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ABSTRACT

A C++ IMPLEMENTATION AND EVALUATION OF
ALTERNATIVE PLAN GENERATION FOR MULTIPLE QUERY
OPTIMIZATION

ABUDULA, Dilixiati
MS, Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Ahmet Cosar

November 2006, 53 pages

In this thesis, dternative plan generation methods for multiple query
optimization(MQQO) are introduced and an implementation in the C++
programming.language has been developed. Multiple query optimization, ams to
minimize the total cost of executing a set of relational database queries. In
traditional single query optimization only the cost of execution of a single relational
database query is minimized. In single query optimization a search is performed to
investigate possible alternative methods of accessing relational database tables and
aternative methods of performing join operaions in the case of multi-relation
queries where records from two or more relational tables have to be brought
together using one of the join algortihms (e.g. nested loops, sort merge, hash
join,etc). The choice of join method depends on the availability of indexes, amount
of available main memory, the existence of ORDER BY clause for sorted output,
the sizes of involved relations, many other factors. A simple way of performing
multiple query optimization is to take the query execution plans generated for each
of the queries as input to a MQO algorithm, and then try to identify common tasks
in those plans using the MQO algorithm. However, this approach will reduce the
achievable benefits since a more expensive execution plan (thus discarded by a
single query optimizer) could have more common operations with other query



execution plans, resulting in a lower total cost for MQO. .For this purpose we will
introduce several methods for generating such potentially beneficial alternative

guery execution plans and experimentaly evaluate and compare their performances..

Keywords: Relational Database, Query Optimization, Multiple Query Optimization,
Alternative Plan Generation.
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COKLU SORGU OPTIMIZASY ONU ICIN C++ DILINDE
ALTERNATIF PLAN URETME METOTLARININ
GERCEKLESTIRILMESI VE KARSILASTIRILMASI

ABUDULA, Dilixiati
Yiiksek Lisans, Bilgisayar Miithendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Ahmet Cosar

Kasim 2006, 53 sayfa

Bu tezde ¢oklu sorgu optimizasyonu(CSO) igin alternatif plan iiretme yontemleri
arastirilmis ve C++ programlama dilinde kodlanarak gergeklestirilmistir. Coklu
Sorgu Optimizasyonu bir iliskisel veritaban tizerinde calistirilacak bir sorgu
kiimesinin toplam calistirilma siiresini en aza indirmeyi amaglar. Konvansiyonel tek
sorgu eniyilemesinde sadece bir adet iliskisel veritabam sorgusunun isletme
maliyetinin en aza indirilmesi amaglanir. Tek bir sorgu eniyilemesi i¢gin iliskisel
veritabaninda tablolara erismek icin kullabilecek alternatif yontemler(siradan,
endeksli, vs.) ve ayni zamanda birden fazla tablo iizerinde sorgulama yapiliyorsa
birlestirme (join) operasyonu igin kullanilabilecek alternatif birlestirme yontemleri
(icige-dongii, sirala-birlestir, ve karistir-birlestirme) incelenmeli ve en kisa zamanda
sonucu verecek yontemler secilmelidir. Segilecek birlestirme yontemi elde bulunan
endekslere, ana bellek miktarina, sorgu sonucunun SORTED BY ile sirali olmasi
istenmesi durumuna, tstiinde islem yapilacak tablolarin biyiikligiine, ve birgok
baska faktore bagli olarak degisecektir. Coklu sorgu eniyilemesi igin basit bir
yontem, her sorgu igin tek basina en iyi yontemi belirlemek ve bir plan tiretmek,
sonra da bir CSO algoritmasi ile bu planlar arasindaki ortak gorevlerin belirlenerek
biitiin sorgularin cevaplarim iretecek bir ortak plamin iretilmesidir. .Ancak bu

yonemde elde edilebilecek yararlar sinirli olacaktir, ¢iinkii her bir sorgu igin tek

Vi



basina en ucuz maliyetli olan plan aslinda diger planlarla olabilecek paylasimlari
yeterince kullanmiyor olabilir, bu da olasi en disiik maliyetli ortak planin
bulunmasini  engeleyecektir. Bu yontemlerin arasinda karsilastirma yapmak ve
hangisinin daha iyi sonuglar trettigini gorebilmek icin deneyler yapilmistir.

