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ABSTRACT 

A NOVEL FAULT TOLERANT ARCHITECTURE ON A 

RUNTIME RECONFIGURABLE FPGA  

 

 

COŞKUNER, İbrahim Aydın 

M.S., Department of Electrical and Electronics Engineering 

Supervisor:  Prof. Dr. Hasan Cengiz Güran 

 

November 2006, 128 Pages 

 

Due to their programmable nature, Field Programmable Gate Arrays 

(FPGAs) offer a good test environment for reconfigurable systems. FPGAs can be 

reconfigured during the operation with changing demands. This feature, known as 

Runtime Reconfiguration (RTR), can be used to speed-up computations and 

reduce system cost. Moreover, it can be used in a wide range of applications such 

as adaptable hardware, fault tolerant architectures. 

This thesis is mostly concentrated on the runtime reconfigurable 

architectures. Critical properties of runtime reconfigurable architectures are 

examined. As a case study, a Triple Modular Redundant (TMR) system has been 

implemented on a runtime reconfigurable FPGA. The runtime reconfigurable 

structure increases the system reliability against faults. Especially, the weakness 

of SRAM based FPGAs against Single Event Upsets (SEUs) is eliminated by the 

designed system. Besides, the system can replace faulty elements with non-faulty 

elements during the operation. These features of the developed architecture 

provide extra safety to the system also prolong the life of the FPGA device without 

interrupting the whole system.  

Keywords: Runtime Reconfiguration, Partial Reconfiguration, Fault 

Tolerant Reconfigurable Systems 
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ÖZ 

ÇALIŞIRKEN YENİDEN BİÇİMLENDİRİLEBİLİR FPGA 

ÜZERİNDE HATAYA DAYANIMLI YENİ BİR YAPI 

 

 

COŞKUNER, İbrahim Aydın 

Yüksek Lisans., Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi:  Prof. Dr. Hasan Cengiz Güran 

 

Kasım 2006, 128 Sayfa 

 

Alan Programlanabilir Kapı Dizinleri (FPGA) programlanabilir yapıları 

sayesinde, yeniden biçimlendirilebilir sistemler için uygun bir yapı sunarlar. FPGA 

gelen değişik ihtiyaçlara göre çalışma esnasında yeniden biçimlendirilebilir. 

Çalışırken Yeniden Biçimlendirme (RTR) olarak bilinen bu özellik sayesinde 

işlemler daha hızlı yapılabilir ve toplam sistem maliyeti düşürülebilir. Ayrıca RTR 

uyarlanabilir donanımlar ve hataya dayanımlı yapılar gibi birçok alanda 

kullanılabilir. 

Bu tez çalışırken biçimlendirilebilir yapılar üzerine yoğunlaşmıştır. 

Çalışırken biçimlendirilebilir yapıların önemli özellikleri incelenmiştir. Örnek olarak 

Üçlü Modüler Yedekleme (TMR) sistemi, çalışırken biçimlendirilebilir bir yapı 

üzerinde uygulanmıştır. Çalışırken yeniden biçimlendirilebilir yapı sistemin 

hatalara karşı güvenilirliğini artırmıştır. Özellikle FPGA’lerin Tekli Hata 

Oluşumlarına (SEU) karşı olan zaafları tasarlanan sistem sayesinde  giderilmiştir. 

Ayrıca sistem hatalı elemanları hatasız olanlarla çalışma sırasında 

değiştirebilmektedir. Geliştirilen mimarinin bu özellikleri sayesinde sistem daha 

güvenilir olmuş ve FPGA’in kullanım ömrü sistem durdurulmadan uzatılabilir hale 

gelmiştir.   

Anahtar Kelimeler: Çalışırken Yeniden Biçimlendirme, Kısmi Yeniden 

Biçimlendirme, Hataya Dayanıklı Yeniden Biçimlendirilebilir Sistemler 
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CHAPTER I 

1INTRODUCTION 

1.1 OVERVIEW 

The microprocessors provide a flexible environment for the programmers. 

Any type of algorithm can be computed on a general-purpose microprocessor. 

However, this flexibility has a significant cost on computation time. The 

calculations are done on the same hardware resources for all type of applications 

(i.e. one instruction is handled at a time). Calculating algorithms in such serial 

structures results in performance degradation.  

If the computations can be done in parallel, a significant speed-up can be 

achieved. Reconfigurable architectures provide enough hardware resources that 

can be used to make computations in parallel. Moreover, their flexible structure 

allows constructing different hardware configurations. 

Reconfigurable architectures contain configurable connections and a 

plenty of logic resources. An application specific hardware can be formed by 

configuring these connections. These configurations can be stored by SRAM or 

Flash based switches. If SRAM based architecture is used on the reconfigurable 

device, infinite number of configurations can be loaded at different times. Loading 

a different configuration is called reconfiguration. 

 The most popular reconfigurable architecture is the Field Programmable 

Gate Array (FPGA). It is commercially available and used for high performance 

applications. FPGA is the ideal component for low volume products and it is used 

for prototyping Integrated Circuits (IC). With continuously increasing capacities 

and falling prices, they are also used in mass products now.  

Normal usage of reconfigurable architectures such as FPGAs is as 

follows; all the demands is ready before the device runs. Then according to these 
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demands, only one final configuration is prepared and loaded to the 

reconfigurable device. Only this configuration runs on the device until a power-

down occurs.  

However, SRAM based reconfigurable devices enable changing 

configuration data whenever required. Some devices use this property to change 

configuration data during the device is running. Therefore, changing demands 

during the operation can be satisfied by reconfiguring these devices. This type of 

reconfiguration is called Runtime Reconfiguration (RTR). RTR introduced “Virtual 

Hardware” concept. It allows same hardware sources to be used for different 

purposes at different times by reconfiguring hardware. Therefore, a runtime 

reconfigurable architecture enables using unlimited circuits in only one chip by 

time multiplexing them.  

RTR can be used in adaptable hardware applications, in-field upgrade of 

hardware. Other advantages of time multiplexing sources by RTR are reduced 

cost and reduced power of the system. Most importantly, speed-up can be 

obtained for different types of computations. Consequently, adding RTR property 

to the reconfigurable architectures offer new opportunities for digital systems. 

1.2 OBJECTIVE OF THE THESIS 

The main aim of the thesis is to investigate Runtime Reconfigurable 

architectures and to design one such architecture. In order to design a 

reconfigurable system, capabilities of a Field Programmable Gate Array (FPGA) 

are examined. Afterwards, a fault tolerant architecture is designed that use 

runtime reconfiguration to eliminate the faults. This design is implemented and 

tested on a runtime reconfigurable FPGA.  

1.3 TOOLS USED  

In order to implement a runtime reconfigurable system, some hardware 

and software tools were used. The tools are the following:  

 

Hardware Tools 

• D2SB Board from Digilent Inc.  
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• Personal Computer (PC) 

• DIO1 Board from Digilent Inc. 

• Custom made RS232 to TTL Converter Card 

• Xilinx Parallel Cable III 

D2SB Board, which is at the heart of the reconfigurable system, contains a 

Xilinx Spartan 2 - 200E FPGA on it. Personal Computer (PC) is responsible for 

the reconfiguration processes of the FPGA. DIO1 Board is used to display real-

time information. An RS232 to TTL converter board is used for the communication 

of PC and FPGA. The configuration data of the FPGA is downloaded from the PC 

using Xilinx Parallel Cable III. Detailed description of the hardware configuration 

will be given in Chapter 5. 

 

Software Tools 

• Xilinx ISE 6.3i SP2 

• VHDL  

• Borland C++ Builder 5 

Xilinx ISE is a CAD tool that is necessary to generate FPGA designs for 

Xilinx FPGAs. It has a Graphical User Interface (GUI) that can be used for 

standard FPGA designs. However, the GUI is not enough to achieve a runtime 

reconfigurable design. The command line tools of ISE such as NgdBuild, MAP, 

PAR, and BitGen are used in this design.  

VHDL is a language that can describe hardware. It is used to generate 

circuits on FPGA. Files written in VHDL are synthesized using Xilinx Synthesis 

Tool (XST). 

Borland C++ Builder 5 is used to generate a visual PC program. This 

program communicates with FPGA board and manages reconfiguration 

processes. The program also provides a user interface that enables user 

manipulation and shows the status of the system. 
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1.4 ORGANIZATION OF THE THESIS 

The thesis is composed of six chapters. The chapter contents are the 

following: 

In Chapter 2, a literature survey is done on reconfigurable computing 

Basic terms and concepts of reconfigurable architectures are explained. The 

application areas of the reconfigurable architectures are also given. Alternative 

reconfigurable FPGAs from different vendors are discussed and their critical 

characteristics are compared. 

In Chapter 3, Xilinx FPGA and its features that enable runtime 

reconfiguration are discussed. Some properties of Xilinx FPGAs are explained 

from this viewpoint. 

In Chapter 4, a simple reconfigurable application is mapped on Xilinx 

FPGA. The steps of designing a reconfigurable system are explained using that 

simple application. All tools and their batch files are described in detail.  

In Chapter 5, a runtime reconfigurable TMR system that is designed to be 

highly fault tolerant is presented.  

In Chapter 6, a conclusion of this thesis is given. Moreover, planned future 

works are given in this chapter. 
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CHAPTER II 

2BACKGROUND 

In this chapter, basic concepts about reconfigurable architectures will be 

explained. In addition, some applications based on reconfigurable architectures 

will be emphasized. 

2.1 RECONFIGURABLE COMPUTING  

In the last few decades, Reconfigurable Computing has become popular in 

the area of computer architectures. Reconfigurable systems arise to compensate 

the differences of flexible microprocessors and high-speed ASIC circuits. A 

reconfigurable architecture takes advantages of both systems. It is more flexible 

than ASIC circuits since it can be reconfigured with changing computing needs. In 

addition, it has better performance than processors since it implements the 

desired algorithm on a dedicated hardware. As seen in Figure 2-1, reconfigurable 

architectures take place in between microprocessors and ASICs according to the 

flexibility and speed. 

 

Figure 2-1: Comparison of Microprocessors, ASICs, and Reconfigurable 

Architectures 
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FPGAs are the first reconfigurable devices introduced as a commercial 

product. The first vendor Xilinx has produced FPGAs at mid-1980s with a very 

limited capacity. The capacity improvement of FPGAs has nearly followed 

Moore’s Law [1]. Today FPGAs have millions of logical gates. Hence, it is 

possible to implement more than one medium-sized processor inside one FPGA. 

Xilinx MicroBlaze, Altera Nios are examples of such processors. The 

improvement of these reconfigurable devices leads to raise academic research on 

reconfigurable architectures. 

2.1.1 The Aim of Reconfigurable Architectures 

The hardware on reconfigurable architectures can be reconfigured if the 

demands are changed. This flexibility allows reusability of the hardware 

resources. Therefore, reconfigurable architectures can be used for all applications 

that can benefit from hardware reusability. Some general benefits of this flexibility 

are speeding-up calculations and resource saving. 

2.2 GRANULARITY OF RECONFIGURABLE ARCHITECTURES 

Reconfigurable architectures generally composed of array of 

reconfigurable unit blocks and routing sources that connect these blocks. The size 

of these unit blocks reflects granularity of the architecture. The granularity of 

these devices ranges from fine to coarse grain. They can be mainly classified as 

• Fine-Grained, 

• Coarse-Grained and 

• Heterogeneous Architectures.  

Fine-grained architectures are suitable for bit-level manipulations and 

contain elements such as LUT. On the other side, coarse grain architectures have 

elements such as ALU or small processor, which makes them suitable for word 

level computations. Heterogeneous architectures also become available to use 

advantages of both architectures.  
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Fine Grained Architectures 

Fine-grained architectures are intended to implement bit level logic 

circuits. Calculations that have arbitrary bit width can be done by using fine-

grained architectures. The advantage of fine-grained architectures is that it can 

map any logical circuit on the hardware. However, the overhead of routing 

resources increases as a cost of this flexibility.  

The well-known example for a fine-grained architecture is FPGA. FPGAs 

are commercially available reconfigurable devices and most of reconfigurable 

computing researches are done on them. 

Fine-grained reconfigurable architectures are generally composed of 

configurable Logic Cells (LC), configurable Routing Sources, and Input-Output 

(I/O) Sources. The general structure of a fine-grained architecture is shown in 

Figure 2-2. The Logic Cells are connected to other ones using routing resources. 

There are switch matrices that determine how these cells and routing lines will be 

connected. I/O cells are also used to connect internal resources to the outside 

world. 

 

 

Figure 2-2: General Structure of a Fine-Grained Architecture 
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Logic Cells (or Logic Tiles) are used to implement logical functions. Most 

of the FPGA vendors use Lookup Table (LUT) to implement bit-level 

combinational logic functions on Logic Cells. For example, a LUT takes four input 

signals, gives one output signal on Virtex Family devices of Xilinx. The 

combinational function (4 inputs, 1 output) of LUT is encoded to 16 Bit and stored 

on configuration memory of FPGA. In addition to LUT, a Flip-flop (FF) is placed on 

same logic cell to generate synchronous circuits. Logic Cell structure of an SRAM 

based FPGA is shown in Figure 2-3 

 

Figure 2-3: Basic Structure of a Fine-Grained Logic Cell on an FPGA 

Fine-grained architectures can be used for a very broad range of 

applications since fine granularity allows mapping almost all types of applications. 

However, efficiency will decrease for some applications because of fine 

granularity. Therefore, only some applications can be classified as suitable for 

fine-grained architectures. The well-fitted applications such as image processing, 

data encryption need bit-level data handling [2]. In addition to these applications, 

finite state machines (FSMs) can be good candidates for mapping on fine-grained 

architecture (since state transitions of FSMs mostly depend on single bit values). 

Coarse Grained Architectures 

Coarse Grained architectures are composed of array of Processing 

Elements (PEs). Processing Elements are designed to compute word-level 

computations. They contain coarse grain structures such as an ALU or a small 

processor. Therefore, a datapath calculation can be easily mapped on coarse 
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grain architectures. The word length of PE differs on different types of 

architectures. It ranges from 2 bit to 128 bit while most of them are 16 bit [3]. In 

Figure 2-4, the PE of KressArray is shown. It is called reconfigurable Datapath 

Unit (rDPU), and it has a 32-bit ALU and registers. 

 

Figure 2-4: Reconfigurable Data Unit of KressArray [6]  

The elements of the array are connected with a configurable routing. I/O 

ports connect the PEs to the outside world. The arrangement of the array differs 

according to the target application. Different array structures are available such as 

Mesh, Crossbar, Linear array, 2-Dimensional Array. In Figure 2-5, these 

structures are shown.  

Linear arrays are designed as a pipeline with reconfigurable connections. 

Rapid and PipeRench are the popular linear array designs. Mesh arrays arrange 

PEs in two-dimension and they are connected with nearest neighbor. Popular 

mesh based course grained structures are MorphoSys, CHESS, Matrix, RAW and 

Garp. Some mesh structures add global connections to increase the performance 

of the array. These structures are also called 2-Dimensional arrays and enables 

connection of arbitrary PEs. Crossbar structures connect all PEs with each other. 

However, this results in increased cost for the routing resources. PADDI-1 and 

PADDI-2 are the crossbar structures, which are intended to prototype datapath for 

Digital Signal Processing (DSP) Algorithms [4].  
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Some coarse grain architectures have also embedded routing structures 

and/or memory inside the PE. For example, KressArray-3 [5] has rDPU that 

contains an ALU and routing structure at the same time.  

Datapath calculations can be easily mapped on coarse grain architectures. 

For instance, mapping of y = a * b + c * (d + e) on KressArray is shown in Figure 

2-6. 

 

a) 

 

 

b) 

 

c) 

 

d) 

 

Figure 2-5: Array Structures of Coarse Grain Architectures a) Linear Array b) 

Mesh  c) Crossbar  d) 2-Dimensional Array 
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Figure 2-6: A Datapath Equation and Hardware Mapping [6] a) Equation mapped to 

the node levels b) Hardware mapping of the equation 

Fine vs. Coarse Granularity 

Both structures have their own advantages and disadvantages. Fine- 

grained architectures can implement any logic function in one clock cycle, which 

is impossible on coarse grain architectures. However, this flexibility is obtained by 

using high number of routing resources. The increase of routing sources results in 

some drawbacks. First, the area needed for routing will be much higher than 

logical elements in a fine-grained architecture. Power consumption increase and 

frequency decrease are other disadvantages of fine-grained structures. Routing 

sources of fine-grained architectures also need more configuration data than the 

coarse grain architectures. Because of higher configuration data, reconfiguration 

time of fine-grained architectures is higher than coarse-grained architectures. 

Then why fine-grained FPGAs are extensively used instead of coarse-

grained architectures? The reason may be flexibility dominates the other 

advantages of coarse-grained architectures. If an application can be mapped to 

coarse grain architecture, it can get high speed-up. However, another application 

cannot get considerable speedup, if it is not well suited on the same coarse grain 

architecture. This factor limits usage of one coarse grain architecture for different 

applications. Therefore, a unique coarse grain architecture is not available that 

can be used for all type of applications. Such a universal coarse grain structure 

does not seem to be available also in the future [5]. 

In addition, the compiler support of coarse grain architectures is still in its 

start stage. Current mapping tools cannot utilize the full potential of coarse-

grained architectures due to the hardware complexity [7].  
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Heterogeneous Architectures 

Heterogeneous architectures contain both fine and coarse grain elements 

to take advantage of both worlds. Usage of coarse grain elements results in an 

increase of the system performance. By using fine grain elements flexibility is 

maintained. Therefore, newer reconfigurable architectures are designed 

heterogeneously. Generally, arithmetic functions that occupy large space on fine 

grain blocks are moved to coarse grain blocks in heterogeneous architectures.  

For example, Xilinx has embedded multiplier blocks into their FPGA 

devices starting from Virtex-II family. In newer devices, such as Virtex-4, there are 

multiply-accumulate (MAC) units, which are well fitted to Digital Signal Processing 

(DSP) filter implementations. These embedded units occupy less area, consume 

less power, and work with higher frequencies since they have a fixed routing 

inside. Therefore, embedded multipliers are much more efficient than 

implemented multipliers with fine grain elements.  

2.3  RECONFIGURATION APPROACHES 

Dynamic (Run-Time) Reconfiguration 

If device is reconfigured according to the changing demands during the 

operation then it is called dynamically reconfigurable architecture. In such 

architectures, same hardware sources can be used for different purposes at 

different times by reconfiguring hardware. Therefore, the hardware becomes a 

virtual hardware, which looks like using infinite hardware resources on a system. 

In Figure 2-7, a dynamically reconfigurable system is shown.  

 

Figure 2-7: Dynamic Reconfiguration of Hardware 
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Note that, runtime reconfiguration term is also used instead of dynamic 

reconfiguration. 

Partial Reconfiguration 

Partial reconfiguration is a sub-class of runtime reconfiguration. According 

to the coming demands, only a part of these devices is reconfigured instead of 

reconfiguring whole device. In addition, while reconfiguring some parts of the 

device, remaining parts still operate in such partially reconfigurable devices. 

