

EVALUATION OF CORE STATELESS GUARANTEED FAIR NETWORK
ARCHITECTURE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA ĐLHAN AKBA Ş

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Đsmet ERKMEN
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI
 Supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU, EEE)

Asst. Prof. Dr. Cüneyt F. Bazlamaçcı (METU, EEE)

Prof. Dr. Hasan Güran (METU, EEE)

Dr. Ece Schmidt (METU, EEE)

Semih Gül (MSc) (ASELSAN, HC)

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Mustafa Đlhan AKBAŞ

iv

ABSTRACT

EVALUATION OF CORE STATELESS GUARANTEED

FAIR NETWORK ARCHITECTURE

AKBAŞ, Mustafa Đlhan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI

December 2006, 106 pages

The problem of providing Quality of Service (QoS) in the Internet has been an

extremely active area of research and various mechanisms have been proposed

related to this subject. Developing network applications have requirements such as

bounded delay, jitter, minimum bandwidth and maximum loss rate. There is also a

need to support large bandwidth networks because of growing link speeds. Previous

QoS efforts did not fully satisfy all these needs of future networks but more recent

approaches aim to be both scalable and rich in the provision of guaranteed services.

Consequently core-stateless systems received much attention in recent years

because of their scalability in supporting per-flow QoS. The property of not

maintaining any per-flow state in the core routers is known as being core-stateless.

v

In this thesis study, the need for core-stateless network architectures is pointed out

and a literature survey about these schemes is carried out. Core-Stateless

Guaranteed Fair (CSGF) network architecture, which provides deterministic

fairness guarantees in a work-conserving manner, is selected and evaluated.

Simulation studies about stateful Virtual Clock (VC) algorithm and CSGF’s sub-

protocols Core-Stateless Virtual Clock (CSVC), Core-Stateless Guaranteed

Throughput (CSGT) and Core-Stateless Guaranteed Fairness (CSGF) are presented.

Finally, the deficiencies in fairness of CSGF are demonstrated.

Keywords: Quality of Service, IP Networks, Core-Stateless Network Architectures,

Performance Evaluation, Network Simulation

vi

ÖZ

GARANT ĐLĐ ADĐL DURUM B ĐLGĐSĐZ MERKEZ A Ğ

MĐMAR ĐSĐ DEĞERLENDĐRMESĐ

AKBAŞ, Mustafa Đlhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Cüneyt F. BAZLAMAÇCI

Aralık 2006, 106 Sayfa

Đnternette hizmet niteliği sağlama sorunu son derece aktif bir araştırma konusu

olmuştur ve bu konuyla ilgili birçok mekanizma önerilmiştir. Gelişen ağ

uygulamalarının sınırlı gecikme, seğirme, asgari bant genişliği ve azami paket kayıp

oranı gibi gereksinimleri vardır. Aynı zamanda büyüyen bağlantı hızları nedeniyle

ağların geniş bant genişliklerini de desteklemeleri gerekmektedir. Geçmişte bu

konuda yapılan çalışmalar gelecekteki ağların bu ihtiyaçlarının tamamını aynı anda

karşılayamamıştır ancak yeni yaklaşımlar hem verdikleri servislerde zengin, hem de

ölçeklenebilir olmayı hefeflemektedirler. Dolayısıyla durum bilgisiz çekirdek

sistemler akım başına hizmet niteliği sağlama konusundaki ölçeklenebilirlikleriyle

son yıllarda üzerinde durulan yaklaşımlar olmuşlardır. Durum bilgisiz olma, ağ

merkezindeki yönlendiricilerde durum bilgisi bulundurmama özelliği olarak

vii

bilinmektedir. Bu tez çalışmasında, durum bilgisiz çekirdek ağ mimarilerine olan

ihtiyaç işaret edilmiş ve durum bilgisiz belirlenimci adillik garantileri veren

çekirdek mimarileri ile ilgili bir literatür taraması gerçekleştirilmi ştir. Bir durum

bilgisiz çekirdek mimari olan ve iş koruyan bir şekilde belirlenimci adillik

garantileri veren CSGF ağ mimarisi seçilmiş ve ayrıntılı olarak incelenmiştir. Daha

sonra, durum bilgili Sanal Saat (VC), ve CSGF’nin alt protokolleri olan Durum

Bilgisiz Çekirdek Sanal Saat (CSVC), Durum Bilgisiz Çekirdek Garantili Đş (CSGT)

ve Durum Bilgisiz Çekirdek Garantili Adil (CSGF) ağ mimarileri ile ilgili benzetim

çalışmaları verilmiştir. Son olarak CSGF’nin adillik davranışındaki kusurlar ortaya

konmuştur.

Anahtar Kelimeler: Hizmet Niteligi, IP Ağları, Durum Bilgisiz Merkez Ağ

Mimarileri, Başarım Değerlendirmesi, Ağ Benzetimi

viii

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………………...iii

ABSTRACT.. iv

ÖZ.. vi

TABLE OF CONTENTS..viii

LIST OF TABLES .. xi

LIST OF FIGURES..xii

ABBREVATIONS.. xiv

CHAPTER

1. INTRODUCTION.. 1

2. QUALITY OF SERVICE IN THE INTERNET.. 4

2.1. Problem Description.. 4

2.2. Background of Quality of Service Problem .. 5

2.2.1. Integrated Services (IntServ).. 5

2.2.2. Differentiated Services (DiffServ) ... 7

2.3. New QoS Approaches ... 8

3. CORE STATELESS QoS ARCHITECTURES... 10

3.1. Problem Description.. 10

3.2. Solution Approaches ... 11

3.2.1. Core-Jitter Virtual Clock (CJVC) .. 11

3.2.2. CHOose and Keep/Kill (CHOKe).. 14

3.2.3. Virtual Time Reference System (VTRS) ... 16

3.2.4. Bin-based Core Stateless Queuing (BCSQ) ... 17

3.2.5. Stateless Virtual Clock (sVC) .. 18

ix

3.2.6. Rainbow Fair Queuing (RFQ).. 19

3.2.7. Tag-based Unified Fairness (TUF) .. 20

3.2.8. Core-Stateless Fair Queuing (CSFQ)... 21

3.2.9. Core-Stateless Guaranteed Fair (CSGF) Network 22

3.3. Overview of Core-Stateless Architectures .. 23

4. CORE STATELESS GUARANTEED FAIR NETWORK ARCHITECTURE..25

4.1. Detailed Description.. 25

4.1.1. CSGR ... 26

4.1.2. CSGT.. 30

4.1.3. CSGF.. 37

5. IMPLEMENTATION .. 41

5.1. The Simulation Environment .. 41

5.1.1. Project Editor.. 42

5.1.2. Node Editor .. 42

5.1.3. Process Editor... 42

5.2. Implementations.. 44

5.2.1. Implementation of Virtual Clock Router ... 44

5.2.2. Implementation of Core-Stateless Virtual Clock (CSVC) Routers........ 48

5.2.3. Implementation of Core-Stateless Guaranteed Throughput (CSGT)

Routers ... 50

5.2.4. Implementation of Core-Stateless Guaranteed Fair (CSGF) Routers 54

5.3. Validation of Implementations.. 57

5.3.1. Validation of VC Router Implementation.. 61

5.3.2. Validation of CSVC Router Implementations 63

5.3.3. Validation of CSGT Router Implementations.. 66

5.3.4. Validation of CSGF Router Implementations.. 79

6. EVALUATION OF CSGF... 82

6.1. Introduction ... 82

6.2. Evaluation Cases ... 84

x

6.3. Evaluation Results... 94

7. CONCLUSION .. 97

8. REFERENCES... 102

xi

LIST OF TABLES

Table 2-1 Network QoS Parameters... 5

Table 3-1 Overview of Core-Stateless Architectures... 23

Table 5-1 Simulation Results for VC Router Implementation................................. 62

Table 5-2 Simulation Results for CSVC Edge Router Implementation................... 63

Table 5-3 Simulation Results for CSVC Core Router Implementation................... 65

Table 5-4 Simulation Results for CSGT Core Router Implementation 68

Table 5-5 Simulation Results for CSGT Ingress Router Validation Scenario-1...... 71

Table 5-6 Simulation Results for CSGT Ingress Router Validation Scenario-2...... 74

Table 5-7 Simulation Results for CSGT Egress Router Implementation 77

Table 5-8 Simulation Results for Fair Scheduler Implementation........................... 80

xii

LIST OF FIGURES

Figure 2-1 Core-Stateless Network Architecture ... 9

Figure 4-1 CSGT Network... 34

Figure 5-1 VC Packet Format .. 45

Figure 5-2 State Transition Diagram of Virtual Clock Router................................. 46

Figure 5-3 CSVC Packet Format ... 48

Figure 5-4 CSGT Packet Format.. 51

Figure 5-5 CSGT Acknowledge Packet Format .. 51

Figure 5-6 CSGF Ingress Router.. 56

Figure 5-7 Attributes menu of the Source Model .. 58

Figure 5-8 Process Model of Virtual Clock Source ... 59

Figure 5-9 Process model of VC Sink.. 60

Figure 5-10 VC Router Simulation Topology.. 61

Figure 5-11 CSGT Core Router Simulation Topology .. 67

Figure 5-12 CSGT Ingress Router Simulation Topology-1 71

Figure 5-13 CSGT Ingress Router Simulation Topology-2 74

Figure 5-14 CSGT Egress Router Simulation Topology ... 76

Figure 5-15 Fair Scheduler Simulation Topology.. 79

Figure 6-1 Design Phases and Aims of CSGF ... 83

Figure 6-2 Two macro-flows sharing the entire path except the first link............... 85

Figure 6-3 Use of Excess Bandwidth for two macro-flows sharing the entire path

except the first link... 87

Figure 6-4 Two macro-flows sharing the entire path except the last link................ 88

Figure 6-5 Use of Excess Bandwidth for two macro-flows sharing the entire path

except the last link.. 89

Figure 6-6 Three macro-flows sharing only one bottleneck link 90

xiii

Figure 6-7 Simulation Results for macro-flows sharing only one bottleneck link .. 92

Figure 6-8 Complexity of ingress router in CSGF... 93

xiv

ABBREVIATIONS

ACK Acknowledgment

BCSQ Bin-based Core-Stateless Fair Queuing

BE Best Effort

CBR Constant Bit Rate

CHOKe CHOose and Keep/Kill

CJVC Core-Jitter Virtual Clock

CSFQ Core-Stateless Fair Queuing

CSGF Core-Stateless Guaranteed Fair

CSGR Core-Stateless Guaranteed Rate

CSGT Core-Stateless Guaranteed Throughput

DSCP Differentiated Services Code Point

DiffServ Differentiated Services

DPS Dynamic Packet State

FIFO First In First Out

GR Guaranteed Rate

IntServ Integrated Services

IP Internet Protocol

ISP Internet Service Provider

JVC Jitter Virtual Clock

OPNET “Optimum Network Performance” Simulation Program

RFQ Rainbow Fair Queuing

RSVP Resource Reservation Algorithm

rsVC Reduced Stateless Virtual Clock

xv

SCORE Stateless Core

SFQ Start-time Fair Queuing

sVC Stateless Virtual Clock

TCP Transport Control Protocol

ToS Type of Service

TUF Tag-based Unified Fairness

UDP User Datagram Protocol

QoS Quality of Service

VC Virtual Clock

VTRS Virtual Time Reference System

WFQ Weighted Fair Queuing

1

CHAPTER 1

INTRODUCTION

The growing Internet has brought many new and challenging network applications

such as teleconferencing, interactive gaming, distance learning, Internet telephony,

real-time multimedia playing, distributed computing and distributed database

applications.

The development of high-speed networks opened a new research field, which is

providing quality of service (QoS) for network applications [1]. Timely and

satisfactory information delivery over a decentralized and shared network is

challenging and complicated. A network that is originally designed for best-effort

traffic such as the Internet makes things even worse.

Core-stateless QoS approaches received much attention in recent years because of

their scalability in supporting per-flow QoS. There exist many efforts in the

literature on Core-Stateless Quality of Service architectures. In this thesis work,

following the presentation of the literature survey, a Core-Stateless Guaranteed Fair

(CSGF) network architecture, which provides deterministic fairness guarantees in a

work-conserving manner is selected and evaluated in detail. Simulation studies

about Virtual Clock (VC), Core-Stateless Virtual Clock (CSVC), Core-Stateless

Guaranteed Throughput (CSGT) and Core-Stateless Guaranteed Fairness (CSGF)

are presented and the deficiencies in fairness of CSGF are demonstrated.

2

CSVC, which is the core-stateless version of VC, forms the basis of the idea behind

CSGT and CSGF. The reasons behind the selection of CSGF for evaluation can be

listed as follows:

i. This protocol is one of the recent ones among the surveyed protocols,

ii. It is classified as the first work-conserving core-stateless architecture that

provides deterministic fairness guarantees and

iii. The author believes that there are deficiencies about its fairness concept.

CSVC, CSGT and CSGF have not been investigated in a simulation environment

before and therefore CSGF is evaluated and its deficiencies from fairness point of

view are demonstrated through our simulation study.

The main contributions of this thesis work can also be listed as follows:

- Firstly, the study presents a detailed literature survey for core-stateless

network architectures.

- The router of the guaranteed service, stateful QoS architecture (VC-Virtual

Clock) is implemented in OPNET simulation environment.

- Implementations in OPNET of the routers (edge and core) for Core-Stateless

Virtual Clock (CSVC), the routers (ingress, egress and core) and the

Sequencer for Core-Stateless Guaranteed Throughput (CSGT) network

architecture and the routers for Core-Stateless Guaranteed Fair (CSGF)

network architecture have been realized. To the best knowledge of the

author, no Core-Stateless QoS router has been implemented in OPNET

before.

- Finally, Core-Stateless Guaranteed Fair QoS Architecture is evaluated to

gain insight into its operation and to investigate its fairness.

The organization of the thesis is as follows:

3

CHAPTER 2 presents the fundamentals of Quality of Service (QoS) in the Internet.

The basics of QoS are described and traditional QoS protocols are presented and

compared.

CHAPTER 3 investigates the core-stateless approaches and describes most popular

solution approaches. These are also the Core-Stateless QoS Architectures that are

most relevant to CSGF. The properties, advantages and disadvantages of these

approaches are given in order to explain the reasoning behind the selection of CSGF.

CHAPTER 4 concentrates on the selected Core-Stateless QoS Architectures. Main

ideas, approaches to provide guaranteed services, and fairness approaches of CSGF

are explained in detail. The operations of the algorithms used in CSVC, CSGT and

CSGF are described.

CHAPTER 5 firstly explains the simulation environment and the metrics used in

this study. The implementation details are given in the second part of this chapter.

Verification for the correctness of the associated router implementations is also

given. The implemented routers, hence four types of core-stateless QoS

architectures (VC, CSVC, CSGT, and CSGF), are added to OPNET simulation

environment.

CHAPTER 6 gives an investigation of the CSGF QoS architecture and points out

some deficiencies. The details of the simulation study and experiments are given

including results of simulations and comments on the results.

Finally, CHAPTER 7 concludes the thesis with a summary of the performed study,

with comments on the evaluation and some possible future research directions.

4

CHAPTER 2

QUALITY OF SERVICE IN THE INTERNET

2.1. Problem Description

The intuitive definition of Quality of Service represents quantities like how fast data

can be transferred, how much the receiver have to wait, how correct the received

data is likely to be and how much data is likely to be lost.

Current Internet applications such as multimedia have a developing nature and QoS

issue in the Internet has been introduced with this nature of the Internet [2]. Current

Internet is unable to support the needs of developing applications. As the Internet

gets more commercial and global, users start to be ready to pay more to get better

service and use multimedia applications through Internet. ISPs want to have a range

of services such that the users can get a degree of service quality proportional to the

price they pay. Therefore, different traffic flows on the Internet need different

service.

The most important QoS parameters are rate, latency, jitter, error rate and loss rate

[3]. These are defined as follows:

5

Table 2-1 Network QoS Parameters

Parameter Description

Rate The desired bit rate (bps) or bandwidth

Latency
Delay encountered by a packet, the sum of transmission delay, processing delays

(includes router look-up), queuing delay etc.

Jitter Variations in latency

Error Rate The percentage of packets received in error

Loss Rate Percentage of packets dropped or lost during end-to-end transmission

Each application has its unique QoS needs. QoS needs of a flow depend on

information type it uses and application or end-user specific requirements. The

applications of today require connections with certain quality. Whether this quality

can be realized depends on available network resources, network properties and

available end-system resources.

Current Internet supports Best Effort (BE) datagram delivery only. The Internet

architecture is composed of stateless routers, which means the routers do not

maintain any state about traffic except the routing state. This structure makes

Internet scalable and robust but no guarantees can be made to real-time or

multimedia traffic [4]. Two important QoS approaches are presented in the Internet

QoS history: IntServ and DiffServ; but as the applications and technologies change,

new QoS architecture approaches arise.

2.2. Background of Quality of Service Problem

2.2.1.Integrated Services (IntServ)

6

High-speed networks have enabled new applications and they need to deliver

assurances from the network. Applications that are sensitive to the timeliness of

data are called real-time applications examples of which are voice and video.

IntServ [5] enhances both Internet’s service model and architecture model. The old

service model in the Internet uses only a single best-effort service class, but the

IntServ service class uses multiple service classes including best-effort class and

QoS classes. The key architectural difference is the stateful structure of IntServ.

IntServ routers maintain per flow states at routers. These states are setup by a

signaling protocol and used for admission and scheduling purposes [6].

