

i

A NOVEL FAULT TOLERANT ARCHITECTURE
ON A RUNTIME RECONFIGURABLE FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İBRAHİM AYDIN COŞKUNER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

NOVEMBER 2006

ii

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. İsmet ERKMEN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Hasan Cengiz GÜRAN

Supervisor

Examining Committee Members

Assist. Prof. Dr. Cüneyt BAZLAMAÇCI (METU, EE)

Prof. Dr. Hasan Cengiz GÜRAN (METU, EE)

Assist. Prof. Dr. İlkay ULUSOY (METU, EE)

Dr. Şenan Ece SCHMIDT (METU, EE)

M.Sc. Alper ÜNVER (TÜBİTAK – SAGE)

iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

İbrahim Aydın COŞKUNER

iv

ABSTRACT

A NOVEL FAULT TOLERANT ARCHITECTURE ON A

RUNTIME RECONFIGURABLE FPGA

COŞKUNER, İbrahim Aydın

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan Cengiz Güran

November 2006, 128 Pages

Due to their programmable nature, Field Programmable Gate Arrays

(FPGAs) offer a good test environment for reconfigurable systems. FPGAs can be

reconfigured during the operation with changing demands. This feature, known as

Runtime Reconfiguration (RTR), can be used to speed-up computations and

reduce system cost. Moreover, it can be used in a wide range of applications such

as adaptable hardware, fault tolerant architectures.

This thesis is mostly concentrated on the runtime reconfigurable

architectures. Critical properties of runtime reconfigurable architectures are

examined. As a case study, a Triple Modular Redundant (TMR) system has been

implemented on a runtime reconfigurable FPGA. The runtime reconfigurable

structure increases the system reliability against faults. Especially, the weakness

of SRAM based FPGAs against Single Event Upsets (SEUs) is eliminated by the

designed system. Besides, the system can replace faulty elements with non-faulty

elements during the operation. These features of the developed architecture

provide extra safety to the system also prolong the life of the FPGA device without

interrupting the whole system.

Keywords: Runtime Reconfiguration, Partial Reconfiguration, Fault

Tolerant Reconfigurable Systems

v

ÖZ

ÇALIŞIRKEN YENİDEN BİÇİMLENDİRİLEBİLİR FPGA

ÜZERİNDE HATAYA DAYANIMLI YENİ BİR YAPI

COŞKUNER, İbrahim Aydın

Yüksek Lisans., Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Hasan Cengiz Güran

Kasım 2006, 128 Sayfa

Alan Programlanabilir Kapı Dizinleri (FPGA) programlanabilir yapıları

sayesinde, yeniden biçimlendirilebilir sistemler için uygun bir yapı sunarlar. FPGA

gelen değişik ihtiyaçlara göre çalışma esnasında yeniden biçimlendirilebilir.

Çalışırken Yeniden Biçimlendirme (RTR) olarak bilinen bu özellik sayesinde

işlemler daha hızlı yapılabilir ve toplam sistem maliyeti düşürülebilir. Ayrıca RTR

uyarlanabilir donanımlar ve hataya dayanımlı yapılar gibi birçok alanda

kullanılabilir.

Bu tez çalışırken biçimlendirilebilir yapılar üzerine yoğunlaşmıştır.

Çalışırken biçimlendirilebilir yapıların önemli özellikleri incelenmiştir. Örnek olarak

Üçlü Modüler Yedekleme (TMR) sistemi, çalışırken biçimlendirilebilir bir yapı

üzerinde uygulanmıştır. Çalışırken yeniden biçimlendirilebilir yapı sistemin

hatalara karşı güvenilirliğini artırmıştır. Özellikle FPGA’lerin Tekli Hata

Oluşumlarına (SEU) karşı olan zaafları tasarlanan sistem sayesinde giderilmiştir.

Ayrıca sistem hatalı elemanları hatasız olanlarla çalışma sırasında

değiştirebilmektedir. Geliştirilen mimarinin bu özellikleri sayesinde sistem daha

güvenilir olmuş ve FPGA’in kullanım ömrü sistem durdurulmadan uzatılabilir hale

gelmiştir.

Anahtar Kelimeler: Çalışırken Yeniden Biçimlendirme, Kısmi Yeniden

Biçimlendirme, Hataya Dayanıklı Yeniden Biçimlendirilebilir Sistemler

vi

To My Family

vii

ACKNOWLEGMENTS

I would like to thank my supervisor Professor Hasan Güran, for his

guidance and advices throughout the preparation of this thesis. Thanks to his

advices and helpful criticisms, this thesis is completed.

I also thank to my family for their great encouragement, for their great

support, and for their endless love.

I am very grateful to Türkmen Canlı, for the boards he brought at a critical

time. I am also grateful to Salih Zengin for his ideas, suggestions, and technical

support.

Special thanks goes to Yüksel Subaşı for the moral support he has given

to me when I was near to give up, I also thank to Yiğiter Yüksel for his guidance

and my colleagues for their help and friendship during this period. I also greatly

appreciate Ahmet Coşar for the PCB he produced.

TÜBİTAK-SAGE who supported this work is greatly acknowledged.

viii

TABLE OF CONTENTS

ABSTRACT...iv

ÖZ ..v

ACKNOWLEGMENTS..vii

TABLE OF CONTENTS ..viii

LIST OF TABLES...xii

LIST OF FIGURES ..xiii

LIST OF ABBREVATIONS..xvi

CHAPTERS

1 INTRODUCTION ...1

1.1 Overview ..1

1.2 Objective of the Thesis ...2

1.3 Tools Used ...2

1.4 Organization of the Thesis ..4

2 BACKGROUND...5

2.1 Reconfigurable Computing ...5

2.1.1 The Aim of Reconfigurable Architectures6

2.2 Granularity of Reconfigurable Architectures......................................6

2.3 Reconfiguration Approaches...12

2.4 Reconfiguration Time..16

2.5 Partially Runtime Reconfigurable FPGAs17

2.5.1 Reconfiguration Times of FPGAs ...19

2.6 Application Areas of Reconfigurable Architectures..........................19

2.6.1 Easy Prototyping – Low Volume Products............................19

2.6.2 In-Field Upgrades...20

2.7 Application Areas of Runtime Reconfigurable Architectures20

2.7.1 Cost and Power Reduction...21

ix

2.7.2 Adaptable Computing...22

2.7.3 Speeding-up Computations..23

2.7.4 Fault Tolerant Systems ..24

2.8 Application in this Work...24

3 XILINX FPGA ARCHITECTURE AND TOOLS..25

3.1 Main Structure of Xilinx FPGAs...25

3.1.1 Configurable Logic Block Structure26

3.1.2 Input Output Block Structure ..26

3.1.3 Routing Structure ...27

3.2 Configuration Architecture of Xilinx FPGAs.....................................29

3.2.1 Column and Difference Based Reconfiguration....................30

3.2.2 Glitchless Reconfiguration..31

3.2.3 Clocking Logic..31

3.2.4 Suitable Configuration Options for Runtime Reconfiguration 31

3.3 Conventional Design Flow for Xilinx FPGAs36

3.4 Tools for Partial Reconfiguration of Xilinx FPGAs38

3.4.1 XAPP290 ...38

3.4.2 JBITS ...39

4 MODULE BASED PARTIAL RECONFIGURATION..41

4.1 Column Based Reconfiguration ..42

4.1.1 Restrictions of Partial Reconfigurable Design.......................43

4.1.2 Bus Macros ..43

4.1.3 Clocking Logic..44

4.2 Implemented Simple Partial Reconfigurable Architecture................45

4.3 Xilinx Tools and Implementation ...46

4.3.1 Modular Design Flow Overview..46

4.3.2 Module Entry and Synthesis...50

4.3.3 Implementation ..51

4.3.3.1 Initial Budgeting Phase...53

4.3.3.2 Active Module Implementation Phase.............................58

4.3.3.3 Final Assembly Phase..59

4.3.4 Creating “Logic 0” and “Logic 1”s ...63

4.4 Encountered Problems and Solutions ...64

x

4.4.1 Bus Macro Error and Its Solution..65

4.4.2 Second Bus Macro Error and Its Solution.............................66

5 A TMR SYSTEM ON A RUNTIME RECONFIGURABLE ARCHITECTURE....68

5.1 Background ..68

5.1.1 Fault Tolerance ..69

5.1.1.1 Redundancy ...69

5.1.1.2 Availability ..69

5.1.2 Triple Modular Redundancy (TMR)69

5.1.3 Rollback and Roll-forward ..70

5.1.4 Fault Types ..71

5.1.4.1 Transient Faults..71

5.1.4.2 Permanent Faults...72

5.2 Related Work..73

5.3 Designed Architecture ..76

5.3.1 General Overview of the System..76

5.3.1.1 Addressed Error Types...77

5.3.1.2 Partial Runtime Reconfigurable Design77

5.3.2 Hardware Used in the Design...78

5.3.2.1 Digilent D2-SB System Board...79

5.3.2.2 Digilent DIO Board ...80

5.3.2.3 RS232 to LVTTL Converter Board..................................80

5.3.2.4 Parallel Cable III ...81

5.3.3 Working Principle of the TMR...81

5.3.4 VHDL Design of the TMR Circuit ..82

5.3.4.1 Voter Module..83

5.3.4.2 A Redundant Module..87

5.3.5 Partial Reconfigurable FPGA Design90

5.3.5.1 Modified Bus Macro..92

5.3.5.2 Partial Configurations ...95

5.3.5.3 Batch Files for Modular Design Flow96

5.3.6 Eliminating Faults...97

5.3.6.1 Eliminating Single Event Upsets.....................................97

5.3.6.2 Eliminating Permanent Faults...98

5.3.7 PC Program ...99

xi

5.3.7.1 Communication with Serial Port....................................101

5.3.7.2 Batch Files for Configuration ..101

5.3.7.3 Running Batch Files from Borland C++ Buider102

5.3.8 Protocol between PC Program and Voter Module102

5.3.9 Fault Elimination Algorithm Running on the PC..................103

5.3.10 Fault Injection...105

5.3.10.1 Bitstream Modification ..106

5.3.10.2 VHDL Code Modification ..110

6 CONCLUSIONS ..111

6.1 Conclusions Based on the Work ...111

6.2 Recommended Future Works ...113

REFERENCES ...114

APPENDICES

A PCB and Schematics of the RS232 Circuit...119

B Simulation of Two Roll Forwarding Methods...121

C User Constraint File of the TMR Design...122

D PACE and FPGA Editor View of the TMR Design124

E Source Files of Designed Architectures...126

xii

LIST OF TABLES

Table 3-1: JTAG Pins and their descriptions ...35

Table 3-2: Standard Design Flow Operations and Tools of Xilinx FPGAs38

Table 4-1: Descriptions of Files that are used for Module Based Partial
Reconfiguration..49

Table 4-2: Truth Tables of Dummy Look Up Tables ..63

Table 5-1: Status Descriptions and their corresponding ASCII values.................84

Table 5-2: Definitions and codes of Module Commands85

Table 5-3: Occupied Area of the Modules ...92

Table 5-4: Different Bus Macro Functions and Their Sources93

Table 5-5: FPGA Editor Symbols and Their Functions108

Table 5-6: Truth Table of LUT Function Before and After a SEU Injection109

Table E-1: The Directories and Files in the CDROM...126

xiii

LIST OF FIGURES

Figure 2-1: Comparison of Microprocessors, ASICs, and Reconfigurable
Architectures..5

Figure 2-2: General Structure of a Fine-Grained Architecture7

Figure 2-3: Basic Structure of a Fine-Grained Logic Cell on an FPGA8

Figure 2-4: Reconfigurable Data Unit of KressArray [6]...9

Figure 2-5: Array Structures of Coarse Grain Architectures a) Linear Array b)
Mesh c) Crossbar d) 2-Dimensional Array ...10

Figure 2-6: A Datapath Equation and Hardware Mapping [6] a) Equation mapped
to the node levels b) Hardware mapping of the equation11

Figure 2-7: Dynamic Reconfiguration of Hardware..12

Figure 2-8: A Partially Reconfigurable Device and its Configurations..................13

Figure 2-9: Self-Reconfiguration from External Configuration Port15

Figure 2-10: Self-Reconfiguration using Internal Configuration Port....................15

Figure 2-11: Required Reconfiguration Times for Different Application Types.....16

Figure 2-12: An Example of Hardware Operating System [13]17

Figure 3-1: General Structure of Spartan 2E FPGAs [31]....................................25

Figure 3-2: A CLB of a Virtex-E (or Spartan 2E) device.......................................26

Figure 3-3: Input/Output Block Structure of Virtex-E Device................................27

Figure 3-4: General Routing Matrix and its Connections [31]28

Figure 3-5: Horizontal Longlines that traverse all along the FPGA28

Figure 3-6: Configuration Columns and Frames of Xilinx XCV50 device30

Figure 3-7: SelectMAP Configuration Signals on Xilinx FPGA.............................33

Figure 3-8: ICAP Configuration Signals on Xilinx FPGA......................................34

Figure 3-9: JTAG Configuration Signals on Xilinx FPGA.....................................36

Figure 3-10 Standard Design Flow for an FPGA Design37

Figure 3-11: Design Flow of Runtime Reconfiguration using JBits [39]39

Figure 3-12: JBits Application Flow ...40

Figure 4-1: Design Layout with Two Reconfigurable Modules [35]42

Figure 4-2: Communication with Reconfigurable Modules...................................43

xiv

Figure 4-3: Bus Macro connecting two adjacent modules [35].............................44

Figure 4-4: Basic Structure of Reconfigurable Design...45

Figure 4-5: Alternative Configurations for Reconfigurable Module.......................46

Figure 4-6: Modular Design Flow Overview [40]..47

Figure 4-7: Directory Structure Used For A Module Based Partial Reconfigurable
Design ...48

Figure 4-8: Initial Budgeting and Active Implementation Phases of Module Based
Partial Reconfiguration Flow. ...52

Figure 4-9: Assemble Phase of Module Based Partial Reconfiguration Flow.53

Figure 4-10: Constrained Areas for Modules as seen on PACE..........................55

Figure 4-11: Configurable Logic Block (CLB) Contents56

Figure 4-12: Bus Macro placement on FPGA..56

Figure 4-13: Partial Bitstreams for Reconfigurable Modules and Static Module ..58

Figure 4-14: Placement of an Adder Circuit and Bus Macro on FPGA61

Figure 4-15: Placement of a Multiplier Circuit and Bus Macro on the FPGA........61

Figure 4-16: Placement of an Subtractor Circuit and Bus Macro on the FPGA....62

Figure 4-17: Final Layout of the Circuit on the FPGA with Adder Module on the
Left Side ..62

Figure 4-18: Dummy LUTs for creating “Logic 1” and “Logic 0”64

Figure 5-1 Triple Modular Redundancy (TMR) with Simplex Voter......................70

Figure 5-2 Effect of a Single Event Upset (SEU) a) Original Configuration with
function AND b) Configuration after a SEU with Function Constant Zero [45]
..72

Figure 5-3: Components and Connections of the Reconfigurable System...........77

Figure 5-4: Picture of the Reconfigurable System without a PC79

Figure 5-5: Block Diagram of the D2-SB board ...80

Figure 5-6: General Structure of the System ...82

Figure 5-7: Block Diagram of the Voter Module...83

Figure 5-8: Internal Logic Circuits of Error Checker Unit a) Circuit giving “All
Modules are OK” signal b) Circuit giving “Error on Module One” signal........84

Figure 5-9 A Command Byte sent by the PC...85

Figure 5-10: A Redundant Module of the TMR System88

Figure 5-11: Finite State Machine that is implemented on Redundant Modules ..89

Figure 5-12: Layout of the Modules on the FPGA ...91

xv

Figure 5-13: Modified Bus Macro that connects Two Non-Adjacent Modules93

Figure 5-14: FPGA Editor Snapshots of Bus Macros a) Standard Bus Macro
connecting Two Adjacent Modules b) Modified Bus Macro connecting Two
Non-Adjacent Modules...94

Figure 5-15: Alternative Partial Configurations of Module Three95

Figure 5-16: Connections of Bus Macros on a Redundant Module......................96

Figure 5-17: Alternative Configurations of a Module..99

Figure 5-18: Screenshot of the Supervisor PC Program....................................100

Figure 5-19: An example of Communication Protocol Commands during Error
Recovery Operation of a Module..103

Figure 5-20: Flowchart of Fault Recovery Algorithm that Runs on the PC Program
..104

Figure 5-21: Configurable Logic Block in Editing Mode107

Figure 5-22: A virtual faulty CLB and it is mapping on alternative placements...110

Figure A-1: Top Layer PCB of RS232 Circuit ..119

Figure A-2: Top Overlay PCB of RS232 Circuit ...119

Figure A-3: Schematic of RS232 Circuit..120

Figure B-1: Simulation of Roll Forwarding Method 1 (Constant Frequency Rate)
..121

Figure B-2: Simulation of Roll Forwarding Method 2 (Variable Frequency Rate)
..121

Figure D-1: Module Placements of the TMR Design (Snapshot is taken with
PACE)..124

Figure D-2: FPGA Editor View of TMR Design..125

xvi

LIST OF ABBREVATIONS

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CAD Computer Aided Design

CRC Cyclic Redundancy Check

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

FSM Finite State Machine

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input-Output

IP Intellectual Property

LUT Look-up Table

PCB Printed Circuit Board

PE Processing Element

PROM Programmable Read Only Memory

RA Reconfigurable Architecture

RAM Random Access Memory

RTR Runtime Reconfiguration

SDR Software Defined Radio

SEU Single Event Upset

SoC System on Chip

TMR Triple Modular Redundancy

UART Universal Asynchronous Receiver and Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

CHAPTER S

1

CHAPTER I

1INTRODUCTION

1.1 OVERVIEW

The microprocessors provide a flexible environment for the programmers.

Any type of algorithm can be computed on a general-purpose microprocessor.

However, this flexibility has a significant cost on computation time. The

calculations are done on the same hardware resources for all type of applications

(i.e. one instruction is handled at a time). Calculating algorithms in such serial

structures results in performance degradation.

If the computations can be done in parallel, a significant speed-up can be

achieved. Reconfigurable architectures provide enough hardware resources that

can be used to make computations in parallel. Moreover, their flexible structure

allows constructing different hardware configurations.

Reconfigurable architectures contain configurable connections and a

plenty of logic resources. An application specific hardware can be formed by

configuring these connections. These configurations can be stored by SRAM or

Flash based switches. If SRAM based architecture is used on the reconfigurable

device, infinite number of configurations can be loaded at different times. Loading

a different configuration is called reconfiguration.

 The most popular reconfigurable architecture is the Field Programmable

Gate Array (FPGA). It is commercially available and used for high performance

applications. FPGA is the ideal component for low volume products and it is used

for prototyping Integrated Circuits (IC). With continuously increasing capacities

and falling prices, they are also used in mass products now.

Normal usage of reconfigurable architectures such as FPGAs is as

follows; all the demands is ready before the device runs. Then according to these

2

demands, only one final configuration is prepared and loaded to the

reconfigurable device. Only this configuration runs on the device until a power-

down occurs.

However, SRAM based reconfigurable devices enable changing

configuration data whenever required. Some devices use this property to change

configuration data during the device is running. Therefore, changing demands

during the operation can be satisfied by reconfiguring these devices. This type of

reconfiguration is called Runtime Reconfiguration (RTR). RTR introduced “Virtual

Hardware” concept. It allows same hardware sources to be used for different

purposes at different times by reconfiguring hardware. Therefore, a runtime

reconfigurable architecture enables using unlimited circuits in only one chip by

time multiplexing them.

RTR can be used in adaptable hardware applications, in-field upgrade of

hardware. Other advantages of time multiplexing sources by RTR are reduced

cost and reduced power of the system. Most importantly, speed-up can be

obtained for different types of computations. Consequently, adding RTR property

to the reconfigurable architectures offer new opportunities for digital systems.

1.2 OBJECTIVE OF THE THESIS

The main aim of the thesis is to investigate Runtime Reconfigurable

architectures and to design one such architecture. In order to design a

reconfigurable system, capabilities of a Field Programmable Gate Array (FPGA)

are examined. Afterwards, a fault tolerant architecture is designed that use

runtime reconfiguration to eliminate the faults. This design is implemented and

tested on a runtime reconfigurable FPGA.

1.3 TOOLS USED

In order to implement a runtime reconfigurable system, some hardware

and software tools were used. The tools are the following:

Hardware Tools

• D2SB Board from Digilent Inc.

3

• Personal Computer (PC)

• DIO1 Board from Digilent Inc.

• Custom made RS232 to TTL Converter Card

• Xilinx Parallel Cable III

D2SB Board, which is at the heart of the reconfigurable system, contains a

Xilinx Spartan 2 - 200E FPGA on it. Personal Computer (PC) is responsible for

the reconfiguration processes of the FPGA. DIO1 Board is used to display real-

time information. An RS232 to TTL converter board is used for the communication

of PC and FPGA. The configuration data of the FPGA is downloaded from the PC

using Xilinx Parallel Cable III. Detailed description of the hardware configuration

will be given in Chapter 5.

Software Tools

• Xilinx ISE 6.3i SP2

• VHDL

• Borland C++ Builder 5

Xilinx ISE is a CAD tool that is necessary to generate FPGA designs for

Xilinx FPGAs. It has a Graphical User Interface (GUI) that can be used for

standard FPGA designs. However, the GUI is not enough to achieve a runtime

reconfigurable design. The command line tools of ISE such as NgdBuild, MAP,

PAR, and BitGen are used in this design.

VHDL is a language that can describe hardware. It is used to generate

circuits on FPGA. Files written in VHDL are synthesized using Xilinx Synthesis

Tool (XST).

Borland C++ Builder 5 is used to generate a visual PC program. This

program communicates with FPGA board and manages reconfiguration

processes. The program also provides a user interface that enables user

manipulation and shows the status of the system.