Therefore, different functions can be loaded to partially reconfigurable part while 

the other parts are working, as seen in Figure 2-8. 

 

 

Figure 2-8: A Partially Reconfigurable Device and its Configurations 

Partial reconfiguration has many benefits. For instance, the hardware on 

partially reconfigurable parts can be shared by different applications at different 

times. The other parts can be maintained as fixed parts that always remain active. 

The fixed parts can manage scheduling operations of reconfigurable parts. 

Therefore removing unnecessary hardware and inserting necessary ones to the 

system, results in reduced cost and power. In addition, system can operate 

without interrupting by keeping fixed part in contact with the outside world.   

Partial reconfiguration property of reconfigurable devices is also used for 

speeding up the applications in some researches. For example, in [8] a CPU is 

placed on the fixed part and coprocessors are placed on reconfigurable parts of 
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the FPGA. Different coprocessor configurations are prepared off-line and they are 

loaded to the reconfigurable parts with changing demands. 

Another advantage of partial reconfiguration is reduced reconfiguration 

time. Since reconfiguration of full device is not needed, size of reconfiguration 

data also decreases. In other words, reconfiguration times are directly 

proportional with the reconfigured modules size. For example, if reconfiguration 

time of the entire device is 4 ms then quarter of the device can be reconfigured at 

1 ms. 

Self Reconfiguration 

If the reconfigurable device reconfigures itself without any aid from the 

outside world then it is called self-reconfigurable system. Data required for 

different configurations are generally stored on standard storage mediums. A part 

of the device is responsible for taking data from the storage medium and sending 

this data to the configuration port of the device. The configuration of the device 

changes after port takes the data.  

The main advantage of such reconfiguration is elimination of the need for 

external configuration controller. This results in reduction of the total system cost. 

Moreover, configuration data can be compressed at the storage side, and it can 

be decompressed by the configuration controller. Therefore, the size of the 

configuration data will decrease. 

Different configuration port types can be used for self-reconfiguration. For 

example, if the device has only a configuration port available at external pins, then 

it can be used as shown in Figure 2-9. In this structure, configuration data is taken 

by configuration controller and it is sent to the external configuration port of the 

device. However, this approach has some drawbacks. Firstly, pins used by 

configuration controller cannot be used for different purposes. Secondly, the 

configuration data sent from configuration controller to configuration port cannot 

be secure since data signals must go through PCB. 
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Figure 2-9: Self-Reconfiguration from External Configuration Port 

Some devices (such as Xilinx Virtex-II FPGA) have integrated 

configuration port inside the fabric of the device. The configuration controller can 

access this port internally (without going through pins) as shown in Figure 2-10. 

As a result, pins are not wasted for reconfiguration purpose and reconfiguration 

can be done securely.  

 

Figure 2-10: Self-Reconfiguration using Internal Configuration Port 

In some works such as [9] [10], this structure is used to implement a 

secure runtime reconfiguration. An initial configuration is loaded to the device that 

includes configuration controller and decryption hardware. The other parts are 

reserved for user applications and loaded by a partial reconfiguration. The partial 

configuration data is encrypted with a known key. This key is also stored on 

decryption circuit. Flow of secure partial reconfiguration occurs as follows: 

Encrypted configuration data is taken from an external source such as a storage 

medium or a radio link. Then it is decrypted by decryption circuit using the known 

key and passed to the configuration controller. Configuration controller writes 
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configuration data to the internal configuration port of the device and user 

application switches to another one. As a result, reconfiguration of user 

application becomes secure with this method since raw configuration data cannot 

be monitored from the outside world. 

2.4 RECONFIGURATION TIME 

Reconfiguration time is an important criterion on runtime reconfigurable 

architectures. Especially the applications that use runtime reconfigurable 

architectures to speed up calculations need fast reconfiguration. The logic circuit 

inside reconfigurable part must be replaced with another logic circuit in a limited 

time for such applications. In Figure 2-11, distribution of different applications 

according to the reconfiguration frequency is shown. The overhead of this 

reconfiguration time must be compensated by speeding up the calculations by 

hardware. 

 

Figure 2-11: Required Reconfiguration Times for Different Application Types  

Reconfiguration time of commercially available FPGAs still takes around 

milliseconds. Therefore, the applications that take more than milliseconds at least 

can obtain a speedup by reconfiguring FPGAs. Generally, data processing 

applications are in this range. For example, encryption/decryption or sorting 

algorithms are good candidates to run on a runtime reconfigurable FPGA.  

Some other devices such as DPGAs have been proposed to reduce the 

reconfiguration time to nanoseconds. However, they did not become commercially 

available due to their high costs (due to large configuration memory requirements) 

[11].  

  Nevertheless, the overhead of reconfiguration time can be reduced by 

dividing reconfigurable device into multiple parts and using scheduling algorithms. 
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Reducing reconfiguration time overhead allows mapping highly dynamic 

applications onto reconfigurable hardware [12]. Two types of scheduling algorithm 

can be used. These are runtime scheduling and design time scheduling. 

Scheduling of applications at runtime brings a new concept called 

Hardware Operating System. The hardware operating system work online, which 

means decisions are made during the system is running. Hardware operating 

systems also try to find solution for online placement of tasks onto different parts 

of the reconfigurable hardware. In Figure 2-12, elements of hardware operating 

system is shown. 

 

Figure 2-12: An Example of Hardware Operating System [13] 

Some works also try to reduce the reconfiguration delay by using offline-

scheduling algorithms. For example, [14] assumes the sequence of the tasks is 

already known before running the system (i.e. at design time) and it reduces the 

reconfiguration overhead up to 40%. 

2.5 PARTIALLY RUNTIME RECONFIGURABLE FPGAS 

FPGAs are widely used devices on reconfigurable computing applications 

since most of them are inherently reconfigurable. A combination of a CPU and 

reconfigurable FPGA can be used as a reconfigurable platform. CPU can manage 

reconfiguration processes of the FPGA and map different hardware configurations 

to FPGA at different times. However, this structure is not so efficient since two 

devices are needed for this system. Instead, a partially runtime reconfigurable 

FPGA can do the tasks of both CPU and non-partially reconfigurable FPGA as a 
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System on Chip (SoC). FPGA can be divided into two parts in which one part is 

static and the other one is reconfigurable. Then a soft CPU can be mapped on the 

static part and it can manage reconfiguration processes of the reconfigurable part. 

On a partially reconfigurable FPGA, more than one area can be 

reconfigured at an instance. Therefore, multiple tasks can be loaded at the same 

time and they can be reconfigured independent from the others .This is another 

advantage of using partial reconfiguration of FPGA. 

Altera, Atmel, Lattice, QuickLogic, and Xilinx are the major FPGA vendors 

in the world. About half of them have FPGA products that offer partial runtime 

reconfiguration. These partially reconfigurable FPGA devices are listed below: 

• Atmel AT6K 

• Atmel AT40K 

• Atmel AT94K 

• Lattice ORCA 

• Xilinx Virtex  

• Xilinx Spartan 

Xilinx Virtex and Spartan FPGA families can be partially reconfigured in a 

column-based approach. FPGA can be divided into columns and any of the 

columns can be reconfigured while the others are still running. There are also 

some restrictions to achieve partial reconfiguration. For example, the column 

boundaries must be determined at design time, the boundaries cannot change 

during execution. In addition, modules must communicate through special 

structures. Partial reconfiguration of Xilinx FPGAs will be discussed in further 

depth in Chapter 4. 

Atmel AT6K, AT40K, and AT94K series FPGA can achieve runtime partial 

reconfiguration. The technology of reconfigurable logic inside FPGA is called 

Cache Logic by Atmel. The reconfigurable part can be any rectangle inside 

FPGA. AT94K series FPGA includes an AVR microcontroller embedded on 

FPGA. This microcontroller can change the logic inside the FPGA.  

Lattice ORCA FPGA’s can be partially reconfigured. For partial 

reconfiguration, the address is written with “Explicit” mode. Indeed every address 

frame is written into the bitstream, followed by the data frame for each address. 

Partial reconfiguration is done by setting a bitstream option in the previous 
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configuration sequence that tells the FPGA not to reset the entire RAM 

configuration during a reconfiguration [15].  

2.5.1 Reconfiguration Times of FPGAs 

Full reconfiguration time of Xilinx XCV50 is 1.2 ms with SelectMAP 8 bit 

parallel mode at 60 MHz with handshaking, where XCV50 is the smallest device 

of Virtex series FPGAs. Reconfiguration time for Atmel FPGA AT40K40 is 631 µs 

in parallel mode, with writing 16-bit wide words at 33 MHz [16]. Full 

reconfiguration of ORCA OR4E06 takes 5.94 ms [17]. Note that, these devices 

are smallest devices of the vendors. Newer and higher capacity FPGAs will have 

bigger configuration data. However, they also speed-up the configuration ports, 

which maintain reconfiguration times almost in the same order. For example, 

Xilinx Virtex-4 has a 32-bit SelectMAP configuration port, which can reach up to 

100 MHz clock rates. 

2.6 APPLICATION AREAS OF RECONFIGURABLE 

ARCHITECTURES 

A wide range of applications can benefit from reconfigurable architectures. 

Some applications areas of the reconfigurable architectures are listed below. 

• Easy Prototyping, Low Volume Products 

• Field Upgrade of Hardware 

2.6.1 Easy Prototyping – Low Volume Products 

A digital Application Specific Integrated Circuit (ASIC) can be prototyped 

using a reconfigurable architecture. To accomplish this, different hardware 

configurations are mapped on a reconfigurable architecture at design time. After 

verifying correct operation of the designed circuit, an ASIC can be produced. If 

this circuit is not a mass product, reconfigurable device can also be used as a 

final product. Hence using a reconfigurable device will eliminate costly processes 

of producing an ASIC device. 
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2.6.2 In-Field Upgrades 

Being a reconfigurable architecture also provides some other unique 

properties. Reconfigurable devices provide an opportunity to change hardware on 

the fly. In other words, the device can be reconfigured easily by writing 

configuration data to the configuration memory. This feature can be used on 

systems that need upgrade of hardware structure during operation. In such 

systems, reconfigurable device can be used as a heart of the system. A remote 

computer can connect to the system and send configuration data. Then hardware 

structure can be changed by reconfiguring the device with the new configuration 

data. Since hardware components are generally base of a system, reconfiguration 

can almost replace whole architecture with a new one. This type of upgrade can 

save time and money for the producer.  

Even there may be conditions such that it may be impossible to upgrade 

device without in-field upgrade. For example, servicing or replacing components 

physically is impossible on a satellite system. In such architectures, using 

reconfigurable architecture that can be reconfigured with a remote connection is 

inevitable. As a result, reconfigurable devices are ideal components for systems 

that need in-field upgrade operations. Some works [10] deal with partial 

reconfiguration of hardware that eases in-field upgrades. 

2.7 APPLICATION AREAS OF RUNTIME RECONFIGURABLE 

ARCHITECTURES 

Changing the hardware on a running system is possible by using Runtime 

Reconfigurable architecture. This feature enables using runtime reconfigurable 

architecture as a virtual hardware source. In other words, different hardware 

configurations can be used at different times by RTR. Many applications can 

benefit from this feature to save cost, power, and resource usage on digital 

circuits. Moreover, applications can get speedup by using RTR, since it provides a 

flexible dedicated hardware for different functions. As a result, RTR can be used 

for the following purposes:  

• Cost and power reduction  

• Designing an Adaptable Computing Platform 
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• Designing Fault Tolerant Circuits 

• Speeding-up Computations 

 

2.7.1 Cost and Power Reduction 

RTR can reduce needed resource size if the required hardware can be 

divided into multiple parts. These smaller parts can be mapped to the hardware 

by generating configurations. Then these configurations can be loaded to the 

device at different times by using RTR. A scheduler arranges the reconfiguration 

operations according to the demands. Therefore, a smaller capacity device can 

be enough to map a bigger circuit on it. This results in cost and power reduction of 

the system.  

For example, Lianos et al. proposed a space efficient method for 

calculating Fast Fourier Transform (FFT) by using a dynamically reconfigurable 

architecture [18]. One reconfigurable vector calculates a column of FFT then 

feeds the outputs into the reconfigurable vector again to calculate consecutive 

stages of the FFT. Therefore, only one reconfigurable vector is enough to 

calculate FFT on a dedicated hardware by using RTR. 

In another work [19], a reconfigurable architecture is implemented that 

behave as Programmable Logical Controller (PLC). Designed architecture utilizes 

Temporal Petri Net language to describe applications. The sequential structure of 

Petri Nets allows splitting applications into multiple parts. Then these parts are 

mapped to same FPGA and used sequentially by reconfiguring it. This 

architecture can divide whole application up to 40 parts. Therefore, using 40 times 

smaller capacity FPGA can be enough instead of using a big one. This can 

reduce the cost of device from $317 to $38. 

Widespread usage of mobile systems increased the demand for low power 

consumption while maintaining high performance. Some works deals with mobile 

systems that use dynamic reconfiguration to reduce the total power of the system. 

In [20], control units of an automobile are implemented on a runtime 

reconfigurable FPGA. The user area is divided into four smaller parts. High 

number of control units (e.g. 20 units) that cannot fit to one-device shares 

available sources by time multiplexing. A scheduler determines reconfiguration 
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processes of control units. As a result, the system only consumes power of four 

control units for implementing much higher number of control units. In addition, a 

part of FPGA is always kept in contact with the outside world since only 

necessary parts reconfigured. This eliminates a need for external controller of 

reconfiguration process, which contributes power and cost reduction. 

2.7.2 Adaptable Computing 

Some types of applications require adaptation of hardware to changing 

demands. In such applications, implementing circuits on a static device is 

impossible, even a highest capacity one is used. The ultimate solution of this 

problem is using a reconfigurable hardware. Infinite number of configurations can 

be prepared and reconfigurable hardware can be reconfigured with new 

demands.  

Furthermore, many applications can benefit from reusability of hardware 

on reconfigurable architectures. Computations can be divided into multiple parts 

and they can be computed one after another with a parallel processing structure. 

If the gain obtained on area usage compensates the latency, the reconfigurable 

architecture can be preferred. For example, a matrix multiplication method 

proposed by L. Jianwen et al. [21] can do matrix multiplication with 80% less area 

than linear array structure. It have also used approximately 50% less area than 

linear array structure in terms of AT Metric (product of area and latency) 

 Some of the adaptable-computing applications absolutely need 

reconfigurable architectures are the following:  

Evolvable Hardware 

Evolvable Hardware is the application of Genetic Algorithms on circuits. 

Evolvable algorithms can find a circuit from its behavioural description [22]. There 

are two methods available to achieve this goal. One of them, known as Extrinsic 

Evolvable Hardware, simulates alternative circuit configurations and selects the 

best one. The other method, known as Intrinsic Evolvable Hardware, directly tests 

alternative circuit configurations on hardware. Then best of the configuration is 

selected [23]. It is necessary to use a reconfigurable hardware to test large 

number of alternative configurations. Therefore, RTR is necessary to implement 

Evolvable Hardware with the second method.  
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Hardware implementations of Robotics or Artificial Neural Networks also 

require such evolvable structures. Therefore, they are the candidates of RTR 

applications. 

Software Defined Radio 

Software Defined Radio (SDR) is another concept that involves adaptable 

hardware sources inside. SDR is a wireless platform that can work with different 

communication protocols. It can adapt to a communication protocol just by 

downloading and changing the configuration on the platform as a software 

module. SDR requires a large amount of digital signal processing operations. For 

this reason, SDR systems generally use a Digital Signal Processor (DSP) and an 

FPGA as a coprocessor [24]. DSP makes software operations whereas FPGA 

implements different filters and reconfigured with changing necessities. However, 

it is possible to use only one runtime reconfigurable FPGA to do operations of 

both DSP and FPGA. This runtime reconfigurable FPGA can be divided into two 

parts where one part is static and the other one is dynamic. Static part can be 

loaded by a soft processor core. Dynamical part can be reconfigured to run 

alternative coprocessor cores. Some researches (such as [25] and [26]) deal with 

such single chip systems that can reconfigure themselves with changing 

demands. 

2.7.3 Speeding-up Computations 

Reconfigurable Architectures (RAs) provide a flexible structure as 

microprocessors. Microprocessors allow changing the software and RAs allow 

changing hardware. Dedicated hardware on RA enables parallel computing while 

software on microprocessor allows only serial operations. Therefore, 

implementing a computational task on a dedicated hardware on RA is much faster 

than executing on a processor as software.  

Reconfigurable architectures can be used to accelerate computational 

tasks by mapping algorithms or parts of them to the dedicated hardware. For each 

different computational task, hardware can be reconfigured to map calculations on 

hardware. The rate of computations changes also affects the reconfiguration 

period of the hardware. If reconfiguration overhead is less than the gain obtained 

by mapping calculations on hardware, a considerable speed-up can be achieved.  
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Moreover, it is known that more than 90% of time is consumed on 10% of 

code in most of the software programs [27]. These codes are generally nested 

loop statements, which intend to take longer time than other structures. If the 

statements inside a loop can be mapped directly on hardware, execution time will 

decrease. The hardware on the reconfigurable architectures can be used for such 

loop statements. For each loop statement, an alternative configuration is created. 

Then by using runtime reconfiguration, infinite number of loop statements can be 

mapped on hardware. Therefore, the software can be executed more parallel, and 

it can be accelerated more.  

Many algorithms such as image processing, image compression 

/decompression, data encryption/decryption may benefit from the parallelism of 

reconfigurable architectures. The only necessity to get a speedup is 

reconfiguration time cost must be lower than the gain obtained with parallelism. 

2.7.4 Fault Tolerant Systems 

Fault tolerance on hardware generally requires reserving spare sources 

and replacing faulty sources with spare ones. Reserving spare sources is a trivial 

issue on reconfigurable devices since they are composed of array of identical 

elements. Many researches such as [28], [29] and [30] use inherent 

reconfiguration property of the FPGAs in order to tolerate faults on them. In 

Chapter 5, researches dealing with this topic will be discussed in more detail.  

2.8 APPLICATION IN THIS WORK 

A fault tolerant hardware was also designed in this work, which uses RTR 

property of an FPGA. Faults were eliminated using reconfiguration of the 

hardware. Furthermore, fault injection was done with the help of RTR. In Chapter 

5, working principle of designed architecture will be explained in more detail. 
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CHAPTER III 

3XILINX FPGA ARCHITECTURE AND TOOLS 

In this chapter, the general architecture of Xilinx FPGAs will be explained. 

At necessary points, examples will be given from Virtex-E or Spartan-2E series of 

FPGAs. 

3.1 MAIN STRUCTURE OF XILINX FPGAS 

Xilinx FPGA’s are composed of Configurable Logic Blocks (CLB), Input 

Output Blocks (IOB), BlockRAM’s (internal RAM), and the configurable routing 

matrix. Array of CLBs forms the FPGA structure. They are connected using 

routing lines and they implement logic functions. For example, the device used in 

this work, XC2S200E has 28 rows and 42 columns of CLBs. The structure of 

Spartan 2E FPGA is shown in Figure 3-1. 