In IntServ, each flow has a fixed path and routers along the path maintain the state

of the flow. This fixed path structure relies on the resource reservation that is

handled by the Resource Reservation Algorithm (RSVP). RSVP [7] is used for

setup and tear-down of the reservation state, it is a protocol for establishing a

guaranteed QoS path between a sender and receiver(s), i.e. it establishes end-to-end

reservations over a connectionless network. It is robust when routers/links fail. The

traffic is re-routed and new reservations are established in the fail condition. It is

receiver-initiated and so scales well for multicast.

The basic operation of RSVP is as follows:

Sender sends PATH message via the data delivery and each router adds its state and

the address of the previous hop. Receiver sends RESV message on the reverse path

specifying the reservation style, QoS desired and setting up the reservation state at

each router.

RSVP, Admission control and Traffic Control are the main components of IntServ

solution. Admission control mainly determines if there is enough resources in the

network for the new flow. Traffic control classifies the packets to each flow and

schedule packet transmission according to the state [8].

7

2.2.2.Differentiated Services (DiffServ)

DiffServ [9], which is proposed by IETF [10], is not based on resource reservation

but prioritization. The packets are evaluated according to their DS field and their

flows are not considered. DS field is the TOS (Type of Service) byte in the header

of IPv4 packets [11] or Traffic Class byte of IPv6 packets ([12, 13]). Last two bits

are not used and first 6 bits, called Differentiated Services Code Point (DSCP), are

used for specifying QoS requirements.

The traffic is classified into a small number of classes (traffic aggregations) in

DiffServ and no state information is used. Because of these properties, DiffServ

scales well. However, since there is no explicit resource reservation, QoS

guarantees are difficult to achieve and hence DiffServ model does not attempt to

guarantee QoS but rather it provides a relative servicing.

There is a distinction between edge and core nodes in Diffserv. Edge routers are the

routers at the network boundaries. The edge router classifies the packets entering

the network according to their DS fields and then according to the Service Level

Agreement (SLA) between the ISP and the customer, it (re)marks the packets if

necessary and polices the flow for its agreement compliance.

The core routers are responsible for forwarding only. Although DiffServ model

permits the mechanisms of the edge routers to be implemented in core routers, this

8

makes the core routers more complicated which is undesirable. Thus in Diffserv,

edge routers are more intelligent and more complicated but core routers are simpler.

2.3. New QoS Approaches

There are important drawbacks of the existing QoS Architectures. The drawback of

the stateful solutions is their complexity. On the control path, the routers should

install and maintain per-flow state for data and control planes. Also on the data path,

per-flow classification, per-flow buffer management and per-flow scheduling

should be handled. It is a challenge to keep per-flow state consistent in the routers.

Opposite to stateful architectures described above, stateless solutions are more

scalable and robust. However stateless solutions can not provide services as

powerful and flexible as stateful solutions. They also can not provide low delay

guarantees and high resource utilization simultaneously.

It is easy to see that since stateful solutions (e.g. IntServ) are rich in services,

stateless solutions are more scalable. New approaches try to combine good

properties of both architectures. The goal is having a scalable QoS architecture that

is rich in services.

Core stateless systems have received considerable attention since 1999 also for

supporting per-flow QoS guarantees. The core-stateless systems use scalable

mechanisms in the core of networks and stateful approaches at the edges of the

network.

9

Figure 2-1 Core-Stateless Network Architecture

In core stateless systems, the node structures are defined as in DiffServ networks

(Figure 2-1). The core nodes are simpler and they do not maintain per-flow state.

Therefore in core routers there is no function like per-flow classification, per-flow

queuing and per-flow scheduling. The edge nodes are more complex and keep per-

flow state in core-stateless networks. The main idea is keeping the complexity out

of the network core.

10

CHAPTER 3

CORE STATELESS QoS ARCHITECTURES

3.1. Problem Description

QoS architectures aim to support the needs of users and their applications, and the

continuous growth of Internet applications demanding more number of reliable

resources has resulted in the proposal of many new QoS architectures. Some of the

most common design constraints of new QoS solutions are maximum guaranteed

service, minimal complexity at the routers and minimum change in the existing

protocols.

Together with the concept of high-performance networking, quality of service

(QoS) architectures have become an important research issue. In addition to the

common and ordinary QoS architectural design goals stated in proposed protocols

like IntServ and DiffServ, a new QoS architecture should consider QoS constraints

delay, jitter, bandwidth and packet loss in a scalable manner.

There has been more interest in services requiring certain QoS from networks, such

as multimedia services providing audio and video traffic. Contrary to these QoS

requirements, many proposed protocols provide QoS either in a small network or in

poor granularity. Therefore we believe that the core-stateless solutions seem to be

the future of QoS in the Internet.

11

The following sections, 3.2 and 3.3, present and compare important Core-Stateless

QoS architectures proposed in the literature. Some of these are also important in the

way they relate to the main topic of this thesis, namely the Core-Stateless

Guaranteed Fair Network Architecture. The protocols are described and compared

stating their differences in giving QoS services.

3.2. Solution Approaches

3.2.1. Core-Jitter Virtual Clock (CJVC)

CJVC [14, 15] aims to implement guaranteed services with levels of flexibility,

utilization, and assurance similar to those provided with per-flow mechanisms.

CJVC is a non-work-conserving QoS architecture. This means that the excess

bandwidth is not used by the flows, a flow uses the bandwidth at most at its

reserved rate even if the rest is idle. CJVC provides end-to-end delay, jitter and

throughput guarantees (on average) at the expense of this non-work-conserving

character.

A network architecture, called Scalable Core (SCORE), which is similar to the

DiffServ Architecture is used in CJVC. SCORE [15] is a network in which edge

nodes perform per flow management but core nodes do not. The approach firstly

defines a stateful network that implements the desired rich services. Then the

functionality of the reference network is tried to be emulated in a SCORE network.

In order to get rid of the per-flow state at core routers, the idea of “having packets

carry per-flow state”, namely Dynamic Packet State (DPS) [15], is used in CJVC.

With this technique, ingress node computes and inserts flow state in packet’s header,

core nodes process a packet based on the state it carries and the state of the node

itself, and updates both packet and node’s state. Egress node removes state from

12

packet’s header. By using SCORE and DPS [15], CJVC provides unicast IntServ

guaranteed service semantics with DiffServ-like scalability.

CJVC algorithm aims to approximate a network with each router implementing

Delay-Jitter-Controlled Virtual Clock (Jitter Virtual Clock) on the data path and

per-flow admission control on the control path. This network is chosen to be

emulated since in Virtual Clock ([16], [17]), a packet’s deadline depends only on

the state variables of the flow it belongs to but not on the variables of other flows

and this property makes it easier to convert VC to a core-stateless version. JVC is a

non-work-conserving algorithm, which means that it has no statistical multiplexing

property. CJVC inherits its non-work-conserving behavior from JVC.

DPS is used to approximate the Jitter-VC with CJVC that does not require core

routers to maintain per flow state. The components of Jitter-VC are a delay-jitter

rate-controller and a Virtual Clock scheduler. The algorithm assigns each packet an

eligible time and a deadline upon its arrival. The packet is kept in rate-controller

until it becomes eligible and then the scheduler schedule packets in increasing order

of their deadlines. It is important to note that the algorithm eliminates the delay

variation (jitter) of different packets by forcing all to incur maximum allowable

delay. Jitter-VC guarantees that no packet misses its deadline. A network of Jitter-

VC servers can provide the same delay guarantees as a network of Weighted Fair

Queuing (WFQ) ([18],[19, 20]) servers.

The intuition of defining the eligible time and deadline of a packet belonging to a

flow with reservation r is equal to the start and finish times of transmitting the

packet in an ideal network in which the flow has dedicated links of capacity r. The

eligible time is chosen as the maximum of the following: The arrival time, The sum

of the packet’s deadline at previous node and propagation delay, the previous

packet’s deadline at current node. Deadline is chosen as the sum of eligible time

and (packet length) / (flow reserved rate).

13

CJVC aims to emulate a network of JVC routers without maintaining per flow state

at core routers. In order to do this, the dependence on previous packet deadline has

to be eliminated. This challenge is solved by introducing a slack variable s such that

at each core node:

(packet deadline at prev. node + prop. delay + s) >= (deadline of previous packet)

Using this method, the eligible times and deadlines at the last hop are the same in

both CJVC and Jitter-VC, i.e. CJVC and Jitter-VC provides the same worst case

end-to-end delay bounds. The slack variable can be computed at ingress node and it

depends on previous and current packet, slack variable associated to previous

packet and the number of hops.

As a result, in CJVC algorithm:

Each packet carries in its header three variables

• slack variable s (inserted by ingress)

• flow’s reserved rate (inserted by ingress)

• ahead of schedule (inserted by previous node)

Eligible time = (arrival time + ahead of schedule (deadline – departure time) + s)

Deadline = eligible time + (pckt. length) / (flow rate)

(arrival time + ahead of schedule at previous node) = (deadline at previous node +

propagation delay)

CJVC algorithm eliminates the need to maintain per-flow classification and per-

flow buffer management and per-flow scheduling on the data path at core routers.

Actually per-flow classification is not needed anymore, there is only one buffer and

not per-flow but per-packet scheduling is needed. In addition, the per-flow state on

the control path is not needed to be installed and maintained on the control path.

14

In CJVC, a distributed admission control approach which depends on a light-weight

signaling protocol is presented in order to eliminate the need for per-flow state on

the control path. When this approach is used, each node keeps track of aggregate

reservation rate for each outgoing link and makes local admission control decisions.

A close upper bound on the aggregate reserved rate is estimated and by using this

estimation, over-provisioning is avoided. The admission control algorithms used are

robust against losses and partial reservation failures, they do not under-estimate the

rate and they are self-correcting.

The results of the simulations in [21] show the non-work-conserving characteristic

of CJVC algorithm and the delay guarantee provided by CJVC in the presence of

aggressive best effort sources. The illustrations for admission control algorithms

demonstrate the accuracy of estimations made in the algorithms and the

computation of the upper bound on the rate at different conditions.

With respect to its characteristics, improvements, experimental computations and

performance, CJVC is considered to be an important example of Core-Stateless

Guaranteed Rate QoS Architecture. CJVC is referred by most of other core-stateless

network architectures that follow it [21-23]. CJVC is also important in order to

understand CSGF, which is the chosen and the investigated algorithm in this thesis.

Hence CJVC is described in detail in this chapter.

3.2.2. CHOose and Keep/Kill (CHOKe)

As all other Core-Stateless Fair QoS architectures, CHOKe [24] (CHOose and Keep

for responsive flows, CHOose and Kill for unresponsive flows) is motivated by the

need for a simple algorithm that can achieve flow isolation and/or approximate fair

bandwidth allocation.

15

CHOKe penalizes misbehaving flows by dropping their packets. The total

occupancy of the buffer is the only constraint for the penalty decision. CHOKe

marks two thresholds on the buffer, a minimum threshold minth and a maximum

threshold maxth.

If the average queue size is less than a pre-selected minimum, each arriving packet

is queued into the FIFO buffer. When the average queue size is larger than the

minimum, CHOKe [24] draws a packet from the FIFO buffer at random and

compares it with the arriving packet. If both of the packets belong to the same flow,

both are dropped, else the randomly chosen packet is not dropped and the arriving

packet is admitted into the buffer with a probability that depends on the level of

congestion, i.e. average queue size. Packets are definitely dropped if they arrive

when the average queue size exceeds maxth.

The reasoning that forms the basis of this process is that a misbehaving flow has

more packets than the others in the FIFO buffer and since packets of a misbehaving

flow arrive more numerously, they are more likely to trigger comparisons.

Therefore, packets of misbehaving flows are dropped more often than packets of

well-behaved flows.

CHOKe’s performance is improved by choosing more than one drop candidate

packet. A process for the determination of the number of packets to choose is also

given in CHOKe.

Two different models of CHOKe are presented in [24]: Front and Back CHOKe.

Front CHOKe compares an incoming packet with the packet at the head of the

buffer, while Back CHOKe compares it with the last packet at the buffer. Back

CHOKe also drops incoming packets, but not packets from the buffer.

16

Simulations in [24] evaluates the performance of CHOKe for a single congested

link, multiple congested links and multiple misbehaving flows. Simulation results

show that well-behaved flows are protected from misbehaving flows in CHOKe.

However the simulations show that a high-speed UDP can still get several times

more bandwidth than it deserves in CHOKe.

CHOKe only addresses average fair share of bandwidth rather than weighted share

[25]. CHOKe defines mechanisms as simple as Random Early Discard (RED, [26])

in the core routers. However, it improves but doesn’t solve the fairness issue. While

CHOKe is very simple to implement and does not require edge routers to maintain

any per flow state, it has difficulties to accurately approximate fair queuing when

the number of flows is large or in the presence of very high-speed flows .

3.2.3. Virtual Time Reference System (VTRS)

Virtual Time Reference System (VTRS) [22] is inspired by CJVC and aims to

provide guaranteed services using DiffServ [9] paradigm. For this purpose, packet

virtual time stamps that require no state for computation are used. Per-hop

behaviors of core routers are defined via these packet virtual time stamps and this

characterization provides end-to-end delay bounds. Packet virtual time stamps are

computed by the state carried in the packet which makes the algorithm core-

stateless.

VTRS architecture is composed of three main components which are packet state,

traffic conditioning at the edge, per-hop virtual time reference system/update

mechanism at the core. Packet state includes reserved rate or delay value of the flow,

time stamp and a virtual time adjustment term. It’s inserted in the packet header at

the network edge after traffic conditioning. A flow is guaranteed to enter the

network with no more than its reserved rate with the edge traffic conditioning. Per-

17

hop virtual time reference/update mechanism maintains the continuing progression

of the virtual time embodied by the packet virtual time stamps.

The idea of virtual time has been used in many packet scheduling algorithms that

require maintaining per-flow information. This notion is viewed as global in VTRS.

By the virtual time spacing property of virtual time stamps at the core routers, the

reserved rates of the flows are preserved at the core routers.

VTRS is defined to serve as a unifying scheduling framework where different

scheduling algorithms can be employed. VTRS characterizes per-hop behaviors of

core routers and the end-to-end properties of their concatenation in order to support

delay guarantees. The bound on the end-to-end delay in a VTRS network

experienced by packets of a flow can be expressed in terms of the reservation rate

and the error terms of the routers along the path.

VTRS aims to provide deterministic delay and throughput guarantees but not

fairness guarantees. Using VTRS, a bandwidth broker architecture for supporting

admission control and QoS provisioning is also presented by the authors of VTRS

in a different work [27].

3.2.4.Bin-based Core Stateless Queuing (BCSQ)

Existing core stateless packet schedulers require core routers to keep the received

packets in sorted order based on their virtual finish times. This sorting operation can

be quite expensive when the packet queue is long, which is not desirable in high-

speed backbone networks. BCSQ [22, 28, 29] is developed within VTRS and tries

to overcome this complexity.

Virtual time space is divided into equal slots or bins in a BCSQ scheduler partitions.

A packet is placed into a bin if its virtual finish time is in that bin. Bins are ordered

18

and served according to the time intervals they represent. Packets in a bin are served

in a FIFO manner.

The minimum number of bins to prevent over flows is investigated and simulation

studies are also given to evaluate the performance of BCSQ. Simulation results

show that by controlling the length of time intervals the bins represent, BCSQ has

many trade-offs between performance and complexity. When the bin time intervals

are sufficiently long, all incoming packets will fall in a single bin and BCSQ

behaves just like a FIFO scheduler. As the length of time intervals decreases, BCSQ

is able to provide improved per-flow QoS guarantees at the expense of greater

scheduling complexity.

3.2.5. Stateless Virtual Clock (sVC)

Stateless Virtual Clock [23] concentrates on providing delay guarantees in a

scalable manner. The authors of Stateless Virtual Clock investigates DPS and aims

to provide similar delay bounds with a smaller amount of per packet overhead.

Stateless Virtual Clock aims to approximate a virtual clock algorithm and two

variants of Stateless Virtual Clock are proposed.

In Stateless Virtual Clock, it is stated that the DPS technique requires complex per

packet processing in the scheduler which may cause problems in achieving high

rates. Edge and core nodes behave like in other core-stateless architectures: While

edge nodes shape guaranteed service flows and put the reserved rate in the header

field, core nodes implement a simple scheduler. Two variants of the approach are

proposed. In [23], it is worth noting that since these algorithms are approximations,

they don’t give any deterministic guarantees.

19

Stateless Virtual Clock (sVC), approximates Virtual Clock [16] algorithm in a very

simple manner, but this approach can be incorrect when the network jitter is large.

The variant, Reduced State Virtual Clock (rsVC), requires more packet overhead

and it needs to identify the flow of a packet, but behaves better than sVC especially

in high-load conditions. The quality of the approximation depends mostly on the

network load; sVC and rsVC do not behave well under severe load conditions.

From the simulation studies given in [23], it is seen that the Stateless Virtual Clock

approximations, sVC and rsVC, give similar average delay guarantees with VC in

non-severe situations (e.g. %96 network load) and rsVC performs better than sVC.

However maximum delays are larger in sVC than VC.

3.2.6. Rainbow Fair Queuing (RFQ)

Rainbow Fair Queuing [30] divide each flow into a set of layers, based on rate. It is

a combination of a color labeling scheme and a buffer management mechanism.

The packets in a flow are colored at an edge router with a layer label. The state

information carried by the packets is the color layers they belong to, rather than the

explicit rate of their flows. The larger the number of colored layers, the higher the

rate of the flow and flows with the same rate have the same number of colored

layers. The colored layers provide a structure for controlled discarding in the

network when congestion occurs. The core routers operate in FIFO fashion.