4

1.4 ORGANIZATION OF THE THESIS

The thesis is composed of six chapters. The chapter contents are the

following:

In Chapter 2, a literature survey is done on reconfigurable computing

Basic terms and concepts of reconfigurable architectures are explained. The

application areas of the reconfigurable architectures are also given. Alternative

reconfigurable FPGAs from different vendors are discussed and their critical

characteristics are compared.

In Chapter 3, Xilinx FPGA and its features that enable runtime

reconfiguration are discussed. Some properties of Xilinx FPGAs are explained

from this viewpoint.

In Chapter 4, a simple reconfigurable application is mapped on Xilinx

FPGA. The steps of designing a reconfigurable system are explained using that

simple application. All tools and their batch files are described in detail.

In Chapter 5, a runtime reconfigurable TMR system that is designed to be

highly fault tolerant is presented.

In Chapter 6, a conclusion of this thesis is given. Moreover, planned future

works are given in this chapter.

5

CHAPTER II

2BACKGROUND

In this chapter, basic concepts about reconfigurable architectures will be

explained. In addition, some applications based on reconfigurable architectures

will be emphasized.

2.1 RECONFIGURABLE COMPUTING

In the last few decades, Reconfigurable Computing has become popular in

the area of computer architectures. Reconfigurable systems arise to compensate

the differences of flexible microprocessors and high-speed ASIC circuits. A

reconfigurable architecture takes advantages of both systems. It is more flexible

than ASIC circuits since it can be reconfigured with changing computing needs. In

addition, it has better performance than processors since it implements the

desired algorithm on a dedicated hardware. As seen in Figure 2-1, reconfigurable

architectures take place in between microprocessors and ASICs according to the

flexibility and speed.

Figure 2-1: Comparison of Microprocessors, ASICs, and Reconfigurable

Architectures

6

FPGAs are the first reconfigurable devices introduced as a commercial

product. The first vendor Xilinx has produced FPGAs at mid-1980s with a very

limited capacity. The capacity improvement of FPGAs has nearly followed

Moore’s Law [1]. Today FPGAs have millions of logical gates. Hence, it is

possible to implement more than one medium-sized processor inside one FPGA.

Xilinx MicroBlaze, Altera Nios are examples of such processors. The

improvement of these reconfigurable devices leads to raise academic research on

reconfigurable architectures.

2.1.1 The Aim of Reconfigurable Architectures

The hardware on reconfigurable architectures can be reconfigured if the

demands are changed. This flexibility allows reusability of the hardware

resources. Therefore, reconfigurable architectures can be used for all applications

that can benefit from hardware reusability. Some general benefits of this flexibility

are speeding-up calculations and resource saving.

2.2 GRANULARITY OF RECONFIGURABLE ARCHITECTURES

Reconfigurable architectures generally composed of array of

reconfigurable unit blocks and routing sources that connect these blocks. The size

of these unit blocks reflects granularity of the architecture. The granularity of

these devices ranges from fine to coarse grain. They can be mainly classified as

• Fine-Grained,

• Coarse-Grained and

• Heterogeneous Architectures.

Fine-grained architectures are suitable for bit-level manipulations and

contain elements such as LUT. On the other side, coarse grain architectures have

elements such as ALU or small processor, which makes them suitable for word

level computations. Heterogeneous architectures also become available to use

advantages of both architectures.

7

Fine Grained Architectures

Fine-grained architectures are intended to implement bit level logic

circuits. Calculations that have arbitrary bit width can be done by using fine-

grained architectures. The advantage of fine-grained architectures is that it can

map any logical circuit on the hardware. However, the overhead of routing

resources increases as a cost of this flexibility.

The well-known example for a fine-grained architecture is FPGA. FPGAs

are commercially available reconfigurable devices and most of reconfigurable

computing researches are done on them.

Fine-grained reconfigurable architectures are generally composed of

configurable Logic Cells (LC), configurable Routing Sources, and Input-Output

(I/O) Sources. The general structure of a fine-grained architecture is shown in

Figure 2-2. The Logic Cells are connected to other ones using routing resources.

There are switch matrices that determine how these cells and routing lines will be

connected. I/O cells are also used to connect internal resources to the outside

world.

Figure 2-2: General Structure of a Fine-Grained Architecture

Routing
Lines

Switch
Matrix I/O Cell

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC LC LC

LC

LC

LC

LC

8

Logic Cells (or Logic Tiles) are used to implement logical functions. Most

of the FPGA vendors use Lookup Table (LUT) to implement bit-level

combinational logic functions on Logic Cells. For example, a LUT takes four input

signals, gives one output signal on Virtex Family devices of Xilinx. The

combinational function (4 inputs, 1 output) of LUT is encoded to 16 Bit and stored

on configuration memory of FPGA. In addition to LUT, a Flip-flop (FF) is placed on

same logic cell to generate synchronous circuits. Logic Cell structure of an SRAM

based FPGA is shown in Figure 2-3

Figure 2-3: Basic Structure of a Fine-Grained Logic Cell on an FPGA

Fine-grained architectures can be used for a very broad range of

applications since fine granularity allows mapping almost all types of applications.

However, efficiency will decrease for some applications because of fine

granularity. Therefore, only some applications can be classified as suitable for

fine-grained architectures. The well-fitted applications such as image processing,

data encryption need bit-level data handling [2]. In addition to these applications,

finite state machines (FSMs) can be good candidates for mapping on fine-grained

architecture (since state transitions of FSMs mostly depend on single bit values).

Coarse Grained Architectures

Coarse Grained architectures are composed of array of Processing

Elements (PEs). Processing Elements are designed to compute word-level

computations. They contain coarse grain structures such as an ALU or a small

processor. Therefore, a datapath calculation can be easily mapped on coarse

9

grain architectures. The word length of PE differs on different types of

architectures. It ranges from 2 bit to 128 bit while most of them are 16 bit [3]. In

Figure 2-4, the PE of KressArray is shown. It is called reconfigurable Datapath

Unit (rDPU), and it has a 32-bit ALU and registers.

Figure 2-4: Reconfigurable Data Unit of KressArray [6]

The elements of the array are connected with a configurable routing. I/O

ports connect the PEs to the outside world. The arrangement of the array differs

according to the target application. Different array structures are available such as

Mesh, Crossbar, Linear array, 2-Dimensional Array. In Figure 2-5, these

structures are shown.

Linear arrays are designed as a pipeline with reconfigurable connections.

Rapid and PipeRench are the popular linear array designs. Mesh arrays arrange

PEs in two-dimension and they are connected with nearest neighbor. Popular

mesh based course grained structures are MorphoSys, CHESS, Matrix, RAW and

Garp. Some mesh structures add global connections to increase the performance

of the array. These structures are also called 2-Dimensional arrays and enables

connection of arbitrary PEs. Crossbar structures connect all PEs with each other.

However, this results in increased cost for the routing resources. PADDI-1 and

PADDI-2 are the crossbar structures, which are intended to prototype datapath for

Digital Signal Processing (DSP) Algorithms [4].

10

Some coarse grain architectures have also embedded routing structures

and/or memory inside the PE. For example, KressArray-3 [5] has rDPU that

contains an ALU and routing structure at the same time.

Datapath calculations can be easily mapped on coarse grain architectures.

For instance, mapping of y = a * b + c * (d + e) on KressArray is shown in Figure

2-6.

a)

b)

c)

d)

Figure 2-5: Array Structures of Coarse Grain Architectures a) Linear Array b)

Mesh c) Crossbar d) 2-Dimensional Array

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Crossbar Switch

PE

PE

PE

PE

PE

PE

PE

PE

PE

R
eg

is
te

r

PE

R
A

M

R
eg

is
te

r

PE

R
A

M

11

Figure 2-6: A Datapath Equation and Hardware Mapping [6] a) Equation mapped to

the node levels b) Hardware mapping of the equation

Fine vs. Coarse Granularity

Both structures have their own advantages and disadvantages. Fine-

grained architectures can implement any logic function in one clock cycle, which

is impossible on coarse grain architectures. However, this flexibility is obtained by

using high number of routing resources. The increase of routing sources results in

some drawbacks. First, the area needed for routing will be much higher than

logical elements in a fine-grained architecture. Power consumption increase and

frequency decrease are other disadvantages of fine-grained structures. Routing

sources of fine-grained architectures also need more configuration data than the

coarse grain architectures. Because of higher configuration data, reconfiguration

time of fine-grained architectures is higher than coarse-grained architectures.

Then why fine-grained FPGAs are extensively used instead of coarse-

grained architectures? The reason may be flexibility dominates the other

advantages of coarse-grained architectures. If an application can be mapped to

coarse grain architecture, it can get high speed-up. However, another application

cannot get considerable speedup, if it is not well suited on the same coarse grain

architecture. This factor limits usage of one coarse grain architecture for different

applications. Therefore, a unique coarse grain architecture is not available that

can be used for all type of applications. Such a universal coarse grain structure

does not seem to be available also in the future [5].

In addition, the compiler support of coarse grain architectures is still in its

start stage. Current mapping tools cannot utilize the full potential of coarse-

grained architectures due to the hardware complexity [7].

12

Heterogeneous Architectures

Heterogeneous architectures contain both fine and coarse grain elements

to take advantage of both worlds. Usage of coarse grain elements results in an

increase of the system performance. By using fine grain elements flexibility is

maintained. Therefore, newer reconfigurable architectures are designed

heterogeneously. Generally, arithmetic functions that occupy large space on fine

grain blocks are moved to coarse grain blocks in heterogeneous architectures.

For example, Xilinx has embedded multiplier blocks into their FPGA

devices starting from Virtex-II family. In newer devices, such as Virtex-4, there are

multiply-accumulate (MAC) units, which are well fitted to Digital Signal Processing

(DSP) filter implementations. These embedded units occupy less area, consume

less power, and work with higher frequencies since they have a fixed routing

inside. Therefore, embedded multipliers are much more efficient than

implemented multipliers with fine grain elements.

2.3 RECONFIGURATION APPROACHES

Dynamic (Run-Time) Reconfiguration

If device is reconfigured according to the changing demands during the

operation then it is called dynamically reconfigurable architecture. In such

architectures, same hardware sources can be used for different purposes at

different times by reconfiguring hardware. Therefore, the hardware becomes a

virtual hardware, which looks like using infinite hardware resources on a system.

In Figure 2-7, a dynamically reconfigurable system is shown.

Figure 2-7: Dynamic Reconfiguration of Hardware

13

Note that, runtime reconfiguration term is also used instead of dynamic

reconfiguration.

Partial Reconfiguration

Partial reconfiguration is a sub-class of runtime reconfiguration. According

to the coming demands, only a part of these devices is reconfigured instead of

reconfiguring whole device. In addition, while reconfiguring some parts of the

device, remaining parts still operate in such partially reconfigurable devices.

Therefore, different functions can be loaded to partially reconfigurable part while

the other parts are working, as seen in Figure 2-8.

Figure 2-8: A Partially Reconfigurable Device and its Configurations

Partial reconfiguration has many benefits. For instance, the hardware on

partially reconfigurable parts can be shared by different applications at different

times. The other parts can be maintained as fixed parts that always remain active.

The fixed parts can manage scheduling operations of reconfigurable parts.

Therefore removing unnecessary hardware and inserting necessary ones to the

system, results in reduced cost and power. In addition, system can operate

without interrupting by keeping fixed part in contact with the outside world.

Partial reconfiguration property of reconfigurable devices is also used for

speeding up the applications in some researches. For example, in [8] a CPU is

placed on the fixed part and coprocessors are placed on reconfigurable parts of

14

the FPGA. Different coprocessor configurations are prepared off-line and they are

loaded to the reconfigurable parts with changing demands.

Another advantage of partial reconfiguration is reduced reconfiguration

time. Since reconfiguration of full device is not needed, size of reconfiguration

data also decreases. In other words, reconfiguration times are directly

proportional with the reconfigured modules size. For example, if reconfiguration

time of the entire device is 4 ms then quarter of the device can be reconfigured at

1 ms.

Self Reconfiguration

If the reconfigurable device reconfigures itself without any aid from the

outside world then it is called self-reconfigurable system. Data required for

different configurations are generally stored on standard storage mediums. A part

of the device is responsible for taking data from the storage medium and sending

this data to the configuration port of the device. The configuration of the device

changes after port takes the data.

The main advantage of such reconfiguration is elimination of the need for

external configuration controller. This results in reduction of the total system cost.

Moreover, configuration data can be compressed at the storage side, and it can

be decompressed by the configuration controller. Therefore, the size of the

configuration data will decrease.

Different configuration port types can be used for self-reconfiguration. For

example, if the device has only a configuration port available at external pins, then

it can be used as shown in Figure 2-9. In this structure, configuration data is taken

by configuration controller and it is sent to the external configuration port of the

device. However, this approach has some drawbacks. Firstly, pins used by

configuration controller cannot be used for different purposes. Secondly, the

configuration data sent from configuration controller to configuration port cannot

be secure since data signals must go through PCB.

15

Figure 2-9: Self-Reconfiguration from External Configuration Port

Some devices (such as Xilinx Virtex-II FPGA) have integrated

configuration port inside the fabric of the device. The configuration controller can

access this port internally (without going through pins) as shown in Figure 2-10.

As a result, pins are not wasted for reconfiguration purpose and reconfiguration

can be done securely.

Figure 2-10: Self-Reconfiguration using Internal Configuration Port

In some works such as [9] [10], this structure is used to implement a

secure runtime reconfiguration. An initial configuration is loaded to the device that

includes configuration controller and decryption hardware. The other parts are

reserved for user applications and loaded by a partial reconfiguration. The partial

configuration data is encrypted with a known key. This key is also stored on

decryption circuit. Flow of secure partial reconfiguration occurs as follows:

Encrypted configuration data is taken from an external source such as a storage

medium or a radio link. Then it is decrypted by decryption circuit using the known

key and passed to the configuration controller. Configuration controller writes

16

configuration data to the internal configuration port of the device and user

application switches to another one. As a result, reconfiguration of user

application becomes secure with this method since raw configuration data cannot

be monitored from the outside world.

2.4 RECONFIGURATION TIME

Reconfiguration time is an important criterion on runtime reconfigurable

architectures. Especially the applications that use runtime reconfigurable

architectures to speed up calculations need fast reconfiguration. The logic circuit

inside reconfigurable part must be replaced with another logic circuit in a limited

time for such applications. In Figure 2-11, distribution of different applications

according to the reconfiguration frequency is shown. The overhead of this

reconfiguration time must be compensated by speeding up the calculations by

hardware.

Figure 2-11: Required Reconfiguration Times for Different Application Types

Reconfiguration time of commercially available FPGAs still takes around

milliseconds. Therefore, the applications that take more than milliseconds at least

can obtain a speedup by reconfiguring FPGAs. Generally, data processing

applications are in this range. For example, encryption/decryption or sorting

algorithms are good candidates to run on a runtime reconfigurable FPGA.

Some other devices such as DPGAs have been proposed to reduce the

reconfiguration time to nanoseconds. However, they did not become commercially

available due to their high costs (due to large configuration memory requirements)

[11].

 Nevertheless, the overhead of reconfiguration time can be reduced by

dividing reconfigurable device into multiple parts and using scheduling algorithms.

17

Reducing reconfiguration time overhead allows mapping highly dynamic

applications onto reconfigurable hardware [12]. Two types of scheduling algorithm

can be used. These are runtime scheduling and design time scheduling.

Scheduling of applications at runtime brings a new concept called

Hardware Operating System. The hardware operating system work online, which

means decisions are made during the system is running. Hardware operating

systems also try to find solution for online placement of tasks onto different parts

of the reconfigurable hardware. In Figure 2-12, elements of hardware operating

system is shown.

Figure 2-12: An Example of Hardware Operating System [13]

Some works also try to reduce the reconfiguration delay by using offline-

scheduling algorithms. For example, [14] assumes the sequence of the tasks is

already known before running the system (i.e. at design time) and it reduces the

reconfiguration overhead up to 40%.

2.5 PARTIALLY RUNTIME RECONFIGURABLE FPGAS

FPGAs are widely used devices on reconfigurable computing applications

since most of them are inherently reconfigurable. A combination of a CPU and

reconfigurable FPGA can be used as a reconfigurable platform. CPU can manage

reconfiguration processes of the FPGA and map different hardware configurations

to FPGA at different times. However, this structure is not so efficient since two

devices are needed for this system. Instead, a partially runtime reconfigurable

FPGA can do the tasks of both CPU and non-partially reconfigurable FPGA as a

18

System on Chip (SoC). FPGA can be divided into two parts in which one part is

static and the other one is reconfigurable. Then a soft CPU can be mapped on the

static part and it can manage reconfiguration processes of the reconfigurable part.

On a partially reconfigurable FPGA, more than one area can be

reconfigured at an instance. Therefore, multiple tasks can be loaded at the same

time and they can be reconfigured independent from the others .This is another

advantage of using partial reconfiguration of FPGA.

Altera, Atmel, Lattice, QuickLogic, and Xilinx are the major FPGA vendors

in the world. About half of them have FPGA products that offer partial runtime

reconfiguration. These partially reconfigurable FPGA devices are listed below:

• Atmel AT6K

• Atmel AT40K

• Atmel AT94K

• Lattice ORCA

• Xilinx Virtex

• Xilinx Spartan

Xilinx Virtex and Spartan FPGA families can be partially reconfigured in a

column-based approach. FPGA can be divided into columns and any of the

columns can be reconfigured while the others are still running. There are also

some restrictions to achieve partial reconfiguration. For example, the column

boundaries must be determined at design time, the boundaries cannot change

during execution. In addition, modules must communicate through special

structures. Partial reconfiguration of Xilinx FPGAs will be discussed in further

depth in Chapter 4.

Atmel AT6K, AT40K, and AT94K series FPGA can achieve runtime partial

reconfiguration. The technology of reconfigurable logic inside FPGA is called

Cache Logic by Atmel. The reconfigurable part can be any rectangle inside

FPGA. AT94K series FPGA includes an AVR microcontroller embedded on

FPGA. This microcontroller can change the logic inside the FPGA.

Lattice ORCA FPGA’s can be partially reconfigured. For partial

reconfiguration, the address is written with “Explicit” mode. Indeed every address

frame is written into the bitstream, followed by the data frame for each address.

Partial reconfiguration is done by setting a bitstream option in the previous

19

configuration sequence that tells the FPGA not to reset the entire RAM

configuration during a reconfiguration [15].

2.5.1 Reconfiguration Times of FPGAs

Full reconfiguration time of Xilinx XCV50 is 1.2 ms with SelectMAP 8 bit

parallel mode at 60 MHz with handshaking, where XCV50 is the smallest device

of Virtex series FPGAs. Reconfiguration time for Atmel FPGA AT40K40 is 631 µs

in parallel mode, with writing 16-bit wide words at 33 MHz [16]. Full

reconfiguration of ORCA OR4E06 takes 5.94 ms [17]. Note that, these devices

are smallest devices of the vendors. Newer and higher capacity FPGAs will have

bigger configuration data. However, they also speed-up the configuration ports,

which maintain reconfiguration times almost in the same order. For example,

Xilinx Virtex-4 has a 32-bit SelectMAP configuration port, which can reach up to

100 MHz clock rates.

2.6 APPLICATION AREAS OF RECONFIGURABLE

ARCHITECTURES

A wide range of applications can benefit from reconfigurable architectures.

Some applications areas of the reconfigurable architectures are listed below.

• Easy Prototyping, Low Volume Products

• Field Upgrade of Hardware

2.6.1 Easy Prototyping – Low Volume Products

A digital Application Specific Integrated Circuit (ASIC) can be prototyped

using a reconfigurable architecture. To accomplish this, different hardware

configurations are mapped on a reconfigurable architecture at design time. After

verifying correct operation of the designed circuit, an ASIC can be produced. If

this circuit is not a mass product, reconfigurable device can also be used as a

final product. Hence using a reconfigurable device will eliminate costly processes

of producing an ASIC device.

20

2.6.2 In-Field Upgrades

Being a reconfigurable architecture also provides some other unique

properties. Reconfigurable devices provide an opportunity to change hardware on

the fly. In other words, the device can be reconfigured easily by writing

configuration data to the configuration memory. This feature can be used on

systems that need upgrade of hardware structure during operation. In such

systems, reconfigurable device can be used as a heart of the system. A remote

computer can connect to the system and send configuration data. Then hardware

structure can be changed by reconfiguring the device with the new configuration

data. Since hardware components are generally base of a system, reconfiguration

can almost replace whole architecture with a new one. This type of upgrade can

save time and money for the producer.

Even there may be conditions such that it may be impossible to upgrade

device without in-field upgrade. For example, servicing or replacing components

physically is impossible on a satellite system. In such architectures, using

reconfigurable architecture that can be reconfigured with a remote connection is

inevitable. As a result, reconfigurable devices are ideal components for systems

that need in-field upgrade operations. Some works [10] deal with partial

reconfiguration of hardware that eases in-field upgrades.

2.7 APPLICATION AREAS OF RUNTIME RECONFIGURABLE

ARCHITECTURES

Changing the hardware on a running system is possible by using Runtime

Reconfigurable architecture. This feature enables using runtime reconfigurable

architecture as a virtual hardware source. In other words, different hardware

configurations can be used at different times by RTR. Many applications can

benefit from this feature to save cost, power, and resource usage on digital

circuits. Moreover, applications can get speedup by using RTR, since it provides a

flexible dedicated hardware for different functions. As a result, RTR can be used

for the following purposes:

• Cost and power reduction

• Designing an Adaptable Computing Platform

21

• Designing Fault Tolerant Circuits

• Speeding-up Computations

2.7.1 Cost and Power Reduction

RTR can reduce needed resource size if the required hardware can be

divided into multiple parts. These smaller parts can be mapped to the hardware

by generating configurations. Then these configurations can be loaded to the

device at different times by using RTR. A scheduler arranges the reconfiguration

operations according to the demands. Therefore, a smaller capacity device can

be enough to map a bigger circuit on it. This results in cost and power reduction of

the system.

