero and the resistance approaches ρc/ST. As Dinsdale [38] mentioned, by 

making the cavity impedance equal to the throat impedance, the cavity-throat 

combination acts as low pas filter. i.e.  
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where SD is the area of diaphragm, VF is the volume of front cavity, ST is the throat 

area, fu refers to desired upper frequency limit. 

Hence, the throat area of the horn can be calculated as, 
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In this text throat area will be calculated in terms of the Thiele/Small driver 

parameters similar to Edgar [26] formula. Assuming the fact that QMS>>QES, then 

QTS≈QES for all frequency range. 
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where QES is the electrical quality factor, QMS is the mechanical quality factor, fs is 

the resonance frequency of driver in free-air and Vas is the equivalent volume of 

suspension (m
3
) 

The size of the compression chambers depends on the driver and the working 

frequency range. For compression chamber volume Keele’s [56] formula can be 

performed during calculation which is simple practical formula for the use of 

fundamental electro-mechanical driver parameter, first derived by Klipsch [21]. VB is 

the back volume (volume of compression chamber next to horn throat). 
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or, to obtain the correct rear cavity volume for reactance annulling VB (Vas»VB) can 

be calculated in terms of the Thiele/Small driver parameters. Keele mentioned a 

comparative listing of horn design equation for ST and VB in Table I [56]. 
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Since rM can be calculated from equation (3.23). Area of the mouth can be found 

either for the circular cross-section but then it can be turned to rectangular cross-

section for the equivalent area and one can find corresponding width (w) and height 

(h) by knowing desired width to height ratio. 
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Where RatioW/H is the width-to-height ratio of the rectangular cross-section 

 

All of the equations from equation (3.23) to equation (3.30) also valid for other type 

of flare profiles. Therefore while deriving the equation of different type of horns, 

these similar equations will not be repeated. Author will focus mainly on calculation 

of flare contour. Continuing from exponential contour, the last important parameter 

to find is axial length. After some modification on equation (3.14) and taking 

logarithm of both side results the following equation (3.31); 
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Fig.3.6 Top view of a non-folded exponential horn contour 

 

3.1.2. Conical Horn Contour 

 

The conical horn is the easiest one to calculate and stuff into a box, but it's also the 

least efficient. Conical contours are seldom employed for bass horns, because of the 

poor response and the impossibly long horns that result. This type of horn is a 

particular case of the Bessel horn and its shape is given by 
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An alternative approach to the previous analysis of the acoustic horn is to express 

equation (3.2) in terms of velocity potentialφ , and by using the transformations 
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And finally the wave equation becomes 
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Inserting equation (3.32) to equation (3.35) for S(x) gives; 
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In this text just the solution of this equation will be given, detailed calculation is out 

of purpose and can be found in basic acoustic books. 
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After putting velocity potentialφ  term into eqn. (3.33), the acoustic pressure at x can 

be found. For the case of a very long horn, Olson [17] gave the real and imaginary 

components at the acoustical throat. 

 

So the acoustical resistance term RT at the throat for the conical horn is 
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and the reactance term XT is 
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Throat area and the mouth area calculated similar to exponential part. As mentioned 

before equation (3.23) to equation (3.30) are all applicable to all kind of horns. The 

difference is the fact that there is no specific cut-off frequency for the conical horn as 

exponential has, but one can mention about critical frequency range at which the 

resistance of the horn throat is bigger than the reactance of the horn throat. This can 

be also concluded from Fig. 3.3. 

In order to RT>XT  

 

( ) 100

2

0 >→> kxkxkx                          (3.40) 

since  

λ
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=k                         (3.41)       

where k is the wave number and  

f
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=λ                         (3.42) 

equation (3.40) corresponds to 
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So, if the desired frequency range is given, one can calculate corresponding x0 (in 

fact minimum x0). Higher the x0 value, more resistive future the horn has. Due to the 

limiting condition of horn dimensions, it isn’t meaningful to obtain very long horn. 

For most practical conical horns, this condition is not well satisfied, because it would 

require a very long horn. The accepted rule of thumb concerning horn length is that 

the horn will work as intended provided the horn is no shorter than 1/4 wavelength of 

Fc. 

 

By knowing x0 and rT (radius of the throat) and rM (radius of mouth), flare constant 

(m) and axial horn length (LT) can be calculated as following, 

 

0x

r
m T=                                   (3.44) 
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Fig. 3.7 Isometric view of a non-folded conical horn, constructed in MSC.Marc. 

 

 

3.1.3. Tractrix Horn Contour  

 

There are many discussions about the wavefront shapes within the horn and 

throughout the propagation through the horn. Some of the discussion based on the 

increasing of curvature from plane waves at the throat to a certain curvature at the 

mouth. But Voigt [9] claimed that wavefront within the horn must be spherical and 

of the same radius through the horn. His reasoning is, if the curvature increases from 

zero curvature at the throat to a certain curvature at the mouth, point in the axis 
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should travel faster than point at the wall. Thereafter, he concluded that the horn 

contour should be the tractrix. 

 

The tractrix formulation is 

( )
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 −+
=                       (3.46) 

 

Where, x is the distance from the mouth, rx is the radius at the distance x from the 

mouth. To use this formula, choose your rM, select a value for rx of between zero and 

rm, then calculate the distance from the mouth x (at this radius) and in order to find 

axial length (LT), rT should be put into equation (3.46) instead of rx. Since rM can be 

calculated from equation (3.23) and rT can be calculated from equation (3.26), there 

is only one unknown left in the equation which is LT. 

 

As Dinsdale [83] stated that tractrix has a dominant exponential term for the first half 

of its length from the throat to mouth, but thereafter it flares at an increasingly flaring 

rate until 180º included angle. The tractrix horn is the shortest one for a given throat 

and mouth dimensions. Again it can be turned into rectangular cross-section shape 

after setting the throat and mouth area by using equation (3.29 and 3.30). Fig. 3.8 

shows the tractrix horn constructed in MSC.Marc.Mentat. 
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Fig.3.8 Isometric view of a tractrix horn, constructed in MSC.Marc. 

 

3.1.4. Hyperbolic Horn Contour  

 

In 1940 Freehafer [12] published an exact solution for a hyperbolic horn whose 

solution was not based on Webster’s equation. After a while Salmon synthesized a 

new family of horns by using relations among the real and imaginary parts of the 

reciprocal of the horn impedance and the shape parameter. 

 

By looking fig. 3.3 it can be said that throat resistance for the hyperbolic horn 

reaches the value of unity quicker than the other type of horns. From this aspect, for 

best loading conditions over the frequency range over the cut-off frequency 

hyperbolic horn should be preferred. However, non-linear distortion is higher for the 

hyperbolic, because hyperbolic horns have a tube that flares very little until it gets to 

the end where it flares suddenly. The problem with such a long tight flare is that as 
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sound pressures increase, the restricted passage for the air causes it to compress and 

distortion occurs. 

 

The general hyperbolic horn contour formula is 

2

00

sinhcosh)( 







+=

x

x
M

x

x
SxS T                              (3.47) 

 

Where x: axial distance from the throat in meters 

 x0: reference axial distance from the throat in meters 

 M: family parameter whose value is between 0 and 1 

 

and 

02 x

c
fc

π
=                                       (3.48) 

 

By knowing ST and SM from eqn. (3.26, 3.29) length of the horn can be calculated by 

a simple code written in Pascal language at Delphi (code 3.1, Appendix 1). After all 

hyperbolic horn construction can be completed as in Fig. 3.9. 

 

 



 

 44 

 

 

Fig. 3.9 Top view of a meshed surface of hyperbolic horn with front cavity, 

constructed in MSC.Marc 

 

3.2. Foldings  

 

Horn loudspeakers, and particularly low frequency horn loudspeakers, are commonly 

used in applications where large, linear sound outputs are needed such as in sound 

reinforcement and active noise cancellation. Because low frequency horns can be 

very large, the physical dimensions of this kind of horn loudspeakers may be reduced 

by folding the horn. There are many ways of folding horn. In this text, axial length is 

taking into account and horn will be folded to fit into a box having a limited axial 

dimension. If the bends are not sharp when their lateral dimensions approach half 

wavelengths, sound transmission will be efficient. Beranek [16, Fig.9.16] gave some 

data on the effect of bends of various types in rectangular ducts used in ventilating 

systems which are shown in Fig. 3.10.  

Front Cavity 

Mesh 

Horn Envelope 

(Mesh) 
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Fig. 3.10 Attenuation of sound due to the introduction of 19
o
 and 90

o
 bends as a 

function of frequency, [16]. 

  

Rayleigh [1] showed that bends in tubes of constant cross-section have no effect on 

transmitted sounds if the wavelength is larger than the diameter. According to 

Wilson [7] the horn diameter at bend must be less than 0.6 times the lowest 

wavelength. It is also applicable for rectangular cross-section such that, width should 

be less than 0.6 times the lowest wavelength. 

 

 The important factors taking into considerations are  

a. At the bends, axial horn length needs to be modified through coordinate 

transformation from cartesian to polar coordinate. 

b.  A relation for this coordinate transformation should be developed while 

switching the coordinates 

c. The arc length radius needs to be determined to calculate axial length of 

the horn at the bends. In fact, plane of cross-section turns around the axis 

and generally arc length radius (r) will be quarter of the corresponding 

plane width (or diameter if it is circular cross-section) R.  

d. Cross-sectional area should be increased in accordance to horn contour 

in turning the bends, so the arc length radius does.   
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At the beginning of the bend, cross section (square) will be separated into 4 equal 

triangles (fig. 3.11). In fact they are trapezoid in shape. Initial the top length is zero 

and at the end top it reaches to the value of R2. Cross-sectional area will be increased 

from S1 to S2 during bending. 

 

 

 

Fig. 3.11 Cross sectional view of horn at the beginning of the bending and at the end 

of the bending 

 

3.2.1. Folding in the Exponential and Hyperbolic Horns 

 

For exponential and hyperbolic horns exponentially increasing curves are tried to be 

fitted into polar equation. Then, arc length of the propagation curve will be found. It 

is also the corresponding axial length for that particular turn. Finally cross sectional 

areas will be compared. 
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Where θ: polar angle (angle of bend) 

 n: polar coordinate flare constant 

 

The arc length LF (axial length of the folding part) can be found from, 
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For exponential horn, if there is no folding, S2 will be, 
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For hyperbolic horn, if there is no folding, S2 will be, 
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Where L1: Axial length before the folding  

 LF: Axial length of the folding part 

 

For π radian turn one can find final radius (r2) by using eqn. (3.50) 

πnerr 12 =                              (3.54) 

And    

)(4)( θθ rR =                        (3.55) 

 

Then area S2 can also found as following; 

2

1

2

22 RRS −=                             (3.56) 

 

Comparing eqn. (3.52) or (3.53) with eqn. (3.56) gives the corresponding n value. By 

knowing n value, radius of curvature can be found for different rotation angle from 

eqn. (3.50), so do x, y, z components of the horn contour. Finally, corresponding 

single-folded hyperbolic or exponential horn can be obtained as in Fig. 3.12. 
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Fig.3.12 Single folded hyperbolic horn contour. 