A core router maintains a color threshold and core routers only need to perform a

simple operation, packets with a color label larger than this threshold are dropped.

The discarding starts with the packets with the highest color value. During

congestion, the color threshold is decreased; when congestion clears, the color

threshold is increased. Because the coloring is based on rate, the discarding of

packets is approximately fair.

20

Simulations in [30] present the performance of RFQ against CSFQ [31]. In these

simulations, the performance of RFQ scheme is comparable to CSFQ when the

application data does not contain any preferential structure. RFQ outperforms

CSFQ when the application takes advantage of the coloring to encode preferences.

RFQ discusses average fair share and shows only the performance of its weighted

version with an all-UDP case. There is no deterministic guarantee for its

performance when both TCPs and UDPs of different weights and RTTs coexist [25].

RFQ avoids fair share rate calculation in the core routers and that is better adapted

to layered encoding applications. It removes flow state but requires computation to

determine dropping thresholds.

3.2.7. Tag-based Unified Fairness (TUF)

TUF [32] aims to realize the fair bandwidth sharing without per flow state in the

routers, using a trivial queuing discipline. Packets are tagged near the source,

depending on the nature of the flow. In the core of the network, routers use FIFO

queues, and simply drop the packet with the highest tag value in case of congestion.

TUF does not try to maintain instantaneous flow rates equal but takes into account

the responsiveness nature of the flows, and adjust loss rates such that average rates

are equal. TUF also differentiate between TCP and UDP flows in order to avoid the

TCP flows being over-penalized due to their response to losses.

TUF allocates bandwidth max-min fairly if it is not possible to increase the

satisfaction, namely average bandwidth, of a flow without simultaneously causing a

decrease in the satisfaction of a less satisfied flow. In max-min fairness, small users

get all they want and large users share the rest of the resources evenly. TUF is

concerned with fairness between elastic flows for which the satisfaction is measured

in terms of average rate and not instantaneous rate.

21

In TUF, the loss rates are differentiated to provide fair bandwidth allocation

between flows sending at different rates. The state information called tag is carried

in one of the packet’s fields. This tag is numeric a value that represents the

minimum fair share rate a router must support.

The congested core router uses the tags of the packets present in its queue to make a

drop decision. Decision procedure is very simple as dropping the highest tag value

when the queue is full. A tagging entity, called the “tagger” is responsible for

placing a tag in each packet. This entity, that maintains flow state, is either a router

at the edge of the network, or ideally the source itself.

Simulations given in [32] show that TUF achieves “approximately fair bandwidth

sharing” as CSFQ, DRR and SFQ ([33]). It adapts to responsive flows whose

throughput can be determined as a function of the loss rate. Therefore in

heterogeneous environments, with non-negligible round trip times or bursty traffic,

it provides better fairness than other stateless fair queuing algorithms that adapts

instantaneous rates.

3.2.8. Core-Stateless Fair Queuing (CSFQ)

CSFQ [31] aims to use core-stateless network architecture to approximate the

functionality of a network in which all nodes implement FQ. In CSFQ each edge

node estimate the incoming rate of each flow based on exponential averaging and

use it to label flow's packets. All nodes, both edge and core nodes, periodically

estimate the fair rate along the outgoing link.

When the link is congested, the fair rate is computed such that the rate of the

aggregate forwarded rate equals the link capacity. When the link is uncongested,

fair rate is the maximum among the arrival rates of the incoming flows.

22

Upon a packet arrival each node computes its forwarding probability using the

current estimated rate of the flow, which is contained in the packet label, and the

fair rate of the output link. Then the packet is forwarded with this probability. To

reflect the eventual change in flow's rate, when a packet is forwarded its label is

renewed as the minimum between its previous value and the fair rate of the output

link. At the next node the label will still represent the estimate rate of the flow's

incoming traffic.

Only edge nodes need to perform per flow management, as they need to estimate

the rate of each incoming flow. Core nodes need to know only the packet label and

the fair rate of the output link.

The edge router’s design is still complicated in CSFQ and because of the rate

information in the header, the core routers have to extract packet information

differently from traditional routers. In simulations given in [31], CSFQ achieve fair

allocations close to FQ and similar to or better than FRED under most scenarios.

Simulations are preferred for checking average fair bandwidth sharing.

3.2.9.Core-Stateless Guaranteed Fair (CSGF) Network

To the best of our knowledge, CSGF is the first work-conserving core-stateless

network providing deterministic service and fairness guarantees. CSGF is built

upon Core-Stateless Guaranteed Rate Network (CSGR) that can provide end-to-end

delay guarantees.

In CSGR [21], the upper bounds on packet deadlines at any core node can be

computed using only per-flow state at the edge node. It is stated that a CSGR

network, depending on this idea, provides same end-to-end delay as the networks

using actual deadlines.

23

CSGR is combined with two mechanisms, namely tag re-use and source rate control,

and this combination leads to Core-Stateless Guaranteed Throughput (CSGT)

networks [34]. It’s shown in [34], that CSGT provides throughput bounds that are

comparable with the throughput bounds achieved by a network of core-stateful fair

rate routers.

The design of Core-Stateless Guaranteed Fair (CSGF) networks on the other hand

depends on two principles. Firstly, a network must provide end-to-end throughput

guarantees to provide fairness. Secondly, this throughput guarantee is combined

with two other mechanisms, namely fair access at the edge nodes and aggregation

of flows in the core nodes

3.3. Overview of Core-Stateless Architectures

The following table presents an overview of the protocols that are summarized

above, including their advantages and disadvantages.

Table 3-1 Overview of Core-Stateless Architectures

Architecture Advantages Disadvantages Notes

CJVC [14] End-to-end delay and

jitter guarantee

Non-work-conserving.

Higher average delays

than stateful algorithms,

no throughput or fairness

guarantees

Inspired CSGR

CHOKe [24] Flow isolation

Approximately fair

bandwidth allocation

A high-speed UDP may

get much undeserved

bandwidth

Two different Models: Front

and Back CHOKe

VTRS [22] Deterministic delay

and throughput

guarantees

No fairness guarantees,

Non-work conserving

A flow is guaranteed to enter

the network with no more than

its reserved rate

24

Table 3-1-Cont. Overview of Core-Stateless Architectures

sVC [23] Similar average

delay guarantees

with VC

No guarantees other than

delay

Two variants: sVc and rsVC,

which tries to approximate VC

BCSQ [28] Reduced run time for

packet insertion,

Great scheduling

complexity

It has trade-offs between

performance and complexity

Developed within VTRS

TUF [32] Worst-case end-to-

end delay bounds,

Approximately fair

bandwidth sharing

Fairness in terms of only

average rates, not

instantaneous rates

It provides good fairness in

heterogeneous environments,

with bursty traffic

RFQ [30] Average fair

bandwidth sharing

Requires computation to

determine dropping

thresholds

Only its weighted version’s

performance with an all-UDP

case is shown

CSFQ [31] Average fair

bandwidth sharing

Edge router’s design is

complicated

Inspired many other core-

stateless algorithms.

CSGR [21] Delay and average

throughput guarantee

No throughput guarantee

at short time-scale

It presents a method to convert

every GR architecture to core-

stateless

CSGT [34] CSGR + throughput

guarantee at short

time-scale

No proportional

throughput guarantee

First core-stateless QoS

architecture providing

throughput guarantee at short

time-scale

CSGF [25] CSGT + fairness

guarantee

More complex than

CSGT at edge routers

It is claimed to be the first

work-conserving core-stateless

algorithm providing guaranteed

fair services

25

CHAPTER 4

CORE STATELESS GUARANTEED FAIR NETWORK
ARCHITECTURE

In Chapter 3, important Core-Stateless QoS architectures are described and an

overview and comparison of these architectures are given. The results summarized

show that one of these protocols, namely CSGF, needs to be studied more

thoroughly for a better understanding. In this chapter, the pros and cons of its

underlying techniques, the assumptions made in the design of CSGF are discussed

in detail and CSGF is questioned to see whether it reaches the motivations behind or

not.

Since CSGF is actually built on top of CSGT and CSGR, all these are explained in

sequence in the following sections.

4.1.Detailed Description

The design of CSGF is basically inspired by the CJVC [14] network that is

described in Section 3.2.1. The motivation behind CSGF comes from the evaluation

of CJVC. CJVC controls the end-to-end delay by controlling the jitter and having

each packet encounter the maximum allowable delay. However this control leads to

a non-work conserving structure and the excess bandwidth becomes useless for the

26

flows. In addition CJVC leads to higher average delays compared to its core-stateful

counterparts.

The first goal of using the excess bandwidth and lowering the average delays

encountered by flows is achieved by CSGR [21]. The second challenge of providing

end-to-end throughput guarantee at finite and short timescales is achieved by CSGT

[34]. The last challenge of providing delay, throughput and also proportionate

allocation guarantees of spare bandwidth at the same time is achieved by CSGF.

The other mentioned core-stateless networks that attempt to be fair provide only

statistical (or approximate) fairness over large time-scales and for long-lived flows.

CSGF aims to provide a core-stateless network architecture that can provide

deterministic end-to-end fairness guarantees to flows.

In the following sections CSGR, CSGT and CSGF will be described in detail.

4.1.1. CSGR

CSGR [21] aims to provide core-stateless version of any GR (Guaranteed Rate)

architecture, because delay guarantee is considered essential to provide other type

of guarantees. The CSGR algorithm used in this study is Core-Stateless Virtual

Clock (CSVC), which is the core-stateless version of the Virtual Clock (VC) [16]

algorithm.

CSVC is inspired by CJVC [14], but unlike CJVC, its goal is to make it work-

conserving in order to make use of statistical multiplexing. Due to ever increasing

network service requirements, better utilization of bandwidth is important. Thus it is

desirable to have a work-conserving core-stateless network that provides delay

guarantees.

27

Since CSVC is core-stateless version of Virtual Clock, the first question asked in

the design of CSVC is:

“Can the techniques used in deriving CJVC from JVC be applied to derive core-

stateless version of VC?”

Virtual Clock uses the following equations in order to define the deadlines of

packets [16]:

1

1 1
, , 1

f
f j f j

f

l
VC a

r
= + (4.1)

 1
, , ,max(,)

k
fk k k

f j f j f j
f

l
VC a VC

r
−= + (4.2)

where

,
k
f jVC = VC value of the kth packet of flow f in router j

,
k
f ja = Arrival time of the kth packet of flow f to router j

k
fl = Size of the kth packet of flow f

fr = Reserved rate of flow f

Packets are transmitted in increasing order of their VC values.

When deriving CJVC from JVC, the goal was to get rid of the VC value of the

previous packet at the same node in order to make the algorithm core-stateless (see

section 3.2.1.).

If the approach used in converting JVC to CJVC is adopted, we should add a slack

variable to ,
k
f ja in (4.2) so that the resulting value of the maximum term is always

greater than 1
,

k
f jVC − . Then the slack variable (δ) should satisfy [14]:

 1
, ,

k k k
f f j f jVC aδ −≥ − (4.3)

28

In CJVC [14], non-work-conserving nature of JVC shapes the flows at their

reserved rate and holds the packets until their eligible time. Consequently the jitter

is bounded and the packets of a flow can not come back-to-back to a router.

Conversely, in a network of work-conserving routers, packets can arrive back-to-

back to a router. If packets arrive back-to-back, the value of δ in the above equation

extremely grows. As a result, a network of such CSVC servers does not preserve the

delay guarantee of the corresponding network of VC servers.

Then the design challenge becomes computing deadlines in a core-stateless network

that doesn’t maintain per-flow state. There are four main principles in deriving

“CSVC from VC” [21]:

• Not the deadline itself but an upper bound on the deadline can be computed

using only the state of the same packet at the previous node.

• By using the above observation recursively, the upper bound can be

computed using only the state of the same packet at the first node.

• Ingress node, which is an edge node, maintains per-flow state.

• The network provides same end-to-end delay if the upper bounds are used

instead of the actual deadlines.

The statement in the first bullet above is stated and proved in [14] for any GR

algorithm. For CSVC its form is as follows [21]:

[]

max
1

, , 1 1
1..

1

max
i
f jk k

f j f j jii k
f j

l l
VC VC

r C
π −

− −∈
−

≤ + + + (4.4)

Where

1jπ − = Upper bound on propagation delay of the link connecting node (j-1) and j.

1jC − = Outgoing link capacity at node j.

max
1jl − = Maximum packet length served by node j-1 in bits.

29

In CSVC, a new term called ’core virtual clock (VCore) is defined as follows [21]:

[]

,1 ,1

, , 1 , 1 1
1..

max

k k
f f

i
fk k

f j f j f j j ii k
f

VCore VC

l
VCore VCore

r
β π− − − ∈

=

= + + +
 (4.5)

where

 , 1f jβ − =
max

1

1

j

j

l

C
−

−

 for flow f , j 2≥

Equation (4.5) can be rewritten as:

 [], , , 1
1..

max

2

i
fk k k

f j f j f j ii k
f

l
VCore a g

r

j

− ∈
= + +

≥

 (4.6)

where

, 1
k
f jg − = the time between the departure and deadline of k

fp at server j-1.

Then , ,
k k
f j f jVCore VC≥ . As a result, the need to maintain 1

,
k
f jVC − is eliminated and by

enabling edge routers to encode the rate r and by enabling server j-1 to encode

, 1
k
f jVCore − in the packet, there is no need to maintain per-flow state in the core

routers.

The delay guarantee of a network of CSVC routers is evaluated in [21] and it is

proven that it is the same as that of a network of Virtual Clock routers.

To summarize, CSVC modifies the approach used to convert JVC to CJVC in order

to make CSVC work-conserving. CSVC provides only end-to-end delay guarantees

but it doesn’t provide throughput guarantee at short time-scales or fairness

guarantees.

30

4.1.2. CSGT

Core-Stateless Guaranteed Throughput (CSGT) is the architecture offered to

improve CSGR by providing end-to-end throughput guarantees at short time-scales

([34, 35]). Derivation of CSGT is done in two steps. Firstly, in order to provide

throughput guarantee in addition to end-to-end delay guarantee, an algorithm

providing delay guarantee is chosen to build CSGT on. There are core-stateless

algorithms providing delay guarantee in the literature ([36], [21], [22]). In particular,

CSVC is selected as the underlying CSGR network. Second, two mechanisms are

introduced to be added to CSVC in order to form a work-conserving core-stateless

network that guarantees end-to-end throughput bounds within an additive constant

of the one obtained by a network of core-stateful routers.

4.1.2.1. End-to-end delay guarantee requirement

Consider a network providing lower-bound throughput guarantee of the form

“ , 1 2 2 1(,) ()f H fW t t r t t≥ − − Φ ” (Φ =a constant) to any flow f, source of which

transmits at least at its reserved rate. If 1
1 ,1ft a= (arrival time of the first packet of

flow f to the ingress router) and 2 ,
k
f Ht d= (departure time of the kth packet of flow f

from the egress router), then:

1
, ,1 ,

1

(,)
k

k i
f H f f H f

i

W a d l
=

=∑ and 1
, ,1

1

ik
fk

f H f
if f

l
d a

r r=

Φ≤ + +∑ .

Since source transmits at least at its reserved rate, the expected arrival time (EAT)

of k
fp is

1
1

1 ,1
1

()
ik
fk

f f
i f

l
EAT p a

r

−

=

= +∑ . Then the flow f is provided with a delay

guarantee
max

, 1()
k
f fk k

f H f
f f

l l
d EAT p

r r

Φ + Φ +
− ≤ ≤ [35].

31

Hence a network providing lower-bound throughput guarantee of the form

“ , 1 2 2 1(,) ()f H fW t t r t t≥ − − Φ ” also provides delay guarantee:

max

, 1()
k
f fk k

f H f
f f

l l
d EAT p

r r

Φ + Φ +
− ≤ ≤ [35]. Therefore CSGT uses CSGR, which

gives delay guarantee, as a building block and enhances it with a set of end-to-end

mechanisms that allow the network to retain its delay properties while providing

throughput guarantees at short time-scale.

In CSGR, if packets of any flow come back-to-back (which is allowed in a work-

conserving structure) and if there is excess bandwidth for that flow to use, then it

will be serviced at a rate greater than its reserved rate. When the excess bandwidth

is loaded with other flows, this flow will be penalized because of the computation

logic of deadline values. Throughput guarantee is important in order to:

• Satisfy bandwidth requirements at short time scales for those applications

for which bit-rate requirement may vary considerably (e.g. VBR video) over short

time-scales [37].

• Allow sources to transmit data in transient bursts (which will result in better

utilization of resources in the network).

It is worth noting that CSVC does guarantee average throughput, so the throughput

of any flow in any interval would be below its reserved rate if that flow receives

service at a rate higher prior to this interval.

4.1.2.2. Properties of CSGT

CSVC networks must reduce the penalty given to flows because of their extra usage

of resources when the network is idle in order to guarantee throughput at short time-

32

scales. It is obvious that the deadline determination method for a packet must be

modified for this purpose. The deadline values encoded in the packets by the ingress

router in CSVC algorithm are called service tags. In CSGT, the main principle on

the re-use of service tags is as follows [35]:

“Allowing the ingress routers to re-use for future packets the deadline values

of packets that reach the destination much prior to their deadlines.”

Then in a CSGT network, on receiving a packet of a flow, the ingress router assigns

to it a service tag. If the set R of re-usable tags is not empty, smallest tag from this

set is used. If it is empty, the tag values are assigned just like in CSVC [35]:

1 ,1 ,1

1

1 ,
1

1

ˆ() max(, ())

() () (max), 1

k
fk k k

f f f
f

ij
fk k

j f f f h h ii k
h f

l
F p a F a

r

l
F p F p j

r
β π

−

≤ ≤=

= +

= + + + >∑
 (4.7)

where,

()k
j fF p =Tag of the kth packet of flow f at j th router.