For example, Lianos et al. proposed a space efficient method for

calculating Fast Fourier Transform (FFT) by using a dynamically reconfigurable

architecture [18]. One reconfigurable vector calculates a column of FFT then

feeds the outputs into the reconfigurable vector again to calculate consecutive

stages of the FFT. Therefore, only one reconfigurable vector is enough to

calculate FFT on a dedicated hardware by using RTR.

In another work [19], a reconfigurable architecture is implemented that

behave as Programmable Logical Controller (PLC). Designed architecture utilizes

Temporal Petri Net language to describe applications. The sequential structure of

Petri Nets allows splitting applications into multiple parts. Then these parts are

mapped to same FPGA and used sequentially by reconfiguring it. This

architecture can divide whole application up to 40 parts. Therefore, using 40 times

smaller capacity FPGA can be enough instead of using a big one. This can

reduce the cost of device from $317 to $38.

Widespread usage of mobile systems increased the demand for low power

consumption while maintaining high performance. Some works deals with mobile

systems that use dynamic reconfiguration to reduce the total power of the system.

In [20], control units of an automobile are implemented on a runtime

reconfigurable FPGA. The user area is divided into four smaller parts. High

number of control units (e.g. 20 units) that cannot fit to one-device shares

available sources by time multiplexing. A scheduler determines reconfiguration

22

processes of control units. As a result, the system only consumes power of four

control units for implementing much higher number of control units. In addition, a

part of FPGA is always kept in contact with the outside world since only

necessary parts reconfigured. This eliminates a need for external controller of

reconfiguration process, which contributes power and cost reduction.

2.7.2 Adaptable Computing

Some types of applications require adaptation of hardware to changing

demands. In such applications, implementing circuits on a static device is

impossible, even a highest capacity one is used. The ultimate solution of this

problem is using a reconfigurable hardware. Infinite number of configurations can

be prepared and reconfigurable hardware can be reconfigured with new

demands.

Furthermore, many applications can benefit from reusability of hardware

on reconfigurable architectures. Computations can be divided into multiple parts

and they can be computed one after another with a parallel processing structure.

If the gain obtained on area usage compensates the latency, the reconfigurable

architecture can be preferred. For example, a matrix multiplication method

proposed by L. Jianwen et al. [21] can do matrix multiplication with 80% less area

than linear array structure. It have also used approximately 50% less area than

linear array structure in terms of AT Metric (product of area and latency)

 Some of the adaptable-computing applications absolutely need

reconfigurable architectures are the following:

Evolvable Hardware

Evolvable Hardware is the application of Genetic Algorithms on circuits.

Evolvable algorithms can find a circuit from its behavioural description [22]. There

are two methods available to achieve this goal. One of them, known as Extrinsic

Evolvable Hardware, simulates alternative circuit configurations and selects the

best one. The other method, known as Intrinsic Evolvable Hardware, directly tests

alternative circuit configurations on hardware. Then best of the configuration is

selected [23]. It is necessary to use a reconfigurable hardware to test large

number of alternative configurations. Therefore, RTR is necessary to implement

Evolvable Hardware with the second method.

23

Hardware implementations of Robotics or Artificial Neural Networks also

require such evolvable structures. Therefore, they are the candidates of RTR

applications.

Software Defined Radio

Software Defined Radio (SDR) is another concept that involves adaptable

hardware sources inside. SDR is a wireless platform that can work with different

communication protocols. It can adapt to a communication protocol just by

downloading and changing the configuration on the platform as a software

module. SDR requires a large amount of digital signal processing operations. For

this reason, SDR systems generally use a Digital Signal Processor (DSP) and an

FPGA as a coprocessor [24]. DSP makes software operations whereas FPGA

implements different filters and reconfigured with changing necessities. However,

it is possible to use only one runtime reconfigurable FPGA to do operations of

both DSP and FPGA. This runtime reconfigurable FPGA can be divided into two

parts where one part is static and the other one is dynamic. Static part can be

loaded by a soft processor core. Dynamical part can be reconfigured to run

alternative coprocessor cores. Some researches (such as [25] and [26]) deal with

such single chip systems that can reconfigure themselves with changing

demands.

2.7.3 Speeding-up Computations

Reconfigurable Architectures (RAs) provide a flexible structure as

microprocessors. Microprocessors allow changing the software and RAs allow

changing hardware. Dedicated hardware on RA enables parallel computing while

software on microprocessor allows only serial operations. Therefore,

implementing a computational task on a dedicated hardware on RA is much faster

than executing on a processor as software.

Reconfigurable architectures can be used to accelerate computational

tasks by mapping algorithms or parts of them to the dedicated hardware. For each

different computational task, hardware can be reconfigured to map calculations on

hardware. The rate of computations changes also affects the reconfiguration

period of the hardware. If reconfiguration overhead is less than the gain obtained

by mapping calculations on hardware, a considerable speed-up can be achieved.

24

Moreover, it is known that more than 90% of time is consumed on 10% of

code in most of the software programs [27]. These codes are generally nested

loop statements, which intend to take longer time than other structures. If the

statements inside a loop can be mapped directly on hardware, execution time will

decrease. The hardware on the reconfigurable architectures can be used for such

loop statements. For each loop statement, an alternative configuration is created.

Then by using runtime reconfiguration, infinite number of loop statements can be

mapped on hardware. Therefore, the software can be executed more parallel, and

it can be accelerated more.

Many algorithms such as image processing, image compression

/decompression, data encryption/decryption may benefit from the parallelism of

reconfigurable architectures. The only necessity to get a speedup is

reconfiguration time cost must be lower than the gain obtained with parallelism.

2.7.4 Fault Tolerant Systems

Fault tolerance on hardware generally requires reserving spare sources

and replacing faulty sources with spare ones. Reserving spare sources is a trivial

issue on reconfigurable devices since they are composed of array of identical

elements. Many researches such as [28], [29] and [30] use inherent

reconfiguration property of the FPGAs in order to tolerate faults on them. In

Chapter 5, researches dealing with this topic will be discussed in more detail.

2.8 APPLICATION IN THIS WORK

A fault tolerant hardware was also designed in this work, which uses RTR

property of an FPGA. Faults were eliminated using reconfiguration of the

hardware. Furthermore, fault injection was done with the help of RTR. In Chapter

5, working principle of designed architecture will be explained in more detail.

25

CHAPTER III

3XILINX FPGA ARCHITECTURE AND TOOLS

In this chapter, the general architecture of Xilinx FPGAs will be explained.

At necessary points, examples will be given from Virtex-E or Spartan-2E series of

FPGAs.

3.1 MAIN STRUCTURE OF XILINX FPGAS

Xilinx FPGA’s are composed of Configurable Logic Blocks (CLB), Input

Output Blocks (IOB), BlockRAM’s (internal RAM), and the configurable routing

matrix. Array of CLBs forms the FPGA structure. They are connected using

routing lines and they implement logic functions. For example, the device used in

this work, XC2S200E has 28 rows and 42 columns of CLBs. The structure of

Spartan 2E FPGA is shown in Figure 3-1.

Figure 3-1: General Structure of Spartan 2E FPGAs [31]

26

3.1.1 Configurable Logic Block Structure

Each Configurable Logic Block (CLB) has two identical slices each of

which have two Logic Cells (LCs). These logic cells are the basic building block of

the FPGA. There is one flip-flop as storage elements and one look-up table which

implements combinational logic in a LC. Also, carry logic elements are inserted to

speed-up arithmetic operations. A CLB structure of Virtex-E or Spartan 2E device

is shown in Figure 3-2. Note that CLB architectures of Virtex-E and Spartan 2E

are same.

Figure 3-2: A CLB of a Virtex-E (or Spartan 2E) device

3.1.2 Input Output Block Structure

FPGAs are connected to the outside world using programmable Input

Output Blocks (IOBs). As shown in Figure 3-3, an IOB include flip-flops (FF) for

input, output and tri-state enable signal. These FFs can be used to obtain

minimum FF to pin delay. In addition, a number of IOBs are grouped to form a

bank. Voltage levels of banks can be selected from different types of I/O

standards.

27

Figure 3-3: Input/Output Block Structure of Virtex-E Device

3.1.3 Routing Structure

Routing structure is reconfigurable on Xilinx FPGAs, which is one of the

necessities to be a reconfigurable device. It is also adjusted in a hierarchical

manner to make it area efficient. There are mainly four types of routing resources:

• Local Routings are used to make connections inside the CLB, between

CLB and General Routing Matrix (GRM), and between two CLBs.

• General Purpose Routing connects most of the signals on the FPGA.

CLB’s are connected to other resources using GRM switch. In addition, a

GRM is connected to adjacent six GRMs. GRM connections are shown on

Figure 3-4. These switches also connect horizontal and vertical lines.

These vertical and horizontal long lines span the full height/width of the

FPGA.

28

Figure 3-4: General Routing Matrix and its Connections [31]

• Dedicated Routing sources connect special signals on the FPGA. For

example, there are four signal lines horizontally placed on the FPGA for

each CLB row as shown in Figure 3-5. These lines can be used for tri-

state bus implementation. In this work, tri-state lines were used to

implement a bus inside the FPGA. This bus is called bus-macro and will

be described in detail in Chapter 4.

Figure 3-5: Horizontal Longlines that traverse all along the FPGA

• Global Routings are used for low skew and high fanout signals such as

clock signals

29

3.2 CONFIGURATION ARCHITECTURE OF XILINX FPGAS

Xilinx FPGAs have SRAM based configuration memory, which provides

unlimited reprogramming feature. The configuration file of a Xilinx device is called

bitstream. A host device sends this bitstream file to one of the configuration ports

of the FPGA. Then internal state machines of the FPGA device evaluate if the

bitstream file has correct Cyclic Redundancy Check (CRC) value or not. If the

CRC value is correct then it programs the configuration memory (SRAM) of the

device with the bitstream data.

The configuration data of FPGA has divided into frames. A frame is the

minimum segment of configuration memory that can be reconfigured. A frame

includes configuration information of full height of device with one bit wide. Since

a frame includes the configuration data of full height of the device, minimum

reconfigurable unit must occupy full height of the device.

Since configuration bitstream is divided into frames in a column-based

order, at least a column of CLBs can be reconfigured at the same time. Moreover,

configuration information of one CLB column is stored on 48 frames on XCV50

device [32]. Therefore, reconfiguration of 48 frames is necessary to reconfigure a

column of CLBs. The configuration memory structure of XCV50 device is shown

in Figure 3-6.

30

Figure 3-6: Configuration Columns and Frames of Xilinx XCV50 device

3.2.1 Column and Difference Based Reconfiguration

Xilinx FPGAs allows two types of partial reconfigurations; column and

difference based reconfigurations. It is possible to reconfigure one or more

columns of CLBs using column based reconfiguration flow. On the other hand,

difference based reconfiguration allows small changes on the configuration data.

If boundary between two CLB column are defined strictly (i.e. no routing

connection between) then reconfiguration of one column does not affect the other.

By using this principle, modules that occupy integer multiple of CLB columns can

be partially reconfigured. This type of reconfiguration is called column-based

reconfiguration.

31

Another possibility for reconfiguration is making small changes on the

configuration memory. Internal configurations of a CLB can be changed by

reconfiguring them. For example, the function of Lookup Table inside a CLB may

be changed from an OR gate to a AND gate. The bitstream generation tools will

compare two different bitstreams and generate a bitstream that includes only

different frames. The resulting bitstream will be much smaller than the original

ones.

3.2.2 Glitchless Reconfiguration

“FPGA memory cells have glitchless transitions, when rewritten, the

unmodified logic will continue to operate unaffected” [33]. This glitchless

reconfiguration is required for communication channels that pass through from a

reconfigurable module. Otherwise, reconfiguration of the module will break the

communication channel and connection will be lost.

Glitchless reconfiguration property is supported on Spartan 2, Spartan 2E,

Virtex, Virtex E, Virtex 2, Virtex 2 Pro, and Virtex 4 devices of Xilinx. Spartan 3

and Spartan 3E devices do not reconfigure without glitches [34].

3.2.3 Clocking Logic

Same clock can route to all partial modules. However, clocking logic

(Clock Routing Paths, Clock IOB) is always separate from the reconfigurable

module and clocks have separate bitstream frames [35]. As a result,

reconfiguration of a module does not affect synchronous circuits on another

module.

3.2.4 Suitable Configuration Options for Runtime

Reconfiguration

Xilinx FPGA devices can be configured using different configuration

interfaces [36]. These interfaces are

• Master / Slave Serial Mode,

• SelectMAP Interface,

• Boundary Scan (JTAG) port and

32

• Internal Configuration Access Port (ICAP).

Master Serial Mode is used to configure FPGA from a PROM device.

SelectMAP is a parallel bus available at normal I/O pins of the FPGA. Boundary

scan port is a standard test port that has dedicated pins on FPGA. ICAP is an

internal port that is similar to the SelectMAP interface.

One of these configuration interfaces is selected at power-up according to

the configuration mode pins, M0, M1, and M2. Because data pins of the

configuration interface must be reserved to one of the interfaces at start-up.

However, it is not necessary to make mode selection for boundary scan mode

since it is always available for configuration independent of the mode selection

[31]. ICAP also does not need any mode selection since it is an internal interface.

To make a runtime reconfigurable system using a Xilinx FPGA, a suitable

configuration scheme must be constructed. FPGA must be configured initially and

it must be reconfigured while initial configuration is operating on it. It is possible to

use different configuration interfaces for these initial and run-time

reconfigurations. However, not all of these methods are suitable for run-time

reconfiguration. The methods suitable for run-time reconfiguration are

• SelectMAP Interface,

• Boundary Scan (JTAG) port and

• Internal Configuration Access Port (ICAP).

Note that, one of these modes is necessary for only runtime

reconfiguration. Loading initial bitstream can be done by any method. For

example, the initial bitstream can be loaded using a serial PROM then all

reconfigurations can be done using ICAP port. As another example, loading initial

bitstream and reconfiguration can be done using JTAG port.

Slave Parallel Mode (SelectMAP)

SelectMAP is a parallel bus, which is driven by an external device to

program the FPGA. In normal operation, SelectMAP pins are left to the user after

configuration as normal I/O pins. However, in a runtime reconfigurable system

they must be always available as a SelectMAP interface to enable runtime

reconfiguration. In order to achieve this, when creating bitstream with Xilinx

33

BitGen tool, -g Persist:Yes option must be used. This option ensures that the

SelectMAP interface will remain active after first configuration.

Essential signals used for SelectMAP configuration port are given in

Figure 3-7. Configuration data is sent or received through DATA pins

synchronized with CCLK Clock. BUSY is used for handshaking and not necessary

for low clock rates. CS is the Chip Select signal that enables the port for data

transfers. WRITE is used to select the operation type, either as write or as read.

PROG, INIT, and DONE signals are the SelectMAP protocol commands and

acknowledgements such as “reset the configuration logic”, “verify successful

operation” etc... More details about the SelectMAP protocol can be found on [37].

Figure 3-7: SelectMAP Configuration Signals on Xilinx FPGA

The main advantage of the SelectMAP interface is fast configuration

opportunity it provides. It is possible to use a SelectMAP up to 50 MHz clock rates

without handshaking (Virtex, Virtex-E, and Spartan-2). For Virtex-2, this frequency

is 66 MHz [37]. Therefore, SelectMAP can provide bandwidths of higher than 500

Mbit/sec, since it is 8-bit parallel bus.

SelectMAP has also some shortcomings. It requires either an external

controller or some parts of FPGA to control the bus. An external controller is an

extra cost. When controller logic is implemented on the same FPGA, it limits the

reconfigurable areas since controller must access to external pins. Furthermore, it

occupies logic and BlockRAM sources, which can be necessary for the user.

34

Internal Configuration Access Port (ICAP)

Internal Configuration Access Port (ICAP) enables configuring FPGA from

logic inside the fabric. It has same protocol with the SelectMAP configuration port.

The only difference is the connection points, which are the internal routings on

ICAP instead of I/O pins. Therefore, a logic mapped inside the device can

reconfigure FPGA by writing configuration data to the ICAP. However, hardware

communicating with ICAP port must not be reconfigured since communication can

be lost after reconfiguration. Therefore, it is more suitable for partial

reconfiguration instead of full reconfiguration [56].

ICAP is a very good solution for self-reconfiguration since it does not

require any external hardware sources. It can take advantages of self-

reconfiguration such as secure configuration and compressed bitstreams.

Unfortunately, it is only available on newer Xilinx devices such as Virtex-II and

Virtex-4 FPGAs.

ICAP

I[0:7]

CLK

WRITE

CE

O[0:7]

BUSY

Figure 3-8: ICAP Configuration Signals on Xilinx FPGA

ICAP interface signals are shown in Figure 3-8. The functionalities of CLK,

WRITE and BUSY signals are equivalent on ICAP and SelectMAP. In addition,

CE has the same function with CS on SelectMAP. The only difference is the data

bus, which is divided into two parts on ICAP. One part (I[0:7]) is used for writing

configuration data to port, while the other part (O[0:7]) is used for reading back

the configuration data.

Boundary Scan (JTAG) Mode

Joint Test Action Group (JTAG) designed a test standard and named

JTAG for testing Printed Circuit Boards (PCB). This Boundary Scan architecture is

35

designed to test the physical connection of I/O pins at the board level. JTAG

become a widely used test port with the increase of complicated PCB structures

and smaller Integrated Circuits (ICs) [38]. Due to lots of benefits, it has become

an IEEE standard (IEEE 1149.1). Most of current ICs contain a JTAG port pins to

debug it. Its boundary scan architecture has a four-wire serial interface travels

along all the pins of the device forming a chain. Serial data enters to the device

with Test Data In (TDI) pin and stored on a shift (instruction) register. The data is

send to the output of the device with Test Data Out (TDO) pin. All data shifting on

JTAG chain are done with synchronized to Test Clock (TCK). The reserved pins

for the JTAG port and their acronyms are listed in Table 3-1.

Table 3-1: JTAG Pins and their descriptions

Pin Name Description

TDI Test Data In

TDO Test Data Out

TMS Test Mode Select

TCK Test Clock

JTAG also enables adding vendor specific instructions, instead of standard

instructions. Vendors use these instructions to debug software/hardware inside

the device. Furthermore, JTAG port can be used for on-board programming. All

Xilinx FPGAs contain JTAG port, which enables configuration of the device with

JTAG chain. Main advantage of using JTAG port is not wasting any user I/O for

configuration since JTAG port has dedicated pins on the device. The JTAG pins

and configuration selection is shown in Figure 3-9.

36

JTAG

TMS

TCK

TDI

M0

M1

M2

TDO

1

0

X

Figure 3-9: JTAG Configuration Signals on Xilinx FPGA

A disadvantage of JTAG Boundary Scan for runtime reconfiguration is high

configuration time. Since it sends data from a serial line and PC adapters speed is

low, it does not permit fast reconfigurations. Therefore, the selected case study

for runtime reconfiguration does not focus on the speedup benefit of the runtime

reconfiguration. Instead, it focuses on virtual hardware concept of the runtime

reconfiguration.

Used Interface for the Designs

JTAG is used on described designs throughout the thesis. It is a

straightforward method since no external pins are required other than test port

connections. In addition, software tools are available for JTAG. The other

methods require a board that left configuration pins to the user. Generally, PROM

loading is provided on most of the commercial boards, which occupy the Data pin

of the SelectMAP interface. Therefore, to use SelectMAP port a custom PCB

must be designed which is out of the scope of this thesis. Instead, a prototyping

board containing Xilinx-Spartan 2E FPGA with JTAG connection is bought to

examine RTR.

3.3 CONVENTIONAL DESIGN FLOW FOR XILINX FPGAS

The standard design flow is normally implemented using graphical user

interface (GUI) of Xilinx ISE software. The GUI takes the circuit information from

the user as a HDL (i.e VHDL, Verilog etc…) or a schematic file. Using these files,

37

GUI can generate a bitstream to download FPGA device. However, some

operations are executed on the back to create this bitstream. The flow of these

operations is illustrated in Figure 3-10.

Figure 3-10 Standard Design Flow for an FPGA Design

If an HDL file is used, it is synthesized to create a netlist. A netlist contains

logic elements and their connections (i.e. circuit description). With schematic files,

the creation of a circuit netlist is a trivial issue. After obtaining netlist, the

remaining operations are translation, mapping, placing-routing, and lastly creation

of configuration file.

38

The circuit netlist and constraints are combined on a file with a translation

operation (not shown in Figure 3-10). In the mapping phase, circuit is partitioned

and elements are grouped to map Logic Cells (LCs). Afterward, these logic cells

are placed and routed to the FPGA using CLBs, routing sources, IOBs etc…At the

last step configuration information is extracted from the placed - routed design

and written to the configuration file (i.e. to the bitstream).

The tools used for the operations of standard design flow are given in

Table 3-2. Note that, these tools accept additional options that enable for different

design flows. This feature is used in creation of runtime reconfigurable designs

and explained in Chapters 4 and 5.

Table 3-2: Standard Design Flow Operations and Tools of Xilinx FPGAs

Operation Used Xilinx Tool

Synthesis XST

Translation NgdBuild

Mapping Map

Placing and Routing PAR

Creating Bitstream Bitgen

3.4 TOOLS FOR PARTIAL RECONFIGURATION OF XILINX

FPGAS

3.4.1 XAPP290

XAPP290 is an application note published by Xilinx. It includes reference

materials for a runtime reconfigurable design. One of the methods explained in

this application note is used on designs explained in the thesis. More information

about the contents of the application note can be found in Chapter 4.