Keywords: Iliskisel Veritaban, Sorgu Eniyilemesi, Coklu Sorgu Eniyilemesi,
Alternatif Plan Uretimi.
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CHAPTER |

INTRODUCTION

Database management systems (DBMS) form the backbone of amost all
commercial application software systems. A DBMS can be used for storing
alphanumeric data as well as multimedia data such as music, human voice, pictures,
and videos. The date of the art standard for DBMS are relational DBMS (e.g.
Oracle, Sybase, MS SQL Server, IBM DB2, etc.) systems which store information
in tables consisting of a number of columns and rows in the form of N-tuples where
each column is used for storing information about an attributel Ramakrishna 2003].

The standard way of defining and accessing relational databases is to use a sandard
guery language, namely the SQL query processing language, which is implemented
by all of the available commercial relational DBMSs, and has contributed largely to
the success of relational DBMS software. An example SQL language statement to
define arelational table is given below..

Q1:

CREATE TABLE STUDENTS(
FI RSTNAME VARCHAR(10),
LASTNAMVE VARCHAR( 10) ,
DEPARTMENT_ID INTEGER)

Figure 1: An example SQL language statement to define arelational table



Each table in a relational database must be given a unigue name which is used to
refer to that table. Each column in atable must also be given a name that is unique
to that table. Once atable is defined and populated with information using INSERT
commands as given below in Q2, it becomes possible to issue SELECT queries (see
Q3) on that table.

Q2:

| NSERT | NTO STUDENTS
VALUES(“AHMET”,”"COSAR”, 1)

Figure 2: An example SQL language statement using INSERT command

A query to find those students who are in department number 1, is given below.

XB:

SELECT FI RSTNAME, LASTNAME

FROM STUDENTS
WHERE DEPARTMENT _I1D=1

Figure 3: An example SQL language statement using SELECT command



The number of SELECT statements that can be answered by a DBMS critically
determines the performance of that DBMS and the number of users/clients that can
be served by the DBMS.

In order to increase the number of SELECT statements answered by a DBMS(in a
fixed amount of time) the contents of a table can be buffered by the DBMS in main
memory and queries can be answered by reading a table’s content from main
memory (which is much faster) rather than magnetic disk. Thus, it becomes possible

to speed up execution time of a query by even hundreds of times.

Unfortunately, when the size of a table is large it becomes impossible to store a
reasonable portion of a relational table. Thus, queries that use such a large table
cannot be executed any faster by buffering in main memory some of the tables in a
relational database.

One way to execute such queries faster is to read common tables only once and
evaluate the answer for two or more queries at once. Using this technique two or
more queries will be answered by reading a table only once. Since, it may take in
the order of several seconds to read a large table the gains in the total execution

time will be considerable.

As an example, the query given below, Q4, is very similar to the query, Q3, and
both queries can be answered by reading once all of the student recordsin the table.
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SELECT * FROM STUDENTS
VWHERE DEPARTMENT_I| D=2

Figure4: A similar example with Q3

The problem of identifying common parts in queries, such as scanning common
relations for locating records that satisfy similar or other conditions, is called
Multiple Query Optimization(MQO) and has been studied in great detail since
1980s.

Some special database applications such as deductive query processing, batch query
processing and recursive query processing require a group of very similar queries to
be executed by the DBMS. It would be very profitable to come up with a single

global multiplan that would generate the results for all of these queries at once.

Sellig Sellis 80] has developed an optimization model for MQO and has given an
A* formulation with associated heuristics. Randomized optimization techniques
such as Simulated Annealing [Cosar 1993] and Genetic Algorithm have been used
successfully for solving this problem[Bayir 2006].

Another recent attempt [Toroslu 2005] for solving MQO problem has used a
Dynamic Programming(DP) formulation and the performance of DP has been
shown to be comparable to A*.



In Chapter 2 an overview of A* and Dynamic Programming formulations is given.
In Chapter 3 we present the system used for generating a synthetic database schema
and a set of synthetic queries that will be used for comparing the performance of all
of the agorithms given in Chapter 2. Finally, Chapter 4 and Chapter 5 present the

results of our experiments and our conclusions.



CHAPTERIII

AN OVERVIEW OF QUERY OPTIMIZATION

2.1 Multiple Query Optimization Formulation

The following definitions are needed for defining the MQO problem.