,
ˆ ()k

f jF a = Smallest tag value in R at router j for flow f

The two challenges of this design are:

• Deciding which tags are re-usable

• Re-ordering of packets at network exit

The two mechanisms that will be added on CSVC to form CSGT are used to

overcome these two challenges.

1. Re-Usability

It is difficult to define a packet as re-usable because of two factors:

33

• Reuse of tags must not violate the deadline guarantees provided to other

flows. To meet this requirement, the tag assigned to a packet must differ by at least

/f fl r from the tags assigned to all packets that were transmitted prior to this packet

but have not reached the destination [35]:

 : () fi i
f j j f

f

l
p U F F p

r
∀ ∈ − ≥ (4.8)

where U is the set of packets transmitted by the ingress router prior to packet m
fp

but have not reached the destination by time t.

The deadline guarantee provided to other flows can not be violated if the egress

router sends an ACK to ingress router when it transmits a packet. Ingress node will

take a service tag into consideration for re-use and add that tag to R only if it

receives an acknowledgement for the packet carrying this tag. This method

eliminates the first factor described above.

• CSGT must provide a deadline guarantee on the re-used tag which means

[35]:

1
f

f

l
t F

r
≤ − (4.9)

The second factor is checked after supporting the first factor. When receiving a

packet, ingress router scans through R and assigns the tag that meets (4.9).

It is obvious that the tag of a packet is re-used only if that packet reaches the egress

router much prior to its deadline which is formalized as [35]:

min
, 1() fm m

f H f
f

l
d D F p

r
+ ≤ +

where,

,
m
f Hd = Ingress to egress propagation latency

minD = Minimum latency encountered by the acknowledgement packet

34

H= Hop count

Then a tag is re-used only if:

min1

min
, ,

1
1

() ((max))
iH
f fm m

f H H f f j j
i m

j f f

l l
d F p D

r r
β π

−

≤ ≤=

≤ − + + + +∑ (4.10)

The egress router sends an ACK only if the above condition holds.

2. Re-ordering

When the service tags are re-used, the packets can reach the egress router out-of

order. The in-order delivery can be important for some applications, so a sequencer

is used in CSGT in order to buffer the out-of-order packets and re-order them at

network exit (Figure 4-1).

Figure 4-1 CSGT Network

Thus the number of packets in the buffer of the sequencer should be limited. The

second mechanism of CSGT which is added on CSVC is used for this goal. This

mechanism is called “Flow Control Algorithm” and it limits the maximum number

35

of deadlines in use. No packet is assigned a deadline larger than t + P f

f

l

r
 where P is

a configuration parameter. It is proven in [34] that packets of a flow will not be

dropped at the sequencer due to the unavailability of buffers if P satisfies:

min
min

min
min

(1)(1) ()(1) , /
2

(1)
, /

2

f f

f f

k
N P N N if T l r

B
P P

if T

a

ra l
k

+ − − + ≥ ≥ − <

 (4.11)

where

B = The available sequencer buffer space.

min
min

min

2
,

/f f

P T
N k

k l r

− = = and Tmin is a lower bound on the round-trip time.

When the maximum bandwidth a flow should get is determined as r’ , a bound on P

can de driven using [34]:

min1

min
, ,

1
1

() ((max))
iH
f fm m

f H H f f j j
i m

j f f

l l
d F p D

r r
β π

−

≤ ≤=

≤ − + + + +∑ (4.12)

This value of P when substituted in equation of B, determines the minimum buffer

requirement at the sequencer.

4.1.2.3. Performance Guarantees of CSGT

In [34], it is shown that the deadline guarantees of CSVC are preserved in CSGT.

For the throughput guarantee provided by CSGT, the following theorem is stated

and proved:

36

If the source of flow f transmits packets at least at its reserved rate, then the

network guarantees a minimum throughput in any time interval (t1,t2)

(, 1 2(,)f HW t t), as follows [34]:

1

max
, 1 2 2 1 ,

1 1

(,) () (2) *
H H

f
f H f f j f j f

j jf

l
W t t r t t r H r D

r
π β

−

= =

> − − + + + − ∑ ∑ (4.13)

where maxD denotes the maximum acknowledgement time.

Further, the sequencer guarantees a minimum application throughput, 1 2(,)app
fW t t ,

given by [34]:

1
max

1 2 2 1 ,
1 1

(,) () (1) * *
H H

fapp
f f f j f j f f

j jf

l
W t t r t t r H r D P l

r
π β

−

= =

> − − + + + − − ∑ ∑ (4.14)

The network throughput provided by a core stateful network is:

1

1 2 2 1 ,
1 1

(,) () (1)
H H

fapp
f f f j f j

j jf

l
W t t r t t r H

r
π ε

−

= =

> − − + + + ∑ ∑

where rf is the reserved rate of flow f and εf,j is the latency term in the packet scale

rate guarantee of server j.

The bound on the network throughput derived for CSGT differs from that provided

by a core stateful network, by a constant term [34]:

max
1 , ,

1

* ()
H

f f j f j f
j

E r D lε β
=

= − − + ∑

,f jβ is max / jl C for a CSGT network derived from CSVC. Further, for most

schedulers so . The minimum non-zero throughput

timescale of a CSGT network is therefore primarily governed by the maximum

latency on the reverse path. The observations in [34] imply that by provisioning

low-delay feedback channels, a CSGT network can provide non-zero throughput

max
, /f j jl Cε ≥ max

1 *f fE r D l≤ +

37

guarantees at very short time-scales (100 -200 ms), and similar to those in core-

stateful networks.

4.1.3. CSGF

After providing delay and throughput guarantees, the next and final step for CSGF

design is providing fairness guarantees. The fair scheduling means allocating

available bandwidth to flows proportional to their reserved rates. In this perspective,

fairness differs from throughput and delay guarantees that are characterized by the

corresponding flow’s properties only. Fairness guarantee is a function of all flows

that share the same bandwidth.

Classical fair network schedulers ([19, 33, 38, 39]) that are used in every node of

core-stateful networks have some measures to define the fairness guarantees they

provide. These measures are unfairness measure (U), error term (γ), and a constant

(I) which are used in the following equations ([35], [40],[38]):

{ }
, 1 2 , 1 2

, ,

(,) (,)f j m j

j f m
f m

W t t W t t
U

r r
− ≤

, 1 2 2 1 ,

, 1 2 , 1 2
, ,

(,) ()

(,) (,)
f j f f f j

f j m j
j m f

f m

W t t r t t r

W t t W t t
I

r r

γ> − −

> +

where , 1 2(,)f jW t t is the throughput in time interval (t1,t2) for flow f in router j.

Derivation of CSGF is composed of two steps. Firstly, in order to provide fairness

guarantees, the requirement to provide throughput guarantees is shown. In CSGF,

CSGT is the underlying algorithm providing throughput guarantees. Second, two

38

mechanisms are added to CSGT in order to form a work-conserving core-stateless

network that guarantees end-to-end throughput bounds within an additive constant

of the one obtained by a network of core-stateful routers.

4.1.3.1. Throughput guarantee requirement

A work conserving server that provides fairness guarantees to flow m, also provides

throughput guarantee of the form [41]:

{ }

, 1 2 2 1 ,

, 1 2 , 1 2
, ,

max
, ,

,

(,) () *

(,) (,)
m j m m m j

f j m j
j m f

f m

f j f mf F
m j

j j

W t t r t t r

W t t W t t
U

r r

where

r Ul

C C

γ

γ ∈

> − −

≤ +

= +
∑

 (4.15)

In other words, the theorem states that a network can not provide fairness guarantee

if it doesn’t provide throughput guarantee. Thus a work conserving core-stateless

network with throughput guarantees is a requirement for CSGF design.

4.1.3.2. Properties of CSGF

One of the design principles of CSGF is that the per-link proportionate bandwidth

allocation is taken to be important and meaningful only for flows that share the

entire end-to-end paths. Depending on this argument, CSGF aims to provide strong

consistent end-to-end proportionate bandwidth allocation for the flows that share

entirely same end-to-end path [41].

39

There are three main design steps for CSGF to provide fairness for the flows

sharing end-to-end paths in a network with throughput guarantees:

1. Treating the aggregate flow between a pair of edge nodes as a single flow and

providing throughput guarantees to it.

2. Employing a fair scheduling algorithm at the ingress node

3. Ensuring that the network preserves the order in which packets are transmitted.

The second item above guarantees the fairness between flows that will be treated as

one aggregate flow according to first item. The first item will provide throughput

guarantees to this aggregate flow and by the third item, they will exit the network in

the same order as they enter the network. As a result, individual flows will be

served with proportionate allocation guarantees. The third mechanism described

above is already supported by CSGT network. Therefore the other two mechanisms

need to be added on CSGT to derive CSGF.

An ingress node in a CSGF network is responsible from the deadline assignment

and packet selection. For the deadline assignment, an aggregate flow packet is

assigned a tag as in CSGT, but reserved rate is used as R= ff F
r

∈∑ . The next flow

to select a packet from is chosen by using a fair scheduler. Core and egress nodes in

CSGF act same as in CSGT. Aggregate is split into micro-flows at the egress. A

sequencer reorders aggregate packets before they are split.

4.1.3.3. Performance Guarantees of CSGF

Since CSGF claims to be a fair network architecture, there must be an unfairness

measure guaranteed to flows by the architecture as in core-stateful architectures.

Therefore , 1 2 , 1 2(,) (,)f H m H

f m

W t t W t t

r r
− needs to be computed for CSGF. There are two

40

types of fairness defined in CSGF [41]. The first one is fairness in application

throughput and the second one is fairness in network throughput. These are fairness

measures after and before the scheduler, respectively [41].

In a CSGF network deployed by implementing the three factors above, the packets

exit the network in the same order they enter the network. The ordering of packets

is managed by the stateful fair scheduler at the ingress of the network and since the

order is preserved during their travel in the network, the unfairness measure for

CSGF in application throughput is equal to unfairness measure of the scheduler (e.g.

SFQ) at the ingress node. Thus [41]:

1 2 1 2
,

(,) (,)
app app
f SFQm

f m
f m

W t t W t t
U

r r
≤ + (4.16)

The fairness in network throughput is not so easy to define since at the measuring

point, packets are not in the same order as they entered the network. In [25], a

detailed evaluation for this fairness measure is given with computational proofs.

In the computational evaluation solutions given in [25], the unfairness measures of

CSGF and a core stateful network are compared. All considered flows in the

computations for fairness share the same entire end-to-end path. Results show that

fairness of CSGF in application throughput is even better than core-stateful

networks since packets depart the sequencer exactly in the same order as

transmitted. However fairness in network throughput is weaker than core-stateful

networks.

Computations also show that for flows with small reserved rates, the per-flow

application throughput guarantee offered by CSGF is better than CSGT. CSGF is

capable of providing application throughput guarantees at small time-scales of

hundred milliseconds.

41

CHAPTER 5

IMPLEMENTATION

This chapter includes the implementations of the Virtual Clock scheduling

algorithm, its Core-Stateless version CSVC, CSGT and finally CSGF. OPNET

version 11.5 simulation tool has been used in order to implement the algorithms.

The features of the architectures are defined as properties of routers. Therefore,

Virtual Clock, CSVC, CSGT and CSGF approaches are implemented in the process,

node and network layers of OPNET as new router nodes. These routers are created

using state transition diagram models, coded in embedded C or C++. The models

have been added to the OPNET environment so that a new user can use them in the

future for their simulations.

5.1. The Simulation Environment

OPNET is a comprehensive network simulation and management software,

developed by OPNET Technologies, Inc. founded in 1986 [42]. Since then, twelve

versions of the software have been released. OPNET provides an environment that

supports modeling of communication networks and distributed systems. OPNET

environment contains tools for different phases of a study, including design,

simulation, data collection and data analysis.

42

There are three layers in the OPNET model hierarchy, which are called as the

process, node and network layers, each having an associated editor with it [42].

5.1.1.Project Editor

The project editor is used to construct and edit the topology of communication

network models. The interconnection and position of network nodes are adjustable

in this editor. It also provides operations to support the simulation and analysis of

these network models. This editor is the highest modeling level in OPNET in the

sense that it uses the objects that are defined in the other modeling editors [42].

5.1.2.Node Editor

The node editor is used to define the structure and behavior of nodes used in the

network domain (such as clients, servers, switches, routers, bridges and firewalls).

Each network node is made up of several modules. Each of these modules defines

one aspect of node behavior such as data generation, data storage, data forwarding,

etc. These modules are connected together via packet streams or statistical wires. In

addition to the node structure, this editor defines the interface of a node model,

which determines what aspects of the node model are visible and can be defined by

the user [42].

5.1.3.Process Editor

The process editor is used to specify the process models, which define the

functionality of the modules used in the node models. In addition to the behavior of

a process, this editor defines the model’s interfaces, which determine what

characteristics of the process model are visible and can be adjusted by users [42].

43

Process models are defined by finite state machines, which are composed of two

main components: states and transitions. A process is always in exactly one state at

a time. A process can move between states upon receiving some interrupts. The

interrupts fulfill the conditions that make the process move from one state to

another. The interrupts may be originated either from the process itself or from

another process, called a parent process to the invoked process (child process) [43].

The operation of each state is defined in a distinct block written in embedded C or

C++ code. These blocks are called executives. The executives of a state are split

into two sections, called enter and exit executives. The enter executives are

executed when a process enters a state and the exit executive is performed while the

process is leaving a state. States are divided into two categories: forced states and

unforced states that differ in execution timing. In unforced states, there is a pause

between enter and exit executives. Once an enter executive is finished, the process

returns the control to the process that has invoked it hence being suspended until it

is invoked again. When it is invoked for a second time, the exit executive of the

blocked state is then executed. In the forced states, the exit executive is executed by

a process immediately after the completion of the enter executive. For this reason

the exit executives of forced states are usually left blank [42].

We first aimed to implement the algorithms in OPNET’s ip_output_iface process

model, which is a child process to the IP layer process model of all IP routers. The

ip_output_iface process model is in charge of assigning queues to data flows

entering the router and scheduling packets based on one of the scheduling

mechanisms implemented in OPNET. After working on one implementation we

observed that adding the features we created requires longer time and effort than

creating them and the advantage of this kind of implementation would be only its

industrial use. Our work has an academic view and is a proof of concept study.

44

Therefore we implemented our routers as stand-alone nodes having only the

functions we defined.

5.2.Implementations

Core-Stateless QoS architectures aim to use core-stateless queuing schemes in order

to approximate the functionality of a network in which all nodes implement a

stateful scheduler. In our case, VC is the selected stateful scheduling scheme to

approximate. There is only one kind of stateful router in Virtual Clock. Since the

ingress and egress routers of CSGR, CSGT and CSGF also keep states of the flows,

VC router also forms the basis for these routers in the implementations. CSVC,

which is the core-stateless version of VC, is selected as the CSGR network. All

kinds of routers in CSVC, CSGT and CSGF are implemented in OPNET simulation

environment and the correct operations of the implementations are demonstrated by

simulations. CBR (Constant Bit Rate) traffic is used in all simulations throughout

this chapter.

5.2.1.Implementation of Virtual Clock Router

VC Packet Format

Packet formats in OPNET [42] define the internal structure of packets as a set of

fields. For each field, the packet format specifies a unique name, a data type, a

default value, a size in bits, an encoding style, a conversion method and optional

comments.

45

A new packet format is created in “OPNET Packet Editor” in order to use in VC

Router simulations (Figure 5-1). Since VC Routers are stateful and classify packets

according to their flows, a new field called “flowpk” is used to define the flow that

the packet belongs to. Alternatively, the flow of the packet can be determined by the

source destination address pair and/or TCP/UDP port or ToS ([12]) field. In IPv6

packets, there is a 20-bit field called “Flow Label”. This field is used to insert a

label value that is common to the packets belonging to the same stream, session or

flow. Throughout this study, we also used a 20-bit field for flow label information.

Another packet field called “VC” is used to insert the “Virtual Clock” value. In [15],

a mechanism for state encoding is described by which rate and time values are

encoded in 16-bits. This encoding provides a mechanism to represent large numbers

(~215) with a few bits. The state encoding is not within the scope of this thesis but

we used a 16-bit VC field as in [15]. Consequently, most of the new fields in the

packet formats will be 16-bit long throughout this thesis.

Figure 5-1 VC Packet Format

State Transition Diagram

The state transition diagram shown in Figure 5-2 is created in order to simulate the

behavior of a VC router. It consists of five states: “init, arrival, scheduler, idle,

send”. This state transition diagram also forms the basis of all other routers in this

work and hence it is used in other router implementations. The init, arrival,

scheduler and send states are forced states and the idle state is an unforced state.

The state transition diagram functions as follows:

46

When a packet arrives at a node, the process model is invoked. At the invocation

time, initializations for the variables and structures are done. The process enters the

“idle” state immediately after the initializations. The process remains at idle until it

receives an interrupt. When the interrupt originates from the arrival of a packet, the

process enters the “arrival” state.

Figure 5-2 State Transition Diagram of Virtual Clock Router

In the “arrival” state, the packet is assigned to one of the existing queues according

to the flow it belongs to. After the “arrival” state if the server is not busy, the

process goes to the “scheduler” state, which is in charge of choosing the queue from

which the next packet will be transmitted. When the queue is selected according to

the VC algorithm, the process schedules itself an interrupt for sending the packet.