39

3.4.2 JBITS

JBits is an Application Programming Interface (API) based on Java. It is

developed by Xilinx. This API may be used to construct digital designs and

parametrical cores that can be executed on Xilinx Virtex II FPGA devices. It runs

on a Java enabled environment (usually a PC). Today it is only published for

Virtex II but it can be extended to other devices in the future.

JBits can be used for runtime reconfigurable applications. The circuits can

be configured on the fly by executing a Java application that communicates with

the circuit board containing the Virtex II device. By using the XHWIF API, it is

possible to download the design within the same Java application. This enables

run-time configuration and reconfiguration of Virtex II device [39]. The design flow

of runtime reconfiguration using JBits is shown in Figure 3-11.

Figure 3-11: Design Flow of Runtime Reconfiguration using JBits [39]

The main steps involved in a JBits application are the object construction,

reading bitstream from a .bit file, modifying the bitstream, and writing bitstream to

a file again. This application flow on JBits is shown in Figure 3-12.

Bitstream
from Xilinx ISE tools

JBits API Design App

XHWIF

Virtex II
Hardware

Design Entry and
Implementation

Design Verification
and Execution

40

Figure 3-12: JBits Application Flow

An example code that modifies a bitstream is shown below:

“void JBits.setCLBBits(int row, int column, int[][] resource, int[] bits);

 jbits.setCLBBits(clbRow, clbCol, F1_B0.F1_B0, F1_B0.X0) ;”

The disadvantage of the JBits is it is too low-level (it changes routing of the

device, LUT configurations etc.). Designer must know the entire device

architecture to modify bitstreams. Therefore, JBits remain as a research tool and

it did not go further to implement complex designs.

Start

Create JBits

Read Bitstream

Modify Bitstream

Write Bitstream

Stop

41

CHAPTER IV

4MODULE BASED PARTIAL RECONFIGURATION

Xilinx FPGAs supports runtime reconfiguration (RTR). Partial

reconfiguration guidelines given in Xilinx Application Note 290 [35] must be

considered to realize RTR on FPGA.

The application note covers two different RTR methods. One of them is

suitable for making small changes on the logic implemented. This method is

called difference based partial reconfiguration. In this method, small changes can

be made on the design then only frames that have differences are loaded to the

FPGA. The recommended changes are restricted to changing I/O standards,

BlockRAM contents, and LUT programming. It is also possible to change routing

information, however it is not recommended since contention may occur during

reconfiguration. The other method is called module based partial reconfiguration.

In this method, FPGA is divided into multiple columns, which are called modules.

Then a new configuration can be loaded to a module while the other parts of the

device are still active (working). All the designs in this thesis use module based

partial reconfiguration.

In this chapter, the flow of module based partial reconfiguration for a Xilinx

FPGA device will be explained. Experiments were done on Virtex-E and Spartan-

2E device. Furthermore, to make things simpler an uncomplicated partial

reconfigurable architecture was designed and implemented on Xilinx Spartan-2E

device. Hence, examples given for the explanation of module based partial

reconfigurable design are based on Spartan 2 200E device.

42

4.1 COLUMN BASED RECONFIGURATION

As mentioned before, Xilinx FPGAs give an opportunity that a column of

Configurable Logic Blocks (CLBs) can be reconfigured by writing its belonging

frames to a configuration port of the FPGA. This structure and additional features

enable creating Runtime Reconfigurable (RTR) architecture on Xilinx FPGAs.

FPGA can be divided into multiple columns to make a RTR system. By

using Xilinx map, place and route tools it is possible to generate bitstream for only

one reconfigurable column. Then columns may be reconfigured by this bitstream

while the other columns are still working. This reconfiguration operation is called

active partial reconfiguration of FPGA.

In a module based partial reconfigurable design, reconfigurable modules

communicate with other modules through bus macros. An example partial

reconfigurable architecture with two reconfigurable modules is shown in Figure

4-1.

Figure 4-1: Design Layout with Two Reconfigurable Modules [35]

43

4.1.1 Restrictions of Partial Reconfigurable Design

Some restrictions for runtime partial reconfiguration are listed below [35]:

• A reconfigurable module must communicate with other modules only

through bus macros.

• Module boundaries cannot be changed at runtime.

• Minimum width of a module must be four slices (2 CLB) width. Additionally

modules width must be multiples of four slices.

• Height of a module is the full height of the device.

• A reconfigurable module can use Input Output Blocks (IOBs) that lies on

its boundaries only.

• The leftmost slice on a module must be placed at multiple of four slices

(i.e. slice numbers 0, 4, 8)

4.1.2 Bus Macros

Reconfigurable modules must communicate with other modules via bus

macros as seen in Figure 4-2. Bus macros provide a fixed routing for signals that

pass to other modules. Therefore, every different configuration of a module uses

same path to share signals with other modules. Otherwise, communication will be

broken with a reconfiguration.

Figure 4-2: Communication with Reconfigurable Modules

Tri-state buffers and horizontal long lines are used to implement bus

macros. Physical implementation of bus macro is shown in Figure 4-3. .LO[3:0]

and RO [3:0] are the horizontal tri-state long lines and used for tri-state signals.

Reconfigurable

Module

Reconfigurable

or

Static Module

Bus Macro

Bus Macro

44

LI[3:0] can drive these long lines if LT[3:0] enable signals are hold active. Also

RI[3:0] can drive these long lines if RT[3:0] enable signals are hold active.

Figure 4-3: Bus Macro connecting two adjacent modules [35]

At an instance, only one side must become active to drive bus to prevent

contention (i.e. only RT or LT becomes active at the same time). It is also

suggested that a bus macro must be used only in one direction (i.e. not

bidirectional). In addition, its direction must not change by reconfiguration.

4.1.3 Clocking Logic

As mentioned before, clocking logic is independent from reconfiguration

processes, which enables runtime-reconfiguration on Xilinx-FPGA. Therefore, if a

synchronous circuit is used in the design, clock must be distributed from the

Global Routing lines. Otherwise, clocks will be disturbed with reconfiguration of a

module.

45

4.2 IMPLEMENTED SIMPLE PARTIAL RECONFIGURABLE

ARCHITECTURE

To make module based partial reconfiguration more realistic and to gain

experience it is applied on a simple design. In this design, simple arithmetic

calculations are performed inside the FPGA. The operands are taken from the

outside and the result is given to the external world again. The logic that makes

arithmetic operations is changed at runtime by partial reconfiguration of the

FPGA. Therefore, different arithmetic operations are done with same logic

resources at different times by changing configuration data of the FPGA.

In the designed architecture, there is only one reconfigurable module and

one static module. Left side of FPGA is used as reconfigurable module while the

other side is used as static module. The data flow between the static and

reconfigurable modules are done through bus macros. Basic structure of the

designed architecture is shown in Figure 4-4

Figure 4-4: Basic Structure of Reconfigurable Design

Static module only stores input operands and the result of the arithmetic

operation. Reconfigurable module is used as Arithmetic Logic Unit (ALU) that has

three different configurations. These configurations are used to implement

46

different 4-bit arithmetic operations. The operations are addition, multiplication,

and subtraction. The mapping of these alternative configurations on the FPGA is

shown in Figure 4-5:

Figure 4-5: Alternative Configurations for Reconfigurable Module

4.3 XILINX TOOLS AND IMPLEMENTATION

To implement a partial reconfigurable design, Xilinx ISE 6.3i tools are used

and Xilinx Modular Design Flow [40] is followed. In addition, the restrictions given

in Xilinx application note [35] are also taken into the consideration.

4.3.1 Modular Design Flow Overview

Modular design has the following main steps:

• Modular Design Entry and Synthesis

• Modular Design Implementation

• Initial Budgeting Phase

• Active Module Implementation Phase

• Assemble Phase

 Figure 4-6 shows flow of these steps.

47

Figure 4-6: Modular Design Flow Overview [40]

Different steps of the flow are implemented on different folders.

Implementing design with a good directory structure is important because some

files have same name but used for different purposes. The directory structure

used in the design is given in Figure 4-7. It is similar to given directory structure in

[41]. Note that, all the files used in this design are given in Appendix E (Reconfig-

ALU directory and its subdirectories include necessary files).

48

Figure 4-7: Directory Structure Used For A Module Based Partial Reconfigurable

Design

• Synthesis directory is used to create a netlists (.ngc file) from VHDL

designs (.vhd file) of modules.

• The bus macro that will be used in design is put on the BusMacro

directory. It is taken from the Xilinx application note files [35]. However,

some corrections are done in these files for Virtex-E device (will be

explained in Section 4.4)

• Three Implementation phases of the Modular Design Flow is done in the

Implementation directory

Some important file extensions used for reconfigurable design and their

descriptions are given in Table 4-1.

Used for Initial
Budgeting Phase

Used for Final
Assembly Phase

To synthesize all
Modules and Top
Design, separate

directories are
used

Includes
Bus Macro

Output of Active
Implementation, used in
Final Assembly

Used for Active
Implementation

Phase

49

Table 4-1: Descriptions of Files that are used for Module Based Partial

Reconfiguration

File

Extension

Constructed

by Program
Description Used by

.vhd User
Contains hardware description of

the design.

XST (Xilinx

synthesis tool)

.ucf

User /

Constraints

Editor

The User Constraints File (UCF) is

an ASCII file that contains timing

and layout constraints that affect

how the logical design is

implemented in the target device.

Ngdbuild

command line

program

.nmc N/A

It contains the definition of a

physical macro (hard placed and

routed macro). In this design it is

used as a bus macro.

Ngdbuild

command line

program

.ngc
XST (Xilinx

synthesis tool)

Output of. Synthesized module

contains Netlist of the circuit.

Ngdbuild

command line

program

.ngd

Ngdbuild

command line

program

Contains both a logical description

of the design reduced to Xilinx

Native Generic Database (NGD)

primitives and a description in terms

of the original hierarchy expressed

in the input netlist.

MAP command

line program

MAP command

line program

The Native Circuit Description

(NCD) is physical representation of

the design mapped to the

components in the Xilinx FPGA.

PAR command

line program

.ncd

PAR command

line program

PAR command line program takes

an NCD file as input, places and

routes the design, and outputs an

NCD file.

BitGen

command line

program

50

Table 4-1 cont’d: Descriptions of Files that are used for Module Based Partial

Reconfiguration

.bit
BitGen command

line program

The bitstream that is used to load

configuration to the FPGA
To load device

.bld

Ngdbuild

command line

program

The output report of the Ngdbuild

command line program. Contains

errors, warnings and information.

User

.mrp
MAP command

line program

The output report of the MAP

command line program. Contains

errors, warnings and information.

User

.par
PAR command

line program

The output report of the PAR

command line program. Contains

errors, warnings and information.

User

4.3.2 Module Entry and Synthesis

In the Module Entry and Synthesis phase, necessary circuit netlists are

created. VHDL is used to describe logic functions and they are synthesized using

Xilinx ISE 6.3i XST. There are five different VHDL files. These are

• Top.vhd,

• Right.vhd,

• Left.vhd (Three left.vhd files with different contents are used to

implement adder, multiplier, and subtractor) files.

For Top, Right, Left Adder, Left Multiplier and Left Subtractor modules

separate projects are created. “Add IO Buffers” option is selected in the “Xilinx

Specific Options” tab when synthesizing top module, for other modules, this

option is deselected. Therefore, I/O buffers are only added to the Top module,

which is also done for non-reconfigurable designs.

51

Also for all modules, Bus Delimiter option is selected as <>. Note that <>

sign is called as angle delimiter. Therefore, in the following steps angle delimiter

bus macro that is given by Xilinx will be used.

After synthesizing, files with ngc extensions are created. These netlist files

will be used in the implementation.

4.3.3 Implementation

In the implementation flow, an initial configuration bitstream that configure

whole FPGA will be generated. Also for every different configuration of each

reconfigurable module, a partial bitstream will be generated.

 In this example, two modules lie on FPGA. One of them is reconfigurable

while the other is static. In addition, there will be three different configurations

(Adder, multiplier, and subtractor) for the reconfigurable module. In summary,

three partial bitstreams for reconfigurable part and one full bitstream for the whole

device will be generated.

Implementation flow has following three phases. These are

• Initial Budgeting Phase,

• Active Module Implementation Phase and

• Assemble Phase.

General overview of the flow is shown in Figure 4-8 and Figure 4-9.

52

Active Implementation of Right

Active Implementation of Left_sub

Active Implementation of Left_mult

Active Implementation of Left_add

MAP Tool

Left_add.NCD File

PAR Tool

Left_add.NCD File

BitGen Tool

partial_Left_add.bit
(Bitsream File)

Map

Place and Route

Generate Bitstream

NGDBuild Tool

Left_add.NGD File

Initial Budgeting Phase

Bm_4b.NMC File
(Bus Macro)

Given by Xilinx

Top.UCF File
Created By

User

NGDBuild Tool

Top.NGD File

Translate

PimCreate Tool

Pim Folder

Bm_4b.NMC File
(Bus Macro)

Given by Xilinx

Bm_4b.NMC File
(Bus Macro)

Given by Xilinx

VHDL File
Left_add.vhd

XST Tool

Left_add.NGC File

Synthesis

VHDL File
Top.vhd

XST Tool

Top.NGC File

Synthesis

Figure 4-8: Initial Budgeting and Active Implementation Phases of Module Based

Partial Reconfiguration Flow.

53

Figure 4-9: Assemble Phase of Module Based Partial Reconfiguration Flow.

4.3.3.1 Initial Budgeting Phase

At the initial budgeting phase, a floor plan and constraints are created for

the overall design. A user constraint file is created and used with NgdBuild tool to

annotate constraints to the synthesized top design file.

54

Creating a User Constraint File

 Top-level user constraint file contains the following information:

• Physical assignment of pin locations,

• Module area boundaries and

• Locked components (bus macros, LUTs for VCC-GND and Clock

buffer).

To adjust module area boundaries and pin locations Xilinx PACE or

FloorPlanner tools were used. Instead of using these tools, all constraints can be

entered manually with a text editor. However, entering area constraints by

graphical interface for the first time and manipulating them manually is much more

suitable.

To run PACE and FloorPlanner tools for the design translated file (.ngd) is

needed. Therefore, NGD build must be run to obtain a temporary ngd file. The

following code is run with Command Prompt in the synthesis directory:

ngdbuild -modular initial top.ngc

Note that, top.ngc is obtained from the synthesis of the top.vhd with XST.

The result of this command will be a top.ngd file. Temporarily this ngd file will be

used to insert constraints to the ucf file with PACE editor.

Assigning Area Constraints

PACE is opened with the top.ngd file. On the PACE, using logic Tab, Left

module is selected. Then using Tools � Assign Area Constraint Mode, an area

constraint is drawn. Same operation is done for the Right module. Note that,

these constraints can also be entered by using FloorPlanner. Figure 4-10 shows

the boundaries of Right and Left Module after adjustment on PACE.

55

Figure 4-10: Constrained Areas for Modules as seen on PACE

After saving user constraint file, the following constraints are added by PACE:

AREA_GROUP "AG_left_module" RANGE = CLB_R1C1:CLB_R28C21 ;

AREA_GROUP "AG_left_module" RANGE = TBUF_R1C1: TBUF_R28C21 ;

INST "left_module" AREA_GROUP = "AG_left_module" ;

AREA_GROUP "AG_right_module" RANGE = CLB_R1C22:CLB_R28C42 ;

AREA_GROUP "AG_right_module" RANGE = TBUF_R1C22:TBUF_R28C42 ;

INST "right_module" AREA_GROUP = "AG_right_module" ;

In order to make these modules reconfigurable, RECONFIG property must

be added to area constraints. This can be done by manually adding the following

constraints to the user constraint file:

AREA_GROUP "AG_left_module" MODE = RECONFIG ;

AREA_GROUP "AG_right_module" MODE = RECONFIG ;

Bus Macro Placement

Actually, bus macro is a type of hard macro routed on FPGA. A hard

macro is a placement constraint for a component. After giving the origin of a hard

macro, place and route tools fix the position of logics that belongs to the hard

macro.

Dedicated horizontal lines, which have connections to the tri-state buffers

(TBUFs) are used to implement bus macros. In each CLB, there are two TBUFs

56

as shown in Figure 4-11. The upper one is called TBUF 0; the lower one is called

TBUF 1.

Figure 4-11: Configurable Logic Block (CLB) Contents

A bus macro occupies one row by eight columns of CLBs. The origin of a

bus macro is the upper TBUF in the leftmost CLB. The placement and origin of a

bus macro is shown in Figure 4-12.

Figure 4-12: Bus Macro placement on FPGA

Column 16 Column 15 Bus Macro
with Origin:
Column 12

CLB CLB CLB CLB CLB CLB CLB CLB

Module
Boundary

Fixed Reconfigurable

TBUF 0

57

An example statement in the ucf constraint file to define the origin of the

bus macro is the following:

INST “busmacroname” LOC = “TBUF_R1C1.0”

The position of bus macro is defined by using TBUF’s (tristate buffer)

location. In the example R1 means “Row 1”, C1 means “Column 1” and .0 means

the upper TBUF (or TBUF 0). In the following figure, a CLB and its TBUF 0 are

shown.

The bus macro is placed between two modules. Therefore, the origin of

the bus macro must be defined four columns before the intersection of two

modules. For example, if the intersection of modules is between column 15 and

16, origin of the bus macro will be on column 12 (16-4) as shown in the following

figure.

According to these requirements, the bus macros places are locked with

the following constraints: (they are entered manually to the top.ucf file):

INST "bus_righttoleft1" LOC = "TBUF_R9C18.0" ;

INST "bus_righttoleft2" LOC = "TBUF_R10C18.0" ;

INST "bus_lefttoright1" LOC = "TBUF_R11C18.0" ;

INST "bus_lefttoright2" LOC = "TBUF_R12C18.0" ;

The following constraints are also entered manually to lock the place of the

LUTs used for VCC and GND for each module (Reason for adding VCC and GND

will be explained in Section 4.3.4).

INST "Internal_Gnd_Left" AREA_GROUP = "AG_left_module" ;

INST "Internal_Vcc_Left" AREA_GROUP = "AG_left_module" ;

INST "Internal_Gnd_Right" AREA_GROUP = "AG_right_module" ;

INST "Internal_Vcc_Right" AREA_GROUP = "AG_right_module" ;

Initial Budgeting Phase Batch File

Top_initial directory is used for the initial budgeting phase. Created

constraint file top.ucf, bm_4b.nmc (in the BusMacro direcory) and synthesized

design top.ngc are copied to this directory. Then top.ngd is created with the

following ngdbuild command:

ngdbuild -p xc2s200e-pq208-7 -modular initial -uc top.ucf top.ngc

58

–uc option ensures that the constraints from the top.ucf file are annotated to the

top.ngd file.

-p xc2s200e-pq208-7 option instructs ngdbuild that the device is Xilinx Spartan-2

200E, package is pq208 and speed grade is -7.

4.3.3.2 Active Module Implementation Phase

In this step each of the modules are implemented separately, using top-

level constraints. Partial bitstreams are generated for all reconfigurable modules

(Left_mult, Left_sub, Left_add) and static module (right) as illustrated in Figure

4-13

Figure 4-13: Partial Bitstreams for Reconfigurable Modules and Static Module

For all modules, Top.ucf file and associated synthesized .ngc file are

copied to the module directories in the implementation directory.

Then for all modules NgdBuild, MAP, PAR and Bitgen commands are

executed successively. Also for all modules pimcreate is executed to publish

routed and mapped partial module design. Published files are put on Physically

Implemented Modules (PIM) folder. Then they will be used in the final assembly

phase.

As an example, the following commands are executed for adder

configuration of the left module.

• ngdbuild -p xc2s200e-pq208-7 -modular module -active left

..\top_initial\top.ngc : NgdBuild is run for the active module implementation

phase and uses top.ucf file in working directory and synthesized netlists left.ngc,

top.ngc. It creates top.ngd file.

59

• map -pr b top.ngd -o top_map.ncd top.pcf : MAP takes top.ngd maps the

design and creates top_map.ncd

–pr b option specifies that flip-flops or latches may be packed into input and

output registers.

–o option specifies the name of the output NCD file for the design (top_map.ncd).

• par -w top_map.ncd top.ncd top.pcf : PAR takes mapped design, then it

place and route the design and outputs top.ncd file

–w option instructs PAR to overwrite existing output file top.ncd.

• bitgen -d -g ActiveReconfig:yes top.ncd partial_leftadd.bit : bitgen takes

top.ncd as input and produces partial bitstream partial_leftadd.bit

-d option instructs bitGen not to run DRC (Design Rule Check).

-g ActiveReconfig:Yes switch is required for active partial reconfiguration,

meaning that the device remains in full operation while the new partial bitstream is being

downloaded.

• pimcreate -ncd top.ncd -ngm top_map.ngm ..\Pim : PimCreate process

"publishes" the routed design (and associated files) to the Pim (Physically

Implemented Modules) folder.

After these steps, FPGA-Editor tool of Xilinx is used to inspect visually

whether an unexpected error occurred in the routed design, top.ncd. One possible

error is module that does not route at its own boundaries.

4.3.3.3 Final Assembly Phase

In the final assembly phase, partially routed and placed modules are

combined to obtain a complete FPGA design. These partial design files are taken

from the Pims directory and used for map, place, and route operations to create a

full FPGA design.

Only one complete assemble is done. It includes left adder and right

modules (another two possibilities are combining left multiplier and right modules

or combining left subtractor and right modules).

60

Top_final directory is used for the final assemble phase. Top.ucf file

created in the initial budgeting phase, bm_4b.nmc (in the BusMacro directory) and

synthesized design top.ngc are copied to the top _final directory.

After copying files, the following commands are executed successively:

• ngdbuild -p xcv100e-pq240-7 -modular assemble -uc top.ucf -pimpath

..\Pim -use_pim incrementer -use_pim myRegister top.ngc : NgdBuild is run

for the final assemble phase and uses top.ucf file in working directory,

synthesized netlist (top.ngc) and published files in the pims directory. It creates

top.ngd file.