 

3.2.2. Folding in the Tractrix and Conical Horns 

 

Bending contour calculation of conical horns are very similar to previous section 

except radius of curvature formula, such that 

 

( )1)( 1 += θθ nrr                          (3.57) 

 

For the tractrix case, it’s a little different since tractrix requires inverse calculation 

and tractrix horn contour equation gives directly axial distance from the mouth. So 

that, required bending length can be stated before and suitable radius of curvature 

can be found from both tractrix formula and arc length formula. After all equate them 

and try to error go to zero. 

 

For example, let the bending length (LF) is 

5

T
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L
L =                         (3.58) 



 

 49 

By using equation (3.46) for LF, then R2 and R1 can be calculated, so do r2 and r1. 

Part of the calculation code written in Delphi is given in Appendix (Appendix 1, 

code 3.2). 

 

 

 

Fig. 3.13 Top view of double folded tractrix horn contour. 

 

3.3. Distortions 

 

There are some types of distortion in horn loudspeakers due to internal cross-

reflections and standing waves set up within the horn.  

 

Sound Propagation 
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The air overloaded distortion is caused by the non-linear relationship between 

pressure and volume of the air in the throat of the horn as it undergoes adiabatic 

compression and expansion. A sound wave of large amplitude cannot be propagated 

in air without change in the wave form. The volume change for an increase in 

pressure will be less than the volume change for an equal decrease in pressure. 

Beranek showed that for large change of volume, the pressure built up in the throat 

of the horn is no longer sinusoidal (Fig.3.14) even tough displacement of diaphragm 

is sinusoidal [16, Fig.9.11] and he has also derived the relationship for 2
nd

 harmonic 

distortion at the throat of an infinite exponential horn. If the horn were cylindrical 

pipe, the distortion would increase the wave progressed towards the mouth. In the 

case of exponential horn (flaring horn), the amplitude of the pressure wave decreases 

as the wave travels away from the throat. In order to have low distortion the horn 

should flare out rapidly to reduce to pressure amplitude, so that the second harmonic 

distortion does not increase linearly with distance. From this point of view, conical 

horns will generate the least distortion since it flares out rapidly.  

 

 

 

Fig.3.14 Adiabatic pressure/volume relationship for air.[16]. 
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Olson [17] stated that delivering large sound outputs with small distortion may 

require large throat which should also suitably coupled to large diaphragm to obtain 

high efficiency. He also showed that at low frequencies where the amplitude of the 

diaphragm is large that volume of the air chamber becomes alternatively zero and 

two times the normal value, the acoustical reactance of the acoustical capacitance is 

very large compared to acoustical resistance of the horn. 

 

Furthermore, stiffness of suspension systems of diaphragm may not be a constant, 

but a function of the amplitude. The materials of the horn can also resonate and they 

are also accentuated if the horn is folded, when wavefronts will be distorted at the 

bends. These are the other factor create distortion. It’s good to choose properly 

compliance of the suspension system and the compliance of the air chamber, so that 

high efficiency obtained. 

 

3.4. FEM Geometry of Horns 

 

The previous sections have dealt in some detail with the basic theory of the various 

kinds of horn. In this study, a computer interface (Fig.3.15) called as “Folded Horn 

Design” has been developed in Delphi to facilitate the construction of the horn 

geometry by reducing the geometrical modeling time in a commercial FEA program. 

This interface works jointly with MSC.Marc-Mentat and provides users opportunities 

such that they can change the primary parameters and horns will be modeled 

according to these parameters. Cut-off frequency, types of cross-sectional area of the 

mouth and throat, maximum horn length are the primary designing parameters. The 

interface takes the essential geometric design parameters of the chosen horn as inputs 

and calculates all the necessary data in conformity with the previously mentioned 

horn design procedures. Codes abide by acoustic design criteria have been written in 

Pascal language to achieve this parametric design. In accordance with these codes 

secondary and the major designing parameters such that; flaring rate, throat and 

mouth area of the horn, length of the horn can be calculated and whether the folding 

is required or not will be determined. Maximum number folding is limited to two. 

After calculating the required data, the interface creates a *.proc file which includes 
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horn geometry creation commands and sends this file to MSC.Marc-Mentat. “*.proc 

file” is a procedure file which can be run automatically at Mentat from the simple 

button “construction” on the “Folded Horn Design” interface.  

 

 

 

 

Fig. 3.15 Computer interface generated by using Delphi 

 

Users have the possibility of changing primary design parameters easily by inserting 

desired values to the “User Inputs” panel on the interface. These parameters are 

called as ‘Variable parameters’. In this work, these variable parameters are divided 

into three groups, which are main driver parameters, geometrical limitation of box 

and acoustical parameters such as speed of sound and cut-off frequency. After the 

appropriate values inserted, primary calculation will start as soon as the click on the 

“Primary Design” button and at the right panel major parameters of the horn, namely 

mouth area, throat area, axial length, flare constant if applicable will then be shown. 
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Furthermore, at the left screen some useful information will be seen, such that how 

many times it requires folding and total length after folding and etc. At the right 

bottom table one of the horn contour coordinates can be seen after the “Major 

Design” button is pressed. At this point horn is ready to be constructed, so “*.proc 

file” can be constituted by means of “create proc” button. Finally, this file can be run 

automatically at Mentat with the help of “construction” button and construction of 

FEM geometry (Fig.3.16) will be completed. 

 

 

 

 

 

Fig.3.16 FEM geometry of single folded tractrix horn. 
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CHAPTER 4 

 

LUMPED PARAMETER SYSTEM MODELING OF HORN DRIVERS  

 

This chapter discusses modeling of the loudspeaker driver. Horn loudspeakers 

usually consist of a moving-coil driving unit coupled to horn. Moving coil driving 

unit has a diaphragm attached to a cylindrical coil of wire that is suspended in a fixed 

magnetic field. For the purposes of horn loudspeaker system analysis and design, it 

has been found advantageous to model the driver in terms of lumped parameters. A 

good model of a real system may be characterized by its simplicity and also its 

ability to provide all the necessary information about the system. In the lumped 

parameter system models the real system such as horn driver is modeled as a 

collection of finite number of simple components. All of these components can either 

store or dissipate or transform energy and they are assumed to have only one 

property value for each component. The behavior of components and their 

interconnections will then be described by linear algebraic and/or linear differential 

equations.  

 

Throughout this chapter, after some analogies mentioned a little, lumped parameter 

electro-mechano-acoustical equivalent system and the corresponding linear graph of 

the driver will be depicted. The main objective sought in the analysis is to find 

diaphragm velocity or sound pressure at the throat. 

 

4.1. Analogies 

 

While working with multi-domain systems like the loudspeaker, transformation from 

one domain to the other is required. For example, the equivalent electric circuit can 

be constructed by transformation of mechanical and acoustical systems into electrical 

domain. The following variable classification based on the type of measurement will 

be used to classify physical variables: 

a. Across variables (v) 

b. Through variables (f) 
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In the analysis of loudspeaker driver units it is popular to develop analogies. There 

existed several types of analogy. Most common ones are impedance and mobility 

analogies. For the mobility analogy; voltage, velocity, angular velocity and volume 

velocity are treated as analogous to each other. Also current, force, torque and 

pressure are analogous variables. On the other hand, for the impedance type analogy; 

current, velocity, angular velocity and volume velocity are analogous to each other. 

Whereas voltage, force, torque and pressure are analogous variables. With respect to 

distinction between through and across variables; across variables are voltage, 

velocity, angular velocity and pressure, while through variables are current, force, 

torque and volume velocity. For this type of analogy, it can be said that it’s a mixture 

of mobility and impedance type analogy, such that for the electrical and acoustical 

domain it’s similar to impedance type but for the mechanical case it’s similar to 

mobility type of analogy. 

 

In this chapter successively electro-mechano-acoustical circuits will be constructed 

then linear graph will be constructed. While constructing an electro-mechano-

acoustical equivalent circuit, for the mechanical part mobility analogy will be used 

and for the electrical and acoustical part impedance analogy will be used. On the 

other hand, for the linear graph modeling through and across variables analogy will 

be preferred. 

 

4.2. Electro-Mechano-Acoustical Circuits 

 

Analogies mentioned in previous section are used to construct equivalent electrical 

circuits for acoustical and mechanical systems. The purpose is the application of 

electrical-circuit theory to obtain governing dynamic equations for mechanical and 

acoustical systems. Not only a schematic representation of the components and their 

connections make it possible to visualize and understand the system, but also the 

differential equations can be formed directly from these schematic diagrams. Before 

the construction of lumped element equivalent electro-mechano-acoustical circuit, 

it’s better to designate simplified physical model of horn-loaded moving-coil 

loudspeaker driver (or compression driver) (Fig.4.1). 
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Fig.4.1 Simplified model of a horn-driver system 

 

Vibrating diaphragm (cone) of a moving coil loudspeaker is appreciably larger than 

the voice coil to enhance the efficiency of radiation at low frequencies. The time 

required for a displacement of the cone center to propagate the rim is small compared 

to the period of vibration at low frequencies, so that the cone may be assumed to 

vibrate as a rigid surface. Nearly all modern power amplifiers used for loudspeakers 

are regarded as low output impedance and constant voltage type. Thereby, output 

impedance of the driving source is assumed to be negligible. 

 

Loudspeaker impedance character is an important matter, for the aspect of the power 

transfer and stability characteristics of the loudspeaker. The impedance curve of a 

basic loudspeaker displays a peak at the first (bass) resonance frequency. The 

electrical equivalent of the mechanical resonance of the cone and suspension at the 

bass resonance is a series resonant circuit for the impedance type of analogy. It 

shows minimum value of mechanical impedance at the resonance, as constant force 

produces the maximum velocity or displacement at that frequency. 

 

A moving-coil loudspeaker driver can be modeled with lumped-parameter 

characteristics and with coupling between the electrical, mechanical, and acoustical 

domains. There are two components transforming energy between two medium. The 

first one is the coupling between the electrical domain and the mechanical domain 

VB 

Driver 

VF 

Back Cavity 

ST SD 

Front Cavity Horn 
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due to the alternating Lorentz force acting on the voice coil. And the second one 

involves the coupling between the mechanical and acoustical domains due to the 

motional coupling of the cone and the air adjacent to the cone. For the first type 

coupling, a transformer will be used, not the gyrator, since the voltage in the 

electrical loop scales with the velocity (voltage in the mechanical loop). If all 

domains were constructed based on the impedance analogy, the circuit would be 

different like Leach’s complete electro-mechano-acoustical circuit [25, Fig. 2.] and 

the first coupling transformer would be turned into gyrator. 

 

The voice coil of a driver is initially modeled as a resistor RE in series with an 

inductor LE in the electrical part with the impedance analogy. The moving-coil driver 

connected to a driver of voltage eg which supplies a current ig. The diaphragm and 

suspension system are modeled in the mechanical part with the mobility analogy as a 

damped mass-spring system (with mass MMD, compliance CMD, and resistance RMD). 