This time period resembles the time required by the router in order to send the

packet. In the “send” state, the selected packet is transmitted to the related outgoing

link. The details of the “arrival” and “scheduler” states are further described step by

step below.

47

5.2.1.1. Arrival State

1. The new packet is acquired from the stream generating the interrupt.

2. The queue to which the packet will be inserted is determined according to

the “flowpk” field.

3. The packet is checked to see whether it is the first packet of its flow or not

since it affects the VC value calculation. A “flow counter” is held in the system for

this control.

4. After calculating the packet’s VC, it is saved as the last VC value (VCk-1) for

the related queue. The flow ID and VCk-1 are the state values that are stored in the

router for that flow, which makes the VC algorithm stateful.

5. The packet is inserted into the related queue.

5.2.1.2. Scheduler State

1. The queues are investigated to find the nonempty ones.

2. The nonempty queues are traced in order to find the packet with the

minimum VC. The VC values of all the packets at the “Head” positions of the

queues are compared to find the packet to dequeue.

3. When the packet with the minimum VC is found, the queue associated with

that packet is selected as the “sender queue”.

4. The packet at the “Head” of the sender queue is removed and a self interrupt

is scheduled according to the size of the packet. The time required to send the

packet depends on the size of the packet and the output capacity of the router at that

time.

5. The server_busy flag is set.

48

5.2.2.Implementation of Core-Stateless Virtual Clock (CSVC) Routers

The edge and core router models of CSVC are implemented in OPNET as new

nodes. Since there are new fields on the packets specific to CSVC algorithm, a new

packet format is also defined.

CSVC Packet Format

Since the core routers are stateless, they need the reserved rate of the packet’s flow

in order to calculate the VCore value that will be assigned to the packet in service.

CSVC Packet Format (Figure 5-3) has one new field called “ratepk” carrying the

reserved rate information.

Figure 5-3 CSVC Packet Format

5.2.2.1. CSVC Core Router

The idea in constructing router state transition diagram is kept as it is in VC routers.

The functions defined in the states create the difference between CSVC Core

Routers and VC Routers. The similarity in state transition diagram, when combined

with the difference in the C and/or C++ code and functions embedded in the states,

gives a better understanding of the difference of core-stateless routers.

The initialization in CSVC core router is so simple that only “packet_counter” and

“server_busy” state variables are initialized to zero. The VC router on the other side

49

keeps states and it has many state variables and structures that should be initialized.

This is one of the simpler and distinct parts of the CSVC routers. State Variables are

used in OPNET to represent the information accumulated and retained by a process.

This name (State Variables) is due to the fact that these variables, together with the

current position of a process within its state transition diagram, represent the

complete state of a process at any time. Note that processes may generate or have

access to much information over time that does not become encoded into their state;

therefore state refers only to the information that the process itself decides to retain

by recording it into state variables.

In the “arrival” state, there is no packet classification or queue assignment functions.

This is the main property of the “arrival” state in previously described VC routers.

In CSVC “arrival” state however, packet’s VCore value is calculated using its size

and rate information written on the packet. Since there is no flow recognition in

CSVC, it does not matter if the packet is the first packet of a flow or not. Then the

packet is inserted into the only queue according to its VCore value. Since this is

now a single queue system, there is no need to find a sender queue.

5.2.2.2. CSVC Edge Router

The process model of the CSVC Edge Router is similar to VC Router, so in the

following paragraphs the differences between a CSVC and a VC router will be

emphasized only.

Since the core routers do not keep any states, packets carry state information in

CSVC. Therefore the information should be inserted into the packets on the edges

of the network. CSVC edge router uses the “arrival” state for this purpose. In edge

router, there exists a multiple queue for each flow. In the “arrival” state, the edge

routers in CSVC insert the rate and VCore values to the packets when the packet

50

goes to its associated queue. In this thesis VC field in CSVC packet is used in this

thesis for carrying the VCore value.

5.2.3.Implementation of Core-Stateless Guaranteed Throughput (CSGT)

Routers

The design methodology of CSGT depends on two principles.

• In order to provide throughput additional to delay guarantees, CSGT is built

upon a network providing delay guarantees (CSGR).

• Tag re-use and source rate control mechanisms, when integrated with CSGR

architecture, lead to the design of CSGT.

Since CSVC provides delay guarantees, the new properties of the routers in CSGT

are implemented upon the routers of CSVC. There is also a “Sequencer” in CSGT,

which is used for satisfying the in-order delivery requirements of some applications.

CSGT Packet Formats:

CSGT Packet Format (Figure 5-4) depends on CSVC Packet Format but it has two

new fields. One of the new fields, called “Type”, is used by routers to recognize the

packets.

The “VC1” field is the other new field defined for CSGT. This field is created to be

used in “Tag Re-use” mechanism. When a packet exits the network sufficiently

prior to its deadline, the egress router sends an acknowledge packet to the ingress

router indicating that the VCore value of this packet can be re-used. The first tag

value is kept in a separate field called VC1 on the CSVC packet and the VC field

changes at each router to be used for scheduling purposes. When the packet is

51

decided to be acknowledged at the egress router, the value in “VC1” is copied to the

VC field in the acknowledge packet and sent to the ingress router.

Figure 5-4 CSGT Packet Format

There is no need to include the data field in CSGT Acknowledge packet (ACK)

(Figure 5-5). However additional information can also be sent with this packet. The

information in acknowledge packets can also be piggybacked onto the data packets

of the flows going to the opposite direction to save bandwidth.

ACK packets are recognized by the “Type” field in ingress routers. “VC” and

“flowpk” fields contain the information in “VC1” and “flowpk” fields of the packet

that is acknowledged.

Figure 5-5 CSGT Acknowledge Packet Format

5.2.3.1. CSGT Core Router

The transition from CSVC to CSGT is provided mainly by two functions that are

implemented on edge routers. The core routers of CSGT do not function differently

than the core routers in CSVC except the recognition of the new packet types

defined for CSGT.

52

When a packet comes to the CSGT Core Router, if it is an acknowledge packet, it is

sent towards the related ingress router without any operation on it. If it is not an

acknowledge packet, it is treated just like it is treated in CSVC Core Routers.

5.2.3.2. CSGT Ingress Router

CSGT Ingress Router functions similar to the CSVC edge router, so it won’t be

discussed here in detail. Only the differences compared to CSVC edge router will be

emphasized in the following paragraphs.

In the “arrival” state, the router first checks the packet type. If the packet is an

acknowledgement packet, this means that the VCore value carried by the packet is a

candidate value to be re-used. Then the flow of the packet is read from the packet

and VCore value is put into the array that keeps the re-usable tag values for that

flow. It will be re-used if it satisfies equation 4.9 when a new packet of the same

flow comes. After storing the tag value, the packet is destroyed.

If the packet is not an acknowledgement packet, it is assigned to one of the existing

queues according to its flow ID. The assignment of VCore value and the insertion of

the packet to the specified queue are not same as CSVC:

• If the array that keeps the re-usable tag values for the flow is not empty, a

value satisfying the condition in equation 4.9 is searched. The values that

violate the condition are deleted since they will also violate the same

condition for future packets of the same flow. If no value satisfying the

condition in equation 4.9 can be found, VCore value is calculated as in

CSVC.

• VCore value decided to be used is put into both “VC” and “VC1” fields of

the packet.

53

• The packet is inserted to its corresponding queue. The packets in the queue

are positioned according to their “VC” values.

5.2.3.3. CSGT Egress Router

Only the differences compared to CSGT ingress router implementation are given in

this section.

CSGT egress routers do not need to check the packet to learn its type since they do

not receive acknowledge packets. Therefore there is no array for holding re-usable

tags and the VCore value of the packet is calculated as in CSVC edge routers.

Before a packet is sent to the related output interface, its end-to-end delay is

calculated. Then if the packet departs the network much before its VCore value, i.e.

if the end-to-end delay of the packet satisfies equation 4.12, it is acknowledged by

the generation of a new “CSGT Acknowledge Packet”.

5.2.3.4. Sequencer

As described in 4.1.2.2. , a sequencer is used in CSGT in order to buffer the out-of-

order packets and re-order them at the network exit. The sequencer can be

implemented as an internal part of the Egress Router or a separate individual node.

The sequencer is implemented as a separate node in this study because applications

may not require in-order delivery and so the exclusion of the sequencer.

For the applications that require in-order delivery of packets, a new field called

“numberpk” that includes the packet number is added to the packet format of CSGT.

The sequencer is positioned after the Egress Router in the network. Queue process

54

model of OPNET is appropriate to implement the sequencer. The sequencer

functions as follows:

1. The incoming packet is acquired and its flow is determined.

2. “numberpk” field of the CSGT packet is gathered. If numberpk=1, then this

packet will be assigned to a queue and it will immediately be scheduled to be sent.

The number of the last packet served by the queue is kept for future use.

3. If “numberpk” is not equal to one and it is one greater than the number of

the last packet served by the sequencer’s related queue, then the packet sequence is

in order. The packet will be inserted into the related queue.

4. The sequencer has an array for each queue. The arrays hold payload, packet

number and VCore values of the packets. When an old packet needs to be extracted

from the set and inserted into the queue, these values are extracted; a new packet is

created with these values and put into the queue.

5. The set that includes the out-of-order packets for the flow of the packet will

be searched to find the consecutive packet. If it is found, it will be inserted to the

queue. This search-find-insert series will be repeated recursively.

6. If “numberpk” of the incoming packet is not one greater than the number of

the last packet served by the sequencer’s related queue, then the packet will be sent

to the set that keeps such out-of-order packets for that flow.

5.2.4.Implementation of Core-Stateless Guaranteed Fair (CSGF) Routers

The design methodology of CSGF depends on two principles:

• For a network to provide fairness guarantees, it must also provide

throughput guarantees.

• The two mechanisms described in 4.1.3.2. , when integrated with an

architecture that provides throughput guarantees, lead to the design of CSGF.

55

Since CSGT provides throughput guarantees already, CSGF routers (Ingress, Egress

and Core) are built upon CSGT routers. The “Sequencer” in CSGT is also used in

CSGF. As described in Section 4.1.3, there are three design steps when adding

fairness properties to CSGT and none of these are directly related to the core routers.

Thus the core and egress router and the sequencer structures in CSGT are kept

unchanged in CSGF.

There are no new required fields on the CSGT packet formats specific to CSGF

algorithm, so the packet formats in CSGT are used in CSGF.

5.2.4.1. CSGF Ingress Router

The features needed to be implemented in a CSGF router are:

1. Treating the aggregate traffic between two edge routers as a single flow and

providing throughput guarantees to this aggregate flow.

2. Employing a fair scheduling algorithm at the ingress node to the flows

(micro-flows) that make up the aggregate flow (macro-flow).

These features affect only the structure of the ingress node. Therefore only the

ingress router is modified in the implementation of CSGF. The internal structure of

the CSGF Ingress Router is shown in Figure 5-6. Macro-flow F is formed by

aggregating micro-flows f1, f2 and f3. The same applies for macro-flow G and micro-

flows g1, g2 and g3. When these micro-flows enter the node, a fair scheduling

algorithm is applied to these flows and they form the aggregate macro-flow. Micro-

flows that share the same entire end-to-end path are handled by the same fair

scheduling algorithm. Following this fair scheduling, aggregate macro-flows are

processed by a second scheduling mechanism at the CSGT Ingress Node.

56

Figure 5-6 CSGF Ingress Router

The fair scheduling algorithm handling the micro-flows should allocate a fair share

of the aggregate throughput to individual flows within the aggregate. Any fair

scheduler that guarantees proportionate allocation can be used for this purpose.

Weighted Fair Queuing is used to guarantee proportionate allocation in our

implementation. The implemented fair scheduler functions as follows for an

incoming packet:

1. The packet is assigned to the queue of its flow in the fair scheduler.

2. A virtual finish time is calculated for the packet by the fair scheduling

algorithm according to its arrival time, flow ID and length. This value is

inserted to the “VC” field of the packet.

3. Virtual finish times of packets at the head positions of all queues are

compared and the packet with the minimum virtual finish time is selected.

57

4. The selected packet is scheduled to be sent to the part of the router that

functions as a CSGT ingress router scheduler. Then a new temporary header

field representing the corresponding macro-flow is inserted in the packet.

Each macro-flow in CSGF ingress router takes a unique Flow ID. This field,

named macrofl, functions as the “flowpk” field when the packet arrives at

the internal CSGT Ingress Router and it is stripped off when sending the

packet to the network core. All packets served by the same fair scheduling

algorithm take the same rate value, which is the sum of the rates of micro-

flows. This new value is inserted to the “ratepk” field of the packets.

5. The selected packet is sent to the CSGT ingress router scheduler.

One fair scheduling algorithm runs for one group of micro-flows that share the

entire end-to-end path. Therefore the number of fair scheduling functions applied at

the ingress router is equal to the number of end-to-end paths used by the flows in

the network.

5.3. Validation of Implementations

In this chapter, the correctness of the implemented models is observed via

simulations.

New source and sink node models are created in OPNET. “Source Model” is used

to generate any format and any size packets at any rate and the “Sink Model” is

used to sink packets and to keep statistics in the simulations.

58

Source Model

The source model has the following attributes: “Flow Rate”, “Packet Interarrival

Time”, “Packet Size”, “Packet Format”, “Start Time”, “Stop Time”, “flow” (Figure

5-7).

Figure 5-7 Attributes menu of the Source Model

The “Flow Rate” attribute defines the reserved rate of the flow that the source will

generate. When the packets of a flow are formed at this rate, then it is called a

conforming flow. “Packet Interarrival Time” defines the time intervals between the

packets formed by that source. This value defines the real rate of the flow. A user

can define a conforming or non-conforming flow by using this attribute of the

source.

“Packet Size” is the length of the packet that will be generated. A PDF or a constant

value can be used for this attribute. “Packet Format” is the format of the packet to

59

be generated. A formatted packet contains fields defined prior to a simulation using

the Packet Format Editor. An unformatted packet’s fields are specified dynamically

during a simulation. “Flow” is the flow ID of the packet that the source will

generate. “Start Time” and “Stop Time” attributes give the starting and stopping

times of the packet generation process..

The state transition diagram, given in Figure 5-8, is created for the Source Model.

There are three states: init, schedule and stop. In our study, different features are

needed for sources in different simulations but the state transition diagram remains

the same with minor differences in the specific properties of the states.

At the “init” state, the attribute values of the source are read. Generation of both

formatted and unformatted packets are possible. If a valid value (smaller than the

stop time) is entered in the “Start Time” attribute, then the process goes into the

“schedule” state at the start time of the packet generation.

Figure 5-8 Process Model of Virtual Clock Source

60

During the transition to the ”schedule” state, packet generation starts.

“packet_generate()” function is responsible for creating packets based on the packet

generation specifications of the source model. The packet generation function is

created in the “Function Block” (Figure 5-8) of the source model. The function

block in OPNET process models contains C or C++ language functions that are

associated with the process and that can be called by any of the statements in the

process.

The arrival of the next packet is scheduled at the "schedule" state. According to the

code of the interrupt, state transition conditions are evaluated and the packet

generation continues until the stop time.

Sink Model

A simple sink node model is used in our simulations as packet sink and also as a

station to take statistical data such as end-to-end delay. The process model of the

Sink is shown in Figure 5-9. In “INIT” state, few variables used in the model are

initialized and in the “DISCARD” state, the packet is obtained from the incoming

stream. Then the required metrics are updated, statistical data is collected and the

received packet is destroyed.

Figure 5-9 Process model of VC Sink

61

5.3.1.Validation of VC Router Implementation

The topology for validation is shown in Figure 5-10, where there are two sources

creating traffic with constant packet generation rates. The packets’ arrival and

departure times are observed and VC values of the packets are examined to see how

the VC Router selects and forwards packets according to these values.

The links between the sources and the VC Router are high-speed and delay on these

links is negligible. The sources generate 1000 bit packets. Source_1 and Source_2

generate 10 and 5 packets in one second respectively. However, the VC Router can

transmit only 8 packets per second to the sink. The reserved rate of the first flow is

also two times the reserved rate of the second flow. Source_1 and Source_2 start

generating packets at t=0 and at t=0.1 respectively.

Figure 5-10 VC Router Simulation Topology

Table 5-1 presents the simulation results obtained from OPNET, which demonstrate

the correct functioning of the router. Incoming packets of different flows are

assigned to different queues with correct VC values that increase according to the

rate of the packets as expected. The expected behavior of VC Router, i.e., sending

two packets from flow 1 for each packet sent from flow 2, is observed in Table 5-1.

62

Table 5-1 Simulation Results for VC Router Implementation

Creation Time (sec) VC (sec) Flow Number Sending Time (sec)

0 0.2 2 0.125

0.1 0.2 1 0.25

0.2 0,3 1 0.375

0.3 0.4 1 0.5

0.2 0.4 2 0.625

0.4 0.5 1 0.75

0.5 0.6 1 0.875

0.4 0.6 2 1

0.6 0.7 1 1.125

0.7 0.8 1 1.25

0.6 0.8 2 1.375

0.8 0.9 1 1.5

0.9 1 1 1.625

0.8 1 2 1.75

1 1.1 1 1.875

1.1 1.2 1 2

1 1.2 2 2.125

1.2 1.3 1 2.25

1.3 1.4 1 2.375

1.2 1.4 2 2.5

1.4 1.5 1 2.625

1.5 1.6 1 2.75

1.4 1.6 2 2.875

1.6 1.7 1 3

1.7 1.8 1 3.125

1.6 1.8 2 3.25

63

5.3.2. Validation of CSVC Router Implementations

5.3.2.1. Validation of CSVC Edge Routers

CSVC Edge Router is core-stateful and it works similar to VC Router. The topology

of the introduced scenario for validation is same as the one used in validation of the

VC Router simulation. The VCore assignment made by CSVC Edge Router is given

in Equation 4.5 (,1 ,1
k k
f fVCore VC=). According to this definition, a VC Router and a

CSVC Edge Router assign the same tag values to the packets. Therefore a CSVC

Edge Router should behave the same as a VC Router in the same conditions.