Definition(Task). A task is arelational database operation. For the purposes of this
thesis we consider only scan(reading all the records in a table sequentially), select
(reading and outputting only the records of a table that satisfy a given predicate)
project (reading and outputting only the required columns of atable), join (performs
that relational database join operation that matches records of two tables using a
“join predicate” giving the conditions that must be matched by any two
corresponding tuples). The input(s) to atask is a relational table, and the output of
any task is again arelational table that could form the input to another task.

Example(Task). The tasksin Queryl are:

Table 1: Task Description for Query 1

Task1 | read(STUDENTS)
Task2 | select(DEPARTMENTID=1)
Task3 | project(FIRSTNAME,LASTNAME)




Definition (Plan).A plan is a directed graph of “task”s that perform relational
database operations on individual tables and outputs of “task”s. The graph

corresponding to Queryl is given in the below figure.

pr oj ect ( FI RSTNAIVE,
LASTNANE)

A

sel ect ( DEPARTMENT | D=1

y

read( STUDENTS)

Figure5: A plan for executing Query1l.

Definition (MQO).Given P; alternative plans to solve each a query Q;, where there
are N queries, select exactly one plan for each query such that the total cost of all
the tasks in those chosen plans is minimal.



2.2 A Dynamic Programming Formulation

2.2.1 General Overview of Dynamic Programming

In computer science many problems can be solved by starting from small subsets
and building on top of those small subsets to solve progressively larger subsets,
eventually obtaining all possible solutions to the original problem instance. In doing
this process care is taken so as not to repeat calculations for solving a previously
optimized subset, this will guarantee an algorithm. that runs in optimal time. The
method was invented by Richard Bellman[xxx] in 1953.

A very famous and popular problem that has the “optimal substructure” property is
the “shortest path” problem where the shortest path ( an ordered list of nodes to visit
with the smallest possible total distance).must be found from an initial node, A, to a
destination node, B. The solution to this problem will be an ordered list of nodes
starting with ‘A’ and ending with ‘B’. Due to the nature of the problem each node
can appear at most once in this list and the path given by the list of nodes between
any two pairs, Am, and A, (where m<n), in this optimal path (A, A1, ..., An,
Amity o An1,An Ans, ..., B) should also be optimal.

An example instance of the shortest path problem is given in the below figure.



Figure 6: An example shortest path problem

The below table shows the way DP proceeds to solve this shortest path problem of
going from node=(A) to node(G). The nodes which in real life could represent cities
are connected by lines that could represent roads connecting cities. The distance
between two cities is represented as the label of the line between two nodes. First,
all adjacent pairs of nodes starting with “A” are recorded in the solutions space used
resulting in below list.

SOLUTIONS-1: <A,B,1><A,C,2><A,D,3>

Then, these solutions are extended with solutions that include nodes that could be
reached from the second node in SOLUTIONS-1 list. For example, node(E) can be
reached from node(B) therefore <A,B,1> is used to insert a new solution for <A,B,
E,5> since the distance between node(B) and node(E) is 4, and the distance between
node(A) and node(B) is recorded as “1” in SOLUTIONS-1. Thus, we can obtain the
below table for the second step of DP(solutions stored by DP are shown in bold
face).



Table 2: Dynamic programming solution for the shortest path problem.

Solutions-1 Solutions-2 Solutions-3

<A,B,1> <A,B,1> <A,B,1>

<A,C,2> <A,C,2> <A,C,2>

<A,D,3> <A,D,3> <A,D,3>
<A-B-E5> <A,B,F,6>
<A,B,F,6> <AD,E/4>
<A,CES8> <AB;FGAT>
<A,CF9> <ADEG14>
<AD,E/4>
<A,D,F,12 >

Y ou can see that we have recorded both solutions for going from node(A) to node(E)
using node(B) as an intermediary, and going from node(A) to node(F) again using
node(B) as an intermediary. Now, we need to continue generating solutions that can
be generated using <A,C,2> and <A,D,3>. From node(C) we can go to node(E) and
node(F) with distances of 6 and 7, respectively. When we combine <A,C,2> with
node(E) and add the distance 6 to the value in <A,C,2> we get a new solution,
<A,CE,8 >. You can see that in above table we already have a solution for
<A,B,E,5> with a distance of 5 which is 3 less than 8. Therefore, this new solution
of <A,C,E,8 > will not be inserted into the SOLUTIONS-2 list. Using the same
procedure we obtain <A,C,F,9 > which is a solution for going from node(A) to
node(F) with a total distance of 9. Similarly, we aready have a solution of