 

Figure 3-1: General Structure of Spartan 2E FPGAs [31]  
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3.1.1 Configurable Logic Block Structure 

Each Configurable Logic Block (CLB) has two identical slices each of 

which have two Logic Cells (LCs). These logic cells are the basic building block of 

the FPGA. There is one flip-flop as storage elements and one look-up table which 

implements combinational logic in a LC. Also, carry logic elements are inserted to 

speed-up arithmetic operations. A CLB structure of Virtex-E or Spartan 2E device 

is shown in Figure 3-2. Note that CLB architectures of Virtex-E and Spartan 2E 

are same. 

 

Figure 3-2: A CLB of a Virtex-E (or Spartan 2E) device 

3.1.2 Input Output Block Structure 

FPGAs are connected to the outside world using programmable Input 

Output Blocks (IOBs). As shown in Figure 3-3, an IOB include flip-flops (FF) for 

input, output and tri-state enable signal. These FFs can be used to obtain 

minimum FF to pin delay. In addition, a number of IOBs are grouped to form a 

bank. Voltage levels of banks can be selected from different types of I/O 

standards. 
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Figure 3-3: Input/Output Block Structure of Virtex-E Device 

3.1.3 Routing Structure 

Routing structure is reconfigurable on Xilinx FPGAs, which is one of the 

necessities to be a reconfigurable device. It is also adjusted in a hierarchical 

manner to make it area efficient. There are mainly four types of routing resources: 

• Local Routings are used to make connections inside the CLB, between 

CLB and General Routing Matrix (GRM), and between two CLBs. 

• General Purpose Routing connects most of the signals on the FPGA. 

CLB’s are connected to other resources using GRM switch. In addition, a 

GRM is connected to adjacent six GRMs. GRM connections are shown on 

Figure 3-4. These switches also connect horizontal and vertical lines. 

These vertical and horizontal long lines span the full height/width of the 

FPGA.  
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Figure 3-4: General Routing Matrix and its Connections [31]  

• Dedicated Routing sources connect special signals on the FPGA. For 

example, there are four signal lines horizontally placed on the FPGA for 

each CLB row as shown in Figure 3-5. These lines can be used for tri-

state bus implementation. In this work, tri-state lines were used to 

implement a bus inside the FPGA. This bus is called bus-macro and will 

be described in detail in Chapter 4. 

 

Figure 3-5: Horizontal Longlines that traverse all along the FPGA 

• Global Routings are used for low skew and high fanout signals such as 

clock signals 
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3.2 CONFIGURATION ARCHITECTURE OF XILINX FPGAS 

Xilinx FPGAs have SRAM based configuration memory, which provides 

unlimited reprogramming feature. The configuration file of a Xilinx device is called 

bitstream. A host device sends this bitstream file to one of the configuration ports 

of the FPGA. Then internal state machines of the FPGA device evaluate if the 

bitstream file has correct Cyclic Redundancy Check (CRC) value or not. If the 

CRC value is correct then it programs the configuration memory (SRAM) of the 

device with the bitstream data.  

The configuration data of FPGA has divided into frames. A frame is the 

minimum segment of configuration memory that can be reconfigured. A frame 

includes configuration information of full height of device with one bit wide. Since 

a frame includes the configuration data of full height of the device, minimum 

reconfigurable unit must occupy full height of the device.  

Since configuration bitstream is divided into frames in a column-based 

order, at least a column of CLBs can be reconfigured at the same time. Moreover, 

configuration information of one CLB column is stored on 48 frames on XCV50 

device [32]. Therefore, reconfiguration of 48 frames is necessary to reconfigure a 

column of CLBs. The configuration memory structure of XCV50 device is shown 

in Figure 3-6. 
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Figure 3-6: Configuration Columns and Frames of Xilinx XCV50 device 

3.2.1 Column and Difference Based Reconfiguration 

Xilinx FPGAs allows two types of partial reconfigurations; column and 

difference based reconfigurations. It is possible to reconfigure one or more 

columns of CLBs using column based reconfiguration flow. On the other hand, 

difference based reconfiguration allows small changes on the configuration data.  

If boundary between two CLB column are defined strictly (i.e. no routing 

connection between) then reconfiguration of one column does not affect the other. 

By using this principle, modules that occupy integer multiple of CLB columns can 

be partially reconfigured. This type of reconfiguration is called column-based 

reconfiguration. 
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Another possibility for reconfiguration is making small changes on the 

configuration memory. Internal configurations of a CLB can be changed by 

reconfiguring them. For example, the function of Lookup Table inside a CLB may 

be changed from an OR gate to a AND gate. The bitstream generation tools will 

compare two different bitstreams and generate a bitstream that includes only 

different frames. The resulting bitstream will be much smaller than the original 

ones.  

3.2.2 Glitchless Reconfiguration 

“FPGA memory cells have glitchless transitions, when rewritten, the 

unmodified logic will continue to operate unaffected” [33]. This glitchless 

reconfiguration is required for communication channels that pass through from a 

reconfigurable module. Otherwise, reconfiguration of the module will break the 

communication channel and connection will be lost. 

Glitchless reconfiguration property is supported on Spartan 2, Spartan 2E, 

Virtex, Virtex E, Virtex 2, Virtex 2 Pro, and Virtex 4 devices of Xilinx. Spartan 3 

and Spartan 3E devices do not reconfigure without glitches [34]. 

3.2.3 Clocking Logic 

Same clock can route to all partial modules. However, clocking logic 

(Clock Routing Paths, Clock IOB) is always separate from the reconfigurable 

module and clocks have separate bitstream frames [35]. As a result, 

reconfiguration of a module does not affect synchronous circuits on another 

module. 

3.2.4 Suitable Configuration Options for Runtime 

Reconfiguration 

Xilinx FPGA devices can be configured using different configuration 

interfaces [36]. These interfaces are  

• Master / Slave Serial Mode, 

• SelectMAP Interface, 

• Boundary Scan (JTAG) port and  
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• Internal Configuration Access Port (ICAP).  

Master Serial Mode is used to configure FPGA from a PROM device. 

SelectMAP is a parallel bus available at normal I/O pins of the FPGA. Boundary 

scan port is a standard test port that has dedicated pins on FPGA. ICAP is an 

internal port that is similar to the SelectMAP interface. 

One of these configuration interfaces is selected at power-up according to 

the configuration mode pins, M0, M1, and M2. Because data pins of the 

configuration interface must be reserved to one of the interfaces at start-up. 

However, it is not necessary to make mode selection for boundary scan mode 

since it is always available for configuration independent of the mode selection 

[31]. ICAP also does not need any mode selection since it is an internal interface. 

To make a runtime reconfigurable system using a Xilinx FPGA, a suitable 

configuration scheme must be constructed. FPGA must be configured initially and 

it must be reconfigured while initial configuration is operating on it. It is possible to 

use different configuration interfaces for these initial and run-time 

reconfigurations. However, not all of these methods are suitable for run-time 

reconfiguration. The methods suitable for run-time reconfiguration are  

• SelectMAP Interface,  

• Boundary Scan (JTAG) port and  

• Internal Configuration Access Port (ICAP). 

Note that, one of these modes is necessary for only runtime 

reconfiguration. Loading initial bitstream can be done by any method. For 

example, the initial bitstream can be loaded using a serial PROM then all 

reconfigurations can be done using ICAP port. As another example, loading initial 

bitstream and reconfiguration can be done using JTAG port. 

Slave Parallel Mode (SelectMAP) 

SelectMAP is a parallel bus, which is driven by an external device to 

program the FPGA. In normal operation, SelectMAP pins are left to the user after 

configuration as normal I/O pins. However, in a runtime reconfigurable system 

they must be always available as a SelectMAP interface to enable runtime 

reconfiguration. In order to achieve this, when creating bitstream with Xilinx 
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BitGen tool, -g Persist:Yes option must be used. This option ensures that the 

SelectMAP interface will remain active after first configuration.  

Essential signals used for SelectMAP configuration port are given in 

Figure 3-7. Configuration data is sent or received through DATA pins 

synchronized with CCLK Clock. BUSY is used for handshaking and not necessary 

for low clock rates. CS is the Chip Select signal that enables the port for data 

transfers. WRITE is used to select the operation type, either as write or as read. 

PROG, INIT, and DONE signals are the SelectMAP protocol commands and 

acknowledgements such as “reset the configuration logic”, “verify successful 

operation” etc... More details about the SelectMAP protocol can be found on [37]. 

 

Figure 3-7: SelectMAP Configuration Signals on Xilinx FPGA 

The main advantage of the SelectMAP interface is fast configuration 

opportunity it provides. It is possible to use a SelectMAP up to 50 MHz clock rates 

without handshaking (Virtex, Virtex-E, and Spartan-2). For Virtex-2, this frequency 

is 66 MHz [37]. Therefore, SelectMAP can provide bandwidths of higher than 500 

Mbit/sec, since it is 8-bit parallel bus.  

SelectMAP has also some shortcomings. It requires either an external 

controller or some parts of FPGA to control the bus. An external controller is an 

extra cost. When controller logic is implemented on the same FPGA, it limits the 

reconfigurable areas since controller must access to external pins. Furthermore, it 

occupies logic and BlockRAM sources, which can be necessary for the user.  
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Internal Configuration Access Port (ICAP) 

Internal Configuration Access Port (ICAP) enables configuring FPGA from 

logic inside the fabric. It has same protocol with the SelectMAP configuration port. 

The only difference is the connection points, which are the internal routings on 

ICAP instead of I/O pins. Therefore, a logic mapped inside the device can 

reconfigure FPGA by writing configuration data to the ICAP. However, hardware 

communicating with ICAP port must not be reconfigured since communication can 

be lost after reconfiguration. Therefore, it is more suitable for partial 

reconfiguration instead of full reconfiguration [56]. 

ICAP is a very good solution for self-reconfiguration since it does not 

require any external hardware sources. It can take advantages of self-

reconfiguration such as secure configuration and compressed bitstreams. 

Unfortunately, it is only available on newer Xilinx devices such as Virtex-II and 

Virtex-4 FPGAs.  

ICAP

I[0:7]

CLK

WRITE

CE

O[0:7]

BUSY

 

Figure 3-8: ICAP Configuration Signals on Xilinx FPGA 

ICAP interface signals are shown in Figure 3-8. The functionalities of CLK, 

WRITE and BUSY signals are equivalent on ICAP and SelectMAP. In addition, 

CE has the same function with CS on SelectMAP. The only difference is the data 

bus, which is divided into two parts on ICAP. One part (I[0:7]) is used for writing 

configuration data to port, while the other part (O[0:7]) is used for reading back 

the configuration data. 

Boundary Scan (JTAG) Mode 

Joint Test Action Group (JTAG) designed a test standard and named 

JTAG for testing Printed Circuit Boards (PCB). This Boundary Scan architecture is 
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designed to test the physical connection of I/O pins at the board level. JTAG 

become a widely used test port with the increase of complicated PCB structures 

and smaller Integrated Circuits (ICs) [38]. Due to lots of benefits, it has become 

an IEEE standard (IEEE 1149.1). Most of current ICs contain a JTAG port pins to 

debug it. Its boundary scan architecture has a four-wire serial interface travels 

along all the pins of the device forming a chain. Serial data enters to the device 

with Test Data In (TDI) pin and stored on a shift (instruction) register. The data is 

send to the output of the device with Test Data Out (TDO) pin. All data shifting on 

JTAG chain are done with synchronized to Test Clock (TCK). The reserved pins 

for the JTAG port and their acronyms are listed in Table 3-1. 

Table 3-1: JTAG Pins and their descriptions 

Pin Name Description 

TDI Test Data In 

TDO Test Data Out 

TMS Test Mode Select 

TCK Test Clock 

 

 

JTAG also enables adding vendor specific instructions, instead of standard 

instructions. Vendors use these instructions to debug software/hardware inside 

the device. Furthermore, JTAG port can be used for on-board programming. All 

Xilinx FPGAs contain JTAG port, which enables configuration of the device with 

JTAG chain. Main advantage of using JTAG port is not wasting any user I/O for 

configuration since JTAG port has dedicated pins on the device. The JTAG pins 

and configuration selection is shown in Figure 3-9. 
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Figure 3-9: JTAG Configuration Signals on Xilinx FPGA 

A disadvantage of JTAG Boundary Scan for runtime reconfiguration is high 

configuration time. Since it sends data from a serial line and PC adapters speed is 

low, it does not permit fast reconfigurations. Therefore, the selected case study 

for runtime reconfiguration does not focus on the speedup benefit of the runtime 

reconfiguration. Instead, it focuses on virtual hardware concept of the runtime 

reconfiguration. 

Used Interface for the Designs 

JTAG is used on described designs throughout the thesis. It is a 

straightforward method since no external pins are required other than test port 

connections. In addition, software tools are available for JTAG. The other 

methods require a board that left configuration pins to the user. Generally, PROM 

loading is provided on most of the commercial boards, which occupy the Data pin 

of the SelectMAP interface. Therefore, to use SelectMAP port a custom PCB 

must be designed which is out of the scope of this thesis. Instead, a prototyping 

board containing Xilinx-Spartan 2E FPGA with JTAG connection is bought to 

examine RTR.  

3.3 CONVENTIONAL DESIGN FLOW FOR XILINX FPGAS 

The standard design flow is normally implemented using graphical user 

interface (GUI) of Xilinx ISE software. The GUI takes the circuit information from 

the user as a HDL (i.e VHDL, Verilog etc…) or a schematic file. Using these files, 
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GUI can generate a bitstream to download FPGA device. However, some 

operations are executed on the back to create this bitstream. The flow of these 

operations is illustrated in Figure 3-10. 

 

Figure 3-10 Standard Design Flow for an FPGA Design 

If an HDL file is used, it is synthesized to create a netlist. A netlist contains 

logic elements and their connections (i.e. circuit description). With schematic files, 

the creation of a circuit netlist is a trivial issue. After obtaining netlist, the 

remaining operations are translation, mapping, placing-routing, and lastly creation 

of configuration file.  
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The circuit netlist and constraints are combined on a file with a translation 

operation (not shown in Figure 3-10). In the mapping phase, circuit is partitioned 

and elements are grouped to map Logic Cells (LCs). Afterward, these logic cells 

are placed and routed to the FPGA using CLBs, routing sources, IOBs etc…At the 

last step configuration information is extracted from the placed - routed design 

and written to the configuration file (i.e. to the bitstream).  

The tools used for the operations of standard design flow are given in 

Table 3-2. Note that, these tools accept additional options that enable for different 

design flows. This feature is used in creation of runtime reconfigurable designs 

and explained in Chapters 4 and 5. 

Table 3-2: Standard Design Flow Operations and Tools of Xilinx FPGAs 

Operation Used Xilinx Tool  

Synthesis XST 

Translation NgdBuild 

Mapping Map 

Placing and Routing PAR 

Creating Bitstream Bitgen 

 

3.4 TOOLS FOR PARTIAL RECONFIGURATION OF XILINX 

FPGAS 

3.4.1 XAPP290 

XAPP290 is an application note published by Xilinx. It includes reference 

materials for a runtime reconfigurable design. One of the methods explained in 

this application note is used on designs explained in the thesis. More information 

about the contents of the application note can be found in Chapter 4. 
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3.4.2 JBITS 

JBits is an Application Programming Interface (API) based on Java. It is 

developed by Xilinx. This API may be used to construct digital designs and 

parametrical cores that can be executed on Xilinx Virtex II FPGA devices. It runs 

on a Java enabled environment (usually a PC). Today it is only published for 

Virtex II but it can be extended to other devices in the future. 

JBits can be used for runtime reconfigurable applications. The circuits can 

be configured on the fly by executing a Java application that communicates with 

the circuit board containing the Virtex II device. By using the XHWIF API, it is 

possible to download the design within the same Java application. This enables 

run-time configuration and reconfiguration of Virtex II device [39]. The design flow 

of runtime reconfiguration using JBits is shown in Figure 3-11. 

 

 

Figure 3-11: Design Flow of Runtime Reconfiguration using JBits [39] 

The main steps involved in a JBits application are the object construction, 

reading bitstream from a .bit file, modifying the bitstream, and writing bitstream to 

a file again. This application flow on JBits is shown in Figure 3-12. 

Bitstream 
from Xilinx ISE tools 

JBits API Design App 

XHWIF 

Virtex II 
Hardware 

Design Entry and 
Implementation 

Design Verification 
and Execution 
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Figure 3-12: JBits Application Flow 

An example code that modifies a bitstream is shown below: 

 

“void JBits.setCLBBits(int row, int column, int[][] resource, int[] bits);  

 jbits.setCLBBits(clbRow, clbCol, F1_B0.F1_B0, F1_B0.X0) ;” 

 

The disadvantage of the JBits is it is too low-level (it changes routing of the 

device, LUT configurations etc.). Designer must know the entire device 

architecture to modify bitstreams. Therefore, JBits remain as a research tool and 

it did not go further to implement complex designs.  

 

Start 

Create JBits 

Read Bitstream 

Modify Bitstream 

Write Bitstream 

Stop 
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CHAPTER IV 

4MODULE BASED PARTIAL RECONFIGURATION 

Xilinx FPGAs supports runtime reconfiguration (RTR). Partial 

reconfiguration guidelines given in Xilinx Application Note 290 [35] must be 

considered to realize RTR on FPGA.  

The application note covers two different RTR methods. One of them is 

suitable for making small changes on the logic implemented. This method is 

called difference based partial reconfiguration. In this method, small changes can 

be made on the design then only frames that have differences are loaded to the 

FPGA. The recommended changes are restricted to changing I/O standards, 

BlockRAM contents, and LUT programming. It is also possible to change routing 

information, however it is not recommended since contention may occur during 

reconfiguration. The other method is called module based partial reconfiguration. 

In this method, FPGA is divided into multiple columns, which are called modules. 

Then a new configuration can be loaded to a module while the other parts of the 

device are still active (working). All the designs in this thesis use module based 

partial reconfiguration. 

In this chapter, the flow of module based partial reconfiguration for a Xilinx 

FPGA device will be explained. Experiments were done on Virtex-E and Spartan-

2E device. Furthermore, to make things simpler an uncomplicated partial 

reconfigurable architecture was designed and implemented on Xilinx Spartan-2E 

device. Hence, examples given for the explanation of module based partial 

reconfigurable design are based on Spartan 2 200E device.  
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4.1 COLUMN BASED RECONFIGURATION 

As mentioned before, Xilinx FPGAs give an opportunity that a column of 

Configurable Logic Blocks (CLBs) can be reconfigured by writing its belonging 

frames to a configuration port of the FPGA. This structure and additional features 

enable creating Runtime Reconfigurable (RTR) architecture on Xilinx FPGAs. 

FPGA can be divided into multiple columns to make a RTR system. By 

using Xilinx map, place and route tools it is possible to generate bitstream for only 

one reconfigurable column. Then columns may be reconfigured by this bitstream 

while the other columns are still working. This reconfiguration operation is called 

active partial reconfiguration of FPGA.  