Additionally, CSVC Edge Router has to form the fields that are required by the core

routers into the packet.

All parameters used in the sources, the router and the sink have the same values as

they have in the above validation scenario of VC Router implementation. In CSVC

edge router scenario, the packets’ arrival and departure times are observed and

VCore values of the packets are observed to see how the CSVC algorithm assigns it

and how the method selects and forwards the packets according to these values.

Results in Table 5-2 demonstrate that the router functions correctly.

Table 5-2 Simulation Results for CSVC Edge Router Implementation

Flow

Number

Arrival Time

(sec)

VCore

(sec)

Rate Field (bps) Sending Time

(sec)

2 0.0 0.2 5000 0.067

1 0.1 0.2 10000 0.1670

1 0.2 0.3 10000 0.267

2 0.2 0.4 5000 0.334

1 0.3 0.4 10000 0.401

1 0.4 0.5 10000 0.468

2 0.4 0.6 5000 0.535

64

Table 5-2-Cont.-Simulation Results for CSVC Edge Router Implementation

5.3.2.2. Validation of CSVC Core Router Implementation

The topology of the CSVC Core Router simulation is similar to the one that is used

for the CSVC Edge Router simulation. CSVC Core Router is a core-stateless router

so it has only one queue. It serves the packets according to the VCore values they

carry.

In the scenario, sources resemble two links inside the network core coming from

different ingress routers. The links between the sources and CSVC Router is high-

speed and delay on this link is negligible. However the speed of the link between

the CSVC Router and the Sink is 1 packet/sec. The sources generate 1000 bit

packets. Source_1 and Source_2 generate CSVC packets at constant rates, 5 and 0.5

packets in one second respectively. VCore values coming with the packets from

second source are much smaller than the VCore values coming with the packets

1 0.5 0.6 10000 0.602

1 0.6 0.7 10000 0.669

2 0.6 0.8 5000 0.736

1 0.7 0.8 10000 0.803

1 0.8 0.9 10000 0.87

2 0.8 1 5000 0.937

1 0.9 1 10000 1.004

1 1 1.1 10000 1.071

2 1 1.2 5000 1.138

1 1.1 1.2 10000 1.205

1 1.2 1.3 10000 1.272

2 1.2 1.4 5000 1.339

65

from the first source. However, the confirming rates of the flows are the same.

Source_1 and Source_2 start generating packets at t=2.0 and t=2.1 respectively.

Table 5-3 presents the simulation results obtained from OPNET. Incoming packets

from Source_2 are dequeued earlier because of their smaller VCore values. The

table also illustrates the values in “VC” fields of the packets. Packets are sent one

by one from the flows as expected, since both of them have the same reserved rate.

The aggressiveness of the first source is suppressed by the algorithm without

keeping any state information at the router.

Table 5-3 Simulation Results for CSVC Core Router Implementation

Flow

(Number)

Arrival Time

(sec)

VCore

(sec)

Queue Size

(packet)

Sending Time

(sec)

1 2.0 2.2004 1 3

2 2.1 0.3004 1 4

1 2.2 2.4004 2 5

1 2.4 2.6004 3 7

1 2.6 2.8004 4 9

1 2.8 3.0004 5 -

1 3 3.2004 5 -

1 3.2 3.4004 6 -

1 3.4 3.6004 7 -

1 3.6 3.8004 8 -

1 3.8 4.0004 9 -

1 4.0 4.2004 9 -

2 4.1 2.3004 10 6

1 4.2 4.4004 11 -

1 4.4 4.6004 12 -

1 4.6 4.8004 13 -

1 4.8 5.0004 14 -

66

Table 5-3 Cont.-Simulation Results for CSVC Core Router Implementation

5.3.3. Validation of CSGT Router Implementations

5.3.3.1. Validation of CSGT Core Router Implementation

The functionality of the CSGT Core Router is the same as CSVC Core Router, so

the performances of both router types in the same conditions should be similar. The

main features different than CSVC Core Router and specific to CSGT Core Router

are:

• CSGT Core Router has to recognize the type of the packet (normal or ACK)

and insert the required information to the packet according to its type.

• The direction of the traffic on a CSGT Core Router is both towards the

ingress routers and egress routers.

These features are observed in the following simulation scenario. In this scenario,

the packets’ arrival and departure times are observed and VCore values of the

packets are examined to see how the CSGT Core Router assigns these values and

1 5 5.2004 14 -

1 5.2 5.4004 15 -

1 5.4 5.6004 16 -

1 5.6 5.8004 17 -

1 5.8 6.0004 18 -

1 6.0 6.2004 18 -

2 6.1 4.3004 19 8

67

how it selects and forwards the packets according to these values. The results show

that our CSGT Core Routers treat acknowledgement packets correctly.

In the topology in Figure 5-11, Source_1 generates 1000 bit packets of flow 1 with a

rate of 2 packets/sec. The second source of flow 2, named as ACK-source,

artificially generates only acknowledge packets with a rate of one packet per second.

The links between the sources and CSGT Core Router is high-speed and delays on

these links are negligible. The links between the router and the sinks are also fast

links.

ACK_source starts generating packets at 1.25 seconds and Source_1 starts

generating packets at 2 seconds. Table 5-4 presents the simulation results obtained

from OPNET to show the validity of the implementation.

Figure 5-11 CSGT Core Router Simulation Topology

The table illustrates that VC values of the normal traffic packets are assigned

according to the corresponding flows as expected. ACK packets are generated with

VCore values that differ by an arbitrary 0.4 between two successive packets. It is

observed that the router recognizes the ACK packets and VC values carried by

ACK packets do not change when they pass the CSGT Core Router.

68

Table 5-4 Simulation Results for CSGT Core Router Implementation

Packet Type Flow

No

VCore

(sec)

Arrival Time

(sec)

Sending Time

(sec)

Sink

ACK 2 0.100 1.25 1.260 Sink_0

Data 1 2.501 2 2.01 Sink

ACK 2 0.500 2.25 2.260 Sink_0

Data 1 3.001 2.5 2.51 Sink

Data 1 3.501 3 3.01 Sink

ACK 2 0.900 3.25 3.260 Sink_0

Data 1 4.001 3.5 3.51 Sink

Data 1 4.501 4 4.01 Sink

ACK 2 1.300 4.25 4.260 Sink_0

Data 1 5.001 4.5 4.51 Sink

Data 1 5.501 5 5.01 Sink

ACK 2 1.700 5.25 5.260 Sink_0

Data 1 6.001 5.5 5.51 Sink

Data 1 6.501 6 6.01 Sink

ACK 2 2.100 6.25 6.260 Sink_0

Data 1 7.001 6.5 6.51 Sink

Data 1 7.501 7 7.01 Sink

ACK 2 2.500 7.25 7.260 Sink_0

Data 1 8.001 7.5 7.51 Sink

Data 1 8.501 8 8.01 Sink

ACK 2 2.900 8.25 8.260 Sink_0

Data 1 9.001 8.5 8.51 Sink

Data 1 9.501 9 9.01 Sink

ACK 2 3.300 9.25 9.260 Sink_0

Data 1 10.001 9.5 9.51 Sink

Data 1 10.501 10 10.01 Sink

69

Table 5-4-Cont.- Simulation Results for CSGT Core Router Implementation

ACK 2 3.700 10.25 10.260 Sink_0

Data 1 11.001 10.5 10.51 Sink

Data 1 11.501 11 11.01 Sink

ACK 2 4.100 11.25 11.260 Sink_0

Data 1 12.001 11.5 11.51 Sink

Data 1 12.501 12 12.01 Sink

ACK 2 4.500 12.25 12.260 Sink_0

Data 1 13.001 12.5 12.51 Sink

Data 1 13.501 13 13.01 Sink

ACK 2 4.900 13.25 13.260 Sink_0

Data 1 14.001 13.5 13.51 Sink

Data 1 14.501 14 14.01 Sink

ACK 2 5.300 14.25 14.260 Sink_0

Data 1 15.001 14.5 14.51 Sink

Data 1 15.501 15 15.01 Sink

ACK 2 5.700 15.25 15.260 Sink_0

Data 1 16.001 15.5 15.51 Sink

Data 1 16.501 16 16.01 Sink

5.3.3.2. Validation of CSGT Ingress Router Implementation

CSGT Ingress Router functionality that is different than CSVC Edge Router and

CSGT Core Router functionalities is summarized below:

• CSGT Ingress Router has to recognize packet types and treat them according

to their types. The values that will be kept for future use should be extracted

from the ACK packets and should be inserted to the appropriate packets

when needed.

70

Experiments in this chapter for CSGT Ingress Router not only validate the

implementation but also present the effects of tag re-use mechanism in CSGT.

The first scenario is shown in Figure 5-12. The router has a transmission capacity of

10 packets/sec. and there are ten sources in the topology. Each of them is a source

of a different flow (from 1 to 10). The sum of reserved rates of all flows is equal to

the transmission capacity of the router. The reserved rate of each flow is 1

packet/sec. At time t=1 to t=2, flow 1 is the only backlogged flow. In this setting, by

t=2, 10 packets of flow 1 are already serviced by the router and VCore value of the

11th packet is 12. All other flows become backlogged at t=2.

Since the router services packets in increasing order of VCore values, eleventh

packet of flow 1 is not serviced until t=10.2; hence, flow 1 receives no throughput

during the interval [3, 10.2]. Given any time interval of arbitrary length, it is easy to

extend this example to show that flow 1 receives no throughput during the interval

of interest. Therefore, for any interval length, the CSGT router does not provide any

non-trivial (non-zero) lower bound on throughput when tags are not re-used i.e

when it behaves as a CSVC Edge Router. This is consistent with the definition of

CSGT Ingress Router.

71

Figure 5-12 CSGT Ingress Router Simulation Topology-1

Table 5-5 Simulation Results for CSGT Ingress Router Validation Scenario-1

Flow

No

VCore

(sec)

A. Time

(sec)

S Time

(sec)

 Flow

No

VCore

(sec)

A Time

(sec)

S Time

(sec)

1 2 1 1.1 4 7 2.4 6.5

1 3 1.1 1.2 5 8 2.5 6.6

1 4 1.2 1.3 6 8 2.5 6.7

1 5 1.3 1.4 7 8 2.5 6.8

1 6 1.4 1.5 8 8 2.5 6.9

1 7 1.5 1.6 9 8 2.5 7

1 8 1.6 1.7 10 8 2.5 7.1

1 9 1.7 1.8 2 8 2.5 7.2

1 10 1.8 1.9 3 8 2.5 7.3

1 11 1.9 2 4 8 2.5 7.4

5 3 2 2.1 5 9 2.6 7.5

6 3 2 2.2 6 9 2.6 7.6

72

Table 5-5-Cont.-Sim. Results for CSGT Ingress Router Validation Scenario-1

7 3 2 2.3 7 9 2.6 7.7

8 3 2 2.4 8 9 2.6 7.8

9 3 2 2.5 9 9 2.6 7.9

10 3 2 2.6 10 9 2.6 8

2 3 2 2.7 2 9 2.6 8.1

3 3 2 2.8 3 9 2.6 8.2

4 3 2 2.9 4 9 2.6 8.3

5 4 2.1 3 5 10 2.7 8.4

6 4 2.1 3.1 6 10 2.7 8.5

7 4 2.1 3.2 7 10 2.7 8.6

8 4 2.1 3.3 8 10 2.7 8.7

9 4 2.1 3.4 9 10 2.7 8.8

10 4 2.1 3.5 10 10 2.7 8.9

2 4 2.1 3.6 2 10 2.7 9

3 4 2.1 3.7 3 10 2.7 9.1

4 4 2.1 3.8 4 10 2.7 9.2

5 5 2.2 3.9 5 11 2.8 9.3

6 5 2.2 4 6 11 2.8 9.4

7 5 2.2 4.1 7 11 2.8 9.5

8 5 2.2 4.2 8 11 2.8 9.6

9 5 2.2 4.3 9 11 2.8 9.7

10 5 2.2 4.4 10 11 2.8 9.8

2 5 2.2 4.5 2 11 2.8 9.9

3 5 2.2 4.6 3 11 2.8 10

4 5 2.2 4.7 4 11 2.8 10.1

5 6 2.3 4.8 1 12 2 10.2

6 6 2.3 4.9 5 12 11 10.3

7 6 2.3 5 6 12 11 10.4

73

Table 5-5-Cont.-Sim. Results for CSGT Ingress Router Validation Scenario-1

8 6 2.3 5.1 7 12 11 10.5

9 6 2.3 5.2 8 12 11 10.6

10 6 2.3 5.3 9 12 11 10.7

2 6 2.3 5.4 10 12 10.7 10.8

3 6 2.3 5.5 2 12 10.8 10.9

4 6 2.3 5.6 3 12 10.9 11

5 7 2.4 5.7 4 12 11 11.1

6 7 2.4 5.8 1 13 11.1 11.2

7 7 2.4 5.9 5 13 11.2 11.3

8 7 2.4 6 6 13 11.3 11.4

9 7 2.4 6.1 7 13 11.4 11.5

10 7 2.4 6.2 8 13 11.5 11.6

2 7 2.4 6.3 9 13 11.6 11.7

3 7 2.4 6.4 10 13 11.7 11.8

The effect of tag re-use mechanism is presented in the second scenario in Figure

5-13. The only difference of this scenario compared to the first one is the existence

of a source in the topology that creates acknowledgement packets for flow 1. This

source generates ACK packets for packets 2, 3 and 4 and the router receives these

packets at times 1.25, 1.35 and 1.45 respectively. This is the simulation of the case

when these packets are received by the related egress router much before their

VCore values. CSGT Ingress Router re-uses these values, so VCore value of the 11th

packet of flow 1 for this case is 9 instead of 12. As a result, the router again services

packets in increasing order of virtual clock values, but the eleventh packet of flow 1

is serviced at t=7,5 not 10,2. The results (Table 5-6) show that the tag re-use

mechanism works correctly. The penalty for flow 1 - because of its accumulated

debit in the duration of [1, 2] - is reduced by the mechanism.

74

Figure 5-13 CSGT Ingress Router Simulation Topology-2

Table 5-6 Simulation Results for CSGT Ingress Router Validation Scenario-2

Flow

No.

VCore

(sec)

A. Time

(sec)

S Time

(sec)

 Flow

No.

VCore

(sec)

A Time

(sec)

S Time

(sec)

1 2 1 1.1 4 7 2.4 6.5

1 3 1.1 1.2 5 8 2.5 6.6

1 4 1.2 1.3 6 8 2.5 6.7

1 2 1.3 1.4 7 8 2.5 6.8

1 3 1.4 1.5 8 8 2.5 6.9

1 4 1.5 1.6 9 8 2.5 7

1 5 1.6 1.7 10 8 2.5 7.1

1 6 1.7 1.8 2 8 2.5 7.2

1 7 1.8 1.9 3 8 2.5 7.3

1 8 1.9 2 4 8 2.5 7.4

75

Table 5-6-Cont.-Sim. Results for CSGT Ingress Router Validation Scenario-2

5 3 2 2.1 1 9 2 7.5

6 3 2 2.2 5 9 2.6 7.5

7 3 2 2.3 6 9 2.6 7.6

8 3 2 2.4 7 9 2.6 7.7

9 3 2 2.5 8 9 2.6 7.8

10 3 2 2.6 9 9 2.6 7.9

2 3 2 2.7 10 9 2.6 8

3 3 2 2.8 2 9 2.6 8.1

4 3 2 2.9 3 9 2.6 8.2

5 4 2.1 3 4 9 2.6 8.3

6 4 2.1 3.1 1 10 2.1 8.4

7 4 2.1 3.2 5 10 2.7 8.4

8 4 2.1 3.3 6 10 2.7 8.5

9 4 2.1 3.4 7 10 2.7 8.6

10 4 2.1 3.5 8 10 2.7 8.7

2 4 2.1 3.6 9 10 2.7 8.8

3 4 2.1 3.7 10 10 2.7 8.9

4 4 2.1 3.8 2 10 2.7 9

5 5 2.2 3.9 3 10 2.7 9.1

6 5 2.2 4 4 10 2.7 9.2

7 5 2.2 4.1 1 11 2.2 9.3

8 5 2.2 4.2 5 11 2.8 9.3

9 5 2.2 4.3 6 11 2.8 9.4

10 5 2.2 4.4 7 11 2.8 9.5

2 5 2.2 4.5 8 11 2.8 9.6

3 5 2.2 4.6 9 11 2.8 9.7

76

5.3.3.3. Validation of CSGT Egress Router Implementation

CSGT Egress Router functionality that is different than CSGT Ingress Router

functionality is summarized below:

• When a CSGT Egress Router serves a packet, the router has to decide if

VCore value of the packet is re-usable or not. If the VCore value is re-usable,

the value that will be inserted to the acknowledge packet should be gathered

from the packet itself. It should be inserted to the appropriate acknowledge

packet, which should be then be sent towards the related ingress router.

The topology used for testing the above scenario is shown in Figure 5-14. In this

topology, there are two sources creating traffic with constant packet generation rates.

