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ABSTRACT 
 

 

A GENETIC ALGORITHM FOR THE LOCATION-ROUTING 

PROBLEM WITH TIME WINDOWS 

 

 

Özgönenç, Hande 

M.Sc., Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. Sedef Meral 

 

July 2006, 156 pages 

 

The emphasis on minimizing the logistics costs to decrease overall system costs has 

led the researchers to consider the interdependencies between the decisions of 

locating facilities and planning the routes from those facilities. The location-routing 

problems considering this issue are the subject of this thesis study. A two-level 

hierarchical distribution system is considered in which goods are delivered from the 

sources (plants) to the facilities (depots) and then from the facilities to the customers. 

The facilities are uncapacitated and operate within the shift times defined. The goods 

are to be delivered to the customers within their time windows by the vehicles that 

are capacitated.  

 

Both a mathematical model and a genetic algorithm based heuristic solution 

approach are proposed for this problem. We discuss the problem specific issues 

integrated with the general framework of the genetic algorithm applications. The 

computational studies are realized on a number of test problems. The results indicate 



 v 

that the genetic algorithm based heuristic gives satisfactory results compared with a 

sequential solution methodology. 

 

Keywords: Location-Routing, Location-Allocation, Vehicle Routing Problem with 

Time Windows, Metaheuristics, Genetic Algorithms  
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ÖZ 
 

 

ZAMAN KISITLI YERLEŞİM-ROTALAMA PROBLEMİ İÇİN 
BİR GENETİK ALGORİTMA 

 
 

Özgönenç, Hande 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Y.Doç. Dr. Sedef Meral 

 

Temmuz 2006, 156  sayfa 

 

 

Toplam sistem maliyetlerini düşürmek amacıyla lojistik maliyetlerini en aza 

indirgeme üzerindeki vurgu; araştırmacıları depoları konumlandırma ve bu 

depolardan yapılacak dağıtımların rotalarını belirleme kararları arasındaki ilişkiyi 

dikkate almaya yöneltmiştir. Bu konuyu ele alan yerleşim-rotalama problemleri, bu 

tez çalışmasının konusudur.  Ürünlerin tedarik kaynaklarından depolara, oradan da 

müşterilere dağıtıldığı 2 seviyeli hiyerarşik bir dağıtım sistemi düşünülmüştür. 

Kapasite sınırı olmayan depolar önceden belirlenmiş çalışma saatleri dahilinde 

çalışmakta; mallar kapasite sınırı olan araçlar tarafından müşterilere belirlenmiş olan 

zaman aralıkları içinde dağıtılmaktadır.  

 

Üzerinde çalışılan problem ile ilgili olarak bir matematiksel model ve genetik 

algoritmaya dayalı bir sezgisel yöntem sunulmuştur. Genel genetik algoritma 

çerçevesi, probleme özgü bir takım bilgiler ile bütünleştirilmiş ve tartışılmıştır. Bir 

grup test problemi üzerinde önerilen yöntem ile sonuçlar elde edilmiştir. Bu sonuçlar, 

önerilen yöntemin karşılaştırmada kullanılan ardışık çözüm yöntemine göre yeterince 

iyi sonuç verdiğini göstermiştir. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Among the cost components in production systems, logistics activities account for a 

significant percentage. Thus, in order to be competitive and to minimize the losses 

related to the imperfections in the distribution network, the decision of locating 

facilities in a distribution system has always gained attention. It is a critical decision 

as it contains a tradeoff between the fixed facility (depot, warehouse or distribution 

center) costs and the transportation costs. For full-truckload demand quantities, the 

distribution strategies are straightforward, however, for less than truckloads, the 

system becomes more complicated and vehicle routing issues must also be 

considered along with the location of facilities. This series of relations bring out a 

different type of problem from the classical location-allocation problem, that’s the 

Location-Routing Problem (LRP). 

 

This study is concerned with the LRP, which considers a number of decisions related 

with the logistics system as well. They are the primary decisions for logistics 

environments; the location of facilities, the allocation of customers to the open 

facilities and the routing of customers which are assigned to the same facility. The 

interrelations among these basic decisions generate the need to address the location 

and routing problems in an integrated manner. 

 

In a very general form, we can define LRP as: 

in a single/multiple layer environment, given a number of potential sites with specific 

locations and customers with location and demand data; to determine where to locate 

a number of capacitated / uncapacitated facilities (the number to locate either
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predetermined or not), to decide on the allocation of customers to the open facilities 

and to determine the routing of the customers with capacitated / uncapacitated 

vehicles within the time windows for the customers and within the shift times for the 

facilities if any time constraints exist. 