In a module based partial reconfigurable design, reconfigurable modules 

communicate with other modules through bus macros. An example partial 

reconfigurable architecture with two reconfigurable modules is shown in Figure 

4-1. 

 

Figure 4-1: Design Layout with Two Reconfigurable Modules [35]  
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4.1.1 Restrictions of Partial Reconfigurable Design 

Some restrictions for runtime partial reconfiguration are listed below [35]: 

 

• A reconfigurable module must communicate with other modules only 

through bus macros. 

• Module boundaries cannot be changed at runtime. 

• Minimum width of a module must be four slices (2 CLB) width. Additionally 

modules width must be multiples of four slices.  

• Height of a module is the full height of the device. 

• A reconfigurable module can use Input Output Blocks (IOBs) that lies on 

its boundaries only.  

• The leftmost slice on a module must be placed at multiple of four slices 

(i.e. slice numbers 0, 4, 8)  

4.1.2 Bus Macros 

Reconfigurable modules must communicate with other modules via bus 

macros as seen in Figure 4-2. Bus macros provide a fixed routing for signals that 

pass to other modules. Therefore, every different configuration of a module uses 

same path to share signals with other modules. Otherwise, communication will be 

broken with a reconfiguration.  

 

 

Figure 4-2: Communication with Reconfigurable Modules 

Tri-state buffers and horizontal long lines are used to implement bus 

macros. Physical implementation of bus macro is shown in Figure 4-3. .LO[3:0] 

and RO [3:0] are the horizontal tri-state long lines and used for tri-state signals. 
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LI[3:0] can drive these long lines if LT[3:0] enable signals are hold active. Also 

RI[3:0] can drive these long lines if RT[3:0] enable signals are hold active.  

 

Figure 4-3: Bus Macro connecting two adjacent modules [35] 

At an instance, only one side must become active to drive bus to prevent 

contention (i.e. only RT or LT becomes active at the same time). It is also 

suggested that a bus macro must be used only in one direction (i.e. not 

bidirectional). In addition, its direction must not change by reconfiguration. 

4.1.3 Clocking Logic 

As mentioned before, clocking logic is independent from reconfiguration 

processes, which enables runtime-reconfiguration on Xilinx-FPGA. Therefore, if a 

synchronous circuit is used in the design, clock must be distributed from the 

Global Routing lines. Otherwise, clocks will be disturbed with reconfiguration of a 

module. 
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4.2 IMPLEMENTED SIMPLE PARTIAL RECONFIGURABLE 

ARCHITECTURE 

To make module based partial reconfiguration more realistic and to gain 

experience it is applied on a simple design. In this design, simple arithmetic 

calculations are performed inside the FPGA. The operands are taken from the 

outside and the result is given to the external world again. The logic that makes 

arithmetic operations is changed at runtime by partial reconfiguration of the 

FPGA. Therefore, different arithmetic operations are done with same logic 

resources at different times by changing configuration data of the FPGA. 

In the designed architecture, there is only one reconfigurable module and 

one static module. Left side of FPGA is used as reconfigurable module while the 

other side is used as static module. The data flow between the static and 

reconfigurable modules are done through bus macros. Basic structure of the 

designed architecture is shown in Figure 4-4 

 

 

Figure 4-4: Basic Structure of Reconfigurable Design 

Static module only stores input operands and the result of the arithmetic 

operation. Reconfigurable module is used as Arithmetic Logic Unit (ALU) that has 

three different configurations. These configurations are used to implement 
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different 4-bit arithmetic operations. The operations are addition, multiplication, 

and subtraction. The mapping of these alternative configurations on the FPGA is 

shown in Figure 4-5: 

 

Figure 4-5: Alternative Configurations for Reconfigurable Module 

4.3 XILINX TOOLS AND IMPLEMENTATION 

To implement a partial reconfigurable design, Xilinx ISE 6.3i tools are used 

and Xilinx Modular Design Flow [40] is followed. In addition, the restrictions given 

in Xilinx application note [35] are also taken into the consideration.  

4.3.1 Modular Design Flow Overview 

Modular design has the following main steps:  

• Modular Design Entry and Synthesis 

• Modular Design Implementation  

• Initial Budgeting Phase 

• Active Module Implementation Phase 

• Assemble Phase 

 Figure 4-6 shows flow of these steps. 
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Figure 4-6: Modular Design Flow Overview [40] 

Different steps of the flow are implemented on different folders. 

Implementing design with a good directory structure is important because some 

files have same name but used for different purposes. The directory structure 

used in the design is given in Figure 4-7. It is similar to given directory structure in 

[41]. Note that, all the files used in this design are given in Appendix E (Reconfig-

ALU directory and its subdirectories include necessary files). 
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Figure 4-7: Directory Structure Used For A Module Based Partial Reconfigurable 

Design 

• Synthesis directory is used to create a netlists (.ngc file) from VHDL 

designs (.vhd file) of modules. 

• The bus macro that will be used in design is put on the BusMacro 

directory. It is taken from the Xilinx application note files [35]. However, 

some corrections are done in these files for Virtex-E device (will be 

explained in Section 4.4) 

• Three Implementation phases of the Modular Design Flow is done in the 

Implementation directory 

 

Some important file extensions used for reconfigurable design and their 

descriptions are given in Table 4-1. 

Used for Initial 
Budgeting Phase 

Used for Final 
Assembly Phase 

To synthesize all 
Modules and Top 
Design, separate 

directories are 
used 

Includes  
Bus Macro 

Output of Active 
Implementation, used in 
Final Assembly 

Used for Active 
Implementation 

Phase 
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Table 4-1: Descriptions of Files that are used for Module Based Partial 

Reconfiguration  

File 

Extension 

Constructed 

by Program 
Description Used by 

.vhd User 
Contains hardware description of 

the design. 

XST (Xilinx 

synthesis tool) 

.ucf 

User / 

Constraints 

Editor 

The User Constraints File (UCF) is 

an ASCII file that contains timing 

and layout constraints that affect 

how the logical design is 

implemented in the target device. 

Ngdbuild 

command line 

program 

.nmc N/A 

It contains the definition of a 

physical macro (hard placed and 

routed macro). In this design it is 

used as a bus macro. 

Ngdbuild 

command line 

program 

.ngc 
XST (Xilinx 

synthesis tool) 

Output of. Synthesized module 

contains Netlist of the circuit. 

Ngdbuild 

command line 

program 

.ngd 

Ngdbuild 

command line 

program 

Contains both a logical description 

of the design reduced to Xilinx 

Native Generic Database (NGD) 

primitives and a description in terms 

of the original hierarchy expressed 

in the input netlist. 

MAP command 

line program 

 

MAP command 

line program 

 

 

The Native Circuit Description 

(NCD) is physical representation of 

the design mapped to the 

components in the Xilinx FPGA. 

PAR command 

line program 

 

 
.ncd 

PAR command 

line program 

PAR command line program takes 

an NCD file as input, places and 

routes the design, and outputs an 

NCD file. 

BitGen 

command line 

program 
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Table 4-1 cont’d: Descriptions of Files that are used for Module Based Partial 

Reconfiguration  

.bit 
BitGen command 

line program 

The bitstream that is used to load 

configuration to the FPGA 
To load device 

.bld 

Ngdbuild 

command line 

program 

The output report of the Ngdbuild 

command line program. Contains 

errors, warnings and information. 

User 

.mrp 
MAP command 

line program 

The output report of the MAP 

command line program. Contains 

errors, warnings and information. 

User 

.par 
PAR command 

line program 

The output report of the PAR 

command line program. Contains 

errors, warnings and information. 

User 

 

 

4.3.2 Module Entry and Synthesis 

In the Module Entry and Synthesis phase, necessary circuit netlists are 

created. VHDL is used to describe logic functions and they are synthesized using 

Xilinx ISE 6.3i XST. There are five different VHDL files. These are 

• Top.vhd,   

• Right.vhd,  

• Left.vhd (Three left.vhd files with different contents are used to 

implement adder, multiplier, and subtractor) files. 

For Top, Right, Left Adder, Left Multiplier and Left Subtractor modules 

separate projects are created. “Add IO Buffers” option is selected in the “Xilinx 

Specific Options” tab when synthesizing top module, for other modules, this 

option is deselected. Therefore, I/O buffers are only added to the Top module, 

which is also done for non-reconfigurable designs.  
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Also for all modules, Bus Delimiter option is selected as <>. Note that <> 

sign is called as angle delimiter. Therefore, in the following steps angle delimiter 

bus macro that is given by Xilinx will be used.  

After synthesizing, files with ngc extensions are created. These netlist files 

will be used in the implementation. 

 

4.3.3 Implementation 

In the implementation flow, an initial configuration bitstream that configure 

whole FPGA will be generated. Also for every different configuration of each 

reconfigurable module, a partial bitstream will be generated. 

 In this example, two modules lie on FPGA. One of them is reconfigurable 

while the other is static. In addition, there will be three different configurations 

(Adder, multiplier, and subtractor) for the reconfigurable module. In summary, 

three partial bitstreams for reconfigurable part and one full bitstream for the whole 

device will be generated.  

Implementation flow has following three phases. These are  

• Initial Budgeting Phase, 

• Active Module Implementation Phase and 

• Assemble Phase. 

General overview of the flow is shown in Figure 4-8 and Figure 4-9. 
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Figure 4-8: Initial Budgeting and Active Implementation Phases of Module Based 

Partial Reconfiguration Flow. 
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Figure 4-9: Assemble Phase of Module Based Partial Reconfiguration Flow. 

4.3.3.1 Initial Budgeting Phase 

At the initial budgeting phase, a floor plan and constraints are created for 

the overall design. A user constraint file is created and used with NgdBuild tool to 

annotate constraints to the synthesized top design file.   
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Creating a User Constraint File  

 Top-level user constraint file contains the following information: 

• Physical assignment of pin locations, 

• Module area boundaries and 

• Locked components (bus macros, LUTs for VCC-GND and Clock 

buffer). 

To adjust module area boundaries and pin locations Xilinx PACE or 

FloorPlanner tools were used. Instead of using these tools,  all constraints can be 

entered manually with a text editor. However, entering area constraints by 

graphical interface for the first time and manipulating them manually is much more 

suitable. 

To run PACE and FloorPlanner tools for the design translated file (.ngd) is 

needed. Therefore, NGD build must be run to obtain a temporary ngd file. The 

following code is run with Command Prompt in the synthesis directory: 

 

ngdbuild -modular initial top.ngc 

 

Note that, top.ngc is obtained from the synthesis of the top.vhd with XST. 

The result of this command will be a top.ngd file. Temporarily this ngd file will be 

used to insert constraints to the ucf file with PACE editor. 

Assigning Area Constraints 

PACE is opened with the top.ngd file. On the PACE, using logic Tab, Left 

module is selected. Then using Tools � Assign Area Constraint Mode, an area 

constraint is drawn. Same operation is done for the Right module. Note that, 

these constraints can also be entered by using FloorPlanner. Figure 4-10 shows 

the boundaries of Right and Left Module after adjustment on PACE.  
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Figure 4-10: Constrained Areas for Modules as seen on PACE 

After saving user constraint file, the following constraints are added by PACE: 

AREA_GROUP "AG_left_module" RANGE = CLB_R1C1:CLB_R28C21 ; 

AREA_GROUP "AG_left_module" RANGE = TBUF_R1C1: TBUF_R28C21 ; 

INST "left_module" AREA_GROUP = "AG_left_module" ; 

 

AREA_GROUP "AG_right_module" RANGE = CLB_R1C22:CLB_R28C42 ; 

AREA_GROUP "AG_right_module" RANGE = TBUF_R1C22:TBUF_R28C42 ; 

INST "right_module" AREA_GROUP = "AG_right_module" ; 

In order to make these modules reconfigurable, RECONFIG property must 

be added to area constraints. This can be done by manually adding the following 

constraints to the user constraint file: 

AREA_GROUP "AG_left_module" MODE = RECONFIG ; 

AREA_GROUP "AG_right_module" MODE = RECONFIG ; 

Bus Macro Placement 

Actually, bus macro is a type of hard macro routed on FPGA. A hard 

macro is a placement constraint for a component. After giving the origin of a hard 

macro, place and route tools fix the position of logics that belongs to the hard 

macro.  

Dedicated horizontal lines, which have connections to the tri-state buffers 

(TBUFs) are used to implement bus macros. In each CLB, there are two TBUFs 
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as shown in Figure 4-11. The upper one is called TBUF 0; the lower one is called 

TBUF 1.  

 

Figure 4-11: Configurable Logic Block (CLB) Contents  

A bus macro occupies one row by eight columns of CLBs. The origin of a 

bus macro is the upper TBUF in the leftmost CLB. The placement and origin of a 

bus macro is shown in Figure 4-12. 

 

 

Figure 4-12: Bus Macro placement on FPGA 
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An example statement in the ucf constraint file to define the origin of the 

bus macro is the following: 

INST “busmacroname” LOC = “TBUF_R1C1.0” 

The position of bus macro is defined by using TBUF’s (tristate buffer) 

location. In the example R1 means “Row 1”, C1 means “Column 1” and .0 means 

the upper TBUF (or TBUF 0). In the following figure, a CLB and its TBUF 0 are 

shown. 

The bus macro is placed between two modules. Therefore, the origin of 

the bus macro must be defined four columns before the intersection of two 

modules. For example, if the intersection of modules is between column 15 and 

16, origin of the bus macro will be on column 12 (16-4) as shown in the following 

figure. 

According to these requirements, the bus macros places are locked with 

the following constraints: (they are entered manually to the top.ucf file): 

INST "bus_righttoleft1" LOC = "TBUF_R9C18.0"  ; 

INST "bus_righttoleft2" LOC = "TBUF_R10C18.0"  ; 

INST "bus_lefttoright1" LOC = "TBUF_R11C18.0"  ; 

INST "bus_lefttoright2" LOC = "TBUF_R12C18.0"  ; 

The following constraints are also entered manually to lock the place of the 

LUTs used for VCC and GND for each module (Reason for adding VCC and GND 

will be explained in Section 4.3.4). 

INST "Internal_Gnd_Left" AREA_GROUP = "AG_left_module" ; 

INST "Internal_Vcc_Left" AREA_GROUP = "AG_left_module" ; 

INST "Internal_Gnd_Right" AREA_GROUP = "AG_right_module"  ; 

INST "Internal_Vcc_Right" AREA_GROUP = "AG_right_module"  ; 

Initial Budgeting Phase Batch File  

Top_initial directory is used for the initial budgeting phase. Created 

constraint file top.ucf, bm_4b.nmc (in the BusMacro direcory) and synthesized 

design top.ngc are copied to this directory. Then top.ngd is created with the 

following ngdbuild command: 

ngdbuild  -p xc2s200e-pq208-7 -modular initial -uc top.ucf top.ngc 



 

58 

–uc option ensures that the constraints from the top.ucf file are annotated to the 

top.ngd file. 

-p xc2s200e-pq208-7 option instructs ngdbuild that the device is Xilinx Spartan-2 

200E, package is pq208 and speed grade is -7. 

4.3.3.2 Active Module Implementation Phase 

In this step each of the modules are implemented separately, using top-

level constraints. Partial bitstreams are generated for all reconfigurable modules 

(Left_mult, Left_sub, Left_add) and static module (right) as illustrated in Figure 

4-13 

 

Figure 4-13: Partial Bitstreams for Reconfigurable Modules and Static Module 

For all modules, Top.ucf file and associated synthesized .ngc file are 

copied to the module directories in the implementation directory.  

Then for all modules NgdBuild, MAP, PAR and Bitgen commands are 

executed successively. Also for all modules pimcreate is executed to publish 

routed and mapped partial module design. Published files are put on Physically 

Implemented Modules (PIM) folder. Then they will be used in the final assembly 

phase. 

As an example, the following commands are executed for adder 

configuration of the left module.  

• ngdbuild -p xc2s200e-pq208-7 -modular module -active left 

..\top_initial\top.ngc : NgdBuild is run for the active module implementation 

phase and uses top.ucf file in working directory and synthesized netlists left.ngc, 

top.ngc. It creates top.ngd file.  
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• map  -pr b top.ngd -o top_map.ncd  top.pcf   : MAP takes top.ngd maps the 

design and creates top_map.ncd 

–pr b option specifies that flip-flops or latches may be packed into input and 

output registers. 

–o option specifies the name of the output NCD file for the design (top_map.ncd). 

 

• par  -w top_map.ncd top.ncd top.pcf  : PAR takes mapped design, then it 

place and route  the design and outputs top.ncd file 

–w option instructs PAR to overwrite existing output file top.ncd. 

 

• bitgen -d -g ActiveReconfig:yes top.ncd partial_leftadd.bit : bitgen takes 

top.ncd as input and produces partial bitstream partial_leftadd.bit 

-d option instructs bitGen not to run DRC (Design Rule Check). 

-g ActiveReconfig:Yes switch is required for active partial reconfiguration, 

meaning that the device remains in full operation while the new partial bitstream is being 

downloaded. 

 

• pimcreate -ncd top.ncd -ngm top_map.ngm ..\Pim : PimCreate process 

"publishes" the routed design (and associated files) to the Pim (Physically 

Implemented Modules) folder. 

 

After these steps, FPGA-Editor tool of Xilinx is used to inspect visually 

whether an unexpected error occurred in the routed design, top.ncd. One possible 

error is module that does not route at its own boundaries. 

4.3.3.3 Final Assembly Phase 

In the final assembly phase, partially routed and placed modules are 

combined to obtain a complete FPGA design. These partial design files are taken 

from the Pims directory and used for map, place, and route operations to create a 

full FPGA design. 

Only one complete assemble is done. It includes left adder and right 

modules (another two possibilities are combining left multiplier and right modules 

or combining left subtractor and right modules). 
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Top_final directory is used for the final assemble phase. Top.ucf file 

created in the initial budgeting phase, bm_4b.nmc (in the BusMacro directory) and 

synthesized design top.ngc are copied to the top _final directory. 

After copying files, the following commands are executed successively: 

 

• ngdbuild -p xcv100e-pq240-7 -modular assemble -uc top.ucf -pimpath 

..\Pim -use_pim incrementer -use_pim myRegister top.ngc : NgdBuild is run 

for the final assemble phase and uses top.ucf file in working directory, 

synthesized netlist (top.ngc) and published files in the pims directory. It creates 

top.ngd file.  

 

• map –pr b top.ngd -o top_map.ncd : MAP takes top.ngd as input, then maps 

the design and creates top_map.ncd 

 

• par -w top_map.ncd top.ncd : PAR takes mapped design as input, then it place 

and route  the design and outputs top.ncd file 

 

• bitgen -w top.ncd top_final.bit : bitgen takes top.ncd as input and produces 

partial bitstream top_final.bit 

 

After these steps, FPGA_editor tool of Xilinx is used to visually inspect if 

an error occurred or not in the routed design, top.ncd. In other words, it is 

checked if modules remain in their own boundaries.  
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Figure 4-14: Placement of an Adder Circuit and Bus Macro on FPGA 

 

Figure 4-15: Placement of a Multiplier Circuit and Bus Macro on the FPGA 
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Figure 4-16: Placement of an Subtractor Circuit and Bus Macro on the FPGA 

 

Figure 4-17: Final Layout of the Circuit on the FPGA with Adder Module on the Left 

Side 
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4.3.4 Creating “Logic 0” and “Logic 1”s 

Reconfigurable modules can connect with each other only through bus 

macros. In addition, as explained before the direction of bus macros are adjusted 

by using LT or RT enable ports of the bus macro. These ports are driven by “logic 

1” (VCC) and “logic 0” (Ground), therefore one direction is selected for bus macro. 