In the mechanical part, across variable is driver velocity (vD) and through variable is 

force (fD). In the acoustical part, after applying the impedance analogy, RAB and CAB 

represent the acoustical resistance and compliance of the box of volume VB and CAF 

is the acoustical compliance of the front chamber (VF). The radiation loading of the 

horn is ZAL (Fig. 4.2). 

  

eg ZAL

RAB CAB
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Fig. 4.2 Complete electro-mechano-acoustical circuit of horn loudspeaker system. 
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 Behind the diaphragm, there is a space (cavity) that can be filled with soft acoustical 

material and in mid frequency range this space adds the system a compliance CAB 

and the resistance RAB. This back volume resistance and reactance combines with the 

radiation loading of the horn throat since the diaphragm must develop power both to 

its front and its back. Therefore, in the acoustical part of the circuit these terms are 

shown as series branch. While air space compliance CAF in front of the diaphragm is 

parallel to the horn loading. 

 

This circuit can be simplified to a single-domain representation by carrying the other 

domain parts of the circuit into the one domain part by means of impedance 

transformation from a transformer or gyrator.  

 

For example, acoustic parts are converted through the area gyrator into the 

mechanical mobility analogy then all the mechanical mobility parts are carried 

through the transformer into the electrical impedance analogy. The result is shown in 

Fig. 4.3. In a similar manner, electrical and mechanical parts can be transformed into 

the acoustical part, given in Fig. 4.4.  
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Fig. 4.3 Complete mobility type electrical equivalent circuit of horn speaker system 



 

 59 

 

 

Fig. 4.4 Complete impedance type acoustical equivalent circuit of horn speaker 

system 

 

Note that impedance Z is the inverse of mobility z. One circuit is known as the dual 

of the other circuit. While converting a circuit from one analogy to the other type, 

series element should be converted to parallel elements; capacitor is converted to 

inductor and vice-versa. 

 

4.2.1. Electrical Circuit 

 

The electrical part shows the moving coil driver connected to a generator of voltage 

eg which supplies a current ig. 

 

 

Fig. 4.5 Electrical circuit 
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Equations for the electrical system: 

)()( tiRtv gERE
=                                  (4.1) 

dt
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By using Kirchoff’s Voltage Law 
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4.2.2. Electro-Mechanical Transducer (Ideal Transformer) 

 

Electro-magnetic part converts electrical energy into mechanical case by means of 

transformer element. If both mechanical and electrical domain are constructed by 

impedance analogy this transformer element is gyrator if electrical part is made with 

impedance and mechanical circuit made with mobility analogy then it will be 

transformer. 

 

A permanent magnetic material produces a constant strength magnetic field B. When 

an electric current ig(t) is supplied to the voice-coil, it produces an electro-magnetic 

force FEM(t) acting on the voice-coil and the mechanical system attached to voice 

coil. The length of the wire on the voice coil called l and assumed constant. When 

the voice-coil moves in the magnetic field, a EMF voltage vEMF(t) proportional to the 

velocity u(t), is produced across the terminals. 
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Fig. 4.6 Electro-magnetic transducer (transformer) 

 

 

)()( tBlitF gD =                                  (4.4) 

)()( tBlutvEMF =                                   (4.5) 

 

 

4.2.3. Mechanical Circuit 

 

The mechanical system is shown for the mobility analogy. 
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Fig. 4.7 Mechanical circuit 
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Equations for the mechanical system: 
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From Kirchoff’s Current Law; 

)()()()()( tFtFtFtFtf GMCMRMMDD +++=                           (4.10) 

 

 

4.2.4. Mechano-Acoustic Transducer (Ideal Gyrator) 

 

This type of transducer occurs at a junction point between the mechanical and 

acoustical parts of an analogous circuit and it converts mechanical energy to 

acoustical energy by means of turns ratio equals to piston area SD. 

1:SD

u(t) P(t)

FGM UD

 

 

Fig. 4.8 Mechano-Acoustic Transducer (Gyrator) 

 

Basic equations: 

)()( tPStF DGM =                            (4.11) 

)()( tuStU DD =                                                                                                      (4.12) 
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4.2.5. Acoustical Circuit 

 

In the acoustical part of the circuit pressure is the voltage (across variable) and 

volume velocity is the current through variable. The current UD is volume velocity 

emitted by the driver cone. 
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Fig. 4.9 Acoustical Circuit 

 

Equations for the acoustical system: 
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From Kirchoff’s Voltage Law; 

)()()()( tPtPtPtP CLCARA ++=                             (4.16) 

)()()( tUtUtU LFD +=                                     (4.17) 
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By using equations given above and known driver parameters are sufficient to 

determine diaphragm velocity, volume velocity of air and pressure fluctuation at 

throat. At this point, it should be noted that a generalized analysis of horn-loaded 

driver system is impossible because of the dependence of ZAL (horn throat 

impedance) on the horn geometry and on frequency. More detailed calculation will 

not be given for electro-mechano-acoustical circuit, but it will be performed later 

while linear graph model of the driver is being analyzed. 

 

4.2.6. System Efficiency 

 

As Keele [87] stated, maximum efficiency occurs at the driver’s resonance 

frequency. If driver mechanical losses are neglected, the maximum nominal 

efficiency can be obtained when the acoustic load resistance equals to the driver’s 

voice-coil resistance and the maximum true efficiency occurs when the reflected 

acoustical load resistance is much higher than the driver’s voice coil resistance. The 

system efficiency is defined in the mid-frequency range. Because the fact that while 

higher compression ratios will raise the high frequency efficiency, it may decrease 

mid-frequency range efficiency.  

The nominal efficiency of horn-driver system is calculated by dividing the acoustic 

output power by the nominal electrical input power. True efficiency however is 

calculated by dividing the acoustic output power by the true electrical input power. 

Nominal electrical input power (PNE) for compression driver: 

 

E

g

NE
R

e
P

2

2

=                                     (4.18) 

 

Since modern amplifiers exhibit very low output impedance, it provides constant-

voltage operation regardless of loudspeaker impedance. Various simplifications can 

be made to determine the maximum efficiency. Keele [87] analyzed how to 

maximum efficiency change with the corresponding simplification and displayed the 

equations and results. 
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4.3. Linear Graph Modeling 

 

As stated before several different types of analogies between variables and elements 

may be defined. In this section, generalized “through” (f) and “across” (v) variables 

have been applied to relate elements associated with the linear graph system 

representation. Linear graph allows to develop modeling methods that are similar to 

well known techniques for electrical circuit analysis. There is also bond graph 

modeling (Appendix 2, Fig. 1) similar to linear graph, based on the concepts of 

“effort” and “flow” variables a little bit different from “through” and “across” 

variables, such that for the first forces and electrical voltages are considered to be 

analogous, while in the linear graph method forces and electrical currents are 

considered to be analogous. 

 

First, general theory of linear graph modeling will be given, and then application to 

horn-loaded compression driver will be shown. Finally, driver will be analyzed by 

using lumped parameter linear graph model in order to find diaphragm velocity or 

sound pressure at the throat. 

 

4.3.1. One-Port Elements 

 

One port pure elements can be defined as the pure elements possessing only one 

energy port for the energy exchange between their environments. According to their 

energetic behavior they can be divided into two main groups 

a. Active Elements 

b. Passive Elements 

 

There exist two versions of active elements, 

 

i. A-Type Active Elements 

The generalized across-variable (v) is defined function of time v21=f(t) and is 

independent of through variable (f).  
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ii. T-Type Active Elements 

The generalized through variable (f) is defined function of time f=f(t) and is 

independent of across-variable (v). 

 

For the horn loudspeakers case, since it’s driven by voltage source eg, it can be 

considered as A-Type active elements. For the definitions of ideal source types refer 

to Appendix 2 (Table 1). 

 

There are one dissipative (D-Type) and two storage passive elements. Storage 

elements are known as capacitive (A-Type) and inductive (T-Type). 

 

i. D-Type Passive Elements (Energy Dissipators) 

They are defined by an algebraic relationship between the across and through 

variables of the form: 

 

)(21 fFv =         or     )( 21vf φ=                     (4.19) 

 

where F and φ representing single valued function. Elemental equations of D-Type 

passive elements and their corresponding power dissipated equations can be seen in 

Appendix 2 in a tabular form (Table.2). 

 

ii. A-Type Passive Elements (Capacitive Stores) 

These elements are characterized by their energy storage feature by virtue of 

across variable associated with them. They are defined by a constitutive 

relationship between the integrated through (h) and the across variable (v21) 

associated with as 

 

)( 21vh φ=                                (4.20) 
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where ψ  representing a single valued monotonic function. Elemental and 

constitutive equations of A-Type passive elements and their corresponding energy 

storage equations can be seen in Appendix 2 in a tabular form (Table.3). 

 

iii. T-Type Passive Elements (Inductive Stores) 

These passive pure elements are characterized by their energy storage feature by 

virtue of through variable associated with them. 

 

)(21 fx ψ=           (4.21) 

where ψ  representing a single valued monotonic function and x21 is the generalized 

integrated across-variable. Elemental and constitutive equations of T-Type passive 

elements and their corresponding energy storage equations can be seen in Appendix 

2 in a tabular form (Table.4). 

 

4.3.2. Two-Port Elements 

 

The process of energy conversion between different domains is known as 

transduction and elements that convert the energy are defined as transducers. There 

are two ideal two-port transducers, namely transformer and gyrator. 

 

i. Transformers 

Either the integrated across variables of the two ports are related by single valued 

functions as 

)( ab xx φ=                             (4.22) 

Or the integrated through variables of the two ports are related by single valued 

functions as 

)( ab hh ψ=                  (4.23) 

 

ii. Gyrators 

Integrated across variable of one of the ports is related to the integrated through 

variable of the other port; 
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)( ab hx φ=                             (4.24)          

or 

)( ab xh ψ=                  (4.25) 

 

4.3.3. Linear Graph of Horn Loudspeaker System 

 

For horn loaded loudspeaker, there is electrical, mechanical and electrical domain.  

 

In the electric part, there is one A-Type active element Vg (driver voice coil input 

voltage), one T-Type passive element LE (voice coil inductance) and one D-Type 

passive element RE (voice coil resistance). 

 

In the mechanical part, there is one A-Type passive element mm (mechanical mass of 

driver diaphragm assembly), one T-Type passive element km (mechanical stiffness of 

suspension system) and one D-Type passive element bm (damping coefficient of 

suspension system). 

 

Finally, in the acoustical part, there are two A-Type passive elements CB, CF (back 

and front volume capacitance), two D-Type passive element RB (back volume 

resistance), RAL (resistance of the horn throat) and one A-Type passive elements MAL 

(capacitance of the horn throat). 

 

Voice coil loudspeakers are also energy transduction devices for transduction 

between electrical and mechanical translational system. Therefore, there is a 

transformer with a turns ratio (TR) equal to 1/(Bl). Furthermore, driver cone acts as a 

piston and provide transduction between mechanical translation and fluid systems.  