 

Although the basic decisions to be considered are the ones above, the varieties 

existing in the environments for location-allocation problems and vehicle routing 

problems cause to diversify the LRP environment. The studies in the literature are 

examined in a classification with regard to the problem characteristics in the later 

parts. But it is possible to list the followings among the critical parameters; the 

number of hierarchy levels in the problem, the existence of capacity constraints for 

the facilities and vehicles, the existence of time windows for the deliveries to the 

customers. 

 

The environment we consider throughout this study is a two-stage LRP where the 

customer and facility site data (e.g. demands, the time it takes to go from one site to 

another) are deterministic. Multiple facilities and vehicles are allowed in the system; 

the facilities are uncapacitated and the vehicles are capacitated. Additional time 

constraints are also considered; the time intervals for deliveries to the customers and 

time intervals within which the facilities and vehicles operate are defined. For 

example, in the case of a retail chain, the characteristics are similar to this 

environment: the decisions of locating central warehouses which are intermediary 

facilities between the supply sources and retail points, the allocation of retail points 

to the central warehouses and the routes for deliveries to retail points are important 

for the construction of the system. The capacity constraints and shift times on 

vehicles are usually observed in retail chains. Some traffic regulations or the need for 

deliveries to the retail points before / after the service hours to customers may be 

some simple reasons for operating with time windows.  

 

The difficulty in dealing with this type of problem arises from the increase in the 

number of decision variables in the problem even for reasonable problem sizes which 
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can be encountered easily in practice. That’s why, classical mathematical 

formulation based approaches are usually not satisfactory.  

 

The most common approach in handling LRPs has been to decompose the problem 

into subproblems that are easier to solve and to obtain either optimal or near-optimal 

results for those subproblems. Finally by combining the results for separate 

subproblems and evaluating them trying to consider system-wide trade-offs, a final 

solution is constructed for the problem. 

 

Our aim in this study is to propose an integrated approach for the LRP. Firstly with 

the aim of reaching the optimum solution for the problem, a mathematical model is 

developed. However, the incapability of the solvers in solving even small or medium 

sized problems has led us to search the use of metaheuristics in different problem 

environments. For this purpose, we investigate the principles of some metaheuristics 

and apply an appropriate method, a genetic algorithm (GA) based solution approach 

for our LRP environment. Some problem specific issues in different phases within 

the general GA framework are also employed to improve the performance of the 

algorithm. The algorithm is tested on  a number of test problems and the results are 

compared with the results of a sequential approach. It is observed that in almost all of 

these instances, the GA-based heuristic has outperformed the sequential approach.   

 

In the following chapters, the details of our study are presented regarding the below 

outline. 

 

In Chapter 2, starting with the classification of LRP environments with regard to 

different criteria, a review of the LRP literature is given. The diversity in the 

literature does not easily allow for the grouping of the studies; but similar problem 

types and the solution methodologies are introduced together where it is possible. 

Besides the review of studies concerning LRPs, the second part of Chapter 2 

summarizes GA applications in different types of problems. Genetic Algorithms are 

emphasized as well since our solution approach is based on it.  
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In Chapter 3, the problem environment that is studied in this thesis work is explained 

in detail. Both soft and hard time-window cases are considered and the definitions 

for both environments are given. Based on the verbal problem definitions, the related 

mathematical models are presented and stated explicitly.   

 

In Chapter 4, we explain the solution methodology we have applied on the location 

routing problem with time windows. The solution technique we propose is based on 

Genetic Algorithms; so while describing the proposed algorithm, the basics for the 

Genetic Algorithms, some different methods for the phases of GA other than the 

ones we have applied and the reasons for our choices are also given in detail.  

 

In Chapter 5, the test problems generated for computational experiments are defined. 

Since there is no test problem instances that conform to our problem environment, 

we have generated the test problem instances. Then the sequential approach used in 

comparison with the results of the GA-based heuristic is explained. The performance 

of our approach is evaluated against the sequential approach. 

 

Chapter 6 concludes the study by briefly highlighting the significant parts of our 

study and giving some suggestions for future study.   
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

This chapter consists of two main parts. In the first part, the literature review on the 

problem type LRP is presented. After examining different solution procedures, our 

studies for proposing a solution technique for the LRP have focused on genetic 

algorithms. So, the second part of the literature review describes some applications 

of genetic algorithms on some location and routing problems. 

 

2.1 LRP Related Literature 

 

The classical plant location problem and the vehicle routing problem have been 

studied extensively for years and a wide literature exists on those problems. 

However, the globalization in logistics environments has supported the view that 

pure location problems are not sufficient to cope with real situations, and hence, 

location, allocation and routing issues must be addressed simultaneously. As 

discussed in Salhi and Rand (1989), the effects of ignoring routes when locating 

depots are usually significant. Existence of routes including more than one customer 

may affect the optimal location-allocation solutions, which may not be still optimal 

after the routing phase. In the study, to reach this conclusion, problem sets are 

formed according to several scenarios with a single depot or no restrictions on the 

number of depots. In the solutions of those problems; the Random Destination 

Algorithm (RDA), the Alternate Location Allocation (ALA), the Drop Method 

(DROP) for location and a routing procedure developed by Salhi and Rand are used. 