• map –pr b top.ngd -o top_map.ncd : MAP takes top.ngd as input, then maps

the design and creates top_map.ncd

• par -w top_map.ncd top.ncd : PAR takes mapped design as input, then it place

and route the design and outputs top.ncd file

• bitgen -w top.ncd top_final.bit : bitgen takes top.ncd as input and produces

partial bitstream top_final.bit

After these steps, FPGA_editor tool of Xilinx is used to visually inspect if

an error occurred or not in the routed design, top.ncd. In other words, it is

checked if modules remain in their own boundaries.

61

Figure 4-14: Placement of an Adder Circuit and Bus Macro on FPGA

Figure 4-15: Placement of a Multiplier Circuit and Bus Macro on the FPGA

Boundary
of

Modules

Boundary
of

Modules

Adder
Circuit

Bus Macros

Multiplier
Circuit

Bus Macros

62

Figure 4-16: Placement of an Subtractor Circuit and Bus Macro on the FPGA

Figure 4-17: Final Layout of the Circuit on the FPGA with Adder Module on the Left

Side

Boundary
of

Modules

Boundary
of

Modules

Subtractor
Circuit

Bus Macros

Adder
Circuit

Storage Module

63

4.3.4 Creating “Logic 0” and “Logic 1”s

Reconfigurable modules can connect with each other only through bus

macros. In addition, as explained before the direction of bus macros are adjusted

by using LT or RT enable ports of the bus macro. These ports are driven by “logic

1” (VCC) and “logic 0” (Ground), therefore one direction is selected for bus macro.

These VCC and Ground must also be alive during reconfiguration of a module.

In addition, it is forbidden to use same constant “logic 1” (VCC) and “logic

0” (Ground) signals on different reconfigurable modules. The reason is that it can

cause a problem on module that shares these signals with another module while it

is reconfiguring. Therefore, instead of sharing “logic 1” and “logic 0” signals, they

must be given to the modules separately.

These limitations forces a module to have it is own VCC and Ground

signals and must be always available (even if it is reconfiguring). There are two

methods for getting “logic 1” and “logic 0” signals to the modules. First one is

getting these signals from the outside world by using FPGA pins [41]. The second

method is creating dummy Look-up Tables (LUTs) for each module and getting

“logic 1” and “logic 0” signals from them [42]. The second method is used in this

design.

1-bit LUTs are used and LUT functions are selected so that whatever the

input is one LUT creates “logic 0” and another LUT creates “logic 1”. The truth

tables of the LUTs are given in Table 4-2 .

Table 4-2: Truth Tables of Dummy Look Up Tables

Truth Table of LUT 0

Input Output

0 0

1 0

Truth Table of LUT 1

Input Output

0 1

1 1

Two LUTs are connected to each other in order to create dummy inputs.

LUT connections are shown in Figure 4-18. LUT on the left side creates “logic 0”

and LUT on the right side creates “logic 1”.

64

Figure 4-18: Dummy LUTs for creating “Logic 1” and “Logic 0”

The same structure is used for each module (fixed and reconfigurable).

The added VHDL codes to the top.vhd file for generating left module’s logic 1 and

0 are the following:

 -- Fake Gnd and Fake Vcc of Left Module

 Internal_Gnd_Left: LUT1

 generic map (INIT => b"00")

 port map (O => Gnd_Left, I0 => Vcc_Left);

 Internal_Vcc_Left: LUT1

 generic map (INIT => b"11")

 port map (O => Vcc_Left, I0 => Gnd_Left);

It must be guaranteed that these elements stay inside the corresponding

module area. Otherwise, reconfiguration of one module can disturb the outputs of

LUTs (this can result in a contention on the bus macro). To overcome the problem

LUTs are locked into the modules region. The following constraints are added to

the top.ucf file to lock these LUTs:

INST "Internal_Gnd_Left" AREA_GROUP = "AG_left_module" ;

INST "Internal_Vcc_Left" AREA_GROUP = "AG_left_module" ;

INST "Internal_Gnd_Right" AREA_GROUP = "AG_right_module" ;

INST "Internal_Vcc_Right" AREA_GROUP = "AG_right_module" ;

4.4 ENCOUNTERED PROBLEMS AND SOLUTIONS

This design has been tested on Spartan 2 200E device however; initial test

was done on Virtex - 100E. The bus macro provided by Xilinx for Virtex - E device

65

contains some errors. The errors are corrected to achieve partial reconfiguration

on Virtex – E device.

4.4.1 Bus Macro Error and Its Solution

NgdBuild gives the following warnings at the initial budgeting phase:

WARNING:PhysSimExpander:5 - TBUF symbol `t4H_<0>': The following pins were

connected on the outside of block "t4H_<0>" but left unconnected within the block: T

WARNING:PhysSimExpander:5 - TBUF symbol `t3G_<1>': The following pins were

connected on the outside of block "t3G_<1>" but left unconnected within the block: T

....

These warnings cause the mapping tool (MAP) to fail and give some

errors. The reason for these warnings is the error in the bus macro file of the

Virtex-E family. The bus macros with extensions nmc must be converted to xdl

files in order to make them editable (with a text editor). To convert a command

line utility of Xilinx is used. For example, the bus macro bm_4b_ve.nmc is

converted to bm_4b_ve.xdl by the following command:

xdl –ncd2xdl bm_4b_ve.nmc

Converted xdl file is opened with a text editor and there are some lines in

the xdl file problematic such as

inst "t4H_<0>" "TBUF" , placed R1C16 TBUF_R1C16.1 ,

 cfg "TMUX::0 IMUX::I _SUPERBEL::TRUE";

inst "t3G_<1>" "TBUF" , placed R1C15 TBUF_R1C15.0 ,

 cfg "TMUX::0 IMUX::I _SUPERBEL::TRUE";

........

 In these lines

cfg "TMUX::0 IMUX::I _SUPERBEL::TRUE"

is changed to

cfg "TMUX::T IMUX::I _SUPERBEL::TRUE"

66

Explained changes are done on the .xdl file and its again converted to nmc

file by the following command:

xdl –xdl2ncd bm_4b_ve.xdl

This command creates bm_4b_ve.ncd . It is renamed as bm_4b_ve.nmc

and again used in the modular reconfiguration flow. This operation removed the

warnings in the initial budgeting phase and the mapping errors in the active

module phase of partial reconfiguration flow.

4.4.2 Second Bus Macro Error and Its Solution

When the PAR is run for the active module implementation phase of the

static module it gives some errors as the following:

ERROR:DesignRules:576 - Netcheck: The signal dataR2<1> has a

sigpin on the comp busRegToInc_bus1/t3G_<1> that is not in the

same route area as another sigpin of the same signal. This is not

permited for Modules in partial reconfiguration mode unless the

signal has the property IS_BUS_MACRO.

ERROR:DesignRules:9 - Netcheck: The signal "dataR2<1>" is

only partially routed.

Again, the bus macro has problems that need to be corrected. The

problematic lines in the converted bus macro file (.xdl) are the following

net "TNET<3>" ,

 outpin "t1A_<3>" O ,

 outpin "t1E_<3>" O ,

 pip R1C9 TBUF_OUT0 -> TBUF2 ,

 pip R1C10 TBUF3 =- TBUF_STUB3 ,

 pip R1C13 TBUF_OUT0 -> TBUF2 ,

 # net "TNET<3>" loads=0 drivers=2 pips=3 rtpips=0 ;

is changed to:

67

net "TNET<3>" ,

 cfg "_NET_PROP::IS_BUS_MACRO:" ,

 outpin "t1A_<3>" O ,

 outpin "t1E_<3>" O ,

 pip R1C13 TBUF_OUT0 -> TBUF2 ,

 pip R1C10 TBUF3 =- TBUF_STUB3 ,

 pip R1C9 TBUF_OUT0 -> TBUF2 ,

 # net "TNET<3>" loads=0 drivers=2 pips=3 rtpips=0 ;

For all nets (net "TNET<3>" , net "TNET<2>" , net "TNET<1>" , net

"TNET<0>") the same correction is done. In other words cfg

"_NET_PROP::IS_BUS_MACRO:" property is added.

Then bm_4b_ve.xdl file is again converted to bm_4b_ve.nmc file as in the

solution of previous error.

68

CHAPTER V

5A TMR SYSTEM ON A RUNTIME

RECONFIGURABLE ARCHITECTURE

As a case study for partial reconfiguration, a fault tolerant system is

designed to run on a reconfigurable FPGA. It is based on Triple Modular

Redundancy (TMR). Runtime reconfiguration property of the FPGA is used to

repair modules of the TMR.

The system can eliminate transient faults on routing lines and logical

elements of the FPGA. It can also mask the faults encountered on logical

elements by replacing them with non-faulty elements. The work does not address

permanent faults on routing lines of the FPGA.

In this chapter, designed architecture will be explained. For the sake of

completeness, basic terms about the fault tolerance will be given. Moreover,

related works about the fault tolerance of FPGAs will be discussed.

5.1 BACKGROUND

Reliability is an important issue for mission and safety critical applications.

A high reliability must be maintained on systems where a failure can cost lives

and money. For instance, a breakdown of a satellite is unacceptable where total

system cost takes a few billions of dollars. Similarly, brake system of an

automobile must be highly reliable where people lives depend on. Hence,

designers of such systems must take into consideration the faults on hardware

that can arise during operation.

A reliable hardware environment is designed in this work, which is mainly

built on a run-time reconfigurable FPGA. The fault types seen on such FPGAs

and recovery methods of them are discussed in this section.

69

5.1.1 Fault Tolerance

A fault tolerant system can continue to operate even a fault occurred.

Performance degradation can be acceptable in the case of a fault presence

however, it is important not to break off the whole system. Fault tolerance requires

extra sources to detect and correct the faults. By the help of extra sources, it

increases total correctly running time of the system.

5.1.1.1 Redundancy

Reserving extra sources to mitigate the effects of faults is called

redundancy. Redundant sources are necessary to detect and eliminate faults.

Alternative redundancy methods such as hardware, software, and time

redundancy can be used on a fault tolerant system. This work only focuses on

hardware redundancy to develop a fault tolerant hardware.

On a fault tolerant hardware, faulty elements can be replaced by

redundant ones. Another redundancy is required for the error detection circuits

since fault recovery can be done after detection.

5.1.1.2 Availability

Availability is a measure of ratio between running time without breakdown

and total running time of the system. High availability is the main aim of a fault

tolerant architecture. For example, mission critical applications require very high

availability. Ideal availability for such systems is 100%.

5.1.2 Triple Modular Redundancy (TMR)

Triple Modular Redundancy (TMR) is widely used approach to mask the

faults. TMR is composed of three redundant modules and one voter module as

seen in Figure 5-1. All redundant modules are exact copy of each other. The level

of a redundant module can range from only a gate to a complex circuit. A majority

voter compares the outputs of these identical modules.

70

Figure 5-1 Triple Modular Redundancy (TMR) with Simplex Voter

When no error is present in the system, the outputs of all modules agree

with each other, then voter use this output. If one of the modules fails, it gives

different output from the other modules. Then the outputs of two correct modules

agree and voter uses this output to feed forward. If more than one module

becomes faulty then none of them agrees with each other and the system breaks

down. Therefore, using just TMR can mask the effect of a single failure. If a

recovery approach is used on TMR after a failure, system can return to initial state

and more than one error can be masked.

The advantage of TMR is high system availability (i.e. 100%) even if an

error is present. Another advantage is no extra error detection circuit is required

inside a module. Voter immediately detects an error on a redundant module and it

can reflect this status to the output.

5.1.3 Rollback and Roll-forward

Duplicate modules can be used to establish Fault Tolerance on a system.

If one of the duplicate modules encounters an error, the other can keep the

system alive as in TMR. The error must be eliminated as soon as possible since

occurrence of an error on correctly operating module can crash the system. After

eliminating fault, the state must be recovered to a well-known point. This can be

accomplished by either copying state from correctly working module or returning

to a checkpoint. Restoring state from a past checkpoint is called rollback

operation while copying it from a correctly running system is called roll-forwarding

operation.

71

5.1.4 Fault Types

Encountered fault types during the operation of a digital circuit can be

classified into two groups. One of these types is transient fault and the other type

is permanent fault. A transient fault causes the circuit to work incorrectly in a

limited time interval; afterward the fault disappears. It is important to be aware of

the fault and take precautions such as re-evaluating circuit operations. A

permanent fault cannot be corrected without any intervention from the outside

world [43]. Spare sources must be reserved in the system, in order to eliminate

permanent faulty elements. Whenever a permanent fault occur these spare

sources takes the function of the faulty blocks.

5.1.4.1 Transient Faults

Heavy ion and proton particles on space applications may hit a memory

element such as latch, flip-flop, RAM etc. This cosmic radiation results in a state

change of the memory element, which is called Single Event Upset (SEU). Such

events are seen more frequently with continuously decreasing transistor sizes by

improving implementation technology [44]. Normally these bit-flips are transient

and disappear after storing a new value on the memory cell or resetting it.

However, these transient errors become an important issue on SRAM

based FPGAs where circuit behaviours are determined by configuration memory

elements. If a configuration memory element of FPGA encounters a SEU, it will

change corresponding circuit behaviour. In normal operation of an FPGA (i.e. no

reconfiguration is done), this memory will never be refreshed until a power-down –

power-up sequence. Hence, these transient errors become permanent errors, if

no configuration memory refresh is done. The system can be damaged because

of these functional errors. Therefore, they must be corrected by writing the true

configuration data after a SEU in order to recover circuits. An example bit-flip or

SEU on a Lookup Table (LUT) and resulted functional error is illustrated in Figure

5-2.

72

Figure 5-2 Effect of a Single Event Upset (SEU) a) Original Configuration with

function AND b) Configuration after a SEU with Function Constant Zero [45]

5.1.4.2 Permanent Faults

Permanent faults can arise during the operation of a circuit due to long life

usage or impurities on manufacturing that are not detected with initial tests [28].

The long usage of circuit on high radiation environment can also trigger

permanent fault generation by modifying threshold voltage levels of transistors on

the circuit [46]. Researches use some models for operational permanent faults

and most common model is stuck at error model.

Stuck-At Model

Stuck-At fault models are widely used for permanent error modelling due

to their simplicity. The models are stuck-at 0, stuck-at 1, switch stuck open and

switch stuck closed. Stuck-at 0 (SA0) means the input or output of a logic gate is

locked to 0 and cannot be changed anymore. Similarly, stuck-at 1 (SA1) means

the input or output of a logic gate is locked to 1.

Other models are used for the switches. Switches can be locked to a state

connecting (stuck closed) or not connecting (stuck open).

Any signal of a CLB can encounter a SA0 or a SA1 error on an FPGA. A

connection point on the switch matrix or Programmable Interconnect Points (PIP)

can also encounter stuck-at open/closed errors. These elements must be

replaced by undamaged ones.

73

5.2 RELATED WORK

The main research topics about the Fault Tolerance that use Runtime

Reconfiguration (RTR) are listed below:

• Detection of Errors

• Recovery of transient errors (such as SEU), which can be

permanent if configuration memory of SRAM FPGAs is affected

• Tolerating permanent errors (such as corruption of a CLB)

• Simulating faults

Some researches propose methods for more than one topic at the same

time. They are discussed under one subject in the following section.

Error Detection

There are different methods available to test the sources inside an FPGA.

Some of them use online methods in which the system continues to operate.

Runtime reconfiguration is used to enable uninterrupted operation of user circuit.

For example, M. G. Gericota et al. [28] proposed a non-intrusive CLB test method.

The method uses a dynamic rotation mechanism to test all CLBs inside the FPGA

and rotation is based on RTR of hardware. In order to test a CLB in a non-

intrusive manner, its contents are copied to another CLB called replica. Then, test

is done to the replicated CLB. If no errors found on replicated CLB, the function

again copied from the replica CLB. This method is able to detect permanent

errors on CLBs and it can recover transient errors on CLBs.

J.Emmert et al. [29] used another method for error detection based on

BIST (Built-In Self-Test). BIST structure includes Test Pattern Generator and

Output Response Analyzer to test the functionality of the block under test. Their

method implements a roving Self-Testing Areas (STARs) that reserve a test area

inside the FPGA. A STAR contains vertical and horizontal blocks to be tested.

After the test operation of blocks completed, they move to another position. The

logic blocks other than STAR are always active inside the FPGA. Partial

reconfiguration of the FPGA allows the system working even if the STAR is

moving to another place. Moreover, a reconfiguration can eliminate the usage of

faulty logic cells.

74

SEU Mitigation

Single event upsets on configuration memory of SRAM based FPGAs

become a permanent error as mentioned before. Two methods can be used to

eliminate a SEU on SRAM configuration memory. First method uses a readback,

compare, and repair strategy. Configuration memory is continuously read and

compared with the original configuration data. If an error found on a frame, it is

partially reconfigured again to correct error. Instead of comparing all the

configuration bits of a frame, CRC can be generated and can be compared with

already prepared CRC to find an error. One restriction of this method is LUT

cannot be used as shift-register or RAM, since readback operation can disrupt the

data on it [47] [48].

Second method continuously writes correct configuration data to the

configuration memory of the FPGA. This method is called scrubbing. The reload

period is selected according to the rate of SEU events. As a rule of thumb,

scrubbing rate must be 10 times higher than average SEU rate.

Both systems must use a fault tolerance method such as TMR in order to

increase availability. Otherwise, system can stop working until the repair process

correct the fault. Xilinx proposed [49] such SEU mitigation method that uses

partial reconfiguration (scrubbing) and TMR.

Another research by R. F. Demara et al. [50] proposed a TMR like solution

in which redundant modules are two instead of three. These two redundant

modules are called Discrepancy Mirrors. Discrepancy mirrors are exact copy of

each other and their output is voted by a discrepancy detection circuit. When a

fault arises on one of the redundant modules or detection circuit, the detection

circuit indicates unmatched outputs. Therefore, it does not need a golden circuit

for the detection circuit. This method enables immediate detection of errors as

opposed to test vector method, which requires a high latency for detection of

errors. After detecting error, a reconfiguration can eliminate the single event

upsets on discrepancy mirrors and detection circuit.

Tolerating Permanent Faults

In a fault tolerant system, extra sources must be reserved in order to

eliminate permanent faults. These sources are kept as spare until a fault appears.

75

Then, in the case of damage occurred, the faulty element is replaced by a spare

(non-faulty) one to implement the function of it.

Runtime reconfiguration (RTR) of hardware sources can be very helpful to

mitigate the effects of faults on FPGAs. Configuration schemes can be prepared

that does not cover faulty sources. Since RTR enables uninterrupted operation,

faulty sources can be replaced with spare ones by using such configurations. This

is a very useful property since system can stay active even during recover

operations. Therefore, researches that deals with Fault Tolerance of FPGA use

RTR property of them. In this work, RTR is also used to mitigate effects of faults

on FPGAs.

W.J. Huang et al [30] have proposed a column-based precompiled

configuration technique that can eliminate permanent faults on the FPGA. In this

method, FPGA is divided into multiple columns. One or more columns are

reserved as spare and a user design is mapped to the remaining columns. For

each function, multiple configuration schemes are prepared offline, and they are

used immediately if an error appears. For example, if an error appears in a CLB of

a column then the function inside is moved to a neighbour error-free column. The

function in neighbour column is also moves by one column and replaces another

function. All functions are moved until a spare column is used, then the erroneous

column becomes empty. Therefore, each function has a configuration mapped on

each column. This method can tolerate permanent faults until the number of faults

becomes equal with the number of spare columns.

TMR architecture can be used to tolerate permanent faults. It can tolerate

up to one erroneous redundant module if no additional method is used. Its

disadvantage is high area overhead. Another work, by S.Y. Yu et al. [51] provide

a solution to reduce the area overhead of the TMR. Their technique divides a

redundant module into two parts. Then different fault tolerance methods are

applied to two distinct parts. For example, in one of the implementations, a part

uses a redundant architecture (i.e. TMR) while the other part is strengthened by a

Concurrent Error Detection (CED) unit. If TMR part encounters an error, it is

reconfigured to eliminate fault and then errors are corrected by roll forwarding. In

another method, one part uses TMR while another one uses a duplex scheme. If

an error occurs on the parts implemented with duplex schemes, it is reconfigured

to eliminate fault and then error is corrected by rollback recovery method.

76

Simulating Faults

Some researches try to find solutions for simulating Single Event Upsets.

This simulation is necessary before launch to analyze the behaviour of the circuits

under a real space environment. Two methods can be used to simulate SEUs on

the earth. First, SEUs can be directly injected by using radiation (proton beam)

test equipments. Second method reconfigures the FPGA with a configuration data

that embeds bit-flip errors inside. The second method is a low cost solution since

no external equipment is necessary to see a SEU effect.

For instance, Gokhale et al. [48] used RTR to induce SEUs into the

configuration memory of the FPGA. P. Kenterlis et al. [52] used JBits to emulate

the configuration data corruptions.

5.3 DESIGNED ARCHITECTURE

5.3.1 General Overview of the System

The system is mainly composed of a board containing runtime

reconfigurable FPGA and a Personal Computer (PC). A Triple Modular

Redundant (TMR) circuit operation is performed on a reconfigurable FPGA. TMR

structure includes a fault tolerant user application circuit and a controller circuit

(voter of TMR). A PC program organizes reconfiguration processes of the FPGA

according to the feedbacks of the controller circuit. The fault tolerance of the user

circuit is maintained by an algorithm run on the PC Program with the help of the

controller circuit.

Some additional peripherals are used to complete system function. More

specifically, a board displays information coming from the FPGA board to the

user. Another board enables communication between PC and FPGA. Lastly, a

cable from Xilinx is used for downloading configuration data (i.e. bitstreams) from

PC to FPGA board. In Figure 5-3, all elements and connections of designed

reconfigurable system are shown.