So, there is also gyrator with a turns ratio equal to the piston area SD. 

Complete linear graph of horn-loaded loudspeaker system is given Fig. 4.10.  
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Fig. 4.10 Complete linear graph model of horn-loaded loudspeaker. 

 

In this graph CB and CF act as a capacitance. Principle of conservation of mass 

requires; 

dt

dV

dt

d
VV

dt

d
Q ρ

ρ
ρρ +== )(                            (4.26) 

 

where V is the volume, ρ is the mass density of the fluid. Since there is no external 

flow (Q=0) into the volume box VB and volume of front chamber VF. Left side of the 

Equation 4.26 is zero. It’s also known that  

Q
dt

dV
=                                  (4.27) 

And equation of state requires that; 

dPd
β

ρ
ρ =                              (4.28) 

where β is the bulk modulus of elasticity [Pa] of the liquid. It’s important to note that 

bulk modulus of gases can be expressed as 

np=β                                    (4.29) 

By using above equations, it can be found that 

.

21pC
dt

dpV
Q f==

β
                              (4.30) 

Therefore, acoustical compliance of air in box CB and acoustical compliance of air in 

front chamber CF are considered as capacitive (A-Type passive) elements. 
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Since the impedance of horn throat is hard to compute and dependent on the horn 

geometry and frequency. Its effect will be analyzed later with the help of acoustic 

finite element analysis software. For simplicity while finding cone velocity the 

coupling between voice coil motion and horn loading is overlooked. The widely used 

methods of direct-radiator loudspeaker system analysis, based on the pioneering 

work of Thiele and Small, neglect the radiation impedance components in deriving 

the system response functions [47-53]. Neglecting these components provides a very 

powerful simplification of the equivalent circuit that helps the designer in deriving 

the appropriate response functions and system relationships. One of the main effects 

of not including the radiation terms in the analysis is that all derived responses are 

high-pass functions. After simplifications, new linear graph (Fig. 4.11) will be 

analyzed. Diaphragm velocity, or acoustic pressure at the throat area will be found by 

means of linear graph model and this data will be used as input variable (source) for 

the acoustic analysis of FEM geometry of the horns.  

 

 

 

Fig. 4.11 Linear graph model of horn driver. 

 

Number of branch (B) is equal to 13, number of node (N) is 7, and there is one A-

type active element (Aa=1). 
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4.3.4. Analysis of Linear Graph Model  

 

For the analysis of Fig. 4.11, first appropriate normal tree should be constructed. 

Procedure to form normal tree is 

i. Entering all A-Type active elements  

ii. Completing the tree by using maximum number of A-type passive elements 

iii. If the not complete at step ii., complete it by using D-Type passive elements. 

 

  

 

Fig.4.12. Normal tree and fundamental cutsets 

 

With the normal tree, state equations can be derived for the systems with two port 

elements by choosing the primary variables as the across-variables on all branches of 

the normal tree and the through-variables on all normal tree links, including those 

associated with the two- port elements. The system state variables are the across-

variables of the A-type passive elements in the normal tree, and the through-variables 

of the T-type passive elements in the normal tree links. 

 

From the normal tree in Fig.4.12: 

Primary Variables: Vg(t), vmm, PCB, PCF, Va, vc, Pd, VRE, iLE, fb, fbm, fkm, QRB 

Secondary Variables: ig(t), fmm, QCB, QCF, ia, fc, Qd, iRE, VLE, vb, vbm, vkm, PRB  

State Variables: vmm, PCB, PCF, iLE, fkm 
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The B-A=12 elemental equations written in terms of primary variables are: 

mm

m

mm f
mdt

dv 1
=                               (4.31) 

CB

B

CB Q
Cdt

dP 1
=                                  (4.32) 

CF

F

CF Q
Cdt

dP 1
=                                 (4.33) 

Moving coil loudspeaker is considered as an ideal electro-mechanical transducer for 

which the following constitutive relationship can be written; 

 

ba vBlV )(=                                            (4.34) 

ab iBlf )(−=                                          (4.35) 

 

Considering the combined fluid and mechanical system, coupled by driver, act as a 

hydraulic ram (piston). Thereby it’s regarded as a gyrator and the following 

constitutive relationship can be written; 

 

d

D

c Q
S

v
1

−=                                        (4.36) 

D

c

d
S

f
P =                                      (4.37) 

REERE iRV =                                    (4.38) 

LE

E

LE V
Ldt

di 1
=                                (4.39) 

bmmbm vbf =                         (4.40) 

kmm

km vk
dt

df
=                        (4.41) 

RB

B

RB P
R

Q
1

=                           (4.42) 
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The N-1=6 continuity equations are: 

REg iti −=)(                                 (4.43) 

LERE ii =                                  (4.44) 

LEa ii =                                    (4.45) 

cbmkmmmb fffff −−−−=                    (4.46) 

RBCBd QQQ −−=                          (4.47) 

CFRB QQ =                                (4.48) 

The B-N+1=7 compatibility equations are, 

REagLE VVtVV −−= )(                     (4.49) 

mmb vv =                                     (4.50) 

mmbm vv =                                  (4.51) 

mmkm vv =                                                (4.52) 

mmc vv =                                     (4.53) 

CBd PP =                                       (4.54) 

CFCBRB PPP −=                           (4.55) 

 

There are 25 equations. On the other hand, the number of unknowns is equal to 

summation of two variables per passive element (2(B-A)=24) and one variable per 

active element (A=1). Hence, there are 25 (2(B-A)+A=25) unknowns which is the 

same as the supplied equations. The secondary variables can be directly eliminated 

from elemental equations and by direct substitution the twelve elemental equations 

can be reduced to five state equations and placed in the standard form. At this point 

before going on the manipulations, linear graph can be simplified more by using 

simplified mechanical model of compression driver (Fig. 4.13). 
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Fig. 4.13. Mechanical part of simplified model of a loudspeaker. 

 

CF (kF) in the acoustical part and LE in the electrical part will be omitted. In front of 

the diaphragm there is an air space with compliance CF and at low to mid  

frequencies the air in this space behaves like an incompressible fluid, that is, ωCF is 

small, and all air displaced by the diaphragm passes into the throat of the horn. The 

voice coil inductance LE is neglected as in the most loudspeaker analyses for low to 

mid frequencies. When this is done, new linear graph can be constructed again, such 

as Fig. 4.14. 

 



 

 75 

 

 

Fig. 4.14 Simplified linear graph of compression driver 

 

 

Number of branch (B) is 7, number of node (N) is 4 and there is one A-type active 

element (Aa=1). 

 

Vg

mm

Vr=0 vr=0
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V2
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 ia 
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Fig. 4.15 Corresponding normal tree of the simplified linear graph. 
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From the normal tree in Fig. 4.15.: 

Primary Variables: Vg(t), vmm, Va, iRE, fb, fbm, fkm 

Secondary Variables: ig(t), fmm, ia, VRE, vb, vbm, vkm  

State Variables: vmm, fkm 

 

The B-A=6 elemental equations written in terms of primary variables are: 

mm

m

mm f
mdt

dv 1
=                                (4.56) 

ba vBlV )(=                                 (4.57) 

ab iBlf )(−=                                (4.58) 

E

RE

RE
R

V
i =                                 (4.59) 

bmmbm vbf =                                                   (4.60) 

kmm

km vk
dt

df
=                               (4.61) 

 

The N-1=3 continuity equations are: 

REg iti −=)(                                  (4.62) 

REa ii =                                         

(4.63) 

bmkmbmm ffff −−−=                       (4.64) 

 

The B-N+1=4 compatibility equations are, 

agRE VtVV −= )(                         (4.65) 

mmb vv =                                                (4.66) 

mmbm vv =                                                         (4.67) 

mmkm vv =                                        (4.68) 

 

The secondary variables can be directly eliminated from elemental equations: 
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( )bmkmb

m

mm fff
mdt

dv
++−=

1
                        (4.69) 

mma vBlV )(=                                                     (4.70) 

REb iBlf )(−=                                                    (4.71) 

E

ag

RE
R

VtV
i

−
=

)(
                                          (4.72) 

mmmbm vbf =                                                         (4.73) 

mmm

km vk
dt

df
=                                            (4.74) 

 

By direct substitution the six elemental equations can be reduced to two state 

equations and placed in the standard form. 
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One way of solving the equation (4.75) is to use “Euler Method” applied to a system 

of first order differential equations and given initial condition, so that vmm(t) and 

fkm(t) can be found at any time. The other way is to assume a sinusoidal input Vg(t) of 

frequency ω and amplitude Vga and found the steady state response at varying 

frequencies.  

 

)sin()( tVtV gag ω=                        (4.76) 

And the Laplace transform Vg(s) of this input can be written as; 

)()(
22 ω

ω

+
=

s
VsV gag                  (4.77) 

 

Applying Laplace Transforms and gathering the outputs vmm(s) and fkm(s) on the left 

side of the equation; 
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Taking the inverse of the left most matrices and multiplying both sides with the 

inverse gives a general equation in the form of equation 4.79; 

 

)()()( sYsGsX XY=                  (4.79) 

 

where X symbolizes the output (vmm), Y symbolizes the input (Vg) and GXY 

symbolizes the transfer function (Gv). After some manipulation, the transfer function 

Gv between vmm and Vg takes the form, such as: 

 

( )( ) EmEmEm

v
RkRbBlsRms

Bls
sG

+++
=

22

)(
)(                          (4.80) 

 

At this point 
22 ω

ω

+s
has not been added to the equation, since it will be accounted 

while obtaining complex frequency response G(jω), such as 

 

( ) ( )( )EmmmE
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RbBljmkR

Blj
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==

= 22

)(
)()(

ωω

ω
ω

ω
                       (4.81) 

 

Amplitude (magnitude) of G(jω) is given by 
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and the phase is defined as 
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Then, the output expression (vmm) at steady state can be calculated from 

( ) ( )( )ωφωω += tjGVtv gam sin)(                (4.84) 

 

Finally, by using equation (4.84) in the “Folded Horn Design” interface with the 

driver model equation algorithm, diaphragm ring (cone) velocity (Fig. 4.16) and 

phase angle can be found depending on the frequency. “Folded Horn Design” 

interface takes the essential driver design parameters of the chosen driver as inputs 

and calculates all the necessary data in conformity with the previously mentioned 

driver design procedures (Fig.4.17). Users have the possibility of changing driver 

design parameters easily by inserting desired values to the left panel on the interface. 

After the appropriate values inserted, primary calculation will start as soon as the 

click on the “Primary Design” button and at the right panel major parameters of the 

driver will be shown. The sample primary design parameters for compression driver 

are taken from the ElectroVoice Loudspeaker Company. In primary design stage 

while obtaining mechanical mass and stiffness of the driver corresponding Leach 

[24] equations will be used. At the right bottom table diaphragm (cone) velocity and 

phase angles can be seen after the “Major Design” button is pressed.  