The ranking of the locations after only location stage and after location-routing 

stages are then given to show that ignoring the interdependence between location and
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routing phases would lead us to solutions which are not the lowest cost solutions 

from a system-wide point of view.   With such analysis, the importance of LRPs has 

gained attention and studies on LRPs have started to appear especially in recent 

years. 

 

Two comprehensive surveys of LRPs, which may be useful in the review of the 

literature, are found in Laporte (1988) and in Min et al. (1998). 

 

Laporte (1988) classifies all the LRP literature till 1988, in addition to giving a 

general framework and defining some basic concepts. The systems up to four layers 

where both primary and secondary facilities are included are presented. The general 

ideas related with the heuristic solutions are discussed. As the main problem consists 

of three subproblems as location, allocation and routing, the heuristics can be 

examined in two groups; in the sequences of location-allocation-routing and 

allocation-routing-location. It is also noticed that some heuristic algorithms exist 

which do not fit exactly the given classification. Then as the LRPs are strictly in 

relation with vehicle routing problems (VRPs), exact algorithms for VRPs are 

discussed under three titles; (i) the direct tree search algorithms which are mainly 

based on  branch and bound techniques, (ii) dynamic programming algorithms or (iii) 

ILP algorithms that can be grouped as set partitioning and flow formulations (both 

commodity and vehicle flows). Although not practical, the vehicle flow formulations 

of LRPs with three indices are more successful in handling different aspects of the 

problem (i.e. heterogeneous vehicle fleet) whereas the two index vehicle flow 

formulations for both symmetrical and asymmetrical problems in single or multi 

depot cases can also result in successful implementations for some environments. For 

symmetrical problems, constraint relaxations and branch and bound techniques are 

proposed for the solution of single depot problems, and for the multi-depot 

capacitated LRP, a procedure for generating cuts known as chain barring constraints 

is described. For asymmetrical two index vehicle flow problems, the relaxed problem 

which is converted to an assignment problem is solved by efficient algorithms and 

then branch and bound is used for a check on the violated constraints.   



 7 

Min, Jayaraman and Srivastava (1998) present a detailed classification of the studies 

on the combined location routing problems till 1998. There exists several 

classification schemes in the literature (Madsen, 1983; Laporte, 1988) but Min, 

Jayaraman and Srivastava (1998) involve a more comprehensive scheme regarding to 

the problem characteristics and the solution methodologies. Generally, the LRP can 

be classified in two large classes that are single stage LRPs and multistage LRPs. In 

single stage LRPs, the focus is on primary facilities while multistage LRPs consider 

both inbound/outbound flows and they are interested in secondary facilities. Another 

critical point in the classification is whether the location routing parameters are 

deterministic or stochastic. Also subcategories are developed according to the nature 

of the vehicle fleet (single/multiple; capacitated/uncapacitated) and the facilities 

(capacitated/uncapacitated) in addition to the characteristic of the objective function 

(single objective/multi objective). A different point of view is to classify the LRP 

studies in the literature regarding the solution procedures proposed. Although 

location-allocation problems and routing problems are both NP-Hard, some exact 

procedures are proposed for the solution of LRPs, but these methods are only 

applicable for limited sized problems. Besides these, a large number of heuristic 

procedures, some based on metaheuristics such as Tabu Search (TS), Genetic 

Algorithm (GA), simulated annealing (SA), are proposed and they are usually proved 

to be acceptable methods. Departing from the survey carried out, the future research 

areas such as problem types including stochasticity, time windows, multiple periods 

and multiple objectives are suggested.  A summary table showing the classification 

scheme explained above is given below as in Min, Jayaraman and Srivastava (1998): 

 

Classification of LRP with regard to the problem characteristics  

I. Hierarchical Level 

A. Single stage  

B. Two stages 

II. Nature of demand/supply 

A. Deterministic 

B. Stochastic 
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III. Number of facilities 

A. Single facility 

B. Multiple facilities 

IV. Size of vehicle fleets 

A. Single vehicle 

       B. Multiple vehicles  

V. Vehicle capacity 

A. Uncapacitated 

B. Capacitated 

VI. Facility capacity 

A. Uncapacitated 

B. Capacitated 

VII. Facility layer 

A. Primary 

B. Secondary/intermediate 

VIII. Planning horizon 

A. Single period (static) 

B. Multiple periods (dynamic) 

IX. Time windows 

A. Unspecified time with no deadline (No time windows) 

B. Soft time windows with loose deadlines 

C. Hard time windows with strict deadlines  

X. Objective function 

A. Single objective (e.g. minimize the total system cost) 

B. Multiple objectives (e.g. in a health service sector problem, minimize 

the total system cost and maximize the coverage/total benefit) 