CSGT Egress Router decides if VCore value of the packet is re-usable or not by

using the formula given in 4.10. Minimum latency encountered by the

acknowledgement packet, namely Dmin, is added to the router as a process model

attribute for each flow and used in the formula.

Figure 5-14 CSGT Egress Router Simulation Topology

In this scenario, source_1 and source_2 start generating packets at t=2 and t=3

respectively. Both sources generate five packets per second. The capacities at the

77

output interfaces of the router are 10 packets/sec. Dmin is 5 for flow 1 and 4 for flow

2. Normal traffic packets are sent to “sink” resembling the output link and ACK

packets are sent to “sink_0” resembling the first node on the path to the ingress

router.

The results of the simulation are given in Table 5-7. The values of the fields on the

packet are read when the packet is received by the related sink node. The results are

consistent with the expected behavior. The router generates ACK packets correctly

and sends them towards the correct direction. Since Dmin is smaller for flow 2, its

packets are acknowledged before the packets of flow 1.

Table 5-7 Simulation Results for CSGT Egress Router Implementation

Received by Receiving time (sec) Flow No VCore (sec)

Sink 2.1 1 2.2

Sink 2.3 1 2.4

Sink 2.5 1 2.6

Sink 2.7 1 2.8

Sink 2.9 1 3

Sink 3.1 2 3.2

Sink 3.2 1 3.2

Sink 3.3 2 3.4

Sink 3.4 1 3.4

Sink 3.5 2 3.6

Sink 3.6 1 3.6

Sink 3.7 2 3.8

Sink 3.8 1 3.8

Sink 3.9 2 4

Sink 4 1 4

Sink 4.1 2 4.2

78

Table 5-7-Cont- Simulation Results for CSGT Egress Router Implementation

Sink 4.2 1 4.2

Sink_0 4.3 2 4.4

Sink 4.3 2 4.4

Sink 4.4 1 4.5

Sink_0 4.5 2 4.6

Sink 4.5 2 4.6

Sink 4.6 1 4.6

Sink_0 4.7 2 4.8

Sink 4.7 2 4.8

Sink 4.8 1 4.8

Sink_0 4.9 2 5

Sink 4.9 2 5

Sink 5 1 5

Sink_0 5.1 2 5.2

Sink 5.1 2 5.2

Sink 5.2 1 5.2

Sink_0 5.3 2 5.4

Sink 5.3 2 5.4

Sink_0 5.4 1 5.4

Sink 5.4 1 5.4

Sink_0 5.5 2 5.6

Sink 5.5 2 5.6

Sink_0 5.6 1 5.6

Sink 5.6 1 5.6

79

5.3.4.Validation of CSGF Router Implementations

CSGT core router, CSGT ingress router and CSGT sequencer are used directly in

CSGF implementation as CSGF routers. None of their properties change so there is

no validation requirement for these routers. However CSGF Ingress Router is a new

implementation and needs to be validated.

5.3.4.1. Validation of CSGF Ingress Router Implementation

Since CSGF Ingress Router is built upon the already verified CSGT Ingress Router,

the main focus of the validation becomes the fair scheduling algorithm

implementation.

Figure 5-15 Fair Scheduler Simulation Topology

In the scenario (Figure 5-15), source_1, source_2 and source_3 start generating

1000 bit packets at t=1 from flows 1, 2, 3 respectively with a rate of 10 packets per

second. The capacity at the output interface of the router is 3 packets per second.

The reserved rates of the flows are 1000, 2000 and 3000 bits/s for flows 1,2 and 3

respectively. The weights of the flows are 1, 2 and 3 respectively. The number of

packets in the queues of the scheduler will get larger since output capacity is smaller

80

than the number of coming packets. The scheduler should forward packets to the

sink node at rates according to the weights of the flows. Fair scheduler should also

insert the appropriate values to the “ratepk” value of the packets as it sends them.

All packets sent from the same fair scheduler must have the same rate value written

on the related fields.

The results of the simulation are given in Table 5-8. The values of the fields on the

packets are read when the packets are received by the related sink node. The results

are consistent with the expected behavior of scheduler. Flow 3, 2 and 1 shares the

bandwidth proportional to their flow weights. Because of its higher weight, Flow 3

has the largest share of the bandwidth. In each two seconds, 3 packets from flow 1,

2 packets from flow 2 and 1 packet from flow 1 are sent by the scheduler.

Table 5-8 Simulation Results for Fair Scheduler Implementation

Time (sec) Micro-flow Macro-Flow Rate before (bps) Rate (bps)

1.34 1 1 1000 6000

1.68 3 1 3000 6000

2.02 2 1 2000 6000

2.36 3 1 3000 6000

2.70 3 1 3000 6000

3.04 2 1 2000 6000

3.38 3 1 3000 6000

3.72 2 1 2000 6000

4.06 3 1 3000 6000

4.40 1 1 1000 6000

4.74 2 1 2000 6000

5.08 3 1 3000 6000

5.42 3 1 3000 6000

5.76 3 1 3000 6000

6.10 2 1 2000 6000

81

Table 5-8-Cont.- Simulation Results for Fair Scheduler Implementation

6.44 3 1 3000 6000

6.78 2 1 2000 6000

7.12 1 1 1000 6000

7.46 2 1 2000 6000

7.80 3 1 3000 6000

8.14 3 1 3000 6000

8.48 1 1 1000 6000

8.82 2 1 2000 6000

9.16 3 1 3000 6000

9.50 2 1 2000 6000

9.84 3 1 3000 6000

10.18 3 1 3000 6000

10.52 1 1 1000 6000

10.86 2 1 2000 6000

11.20 3 1 3000 6000

82

CHAPTER 6

EVALUATION OF CSGF

6.1. Introduction

The design aim of CSGF is obtaining the first work-conserving, core-stateless QoS

architecture that provides deterministic fairness guarantees. The most important

properties of CSGF can be illustrated by considering its design procedure again

(Figure 6-1):

• Firstly a stateful scheduling algorithm is chosen and core-stateless version of

it is designed. VC is the selected scheduling algorithm and CSVC is its core-

stateless counterpart. This process is inspired from JVC (the non work-

conserving version of VC) and CJVC (its core-stateless version) pair [14]

found in the literature. In summary, the two main properties of CSVC (and

hence CSGF) are being core-stateless and work conserving.

• Second phase in the design procedure of CSGF is creating a QoS network

architecture, which provides end-to-end throughput bounds within an

additive constant, by integrating two mechanisms with CSVC. The

throughput guarantee and two mechanisms (tag re-use and source rate

control) are the two main properties of CSGT (and hence CSGF).

• As the name implies, one final important property of CSGF is its fairness

guarantee.

83

In this section, CSGF architecture is evaluated in detail and some points conflicting

with its main design aims are illustrated as deficiencies. The relationship between

these features and their effects to each other are also investigated. The deficiencies

of CSGF are shown, their effects are investigated and these ideas are supported by a

simulation study of various cases. OPNET Version 11.5 is used for all simulation

experiments in this section.

CBR traffic flows are used in the experiments. Since the main goal (observing the

deficiencies of CSGF) is achieved with CBR traffic and since it is considered that

CSGF will behave similar in terms of fairness with other types (e.g. Poisson, Bursty)

of traffic, we believe it is appropriate to conduct simulations with CBR traffic only.

Figure 6-1 Design Phases and Aims of CSGF

84

6.2. Evaluation Cases

• Case 1: No fairness guarantee for micro-flows of different ingress

routers

“Fairness guarantee” is defined in terms of excess throughput that each flow

receives in CSGF. A network cannot be called “fair” if it provides throughput at

reserved rate to one flow and allows another flow to use significantly more than its

reserved rate. According to the most significant assumption made in the design of

CSGF, the fairness provided in a network is meaningful only when it is applied to

the flows that share the entire end-to-end path. That is why CSGF applies fair

scheduling at the ingress routers to the flows that share the entire end-to-end path.

Consider two (or more) macro flows entering the network from different ingress

routers and following the entire end-to-end path except their ingress routers. Then

throughout the coinciding path (nearly the entire path), CSGF provides fairness for

micro flows, only for the bandwidth that their corresponding macro-flow gets. This

is the only fairness that CSGF provides. It doesn’t provide any fairness guarantee

between macro flows or between micro flows of different macro-flows although

these flows share almost their entire paths. We believe that this case is conflicting

with the main CSGF idea of fairness. The difference between the paths of two flows

in Figure 6-2 is their first links only. The number of core routers can be increased to

strengthen the idea in this case. If fairness is meaningful when it is applied to the

flows sharing the entire end-to-end path, we think these two macro-flows are worth

treating fairly.

85

Figure 6-2 Two macro-flows sharing the entire path except the first link

CSGF gives no fairness guarantee to macro-flows of the above type. Several

simulations are carried out in different conditions to see the correctness of our

hypothesis. The bandwidth shares of macro-flows depend on Dmin, sequencer buffer

size, packet sizes and aggressiveness of the routers.

Simulation results in Figure 6-3 show different cases with the topology of Figure

6-2. We simulated three cases for a scenario where both of the macro-flows have

0.1 packets/sec reserved rate. However sources generate traffic with unconforming

rates. All of the routers have 100 packets/sec transmission capacities except the last

core router on the path, which has 5 packets/sec capacity. Since the sum of the

reserved rates of the flows is equal to 0.2 packets/sec, the rest of the bandwidth, i.e

4.8 packets/sec, is excess bandwidth. A fair algorithm would divide the bandwidth

into two equal parts if both of the flows produce packets with a rate more than 2.4

packets/sec.

86

1st case refers to identical unconforming rate values, 10 packets/sec, for both flows.

In this case, the values are close to what is desired. The excess bandwidth shares of

the flows are nearly equal.

2nd case refers to the case where flow 1 has a non-conforming rate of 10 packets/sec

and flow 2 has a non-conforming rate of 5 packets/sec. Tag re-use mechanism is

used with reserved feedback channels in this scenario. In order to be fair, the

algorithm should protect the excess bandwidth from the aggressiveness of flow 1

and give fair shares to both flows. This is not the case for CSGF and it cannot

achieve this. Flow 1 dominantly captures the excess bandwidth in Case 2.

The scenario in the 3rd case is same with the one in Case 2. However Dmin is lower

and sequencer buffer size is larger for Flow 2 compared to the same values of Flow

1. Consequently more tags are re-used for Flow 2 and as shown in Figure 6-3, flow

2 gets a larger share from the bandwidth compared to Case 2. The resultant

bandwidth sharing is still unfair but not as significant as in the 2nd Case.

As a result of the experiments, the work-conserving nature of CSGF is clearly

demonstrated. The excess bandwidth is used by the flows but sharing is not fair. The

bandwidth shares that the flows take is proportional to many factors, so the

proportional allocation cannot be guaranteed.

87

Figure 6-3 Use of Excess Bandwidth for two macro-flows sharing the entire

path except the first link

• Case 2: No fairness guarantee for micro-flows of same ingress router

that share most of their paths

When we consider two micro-flows entering the network from the same ingress

router and following the same path all through the network except the last link,

there will again be no fairness guarantee to these flows. The algorithm will treat

these flows same as two flows entering the network from the same ingress router

and following two entirely separate paths. However a micro-flow of one of these

flows and a micro-flow of the other macro-flow will share almost entirely the same

path and the same bandwidth. The bottleneck of both of these flows will most

probably be on their coinciding path where no fairness is guaranteed.

88

Figure 6-4 Two macro-flows sharing the entire path except the last link

In addition, the micro-flows described above are put into different fair schedulers

just because of their last hops. Consequently they are inserted into different queues

in CSGF Ingress Router. Several simulations are carried out in different conditions

to see the correctness of our hypothesis. The results show that no fairness is

guaranteed to such flows on CSGF network.

In Figure 6-5, simulation results are illustrated for three different cases on the

topology of Figure 6-4. We simulated a scenario where both of the macro-flows

have 0.1 packets/sec reserved rate. However sources generate traffic with

unconforming rates. All of the routers have 100 packets/sec transmission capacities

except the last core router on the path. That router can send 5 packets/sec only.

Since the sum of the reserved rates of the flows is equal to 0.2 packets per second,

the rest of the capacity, i.e 4.8 packets/sec, is excess bandwidth. When both flows

have unconforming rates, the sum of which is greater than 2.5 packets/sec, the

queue of the last core router fills up.

89

1st case refers to identical unconforming rate values, 10 packets/sec, for both flows.

According to the simulation results, the excess bandwidth is used by both of the

routers at similar rates.

2nd case refers to the case where flow 1 has a non-conforming rate of 8 packets/sec

and flow 2 has a non-conforming rate of 5 packets/sec. Since both flows have rates

greater than 2.5 and their reserved rates are the same, equal number of packets

should be sent from the core router in order to be fair. Simulation results show that

Flow 1 gets its larger share as it becomes more aggressive than Flow 2. This is not

appropriate for proportional allocation principle. Tag re-use mechanism is used with

reserved feedback channels in this scenario.

The work-conserving nature of CSGF is illustrated in this simulation again. The

excess bandwidth is used and flows get larger rates if there is enough bandwidth on

the way to the egress router. However there is no proportional bandwidth allocation.

Figure 6-5 Use of Excess Bandwidth for two macro-flows sharing the entire

path except the last link

90

• Case 3: One and only bottleneck where no fairness guarantee exists

In this case, the word “bottleneck” is used for describing the link with the heaviest

traffic. If two or more distinct (with different paths) macro-flows share only one

link and if it is the bottleneck link of all the flows, there will still be no guaranteed

fairness for these flows. If we assume that all other links are fast links such that no

congestion occurs, bottleneck link will be the most important link in terms of

proportional bandwidth allocation hence fairness.

Figure 6-6 Three macro-flows sharing only one bottleneck link

We simulated a scenario where the macro-flows F, G and H have 1, 2 and 3

packets/sec reserved rates respectively. Sources generate packets of micro-flows

and the micro-flows, which share their entire end-to-end path, form a macro-flow.

Each macro-flow in this scenario has a non-conforming rate of 10 packets/sec. All

of the links have 18 packets/sec capacities.

91

Each flow in the scenario shares its first, fifth and sixth nodes with the other two

flows. Paths of the three flows coincide at the fifth node and the link between the

fifth and sixth core router is common for all three flows. Since the link capacities

are larger than even the non-conforming rates of the flows on their paths until the

fifth node, there will be about 30 packets/sec input to this fifth core router. Sum of

the reserved rates of the flows is equal to 6 packets per second. This rate must be

guaranteed by the algorithm on this bottleneck link between the fifth and sixth

routers. The rest of the capacity, i.e., 12 packets/sec, is excess bandwidth. In order

to treat the flows fairly, the excess bandwidth should be given to flows proportional

to their reserved rates. The ideal bandwidth shares and the ideal excess bandwidth

shares of the flows in this case are illustrated in Figure 6-7.

The simulation results however show that the reserved rates are provided to the

flows but no fairness is guaranteed in the scenario for excess bandwidth usage of

these flows on the CSGF network. Figure 6-7 shows the excess bandwidth share of

each flow in packets/sec. Each flow gets an excess bandwidth share that is close to

the share of other flows. There is no proportional bandwidth sharing in this case.

The total bandwidth shares of the flows including the excess bandwidth are also in

Figure 6-7. Flow F gets a bandwidth share more than it should get in ideal

conditions. Flow G gets a bandwidth share close to the ideal case and Flow H,

which is the least non-conforming flow, gets a smaller portion from the bandwidth

than it deserves.

92

Figure 6-7 Simulation Results for macro-flows sharing only one bottleneck link

• Case 4: Complexity of ingress router in CSGF

In a given network, it is important to allocate resources in an effective way. In order

to achieve this, two flows may be forced to follow two distinct paths even if their

ingress and egress routers are the same. Actually network administrators may prefer

to differentiate the paths of flows in a network as much as possible to distribute the

load on the network evenly. The possibility of having bottlenecks may be reduced in

this way. In a given network, there may be little number of flows having the same

entire end-to-end path. In CSGF, the ‘fairness’ is applied only to flows that share

the entire end-to-end path. When the percentage of the flows of this kind is reduced,

the applied fairness also decreases. In this case, CSGF network behaves much more

like a CSGT network. The fairness of CSGF is directly proportional to the

percentage of flows sharing the entire end-to-end paths.

93

Figure 6-8 Complexity of ingress router in CSGF

CSGF applies fair scheduling at the ingress routers to the flows that share the entire

end-to-end path. Therefore, the paths of the flows have to be defined when they

enter the network, which mandates the use of a mechanism like strict source-routing

or explicit routing in which the entire route of the packet is carried at the header.

94

6.3.Evaluation Results

In the cases described above, CSGF cannot guarantee fairness and behaves the same

as CSGT. Since “fairness” is the only property added to the CSGT, we call these

conditions as “deficiencies of CSGF”.

CSGF provides fairness guarantee only for flows entering the same ingress router,

following the same entire end-to-end path. This type of flows may form only a

small percentage of all flows in a network and since there is no fairness guarantee in

CSGT, so will there be in the CSGF even though the complexity of edge routers is

additionally increased for transforming a CSGT network to a CSGF network.

When we consider fairness in CSGF, we consider the excess bandwidth. Since

CSGF has throughput guarantees, two flows will get their reserved rates when they

share the same link. However in the conditions when CSGF applies no fairness, one

of these flows can get most of the bandwidth when the other gets only its reserved

rate. Since the reserved rates are provided, the proportional throughput guarantee of

the excess bandwidth may seem to be a not necessarily needed property. However

“being work-conserving” is one of the main features of the algorithm. CSVC is

designed as a work-conserving algorithm in order to meet the rising traffic demands.