 

 

Fig. 4.16 Schematic view of the applied cone velocity  
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Cone Velocity 

(vmm) 

Front Cavity 
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Fig. 4.17 Driver module of “Folded Horn Design” interface  
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CHAPTER 5 

 

ACOUSTICAL FINITE ELEMENT ANALYSIS OF HORNS 

 

After 3D model of horns are constructed automatically using MSC.Marc Mentat by 

parallel working with Folded Horn Design interface developed in Delphi software 

and diaphragm velocity (or pressure at the throat) is calculated, these data will be 

used as input variables (source) for the acoustic analysis of the horns FEM geometry. 

Natural frequencies of air inside the horn envelope along with the corresponding 

mode shapes as well as directivity characteristics and sound pressure level 

distributions for various types of horns can be analyzed and compared with each 

other. Effects of folding and flare rate will also be studied and evaluated. These 

analyses are carried by means of computational complete acoustic and vibro-acoustic 

software, MSC.Actran. In this part, the horns designed for a cut-off frequency of 200 

Hertz and with square horn mouth shapes will be considered. The effect of front 

cavity CAF is also taken into consideration by adding the finite element model of the 

front cavity into the finite element model of the horns. Diaphragm (cone) also 

attached to the complete model. Chosen diaphragm material is polypropylene and 

input material properties of polypropylene entered in the finite element model can be 

seen in Appendix 3. 

 

Firstly, natural frequencies and corresponding mode shapes of cavities (Fig. 5.1-

5.12) will be found. These frequencies give some helpful information about how the 

cavity behaves. The knowledge of number of natural frequencies and the way they 

are distributed in the frequency range of interest is very useful to evaluate 

performance of different horn shapes. This information will be listed in tabular 

(Table 5.1-5.4) forms.  

 

Secondly, acoustic pressure in terms of its rms value will be calculated. Calculated 

frequencies and mode shapes are post processed by using the interface software 

MSC. Patran (Actran preference for MSC.Patran) and sound pressure levels (SPL) 

are compared for different type of horns in the frequency range of interest (Fig. 5.14-
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5.19). Pressure predictions will be performed out of the horn cavity for two points. 

One of the points is taken on the lateral axis of the horn and 2 meter away from the 

mouth to find on-axis responses. The other one is again two meter away from the 

horn, but located at 30 degree angle with the lateral axis of the horn to find off-axis 

responses.   

 

Thirdly, directivity characteristics of the horns will be calculated and compared with 

each other in the Fig. 5.21 to Fig. 5.35. Horns are desired to have directionally wide 

coverage. This will be evaluated at field points near the exit of the horn mouth for a 

radius of two meters. 

 

Finally, general information (number of elements and nodes, calculation times, cpu 

specifications) for the computational analysis will be presented in tabular form in 

order to show feasibility of these analyses. 

 

5.1. Natural Frequencies 

 

Modal analysis by finite elements is a numerical method to determine natural 

frequencies and corresponding mode shapes of a dynamic system by discretization of 

the studied geometry. From natural frequency standpoint of cavity it can be said that 

the lower the number of natural frequencies in the working frequency range, the 

better the horn pressure transmission. In this part horns designed with respect to cut-

off frequency of 200 Hz and upper frequency of 2000 Hz will be analyzed and their 

mode shapes at corresponding frequency will be illustrated. Actran uses Modal 

Extraction for Eigen value solver. Fig. 5.1 to Fig. 5.4 show a typical mode shapes for 

each non-folded horn shapes. Fig. 5.5 to Fig. 5.8 show a typical mode shapes for 

each single-folded horn shapes and lastly, Fig. 5.9 to Fig. 5.12 show a typical mode 

shapes for each double-folded horn. 

 

These analyses are performed for the first 20 natural frequencies inside horn cavities. 

Then, comparison tables will be presented to show the differences in the behavior of 

natural frequencies from non-folded to double folded horns in Table 5.1-5.4. 
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Fig. 5.1 A typical mode shape of the non-folded conical horn cavity at 876.5 Hz 

 

 

 

Fig. 5.2 A typical mode shape of the non-folded tractrix horn cavity at 571.5 Hz 
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Fig. 5.3 A typical mode shape of the non-folded exponential horn cavity at 817.1 Hz 

 

 

Fig. 5.4 A typical mode shape of the non-folded hyperbolic horn cavity at 734.1 Hz 
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The modal analysis gave the information on the number of natural frequencies in the 

frequency range of interest, i.e., 1 to 2000 Hz. Acoustically speaking the most 

prominent effect of these natural frequencies is coloration. Each horn speaker has its 

own characteristic coloration. Many bass horns have resonance problems. At natural 

frequencies unexpected pressure peaks are appear adversely affecting the response. 

Mode shapes figures can be viewed as 3D maps of the rms value of the pressure 

inside the horn cavities. Such data is especially important while interpreting the SPL 

values of the horns and directivity characteristics.  

 

Table 5.1 to Table 5.4 show the series of harmonically related resonant peaks, 

different resonance frequencies of one kind of horns and for the all type (non-folded 

to double folded). As folding numbers increase, first natural frequencies getting 

smaller values and first 20 natural frequencies range retreats (drops) to range 0-1000 

hertz, while in non-folded case 20
th

 resonances reach up to 1168-1569 Hz, in single 

folded case they only reach 954-1138 Hz and in double folded case they reach 783-

910 Hertz. This is the proof of increasing the number of folding also increase the 

number of resonances (colorations). 

 

In real life applications excessive vibration may be caused by acoustical modes 

triggered by structural defects. At the point where the sound comes out of the mouth 

of the horn, the edge of the mouth can vibrate in a bell mode. In this study horn walls 

are considered as rigid and thereby such defects are neglected. 

 

For a bass horn can radiate at low frequencies, it should be long enough. Due to size 

limitations it should be folded. The net result is long, folded and slowly expanding 

tube that sounds more like a resonant tube than a wide band bass horn. Typical mode 

shapes of single folded horns are given below from Fig. 5.5 to Fig. 5.12. Horn 

geometries are cut from mid plane to be able to show the internal pressure 

distribution patterns.  
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Fig. 5.5 Typical mode shape of the single folded exponential horn cavity at 499.5 Hz 

 

 

 

 

Fig. 5.6 A typical mode shape of the single folded hyperbolic horn cavity at 873.9 Hz 
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Fig. 5.7 A Typical mode shape of the single folded tractrix horn cavity at 788.8 Hz 

 

 

 

 

Fig. 5.8 A Typical mode shape of the single folded conical horn cavity at 617.9 Hz 
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Fig. 5.9 A typical mode shape of the double folded conical horn cavity at 331.4 Hz 

 

 

 

Fig. 5.10 A typical mode shape of the double folded exponential horn cavity at 663.3 

Hz 
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Fig. 5.11 A typical mode shape of the double folded hyperbolic horn cavity at 475.1 

Hz 

 

 

 

Fig. 5.12 A Typical mode shape of the double folded tractrix horn cavity at 820.3 Hz 
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Table 5.1 First 20 natural frequencies inside the conical horns cavities between the 

frequencies of 1-2000 Hz 

 

 

#
th

 Mode 

Shape 

Non-Folded  

(Hz) 

Single Folded  

(Hz) 

Double Folded  

(Hz) 

1 409.1 331.1 250.1 

2 434.0 331.2 250.1 

3 434.1 399.2 331.4 

4 565.2 512.8 383.3 

5 594.2 617.9 489.8 

6 728.1 665.8 551.2 

7 728.4 676.2 551.3 

8 810.2 676.3 600.4 

9 836.9 798.8 615.9 

10 876.5 799.0 616.1 

11 917.8 812.9 721.6 

12 918.7 862.7 735.8 

13 924.5 963.9 765.8 

14 971.3 967.6 765.9 

15 973.1 989.1 779.2 

16 1121.4 989.2 827.4 

17 1159.3 1066.5 840.2 

18 1163.8 1066.6 874.3 

19 1164.5 1138.8 910.8 

20 1168.2 1138.9 910.9 
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Table 5.2 First 20 natural frequencies inside the exponential horns cavities between 

the frequencies of 1-2000 Hz 

 

#
th

 Mode 

Shape 

Non-Folded  

(Hz) 

Single Folded  

(Hz) 

Double Folded  

(Hz) 

1 475.2 285.0 195.7 

2 475.3 285.1 195.8 

3 476.4 406.8 286.5 

4 630.3 499.5 362.0 

5 817.1 572.4 399.5 

6 900.7 605.0 438.3 

7 914.2 605.1 438.4 

8 915.0 681.1 503.9 

9 1024.8 741.5 568.1 

10 1035.2 741.7 568.2 

11 1037.2 752.6 597.1 

12 1155.1 778.9 638.9 

13 1226.2 889.5 663.3 

14 1227.2 892.9 664.1 

15 1228.2 893.0 664.2 

16 1366.3 933.8 734.8 

17 1375.1 945.0 758.0 

18 1378.1 952.5 763.0 

19 1378.9 952.8 763.1 

20 1400.8 954.5 783.3 
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Table 5.3 First 20 natural frequencies inside the hyperbolic horns cavities between 

the frequencies of 1-2000 Hz 

 

#
th

 Mode 

Shape 

Non-Folded  

(Hz) 

Single Folded  

(Hz) 

Double Folded  

(Hz) 

1 393.9 289.3 210.8 

2 474.3 289.4 210.9 

3 474.6 417.7 312.1 

4 629.6 427.4 376.1 

5 734.3 580.9 434.0 

6 898.4 601.3 475.0 

7 900.1 601.4 475.1 

8 900.7 609.5 522.5 

9 929.2 713.5 618.5 

10 1010.7 714.0 618.6 

11 1011.2 714.1 635.1 

12 1135.7 739.5 696.2 

13 1169.9 873.8 699.5 

14 1171.1 873.9 715.5 

15 1198.6 904.7 715.6 

16 1239.9 921.7 780.0 

17 1312.0 922.5 797.8 

18 1312.4 949.0 823.7 

19 1362.9 951.8 823.8 

20 1369.3 955.8 838.7 
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Table 5.4 First 20 natural frequencies inside the tractrix horns cavities between the 

frequencies of 1-2000 Hz 

 

 

#
th

 Mode 

Shape 

Non-Folded  

(Hz) 

Single Folded  

(Hz) 

Double Folded  

(Hz) 

1 526.9 323.8 225.1 

2 527.1 323.9 225.2 

3 571.5 468.5 330.6 

4 686.2 571.4 384.9 

5 913.5 649.8 454.2 

6 987.6 707.7 499.6 

7 988.2 707.8 499.7 

8 990.5 788.8 565.2 

9 1148.5 822.6 616.2 

10 1149.9 823.7 616.4 

11 1225.0 826.2 679.3 

12 1240.5 873.7 724.9 

13 1326.8 1014.4 725.1 

14 1327.6 1014.7 731.1 

15 1373.3 1033.3 739.6 

16 1475.6 1053.2 820.2 

17 1513.5 1064.2 820.3 

18 1514.8 1072.3 820.4 

19 1536.0 1072.5 832.8 

20 1569.1 1091.8 858.9 

 

 

From Table 5.1 to Table 5.4 show the modal density of corresponding horns and 

their coloration frequencies. Frequencies, at which sound waves in a horn resonate, 

based on the horn dimensions. The acoustic modes will "color" the sound, i.e. 
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enhance certain frequencies and dull others. There are three types of modes. These 

are axial, tangential and oblique modes. Since the horns have three dimensional 

complex shapes, it’s difficult to distinguish the one from the other. The primary 

"axial" resonances involve reflections from two opposing surfaces. Since the horns 

are axisymmetrical frequency pairs highlighted bold in table can be considered as 

axial modes shape frequencies.  Coloration is important when considering sound 

propagation within the volume of horn. At these frequencies unexpected pressure 

peaks appear and can adversely affect the response. It has been observed that as the 

number of folding increase there appears more coloration in frequency range of 100 

to 1000 Hz. These colorations frequencies will make sense while interpreting the 

SPL and directivity characteristics. 