XI. Types of model data 

A. Hypothetical 

B. Real-world data 
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Classification of LRP with regard to the solution methodology 

I. Exact algorithms 

A. Direct tree search/Branch and bound 

B. Dynamic programming 

C. Integer programming 

D. Nonlinear programming 

II. Heuristics 

A. Location-allocation first, route second 

B. Route first, location-allocation second 

C. Savings/insertion 

D. Improvement/exchange 

 

As location-routing problems are a developing research area, a number of studies can 

be reached belonging to the above classes. However, it is preferred to narrow our 

literature survey by the problems related with the characteristics of the environment 

that we have planned to study on. As it will be defined at the beginning of Chapter 3 

in detail, the problem environment in this study is a multistage LRP. It is supposed to 

reflect an environment with deterministic demand and supply quantities, with 

multiple facilities and vehicles that are capacitated, but there is no restriction on the 

facility capacities. Time windows for the customers and shift times for the depots are 

considered as well. 

 

The following studies related to our problem environment are chosen and examined. 

All studies reviewed are deterministic in terms of the demand nature. Another 

common aspect in the examined studies is that almost all studies do not cover time 

windows for the customers. However, the difficulty of matching the studies in the 

literature exactly to our criteria led us to discuss slightly different environments and 

the solution methodologies related with them.  

 

The rest of the study explains the characteristics of problems by grouping them 

according to the environment considered. The second criterion in the presentation of 
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the studies is the solution methodology of the problem, whether it is based on 

heuristic methods or exact algorithms. The studies are then presented in 

chronological order. 

 

2.1.1 Single Stage LRPs  

 

These problems are concerned with the location of facilities and the outbound 

transportation from the facilities to the customers. The inbound part of the 

distribution system is ignored in single stage LRPs. The facilities to locate may be 

the primary facilities such as manufacturing plants which are the exact origin of the 

problem environment as well as the secondary facilities like distribution centers or 

warehouses. 

  

2.1.1.1. Single Stage LRPs and Heuristic Based Solution Methodologies  

 

The first group of studies examined under this title deal with the uncapacitated 

facilities and capacitated vehicles. Srivastava and Benton (1990) consider this 

environment. Their focus is on the evaluation of the performance of three heuristic 

location-routing procedures with respect to some external environmental 

characteristics. Those environmental factors are cost structure (the ratio of 

warehousing costs to distribution costs), spatial distribution of customers (uniform or 

clustered) and the maximum number of depot sites allowed in the system. The 

capability of 0-1 mixed integer programming is limited in handling the models with 

too many variables and constraints in the case of location-routing problems; so three 

alternative heuristics are studied and compared with the sequential method, which is 

a two-stage model. Those heuristics are savings-drop heuristic, savings-add heuristic 

and cluster-route procedure. As a benchmark, a sequential method is used, where the 

first stage is composed of a location-allocation problem solved using an efficient 

branch and bound by Khumawala (1972) and the second stage is composed of the 

routing of allocated customers using a modified savings based procedure. The 

performance criterion used in the benchmark is the % difference in total system costs 
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between the alternative heuristic and the sequential model. It is observed that all of 

the environmental factors have effect on the performance of the heuristics and there 

are specific structures that favor the use of each heuristic, besides this, each heuristic 

outperforms the sequential method solutions.             

 

Chien (1993) is another study which considers the uncapacitated facilities and 

capacitated vehicles in its problem environment. The sequential procedure proposed 

consists of mainly two steps; solution construction and solution improvement. The 

significant point in the solution construction is the way the transportation costs are 

calculated. Several heuristics using actual costs or certain estimators are developed. 

Twelve different procedures starting from randomly generated feasible solutions to a 

number of improvements are applied to a set of 560 problem instances. Within those 

procedures, the customer-vehicle assignment rules, a modified closest depot rule and 

certain cost estimators are used to obtain feasible customer-depot allocations and to 

improve them. Each of the instances is solved with each procedure and then the 

quality of each solution is evaluated by criteria as the mean square error and the 

percentage error from the estimated lowest total cost, which is generated based on 

the costs of a group of feasible solutions. The effectiveness of different construction 

procedures and improvement procedures for different problem characteristics are 

grouped, detailed ANOVA test results are discussed and given as conclusions. This 

study based on a great number of computational experiments, stresses that further 

investigation on the heuristics is a future research area. 