These VCC and Ground must also be alive during reconfiguration of a module. 

In addition, it is forbidden to use same constant “logic 1” (VCC) and “logic 

0” (Ground) signals on different reconfigurable modules. The reason is that it can 

cause a problem on module that shares these signals with another module while it 

is reconfiguring. Therefore, instead of sharing “logic 1” and “logic 0” signals, they 

must be given to the modules separately. 

These limitations forces a module to have it is own VCC and Ground 

signals and must be always available (even if it is reconfiguring). There are two 

methods for getting “logic 1” and “logic 0” signals to the modules. First one is 

getting these signals from the outside world by using FPGA pins [41]. The second 

method is creating dummy Look-up Tables (LUTs) for each module and getting 

“logic 1” and “logic 0” signals from them [42]. The second method is used in this 

design.  

1-bit LUTs are used and LUT functions are selected so that whatever the 

input is one LUT creates “logic 0” and another LUT creates “logic 1”. The truth 

tables of the LUTs are given in Table 4-2 .  

 

Table 4-2: Truth Tables of Dummy Look Up Tables 

Truth Table of LUT 0 

Input Output 

0 0 

1 0 
 

Truth Table of LUT 1 

Input Output 

0 1 

1 1 
 

 

Two LUTs are connected to each other in order to create dummy inputs. 

LUT connections are shown in Figure 4-18. LUT on the left side creates “logic 0” 

and LUT on the right side creates “logic 1”.  
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Figure 4-18: Dummy LUTs for creating “Logic 1” and “Logic 0” 

The same structure is used for each module (fixed and reconfigurable). 

The added VHDL codes to the top.vhd file for generating left module’s logic 1 and 

0 are the following: 

 

 -- Fake Gnd and Fake Vcc of Left Module 

 Internal_Gnd_Left: LUT1 

  generic map (INIT => b"00") 

  port map    (O => Gnd_Left, I0 => Vcc_Left); 

 

 Internal_Vcc_Left: LUT1 

  generic map (INIT => b"11") 

 port map    (O => Vcc_Left, I0 => Gnd_Left); 

 

It must be guaranteed that these elements stay inside the corresponding 

module area. Otherwise, reconfiguration of one module can disturb the outputs of 

LUTs (this can result in a contention on the bus macro). To overcome the problem 

LUTs are locked into the modules region. The following constraints are added to 

the top.ucf file to lock these LUTs: 

INST "Internal_Gnd_Left" AREA_GROUP = "AG_left_module" ; 

INST "Internal_Vcc_Left" AREA_GROUP = "AG_left_module" ; 

INST "Internal_Gnd_Right" AREA_GROUP = "AG_right_module" ; 

INST "Internal_Vcc_Right" AREA_GROUP = "AG_right_module" ; 

4.4 ENCOUNTERED PROBLEMS AND SOLUTIONS 

This design has been tested on Spartan 2 200E device however; initial test 

was done on Virtex - 100E. The bus macro provided by Xilinx for Virtex - E device 
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contains some errors. The errors are corrected to achieve partial reconfiguration 

on Virtex – E device. 

4.4.1 Bus Macro Error and Its Solution 

NgdBuild gives the following warnings at the initial budgeting phase: 

 

WARNING:PhysSimExpander:5 - TBUF symbol `t4H_<0>':  The following pins were 

connected on the outside of block "t4H_<0>" but left unconnected within the block:  T 

 

WARNING:PhysSimExpander:5 - TBUF symbol `t3G_<1>':  The following pins were 

connected on the outside of block "t3G_<1>" but left unconnected within the block:  T 

.... 

 

These warnings cause the mapping tool (MAP) to fail and give some 

errors. The reason for these warnings is the error in the bus macro file of the 

Virtex-E family. The bus macros with extensions nmc must be converted to xdl 

files in order to make them editable (with a text editor). To convert a command 

line utility of Xilinx is used. For example, the bus macro bm_4b_ve.nmc is 

converted to bm_4b_ve.xdl by the following command: 

xdl –ncd2xdl bm_4b_ve.nmc 

Converted xdl file is opened with a text editor and there are some lines in 

the xdl file problematic such as 

 

inst "t4H_<0>" "TBUF" , placed R1C16 TBUF_R1C16.1 , 

   cfg "TMUX::0 IMUX::I _SUPERBEL::TRUE"; 

inst "t3G_<1>" "TBUF" , placed R1C15 TBUF_R1C15.0 , 

   cfg "TMUX::0 IMUX::I _SUPERBEL::TRUE"; 

........ 

 In these lines  

 

cfg "TMUX::0 IMUX::I _SUPERBEL::TRUE" 

is changed to 

cfg "TMUX::T IMUX::I _SUPERBEL::TRUE" 
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Explained changes are done on the .xdl file and its again converted to nmc 

file by the following command: 

xdl –xdl2ncd bm_4b_ve.xdl 

This command creates bm_4b_ve.ncd . It is renamed as bm_4b_ve.nmc 

and again used in the modular reconfiguration flow. This operation removed the 

warnings in the initial budgeting phase and the mapping errors in the active 

module phase of partial reconfiguration flow. 

4.4.2 Second Bus Macro Error and Its Solution  

When the PAR is run for the active module implementation phase of the 

static module it gives some errors as the following: 

 

ERROR:DesignRules:576 - Netcheck: The signal dataR2<1> has a 

sigpin on the comp busRegToInc_bus1/t3G_<1> that is not in the 

same route area as another sigpin of the same signal. This is not 

permited for Modules in partial reconfiguration mode unless the 

signal has the property IS_BUS_MACRO. 

ERROR:DesignRules:9 - Netcheck: The signal "dataR2<1>" is 

only partially routed. 

 

Again, the bus macro has problems that need to be corrected. The 

problematic lines in the converted bus macro file (.xdl) are the following 

 

net "TNET<3>" , 

   outpin "t1A_<3>"          O                  , 

   outpin "t1E_<3>"          O                  , 

   pip R1C9 TBUF_OUT0 -> TBUF2 , 

   pip R1C10 TBUF3 =- TBUF_STUB3 , 

   pip R1C13 TBUF_OUT0 -> TBUF2 , 

   # net "TNET<3>" loads=0 drivers=2 pips=3 rtpips=0   ; 

 

is changed to:  
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net "TNET<3>" , 

   cfg "_NET_PROP::IS_BUS_MACRO:" , 

   outpin "t1A_<3>"          O                  , 

   outpin "t1E_<3>"          O                  , 

   pip R1C13 TBUF_OUT0 -> TBUF2 , 

   pip R1C10 TBUF3 =- TBUF_STUB3 , 

   pip R1C9 TBUF_OUT0 -> TBUF2 , 

   # net "TNET<3>" loads=0 drivers=2 pips=3 rtpips=0   ; 

 

For all nets (net "TNET<3>" , net "TNET<2>" , net "TNET<1>" , net 

"TNET<0>" ) the same correction is done. In other words cfg 

"_NET_PROP::IS_BUS_MACRO:" property is added. 

Then bm_4b_ve.xdl file is again converted to bm_4b_ve.nmc file as in the 

solution of previous error. 
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CHAPTER V 

5A TMR SYSTEM ON A RUNTIME 

RECONFIGURABLE ARCHITECTURE 

As a case study for partial reconfiguration, a fault tolerant system is 

designed to run on a reconfigurable FPGA. It is based on Triple Modular 

Redundancy (TMR). Runtime reconfiguration property of the FPGA is used to 

repair modules of the TMR.  

The system can eliminate transient faults on routing lines and logical 

elements of the FPGA. It can also mask the faults encountered on logical 

elements by replacing them with non-faulty elements. The work does not address 

permanent faults on routing lines of the FPGA. 

In this chapter, designed architecture will be explained. For the sake of 

completeness, basic terms about the fault tolerance will be given. Moreover, 

related works about the fault tolerance of FPGAs will be discussed. 

5.1 BACKGROUND 

Reliability is an important issue for mission and safety critical applications. 

A high reliability must be maintained on systems where a failure can cost lives 

and money. For instance, a breakdown of a satellite is unacceptable where total 

system cost takes a few billions of dollars. Similarly, brake system of an 

automobile must be highly reliable where people lives depend on. Hence, 

designers of such systems must take into consideration the faults on hardware 

that can arise during operation.  

A reliable hardware environment is designed in this work, which is mainly 

built on a run-time reconfigurable FPGA. The fault types seen on such FPGAs 

and recovery methods of them are discussed in this section.  
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5.1.1 Fault Tolerance 

A fault tolerant system can continue to operate even a fault occurred. 

Performance degradation can be acceptable in the case of a fault presence 

however, it is important not to break off the whole system. Fault tolerance requires 

extra sources to detect and correct the faults. By the help of extra sources, it 

increases total correctly running time of the system. 

5.1.1.1 Redundancy 

Reserving extra sources to mitigate the effects of faults is called 

redundancy. Redundant sources are necessary to detect and eliminate faults. 

Alternative redundancy methods such as hardware, software, and time 

redundancy can be used on a fault tolerant system. This work only focuses on 

hardware redundancy to develop a fault tolerant hardware.  

On a fault tolerant hardware, faulty elements can be replaced by 

redundant ones. Another redundancy is required for the error detection circuits 

since fault recovery can be done after detection. 

5.1.1.2 Availability 

Availability is a measure of ratio between running time without breakdown 

and total running time of the system. High availability is the main aim of a fault 

tolerant architecture. For example, mission critical applications require very high 

availability. Ideal availability for such systems is 100%.  

5.1.2 Triple Modular Redundancy (TMR) 

Triple Modular Redundancy (TMR) is widely used approach to mask the 

faults. TMR is composed of three redundant modules and one voter module as 

seen in Figure 5-1. All redundant modules are exact copy of each other. The level 

of a redundant module can range from only a gate to a complex circuit. A majority 

voter compares the outputs of these identical modules.   
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Figure 5-1 Triple Modular Redundancy (TMR) with Simplex Voter 

When no error is present in the system, the outputs of all modules agree 

with each other, then voter use this output. If one of the modules fails, it gives 

different output from the other modules. Then the outputs of two correct modules 

agree and voter uses this output to feed forward. If more than one module 

becomes faulty then none of them agrees with each other and the system breaks 

down. Therefore, using just TMR can mask the effect of a single failure. If a 

recovery approach is used on TMR after a failure, system can return to initial state 

and more than one error can be masked.  

The advantage of TMR is high system availability (i.e. 100%) even if an 

error is present. Another advantage is no extra error detection circuit is required 

inside a module. Voter immediately detects an error on a redundant module and it 

can reflect this status to the output.  

5.1.3 Rollback and Roll-forward 

Duplicate modules can be used to establish Fault Tolerance on a system. 

If one of the duplicate modules encounters an error, the other can keep the 

system alive as in TMR. The error must be eliminated as soon as possible since 

occurrence of an error on correctly operating module can crash the system. After 

eliminating fault, the state must be recovered to a well-known point. This can be 

accomplished by either copying state from correctly working module or returning 

to a checkpoint. Restoring state from a past checkpoint is called rollback 

operation while copying it from a correctly running system is called roll-forwarding 

operation.  
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5.1.4 Fault Types 

Encountered fault types during the operation of a digital circuit can be 

classified into two groups. One of these types is transient fault and the other type 

is permanent fault. A transient fault causes the circuit to work incorrectly in a 

limited time interval; afterward the fault disappears. It is important to be aware of 

the fault and take precautions such as re-evaluating circuit operations. A 

permanent fault cannot be corrected without any intervention from the outside 

world [43]. Spare sources must be reserved in the system, in order to eliminate 

permanent faulty elements. Whenever a permanent fault occur these spare 

sources takes the function of the faulty blocks.  

5.1.4.1 Transient Faults 

Heavy ion and proton particles on space applications may hit a memory 

element such as latch, flip-flop, RAM etc. This cosmic radiation results in a state 

change of the memory element, which is called Single Event Upset (SEU). Such 

events are seen more frequently with continuously decreasing transistor sizes by 

improving implementation technology [44]. Normally these bit-flips are transient 

and disappear after storing a new value on the memory cell or resetting it.  

However, these transient errors become an important issue on SRAM 

based FPGAs where circuit behaviours are determined by configuration memory 

elements. If a configuration memory element of FPGA encounters a SEU, it will 

change corresponding circuit behaviour. In normal operation of an FPGA (i.e. no 

reconfiguration is done), this memory will never be refreshed until a power-down – 

power-up sequence. Hence, these transient errors become permanent errors, if 

no configuration memory refresh is done. The system can be damaged because 

of these functional errors. Therefore, they must be corrected by writing the true 

configuration data after a SEU in order to recover circuits. An example bit-flip or 

SEU on a Lookup Table (LUT) and resulted functional error is illustrated in Figure 

5-2. 
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Figure 5-2 Effect of a Single Event Upset (SEU) a) Original Configuration with 

function AND b) Configuration after a SEU with Function Constant Zero [45] 

5.1.4.2 Permanent Faults 

Permanent faults can arise during the operation of a circuit due to long life 

usage or impurities on manufacturing that are not detected with initial tests [28]. 

The long usage of circuit on high radiation environment can also trigger 

permanent fault generation by modifying threshold voltage levels of transistors on 

the circuit [46]. Researches use some models for operational permanent faults 

and most common model is stuck at error model.  

Stuck-At Model 

Stuck-At fault models are widely used for permanent error modelling due 

to their simplicity. The models are stuck-at 0, stuck-at 1, switch stuck open and 

switch stuck closed. Stuck-at 0 (SA0) means the input or output of a logic gate is 

locked to 0 and cannot be changed anymore. Similarly, stuck-at 1 (SA1) means 

the input or output of a logic gate is locked to 1.  

Other models are used for the switches. Switches can be locked to a state 

connecting (stuck closed) or not connecting (stuck open). 

Any signal of a CLB can encounter a SA0 or a SA1 error on an FPGA. A 

connection point on the switch matrix or Programmable Interconnect Points (PIP) 

can also encounter stuck-at open/closed errors. These elements must be 

replaced by undamaged ones. 
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5.2 RELATED WORK 

The main research topics about the Fault Tolerance that use Runtime 

Reconfiguration (RTR) are listed below: 

• Detection of Errors 

• Recovery of transient errors (such as SEU), which can be 

permanent if configuration memory of SRAM FPGAs is affected 

• Tolerating permanent errors (such as corruption of a CLB)  

• Simulating faults 

Some researches propose methods for more than one topic at the same 

time. They are discussed under one subject in the following section. 

Error Detection 

There are different methods available to test the sources inside an FPGA. 

Some of them use online methods in which the system continues to operate. 

Runtime reconfiguration is used to enable uninterrupted operation of user circuit. 

For example, M. G. Gericota et al. [28] proposed a non-intrusive CLB test method. 

The method uses a dynamic rotation mechanism to test all CLBs inside the FPGA 

and rotation is based on RTR of hardware. In order to test a CLB in a non-

intrusive manner, its contents are copied to another CLB called replica. Then, test 

is done to the replicated CLB. If no errors found on replicated CLB, the function 

again copied from the replica CLB. This method is able to detect permanent 

errors on CLBs and it can recover transient errors on CLBs.  

J.Emmert et al. [29] used another method for error detection based on 

BIST (Built-In Self-Test). BIST structure includes Test Pattern Generator and 

Output Response Analyzer to test the functionality of the block under test. Their 

method implements a roving Self-Testing Areas (STARs) that reserve a test area 

inside the FPGA. A STAR contains vertical and horizontal blocks to be tested. 

After the test operation of blocks completed, they move to another position. The 

logic blocks other than STAR are always active inside the FPGA. Partial 

reconfiguration of the FPGA allows the system working even if the STAR is 

moving to another place. Moreover, a reconfiguration can eliminate the usage of 

faulty logic cells.  
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SEU Mitigation 

Single event upsets on configuration memory of SRAM based FPGAs 

become a permanent error as mentioned before. Two methods can be used to 

eliminate a SEU on SRAM configuration memory. First method uses a readback, 

compare, and repair strategy. Configuration memory is continuously read and 

compared with the original configuration data. If an error found on a frame, it is 

partially reconfigured again to correct error. Instead of comparing all the 

configuration bits of a frame, CRC can be generated and can be compared with 

already prepared CRC to find an error. One restriction of this method is LUT 

cannot be used as shift-register or RAM, since readback operation can disrupt the 

data on it [47] [48]. 

Second method continuously writes correct configuration data to the 

configuration memory of the FPGA. This method is called scrubbing. The reload 

period is selected according to the rate of SEU events. As a rule of thumb, 

scrubbing rate must be 10 times higher than average SEU rate. 

Both systems must use a fault tolerance method such as TMR in order to 

increase availability. Otherwise, system can stop working until the repair process 

correct the fault. Xilinx proposed [49] such SEU mitigation method that uses 

partial reconfiguration (scrubbing) and TMR.  

Another research by R. F. Demara et al. [50] proposed a TMR like solution 

in which redundant modules are two instead of three. These two redundant 

modules are called Discrepancy Mirrors. Discrepancy mirrors are exact copy of 

each other and their output is voted by a discrepancy detection circuit. When a 

fault arises on one of the redundant modules or detection circuit, the detection 

circuit indicates unmatched outputs. Therefore, it does not need a golden circuit 

for the detection circuit. This method enables immediate detection of errors as 

opposed to test vector method, which requires a high latency for detection of 

errors. After detecting error, a reconfiguration can eliminate the single event 

upsets on discrepancy mirrors and detection circuit. 

Tolerating Permanent Faults  

In a fault tolerant system, extra sources must be reserved in order to 

eliminate permanent faults. These sources are kept as spare until a fault appears. 
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Then, in the case of damage occurred, the faulty element is replaced by a spare 

(non-faulty) one to implement the function of it. 

Runtime reconfiguration (RTR) of hardware sources can be very helpful to 

mitigate the effects of faults on FPGAs. Configuration schemes can be prepared 

that does not cover faulty sources. Since RTR enables uninterrupted operation, 

faulty sources can be replaced with spare ones by using such configurations. This 

is a very useful property since system can stay active even during recover 

operations. Therefore, researches that deals with Fault Tolerance of FPGA use 

RTR property of them. In this work, RTR is also used to mitigate effects of faults 

on FPGAs. 