 

5.2. Acoustic Pressure, SPL  

 

In real life applications, the levels and directivity of sound radiated through horn 

should be determined by measurements of sound levels at predefined points away 

from the horn mouths. Test procedures are developed to specify measurement 

conditions as well as locations of microphones. Measurement environment is often 

specified as anechoic space. In numerical studies to predict the sound levels and 

directivity characteristics radiation into free field is considered. Field points in the far 

field can be assigned to calculate these characteristics. They can be located anywhere 

inside any (acoustic or not) finite or infinite elements. 

 

Analysis software MSC.Actran is capable of using finite and infinite elements 

together. Infinite elements allow for sound pressure levels calculation even far from 

the source. The discrete model of the surrounding air combines finite element 

modeling for the horn-shaped air cavity in the near field and infinite element 

modeling for the far field radiation. Fig. 5.13 shows the representation of the both 

domains covering the source. 
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Fig. 5.13 Representation of the model for near to far field analysis 

 

Frf (frequency response function) file of MSC.Actran can directly be plotted by any 

plotting tool (Patran) or loaded into Matlab or Excel (as ASCII file) in order to 

generate SPL vs. frequency curves. MSC.Actran uses direct sequential solver for the 

linear systems solver. There are three types of direct sequential solver are available. 

These are 

i. Skyline 

ii. Sparse 

iii. Krylov 

 

Analyses have been performed to found SPL values for two points, Pt.1 and Pt.2 as 

shown in Fig. 5.13 for each horn. One of the points is at 2 meter away from the 

center of the mouth plane which is on the lateral axis (on-axis) of the horn and the 

other point is again 2 meter away from the center of the mouth plane making 30 

degree angle with lateral axis (off-axis). For these analyses, Krylov solver is used 

because of its high speed of analysis. 

 

Infinite Element Domain 
Interface Between 

Finite and Infinite 

Elements 

Finite Element Domain 

(Horn) 

Diaphragm  

(Source) 

Front Cavity Mesh 

Field Points  

Radius of 2m. 
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Lateral Axis 

30
o
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Used driver design parameters of the chosen driver to find the cone velocity for the 

analysis can be seen in the driver module of “Folded-Horn-Design” interface from 

Fig. 5.14. Applied input power of the driver is calculated from Equation 5.1 as 0.01 

Watt. 
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P                   (5.1) 

 

 

 

 

Fig. 5.14 Driver design parameters and input power 
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Fig. 5.15 SPL values at Pt.1 for non-folded horns 
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Fig. 5.16 SPL values at Pt.2 for non-folded horns 

 



 98 

65

70

75

80

85

90

95

100 200 300 400 500 600 700 800 900 1000
f (Hz)

SPL 

(dB)

Exponential

Tractrix

Conical

Hyperbolic

 

 

Fig. 5.17 SPL values at Pt.1 for single folded horns 
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Fig. 5.18 SPL values at Pt.2 for single folded horns 
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Fig. 5.19 SPL values at Pt.1 for double folded horns 
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Fig. 5.20 SPL values at Pt.2 for double folded horns 

 

Fig. 5.15 shows that in the frequency range between 300-1000 Hz hyperbolic and 

exponential non-folded horns yield better response than their counterpart since they 
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have smoother curve along the frequency range with generally higher average SPL. 

This implies these horns are more efficient and free from coloration in the specified 

frequency range. 

 

In Fig. 5.16 all the horn responses show similar characteristics with no significant 

difference at all between each other. Responses decrease with increasing frequency 

as the frequency increase.  

 

When these figures are compared it seems very difficult to predict the best horn 

flares types. The sharp peaks and dips need to be interpreted together with the natural 

frequencies. For example, there is sharp increase in the tractrix curve in Fig. 5.17 

around 710 Hertz which may be attributed to pair of axial mode frequencies of 707.7 

and 707.8 Hz (Table 5.4). In Fig. 5.18 the steady decrease on the SPL values of the 

hyperbolic horn frequencies 900-960 Hz can be observed. This drop may also be 

attributed to the mode shapes (there is 6 mode shapes) in this range (900-960 Hz). 

Coloration in this range can trigger the decrease on the SPL values. Similar 

observations can be also viewed in the other curves and graphs. Again, conical horn 

curve increases sharply at around 720 Hz and drops suddenly at around 840 Hz in 

Fig. 5.19. These frequencies are also coloration frequencies 728.1, 728.4, 810.2 and 

836.9 Hz as shown in Table 5.1.  

 

There have been no significant differences on SPL responses between each different 

flare horn. So it is also preferred to compare non-folded and folded cases besides 

making a comparison between different flare rates. Bends caused more distortions 

and affected SPL adversely. From below graphs (Fig. 5.21-5.28), the effects of 

folding can be observed and compared for each horn separately. All the non-folded 

horns show more uniform responses. Less fluctuation is observed at conical horns 

with folding (Fig.5.21 and Fig.5.22), while tractrix responses worsen much more 

than the others with the folding (Fig. 5.27 and 5.28).  
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Fig. 5.21 Responses of conical horn types at Pt.1 

 

Conical Horns for Pt.2
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Fig. 5.22 Responses of conical horn types at Pt.2 
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Exponential Horns for Pt.1
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Fig. 5.23 Responses of exponential horn types at Pt.1 

 

 

Exponential Horns for Pt.2
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Fig. 5.24 Responses of exponential horn types at Pt.2 
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Hyperbolic Horns for Pt.1
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Fig. 5.25 Responses of hyperbolic horn types at Pt.1 

 

 

Hyperbolic Horns for Pt.2
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Fig. 5.26 Responses of hyperbolic horn types at Pt.2 
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Tractrix Horns for Pt.1
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Fig. 5.27 Responses of tractrix horn types at Pt.1 
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Fig. 5.28 Responses of tractrix horn types at Pt.2 

 



 105 

Since the effective length increase with the foldings, SPL values can be higher in 

some ranges of frequencies because they behave more like infinite horns and 

transmission efficiency increases a bit. But because of higher extent of coloration, 

responses are not uniform and fluctuate considerably from uniform behavior. For 

horns with finite lengths, resonance results from reflection waves from mouth (also 

from bordering enclosures), causing irregularities in the SPL characteristics. It’s also 

observed that on axis SPL behaviors (at Pt.1) do not deteriorate as much as the one 

off-axis SPL behaviors (at Pt.2).  Average on-axis SPL values are listed in Table 5.5.  

 

These values are lower than the real life situations, because input driver voltage has 

been taken as 0.4 Volt (then Vrms=0.28 Volt) and driver coil resistance has been 

taken as 8 ohm. These values correspond to 0.01 Watt, 100 times smaller than the 

standard applications driver input power value (1 Watt). In order to find 

corresponding values of SPL for 1 Watt power, sensitivity ratings can be used. 

Ratings based on the sound pressure level for a given input voltage or power is 

known as sensitivity ratings. The sensitivity is usually defined as (dB/W·m) decibels 

output for an input of one nominal watt or a specified input voltage. The rms value of 

voltage used is often 2.83V, which happens to be 1 watt at a nominal 8 ohms. 

Measurements taken with this reference are quoted as (dB/2.83V·m). 
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Table 5.5 Average on-axis SPL values of all kinds of horns 

 

Horn Type Average SPL Values (dB) 

Non-Folded Conical 81.3 

Non-Folded Exponential 80.3 

Non-Folded Hyperbolic 80.5 

Non-Folded Tractrix 78.9 

Single Folded Conical 80.0 

Single Folded Exponential 80.8 

Single Folded Hyperbolic 81.4 

Single Folded Tractrix 80.4 

Double Folded Conical 79.9 

Double Folded Exponential 79.6 

Double Folded Hyperbolic 79.5 

Double Folded Tractrix 77.9 

 

Since the SPL analyses are performed at 2 meters away (r2) from the mouth, firstly 

corresponding average SPL (SPL1) values at 1 meter (r1) should be found. The 

inverse square distance law in the free field for the sound pressure p is inverse-

proportional to the distance r of a point sound source. The pressure at 2 meter is p2 

and pressure at 1 meter is p1, then p1 can be calculated in terms of p2 (Equation 5.2). 

By using SPL equation (Equation 5.3) p2 values can be found from average SPL 

values. 
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where p is either p1 or p2 and po is the reference sound pressure (=1x10
-6

 Pascal), and 

SPL1 is SPL values at 1 meter. 
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After calculations all the SPL values 1 meter away from the mouth can be found and 

given in Table 5.6. It is also derived from Equation (5.3) that doubling the pressure 

corresponds to an increase of 6 dB in SPL. 

 

Table 5.6 SPL values at one and two meter away from the horn mouths 

 

Horn Type 
Average SPL Values at 

2 meter (dB) 

Average SPL Values at 

1 meter (dB) 

Non-Folded Conical 81.3 87.3 

Non-Folded Exponential 80.3 86.3 

Non-Folded Hyperbolic 80.5 86.5 

Non-Folded Tractrix 78.9 84.9 

Single Folded Conical 80.0 86.0 

Single Folded Exponential 80.8 86.8 

Single Folded Hyperbolic 81.4 87.4 

Single Folded Tractrix 80.4 86.4 

Double Folded Conical 79.9 85.9 

Double Folded Exponential 79.6 85.6 

Double Folded Hyperbolic 79.5 85.5 

Double Folded Tractrix 77.9 83.9 

 

Finally, normalization is needed for the input electrical power. Initial power (P1=0.01 

watt) is modified for 1 watt power input (P2). This implies an increase of 100 times. 