77

Figure 5-3: Components and Connections of the Reconfigurable System

5.3.1.1 Addressed Error Types

The design can tolerate following faults:

• Corruptions on FPGA configuration memory due to SEU like effect

• Permanent errors on CLB sources of the FPGA

• SEU corruptions on Flip-Flops inside a CLB

5.3.1.2 Partial Runtime Reconfigurable Design

Using only Triple Modular Redundancy (TMR) for Fault Tolerance cannot

compensate errors on different modules. In other words, if an error occurs on a

redundant module, the system can continue to operate. Nevertheless, if another

error comes to another module during this state, system will halt.

However, if the error on a redundant module of the TMR can be eliminated

whenever it appears, the system can compensate more than one error. Designed

architecture use partially reconfigurable hardware (i.e. FPGA) where parts of

circuit can be changed while others are operating. Faulty redundant modules are

replaced with repaired ones while continuing the operation of the whole circuit by

the help of partial reconfiguration.

The reconfiguration of the FPGA is based on Module Based Partial

Reconfiguration, which was described in Chapter 4. Hence, the guidelines of

78

module based partial reconfiguration are followed for this design and its

restrictions are considered.

5.3.2 Hardware Used in the Design

Three boards and two cables are used to implement proposed

architecture. These are listed below:

• A board containing a reconfigurable FPGA on it (D2SB)

• A board containing seven segment displays and switches on it (DIO1)

• A board that converts TTL voltage levels to RS232 voltage levels

• A JTAG cable for the PC (Parallel Cable III)

• RS232 to USB converter cable

The hardware components of the reconfigurable system (except PC) and

their connections are shown in Figure 5-4. Detailed information about individual

hardware components is given in the following sections.

79

Figure 5-4: Picture of the Reconfigurable System without a PC

5.3.2.1 Digilent D2-SB System Board

Digilent D2SB board contains a Xilinx Spartan 2E XC2S200E FPGA and

peripherals to run the FPGA. The block diagram of the board is shown in Figure

5-5. Xilinx XC2S200E is a reconfigurable FPGA as explained in Chapter 4.There

is a 1.8V regulator to supply the power of the FPGA core. FPGA I/O voltage is fed

by the 3.3V regulator. To make simple tests one LED and one push button is

inserted on the board. There is also a socket for a configuration Programmable

Read Only Memory (PROM). A JTAG connector is provided to enable

configuration of FPGA and PROM by JTAG cable. 143 I/O pins of the FPGA are

expanded to the connectors to enable connection with other daughter boards or

user circuits [53].

D2SB
Board

DIO
Board

RS232 to TTL
Converter

Board

Parallel Cable
III

USB to RS232
Converter Cable

Xilinx FPGA

80

Figure 5-5: Block Diagram of the D2-SB board

5.3.2.2 Digilent DIO Board

Digilent DIO1 board is used to display some information to the user. It

takes necessary data and displays on seven segment displays on it. Actually,

DIO1 is a daughter board that can be directly connected to the connectors of the

D2SB board. However designed architecture implements module based

reconfiguration in which a module can access to only I/O’s at its boundaries (as

explained in Chapter 4 in detail). This limits connection of D2SB board to the

DIO1 board to certain pins. Therefore, the daughter board is not connected

directly to the D2SB but connected by wiring up the connector pins.

5.3.2.3 RS232 to LVTTL Converter Board

A communication channel is necessary between host computer and FPGA

board for the handshaking operations. As a straightforward method, serial port of

the computer is selected as the communication channel. However, the signal

81

levels of the serial port and Xilinx FPGA are incompatible since Serial port uses

RS232 voltage levels and Xilinx FPGA is configured to work on TTL voltage

levels. In order to convert voltage levels from RS232 to TTL and vice versa, a

converter board is constructed. The schematic and PCB figures of the board are

given in Appendix A.

Today, some computers such as Laptop PC’s do not have a serial port any

more. To overcome this problem, a USB to Serial port converter is also added to

the board. The design is done normally as using standard serial port.

5.3.2.4 Parallel Cable III

Parallel Cable III is a JTAG cable provided by Xilinx. It is used for loading

configuration bitstream to the FPGA using its JTAG port. It is connected to the

Parallel Port of the PC and works at 200 kHz.

5.3.3 Working Principle of the TMR

A TMR system is constructed on the FPGA. This system includes three

redundant modules and a voter module. The logic circuits on redundant modules

are exact copy of each other and they include user circuit. Voter module

compares the outputs of redundant modules. All modules are partially

reconfigurable. Alternative partial configurations are prepared for alternative

placements of a redundant module.

An initial configuration that contains TMR is loaded to the FPGA. After the

initial configuration, redundant modules send their state information to the voter

module all the time. Voter module checks if all of them has the same output or

not. Then voter sends state information to the PC on fixed time intervals. The

connections of Redundant Modules and Voter Module are shown in Figure 5-6.

82

Figure 5-6: General Structure of the System

If an error condition occurs on any redundant module (i.e. one module

gives different output than the others), voter also send this information to the PC.

Then PC program evaluates how a reconfiguration operation will occur. It starts

recovery operations such as reconfiguring a redundant module and instructing the

voter module. Hence, it can be said that intelligent part of the system is placed on

the PC Program. However, it can be easily moved to the Voter module if a

System on Chip (SoC) is required.

5.3.4 VHDL Design of the TMR Circuit

The logic circuits inside FPGA are designed by using VHDL. All the source

codes of designed architecture are given in Appendix E (FTArchitecture/Synthesis

directory is used for synthesizing these VHDL files). The individual modules of the

design will be explained in this section.

83

5.3.4.1 Voter Module

Voter Module is mainly responsible from controlling whether all modules

give same output and informing PC about module states. Other responsibilities

are recovering states of redundant modules after reconfiguration, and driving

display units. Figure 5-7 shows internal units of the Voter module.

Figure 5-7: Block Diagram of the Voter Module

Error Checker

Error checker unit controls whether all units give same output. To

accomplish this goal, a majority voter circuit is implemented on error checker unit.

There are three comparators checking the equality of Module One - Module Two,

Module One - Module Three, and lastly Module Two - Module Three. If all

comparators give 1 to the output, Error Checker generates “All Modules are OK”

signal as shown in Figure 5-8a. If comparators belonging to a module give zero

output then this module is treated as faulty and reported with a corresponding

signal. For example, in Figure 5-8b the logic that generates “Error on Module

One” is shown.

84

Figure 5-8: Internal Logic Circuits of Error Checker Unit a) Circuit giving “All

Modules are OK” signal b) Circuit giving “Error on Module One” signal

Error checker sends status messages to the PC via UART. The messages

are shown in Table 5-1.

Table 5-1: Status Descriptions and their corresponding ASCII values

Status Description
ASCII

Decimal Number

ASCII

Character

Module One gives different output A 65

Module Two gives different output B 66

Module Three gives different output C 67

All Modules give different output D 68

All Modules give same output E 69

Universal Asynchronous Receiver Transmitter (UART)

The voter communicates with supervisor program that runs on the PC via

the serial port. A Universal Asynchronous Receiver and Transmitter (UART)

implements Serial port protocol on the Voter side. Both PC program and Voter

use 115200-Baud rate. The UART Intellectual Property (IP) is taken from an

application note by Xilinx [54].

85

Command Decoder

Command Decoder unit decodes the data coming from the PC. It reads

receive buffer of the UART whenever a data available. Then it decodes the data

and if necessary, it sends commands to the individual units on the Voter Module.

A command is one-byte data. It has three fields; Module Number, Module

Command and Generic Command as shown in Figure 5-9.

Figure 5-9 A Command Byte sent by the PC

The Module field indicates the recipient of a Module Command. It can take

01 value for Module One, 10 for Module Two and 11 for Module Three. The

Module command is sent to the individual Modules according to the Module field.

The Module Commands and their codes are listed in Table 5-2.

Table 5-2: Definitions and codes of Module Commands

Command
Code

Command Name Command Definition

0001 Reset Reset module

0010 Rollforward Roll forward states of the module from
another module

0011 AskDiscrepency

_BusMacros

Compare the input data coming from
original bus macro and alternative one.
Then send this information to the PC. (i.e.
request discrepancy information)

0100 UseAlternateBusMacro Use the data of alternative bus macro

0101 DeleteDiscrepencyInfo
_BusMacros

Reset the register that holds discrepancy
information

0110 UseOriginalBusMacro Use the data of original bus macro

86

Some generic commands are added for debugging purposes. When “00”

comes in the Module field, the Generic Command part of command byte is used.

Currently, only two Generic Commands are available, namely Check Fast (01)

and Check Slow (10). If Check Fast command is received by the voter, module

errors are reported to the PC all the time. If Check Slow command is received,

voter sends status messages on fixed intervals. Therefore, when check slow

option is used some errors may be missed. However, it is necessary to prevent

locking of the communication channel when a module gives error all the times.

Roll Forwarding and Resetting Unit

When an error occurred on a module, designed architecture corrects the

error. If redundant module includes only combinational logic circuits then recovery

operation is simple. Reconfiguring redundant module to eliminate faulty elements

solves the problem. However correcting faults of a sequential circuit includes two

operations. These operations are first eliminating the fault, and then recovering

the states of the sequential elements. The state recovery operation is performed

by the Roll-Forwarding and Resetting Unit (RFRU). However, PC sends

commands to the RFRU to initiate the recovery operations.

Some extra signals are used on the redundant modules to enable recovery

operations. A redundant module takes feedback data to load its internal registers

when an error occurs. This data is taken from the other module’s data outputs.

For example, the output data of Redundant Module Two is fed to the input data of

Redundant Module One as seen in Figure 5-7. In the case of an error occurred on

Module One and the others are correctly working, recovery operation updates

Module One’s internal registers with the Module Two’s data.

RFRU sends other extra signals – load, reset, and Clock Enable (CE) – to

all redundant modules individually. CE signal is connected to all synchronous

logics (i.e. Flip-Flops inside the CLBs) inside redundant modules. The

synchronous logics will run when CE signal is activated. Therefore, control of the

clock rate is achieved by CE signal.

Recovery operation occurs as follow: At first, a Reset signal is applied to

the repaired module and it goes to the initial state. Then a Load signal is given to

the module under recover operation. At this time, all registers of correctly working

modules are deactivated by disabling Clock Enable (CE) inputs (this ensures

87

clock-by-clock equivalence of working and repaired module states). Two different

strategies can be applied for CE signal by the roll-forwarding unit.

First method maintains a constant clock frequency rate for all modules at

all times. Clock enable signal halves the frequency rate of input clock for all

modules. In other words, one clock cycle is used for operations while consecutive

cycle is not used (i.e. idle cycle). When roll-forwarding operation is active, the idle

cycle is used for loading data from other modules.

On the other hand, second method tries to achieve highest frequency rate

if no error is present in the system. In this method, clock frequency of working

modules is halved only during roll forwarding and their states are copied to

recently repaired module. After reconfiguration process, modules again work at

normal frequency rate.

Another important point is the duration of Load signal at recovery

operation. The Load signal is applied until a state change is seen at the output of

the correctly working modules. Therefore, internal registers of recovered module

can be initiated correctly after a state change occurs. The simulations of recovery

operations are given in Appendix B.

Display Controller Unit

Display controller manages seven segment displays (SSDs) to display

data output of redundant modules. Since three redundant modules exist, three

SSDs are used to display their data. Display controller unit takes the output data

of all redundant modules. It converts the data output of redundant module to a

valid format that will result in a meaningful pattern on a seven segment display.

Then it sends converted data to the seven segment displays (SSDs) available on

the DIO board. For example, if 4-Bit data is “0010”, SSD displays 2 (i.e.

corresponding decimal number). More details about driving SSDs on DIO board

are explained in [55].

5.3.4.2 A Redundant Module

A redundant module includes a user circuit. The circuit can be composed

of combinatorial and/or sequential logic gates. TMR structure is applied to the

final output of the redundant modules. One of redundant modules is shown in the

following figure:

88

Figure 5-10: A Redundant Module of the TMR System

To test fault tolerance capabilities of the system a Finite State Machine

(FSM) is selected as the user circuit. FSMs are formed by using both

combinational and sequential logic circuits. Therefore, a feedback data path is

used to recover states of the FSM.

A repetitive structure is used on the FSM. In states with prefix stX_load, a

counter value 2000000 is loaded and directly passed to another state. On this

state, count value is decremented until it reaches to zero. Then it is again passed

to another load state and load count 2000000 value. This structure repeats for 16

states then FSM returns to the first state. The outputs of the states are different

and used for recover operation. First state sends 0, second one sends 1 and it

continues up to 16. This output is encoded to 4 bits (24=16) and send to the

output. The FSM state transitions and state outputs are shown in Figure 5-11.

89

Count = 0

Count = 0

Figure 5-11: Finite State Machine that is implemented on Redundant Modules

User must take into consideration the usage of Clock Enable (CE) and

Load signals. These signals are necessary to roll-forward redundant modules in

the case of a fault occurs. Any synchronous circuit must use ce_ModX to enable

loading input data to a Flip-Flop with the clock. In addition, load_ModX must be

used to load data coming from the Voter module. An example VHDL code for

Module One is given below:

90

5.3.5 Partial Reconfigurable FPGA Design

Module Based Partial Reconfiguration Flow of Xilinx is used in this design

to achieve a runtime reconfigurable design. TMR modules can be reconfigured

whenever an error appears on them. These reconfigurable modules must occupy

full height of the device with this method (More details of restrictions were given in

Chapter 4). For this reason, FPGA is divided into columns and modules are

placed inside them. Five columns are reserved; four of them are occupied by

three redundant modules and a voter module. One column is intentionally left as

spare for the future requirements.

The modules on rightmost/leftmost sides can use more pins than the

modules that lie on the middle. Therefore, the voter module is put on the right side

of the device to use more I/O pins. Figure 5-12 shows the layout of modules

inside the FPGA.

if (reset_ModOne='1') then

 … ���� Load Initial FF States

elsif (Rising_Edge(clk)) then

 if(load_ModOne='1') then

 … ���� FF States Rolled Back

 elsif(ce_ModOne='1') then

 … ���� Normal Sequential FF State Transitions

 end if;

end if;

91

Figure 5-12: Layout of the Modules on the FPGA

Minimum column width of a reconfigurable module must be four CLBs,

since a bus macro connection requires four CLB columns. However, it is observed

that place and route tools cannot map the logic if modules have a width less than

seven CLBs width. Otherwise some routing errors appear. To eliminate these

errors minimum width is selected as seven CLB columns. In addition,

reconfigurable modules must be put on four slice boundaries (4-8-12...) for partial

reconfiguration [35]. Therefore, boundaries between modules must lay on even

CLB columns (four slices equals to two CLBs on Spartan-2E). As a result, a

module boundary is selected eight CLB away from other boundary of the module.

Final placement of modules is given in Table 5-3.

92

Table 5-3: Occupied Area of the Modules

Module Name
Range of Occupied CLB Columns

by the Module

Spare Area 1-7

Module Three 8-15

Module Two 16-23

Module One 24-31

Voter Module 32-42

Module based partial reconfiguration does not allow signals to pass from

one module to another except using Bus Macro structures. Therefore, bus macros

are used for the communication of redundant modules with voter module.

However, some extra effort is needed to communicate two non-adjacent modules

since Xilinx only gives a bus macro connecting only adjacent modules. Bus macro

given by Xilinx is modified to enable communication between two non-adjacent

modules.

5.3.5.1 Modified Bus Macro

Standard bus macro given in Xilinx application note [35] only enables

communication between two adjacent modules. However to implement our

system, bus macros must be able connect modules which are not adjacent.

Therefore, it is modified to accomplish communication between two non-adjacent

modules as illustrated in Figure 5-13. A Xilinx tool, namely FPGA Editor, is used

for this purpose. FPGA Editor Snapshots of standard and modified bus macro is

given in Figure 5-14.

Three custom bus macros are created for the connection of voter module

to each redundant module. The names of created bus macros and original bus

macro are given in Table 5-4. The bus macro files are used in the implementation

phase of the Module Based Partial Reconfiguration Flow. The files are given in

Appendix E (in FTArchitecture/ BusMacro Directory).

93

Figure 5-13: Modified Bus Macro that connects Two Non-Adjacent Modules

Working principle of the modified bus macro rely on FPGA cells that can

be reconfigured glitchlessly. Writing same configuration data to the configuration

cells does not cause a glitch on the cell connection. Furthermore, bus macros are

placed exactly same horizontal lines for each configuration of a module.

Therefore, while intermediate module is reconfiguring, the bus crossing this

module does not corrupted by the help of glitchless configuration of cells.

Otherwise, programmable interconnection points (PIPs), which reside in the

middle area, will disconnect the bus macro.

Table 5-4: Different Bus Macro Functions and Their Sources

Bus Macro

Name
Connecting Modules Source

bm_one_4b.ncd “Voter” and “Module One”
Provided by Xilinx

(bm_s2e_4b.ncd)

bm_two_4b.ncd “Voter” and “Module Two”
Edited from bm_one_4b

(custom)

bm_thr_4b.ncd “Voter” and “Module Three”
Edited from bm_one_4b

(custom)

94

Figure 5-14: FPGA Editor Snapshots of Bus Macros a) Standard Bus Macro connecting Two Adjacent Modules b) Modified Bus Macro

connecting Two Non-Adjacent Modules

Module
Boundary

a)

b)

A Configurable Logic Block (CLB)

TBUF Connection
Points

Horizontal
Routings TBUF Connection

Points

Module
Boundary

TBUF Connection
Points

TBUF Connection
Points

TBUF
Connection

Point

Module
Boundary

95

5.3.5.2 Partial Configurations

To eliminate permanent faults, alternative placements are done for

modules. For each alternative placement, a partial configuration (bitstream) is

produced. The active implementation phase of the Module Based Partial

Reconfiguration Flow is used for generating partial configurations. All batch files

for this phase are given in Appendix E (in FTArchitecture/ Implementation/

Module_Name directories).

Partial configurations can be loaded to the corresponding part of the

device as shown in Figure 5-15. Placement of logic into different areas is

achieved by adding prohibit constraint to the User Constraint File (UCF). A UCF

example is given in Appendix C. More details of prohibit constraint will be given in

Section 5.3.6.2 (Eliminating Permanent Faults). For each placement of a module,

a corresponding UCF is created and used during the generation of partial

configuration. They are given in Appendix E (in FTArchitecture/ UCF directory).

Figure 5-15: Alternative Partial Configurations of Module Three

Therefore, reconfiguring a module with a partial bitstream allows changing

the placement of a module. However, during reconfiguration of a module, the

other modules must not be affected. For this reason, the bus macros passing

through a module (connecting two non-adjacent modules) must remain in all

configurations. This requirement is satisfied by locking the bus macros to a fixed

position. Positions of the bus macros are locked in the user constraint file (It is

96

given in Appendix C). Then modular design flow automatically place bus macros

in all partial configurations.

5.3.5.2.1 Bus Macro Connections of Redundant Modules

To increase reliability of the TMR system two redundant bus macros are

used for each module output. If a redundant module gives erroneous output,

Voter can change the output data path from normal bus macro to an alternative

one. For this purpose, the output of a redundant module is replicated and passed

to the voter by using two bus macros.

Figure 5-16: Connections of Bus Macros on a Redundant Module

In the case of an error, the voter side checks the equivalence of the bus

macros. If a discrepancy seen at the output of them, voter uses alternative one.

5.3.5.3 Batch Files for Modular Design Flow

Batch files are prepared to automate Modular Design Flow. These batch

files call necessary Xilinx tools as explained in Chapter 4. Mainly three batch files

are prepared for the each step of the modular design flow. These are Initial.bat,

Active.bat and Assemble.bat.

Initial.bat copies necessary files to the topinitial directory and call

initial.cmd. Initial.cmd run the initial phase of the modular design flow with the

following command:

ngdbuild -p xc2s200e-pq208-7 -modular initial -uc top.ucf top.ngc

97

Active.bat is used for active implementation phase of the modular design

flow. It copies necessary files to individual module directories and call all the

Active.cmd batch files from these directories. Active.cmd generates a partial

configuration of a module. For example, Active.cmd for the first configuration of

module one includes the following commands:

ngdbuild -p xc2s200e-pq208-7 -modular module -active modone

-uc top.ucf ..\topinitial\top.ngc

map -pr b top.ngd -o top_map.ncd top.pcf

par -w top_map.ncd top.ncd top.pcf

bitgen -d -g ActiveReconfig:yes top.ncd partial_modone_1.bit

pimcreate -ncd top.ncd -ngm top_map.ngm ..\Pim

Note that pimcreate command is not necessary for the other configurations

of module one. It is enough to run pimcreate for the configuration that will be used

on the generation of the full bitstream (i.e during Assemble phase).

Assemble.bat creates a final full bitstream file. This file is initially

downloaded to the FPGA. It copies necessary files to the topfinal directory and

calls assemble.cmd file. Assemble.cmd includes the following commands:

ngdbuild -p xc2s200e-pq208-7 -modular assemble -uc top.ucf -

pimpath ..\Pim -use_pim modone -use_pim modtwo -use_pim modthr -

use_pim voter top.ngc

map -pr b top.ngd -o top_map.ncd

par -w top_map.ncd top.ncd

bitgen -w top.ncd top_final.bit

5.3.6 Eliminating Faults

5.3.6.1 Eliminating Single Event Upsets

Single event upsets (SEUs) occurred on the configuration memory of the

FPGA can be corrected by only refreshing configuration memory. Therefore,

whenever a SEU is detected on a redundant module, its corresponding partial

bitstream is reloaded to the FPGA.