10



<A,B,F,6> which has a smaller total distance, therefore this solution will not be
entered into SOLUTIONS-2 either. Finally, for SOLUTIONS-2, we will find out
the nodes reachable using <A,D,3>. Node(D) has two links to node(E) and node(F)
with distances 1 and 9, respectively. Using these two links we obtain <A,D,E,4>
and <A,D,F,12>. The first solution <A,D,E,4> is better than the existing solution of
<A,B,E,5> s0 <A,D,E,4> will be recorded over <A,B,E,5> (represented by striking
through this solution in the table) and <A,D,F,12>, will be discarded since existing
solution <A,B,F,6> has a distance of 6, much lower.than 12. In the final step of DP,
we generate <A,B,F,G,17> and <A ,D,E,G,14> where we note that <A,D,E,G,14> is
shorter than <A,B,F,G,17>. As we cannot find any more new paths through the
graph we conclude that the shortest path from node(A) to node(G) is given by the
ordered list <A,D,F,G> and its cost is

Next, a DP formulation is presented for generating optimal join orders for a
relational join query.

2.3 A Dynamic Programming Formulation for Finding Optimal Join Orders
Given an relational query that requires combining information from N relations,
namely Ri, Ry,..., Ry, the single query optimization problem aims to determine in
which order these relations need to be joined will result in a minimal total cost of
(N-1) join operations that will be executed. An example is given next for three
relations.

2.3.1 A samplejoin order problem

The join requested in relational algebra notation: ((R1 > R2) = R3) = R4)
The cardinalities of relations: R1(1000), R2(10000), R3(100000), R4(100)

11



The cardinalities of join results: R1 = R2 (1000, i.e. selectivity=10), R2 = R3 (10,
i.e. selectivity=10®), and R3* R4 (10000, i.e. selectivity=10")

Since (R2 =~ R3) will result in a much smaller number of records in the intermediate
result, that must be produced and saved in memory or on disk, before the second
join with R1 is performed, the execution of (R2 = R3) = R1 will take much lesstime
than (R1 = R2) =~ R3. Assuming that the processing time of a join operation is
proportional to the size of its inputs and the size of result it generates, the dynamic
programming will proceed as follows to find the optimal order of join operations.

Table 3: Join cost etimation

R1 = R2, size=10°, cost=12000 (R1 = R2) = R3, size=1,cost=13001

R1 = R3, size=10°%, cost=10°+101K | (R1= R3) = R2, size=1, cost=10%+201K
R1 = R4, size= 10°,cost=101100 (R1 = R2) ~ R4,size=

R2 = R3, size= 10,c0st=110010
R2 = R4, size= 10°,00st=1010100
R3 = R4, size= 10%,cost=100100

2.3.2 Plan generation for a query

For the evaluation purposes of this thesis we consider only select, project, and join
operations. The types of tasks generated by the developed software are as follows:
Read task: these tasks have the name the name the of the relation that will be input.
We consider that all of the recordsin arelation will be read by aread task.

12




Select task: A select task will apply a filter condition on the input records and
output only those records for which the condition evaluates to true. The conditions
are generated randomly and has selectivities between 10% and 100%.

Join task: A join task will combine records from a two input relations and output
the resulting records. The number of records generated by joining relations R1 (with
Nr1 records) and R2 (with Ny, records) will be determined by the join selectivity
factor which is between 10% to 100%. Thus, the number of records in the join
result can be calculated by using the formula, N1 * N1 * SF(R1,R2).

JOTB+

selecticondition] )+

Eead(E2)w

EeadiE 1w

Figure 7: A sample query tree and its task generation.

The plan generated for the above query tree will consist of the tasks:

13



T1: read (R1)

T2: apply select condition1 on output of T1
T3: Read(R2)

T4: Join the output of T2 with the output of T3

2.4 Alternative plan generation

Given a multiple query optimization problem instance with tasks

Table 4: Tasks in a multiple query optimization problem

TL|T2|T3|T4 | T5|T6 | T7|T8|T9
10|20 |20 |5 |10 |30 |25 |15 |5

and, plans for three queries, P; which is the j-th plan for query Q.