 

The two previous studies are based on heuristics developed by authors; but it is 

possible to view some studies (Su, 1998 and Tuzun & Burke, 1999) which propose 

solutions based on metaheuristics for the same environment (uncapacitated facilities, 

capacitated vehicles). Su (1998) deals with the design of a physical distribution 

system implementing the Genetic Algorithms (GA) to the problem. The problem 

involves both the location of distribution centers (DC), the allocation of customers to 

DCs and the routing for each open facility, but in an environment with no time 

windows for customers or shift times for facilities. The characteristics and properties 
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of GAs are adapted to the problem in a simple approach and an efficient method is 

produced. The solution string is composed of 0-1 variables representing whether a 

facility is opened at that candidate facility. In the calculation of the fitness value for 

each string, the constraints are allowed to be included as penalty terms. The steps in 

the proposed approach can be summarized as:  

♦ Generate a random population where each string represents a solution for 

the location problem. 

♦ Assign each customer to an open facility (in fact to the nearest open facility 

as the facilities are uncapacitated), considering each customer will be 

assigned to one and only one warehouse. 

♦ After determining the number of the needed vehicles for each warehouse, 

solve the routing subproblem for each depot by a cluster first, route second 

approach as in Fisher and Jaikumar (1981). 

♦ Calculate the fitness values based on the routing solutions. 

♦ Work out the GA mechanism allowing to generate new populations by 

reproduction, crossover and mutation. 

♦ Repeat this procedure until the prespecified conditions are reached. 

 

In the study, an experimental simulation is realized using the above procedure to 

show the efficiency of it and also to help to determine some genetic parameters. The 

proposed methodology is illustrated on a small problem instance with 5 candidate 

depot locations and 25 customers. Although the experimental work is not very 

sufficient to evaluate the performance of the proposed methodology on larger 

problems, it presents some positive aspects of GA application and it seems promising 

for future research. 

 

Tuzun and Burke (1999) introduce a two-phase solution procedure which integrates 

the location and routing phases of LRP and uses tabu search (TS) for the solution of 

both phases. The two-phase approach coordinates two tabu search mechanisms in a 

computationally feasible way. In the first phase, which is the location phase, swap or 

add moves are performed and the solution space is searched for better location 
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configurations. However, in order to determine the best swap or add move; a 

simplistic approach is used to see how good a location configuration is in terms of 

total system costs. Although the system design includes routes among nodes, only 

the direct distances are used to estimate the total goodness of a location configuration 

in swap or add moves. After the best swap/add move, which is determined with 

regard to the above approximate evaluation, is realized, the routing phase is run and 

the best routing for the given configuration is obtained. The properties of TS allow 

exploring different regions of the solution space and prevent to get trapped at the 

local optima.  To evaluate the performance of the TS approach, it is compared with 

the SAV1 algorithm by Srivastava also mentioned above and the TS algorithm is 

found to be significantly better than the SAV1 algorithm. 

 

Another environment intensively studied among the single stage LRPs is with 

capacitated facilities and capacitated vehicles. Perl and Daskin (1984, 1985) giving 

the earliest significant results on this environment have been guides for a number of 

following studies.  

 

The details and results of Perl and Daskin’s studies are conveyed via Perl (1983), 

Perl and Daskin (1984) and Perl and Daskin (1985). Their research presents a 

solution methodology that allows handling the interdependence between location and 

routing decisions explicitly. At first a mathematical programming model which aims 

to minimize total system costs is presented, however, with a huge number of integer 

variables and constraints, it is not possible computationally to solve the problem to 

optimality.  Then with some simplifying assumptions, the Warehouse Location 

Routing Problem is converted to the Modified Warehouse Location Routing Problem 

and a solution methodology, which is based on decomposing the problem to three 

subproblems and solving them in a sequential manner, is proposed. The 

mathematical formulations for each subproblem are given; fixed or variable elements 

in three phases are classified to reflect the aim of each subproblem. Subproblem-1 

(the complete multi-depot vehicle dispatch problem) is solved heuristically without 

considering the fixed and variable warehousing costs and an initial set of routes is 
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obtained. In subproblem-2 (the warehouse location-allocation problem), the optimal 

number and locations of DCs, the allocation of routes to DCs is determined by 

considering the related costs. This subproblem is solved to optimality by Implicit 

Enumeration algorithm of Lemke and Spielberg (1967). Subproblem-3 (the multi-

depot routing location-allocation problem) simultaneously reallocates customers to 

DCs and designs the delivery routes given the DC locations in subproblem-2, using a 

heuristic method. The solution of subproblem-3 can then be input to subproblem-2 

and this continues iteratively until an insufficiently small amount of reduction in total 

cost is obtained. In addition, a detailed sensitivity analysis on many parameters is 

carried out. The methodology is shown to help in large sized practical problems 

though the subproblems are solved sequentially. This methodology is tested on a 

base case as well as a real life distribution system. The ability of the proposed 

methodology for solving large-scale models is shown and results better than the 

current system are obtained. 