W.J. Huang et al [30] have proposed a column-based precompiled 

configuration technique that can eliminate permanent faults on the FPGA. In this 

method, FPGA is divided into multiple columns. One or more columns are 

reserved as spare and a user design is mapped to the remaining columns. For 

each function, multiple configuration schemes are prepared offline, and they are 

used immediately if an error appears. For example, if an error appears in a CLB of 

a column then the function inside is moved to a neighbour error-free column. The 

function in neighbour column is also moves by one column and replaces another 

function. All functions are moved until a spare column is used, then the erroneous 

column becomes empty. Therefore, each function has a configuration mapped on 

each column. This method can tolerate permanent faults until the number of faults 

becomes equal with the number of spare columns. 

TMR architecture can be used to tolerate permanent faults. It can tolerate 

up to one erroneous redundant module if no additional method is used. Its 

disadvantage is high area overhead. Another work, by S.Y. Yu et al. [51] provide 

a solution to reduce the area overhead of the TMR. Their technique divides a 

redundant module into two parts. Then different fault tolerance methods are 

applied to two distinct parts. For example, in one of the implementations, a part 

uses a redundant architecture (i.e. TMR) while the other part is strengthened by a 

Concurrent Error Detection (CED) unit. If TMR part encounters an error, it is 

reconfigured to eliminate fault and then errors are corrected by roll forwarding. In 

another method, one part uses TMR while another one uses a duplex scheme. If 

an error occurs on the parts implemented with duplex schemes, it is reconfigured 

to eliminate fault and then error is corrected by rollback recovery method.  
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Simulating Faults 

Some researches try to find solutions for simulating Single Event Upsets. 

This simulation is necessary before launch to analyze the behaviour of the circuits 

under a real space environment. Two methods can be used to simulate SEUs on 

the earth. First, SEUs can be directly injected by using radiation (proton beam) 

test equipments. Second method reconfigures the FPGA with a configuration data 

that embeds bit-flip errors inside. The second method is a low cost solution since 

no external equipment is necessary to see a SEU effect.  

For instance, Gokhale et al. [48] used RTR to induce SEUs into the 

configuration memory of the FPGA. P. Kenterlis et al. [52] used JBits to emulate 

the configuration data corruptions. 

5.3 DESIGNED ARCHITECTURE 

5.3.1 General Overview of the System 

The system is mainly composed of a board containing runtime 

reconfigurable FPGA and a Personal Computer (PC). A Triple Modular 

Redundant (TMR) circuit operation is performed on a reconfigurable FPGA. TMR 

structure includes a fault tolerant user application circuit and a controller circuit 

(voter of TMR). A PC program organizes reconfiguration processes of the FPGA 

according to the feedbacks of the controller circuit. The fault tolerance of the user 

circuit is maintained by an algorithm run on the PC Program with the help of the 

controller circuit. 

Some additional peripherals are used to complete system function. More 

specifically, a board displays information coming from the FPGA board to the 

user. Another board enables communication between PC and FPGA. Lastly, a 

cable from Xilinx is used for downloading configuration data (i.e. bitstreams) from 

PC to FPGA board. In Figure 5-3, all elements and connections of designed 

reconfigurable system are shown.  
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Figure 5-3: Components and Connections of the Reconfigurable System 

5.3.1.1 Addressed Error Types 

The design can tolerate following faults: 

• Corruptions on FPGA configuration memory due to SEU like effect 

• Permanent errors on CLB sources of the FPGA 

• SEU corruptions on Flip-Flops inside a CLB 

5.3.1.2 Partial Runtime Reconfigurable Design 

Using only Triple Modular Redundancy (TMR) for Fault Tolerance cannot 

compensate errors on different modules. In other words, if an error occurs on a 

redundant module, the system can continue to operate. Nevertheless, if another 

error comes to another module during this state, system will halt.  

However, if the error on a redundant module of the TMR can be eliminated 

whenever it appears, the system can compensate more than one error. Designed 

architecture use partially reconfigurable hardware (i.e. FPGA) where parts of 

circuit can be changed while others are operating. Faulty redundant modules are 

replaced with repaired ones while continuing the operation of the whole circuit by 

the help of partial reconfiguration.   

The reconfiguration of the FPGA is based on Module Based Partial 

Reconfiguration, which was described in Chapter 4. Hence, the guidelines of 
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module based partial reconfiguration are followed for this design and its 

restrictions are considered. 

5.3.2 Hardware Used in the Design 

Three boards and two cables are used to implement proposed 

architecture. These are listed below: 

• A board containing a reconfigurable FPGA on it (D2SB) 

• A board containing seven segment displays and switches on it (DIO1) 

• A board that converts TTL voltage levels to RS232 voltage levels 

• A JTAG cable for the PC (Parallel Cable III) 

• RS232 to USB converter cable 

The hardware components of the reconfigurable system (except PC) and 

their connections are shown in Figure 5-4. Detailed information about individual 

hardware components is given in the following sections. 
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Figure 5-4: Picture of the Reconfigurable System without a PC 

5.3.2.1 Digilent D2-SB System Board 

Digilent D2SB board contains a Xilinx Spartan 2E XC2S200E FPGA and 

peripherals to run the FPGA. The block diagram of the board is shown in Figure 

5-5. Xilinx XC2S200E is a reconfigurable FPGA as explained in Chapter 4.There 

is a 1.8V regulator to supply the power of the FPGA core. FPGA I/O voltage is fed 

by the 3.3V regulator. To make simple tests one LED and one push button is 

inserted on the board. There is also a socket for a configuration Programmable 

Read Only Memory (PROM). A JTAG connector is provided to enable 

configuration of FPGA and PROM by JTAG cable. 143 I/O pins of the FPGA are 

expanded to the connectors to enable connection with other daughter boards or 

user circuits [53]. 
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Figure 5-5: Block Diagram of the D2-SB board 

5.3.2.2 Digilent DIO Board 

Digilent DIO1 board is used to display some information to the user. It 

takes necessary data and displays on seven segment displays on it. Actually, 

DIO1 is a daughter board that can be directly connected to the connectors of the 

D2SB board. However designed architecture implements module based 

reconfiguration in which a module can access to only I/O’s at its boundaries (as 

explained in Chapter 4 in detail). This limits connection of D2SB board to the 

DIO1 board to certain pins. Therefore, the daughter board is not connected 

directly to the D2SB but connected by wiring up the connector pins. 

5.3.2.3 RS232 to LVTTL Converter Board 

A communication channel is necessary between host computer and FPGA 

board for the handshaking operations. As a straightforward method, serial port of 

the computer is selected as the communication channel. However, the signal 
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levels of the serial port and Xilinx FPGA are incompatible since Serial port uses 

RS232 voltage levels and Xilinx FPGA is configured to work on TTL voltage 

levels. In order to convert voltage levels from RS232 to TTL and vice versa, a 

converter board is constructed. The schematic and PCB figures of the board are 

given in Appendix A.  

Today, some computers such as Laptop PC’s do not have a serial port any 

more. To overcome this problem, a USB to Serial port converter is also added to 

the board. The design is done normally as using standard serial port. 

5.3.2.4 Parallel Cable III 

Parallel Cable III is a JTAG cable provided by Xilinx. It is used for loading 

configuration bitstream to the FPGA using its JTAG port. It is connected to the 

Parallel Port of the PC and works at 200 kHz. 

5.3.3 Working Principle of the TMR 

A TMR system is constructed on the FPGA. This system includes three 

redundant modules and a voter module. The logic circuits on redundant modules 

are exact copy of each other and they include user circuit. Voter module 

compares the outputs of redundant modules. All modules are partially 

reconfigurable. Alternative partial configurations are prepared for alternative 

placements of a redundant module.  

An initial configuration that contains TMR is loaded to the FPGA. After the 

initial configuration, redundant modules send their state information to the voter 

module all the time. Voter module checks if all of them has the same output or 

not. Then voter sends state information to the PC on fixed time intervals. The 

connections of Redundant Modules and Voter Module are shown in Figure 5-6.  



 

82 

 

Figure 5-6: General Structure of the System 

If an error condition occurs on any redundant module (i.e. one module 

gives different output than the others), voter also send this information to the PC. 

Then PC program evaluates how a reconfiguration operation will occur. It starts 

recovery operations such as reconfiguring a redundant module and instructing the 

voter module. Hence, it can be said that intelligent part of the system is placed on 

the PC Program. However, it can be easily moved to the Voter module if a 

System on Chip (SoC) is required. 

5.3.4 VHDL Design of the TMR Circuit 

The logic circuits inside FPGA are designed by using VHDL. All the source 

codes of designed architecture are given in Appendix E (FTArchitecture/Synthesis 

directory is used for synthesizing these VHDL files). The individual modules of the 

design will be explained in this section. 
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5.3.4.1 Voter Module 

Voter Module is mainly responsible from controlling whether all modules 

give same output and informing PC about module states. Other responsibilities 

are recovering states of redundant modules after reconfiguration, and driving 

display units. Figure 5-7 shows internal units of the Voter module. 

 

Figure 5-7: Block Diagram of the Voter Module 

Error Checker 

Error checker unit controls whether all units give same output. To 

accomplish this goal, a majority voter circuit is implemented on error checker unit. 

There are three comparators checking the equality of Module One - Module Two, 

Module One - Module Three, and lastly Module Two - Module Three. If all 

comparators give 1 to the output, Error Checker generates “All Modules are OK” 

signal as shown in Figure 5-8a. If comparators belonging to a module give zero 

output then this module is treated as faulty and reported with a corresponding 

signal. For example, in Figure 5-8b the logic that generates “Error on Module 

One” is shown. 



 

84 

 

Figure 5-8: Internal Logic Circuits of Error Checker Unit a) Circuit giving “All 

Modules are OK” signal b) Circuit giving “Error on Module One” signal 

Error checker sends status messages to the PC via UART. The messages 

are shown in Table 5-1. 

Table 5-1: Status Descriptions and their corresponding ASCII values 

Status Description 
ASCII 

Decimal Number 

ASCII 

Character 

Module One gives different output A 65 

Module Two gives different output B 66 

Module Three gives different output C 67 

All Modules give different output D 68 

All Modules give same output E 69 

 

Universal Asynchronous Receiver Transmitter (UART) 

The voter communicates with supervisor program that runs on the PC via 

the serial port. A Universal Asynchronous Receiver and Transmitter (UART) 

implements Serial port protocol on the Voter side. Both PC program and Voter 

use 115200-Baud rate. The UART Intellectual Property (IP) is taken from an 

application note by Xilinx [54].  
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Command Decoder 

Command Decoder unit decodes the data coming from the PC. It reads 

receive buffer of the UART whenever a data available. Then it decodes the data 

and if necessary, it sends commands to the individual units on the Voter Module. 

A command is one-byte data. It has three fields; Module Number, Module 

Command and Generic Command as shown in Figure 5-9. 

 

Figure 5-9 A Command Byte sent by the PC 

The Module field indicates the recipient of a Module Command. It can take 

01 value for Module One, 10 for Module Two and 11 for Module Three. The 

Module command is sent to the individual Modules according to the Module field. 

The Module Commands and their codes are listed in Table 5-2.  

 

Table 5-2: Definitions and codes of Module Commands 

Command 
Code 

Command Name Command Definition 

0001 Reset Reset module 

0010 Rollforward Roll forward states of the module from 
another module 

0011 AskDiscrepency 

_BusMacros 

Compare the input data coming from 
original bus macro and alternative one. 
Then send this information to the PC. (i.e. 
request discrepancy information) 

0100 UseAlternateBusMacro Use the data of alternative bus macro 

0101 DeleteDiscrepencyInfo
_BusMacros 

Reset the register that holds discrepancy 
information  

0110 UseOriginalBusMacro Use the data of original bus macro 
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Some generic commands are added for debugging purposes. When “00” 

comes in the Module field, the Generic Command part of command byte is used. 

Currently, only two Generic Commands are available, namely Check Fast (01) 

and Check Slow (10). If Check Fast command is received by the voter, module 

errors are reported to the PC all the time. If Check Slow command is received, 

voter sends status messages on fixed intervals. Therefore, when check slow 

option is used some errors may be missed. However, it is necessary to prevent 

locking of the communication channel when a module gives error all the times.  

Roll Forwarding and Resetting Unit 

When an error occurred on a module, designed architecture corrects the 

error. If redundant module includes only combinational logic circuits then recovery 

operation is simple. Reconfiguring redundant module to eliminate faulty elements 

solves the problem. However correcting faults of a sequential circuit includes two 

operations. These operations are first eliminating the fault, and then recovering 

the states of the sequential elements. The state recovery operation is performed 

by the Roll-Forwarding and Resetting Unit (RFRU). However, PC sends 

commands to the RFRU to initiate the recovery operations.  

Some extra signals are used on the redundant modules to enable recovery 

operations. A redundant module takes feedback data to load its internal registers 

when an error occurs. This data is taken from the other module’s data outputs. 

For example, the output data of Redundant Module Two is fed to the input data of 

Redundant Module One as seen in Figure 5-7. In the case of an error occurred on 

Module One and the others are correctly working, recovery operation updates 

Module One’s internal registers with the Module Two’s data.  

RFRU sends other extra signals – load, reset, and Clock Enable (CE) – to 

all redundant modules individually. CE signal is connected to all synchronous 

logics (i.e. Flip-Flops inside the CLBs) inside redundant modules. The 

synchronous logics will run when CE signal is activated. Therefore, control of the 

clock rate is achieved by CE signal. 

Recovery operation occurs as follow: At first, a Reset signal is applied to 

the repaired module and it goes to the initial state. Then a Load signal is given to 

the module under recover operation. At this time, all registers of correctly working 

modules are deactivated by disabling Clock Enable (CE) inputs (this ensures 
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clock-by-clock equivalence of working and repaired module states). Two different 

strategies can be applied for CE signal by the roll-forwarding unit.  

First method maintains a constant clock frequency rate for all modules at 

all times. Clock enable signal halves the frequency rate of input clock for all 

modules. In other words, one clock cycle is used for operations while consecutive 

cycle is not used (i.e. idle cycle). When roll-forwarding operation is active, the idle 

cycle is used for loading data from other modules.  

On the other hand, second method tries to achieve highest frequency rate 

if no error is present in the system. In this method, clock frequency of working 

modules is halved only during roll forwarding and their states are copied to 

recently repaired module. After reconfiguration process, modules again work at 

normal frequency rate.  

Another important point is the duration of Load signal at recovery 

operation. The Load signal is applied until a state change is seen at the output of 

the correctly working modules. Therefore, internal registers of recovered module 

can be initiated correctly after a state change occurs. The simulations of recovery 

operations are given in Appendix B. 

Display Controller Unit 

Display controller manages seven segment displays (SSDs) to display 

data output of redundant modules. Since three redundant modules exist, three 

SSDs are used to display their data. Display controller unit takes the output data 

of all redundant modules. It converts the data output of redundant module to a 

valid format that will result in a meaningful pattern on a seven segment display. 

Then it sends converted data to the seven segment displays (SSDs) available on 

the DIO board. For example, if 4-Bit data is “0010”, SSD displays 2 (i.e. 

corresponding decimal number). More details about driving SSDs on DIO board 

are explained in [55]. 

5.3.4.2 A Redundant Module 

A redundant module includes a user circuit. The circuit can be composed 

of combinatorial and/or sequential logic gates. TMR structure is applied to the 

final output of the redundant modules. One of redundant modules is shown in the 

following figure: 
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Figure 5-10: A Redundant Module of the TMR System 

To test fault tolerance capabilities of the system a Finite State Machine 

(FSM) is selected as the user circuit. FSMs are formed by using both 

combinational and sequential logic circuits. Therefore, a feedback data path is 

used to recover states of the FSM. 

A repetitive structure is used on the FSM. In states with prefix stX_load, a 

counter value 2000000 is loaded and directly passed to another state. On this 

state, count value is decremented until it reaches to zero. Then it is again passed 

to another load state and load count 2000000 value. This structure repeats for 16 

states then FSM returns to the first state. The outputs of the states are different 

and used for recover operation. First state sends 0, second one sends 1 and it 

continues up to 16. This output is encoded to 4 bits (24=16) and send to the 

output. The FSM state transitions and state outputs are shown in Figure 5-11. 
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Count = 0

Count = 0

 

Figure 5-11: Finite State Machine that is implemented on Redundant Modules 

User must take into consideration the usage of Clock Enable (CE) and 

Load signals. These signals are necessary to roll-forward redundant modules in 

the case of a fault occurs. Any synchronous circuit must use ce_ModX to enable 

loading input data to a Flip-Flop with the clock. In addition, load_ModX must be 

used to load data coming from the Voter module. An example VHDL code for 

Module One is given below: 
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5.3.5 Partial Reconfigurable FPGA Design 

Module Based Partial Reconfiguration Flow of Xilinx is used in this design 

to achieve a runtime reconfigurable design. TMR modules can be reconfigured 

whenever an error appears on them. These reconfigurable modules must occupy 

full height of the device with this method (More details of restrictions were given in 

Chapter 4). For this reason, FPGA is divided into columns and modules are 

placed inside them. Five columns are reserved; four of them are occupied by 

three redundant modules and a voter module. One column is intentionally left as 

spare for the future requirements.  

The modules on rightmost/leftmost sides can use more pins than the 

modules that lie on the middle. Therefore, the voter module is put on the right side 

of the device to use more I/O pins. Figure 5-12 shows the layout of modules 

inside the FPGA. 

if (reset_ModOne='1') then 

 … ���� Load Initial FF States 

 

elsif (Rising_Edge(clk)) then 

  if(load_ModOne='1') then 

   … ���� FF States Rolled Back 

 

   elsif(ce_ModOne='1') then  

   … ����  Normal Sequential FF State Transitions 

 

  end if;   

end if; 
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Figure 5-12: Layout of the Modules on the FPGA  

Minimum column width of a reconfigurable module must be four CLBs, 

since a bus macro connection requires four CLB columns. However, it is observed 

that place and route tools cannot map the logic if modules have a width less than 

seven CLBs width. Otherwise some routing errors appear. To eliminate these 

errors minimum width is selected as seven CLB columns. In addition, 

reconfigurable modules must be put on four slice boundaries (4-8-12...) for partial 

reconfiguration [35]. Therefore, boundaries between modules must lay on even 

CLB columns (four slices equals to two CLBs on Spartan-2E). As a result, a 

module boundary is selected eight CLB away from other boundary of the module. 

Final placement of modules is given in Table 5-3. 
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Table 5-3: Occupied Area of the Modules 

Module Name 
Range of Occupied CLB Columns 

by the Module 

Spare Area 1-7 

Module Three 8-15 

Module Two 16-23 

Module One  24-31 

Voter Module 32-42 

 

Module based partial reconfiguration does not allow signals to pass from 

one module to another except using Bus Macro structures. Therefore, bus macros 

are used for the communication of redundant modules with voter module. 

However, some extra effort is needed to communicate two non-adjacent modules 

since Xilinx only gives a bus macro connecting only adjacent modules. Bus macro 

given by Xilinx is modified to enable communication between two non-adjacent 

modules. 

5.3.5.1 Modified Bus Macro 

Standard bus macro given in Xilinx application note [35] only enables 

communication between two adjacent modules. However to implement our 

system, bus macros must be able connect modules which are not adjacent. 