98

5.3.6.2 Eliminating Permanent Faults

The faulty CLBs are eliminated from the system by loading partial

configurations that do not use them. For this purpose, empty areas are reserved

in alternative configurations. Then if error occurs on a CLB, a configuration that

maps the faulty CLB on to empty space is loaded. Reserving spare areas on

configurations are done by using the Prohibit constraint of Xilinx PAR (Place and

Route) tool. Prohibit constraint can be applied to the CLBs that must be discarded

during place and route operation. For example, the following constraint is added

to User Constraint File to prohibit the usage of two CLBs at the place and route

operation:

#CONFIG PROHIBIT=CLB_R17C20, CLB_R17C21;

It is also allowed to prohibit usage of a column/row of CLBs. The following

constraint prohibits the usage of all CLBs on Column 20:

#CONFIG PROHIBIT=CLB_R*C20;

The granularity of empty spaces can range from fine to coarse grain.

Reserving only one CLB to replace faulty a CLB is the finest granularity for the

empty space. Such a fine granularity enables effective usage of area on the

FPGA while increasing alternative configuration numbers and configuration data.

On the contrary, coarse grain elimination lowers the number of alternative

configuration bitstreams at the cost of inefficient resource usage on the FPGA.

In this work, it is assumed that FPGA has excessive sources and faults are

eliminated in a coarse grain manner. A module is divided into multiple columns,

and then one of the columns is left as empty. For each column, a configuration

bitstream is prepared offline that left a column empty. In other words, no

placement of logic circuits is done on the CLBs that are in the selected empty

column. In Figure 5-17, alternative configurations that reserve different empty

CLB columns are shown.

99

Figure 5-17: Alternative Configurations of a Module

If a permanent-error appears, alternative configurations are loaded to the

device until the erroneous CLB is mapped to the Empty Column. Up to eight

configurations can be prepared in the design, since the redundant modules

occupy eight CLB columns. In this configuration, seven CLB columns can be used

by the circuit and one CLB column is reserved empty. Therefore, only 14% (1/7 x

100) of additional CLB sources are required as redundant.

As seen on the example constraints, any CLB can be restricted from the

place and route operation. Therefore, it is easy to decrease the granularity of the

empty spaces by prohibiting smaller number of CLBs in each configuration

bitstream. If desired, coarse grain approach can be easily converted to a fine

grain approach.

5.3.7 PC Program

The intelligence of the system is put on the PC Program in order to

maintain fault free operation. Constructed TMR on the FPGA already provides a

fault tolerance however; it is strengthen by the reconfiguration operations. The PC

program is responsible for selecting an ideal reconfiguration scheme.

PC Program communicates with the Voter module on the FPGA via serial

port of the PC. It sends commands and receives status information. All bitstream

files are stored on the computer and downloaded to the FPGA with the JTAG

configuration port. PC program manages the bitstream download operations.

100

Another responsibility of the PC program is providing a user interface. User can

see the current situation of the individual modules of TMR and whole system.

To test the behaviour of designed architecture, faults must be injected

artificially. The low cost solution is reconfiguring device with incorrect bitstream

files. This operation is also done by the PC Program. The user interface enables

adding transient fault, permanent fault and bus macro fault. A screenshot of the

PC program is shown in Figure 5-18.

Figure 5-18: Screenshot of the Supervisor PC Program

The PC program has been designed with Borland C++ Builder and written

in C++ language. The source codes of the program are given Appendix E (In

FTAchitecture / Borland-Project directory).

101

5.3.7.1 Communication with Serial Port

The UART on the Voter module is adjusted to communicate 115200 Baud

Rate. Same baud rate is used on the PC program to synchronize with Voter.

5.3.7.2 Batch Files for Configuration

PC Program must manage the JTAG protocol in order to download

bitstream to the FPGA. Impact, a Xilinx tool, is used to ease this task. Impact is a

PC program that can connect to the JTAG chain with standard Xilinx configuration

cables. It can detect devices on the JTAG chain and program them. It has a

graphical user interface for manual operations and command line interface for

batch operations.

Batch files that use command line interface of the Impact are written.

These batch files are executed by the PC program to reconfigure the FPGA. Each

batch file has a corresponding bitstream file. For example, the following

commands of the batch file reconfigure the FPGA with the top_final.bit bitstream

file.

1) setmode –bscan

2) setCable -p lpt1

3) addDevice -p 1 -file top_final.bit

4) program -p 1

5) quit

First line of the batch file instructs Impact to use Boundary Scan (JTAG)

interface. Second line selects Parallel Port 1 as the JTAG cable’s connection port.

Third line selects the first device (i.e. FPGA) on the JTAG chain to configure and

assigns top_final.bit as the bitstream file. Fourth line programs the device with the

assigned configuration file. The last line exits the command line interface.

 The batch files are given in Appendix E (in FTArchitecture/ Borland-

Project/ Configurations directory).

102

5.3.7.3 Running Batch Files from Borland C++ Buider

The batch files of the Impact tool must be called from the Command

Prompt. The following command calls the Impact tool and it will run the

example_file.cmd batch file.

Impact -batch example_file.cmd

PC program must be also able to run the above command. This command

is executed in Borland C++ Builder by using following class, class variables, and

function:

 SHELLEXECUTEINFO ShExecInfo;

 ShExecInfo.cbSize = sizeof(SHELLEXECUTEINFO);

 ShExecInfo.fMask = NULL;

 ShExecInfo.hwnd = NULL;

 ShExecInfo.lpVerb = NULL;

 ShExecInfo.lpFile = "impact";

 ShExecInfo.lpParameters ="-batch example_file.cmd";

 ShExecInfo.lpDirectory = "Configurations";

 ShExecInfo.nShow = SW_SHOW; //or SW_HIDE;

 ShExecInfo.hInstApp = NULL;

 ShellExecuteEx(&ShExecInfo);

ShExecInfo is the main class to execute a shell command. lpFile

parameter define the program that will run. lpParameters define options of the

program. lpDirectory is an additional parameter that enables running command

from another directory. Moreover, nShow variable is set to SW_SHOW to see the

outputs of the impact tool. It can be set to SW_HIDE in order to hide the outputs

of the impact tool. After setting all parameters ShellExecuteEx function calls the

impact command line interface.

5.3.8 Protocol between PC Program and Voter Module

There is a simple communication protocol between Voter module on the

FPGA and PC Program. The errors on module(s) are reported to the PC Program

by the Voter. PC makes reconfiguration operations and sends commands to the

Voter. An example of communication protocol commands used during fault

elimination process is demonstrated in Figure 5-19.

103

Figure 5-19: An example of Communication Protocol Commands during Error

Recovery Operation of a Module

In this example, Voter informs PC Program that ModuleX has erroneous

output. Then PC selects a reconfiguration type according to fault elimination

algorithm and reconfigures the ModuleX. After reconfiguration process is

completed, PC instructs Voter to Reset and Roll Forward corresponding module.

5.3.9 Fault Elimination Algorithm Running on the PC

When an error is found on a redundant module, PC program try to find the

source of the error. For each module, the same algorithm runs independently.

Briefly working principle of the algorithm is as follows: It first checks if the error is

transient. If error is not transient, it successively tries changing bus macro,

refreshing configuration memory and loading alternative configurations until error

disappears. If error persists, it gives up the tests and passes to the recovery of

voter module. Figure 5-20 shows the flow chart of the running algorithm in more

detail.

104

RUNNING

Error No

Yes

Start Timer 1

WAIT TIMER 1

Timer
Finished

Error

No

No

Yes

WAIT TIMER 3

Timer
Finished

Error

Yes

No

Yes

No

Transient
Error Count<3

Yes

No

WAIT TIMER 4

Timer
Finished

Error Yes

No

No

“CONFIGURATION MEMORY
ERROR”-SEU
RECOVERY

Reconfigure Module
Command (Reset)
Command (Roll Forward)
Command (Delete Discrepancy
Info.)
Transient Error Count ++
Start Timer 3

“PERMANENT ERROR”
RECOVERY

Reconfigure Module
Command (Reset)
Command (Roll Forward)
Command (Delete Discrepancy
Info.)
Change Configuration
Start Timer 4

Yes

Yes

Is any
discrepancy
seen on Bus

Macro

No

Yes

Are all
Configurations

Tried?

No

Send Command
(Ask Discrepancy
of Bus Macros)

WAIT TIMER 2

Timer
Finished

Error

No

No

Yes

Yes

INITIAL
Transient Count 0
DiscrepancyRecovered false

Yes

DiscrepancyRecovered

False

True

“BUS MACRO ERROR”
RECOVERY

Command (Use Alternate
Bus Macro)

DiscrepancyRecovered true
Start Timer 2

ERROR

Figure 5-20: Flowchart of Fault Recovery Algorithm that Runs on the PC Program

105

The algorithm starts with Initial state and reset all the variables. Voter

periodically sends status output of the module. Algorithm passes to the Running

state with the first status output. If an error comes at Running state, it passes to

the Wait Timer 1 state and waits for second error status. If no more error comes

during the Wait Timer 1 state, it returns to the Running state. This timer is

necessary to ensure the error is not transient.

If another error comes during Wait Timer 1 state, it starts to check bus

macro status. It asks whether a discrepancy is seen between original bus macro

and alternative bus macro. If no discrepancy seen, it refreshes the configuration

memory (to eliminate SEUs) with the partial bitstream of the module in the

Configuration Memory Error Recovery state. After refreshing memory, it requests

resetting and roll-forwarding operations of the module from the voter. In addition,

a counter is incremented that holds number of memory refresh operations. If the

counter exceeds three, then further errors are treated as permanent faults.

The errors that cannot be corrected by bus macro altering or memory

refreshing are considered as permanent errors. In the Permanent Error Recovery

state, the FPGA is reconfigured with alternative partial bitstreams of the module.

The alternative configuration files reserve empty spaces as described before.

When faulty resource falls into the empty space, the error disappears. Therefore,

reconfiguration is done with these bitstreams until error disappears. Again, reset

and roll-forward operations are done after each reconfiguration process for correct

operation. If the fault cannot be eliminated after trying all configurations, algorithm

passes to the Error state.

After each recover operation, the algorithm waits on a Timer state (i.e.

Wait Timer 2, Wait Timer 3 and Wait Timer 4 states) to ensure the fault is

eliminated. If no error status comes during the Timer states, then algorithm

returns to the Running state.

5.3.10 Fault Injection

It is necessary to test the system behaviour in the presence of faults.

Faults are artificially injected to test the behaviour of designed system. Fault

injection is done by loading an incorrect partial bitstream to the FPGA. Two

methods are used to obtain an incorrect partial bitstream. First method directly

106

modifies a correct partial bitstream. The second method modifies the source

VHDL file then synthesized to provide a faulty bitstream.

5.3.10.1 Bitstream Modification

Modifications are done on the functionality of the Configurable Logic

Blocks (CLBs). For example, the truth table of Lookup Table (LUT) inside a CLB

is changed.

FPGA Editor Tool is used for changing the LUT content. For example,

ModOne.ncd file (from Pim directory) is opened with FPGA Editor to inject fault on

redundant Module One. ModOne.ncd contains placed and routed design of

Module One. A CLB that is configured to use LUT is selected. The attribute of the

ncd file is changed to Read-Write from the File � Main Properties menu. Then

EditBlock � Begin Editing is selected. The function of the LUT is made visible by

selecting Show/Hide Attributes menu as shown in Figure 5-21.

107

Figure 5-21: Configurable Logic Block in Editing Mode

The functions of the LUTs (i.e. Feqn, Geqn) can be changed to any

combination using the input signals. The operators given in Table 5-5 can be used

to describe a logical function. For instance, to inject a stuck-at 1 like fault, Geqn

(the function of upper LUT) is changed from (A1*(A3*(A4*A2))) to 1. This implies a

stuck-at 1 fault on the LUT’s function.

108

Table 5-5: FPGA Editor Symbols and Their Functions

Symbol Operation

* Logical AND

+ Logical OR

@ Logical XOR

~ Unary NOT

At last, the ncd file is saved with the “Save Changes and Closes Window”

button. At this point, only remaining operation to generate bitstream is running

Bitgen tool. For this purpose, the following command is executed to generate a

faulty partial bitstream:

bitgen -d -g ActiveReconfig:yes ModOne.ncd modone_faulty.bit

5.3.10.1.1 Single Event Upset (SEU) Injection

Bitstream modification is used for injecting SEU like fault on a redundant

module. A random CLB that includes logic inside is opened. Then the function of

a LUT is changed to reflect a single bit flip. For instance, to inject a SEU like fault

Geqn (the function of upper LUT) is modified in R4C28.S0 (Row 4, Column 28

and Slice 0). Geqn is changed from (~A1*(A4*~A3)) to (~A1*(A4*~A3)*~A2). This

implies a single bit flip on the LUT’s function. The truth table change of LUT

function is shown in Table 5-6.

109

Table 5-6: Truth Table of LUT Function Before and After a SEU Injection

Output Functions
Inputs

Before SEU After SEU
A1 A2 A3 A4 F1=(~A1*(A4*~A3)*~A2) F2=(~A1*(A4*~A3))
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

5.3.10.1.2 Permanent Fault Injection

Permanent faults are also injected by modification of bitstreams. However,

the supervisor program must be aware of permanent fault injection. The reason is

the permanent faults are not real; actually, they are only simulation. After a

permanent fault injection is done, all reconfigurations must include same

permanent fault.

A CLB was selected as victim. Then all configurations that include logic on

this CLB were modified. For example in Figure 5-22, first three configurations are

modified since the selected CLB include logic inside. However, last configuration

is not modified since it maps faulty bitstream in to the empty area (it does not

contain logic inside faulty CLB).

110

Figure 5-22: A virtual faulty CLB and it is mapping on alternative placements.

5.3.10.2 VHDL Code Modification

A correct VHDL code is changed to include an error. Then it is synthesized

to produce a regular netlist file (.ngc). The netlist file is used in active

implementation phase of the Modular Design Flow to generate a partial faulty

bitstream.

5.3.10.2.1 Bus Macro Fault Injection

Faults were also injected on bus macro connections since they are the

only connection path of redundant modules to the Voter. This is achieved by

editing VHDL code of redundant modules. Then a partial configuration is

produced by using edited VHDL file.

For instance, most significant byte of the state output is inverted as shown

in the following code.

DataoutModOne(2 downto 0) <= stateOuputModOne(2 downto 0);

DataoutModOne(3) <= not stateOuputModOne(3);

After loading generated faulty bitstream, the supervisor program will detect

the fault on the bus macro. Then it will try recovery operations such as selecting

alternative bus macro.

111

CHAPTER VI

6CONCLUSIONS

6.1 CONCLUSIONS BASED ON THE WORK

The hardware on reconfigurable devices can be used to make

computations in parallel. In addition, the versatility of the hardware provides a

flexible environment for different applications. Reconfigurable devices achieve

high performance with a flexible hardware, which is suitable for all types of digital

circuit applications.

In this thesis, the work has been concentrated on runtime reconfigurable

architectures. They provide a unique feature, reusability of hardware while system

is running. This feature introduces virtual hardware concept similar to virtual

memory. Hardware configurations, which are stored on memories, can be loaded

to the device whenever needed. Therefore, one device can be used as an infinite

hardware source. In this work, application areas that can benefit from runtime

reconfiguration (RTR) were surveyed. It was observed that RTR could be also

used for speeding up computations and for reducing system costs.

To investigate the feasibility of RTR, a commercially available FPGA (from

Xilinx) was used as a runtime reconfigurable platform. The architecture of Xilinx

FPGAs was surveyed with a RTR point of view. Then a simple runtime

reconfigurable ALU, whose operations can change, was implemented. This

design can be used as an initial reference for other runtime reconfigurable

designs to implement on Xilinx FPGA.

After achieving RTR with designed simple reconfigurable ALU (explained

in Chapter 4), a more complex fault tolerant reconfigurable architecture (explained

in Chapter 5) was selected as a case study. The designed architecture is based

112

on Triple Modular Redundancy (TMR) and it is strengthened by RTR. Triple

modular redundancy enables an uninterrupted, fault-tolerant system operation if

error occurs on only one module. However, TMR system can breakdown when

more than one fault occur on different modules. A system run on FPGA can come

across with two different types of faults. First fault type is permanent fault, which

may appear due to long life usage. Second fault type is Single Event Upset

(SEU), which is encountered frequently on space applications. SEU is a transient

fault normally however it may result in a permanent error if configuration memory

of the FPGA is RAM based.

Added RTR support has prevented the breakdown of the TMR system.

The permanent faults are detected and eliminated on the fly by replacing faulty

elements with non-faulty elements. While eliminating the faulty elements, the

whole system also remains unaffected by the help of RTR. Furthermore, SEU

faults are eliminated by refreshing configuration memory. A high availability is also

maintained since faulty modules of the TMR are corrected whenever a fault

occurs.

To achieve RTR a PC was used as reconfiguration controller. A PC

program was written with Borland C++ Builder for this purpose. The PC Program

is also capable of injecting faults to the designed architecture. The faults are

injected artificially with the program (by reconfiguration) and the operation of the

system is verified.

The design on the FPGA was done with command line tools of Xilinx. The

hardware circuits on the FPGA were entered with VHDL. The Xilinx hardware and

software tools allowed designing such system. The hardware has some

restrictions however; it is possible to design a reconfigurable architecture. The

software tools are in their infancy and they tend to improve with the benefits

obtained from reconfigurable computing. Later, designed fault tolerant

architecture can be adapted to other runtime reconfigurable devices easily.

Consequently, RTR provides significant benefits for digital hardware

implementations. In the future, more applications will take advantage of runtime

reconfiguration. Therefore, the devices that are capable of making runtime

reconfiguration will most probably increase. In this work, it has been proven that a

RTR can be achieved with current technology. In addition, a fault tolerant

architecture that is highly reliable is provided.

113

6.2 RECOMMENDED FUTURE WORKS

Self-Reconfiguration

Designed system can be converted to a self-reconfiguring platform. Thus,

the PC used as a reconfiguration controller can be removed from the system and

replaced by a part of FPGA. This solution requires an embedded memory and

embedded configuration controller. ICAP port can be also used by embedded

configuration controller. Note that fault tolerant memory architecture is necessary

for this system.

New Bus Macro Design

Xilinx did not publish bus macro structures for the new generation devices

such as Spartan 3 and Virtex 4 yet. Therefore, current bus macro structure used

in the designs is not suitable for these devices. Some researches concentrated for

new bus macro architecture [57]. These researches implement slice based bus

macros. A new device family with new bus macro architecture can be used in

future works.

Automated Design

All VHDL codes are edited three times in the current structure of the

system, since fault tolerance is maintained by three identical circuits. There is a

need for automation for the generation of TMR structure to decrease intervention

of the user. The user must give only the design then the rest of the operations

must be made by the batch files. Since generation of such framework is very time

consuming, it is left as a future work.

Self-Checking

The errors on the voter module can be detected by Concurrent Error

Detection (CED) circuits. Embedding CED circuit on the voter will increase the

reliability of the system.

114

REFERENCES

[1] Gericota M.G.; Alves G.R.; Silva M.L.; Ferreira J.M., “Programmable Logic
Devices: A Test Approach for the Input/Output Blocks and Pad-to-Pin
Interconnections”, 4th IEEE Latin-American Test Workshop (LATW'2003),
pp. 72-77, February 2003

[2] Compton K.; Hauck S., "Reconfigurable Computing: A Survey of Systems
and Software", ACM Computing Surveys, Vol. 34, No. 2. pp. 171-210. June
2002

[3] Hartenstein, R., "A decade of reconfigurable computing: a visionary
retrospective," Design, Automation and Test in Europe, 2001. Conference
and Exhibition 2001. Proceedings, pp.642-649, 2001

[4] Rasmussen S.; Silfverberg T., “Reconfigurable Computing Array”, Master
Thesis, Department of Electroscience - Lund Institute of Technology, 2002

[5] Hartenstein, R.W.; Herz M.; Hoffmann T.; Nageldinger U., “Synthesis and
Domain-specific Optimization of KressArray-based Reconfigurable
Computing Engines”, Proceedings of the 2000 ACM/SIGDA eighth
international symposium on Field programmable gate arrays, pp. 222-232
2000

[6] Hartenstein, R.W.; Kress, R.; Reinig, H., "A dynamically reconfigurable
wavefront array architecture for evaluation of expressions," Application
Specific Array Processors, 1994. Proceedings., International Conference
on , pp.404-414, 22-24 Aug 1994

[7] Hannig, F.; Dutta, H.; Teich, J., "Regular mapping for coarse-grained
reconfigurable architectures," Acoustics, Speech, and Signal Processing,
2004. Proceedings. (ICASSP '04). IEEE International Conference on ,
vol.5, pp. 57-60, 17-21 May 2004

[8] Upegui A.; Moeckel R.; Dittrich E.; Ijspeert A.; Sanchez E., "An FPGA
Dynamically Reconfigurable Framework for Modular Robotics", Workshop
on Dynamically Reconfigurable Systems at the 18th International
Conference on Architecture of Computing Systems, ARCS '05, pp. 83-89,
Innsbruck, Austria, March 14-17, 2005

[9] Bossuet, L.; Gogniat, G.; Burleson, W., "Dynamically configurable security
for SRAM FPGA bitstreams," Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, pp. 146-153, 26-30
April 2004

115

[10] Fong, R.J.; Harper, S.J.; Athanas, P.M., "A versatile framework for FPGA
field updates: an application of partial self-reconfiguration," Rapid Systems
Prototyping, 2003. Proceedings. 14th IEEE International Workshop on , pp.
117- 123, 9-11 June 2003

[11] Tessier, R.; Burleson, W., "Reconfigurable computing for digital signal
processing: A survey," Journal of VLSI Signal Processing, vol. 28, no. 1,
pp. 7-27, May/June 2001

[12] Resano, J.; Mozos, D.; Verkest, D.; Catthoor, F.; Vernalde S., "Specific
scheduling support to minimize the reconfiguration overhead of dynamically
reconfigurable hardware" Design Automation Conference, 2004.
Proceedings. 41st , pp. 119-124, 2004

[13] Walder, H.; Steiger, C.; Platzner, M., "Fast online task placement on
FPGAs: free space partitioning and 2D-hashing," Parallel and Distributed
Processing Symposium, 2003. Proceedings. International , pp. 178-185,
22-26 April 2003

[14] Ghiasi, S.; Sarrafzadeh, M., "Optimal reconfiguration sequence
management [FPGA runtime reconfiguration]," Design Automation
Conference, 2003. Proceedings of the ASP-DAC 2003. Asia and South
Pacific , pp. 359-365, 21-24 Jan. 2003

[15] Lattice Semiconductor Corporation, “ORCA Series 4 FPGA Configuration”,
TN1013, 2004

[16] Scandaliaris, J.; Moreno, J.M.; Cabestany, J., “Specification of D_FPGA
Characteristics”, http://www.reconf.org/ accessed at 2006, RECONF (a
European Commission IST Programme) Project Report

[17] Donthi, S.; Haggard, R.L., "A survey of dynamically reconfigurable FPGA
devices," System Theory, 2003. Proceedings of the 35th Southeastern
Symposium on , pp. 422- 426, 16-18 March 2003

[18] LLanos C.; Jacobi R.P.; Rincón M.A.; Hartenstein R.W., "A Dynamically
Reconfigurable System for Space-Efficient Computation of the FFT",
Proceedings. International Conference on Reconfigurable Computing and
FPGAs 2004 - ReConFig'04, pp 360-369, Colima, Mexico, 2004

[19] Nascimento, P.S.B.; Maciel, P.R.M.; Lima, M.E.; Sant'ana, R.E.; Filho,
A.G.S., "A partial reconfigurable architecture for controllers based on Petri
nets," Integrated Circuits and Systems Design, 2004. SBCCI 2004. 17th
Symposium on , pp. 16-21, 7-11 Sept. 2004

[20] Ullmann, M.; Huebner, M.; Grimm, B.; Becker, J., "An FPGA run-time
system for dynamical on-demand reconfiguration," Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International , pp. 135-
142, 26-30 April 2004

116

[21] Jianwen, L.; Chuen, J.C., "Partially reconfigurable matrix multiplication for
area and time efficiency on FPGAs," Digital System Design, 2004. DSD
2004. Euromicro Symposium on , pp. 244-248, 31 Aug.-3 Sept. 2004

[22] Upegui A.; Sanchez E., "Evolving hardware by dynamically reconfiguring
Xilinx FPGAs", Evolvable Systems: From Biology to Hardware, LNCS, vol.
3637, pp. 56-65, 2005.