 

Hansen et al. (1994) also study the same problem as Perl and Daskin (1984). The 

discussions on the integer programming model and on the mixed integer 

programming model, developed by introducing a set of flow variables and flow 

constraints, are carried out; however, the number of constraints makes the MILP still 

difficult to solve. The same decomposition strategy as in Perl and Daskin (1984) with 

differences in solution techniques is then proposed.  For subproblem-1 (the multi-

depot vehicle-dispatch problem), an initial feasible solution is obtained and improved 

by a series of TSP, Single Displacement and Exchange procedures. Using the initial 

routing from subproblem-1, subproblem-2 (the warehouse location-allocation 

problem) is solved by applying  procedures as central depot opening, route cluster 

displacement, single route displacement, forced depot closing, depot opening 

sequence. In subproblem-3 (the multi-depot routing-allocation problem), 

reallocations and new routings are developed without violating the restrictions on 

depot capacities. Procedures as customer orientated initiatives, extended node 

exchange and two by two node displacements are used. Compared to the Perl (1983), 
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the heuristics proposed produce better solutions without improving computational 

effort. 

 

Wu, Low and Bai (2002) also introduce a heuristic solution procedure for the multi-

depot location-routing problem but as an extension to the studies of Perl and Daskin 

(1984) and Hansen (1994), non-homogenous vehicle fleet is handled in their study. 

In the paper, first a mathematical model of the problem is given. Different from the 

model developed by Perl and Daskin (1984); another set of sub-tour elimination 

constraints resulting in a lower number of constraints is introduced, vehicle 

dispatching costs are included in the objective function and different types of 

vehicles in terms of capacity are allowed. However, because of the computational 

difficulty, a heuristic approach is proposed for large-scale problems. In this 

approach, the LRP is decomposed into two subproblems; the location-allocation 

problem (LAP) and the vehicle routing problem (VRP). The consolidation is realized 

by performing LAP module followed by the VRP module until the convergence 

criterion is met. As both LAP and VRP are difficult to solve, heuristic procedures 

using simulated annealing are proposed. The solutions for the three problem 

instances from Perl (1983) are obtained and compared with both Perl’s and Hansen’s 

method. The efficiency of the problem is evaluated for new problem instances, as 

well. The proposed methodology performs better than Perl’s solutions; however, it is 

observed that Hansen’s method (Hansen, 1994) is better in some instances. 

 

Lin, Chow and Chen (2002) deal with a real case for bill delivery services, which can 

be placed in this group of capacitated facilities and vehicles in the classification.  The 

case includes locating the bill delivery offices, vehicle routing for in-house delivery 

and the loading problem to determine the smallest number of vehicles to be used for 

the established routes. An additional issue handled in this study is the existence of 

shift times. The staff working hours are limited and considered in the problem, but 

there are no time windows as the customers do not need to be present during the 

delivery. The objective of the problem is to minimize the sum of the facility costs, 

staff costs, vehicle rental and operating costs. A constraint on the trip time of 



 16 

vehicles imposed by the daily working hour of the staff is added. As the exact 

methods are not sufficient for real-sized problems, decomposing the problem into 

reasonable subproblems and then solving those with meta heuristics is the approach 

proposed in the paper. The approach can be summarized as: 

 

♦ Determine the minimum number of facilities, nf 

♦ Pick a set of nf facilities 

♦ Initial clustering and routing with Clarke & Wright savings algorithm, and 

then improvement by TSP 

♦ Use of meta heuristics (threshold accepting (TA) and simulated annealing 

(SA)) for improvement 

♦ Final route improvement by TSP 

♦ Loading (assignment of routes to vehicles) 

♦ Evaluate the system cost 

♦ Iteratively repeat the procedure by changing the set of nf facilities or 

increasing nf  till it is worth in terms of total system costs  

 

In the use of metaheuristics, there exist four methods for improvement (TA-SA, SA-

TA, TA, SA) and to evaluate the efficiency, the results obtained and the CPU times 

are compared with branch and bound results or with manual approaches for very 

large problems. It is observed that the method proposed outperforms the manual 

approach and can do as well as branch and bound. 

 

Cappenara, Gallo and Maffoli (2004) deal with a discrete combined location-routing 

model referred to as Obnoxious Facility Location and Routing (OFLR). The 

candidate sites for facilities are all capacitated; there are no constraints on vehicle 

capacity, but thresholds of exposures on the arcs are defined. The problem is 

formulated as a capacitated minimum cost network flow model and the Lagrangean 

Relaxation proposed (by dualizing the capacity constraints on the facilities) allows 

decomposing OFLR to a location subproblem and a routing subproblem. Additional 

constraints to the subproblems are used to change their weakly-correlated nature. The 
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location problem turns out to be a 0-1 Integer programming model and the routing 

problem turns to linear programming. By solving both, a lower bound for the LRP is 

obtained. On the other hand, an upper bound is obtained by using two simple 

heuristics (Location-Routing heuristic or Routing-Location heuristic) based on the 

information from the Lagrangean relaxation. A branch & bound procedure is then 

used to close the gap between those bounds.  The solution procedure is tested on a set 

of problems generated by OFLR instances generator given a set of parameters. 