Table 5: Description of MQO plans

P11 P12 P21 P2 P23 Ps1 Pz
T1,T2,T3 | T1,T4T5| T4T16,T7 | T1,T3,T8 | T2,T4T7 | T1,T2 | T3,T9
(50) (25) (60) (45) (50) (30) (25)

The smallest cost plans for individual queries are as follows:

14



P12, P22 and Ps, are lowest cost plans for Qi, Q2, and Qs, respectively. However,
the plan combination with the lowest total cost for all three queriesis { P11, P22, P31}
with atotal cost of 65. You can see that for Q1 and Q3 the lowest cost plans are not
selected when multiple query optimization is used. Also, the total cost of evaluating
all three queries is reduced from 95 to 65 since each shared task is executed only

once, resulting in these savings.

2.4.1 Alternative plan generation for a query

In order to be able to achieve the maximum benefit out of multiple query
optimization and reduce the total cost of executing a set of queries, we need to be
able to generate aternative plans for executing a query. Also, these alternative plans
must be generated in such a way that there must be as much sharing as possible
between a generated alternative plan and the plans already available for other

gueries.
For achieving this purpose three methods have been proposed in the literature, to

the best of our knowledge. First method is called “pairwise alternative plan

generation” and it proceeds as follows:

15



Stepl: FOR i:=1 to NumberOfQueries

Stepl.1: FOR j:=1to NumberOfQueries

Stepl.1.1: IF(i= =j) CONTINUE;

Stepl.1.2:  CR:=the common relations between Qi and Qj
Stepl.1.3:  CC:= the common conditions between Qi and Qj
(on CR relations)

Stepl.1.4:  IF (| CR | < 1) continue; // there is no common
relation

Stepl.1.5: IF(|CR]|>1)

Stepl.1.5.1: ...JOINTREE := BEST-LDEEP-JOIN-
TREE(CR, CC)
Stepl.1.5.2: Qi :
Stepl.1.5.3: Q:

JOINTREE join Qix
JOINTREE join Qjx

Figure 8: Pairwise alternative plan generation

We modify Qi and Qj (obtaining Qi’ and Qj’) so that all the select conditions on CR
but not in CC will be performed on the output of JOINTREE. Thus we will have
two alternative plans, one for each of Qi and Qj, so that all of the join task(s) to

calculate JOINTREE can be shared.

2.5 Join tree transformation operations

In order to modify the query join trees in such a way that shared relations and
conditions are collected together so that they can be executed separately from the
rest of the query tree, and its results can be shared with other join trees. Since the
modified join tree must generate the same query result set, we show the equivalency

of used query tree transformation operations and explain how they work.(xxx )
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2.5.1 Commutativity transformation

Mg sid=E sid Mg sid=E sid
S (p=cs) Enrollment Enrollment S
y (D="CS))
A
Student
Student

Figure 9: A commutativity transformation example.

The commutativity transformation is used for changing the order of inputs to ajoin
operation. For example, for the nested-loops-join method the order of inputsis used
to decide which input relation is used in the outer loop, and the other one is used in
the inner loop. For hash-join method it could represent the relation that would be
used for building the hash table used in the hash join.

2.5.2 Associativity transformation
The join operation is associative. This allows joins in a query to be ordered in any

way chosen and makes this an ideal transformation method for increasing the

number of sharable join operations between two query plans. Since join operations

17



are usually very expensive, there is potential for huge reductions in total execution

costsin amultiple query optimization problem instance.

Mg sid=E.sid ANDC.cid=E.cid

AN

Mg cid=C.cid

™S sid=E.sid Course Enrollment >
S pid="cs) Enrollment Course
Y S pid="cs)
A
Student
Student

Figure 10: An associativity transformation example.

2.5.3 Selection fragmentation transformation

Since the number of relations in database is relatively small, the variety of queries
mostly result from the use of different selection criteria used for specifying which
records in arelation must be returned by a query. We could still obtain some shared
tasks from such selection operations by considering “subsumption” of conditions.
An example for such subsumption could be two conditions where one includes an
extra predicate (e.g. dept="CS’ AND year="4’). By fragmenting this condition into
two parts it could be possible to share either “dept=CS” or “year=4" with another

query.
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Figure 11: A selection fragmentation transformation example.

2.5.4 Projection fragmentation transformation
This operation is similar to selection fragmentation and by keeping attributes of a

relation in an intermediate result, it becomes possible to share an intermediate result

with another query plan.

19



R i
P sid,sname
A
P sid,sname — >
/ P sdsame,did
A
Student Student

Figure 12: A projection fragmentation transformation example.