Then, new SPL values (SPL2) can be calculated from equation (5.4). Corresponding 

SPL values for 1 watt driver input (electrical) power are listed in Table 5.7. 
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Table 5.7 Corresponding normalized SPL values for 1 watt driver input power  

(Sensitivity Ratings, SR) 

 

Horn Type 
SPL2 (dB) 

or SR (dB/W.m) 

Non-Folded Conical 107.3 

Non-Folded Exponential 106.3 

Non-Folded Hyperbolic 106.5 

Non-Folded Tractrix 104.9 

Single Folded Conical 106.0 

Single Folded Exponential 106.8 

Single Folded Hyperbolic 107.4 

Single Folded Tractrix 106.4 

Double Folded Conical 105.9 

Double Folded Exponential 105.6 

Double Folded Hyperbolic 105.5 

Double Folded Tractrix 103.9 
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5.3. Directivity Characteristics 

 

Complete directivity analysis start with finding sound pressure levels (SPL) at all 

points on a sphere surrounding the loudspeaker system. In other words, the 

loudspeaker is at the center of that sphere, and the distance between the loudspeaker 

and the surface of this sphere would be equal at all points and should be large when 

compared to the loudspeaker's dimensions. In order to achieve this, a field point 

mesh has been generated and it is used for the analysis of directivity. Because while 

measuring directivity, there should be circular shape of field points on x-y plane (or 

x-z plane), which is perpendicular to mouth plane of the horns (Fig.5.29). It can be 

performed for different axial distance from the throat. Measurements have been 

made certain frequencies from 250 Hertz to 2000 hertz and for the radius of 2 meters. 

 

 

 

Fig. 5.29 Complete finite element model for prediction of Directivity Characteristics

Field Points 
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Fig. 5.30 Directivity patterns of non-folded horns at 250 Hz  
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Fig. 5.31 Directivity patterns of non-folded horns at 500 Hz  
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Fig. 5.32 Directivity patterns of non-folded horns at 1000 Hz 
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Fig. 5.33 Directivity patterns of non-folded horns at 2000 Hz  
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Fig. 5.34 Directivity patterns of single folded horns at 250 Hz 
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Fig. 5.35 Directivity patterns of single folded horns at 500 Hz 
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Fig. 5.36 Directivity patterns of single folded horns at 1000 Hz 

 

45

50

55

60

65

70

75

80

-90
-80 -70

-60
-50

-40

-30

-20

-10

0

10

20

30

40
50

60
708090

Exponential

Conical

Hyperbolic

Tractrix

 

 

Fig. 5.37 Directivity patterns of single folded horns at 2000 Hz 
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Fig. 5.38 Directivity patterns of double folded horns at 250 Hertz 
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Fig. 5.39 Directivity patterns of double folded horns at 500 Hertz 
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Fig.5.40 Directivity patterns of double folded horns at 1000 Hertz 
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Fig.5.41 Directivity patterns of double folded horns at 2000 Hertz 
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By looking at the directivity characteristics plots (from Fig.5.30 to Fig.5.41), it can 

be deduced that the higher the frequency the worse is the directivity characteristics. 

There appear more lobes in directivity characteristics. With regard to higher 

frequencies, non-linearities become more apparent especially after four times the cut-

off frequencies. This rule of thumb comes from the phenomenon of air overload 

distortion and Beranek [16, Fig.9.12] showed the percentage of distortion change 

according to different f/fc. In this case, fc equals to 200 Hz and 4xfc equals to 800 Hz 

and above 800 Hz (at 1000 Hz and 2000 Hz) directivity characteristics heavily 

distort. Distortion also increases with folding(s) since the wavefronts at the higher 

frequencies can be distorted at bends. Furthermore, at high frequencies the vibration 

of a loudspeaker cone takes complex shape, so that normal variations in the 

uniformity of cones result in substantial differences in the radiation. This effect may 

result to a very irregular and unpredictable response curve and directivity pattern at 

high frequencies such as 1000 Hz and 2000 Hz. 

 

As mentioned in the previous section, dB values are evaluated for a driver having 

0.01 watt input power. For this reason in evaluation of plots relative levels are 

considered instead of the absolute values. It is also possible to add 20 dB to each 

point to normalize the results.   

 

 

5.4. CPU Times and Computer Specifications 

 

All of these calculations have been performed at the computer specifications given 

blow: 

 

RAM: 1 Gb (512x2) TwinMos Dual DDR 400 MHz 

Processor: AMD Athlon 64 3000+ VENICE (1.8GHz, 512K, S939) 

Motherboard: MSI K8N Neo4 Platinium 

 

 

 



 117 

 

Table 5.8 Element and node numbers of all type horns 

 

Horn Type 
Finite Element 

# 

Infinite 

Element # 
Total Node # 

Total Element 

# 

Non-Folded 

Conical 
9044 21420 5854 30465 

Non-Folded 

Exponential 
9605 25150 6612 34756 

Non-Folded 

Hyperbolic 
9264 12977 4453 22242 

Non-Folded 

Tractrix 
9129 39050 8916 48180 

Single Folded 

Conical 
54380 25550 16073 79929 

Single Folded 

Exponential 
53350 25549 15681 78900 

Single Folded 

Hyperbolic 
58072 25548 16718 83621 

Single Folded 

Tractrix 
47643 26268 14517 73912 

Double Folded 

Conical 
96090 25526 24976 121617 

Double Folded 

Exponential 
93779 24266 23537 118046 

Double Folded 

Hyperbolic 
102748 24669 25494 127418 

Double Folded 

Tractrix 
85208 25015 22115 110224 

 

Note: There is also one source element and field points (extra nodes) 
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For natural frequency analysis there is no infinite elements, these type of analysis are 

just performed for finite elements. Table 5.6 shows the required CPU times for 

corresponding horns and memory usage. All the three dimensional elements are 

tetrahedral and two dimensional elements are triangular in the finite element model. 

 

Table 5.9 Required CPU Times for the natural frequency analyses  

for frequency of 1 Hz to 2000 Hz 

 

Horn Type MEM Usage CPU Times (minutes) 

Non-Folded Conical 700 3.4 

Non-Folded Exponential 700 4.1 

Non-Folded Hyperbolic 700 3.8 

Non-Folded Tractrix 700 3.7 

Single Folded Conical 700 15.2 

Single Folded Exponential 700 15.1 

Single Folded Hyperbolic 700 15.9 

Single Folded Tractrix 700 16.8 

Double Folded Conical 700 28.8 

Double Folded Exponential 700 28.1 

Double Folded Hyperbolic 700 31.2 

Double Folded Tractrix 700 27.6 

 

 

While obtaining SPL values of single folded horn in the frequency range 100-1000 

Hz, due to time limitations frequency increase steps have been taken as 2. So that, 

direct computation for 451 frequencies (100, 102, 104 ...1000 Hz) have been 

performed. In a similar manner Frequency increase steps have been taken as 5 for the 

double folded horn shapes and by doing that direct computation for 181 frequencies 

(105, 110, 115 ...1000 Hz) have been performed (Table 5.7). The higher the node and 

element number, the more CPU times are required and/or more memory allocation. 
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Since the CPU memory is limited to RAM of computer that the analyses are 

performed, time is an important criteria and in order to decrease required time one 

should decrease steps as told above. All the SPL analyses have included to total 

elements (finite and infinite) and nodes. 

 

Table 5.10 Required CPU times for the SPL analyses for the frequencies of 100 Hz 

to 1000 Hz 

 

Horn Type MEM Usage 
CPU Times  

(hours) 

Frequency 

Number 

Non-Folded Conical 700 1.6 901 

Non-Folded Exponential 700 1.7 901 

Non-Folded Hyperbolic 700 1.2 901 

Non-Folded Tractrix 700 2.2 901 

Single Folded Conical 700 12.5 451 

Single Folded Exponential 700 12.2 451 

Single Folded Hyperbolic 700 13.1 451 

Single Folded Tractrix 700 11.8 451 

Double Folded Conical 700 25.2 181 

Double Folded Exponential 700 24.6 181 

Double Folded Hyperbolic 700 25.1 181 

Double Folded Tractrix 700 23.7 181 

 

 

Finally, directivity analyses have been performed for different frequencies. These are 

250, 500, 1000, 2000 Hz. In order to achieve these analyses field points (extra nodes) 

should be added to the geometry. For the frequencies of 250 Hz to 1000 Hz, only 19 

field points have been used while for the frequency of 2000 Hz 73 field points have 

been used in order to have more accurate graphs. Since at high frequencies there are 

much more loops and it requires more field numbers to be able to indicate these 

lobes. Table 5.8 shows the average required times for just one frequency. 
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Table 5.11 Required time range for each directivity plot analyses 

 

Horn Type MEM Usage 
CPU Times  

(minutes) 

Frequency 

Number 

Non-Folded Conical 700 3.2-3.5 1 

Non-Folded Exponential 700 2.5-2.8 1 

Non-Folded Hyperbolic 700 2.1-2.4 1 

Non-Folded Tractrix 700 3.5-3.9 1 

Single Folded Conical 700 12.5-16.2 1 

Single Folded Exponential 700 11.8-15.9 1 

Single Folded Hyperbolic 700 14.2-16.7 1 

Single Folded Tractrix 700 14.5-15.2 1 

Double Folded Conical 700 18.2-19.5 1 

Double Folded Exponential 700 18.5-19.8 1 

Double Folded Hyperbolic 700 21.4-25.4 1 

Double Folded Tractrix 700 23.4-26.3 1 
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

 

Computer aided auto-construction of various types of folded horns and acoustic 

analysis of coupled horn and driver systems have been presented in this thesis. A 

new procedure has been developed for auto construction of folded horn shapes.  

 

A computer interface called as “Folded Horn Design” has been developed in Delphi 

to facilitate the construction of the horn geometry by reducing the geometrical 

modeling time in a commercial FEA program. By arranging the primary design 

parameters four different types of horns have been analyzed. To obtain folded to 

double folded horns, different axial length limitations were designated. After all, 

horn geometry consisting of linear (conical), exponential, hyperbolic and tractrix 

shapes were automatically constructed by activating the interface of “Folded Horn 

Design”. FEM geometries of horn were constructed in MSC.Marc-Mentat and then 

these geometries were exported to acoustic finite element analysis software, 

MSC.ACTRAN, to calculate mode shapes, natural frequencies, directivity patterns 

and resulting sound pressure level (SPL) in the free field. Since radiated sound field 

expression depends on the velocity distribution on the loudspeaker vibrating 

diaphragm, the velocity distribution should have been determined. In order to model 

the loudspeaker linear graph modeling, which has the ability to manage complex 

relationships between inputs and outputs, was preferred. The electrical and 

mechanical properties of the horn driver were modeled with lumped elements for the 

linear graph modeling technique. Finally, driver cone ring velocity (source) and finite 

element models of horns were coupled. The walls bordering horn contours were 

considered rigid in the analysis. Cone geometry and front cavity were also included 

in the model.  
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6.2 Conclusions 

 

Acoustically speaking the most prominent effect of natural frequencies associated 

with air entrapped in the horn boundaries is coloration. Each horn speaker has its 

own coloration characteristic. Coloration enhances certain frequencies and dulls 

others. Many bass horns have resonance problems. At natural frequencies 

unexpected pressure peaks appear adversely affecting the response. It has been 

observed that as the number of foldings increase, first natural frequencies getting 

smaller values and first 20 natural frequencies range has retreated to the range of 0 

Hz to 1000 Hz. In non-folded case 20th resonance has reached up to 1168-1569 Hz, 

whereas in single folded case they have only reached to 954-1138 Hz and in double 

folded case they have reached to 783-910 Hz. This is the proof of increasing the 

number of folding also increase the number of natural shapes (colorations). From 

standpoints of natural frequencies and corresponding mode shapes, non-folded horns 

have been the best. Non-folded and single folded tractrix and exponential horns have 

been observed to have less number of coloration than conical and hyperbolic. For the 

double folded case, the situation has differed a bit and the conical horn has exhibited 

the less extent of coloration. Then, the tractrix, hyperbolic and exponential horns 

have exhibited colorations in ascending order. These colorations have affected the 

SPL responses. In relation with the coloration frequencies, sharp peaks and dips on 

the SPL curves have been experienced.  