Utilizing resources evenly is a desirable feature and it is a part of the basis of CSVC,

correspondingly CSGF. Therefore, when CSGF mentions “Fairness”, proportional

allocation of both reserved and the excess bandwidth is necessary.

Tag re-use gives CSGT the property of providing throughput guarantees at short

time-scales. However it also creates uncertainty in terms of fairness. The re-

usability of a packet depends on the link conditions and the size of the packet, both

of which can change significantly in the life-time of a flow. Tag re-use mechanism

95

may be stopped or restricted in order to get rid of this uncertainty. However this

would have two effects:

• The extent to which the source can utilize idle bandwidth in the network

would be limited.

• The first router wouldn’t transmit a packet before its expected arrival time,

which means the router reduces to the non-work-conserving JVC router.

More the mechanism is restricted; more the ingress router behaves like JVC

router.

Both of the effects are undesirable. A CSGF network should utilize idle bandwidth

as much as possible since “being work-conserving” is one of its most important

properties. It is also undesirable to have a JVC-like router as the ingress router. JVC

router is the starting point in the design (Figure 6-1) and it will almost mean

returning to the point where the design procedure started. We also experienced the

importance of tag re-use in terms of fairness in our simulations.

The one and only feature added on CSGT when designing CSGF is the use of fair

schedulers at the Ingress Routers. Two flows are not put into the same fair scheduler

in the CSGF Ingress Router even if %99 of their paths coincides. This situation

generates two effects:

• “Fairness Application” criterion of CSGF is so narrow that two flows do not

share the bandwidth fairly even if they almost fit the idea behind fairness in

CSGF.

• There are a lot of path probabilities in a network and if two flows are not put

into the same fair scheduler in the CSGF Ingress Router even if %99 of their

paths coincides, then there will be a huge number of fair scheduler

implementations in each CSGF Ingress Router.

96

Beyond all other features of CSGF (or CSGT or CSVC), the most important

property of the algorithm is its core-stateless structure. Then we should never forget

the main aim in designing core-stateless networks is giving QoS guarantees to

networks with fine granularity and in a scalable way. If CSGF is scalable, it will be

used in networks where there are a lot of end-to-end path probabilities. In case of

heavy traffic, there will be many flows on Ingress Router, having distinct end-to-

end paths. If one fair scheduler is used for each of these paths, then the Ingress

Router will be too complex and hard to implement. It is already complex because of

the extra state hold for reusable tag values. If the number of fair schedulers is

bounded, then the level of the most important feature of core-stateless networks,

scalability, is reduced.

The throughput guarantee of CSGF depends on the maximum delay and loss

experienced in the feedback channels where acknowledgement packets are sent

through. Adequately provisioned feedback channels between edge routers should be

constructed.

The main goal of CSGF design is providing the fairness guarantee at the level that a

network of core-stateful routers does. Core-stateful routers provide per-link

proportional throughput guarantee. Since the control is only at the edges for a core-

stateless network, we believe that it is not possible to provide fairness in core-

stateless networks at the same level with the fairness in networks where link-based

fairness is applied.

97

CHAPTER 7

CONCLUSION

The primary goal of providing Quality of Service (QoS) is to have better and more

predictable network services by providing dedicated bandwidth, controlled jitter and

latency, and improved loss characteristics. QoS achieves these goals by providing

tools for managing network congestion, shaping network traffic, using expensive

wide-area links more efficiently, and setting traffic policies across the network [44].

Providing QoS in the Internet has been a challenging task for the network

community for a while. On one side, network architects want to keep the network

core as simple and scalable as possible. However, designers who are in favor of the

idea of obtaining fine grain service differentiation would like to use complex routers

at the network core. There have been two major architectural proposals, Intserv and

Diffserv, for providing QoS in the IP networks. Both of the proposals can support

QoS in IP networks, obviously with pros and cons on each side. This thesis firstly

reviews these two main models.

The drawback of the stateful solutions is their complexity. On the control path, the

routers should install and maintain per-flow state. On the data path, per-flow

classification, per-flow buffer management and per-flow scheduling should be

handled. It is a challenge to keep per-flow state consistent in the routers. Stateless

solutions are more scalable and robust. However stateless solutions cannot provide

98

as powerful and flexible services as stateful solutions. They also cannot provide low

delay guarantees and high resource utilization simultaneously.

Core-stateless approaches try to take positive features of both sides. The core-

stateless systems use scalable mechanisms in the core of the networks and stateful

approaches at the edges of the network in order to get rid of the scalability problem

and support QoS with fine granularity. Because of their scalability in supporting

QoS, core-stateless systems have received considerable attention recently. The

proposed architectures in the literature differ in terms of guarantees they provide.

These mechanisms have been studied extensively and therefore a literature survey

on past studies on the mechanisms of core-stateless architectures is also included.

As a result of the survey, Core-Stateless Guaranteed Fair (CSGF) network

architecture is chosen to evaluate in this thesis. The properties, advantages and

disadvantages of the underlying approaches are given in order to explain the

reasoning behind the selection of CSGF.

CSGF is built upon Core-Stateless Guaranteed Rate (CSGR) Network, which is a

work-conserving, core-stateless network architecture that can provide end-to-end

delay guarantees. Therefore CSGR is studied first. CSGR proposes a methodology

to transform any Guaranteed Rate (GR) per-flow scheduling algorithm into a

version that does not require per-flow state to be maintained in the core routers. In

CSGR, the upper bounds on packet deadlines at core nodes are computed using per-

flow state only at the edge node. A CSGR network provides the same end-to-end

delay as the networks using actual deadlines. CSGR supports only delay guarantees

and average throughput guarantees at large time-scales.

CSGR is combined with two mechanisms proposed in CSGT (Core-Stateless

Guaranteed Throughput), namely tag re-use and source rate control to provide

throughput guarantees at small time-scale. CSGT provides throughput bounds

99

within an additive constant of throughput bounds achieved by a network of core-

stateful fair rate routers.

When CSGT is combined with fair access at the edge nodes and aggregation of

flows in the core nodes, this combination leads to CSGF. CSGF claims to be the

first core-stateless, work-conserving QoS architecture providing delay, throughput

and fairness guarantees. This thesis presents detailed information about CSGR,

CSGT, CSGF and discusses the basic mechanisms to support their desired behavior.

Implementation study of VC, CSVC, CSGT and CSGF is carried out using OPNET

simulation program. VC is the selected Guaranteed Rate (GR) per-flow scheduling

algorithm to be transformed to the core-stateless version by CSGR. Thus a detailed

description of VC is also given. All of the routers used in selected algorithms are

added to OPNET and implementation steps are described. Implementations are

made in project, node and process models of OPNET version 11.5. The simulation

environment of OPNET is also described.

Validation of our VC, CSVC, CSGT and CSGF implementations using OPNET

simulation program is carried out and behaviors of the implemented routers are

illustrated in this thesis. Simulation set ups and associated experiments are

presented for each verification study. There are very few publicly available core-

stateless QoS network architecture implementations in simulation environments.

Therefore this simulation work may also prove useful in future work about CSGF.

The points in the design of CSGF conflicting with its expected features are shown

as deficiencies. Most of the deficiencies are related to the assumption stating that

fairness becomes meaningful only when it is applied for flows that share the entire

end-to-end path. According to the evaluation results, CSGF cannot guarantee

100

fairness in general and behaves same as CSGT in other cases. Several conditions

where fairness is not provided are conflicting with the above main assumption made

for fairness in CSGF. CSGF has a very strict criterion to apply fairness for flows.

Two flows do not share the bandwidth fairly even if they share most of their paths,

i.e. even if they almost fit the idea behind fairness in CSGF.

The mechanisms added on CSVC when designing CSGT provide throughput

guarantees at short time-scales. However they also create uncertainty in terms of

fairness. Limiting these mechanisms reduces the ingress router to a JVC router,

which is also undesirable.

In a large network with heavy traffic, there will be a huge number of fair scheduler

functions in each CSGF Ingress Router and it will be a very complex node. If the

number of fair schedulers is bounded, then the level of the most important feature of

core-stateless networks, scalability, is reduced.

Core-stateful routers provide per-link proportional throughput guarantee. Since the

control is only at the edges for a core-stateless network, we believe that it is not

possible to provide fairness in core-stateless networks at the same fairness level

achieved when link-based fairness is applied. Moreover, with the level of fairness it

proposes, we think that CSGF is not sufficiently capable to be called a “Fair” QoS

architecture. It may be called as “Improved CSGT”.

QoS architecture investigated in this thesis tries to provide QoS guarantees without

maintaining per-flow state in core routers. Admission control is one of the issues

that should be considered when applying this algorithm. Taking one of the

admission control frameworks recently proposed in the literature ([45],[46],[47])

and using it in accordance with CSGF may be a future work. With this integration,

CSGF can be evaluated in large networks to see its scalability and in many different

traffic conditions to re-evaluate its performance.

101

CSGF treats two flows same as CSGT even if only a small part of one flow’s path is

different than the path of the other flow. As future work, taking a percentage of the

route into account when providing fairness but not the entire path may be

investigated and considered as an add-on to CSGF.

CSGT is the first work-conserving core-stateless network architecture that provides

throughput guarantees at short time-scales. Its design aims are fulfilled, but we

believe that the fairness provided by CSGF is not sufficient. As a future work,

CSGT may also be investigated to provide fairness guarantees in a different way.

102

CHAPTER 8

REFERENCES

[1-5, 7, 9-13, 17-21, 23-27, 30, 32-44, 46, 48, 49]

1. Odlyzko, K.C.a.A., The Size and Growth Rate of the InternetMarch 2001.

2. Clark, D.D., Internet cost allocation and pricing, MIT Press, in Internet

economics. 1997: Cambridge, MA.

3. Janusz Gozdecki, A.J., and Rafal Stankiewicz, Quality of Service

Terminology in IP Networks. IEEE Communications Magazine, March

2003. Vol.41(No.3).

4. Agnihotri, A., Study and Simulation of QoS for Multimedia Traffic, M.S.

Project. November, 2002.

5. Braden, B., Clark, D., Shenker, S, “Integrated Services in the Internet

Architecture: An Overview”, IETF RFC 1633. 1994.

6. White, P.P. and J. Crowcroft, The integrated services in the Internet: state of

the art. Proceedings of the IEEE, 1997. 85(12): p. 1934-1946.

7. Braden, R., et al., Resource Reservation Protocol (rsvp), rfc 2205, RFC 2205,

Sept. 1997.

8. White, P.P., RSVP and integrated services in the Internet: a tutorial. IEEE

Communications Magazine, 1997. 35(5): p. 100-106.

9. Kilkki, K., Differentiated Services for the Internet. 1999: Macmillan

Publishing Co., Inc. Indianapolis, IN, USA.

10. http://www.ietf.org.

11. RFC 791 Internet Protocol Darpa Internet Program Protocol Specification.

1981 September.

103

12. K. Nichols, S.B., F. Baker, and D. L. Black, Definition of the Differentiated

Services Field (DS Field) in the ipv4 and ipv6 Headers, Internet Draft. draf-

ietfdiffserv-header-04.txt. October 1998.

13. Beijnum, I.v., IPv6 Internals. Cisco Internet Protocol Journal. 9.

14. Stoica, I. and H. Zhang, Providing guaranteed services without per flow

management. Proceedings of ACM SIGCOMM, 1999. 99: p. 81-94.

15. Stoica, I., CMU-CS-00-176 Stateless Core: A Scalable Approach for Quality

of Service, PhD Thesis, December 15, 2000 .

16. Zhang, L., VirtualClock: A New Traffic Control Algorithm for Packet-

Switched Networks. ACM Transactions on Computer Systems (TOCS),

May 1991. Volume 9(Issue 2): p. Pages: 101 - 124.

17. Norival R. Figueira, J.P., An upper bound on delay for the VirtualClock

service discipline. IEEE/ACM Transactions on Networking (TON), Aug.

1995. v.3(n.4): p. p.399-408.

18. Keshav, S., On Efficient Implementation of Fair Queuing. Journal of

Internetworking Research, September 1995: p. 157–173.

19. A. Demers , S.K., S. Shenker. Analysis and simulation of a fair queueing

algorithm. in Symposium proceedings on Communications architectures &

protocols. September 25-27, 1989. Austin, Texas, United States.

20. Configuring Weighted Fair Queueing, in Cisco IOS Quality of Service

Solutions Configuration Guide, Cisco, 2005.

21. Kaur, J. and H.M. Vin, Core-stateless guaranteed rate scheduling algorithms.

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, 2001. 3.

22. Zhang, Z.L., Z. Duan, and Y.T. Hou, Virtual time reference system: a

unifying scheduling framework forscalable support of guaranteed services.

Selected Areas in Communications, IEEE Journal on, 2000. 18(12): p. 2684-

2695.

104

23. Deleuze, C., Fdida, S., Stateless Virtual Clock: Scalable Packet Scheduling

for Delay Guarantees in Core Networks. 2000, Universite Pierre et Marie

Curie: Paris. p. 17.

24. Pan, R., B. Prabhakar, and K. Psounis, A stateless active queue management

scheme for approximating fair bandwidth allocation. IEEE INFOCOM 2000,

2000. 212: p. 214.

25. Kaur, J. and H. Vin, Providing Deterministic End-to-end Fairness

Guarantees in Core-stateless Networks. Book Quality of Service - IWQoS

2003: 11th International Workshop. Vol. Volume 2707/2003 2003, Berkeley,

CA, USA: Springer Berlin / Heidelberg. Pages 401-421.

26. Dong Lin, R.M. Dynamics of Random Early Detection. in SIGCOMM’97.

1997. Cannes, France.

27. Duan, Z., et al., A Core Stateless Bandwidth Broker Architecture for

Scalable Support of Guaranteed Services. IEEE Trans. Parallel and

Distributed Systems, 2004. 15(2): p. 167–182.

28. Zhenhai Duan, K.P., BCQ: Bin-based core stateless packet scheduler for

scalable and flexible support of guaranteed services, in Computer Science

Department. 2005, Florida State University: Florida.

29. Purnachandra, K.P., BCQ: Bin-based core stateless packet scheduler for

scalable and flexible support of guaranteed services.

30. Cao, Z., Z. Wang, and E. Zegura, Rainbow Fair Queueing: Fair Bandwidth

Sharing Without Per-Flow State. Proc. IEEE INFOCOM, 2000: p. 922-931.

31. Stoica, I., S. Shenker, and H. Zhang, Core-stateless fair queueing: achieving

approximately fair bandwidth allocations in high speed networks. ACM

SIGCOMM Computer Communication Review, 1998. 28(4): p. 118-130.

32. Clerget, A. and W. Dabbous, UF: Tag-based Unified Fairness. Proc. IEEE

INFOCOM, 2001: p. 498-507.

33. P. Goyal, H.V., and H. Cheng. Start-time Fair Queuing: A Scheduling

Algorithm for Integrated Services Packet Switching Networks. in In

Proceedings of ACM SIGCOMM’96. August 1996.

105

34. Kaur, J. and H.M. Vin, Core-stateless guaranteed throughput networks.

INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications Societies. IEEE. 3.

35. J. Kaur, H.V., Core-stateless Guaranteed Throughput Networks. Technical

Report TR-01-47, Department of Computer Sciences, University of Texas at

Austin. November 2001.

36. C. Li, E.K., Coordinated Network Scheduling: A Framework for End-to-end

Services. In IEEE ICNP, November 2000.

37. Dallas E. Wrege , E.W.K., Hui Zhang , Jörg Liebeherr, Deterministic delay

bounds for VBR video in packet-switching networks: fundamental limits

and practical trade-offs. IEEE/ACM Transactions on Networking (TON),

June 1996. v.4(n.3): p. p.352-362.

38. Zhang, J.C.R.B.a.H. WF2Q: Worst-case Fair Weighted Fair Queuing. in In

Proceedings of INFOCOM’96. March 1996.

39. J. C. R. Bennett, H.Z., Hierarchical Packet Fair Queuing Algorithms.

Computer Communication Review, 1996. Vol. 26(No. 4).

40. J. Kaur, H.V. End-to-end Fairness Analysis of Fair Queuing Networks. in In

Proceedings of the 23rd IEEE International Real-time Systems Symposium

(RTSS). December 2002.

41. Kaur, J., Scalable Network Architecture for Providing Per-flow Service

Guarantees, in Computer Science. 2002, University of Texas at Austin:

Austin, Texas. p. 153.

42. OPNET Modeler Product Documentation Release 11.5, in 11.5. 2006,

OPNET.

43. OPNET Support Website (www.opnet.com/support).

44. Quality of Service (QoS), in Quality of Service (QoS), Internetworking

Technologies Handbook, Cisco, 2005.

45. Z.L. Zhang, Z.D., Y.T. Hou, L. Gao. Decoupling QoS Control from Core

Routers:A Novel Bandwidth Broker Arcitecture for Scalable Support of

106

Guaranteed Services. in In Proceedings of ACM SIGCOMM. August 2000.

Sweden.

46. Ion Stoica, H.Z. LIRA: An Approach for Service Differentiation in the

Internet. in NOSSDAV'98. July 1998. London, UK.

47. S. Bhatnagar, B.R.B. Distributed Admission Control to Support Guaranteed

Services in Core-stateless Networks. in In Proceedings of IEEE INFOCOM.

April 2003.

48. Blake, S., et al., RFC2475: An Architecture for Differentiated Service.

Internet RFCs, 1998.

49. Nicolas Christin, J.L., A QoS Architecture for Quantitative Service

Differentiation. IEEE Communications Magazine, June 2003.