2.5.5 Selection and Projection propagation transformation

This operation is used to delay selection and projection operations so that any
following join operation could use the same intermediate results with another query
plan, thus allowing shared join operations with the same inputs. Although the cost
of a join operation would be increased by delaying a selection or projection
operation (because of size of input relation becomes larger taking more space in
memory), the total multiple query execution cost could be reduced by allowing a
join operation to be shared.
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Figure 13: A selection and projection propagation transformation example.
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CHAPTER I

EXPERIMENTAL SETUP

In order to compare alternative plan generation methods we synthetically generate a
database with a number of tables. Each table is randomly assigned a number of
records, a number of attributes(one key and several non-key attributes) that will be
used to determine the length of that table’s records. Once the requested number of
base relations are generated, relationship tables which can be joined by other base
relations are randomly generated between pairs of randomly chosen base relations.
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Table 6: An example synthetically generated database

Base Relations Relationship Relations
Rel# | # Key attr | Num. Dep.Attr. | Rel# | # Key Attr. | Num.of Dep. Attr.
RO 1 4 R9 2 3
R1 1 5 R10 2 8
R2 1 7 R11 2 3
R3 1 2 R12 2 9
R4 1 1 R13 2 6
R5 1 8 R14 2 3
R6 1 4 R15 2 9
R7 1 6 R16 2 1
R8 1 10 R17 2 1

3.1 Randomly Generating Queries

Once the underlying database tables have been generated, the next step is the
generation of relational queries on these tables. In order to make sure the generated
guery is a realistic one it is taken great care so that only relations that have a
“foreign key” connecting them will appear in the “FROM” clause of the query. In
order to achieve this first a so-called “root relation” is selected from among the so-
called “relationship relations”.

Once the “root relation” is selected, then we continue to select “base relations” and
“relationship relations” that are “connected” to this “root relation” by one or more
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“foreign key” attributes. This way, the generated query is guaranteed to be free of
any cartesian product operations and contain meaningful equijoin operations only.

When an individual base relation is chosen for inclusion in a query, a selection
operation is also generated on it, randomly. For this purpose, one of the attributes in
that relation is randomly selected as the subject of the select operation on that
relation. It is also possible to assign more than one attributes (in the same table) for
the select operation, in which case we restrict the two select conditions to be
combined with an “logical and “ operator only. The case of “logical or” operations
can be handled by generating two queries each with one of the selected attributes.

We assume that each attribute can have at most five distinct conditions defined on
them. Therefore, C11 and Cy, refer to two distinct conditions on attribute A;.

3.2 Therandom query generation algorithm

The algorithm for above described procedure is given below:

INPUT: The base relations and relationship relations
OUTPUT: The selected relations, the select attributes, the select conditions
/I RGN (') — randomly generated number

Step 1.1 RR= RGN(1, NumberOfRelationshipRelations)

Step 1.2 NR= RGN(1, MaxNumberOfRelationsPerQuery)

Step 1.3 SSR={} // set of selected relations

Step 1.4 SSC={} // set of conditions

Step 1.5 for(i=1; i<NR; i++)

Step 1.5.1 SR= RGN(1, NumberOfRelations)

Step 1.5.2 while( (SR aready in SSR) OR ( SR not connected to SSR) )
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Step 1.5.2.1 SR= RGN(1, NumberOfRelations)

Step 1.5.3 SSR = SSR union SR

Step 1.5.4 SA= RGN(1,NumberOfAttributesinSR)

Step 1.5.5 SSC = SSC union SA * RGN(1,MaxNumOfCondsPerAttr)

3.3 Generating an Optimal Plan for a Query

For a single query finding an optimal query plan has been reduced to finding the
order in which relations will be joined to a partial query result to form the final
answer. Thisis called finding a so-called “left-deep” join tree for evaluating a given

query. For asample “|eft-deep” join tree see Figure 3.2.

Mg cid=C.cid

Mg sid=E sid Course

Student Enrollment

Figure 14: A sample left-deep join tree.

3.4 Generating Alternative Plansfor a Query

An optimal plan for a single will always have its selection and projection operations
performed as early as (at the lower levels of the join tree) possible, that is perform
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projection when the extra attributes are not needed by the rest of the query anymore,
and perform selection operations as soon as it becomes possible to evaluate the
conditions, which is for conditions based on a single table do the selection operation
just after reading the input relation, and for join conditions perform them when the
join operation is being performed. For the purposes of this thesis, aggregate
operations (those involving GROUP BY clause) and aggregate conditions (such as

AV G(grade) > 3.0) are not considered during these experiments.