 

Because of the increase in the effective length with the foldings, horns behave more 

like infinite horns and transmission efficiency rises a bit. It has been observed that 

SPL values of folded horns were higher than non-folded horns in some ranges of 

frequencies. But responses were not uniform and fluctuated considerably from 

uniform behavior because of higher extent of coloration. On the other hand, for horns 

with finite lengths, coloration results from reflection waves from mouth (also from 

bordering enclosures), causing unexpected irregularities in the SPL characteristics. 

 

As expected from the coloration characteristics, non-folded tractrix and exponential 

horns have result more uniform on-axis response of pressure distribution at one 
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meter away from the horn mouth, again exponential type horns are better. It’s known 

that throat resistance for the tractrix and hyperbolic horn reaches the value of unity 

quicker than the other type of horns. This condition could have affected the results 

for the sake of hyperbolic and tractrix horns. However, non-linear distortion is higher 

for the Tractrix and Hyperbolic as Beranek [16] stated, because these horns have a 

tube that flares very little until it gets to the end where it flares suddenly. The 

problem with such a long tight flare is that as sound pressures increase, the restricted 

passage for the air causes it to begin to compress and this causes distortion. It’s 

called as second harmonic distortion at throat. Therefore, second harmonic distortion 

at throat could have affected the hyperbolic and tractrix horn adversely. It has been 

also noted that there has been no significant differences on SPL responses between 

each different flare horn. So it was preferred to compare non-folded and folded cases 

instead of making a comparison between different flare rates. Bends caused more 

distortions and affected SPL adversely. All the bends were π radian but not sharp. 

It’s important for sound transmission arranging lateral dimension (axial length) of 

horn up to bend is not at half wavelengths. In order to achieve smooth transmission, 

at bends cross-sectional area continue to change in a similar manner i.e. at the same 

rate the area as change before the bends.  

 

There are several important factors causing distortion and nonuniformity in the 

directivity characteristics. These are nonuniformity of the velocity distribution in the 

cone especially at high frequencies and nonlinearity of air. It was concluded that, the 

higher the frequency is, the worse the directivity characteristics will be. Non-linearity 

became more apparent especially after four times of the cut-off frequencies. Beranek 

[16, Fig.9.12] had showed the percentage of distortion change according to different 

f/fc. In this case, fc was equal to 200 Hz for all kind of horns and 4xfc was equal to 

800 Hz. Above 800 Hz (at 1000 Hz and 2000 Hz) directivity characteristics have 

heavily distorted. Distortion also increased with folding(s) since the wavefronts at 

the higher frequencies could have been distorted at bends. Furthermore, at high 

frequencies the vibration of a loudspeaker cone takes complex shapes, so that normal 

variations in the uniformity of cones have resulted in substantial differences in the 
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radiation. This effect may result to a very irregular and unpredictable response 

curves, and directivity patterns at high frequencies such as 1000 Hz and over. 

 

SPL values are evaluated for a driver having 0.01 watt sine input power. For this 

reason sensitivity ratings gave more logical information about how the designed 

horns would response. These ratings calculated and tabulated for the average SPL 

values of horns and it was seen that the values of sensitivity ratings have been in the 

range of 103.9 to 107.4 (dB/W.m). These values were obtained for one meter 

distance and for 1 watt driver sine input power. 

 

6.3 Future Works 

 

One possible future work is, in addition to auto construction of horn geometry, auto 

analysis can be achieved. Furthermore, acoustical analyses have been performed for 

rigid and non-absorbing enclosure assumption. The absorption of sound by the walls 

and the effect of their stiffness introduce attenuations. Vibration of the walls distorts 

the frequency characteristic and introduces reverberation. These can be also studied 

and appropriate boundary conditions can be specified between horn cavity and walls 

and their effects can be analyzed. The effect of wall materials and thickness can also 

be observed.  

 

Another future work involves slight modifications in the algorithms to accommodate 

different bending for one type horn. Different function and relations can be 

developed while switching the coordinates, i.e. from rectangular to polar. 

Comparisons can be made between the folding techniques and folding functions. In 

addition, it may very insightful to evaluate the restriction of horn width at a bend to 

specific number times the highest wavelength and the axial length that folding(s) can 

be attempted. 

 

While horn mouths with different width to height ratio can be constructed by using 

designed interface, analyses have been only performed for the width to height ratio 

of 1 and for rectangular mouth shapes. Analysis can be performed for horn mouths 



 

 125 

with different width to height ratio. Then these analyses can be compared for the 

optimum shape of the horn mouths.  

 

Horns with two different flare sections (permutation forms) can also be constructed 

by a small modification in the algorithm. In practice, these types of horns are 

commonly considered as horns with good loading and directivity control.   

 

Finally, all the designed and constructed horns can be manufactured to test in an 

anechoic chamber to compare and validate the results of FEA obtained. 
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Appendix A 

 

Sample Codes Written in Pascal Language 

 

Code A.1 

Sx:=St;          (dummy variable) 

Lt:=0.01;        (mm) 

while Sx<Sm do 

begin 

Sx:=St*sqr(cosh(Lt/x0)+T4*sinh(Lt/x0)); 

Lt:=Lt+0.01; 

end; 

 

Code A.2 

L1:=2/5*Lt;                      (Length of horn until the bending part) 

LF:=1/5*Lt;                      (Length of bending part) 

R2:=R1; 

 

Repeat                              (Calculation of R2) 

err:=RM*Ln((RM+Sqrt(RM* RM-RT* RT))/ RT)-Sqrt((RM*RM - RT*RT))-

RM*Ln((RM +Sqrt(RM * RM -R2*R2))/R2)+Sqrt((RM*RM-R2*R2))-L1-LF; 

R2:=R2+0.001; 

until abs(err)<0.01; 

RM2:=LF/pi;                 (transformation eqn. from the Cartesian to the polar coord.) 

 

For i:= 40 To 59 do 

begin 

R2[i]:=R2-(R2-R1)*(59-i)/19; 

d[i]:=(Rm2+Sqrt(Rm2*Rm2-R2[i]*R2[i]))/R2[i]; 

x1[i]:=Rm2*Ln((Rm2+Sqrt(Rm2*Rm2-Rt2*Rt2))/Rt2)-Sqrt((Rm2*Rm2-Rt2*Rt2))-

(Rm2*Ln(d[i])-Sqrt((Rm2*Rm2-R2[i]*R2[i])))-L1;        
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                                             (x1 is the arc length calculated from tractrix formulae) 

teta[i]:=x1[i]/RM2;                            (appropriate bend angle for the arc length) 

x[i]:= L1+R2[i]*sin(teta[i]);              (x coordinates of horn contour during the bend) 

R22[i]:=sqrt(pi*sqr(R2[i]))/2;        

y[i]:= R22[40]-R22[i]*cos(teta[i]);    (y coordinates of horn contour during the bend) 

z[i]:= R22[40]-R22[i]*cos(teta[i]);    (z coordinates of horn contour during the bend) 

end; 
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Appendix B 

 

Bond Graph Model of Loudspeaker 

 

 

 

 

Fig. B.1 Example of a bond graph model of a loudspeaker. [88, Fig. 3] 
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Appendix C 

 

Definitions and Equations for Linear Graph Modeling 

 

Table C.1 Definition of ideal source type [89, Table 2.1] 

 

Energy Domain A-Type Active Elements T-Type Active Elements 

 Across Variable v21 Through Variable f 

Mechanical Translation 

Mechanical Rotation 

Electrical 

Fluid 

Velocity  v(t) 

Angular velocity  ω(t) 

Voltage  e(t) 

Pressure  p(t) 

Force  f(t) 

Torque  T(t) 

Current  i(t) 

Flow  Q(t) 

 

Table C.2 Elemental relationships for ideal D-Type element. [89, Table 2.2] 

 

Element Elemental Equations Power Dissipated 

 21

1
v

R
f =  Rfv =21  22

21

1
Rfv

R
P ==  

Translational 

Damper 
buF =  F

b
u

1
=  22 1

F
b

buP ==  

Rotational Damper ωrbT =  T
br

1
=ω  22 1

T
b

bP
r

r == ω  

Electrical 

Resistance 
e

R
i

1
=  Rie =  221

Rie
R

P ==  

Fluid Resistance p
R

Q
f

1
=  QRp f=  221

QRp
R

P f

f

==  
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Table C.3 Elemental relationships for ideal A-Type elements. [89, Table 2.2] 

 

Element 
Constitutive 

Equations 

Elemental 

Equations 
Energy Stored 

 21Cvh =  
dt

dv
Cf 21=  

2

21
2

1
CvE =  

Translational Mass mvp =  
dt

dv
mF =  2

2

1
mvE =  

Rotational Inertia ωJh =  
dt

d
JT

ω
=  2

2

1
ωJE =  

Electrical 

Capacitance 
Ceq =  

dt

de
Ci =  2

2

1
CeE =  

Fluid Capacitance pCV f=  
dt

dp
CQ f=  2

2

1
pCE f=  
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Table C.4 Elemental relationships for ideal T-Type elements. [89, Table 2.2] 

 

Element 
Constitutive 

Equations 

Elemental 

Equations 
Energy Stored 

 Lfx =21  
dt

df
Lv =21  2

2

1
LfE =  

Translational 

Spring 
F

k
x

1
=  

dt

dF

k
v

1
=  2

2

1
F

k
E =  

Rotational Spring T
kr

1
=θ  

dt

dT

kr

1
=ω  2

2

1
T

k
E

r

=  

Electrical 

Inductance 
Li=χ  

dt

di
Le =  2

2

1
LiE =  

Fluid Inductance QI f=Γ  
dt

dQ
Ip f=  2

2

1
QIE f=  
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Appendix D 

 

Typical Properties of Polypropylene 

 

Density: 0.905 g/cm3 

Tensile Strength: 4800 psi / 33.1 MPa 

Tensile Modulus: 195000 psi / 1344.5 MPa 

Tensile Elongation at Yield: 12 % 

Flexural Strength: 7000 psi / 48.3 MPa 

Flexural Modulus: 180000 psi / 1241.1 MPa 

Compressive Strength: 7000 psi / 48.3 MPa 

Hardness Rockwell R: 92 

IZOD Notched Impact: 1.9 ft-lb/in / 101.4 J/m 

 