[23] Hollingworth, G.; Smith, S.; Tyrrell, A., "Safe intrinsic evolution of Virtex
devices," Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD
Workshop on , pp.195-202, 2000

[24] Berthelot, F.; Nouvel, F.; Houzet, D., "Partial and dynamic reconfiguration
of FPGAs: a top down design methodology for an automatic
implementation," Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International , pp. 436-439, 25-29 April 2006

[25] Berthelot, F.; Nouvel, F.; Houzet, D., "Design methodology for runtime
reconfigurable FPGA: from high level specification down to
implementation," Signal Processing Systems Design and Implementation,
2005. IEEE Workshop on , pp. 497-502, 2-4 Nov. 2005

[26] Faust, O.; Sputh, B.; Nathan, D.; Rezgui, S.; Weisensee, A.; Allen, A., "A
single-chip supervised partial self-reconfigurable architecture for software
defined radio," Parallel and Distributed Processing Symposium, 2003.
Proceedings. International , pp. 191-196, 22-26 April 2003

[27] J. A. Hennessy, D. L. Patterson, “Computer Architecture: A Quantitative
Approach”, Morgan Kauffmann Publishers, 1990

[28] Gericota, M.G.; Alves, G.R.; Silva, M.L.; Ferreira, J.M., "Active replication:
towards a truly SRAM-based FPGA on-line concurrent testing," On-Line
Testing Workshop, 2002. Proceedings of the Eighth IEEE International ,
pp. 165-169, 2002

[29] Emmert, J.; Stroud, C.; Skaggs, B.; Abramovici, M., "Dynamic fault
tolerance in FPGAs via partial reconfiguration," Field-Programmable
Custom Computing Machines, 2000 IEEE Symposium on , pp.165-174,
2000

[30] Wei-Je Huang; McCluskey, E.J., "Column-Based Precompiled
Configuration Techniques for FPGA," Field-Programmable Custom
Computing Machines, 2001. FCCM '01. The 9th Annual IEEE Symposium
on , pp. 137-146, 2001

[31] Xilinx Inc., “Spartan-IIE 1.8V FPGA Family: Complete Data Sheet”, Xilinx
DS077, 2004

117

[32] Xilinx Inc., “Virtex Series Configuration Architecture User Guide”, Xilinx
XAPP 151 v1.7, 2004

[33] Xilinx Inc., “Logicore OPB HWICAP Specification”, Xilinx DS 280, 2004

[34] Xilinx Inc., “Spartan-3 Advanced Configuration Architecture”, Xilinx XAPP
452 v1.0, 2004

[35] Xilinx Inc., “Two Flows for Partial Reconfiguration: Module Based or
Difference Based”, Xilinx XAPP 290 v1.2, 2004.

[36] Xilinx Inc., “Virtex FPGA Series Configuration and Readback”, Xilinx XAPP
138 v2.8, 2005

[37] Xilinx Inc., “Using a Microprocessor to Configure Xilinx FPGAs via Slave
Serial or SelectMAP Mode”, Xilinx XAPP 502 v1.4, 2002

[38] Xilinx Inc., “Configuration and Readback of Virtex FPGAs Using (JTAG)
Boundary Scan”, Xilinx XAPP 139 v1.6, 2003

[39] Xilinx Inc., “JBits SDK 3 for Virtex-II Documentation / JBits Tutorial “, 2003

[40] Xilinx Inc., “Development System Reference Guide - ISE 5”, Xilinx

[41] Mermoud G., “A Module-Based Dynamic Partial Reconfiguration tutorial”,
http://ic2.epfl.ch/~gmermoud/files/publications/DPRtutorial.pdf accessed at
2006, Ecole Polytechnique Fédérale de Lausanne, 2004

[42] Braeckman G.; Branden G.V.; Touhafi A.; Dessel G.V. “Module Based
Partial Reconfiguration: a quick tutorial”,
http://iwt5.ehb.be/typo3/index.php?id=415 accessed at 2006,
Erasmushogeschool IWT Department, 2004,

[43] Vigander S., “Evolutionary Fault Repair of Electronics in Space
Applications”, Centre for Computational Neuroscience and Robotics
(CCNR) at the University of Sussex, Project Report, 2001

[44] Lima, F.; Carro, L.; Reis, R., "Designing fault tolerant systems into SRAM-
based FPGAs," Design Automation Conference, 2003. Proceedings , pp.
650-655, 2-6 June 2003

[45] Graham P.; Caffrey M.; Zimmerman J.; Johnson D.E.; Sundararajan P.;
Patterson C., "Consequences and Categories of SRAM FPGA
Configuration SEUs," Proceedings of the Military and Aerospace
Applications of Programmable Logic Devices (MAPLD), Washington DC,
September 2003

118

[46] Pontarelli, S.; Cardarilli, G.C.; Malvoni, A.; Ottavi, M.; Re, M.; Salsano, A.,
"System-on-chip oriented fault-tolerant sequential systems implementation
methodology," Defect and Fault Tolerance in VLSI Systems, 2001.
Proceedings. 2001 IEEE International Symposium on , pp.455-460, 2001

[47] Xilinx Inc., “Correcting Single-Event Upsets Through Virtex Partial
Configuration”, Xilinx XAPP 216, 2000

[48] Gokhale, M.; Graham, P.; Johnson, E.; Rollins, N.; Wirthlin, M., "Dynamic
reconfiguration for management of radiation-induced faults in FPGAs,"
Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International , pp. 145-150, 26-30 April 2004

[49] Xilinx Inc., “Triple Module Redundancy Design Techniques for Virtex
FPGAs”, Xilinx XAPP 197 v1.0, 2001

[50] DeMara, R.F.; Kening Zhang, "Autonomous FPGA fault handling through
competitive runtime reconfiguration," Evolvable Hardware, 2005.
Proceedings. 2005 NASA/DoD Conference on , pp. 109-116, 29 June-1
July 2005

[51] Shu-Yi Yu; McCluskey, E.J., "Permanent fault repair for FPGAs with limited
redundant area," Defect and Fault Tolerance in VLSI Systems, 2001.
Proceedings. 2001 IEEE International Symposium on , vol., no.pp.125-133,
2001

[52] Kenterlis P.; Kranitis N.; Paschalis A.; Gizopoulos D.; Psarakis M.,"A low-
cost SEU fault emulation platform for SRAM-based FPGAs," On-Line
Testing Symposium, 2006. IOLTS 2006. 12th IEEE International , pp. 235-
241 , 10-12 July 2006

[53] Digilent Inc., “Digilent D2-SB System Board Reference Manual”,
http://www.digilentinc.com, June 2004

[54] Xilinx Inc., “PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE
Devices”, Xilinx XAPP 213 v2.1, 2003

[55] Digilent Inc., “Digilent DIO1 Manual”, http://www.digilentinc.com, May 2004

[56] Bobda C.; Huebner M.; Niyonkuru A.; Bloget B.; Majer M.; Ahmedinia A.,
“Designing Partial and Dynamically Reconfigurable Applications on Xilinx
Virtex-II FPGAs using HandelC”, University of Erlangen-Nuremberg,
Germany, Technical Report 03-2004

[57] Sedcole N.P., “Reconfigurable Platform-Based Design in FPGAs for Video
Image Processing”, PhD Thesis, University of London, 2006

APPENDIC ES

119

APPENDIX A

A PCB AND SCHEMATICS OF THE RS232 CIRCUIT

Figure A-1: Top Layer PCB of RS232 Circuit

Figure A-2: Top Overlay PCB of RS232 Circuit

A Jumper
must be
placed

120

Figure A-3: Schematic of RS232 Circuit

121

APPENDIX B

B SIMULATION OF TWO ROLL FORWARDING

METHODS

Figure B-1: Simulation of Roll Forwarding Method 1 (Constant Frequency Rate)

Figure B-2: Simulation of Roll Forwarding Method 2 (Variable Frequency Rate)

122

APPENDIX C

C USER CONSTRAINT FILE OF THE TMR DESIGN

User Constraint File for the First Configuration of Module One

Start of PACE Area Constraints

AREA_GROUP "AG_Inst_Voter" RANGE = CLB_R1C32:CLB_R28C42 ;

AREA_GROUP "AG_Inst_Voter" RANGE = TBUF_R1C32:TBUF_R8C42 ;

INST "Inst_Voter" AREA_GROUP = "AG_Inst_Voter" ;

AREA_GROUP "AG_Inst_Voter" MODE = RECONFIG ;

AREA_GROUP "AG_Inst_ModOne" RANGE = CLB_R1C24:CLB_R28C31 ;

AREA_GROUP "AG_Inst_ModOne" RANGE = TBUF_R1C24:TBUF_R28C31 ;

INST "Inst_ModOne" AREA_GROUP = "AG_Inst_ModOne" ;

AREA_GROUP "AG_Inst_ModOne" MODE = RECONFIG ;

AREA_GROUP "AG_Inst_ModTwo" RANGE = CLB_R1C16:CLB_R28C23 ;

AREA_GROUP "AG_Inst_ModTwo" RANGE = TBUF_R1C16:TBUF_R28C23 ;

INST "Inst_ModTwo" AREA_GROUP = "AG_Inst_ModTwo" ;

AREA_GROUP "AG_Inst_ModTwo" MODE = RECONFIG ;

AREA_GROUP "AG_Inst_ModThr" RANGE = CLB_R1C8:CLB_R28C15 ;

AREA_GROUP "AG_Inst_ModThr" RANGE = TBUF_R1C8:TBUF_R28C15 ;

INST "Inst_ModThr" AREA_GROUP = "AG_Inst_ModThr" ;

AREA_GROUP "AG_Inst_ModThr" MODE = RECONFIG ;

#AREA_GROUP "AG_Inst_Spare" RANGE = CLB_R1C1:CLB_R28C7 ;

#AREA_GROUP "AG_Inst_Spare" RANGE = TBUF_R1C1:TBUF_R28C7 ;

#INST "Inst_Spare" AREA_GROUP = "AG_Inst_Spare" ;

#AREA_GROUP "AG_Inst_Spare" MODE = RECONFIG ;

Start of PACE Prohibit Constraints

CONFIG PROHIBIT=CLB_R*C24;

CONFIG PROHIBIT=CLB_R*C25;

Start of Locking Constraints

INST "Internal_Gnd_Voter" AREA_GROUP = "AG_Inst_Voter" ;

INST "Internal_Vcc_Voter" AREA_GROUP = "AG_Inst_Voter" ;

INST "Internal_Gnd_ModOne" AREA_GROUP = "AG_Inst_ModOne" ;

INST "Internal_Vcc_ModOne" AREA_GROUP = "AG_Inst_ModOne" ;

INST "Internal_Gnd_ModTwo" AREA_GROUP = "AG_Inst_ModTwo" ;

INST "Internal_Vcc_ModTwo" AREA_GROUP = "AG_Inst_ModTwo" ;

INST "Internal_Gnd_ModThr" AREA_GROUP = "AG_Inst_ModThr" ;

INST "Internal_Vcc_ModThr" AREA_GROUP = "AG_Inst_ModThr" ;

#INST "Internal_Gnd_Spare" AREA_GROUP = "AG_Inst_Spare" ;

#INST "Internal_Vcc_Spare" AREA_GROUP = "AG_Inst_Spare" ;

123

INST "busModOnetoVoter" LOC = "TBUF_R1C28.0" ;

INST "busVotertoModOne/bus1" LOC = "TBUF_R2C28.0" ;

INST "busVotertoModOne/bus2" LOC = "TBUF_R3C28.0" ;

INST "busModTwotoVoter" LOC = "TBUF_R4C20.0" ;

INST "busVotertoModTwo/bus1" LOC = "TBUF_R5C20.0" ;

INST "busVotertoModTwo/bus2" LOC = "TBUF_R6C20.0" ;

INST "busModThrtoVoter" LOC = "TBUF_R7C12.0" ;

INST "busVotertoModThr/bus1" LOC = "TBUF_R8C12.0" ;

INST "busVotertoModThr/bus2" LOC = "TBUF_R9C12.0" ;

INST "busModOnetoVoter_alt" LOC = "TBUF_R10C28.0" ;

INST "busVotertoModOne_alt/bus1" LOC = "TBUF_R11C28.0" ;

INST "busVotertoModOne_alt/bus2" LOC = "TBUF_R12C28.0" ;

INST "busModTwotoVoter_alt" LOC = "TBUF_R13C20.0" ;

INST "busVotertoModTwo_alt/bus1" LOC = "TBUF_R14C20.0" ;

INST "busVotertoModTwo_alt/bus2" LOC = "TBUF_R15C20.0" ;

INST "busModThrtoVoter_alt" LOC = "TBUF_R16C12.0" ;

INST "busVotertoModThr_alt/bus1" LOC = "TBUF_R17C12.0" ;

INST "busVotertoModThr_alt/bus2" LOC = "TBUF_R18C12.0" ;

#INST "busSparetoVoter" LOC = "TBUF_R7C4.0" ;

#INST "busVotertoSpare/bus1" LOC = "TBUF_R8C4.0" ;

#INST "busVotertoSpare/bus2" LOC = "TBUF_R12C4.0" ;

INST "bufg_clk" LOC = "GCLKBUF2" ;

#PACE: Start of I/O Pin Assignments

NET "CathodeOutputs<0>" LOC = "P134";

NET "CathodeOutputs<1>" LOC = "P136";

NET "CathodeOutputs<2>" LOC = "P139";

NET "CathodeOutputs<3>" LOC = "P141";

NET "CathodeOutputs<4>" LOC = "P148";

NET "CathodeOutputs<5>" LOC = "P150";

NET "CathodeOutputs<6>" LOC = "P152";

NET "CathodeOutputs<7>" LOC = "P161";

NET "AnodeOutputs<0>" LOC = "P113";

NET "AnodeOutputs<1>" LOC = "P115";

NET "AnodeOutputs<2>" LOC = "P120";

NET "AnodeOutputs<3>" LOC = "P122";

NET "serialin" LOC = "P127" ;

NET "serialout" LOC = "P126" ;

NET "clk" LOC = "P182";

#INST "*" IOB=FALSE;

124

APPENDIX D

D PACE AND FPGA EDITOR VIEW OF THE TMR DESIGN

Figure D-1: Module Placements of the TMR Design (Snapshot is taken with PACE)

125

Figure D-2: FPGA Editor View of TMR Design

126

APPENDIX E

E SOURCE FILES OF DESIGNED ARCHITECTURES

A CD-ROM is enclosed to the back cover of the thesis. It contains the

source codes, batch files, and generated files of the designed architectures. The

contents of the CDROM are given in Table E-1.

Table E-1: The Directories and Files in the CDROM

Reconfig-ALU/ Top level directory of Reconfigurable ALU (Chapter 4)

 Bitstreams/ Contains Final Partial Bitstreams and a Full Bitstream

 BusMacro/ Contains angle-delimiter bus macro for Spartan 2E

 Implementation/

Contains Implementation Flow Files and Folders
(Implementation phase of Modular Design Flow (MDF) is done in this
folder)
Also contains top.ucf and batch files of the MDF.

 left_add/
Partial implementation of left adder module
(Active implementation phase of MDF is done in
this folder)

 left_mult/
Partial implementation of left multiplier module
(Active implementation phase of MDF is done in
this folder)

 left_sub/
Partial implementation of left adder module
(Active implementation phase of MDF is done in
this folder)

 Pim/ Published placed and routed files of partial
configurations

 left/ Placed and routed file of left module

 right/ Placed and routed file of right module

 right/
Partial implementation of right module (Active
implementation phase of MDF is done in this
folder)

 top_final/ Final assembly phase of MDF is done in this
folder

 top_initial/ Initial budgeting phase of MDF is done in this
folder

 Top.ucf User constraint file for the overall design

 1-Initial.bat The batch file for the initial phase of MDF

 2-Active.bat The batch file for the active implementation phase
of MDF

 3-Assemble.bat The batch file for the assemble phase of MDF

127

Table E-1 cont’d: The Directories and Files in the CDROM

Reconfig-ALU/ Synthesis/ Contains Xilinx ISE projects and VHDL files for partial modules and
top module

 left_add/ Left adder module project and VHDL file for
synthesis

 left_mult/ Left multiplier module project and VHDL file for
synthesis

 left_sub/ Left subtractor module project and VHDL file for
synthesis

 right/ Right module project and VHDL file for synthesis

 top / Top module project and VHDL file for synthesis

 Borland-Project/ Contains Borland C++ Builder Files

 ReconfigALU.exe Executable for reconfiguration program

 Configurations/ Contains Impact batch files and bitstreams

FTArchitecture/ Top level directory of Fault Tolerant Architecture (Chapter 5)

 FinalBitstreams/ Contains Final Partial Bitstreams and a Full Bitstream

 Macros/ Contains angle-delimiter bus macro for Spartan 2E

 Ucf/ Contains user constraints files for each individual modules

 Implementation/

Contains Implementation Flow Files and Folders
(Implementation phase of Modular Design Flow (MDF) is done in this
folder)
Also contains top.ucf and batch files of the MDF.
In the below folders,
X refers to 1,2 ... for alternative configurations.
X refers to pe1,pe2 ... for corresponding permanent error including
alternative configurations.
X refers to SEU for single event upset including configuration.
X refers to BME for bus macro error including configuration.

 Bat/ Contains batch files (for the reset operation)

 Modone_X/
Partial implementation of Module One (Active
implementation phase of MDF is done in this
folder)

 Modtwo_X/
Partial implementation of left multiplier module
(Active implementation phase of MDF is done in
this folder)

 Modthr_X/
Partial implementation of left adder module
(Active implementation phase of MDF is done in
this folder)

 Voter_1/
Partial implementation of left adder module
(Active implementation phase of MDF is done in
this folder)

 Pim/ Published placed and routed files of partial
configurations

 ModOne/ Placed and routed file of Module
One

 ModTwo/ Placed and routed file of Module
Two

 ModThr/ Placed and routed file of Module
Three

 Voter/ Placed and routed file of left
module

128

Table E-1 cont’d: The Directories and Files in the CDROM

FTArchitecture/ Implementation/ Top.ucf User constraint file for the overall design

 top_final/ Final assembly phase of MDF is done in this
folder

 top_initial/ Initial budgeting phase of MDF is done in this
folder

 0-Reset.bat Deletes all generated files and copies batch files
from the /bat directory

 1-Initial.bat The batch file for the initial phase of MDF

 2-Active.bat The batch file for the active implementation phase
of MDF

 3-Assemble.bat The batch file for the assemble phase of MDF

 Synthesis/ Contains Xilinx ISE projects and VHDL files for partial modules and
top module

 Modone_1/ Module One project and VHDL file for synthesis

 Modtwo_1/ Module Two project and VHDL file for synthesis

 Modthr_1/ Module Three project and VHDL file for synthesis

 Modone_bme/ Module One project and VHDL file that contains
bus macro error for synthesis

 Modtwo_bme/ Module Two project and VHDL file that contains
bus macro error for synthesis

 Modthr_bme/ Module Three project and VHDL file that contains
bus macro error for synthesis

 Voter_1/ Voter module project and VHDL file for synthesis

 top / Top module project and VHDL file for synthesis

 Borland-Project/ Contains Borland C++ Builder Files

 Project1.exe Executable for reconfiguration management
program

 Configurations/ Contains Impact batch files and bitstreams