3.5 Generating Alternative Plansfor Multiple Queries

In order to generate alternative plans for more than query, we consider two different
algorithms, pairwise and complete.

NUVMBER_OF PLANS = nunber _of _pl ans;
for (i =1, i <= nunber_of _plans; i++)
for( Jj =1 + 1, j<= nunber_of _plans ; j++ )

APPLY TRANSFORMVATIONS ON Plan[ i ] so that an
alternative plan
Plan [ ++NUMBER OF PLANS | |s obtained for
it wth maxi mal possible sharings with
Plan[ | ]

Figure 15: The pairwise algorithm
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for (i =1; i <= NUMBER OF_PLANS; i ++)
for( Jj =1 + 1; j<= NUMBER_OF_PLANS ; | ++ )
APPLY TRANSFORMATIONS ON Plan[ i ] so that
an alternative plan
Plan [ ++NUMBER OF PLANS | is obtained for

it wth maxi mal possible sharings with
Plan[ | ]

Figure 16: The complete algorithm

As you can see from the code for the “complete” algorithm, newly generated plans
are included when generating other alternative plans while in “pairwise” only the
initial set of plansis used when generating new alternative plans.

The “sharing factor” heuristic first proposed by [Cosar 2006] and developed by Dr.
Ahmet Cosar and Dr. Faruk Polat in 1998, and tested in [Gunay 1998] is as follows,
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sunSF=0. 0; count SF=0; suntFkar e=0.0; nysi gnma=0. 0;
i nt ng= Nunber_of _Queri es;
for(i=1;i<ng;i++) {
for(j=i+1;j<=nq;j++) {
lcr.intersectList(Qs[i]->rels, [j]->rels);
/*LCR is array of lcr (list of common relations) */
LCR[i][]j].copyList(lcr);
if(lcr.cntf()<2) continue;
I cc.intersectList(Qs[i]->conds, s[]]->conds);

[*LCC is array of lcc (list of comon conditions) */

LCOi][j]-copyList(lcc);
lca.intersectList(Qs[i]->attrs, B[]j]->attrs);
nckat tr=common_kattrs(lca);

/lcais the list of common key attributes */
factorl=sumrel ation_sizes(lcr, &vgcard);
factor2=sum join_relation_sizes(lcr);
factor3=lcc.cntf()*lca.cntf()*avgcard;
SF[i][j] = factorl + factor2 + factor3 ;
sunSF += SF[i][j];
sunSFkare += SF[i][j]I*SFLil[j];
count SF++;

}

}
*avgSF=suntF/ ( doubl e) count SF;

*si gma=sqrt ((doubl e) (( sunSFkar e* count SF-
sunSF* suntSF) / (doubl e) (count SF*(count SF)))) ;
*sigma = (*sigma)/2.0 ;

Figure 17: The sharing factor heuristic

This heuristic uses the number of common key attributes, number of common
conditions, and number of common relations to calculate a heuristic value that is
used to filter those plan combinations that are not very promising.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Introduction

The performances of Pairwise and Complete alternative plan generation methods
have been measured and compared experimentally. The results are reported in this
chapter. The goal in performing these tests was to verify the results obtained in a
previous MS thesis [Gunay 1998-2] and correct any mistakes that were made in
analysis. Our results clearly show that the execution time measurement method
(total (user,system,idle) CPU running times were used instead of using the Unix
system’s “time” command which calculates and reports the “user”, “system” and
“idle” cpu execution times separately) used in the above mentioned thesis resulted
in gross exaggeration of obtained benefits by scaling the execution time of complete
APG heuristic and thus exaggerated the benefits of sharing factor heuristic. We plan
to perform another study to verify whether a similar improvement in APG execution
time can be obtained by using a random dropping of same percentage of plans as
that done by the sharing factor calculation heuristic.

After execution times of earlier exhaustive versions of “complete” and “pairwise”
APG heuristics are measured, the performance of the same methods are measured
when the “sharing factor” filtering heuristic is used to reduce the execution time of

alternative plan generation phase. This way we can compare the running times of
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each heuristic and measure how much CPU time is gained by employing the sharing
factor heuristic.