Although it is difficult to draw general conclusions, efficient techniques according to 

problem characteristics are determined. 

 

Besides the above classes, studies that do not exactly match with those classes exist.  

Srivastava (1993) deals with the environment with multiple uncapacitated facilities 

and a single uncapacitated facility. The heuristics are SAV1, SAV2 and Clust, which 

are introduced in Srivastava and Benton (1990). SAV1 and SAV2 use similar savings 

schemes which are modified versions of the “travel time savings” developed by 

Clarke and Wright and extended to multi-depot cases by Tillman (1969). SAV1 uses 

the “drop” approach, but SAV2 uses the “add” approach.  Clust heuristic is 

developed on the assumption that if the customers are grouped in clusters at the 

beginning, more efficient procedures can be constructed, so the procedure begins by 

identifying the clusters. Then the locations are determined and vehicle routing phase 

is realized using polar coordinates based technique. To evaluate the efficiency of the 

heuristics, as a benchmark, MIP model is used where it is possible to solve the test 

problems. However, for larger problems, it is infeasible computationally to use MIP, 

so as in Srivastava and Benton (1990), the sequential approach is used. The results 

show superiority of the heuristics over the sequential approach. 

 

Sambola, Diaz and Fernandez (2005) define an auxiliary network and give a compact 

formulation of the combined location-routing problem. The problem handled is one 

with the following characteristics: multiple capacitated facilities and a vehicle 

associated with each open facility that has a capacity equal to the facility’s capacity.  

In the auxiliary network, with some simplifying assumptions, the problem is 
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converted to find a set of paths that satisfy the constraints. Solution of the LP 

relaxation of this compact model is used to obtain an initial solution for the Tabu 

Search. Starting from a rounded integer solution of the relaxed problem, an 

integrated approach applying intensification and diversification phases of TS 

procedure allows the authors to come up with an upper bound for the problem. For 

the solution, the lower bound is obtained by summing up two types of costs; routing 

costs from an asymmetric traveling salesman problem and fixed costs from a 

knapsack problem.  To evaluate the quality of bounds, a set of instances in a wide 

range is developed. A group of them is solved to optimality and the bounds are 

compared with the optimal solution. For larger instances the gaps between lower and 

upper bounds are examined. It is observed that tighter relaxations of the compact 

model with valid inequalities result in better quality bounds. 

 

2.1.1.2 Single Stage LRPs and Exact Algorithms  

 

Laporte, Nobert and Arpin (1986) develop an exact algorithm for solving a single 

stage capacitated location-routing problem (capacitated vehicles, uncapacitated 

facilities) with bounds defined on the numbers of facilities and vehicles.  Integer 

linear programming formulation of the problem is provided containing the subtour 

elimination constraints which ensure the solution does not contain any subtour, and 

the chain barring constraints which ensure that each route starts and ends at the same 

depot. A procedure, which is based on relaxing the problem by removing the chain 

barring constraints, is proposed. The algorithm starts with a heuristic solution giving 

an objective function value z*. Then subproblems obtained by eliminating subtour 

and chains barring constraints are solved and additional constraints are added for 

infeasible solutions. The objective function values are compared with z* and the 

solution proceeds in the search tree till the subproblems are all examined. Three test 

problem series are generated randomly to evaluate the efficiency of the method 

proposed; a group with no capacity restrictions, no fixed costs on vehicles or depots, 

a group including capacity constraints and a group with both capacity constraints and 

fixed costs. The results of the study show that the algorithm can solve problems up to 
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20 nodes optimally in reasonable times and this study is known to be the first one to 

deal with such problems in an exact way. 

 

Laporte, Nobert and Taillefer (1988) address a type of location-routing problem, 

which is asymmetrical multi-depot location routing problem, reflecting the same 

environment as Laporte’s study above; but they deal with the problem in a manner 

completely different from the ones discussed up to here. With an appropriate graph 

representation and a graph extension, LRP is converted to a constrained assignment 

problem. It is shown that every feasible solution to the original problem corresponds 

to one or more Hamiltonian circuits and any feasible solution on the transformed 

graph can be converted to a solution to the original problem on the original graph. 

Then the constrained assignment problems are solved by a modified version of the 

branch and bound algorithm for TSP proposed by Carpaneto and Toth (1980). In the 

algorithm, first the assignment problem relaxation of the problem formulation on the 

transformed graph is solved, then the violated constraints are checked by branch and 

bound rules. The algorithm proposed is tested on capacity constrained VRPs (where 

vehicle capacities are not exceeded), cost constrained VRPs (the cost of a route is 

predetermined and is not exceeded) and cost constrained LRPs (location routing 

problems where the VRPs are cost constrained). It is declared that problems 

containing up to 80 nodes can be solved to optimality without any difficulty.    