Therefore, it is modified to accomplish communication between two non-adjacent 

modules as illustrated in Figure 5-13. A Xilinx tool, namely FPGA Editor, is used 

for this purpose. FPGA Editor Snapshots of standard and modified bus macro is 

given in Figure 5-14.  

Three custom bus macros are created for the connection of voter module 

to each redundant module. The names of created bus macros and original bus 

macro are given in Table 5-4. The bus macro files are used in the implementation 

phase of the Module Based Partial Reconfiguration Flow. The files are given in 

Appendix E (in FTArchitecture/ BusMacro Directory). 
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Figure 5-13: Modified Bus Macro that connects Two Non-Adjacent Modules 

Working principle of the modified bus macro rely on FPGA cells that can 

be reconfigured glitchlessly. Writing same configuration data to the configuration 

cells does not cause a glitch on the cell connection. Furthermore, bus macros are 

placed exactly same horizontal lines for each configuration of a module. 

Therefore, while intermediate module is reconfiguring, the bus crossing this 

module does not corrupted by the help of glitchless configuration of cells. 

Otherwise, programmable interconnection points (PIPs), which reside in the 

middle area, will disconnect the bus macro. 

Table 5-4: Different Bus Macro Functions and Their Sources 

 

 

Bus Macro 

Name 
Connecting Modules Source 

bm_one_4b.ncd “Voter” and “Module One” 
Provided by Xilinx 

(bm_s2e_4b.ncd) 

bm_two_4b.ncd “Voter” and “Module Two” 
Edited from bm_one_4b 

(custom) 

bm_thr_4b.ncd “Voter” and “Module Three” 
Edited from bm_one_4b 

(custom) 
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Figure 5-14: FPGA Editor Snapshots of Bus Macros a) Standard Bus Macro connecting Two Adjacent Modules b) Modified Bus Macro 

connecting Two Non-Adjacent Modules  
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5.3.5.2 Partial Configurations 

To eliminate permanent faults, alternative placements are done for 

modules. For each alternative placement, a partial configuration (bitstream) is 

produced. The active implementation phase of the Module Based Partial 

Reconfiguration Flow is used for generating partial configurations. All batch files 

for this phase are given in Appendix E (in FTArchitecture/ Implementation/ 

Module_Name directories). 

Partial configurations can be loaded to the corresponding part of the 

device as shown in Figure 5-15. Placement of logic into different areas is 

achieved by adding prohibit constraint to the User Constraint File (UCF). A UCF 

example is given in Appendix C. More details of prohibit constraint will be given in 

Section 5.3.6.2 (Eliminating Permanent Faults). For each placement of a module, 

a corresponding UCF is created and used during the generation of partial 

configuration. They are given in Appendix E (in FTArchitecture/ UCF directory). 

 

 

Figure 5-15: Alternative Partial Configurations of Module Three 

Therefore, reconfiguring a module with a partial bitstream allows changing 

the placement of a module. However, during reconfiguration of a module, the 

other modules must not be affected. For this reason, the bus macros passing 

through a module (connecting two non-adjacent modules) must remain in all 

configurations. This requirement is satisfied by locking the bus macros to a fixed 

position. Positions of the bus macros are locked in the user constraint file (It is 
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given in Appendix C). Then modular design flow automatically place bus macros 

in all partial configurations.  

5.3.5.2.1 Bus Macro Connections of Redundant Modules 

To increase reliability of the TMR system two redundant bus macros are 

used for each module output. If a redundant module gives erroneous output, 

Voter can change the output data path from normal bus macro to an alternative 

one. For this purpose, the output of a redundant module is replicated and passed 

to the voter by using two bus macros. 

 

Figure 5-16: Connections of Bus Macros on a Redundant Module 

In the case of an error, the voter side checks the equivalence of the bus 

macros. If a discrepancy seen at the output of them, voter uses alternative one. 

5.3.5.3 Batch Files for Modular Design Flow 

Batch files are prepared to automate Modular Design Flow. These batch 

files call necessary Xilinx tools as explained in Chapter 4. Mainly three batch files 

are prepared for the each step of the modular design flow. These are Initial.bat, 

Active.bat and Assemble.bat.  

Initial.bat copies necessary files to the topinitial directory and call 

initial.cmd. Initial.cmd run the initial phase of the modular design flow with the 

following command: 

ngdbuild  -p xc2s200e-pq208-7 -modular initial -uc top.ucf top.ngc 
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Active.bat is used for active implementation phase of the modular design 

flow. It copies necessary files to individual module directories and call all the 

Active.cmd batch files from these directories. Active.cmd generates a partial 

configuration of a module. For example, Active.cmd for the first configuration of 

module one includes the following commands: 

ngdbuild  -p xc2s200e-pq208-7 -modular module -active modone 

-uc top.ucf ..\topinitial\top.ngc 

map  -pr b top.ngd -o top_map.ncd  top.pcf 

par  -w top_map.ncd top.ncd top.pcf 

bitgen -d -g ActiveReconfig:yes top.ncd partial_modone_1.bit 

pimcreate -ncd top.ncd -ngm top_map.ngm ..\Pim 

Note that pimcreate command is not necessary for the other configurations 

of module one. It is enough to run pimcreate for the configuration that will be used 

on the generation of the full bitstream (i.e during Assemble phase). 

Assemble.bat creates a final full bitstream file. This file is initially 

downloaded to the FPGA. It copies necessary files to the topfinal directory and 

calls assemble.cmd file. Assemble.cmd includes the following commands: 

ngdbuild -p xc2s200e-pq208-7 -modular assemble -uc top.ucf -

pimpath ..\Pim -use_pim modone  -use_pim modtwo -use_pim modthr -

use_pim voter top.ngc 

map -pr b top.ngd -o top_map.ncd 

par -w top_map.ncd top.ncd 

bitgen -w top.ncd top_final.bit 

5.3.6 Eliminating Faults  

5.3.6.1 Eliminating Single Event Upsets 

Single event upsets (SEUs) occurred on the configuration memory of the 

FPGA can be corrected by only refreshing configuration memory. Therefore, 

whenever a SEU is detected on a redundant module, its corresponding partial 

bitstream is reloaded to the FPGA.  
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5.3.6.2 Eliminating Permanent Faults 

The faulty CLBs are eliminated from the system by loading partial 

configurations that do not use them. For this purpose, empty areas are reserved 

in alternative configurations. Then if error occurs on a CLB, a configuration that 

maps the faulty CLB on to empty space is loaded. Reserving spare areas on 

configurations are done by using the Prohibit constraint of Xilinx PAR (Place and 

Route) tool. Prohibit constraint can be applied to the CLBs that must be discarded 

during place and route operation. For example, the following constraint is added 

to User Constraint File to prohibit the usage of two CLBs at the place and route 

operation: 

#CONFIG PROHIBIT=CLB_R17C20, CLB_R17C21; 

It is also allowed to prohibit usage of a column/row of CLBs. The following 

constraint prohibits the usage of all CLBs on Column 20: 

#CONFIG PROHIBIT=CLB_R*C20; 

The granularity of empty spaces can range from fine to coarse grain. 

Reserving only one CLB to replace faulty a CLB is the finest granularity for the 

empty space. Such a fine granularity enables effective usage of area on the 

FPGA while increasing alternative configuration numbers and configuration data. 

On the contrary, coarse grain elimination lowers the number of alternative 

configuration bitstreams at the cost of inefficient resource usage on the FPGA. 

In this work, it is assumed that FPGA has excessive sources and faults are 

eliminated in a coarse grain manner. A module is divided into multiple columns, 

and then one of the columns is left as empty. For each column, a configuration 

bitstream is prepared offline that left a column empty. In other words, no 

placement of logic circuits is done on the CLBs that are in the selected empty 

column. In Figure 5-17, alternative configurations that reserve different empty 

CLB columns are shown. 
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Figure 5-17: Alternative Configurations of a Module 

If a permanent-error appears, alternative configurations are loaded to the 

device until the erroneous CLB is mapped to the Empty Column. Up to eight 

configurations can be prepared in the design, since the redundant modules 

occupy eight CLB columns. In this configuration, seven CLB columns can be used 

by the circuit and one CLB column is reserved empty. Therefore, only 14% (1/7 x 

100) of additional CLB sources are required as redundant.  

As seen on the example constraints, any CLB can be restricted from the 

place and route operation. Therefore, it is easy to decrease the granularity of the 

empty spaces by prohibiting smaller number of CLBs in each configuration 

bitstream. If desired, coarse grain approach can be easily converted to a fine 

grain approach. 

5.3.7 PC Program 

The intelligence of the system is put on the PC Program in order to 

maintain fault free operation. Constructed TMR on the FPGA already provides a 

fault tolerance however; it is strengthen by the reconfiguration operations. The PC 

program is responsible for selecting an ideal reconfiguration scheme.  

PC Program communicates with the Voter module on the FPGA via serial 

port of the PC. It sends commands and receives status information. All bitstream 

files are stored on the computer and downloaded to the FPGA with the JTAG 

configuration port. PC program manages the bitstream download operations. 
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Another responsibility of the PC program is providing a user interface. User can 

see the current situation of the individual modules of TMR and whole system.  

To test the behaviour of designed architecture, faults must be injected 

artificially. The low cost solution is reconfiguring device with incorrect bitstream 

files. This operation is also done by the PC Program. The user interface enables 

adding transient fault, permanent fault and bus macro fault. A screenshot of the 

PC program is shown in Figure 5-18. 

 

 

Figure 5-18: Screenshot of the Supervisor PC Program 

The PC program has been designed with Borland C++ Builder and written 

in C++ language. The source codes of the program are given Appendix E (In 

FTAchitecture / Borland-Project directory). 
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5.3.7.1 Communication with Serial Port 

The UART on the Voter module is adjusted to communicate 115200 Baud 

Rate. Same baud rate is used on the PC program to synchronize with Voter. 

5.3.7.2 Batch Files for Configuration 

PC Program must manage the JTAG protocol in order to download 

bitstream to the FPGA. Impact, a Xilinx tool, is used to ease this task. Impact is a 

PC program that can connect to the JTAG chain with standard Xilinx configuration 

cables. It can detect devices on the JTAG chain and program them. It has a 

graphical user interface for manual operations and command line interface for 

batch operations. 

Batch files that use command line interface of the Impact are written. 

These batch files are executed by the PC program to reconfigure the FPGA. Each 

batch file has a corresponding bitstream file. For example, the following 

commands of the batch file reconfigure the FPGA with the top_final.bit bitstream 

file. 

1) setmode –bscan 

2) setCable -p lpt1 

3) addDevice -p 1 -file top_final.bit 

4) program -p 1 

5) quit 

First line of the batch file instructs Impact to use Boundary Scan (JTAG) 

interface. Second line selects Parallel Port 1 as the JTAG cable’s connection port. 

Third line selects the first device (i.e. FPGA) on the JTAG chain to configure and 

assigns top_final.bit as the bitstream file. Fourth line programs the device with the 

assigned configuration file. The last line exits the command line interface. 

 The batch files are given in Appendix E (in FTArchitecture/ Borland-

Project/ Configurations directory). 
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5.3.7.3 Running Batch Files from Borland C++ Buider 

The batch files of the Impact tool must be called from the Command 

Prompt. The following command calls the Impact tool and it will run the 

example_file.cmd batch file.  

Impact -batch example_file.cmd 

PC program must be also able to run the above command. This command 

is executed in Borland C++ Builder by using following class, class variables, and 

function: 

             SHELLEXECUTEINFO ShExecInfo; 
 

        ShExecInfo.cbSize = sizeof(SHELLEXECUTEINFO); 

        ShExecInfo.fMask = NULL; 

        ShExecInfo.hwnd = NULL; 

        ShExecInfo.lpVerb = NULL; 

        ShExecInfo.lpFile = "impact"; 

        ShExecInfo.lpParameters ="-batch example_file.cmd"; 

        ShExecInfo.lpDirectory = "Configurations"; 

        ShExecInfo.nShow = SW_SHOW; //or SW_HIDE; 

        ShExecInfo.hInstApp = NULL; 

 

        ShellExecuteEx(&ShExecInfo); 
 

ShExecInfo is the main class to execute a shell command. lpFile 

parameter define the program that will run. lpParameters define options of the 

program. lpDirectory is an additional parameter that enables running command 

from another directory. Moreover, nShow variable is set to SW_SHOW to see the 

outputs of the impact tool. It can be set to SW_HIDE in order to hide the outputs 

of the impact tool. After setting all parameters ShellExecuteEx function calls the 

impact command line interface. 

5.3.8 Protocol between PC Program and Voter Module 

There is a simple communication protocol between Voter module on the 

FPGA and PC Program. The errors on module(s) are reported to the PC Program 

by the Voter. PC makes reconfiguration operations and sends commands to the 

Voter. An example of communication protocol commands used during fault 

elimination process is demonstrated in Figure 5-19. 
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Figure 5-19: An example of Communication Protocol Commands during Error 

Recovery Operation of a Module  

In this example, Voter informs PC Program that ModuleX has erroneous 

output. Then PC selects a reconfiguration type according to fault elimination 

algorithm and reconfigures the ModuleX. After reconfiguration process is 

completed, PC instructs Voter to Reset and Roll Forward corresponding module.  

 

5.3.9 Fault Elimination Algorithm Running on the PC 

When an error is found on a redundant module, PC program try to find the 

source of the error. For each module, the same algorithm runs independently. 

Briefly working principle of the algorithm is as follows: It first checks if the error is 

transient. If error is not transient, it successively tries changing bus macro, 

refreshing configuration memory and loading alternative configurations until error 

disappears. If error persists, it gives up the tests and passes to the recovery of 

voter module. Figure 5-20 shows the flow chart of the running algorithm in more 

detail. 
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Figure 5-20: Flowchart of Fault Recovery Algorithm that Runs on the PC Program 
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The algorithm starts with Initial state and reset all the variables. Voter 

periodically sends status output of the module. Algorithm passes to the Running 

state with the first status output. If an error comes at Running state, it passes to 

the Wait Timer 1 state and waits for second error status. If no more error comes 

during the Wait Timer 1 state, it returns to the Running state. This timer is 

necessary to ensure the error is not transient. 

If another error comes during Wait Timer 1 state, it starts to check bus 

macro status. It asks whether a discrepancy is seen between original bus macro 

and alternative bus macro. If no discrepancy seen, it refreshes the configuration 

memory (to eliminate SEUs) with the partial bitstream of the module in the 

Configuration Memory Error Recovery state. After refreshing memory, it requests 

resetting and roll-forwarding operations of the module from the voter. In addition, 

a counter is incremented that holds number of memory refresh operations. If the 

counter exceeds three, then further errors are treated as permanent faults. 

The errors that cannot be corrected by bus macro altering or memory 

refreshing are considered as permanent errors. In the Permanent Error Recovery 

state, the FPGA is reconfigured with alternative partial bitstreams of the module. 

The alternative configuration files reserve empty spaces as described before. 

When faulty resource falls into the empty space, the error disappears. Therefore, 

reconfiguration is done with these bitstreams until error disappears. Again, reset 

and roll-forward operations are done after each reconfiguration process for correct 

operation. If the fault cannot be eliminated after trying all configurations, algorithm 

passes to the Error state.  

After each recover operation, the algorithm waits on a Timer state (i.e. 

Wait Timer 2, Wait Timer 3 and Wait Timer 4 states) to ensure the fault is 

eliminated. If no error status comes during the Timer states, then algorithm 

returns to the Running state.  

5.3.10 Fault Injection   

It is necessary to test the system behaviour in the presence of faults. 

Faults are artificially injected to test the behaviour of designed system. Fault 

injection is done by loading an incorrect partial bitstream to the FPGA. Two 

methods are used to obtain an incorrect partial bitstream. First method directly 
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modifies a correct partial bitstream. The second method modifies the source 

VHDL file then synthesized to provide a faulty bitstream.  

5.3.10.1 Bitstream Modification 

Modifications are done on the functionality of the Configurable Logic 

Blocks (CLBs). For example, the truth table of Lookup Table (LUT) inside a CLB 

is changed. 

FPGA Editor Tool is used for changing the LUT content. For example, 

ModOne.ncd file (from Pim directory) is opened with FPGA Editor to inject fault on 

redundant Module One. ModOne.ncd contains placed and routed design of 

Module One. A CLB that is configured to use LUT is selected. The attribute of the 

ncd file is changed to Read-Write from the File � Main Properties menu. Then 

EditBlock �  Begin Editing is selected. The function of the LUT is made visible by 

selecting Show/Hide Attributes menu as shown in Figure 5-21.  
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Figure 5-21: Configurable Logic Block in Editing Mode 

The functions of the LUTs (i.e. Feqn, Geqn) can be changed to any 

combination using the input signals. The operators given in Table 5-5 can be used 

to describe a logical function. For instance, to inject a stuck-at 1 like fault, Geqn 

(the function of upper LUT) is changed from (A1*(A3*(A4*A2))) to 1. This implies a 

stuck-at 1 fault on the LUT’s function. 
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Table 5-5: FPGA Editor Symbols and Their Functions 

Symbol Operation 

* Logical AND 

+ Logical OR 

@ Logical XOR 

~ Unary NOT 

 

At last, the ncd file is saved with the “Save Changes and Closes Window” 

button. At this point, only remaining operation to generate bitstream is running 

Bitgen tool. For this purpose, the following command is executed to generate a 

faulty partial bitstream: 

bitgen -d -g ActiveReconfig:yes ModOne.ncd  modone_faulty.bit 

5.3.10.1.1 Single Event Upset (SEU) Injection 

Bitstream modification is used for injecting SEU like fault on a redundant 

module. A random CLB that includes logic inside is opened. Then the function of 

a LUT is changed to reflect a single bit flip. For instance, to inject a SEU like fault 

Geqn (the function of upper LUT) is modified in R4C28.S0 (Row 4, Column 28 

and Slice 0). Geqn is changed from (~A1*(A4*~A3)) to (~A1*(A4*~A3)*~A2). This 

implies a single bit flip on the LUT’s function. The truth table change of LUT 

function is shown in Table 5-6.  
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Table 5-6: Truth Table of LUT Function Before and After a SEU Injection 

Output Functions 
Inputs 

Before SEU After SEU 
A1 A2 A3 A4 F1=(~A1*(A4*~A3)*~A2) F2=(~A1*(A4*~A3)) 
0 0 0 0 0 0 
0 0 0 1 1 0 
0 0 1 0 0 0 
0 0 1 1 0 0 
0 1 0 0 0 0 
0 1 0 1 1 1 
0 1 1 0 0 0 
0 1 1 1 0 0 
1 0 0 0 0 0 
1 0 0 1 0 0 
1 0 1 0 0 0 
1 0 1 1 0 0 
1 1 0 0 0 0 
1 1 0 1 0 0 
1 1 1 0 0 0 
1 1 1 1 0 0  
 

 

5.3.10.1.2 Permanent Fault Injection 

Permanent faults are also injected by modification of bitstreams. However, 

the supervisor program must be aware of permanent fault injection. The reason is 

the permanent faults are not real; actually, they are only simulation. After a 

permanent fault injection is done, all reconfigurations must include same 

permanent fault.  