Finally, the quality of alternative plans produced when “sharing factor” filtering
technique is used, to decide whether the execution time savings in alternative plan
generation, results in too much degradation in alternative plan quality.

For this purpose, we take the multiplan obtained by not generating any alternative
plans as the basis of comparison since it always provides the global multiplan with
the highest total execution cost. The complete and pairwise APG heuristic and
sharing factor modified versions of complete & pairwise APG heuristics will
always produce multiplans with lower costs. Thus, we divide the total cost of the
best multiplan found by each heuristic by the best cost of multiplan found by
running multiple query optimization on the initial input plans for each individual
query. Therefore, the results reported in the comparison graphs have values between
0 to 1 where “1” corresponds to the worst multiplan found by not using any
aternative plan generation at all.

30



2joins

10
©
o 8 ——Noapg
g 6 —u— Painnise
g Corrplete
'g 4 - /K o
§ Painnise+SF
5 2+ —%— Complete+SF
O T T T T T T

4 5 6 7 8 9 10

Number of queries

Figure 18: APG times as number of queries increases (2 joins per query).
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Figure 19: Multiplan quality as number of queries increases (for 2 joins per query).

31



3joins
12
. 10
o —— Noapg
E 8 —8— Pairwise
c K
o 6 Conplete
% a4 / T Pairwise+SF
3 ._/.//_./.—_'\' —%— Conplete+SF
2 B
0] ‘ ‘ ‘ ‘ ‘
5 6 7 8 9 10
Number of queries

Figure 20: APG times as number of queries increases (for 3 joins per query).
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Figure 21: Multiplan quality as number of queries increases (for 3 joins per query).
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Figure 22: APG times as number of queries increases (4 joins per query).
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Figure 23: Multiplan quality as number of queries increases (4 joins per query).
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Figure 24: APG times as number of queries increases (5 joins per query).
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CHAPTER V

CONCLUSIONS & FUTURE WORK

5.1 Conclusions from experimental results

After obtaining the results from running the experiments we analyzed the results
and formed them into line graphics so that the effects of employing heuristics for
alternative plan generation can be observed. The generated graphs for 2, 3, 4, and 5
join operations per query with up to 10 such queries in a multiple query
optimization problem instance show that;

The execution times of Pairwise and Complete APG methods are less than
100ms in all of the experiments

For small (5-7) number of queries “Complete” heuristic takes little extra
time and has high benefit

Asthe number of queries increases the benefit from APG decreases

The last observation may seem to have a negative meaning on the potential benefit
from multiple query optimization, but this result must be expected since as the
number of queries all of the tables in a database will be included in at least one of
the queries input to the multiple query optimization problem, and thus the total cost
of a multiplan will be dominated (and limited) by reading all of the tables in the
database once. Therefore, in all of the graphs as the number of queries grows
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towards 10 (which is the total number of base tables in the experimental database)
all of the heuristics start producing multiplans with very similar costs.

The most important conclusion from this work, however, is the finding that the
reported benefits from [Gunay 1998-2] have been shown to be grossly inaccurate
and no such large benefits can be expected from sharing factor calculation heuristic

during alternative plan generation.

Another important finding the observation that by employing dynamic
programming[ Toroslu 2004] class (developed for the purposes of this thesis by Dr.
Ahmet Cosar) alternative plan generation will take a very small amount of time,
usually less than 100ms.

5.2 Future Works

After re-writing in C++ of the multiple query optimization system code that had
been developed by Dr. Ahmet Cosar (for his PhD thesis work), now it has become
possible to run more advanced and detailed experiments on multiple query
optimization and alternative plan generation. Combined with the ability to generate
synthetic randomly generated databases and MQO problem instances on that
synthetic database, from within the program, it is possible to explore below future

works,

Inclusion of OR in WHERE clause.
Inclusion of “<* and “>” when deciding shared subsets of query results. (e.g.
“year<4” and “y%r<2”

Upto now, it was assumed that a query with an “OR” logical operation in the

“where” clause of the SQL statement would be input as two separate queries
replicated for each side of the OR operation. Although, this didn’t change that cost
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of the global Multiplan, it certainly affected the alternative plan generation cost
since the number of queries input to the multiple query optimization is increased

this way.

Also, the limitation of the detection of logical predicates to the “=" operator limits
the benefits that can be obtained from multiple query optimization by allowing
logical predicates like “age<30” and “age<20” to be shared and obtain the result of
“age<20” from output of “age<30”.
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