A CLB was selected as victim. Then all configurations that include logic on 

this CLB were modified. For example in Figure 5-22, first three configurations are 

modified since the selected CLB include logic inside. However, last configuration 

is not modified since it maps faulty bitstream in to the empty area (it does not 

contain logic inside faulty CLB). 
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Figure 5-22: A virtual faulty CLB and it is mapping on alternative placements. 

5.3.10.2 VHDL Code Modification 

A correct VHDL code is changed to include an error. Then it is synthesized 

to produce a regular netlist file (.ngc). The netlist file is used in active 

implementation phase of the Modular Design Flow to generate a partial faulty 

bitstream. 

5.3.10.2.1 Bus Macro Fault Injection 

Faults were also injected on bus macro connections since they are the 

only connection path of redundant modules to the Voter. This is achieved by 

editing VHDL code of redundant modules. Then a partial configuration is 

produced by using edited VHDL file.  

For instance, most significant byte of the state output is inverted as shown 

in the following code.  

DataoutModOne(2 downto 0) <= stateOuputModOne(2 downto 0);  

DataoutModOne(3) <= not stateOuputModOne(3); 

After loading generated faulty bitstream, the supervisor program will detect 

the fault on the bus macro. Then it will try recovery operations such as selecting 

alternative bus macro. 
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CHAPTER VI 

6CONCLUSIONS 

6.1 CONCLUSIONS BASED ON THE WORK 

The hardware on reconfigurable devices can be used to make 

computations in parallel. In addition, the versatility of the hardware provides a 

flexible environment for different applications. Reconfigurable devices achieve 

high performance with a flexible hardware, which is suitable for all types of digital 

circuit applications. 

In this thesis, the work has been concentrated on runtime reconfigurable 

architectures. They provide a unique feature, reusability of hardware while system 

is running. This feature introduces virtual hardware concept similar to virtual 

memory. Hardware configurations, which are stored on memories, can be loaded 

to the device whenever needed. Therefore, one device can be used as an infinite 

hardware source. In this work, application areas that can benefit from runtime 

reconfiguration (RTR) were surveyed. It was observed that RTR could be also 

used for speeding up computations and for reducing system costs.  

To investigate the feasibility of RTR, a commercially available FPGA (from 

Xilinx) was used as a runtime reconfigurable platform. The architecture of Xilinx 

FPGAs was surveyed with a RTR point of view. Then a simple runtime 

reconfigurable ALU, whose operations can change, was implemented. This 

design can be used as an initial reference for other runtime reconfigurable 

designs to implement on Xilinx FPGA. 

After achieving RTR with designed simple reconfigurable ALU (explained 

in Chapter 4), a more complex fault tolerant reconfigurable architecture (explained 

in Chapter 5) was selected as a case study. The designed architecture is based 
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on Triple Modular Redundancy (TMR) and it is strengthened by RTR. Triple 

modular redundancy enables an uninterrupted, fault-tolerant system operation if 

error occurs on only one module. However, TMR system can breakdown when 

more than one fault occur on different modules. A system run on FPGA can come 

across with two different types of faults. First fault type is permanent fault, which 

may appear due to long life usage. Second fault type is Single Event Upset 

(SEU), which is encountered frequently on space applications. SEU is a transient 

fault normally however it may result in a permanent error if configuration memory 

of the FPGA is RAM based. 

Added RTR support has prevented the breakdown of the TMR system. 

The permanent faults are detected and eliminated on the fly by replacing faulty 

elements with non-faulty elements. While eliminating the faulty elements, the 

whole system also remains unaffected by the help of RTR. Furthermore, SEU 

faults are eliminated by refreshing configuration memory. A high availability is also 

maintained since faulty modules of the TMR are corrected whenever a fault 

occurs. 

To achieve RTR a PC was used as reconfiguration controller. A PC 

program was written with Borland C++ Builder for this purpose. The PC Program 

is also capable of injecting faults to the designed architecture. The faults are 

injected artificially with the program (by reconfiguration) and the operation of the 

system is verified.  

The design on the FPGA was done with command line tools of Xilinx. The 

hardware circuits on the FPGA were entered with VHDL. The Xilinx hardware and 

software tools allowed designing such system. The hardware has some 

restrictions however; it is possible to design a reconfigurable architecture. The 

software tools are in their infancy and they tend to improve with the benefits 

obtained from reconfigurable computing. Later, designed fault tolerant 

architecture can be adapted to other runtime reconfigurable devices easily.  

Consequently, RTR provides significant benefits for digital hardware 

implementations. In the future, more applications will take advantage of runtime 

reconfiguration. Therefore, the devices that are capable of making runtime 

reconfiguration will most probably increase. In this work, it has been proven that a 

RTR can be achieved with current technology. In addition, a fault tolerant 

architecture that is highly reliable is provided. 
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6.2 RECOMMENDED FUTURE WORKS 

Self-Reconfiguration 

Designed system can be converted to a self-reconfiguring platform. Thus, 

the PC used as a reconfiguration controller can be removed from the system and 

replaced by a part of FPGA. This solution requires an embedded memory and 

embedded configuration controller. ICAP port can be also used by embedded 

configuration controller. Note that fault tolerant memory architecture is necessary 

for this system. 

New Bus Macro Design 

Xilinx did not publish bus macro structures for the new generation devices 

such as Spartan 3 and Virtex 4 yet. Therefore, current bus macro structure used 

in the designs is not suitable for these devices. Some researches concentrated for 

new bus macro architecture [57]. These researches implement slice based bus 

macros. A new device family with new bus macro architecture can be used in 

future works. 

Automated Design 

All VHDL codes are edited three times in the current structure of the 

system, since fault tolerance is maintained by three identical circuits. There is a 

need for automation for the generation of TMR structure to decrease intervention 

of the user. The user must give only the design then the rest of the operations 

must be made by the batch files. Since generation of such framework is very time 

consuming, it is left as a future work. 

Self-Checking  

The errors on the voter module can be detected by Concurrent Error 

Detection (CED) circuits. Embedding CED circuit on the voter will increase the 

reliability of the system. 
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APPENDIX A 

A PCB AND SCHEMATICS OF THE RS232 CIRCUIT  

 

Figure A-1: Top Layer PCB of RS232 Circuit 

 

 

Figure A-2: Top Overlay PCB of RS232 Circuit 

A Jumper 
must be 
placed 
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Figure A-3: Schematic of RS232 Circuit
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APPENDIX B 

B SIMULATION OF TWO ROLL FORWARDING 

METHODS  

 

Figure B-1: Simulation of Roll Forwarding Method 1 (Constant Frequency Rate) 

 

Figure B-2: Simulation of Roll Forwarding Method 2 (Variable Frequency Rate) 
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APPENDIX C 

C USER CONSTRAINT FILE OF THE TMR DESIGN 

User Constraint File for the First Configuration of Module One 

# Start of PACE Area Constraints 

AREA_GROUP "AG_Inst_Voter" RANGE = CLB_R1C32:CLB_R28C42 ; 

AREA_GROUP "AG_Inst_Voter" RANGE = TBUF_R1C32:TBUF_R8C42 ; 

INST "Inst_Voter" AREA_GROUP = "AG_Inst_Voter" ; 

AREA_GROUP "AG_Inst_Voter" MODE = RECONFIG ; 

 

AREA_GROUP "AG_Inst_ModOne" RANGE = CLB_R1C24:CLB_R28C31 ; 

AREA_GROUP "AG_Inst_ModOne" RANGE = TBUF_R1C24:TBUF_R28C31 ; 

INST "Inst_ModOne" AREA_GROUP = "AG_Inst_ModOne" ; 

AREA_GROUP "AG_Inst_ModOne" MODE = RECONFIG ; 

 

AREA_GROUP "AG_Inst_ModTwo" RANGE = CLB_R1C16:CLB_R28C23 ; 

AREA_GROUP "AG_Inst_ModTwo" RANGE = TBUF_R1C16:TBUF_R28C23 ; 

INST "Inst_ModTwo" AREA_GROUP = "AG_Inst_ModTwo" ; 

AREA_GROUP "AG_Inst_ModTwo" MODE = RECONFIG ; 

 

AREA_GROUP "AG_Inst_ModThr" RANGE = CLB_R1C8:CLB_R28C15 ; 

AREA_GROUP "AG_Inst_ModThr" RANGE = TBUF_R1C8:TBUF_R28C15 ; 

INST "Inst_ModThr" AREA_GROUP = "AG_Inst_ModThr" ; 

AREA_GROUP "AG_Inst_ModThr" MODE = RECONFIG ; 

 

#AREA_GROUP "AG_Inst_Spare" RANGE = CLB_R1C1:CLB_R28C7 ; 

#AREA_GROUP "AG_Inst_Spare" RANGE = TBUF_R1C1:TBUF_R28C7 ; 

#INST "Inst_Spare" AREA_GROUP = "AG_Inst_Spare" ; 

#AREA_GROUP "AG_Inst_Spare" MODE = RECONFIG ; 

 

 

# Start of PACE Prohibit Constraints 

 

CONFIG PROHIBIT=CLB_R*C24; 

CONFIG PROHIBIT=CLB_R*C25; 

 

 

# Start of Locking Constraints 

 

INST "Internal_Gnd_Voter" AREA_GROUP = "AG_Inst_Voter" ; 

INST "Internal_Vcc_Voter" AREA_GROUP = "AG_Inst_Voter" ; 

INST "Internal_Gnd_ModOne" AREA_GROUP = "AG_Inst_ModOne" ; 

INST "Internal_Vcc_ModOne" AREA_GROUP = "AG_Inst_ModOne" ; 

INST "Internal_Gnd_ModTwo" AREA_GROUP = "AG_Inst_ModTwo" ; 

INST "Internal_Vcc_ModTwo" AREA_GROUP = "AG_Inst_ModTwo" ; 

INST "Internal_Gnd_ModThr" AREA_GROUP = "AG_Inst_ModThr" ; 

INST "Internal_Vcc_ModThr" AREA_GROUP = "AG_Inst_ModThr" ; 

#INST "Internal_Gnd_Spare" AREA_GROUP = "AG_Inst_Spare" ; 

#INST "Internal_Vcc_Spare" AREA_GROUP = "AG_Inst_Spare" ; 
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INST "busModOnetoVoter" LOC = "TBUF_R1C28.0"  ; 

INST "busVotertoModOne/bus1" LOC = "TBUF_R2C28.0"  ; 

INST "busVotertoModOne/bus2" LOC = "TBUF_R3C28.0"  ; 

 

INST "busModTwotoVoter" LOC = "TBUF_R4C20.0"  ; 

INST "busVotertoModTwo/bus1" LOC = "TBUF_R5C20.0"  ; 

INST "busVotertoModTwo/bus2" LOC = "TBUF_R6C20.0"  ; 

 

INST "busModThrtoVoter" LOC = "TBUF_R7C12.0"  ; 

INST "busVotertoModThr/bus1" LOC = "TBUF_R8C12.0"  ; 

INST "busVotertoModThr/bus2" LOC = "TBUF_R9C12.0"  ; 

 

 

INST "busModOnetoVoter_alt" LOC = "TBUF_R10C28.0"  ; 

INST "busVotertoModOne_alt/bus1" LOC = "TBUF_R11C28.0"  ; 

INST "busVotertoModOne_alt/bus2" LOC = "TBUF_R12C28.0"  ; 

 

INST "busModTwotoVoter_alt" LOC = "TBUF_R13C20.0"  ; 

INST "busVotertoModTwo_alt/bus1" LOC = "TBUF_R14C20.0"  ; 

INST "busVotertoModTwo_alt/bus2" LOC = "TBUF_R15C20.0"  ; 

 

INST "busModThrtoVoter_alt" LOC = "TBUF_R16C12.0"  ; 

INST "busVotertoModThr_alt/bus1" LOC = "TBUF_R17C12.0"  ; 

INST "busVotertoModThr_alt/bus2" LOC = "TBUF_R18C12.0"  ; 

 

#INST "busSparetoVoter" LOC = "TBUF_R7C4.0"  ; 

#INST "busVotertoSpare/bus1" LOC = "TBUF_R8C4.0"  ; 

#INST "busVotertoSpare/bus2" LOC = "TBUF_R12C4.0"  ; 

 

INST "bufg_clk" LOC = "GCLKBUF2" ;  

 

 

#PACE: Start of I/O Pin Assignments 

 

NET "CathodeOutputs<0>" LOC = "P134";  

NET "CathodeOutputs<1>" LOC = "P136";  

NET "CathodeOutputs<2>" LOC = "P139";  

NET "CathodeOutputs<3>" LOC = "P141";  

NET "CathodeOutputs<4>" LOC = "P148"; 

NET "CathodeOutputs<5>" LOC = "P150"; 

NET "CathodeOutputs<6>" LOC = "P152"; 

NET "CathodeOutputs<7>" LOC = "P161"; 

NET "AnodeOutputs<0>" LOC = "P113"; 

NET "AnodeOutputs<1>" LOC = "P115"; 

NET "AnodeOutputs<2>" LOC = "P120"; 

NET "AnodeOutputs<3>" LOC = "P122"; 

NET "serialin" LOC  = "P127"  ; 

NET "serialout"  LOC = "P126"  ; 

NET "clk" LOC = "P182"; 

 

#INST "*" IOB=FALSE; 
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APPENDIX D 

D PACE AND FPGA EDITOR VIEW OF THE TMR DESIGN 

 

Figure D-1: Module Placements of the TMR Design (Snapshot is taken with PACE) 



 

 

 
125 

 

 

Figure D-2: FPGA Editor View of TMR Design 
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APPENDIX E 

E SOURCE FILES OF DESIGNED ARCHITECTURES 

A CD-ROM is enclosed to the back cover of the thesis. It contains the 

source codes, batch files, and generated files of the designed architectures. The 

contents of the CDROM are given in Table E-1. 

Table E-1: The Directories and Files in the CDROM 

Reconfig-ALU/ Top level directory of Reconfigurable ALU (Chapter 4) 

 Bitstreams/ Contains Final Partial Bitstreams and a Full Bitstream 

 BusMacro/ Contains angle-delimiter bus macro for Spartan 2E 

 Implementation/ 

Contains Implementation Flow Files and Folders 
(Implementation phase of Modular Design Flow (MDF) is done in this 
folder)  
Also contains top.ucf and batch files of the MDF. 

  left_add/ 
Partial implementation of left adder module  
(Active implementation phase of MDF is done in 
this folder) 

  left_mult/ 
Partial implementation of left multiplier module 
(Active implementation phase of MDF is done in 
this folder) 

  left_sub/ 
Partial implementation of left adder module  
(Active implementation phase of MDF is done in 
this folder) 

  Pim/ Published placed and routed files of partial 
configurations 

   left/ Placed and routed file of left module 

   right/ Placed and routed file of right module 

  right/ 
Partial implementation of right module  (Active 
implementation phase of MDF is done in this 
folder) 

  top_final/ Final assembly phase of MDF is done in this 
folder 

  top_initial/ Initial budgeting phase of MDF is done in this 
folder 

  Top.ucf User constraint file for the overall design 

  1-Initial.bat The batch file for the initial phase of MDF 

  2-Active.bat The batch file for the active implementation phase 
of MDF 

  3-Assemble.bat The batch file for the assemble phase of MDF 
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Table E-1 cont’d: The Directories and Files in the CDROM 

 

Reconfig-ALU/ Synthesis/ Contains Xilinx ISE projects and  VHDL files for partial modules and 
top module 

  left_add/ Left adder module project and VHDL file for 
synthesis 

  left_mult/ Left multiplier module project and VHDL file for 
synthesis 

  left_sub/ Left subtractor module project and VHDL file for 
synthesis 

  right/ Right module project and VHDL file for synthesis 

  top / Top module project and VHDL file for synthesis 

 Borland-Project/ Contains Borland C++ Builder Files 

  ReconfigALU.exe Executable for reconfiguration program 

  Configurations/ Contains Impact batch files and bitstreams 

FTArchitecture/ Top level directory of Fault Tolerant Architecture (Chapter 5) 

 FinalBitstreams/ Contains Final Partial Bitstreams and a Full Bitstream 

 Macros/ Contains angle-delimiter bus macro for Spartan 2E 

 Ucf/ Contains user constraints files for each individual modules 

 Implementation/ 

Contains Implementation Flow Files and Folders 
(Implementation phase of Modular Design Flow (MDF) is done in this 
folder)  
Also contains top.ucf and batch files of the MDF. 
In the below folders, 
X refers to 1,2 ... for alternative configurations.  
X refers to pe1,pe2 ...  for corresponding permanent error including 
alternative configurations.  
X refers to SEU for single event upset including configuration.  
X refers to BME for bus macro error including configuration. 

  Bat/ Contains batch files (for the reset operation) 

  Modone_X/ 
Partial implementation of Module One  (Active 
implementation phase of MDF is done in this 
folder)  

  Modtwo_X/ 
Partial implementation of left multiplier module 
(Active implementation phase of MDF is done in 
this folder) 

  Modthr_X/ 
Partial implementation of left adder module  
(Active implementation phase of MDF is done in 
this folder) 

  Voter_1/ 
Partial implementation of left adder module  
(Active implementation phase of MDF is done in 
this folder) 

  Pim/ Published placed and routed files of partial 
configurations 

   ModOne/ Placed and routed file of Module 
One 

   ModTwo/ Placed and routed file of Module 
Two 

   ModThr/ Placed and routed file of Module 
Three 

   Voter/ Placed and routed file of left 
module 
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Table E-1 cont’d: The Directories and Files in the CDROM 

 

FTArchitecture/ Implementation/ Top.ucf User constraint file for the overall design 

  top_final/ Final assembly phase of MDF is done in this 
folder 

  top_initial/ Initial budgeting phase of MDF is done in this 
folder 

  0-Reset.bat Deletes all generated files and copies batch files 
from the /bat directory 

  1-Initial.bat The batch file for the initial phase of MDF 

  2-Active.bat The batch file for the active implementation phase 
of MDF 

  3-Assemble.bat The batch file for the assemble phase of MDF 

 Synthesis/ Contains Xilinx ISE projects and  VHDL files for partial modules and 
top module 

  Modone_1/ Module One project and VHDL file for synthesis 

  Modtwo_1/ Module Two project and VHDL file for synthesis 

  Modthr_1/ Module Three project and VHDL file for synthesis 

  Modone_bme/ Module One project and VHDL file that contains 
bus macro error for synthesis 

  Modtwo_bme/ Module Two project and VHDL file that contains 
bus macro error for synthesis 

  Modthr_bme/ Module Three project and VHDL file that contains 
bus macro error for synthesis 

  Voter_1/ Voter module project and VHDL file for synthesis 

  top / Top module project and VHDL file for synthesis 

 Borland-Project/ Contains Borland C++ Builder Files 

  Project1.exe Executable for reconfiguration management 
program 

  Configurations/ Contains Impact batch files and bitstreams 

 