 

2.1.2 Multiple Stage LRPs 

 

Multiple stage LRPs consider at least two layers or more in the production-

distribution systems. Both the inbound (pickup) and the outbound (delivery) 

processes are taken into consideration. In those environments, instead of routes 

originating from a facility to customers, intermediate levels exist and the 

consolidation issue in those layers is discussed. Cooper (1983) and Hall (1987) are 

the two studies to get an insight to consolidation.  
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Consolidation decisions are defined as strategic decisions in a transportation system 

which can help in taking advantage of lower transportation costs due to larger loads  

instead of smaller (more frequent or direct)  shipments. In Hall (1987) the 

consolidation strategies are grouped as inventory and vehicle and terminal 

consolidation; the trade-offs between gains and costs of consolidation strategies are 

discussed. Inventory consolidation involves storing items that are produced and used 

at different times, but transporting them together. Vehicle consolidation is as in milk-

run systems; collecting items from different suppliers and delivering them to the 

customer. In terminal consolidation, the terminals are places where different goods 

from suppliers are collected, grouped according to customer orders and delivered to 

customers as packages containing different products. Another classification can be as 

in Cooper (1983) and Min (1996). Freight consolidation can be defined as the 

aggregation of customer orders for a larger shipment and for a more effective usage 

of vehicles; and basic freight consolidation strategies are spatial, temporal and  

product. In multistage LRPs, we are generally interested in the spatial consolidation 

of orders and the location of intermediate levels (consolidation terminals/distribution 

centers or warehouses). Especially in cases where customers have time windows, an 

intermediate level helps to satisfy those constraints and makes it possible to include a 

greater number of customers in a single route. 

 

A number of multiple stage LRP studies mostly belonging to recent years exist in the 

literature. As this problem contains a greater number of variables, any exact solution 

method that handles the whole model is not proposed; instead, heuristics, meta 

heuristics and the decomposition of the problem are the proposed methods.   

 

Or and Pierskalla (1979) present the first study in the multistage literature. They 

focus on the location-allocation-transportation aspects of the regionalization of blood 

centers where the centers are assumed to be uncapacitated but the vehicles are 

capacitated. The problem is modeled with the objective to minimize the sum of the 

periodic delivery costs, emergency delivery costs and system costs and with the 

concern to satisfy the constraints declared by the parameters such as demand 
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quantities or vehicle capacities. The problem is then decomposed into two 

subproblems. In the first subproblem, the system costs (such as the fixed costs of 

facilities etc.) are constant and the emergency delivery costs are assumed to be 

negligible, and the main problem is equivalent to the general transportation problem. 

If the system costs are constant and the periodic delivery costs are negligible, then 

the problem turns out to be a location-allocation problem. So the complex problem 

can be handled as the combination of the two known problems, which are still 

difficult to solve. Two heuristic solution procedures are developed based on solving 

the subproblems mentioned above independently and combining them at the end, 

making tradeoffs between them. These algorithms produce acceptable feasible 

solutions for the complex blood transportation-allocation problem in reasonable 

computation times. They are tested on a set of real data from Chicago area and it is 

shown they can be helpful in real cases. 

 

Apart from the work of Or and Pierskalla (1979), the following studies all model 

environments where both facilities and vehicles are capacitated.  

 

Bookbinder and Reece (1988) deal with a multi-commodity, capacitated distribution 

planning model.  An exact algorithm, which combines the Geoffrian and Graves 

(1974) approach to the distribution system design with the Fisher and Jaikumar 

(1981) approach to the vehicle routing problem, is proposed. The warehouse problem 

stands for the master problem. After the solution of that master problem, a routing 

problem is solved for each warehouse that is open. From the solution of the routing 

problems, outbound cost estimates are calculated and they are used in the 

transportation subproblems for each commodity. The above procedure is tested on 

eleven problem instances, some of which can be solved to optimality while it is 

difficult to find the optimal for some of them. It is noticed that the effect of the 

starting solution, and hence the lower bound obtained from the master problem on 

the efficiency to reach the optimality can not be ignored.  An alternative solution 

technique which is an improved version of that procedure is then proposed. This 

second technique is able to reach optimality for all problem instances. 
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Min (1996) is another work on the location of consolidation terminals. Consolidation 

strategies are discussed briefly and solution methodology for a freight consolidation 

problem, a type of spatial consolidation, is proposed. Similar to the studies in the 

literature, a multiphase decomposition heuristic procedure where the phases are 

solved sequentially is proposed. The first phase is the aggregation of customers into 

capacitated clusters so that the total delivery size of the customers in each cluster 

does not exceed the vehicle capacities. A p-median type model for capacitated 

clustering and statistical clustering techniques such as refined Ward’s minimum 

variance method are used. The second phase consists of location of terminals and 

allocation of sources and customers to terminals. A mathematical model containing 

both inbound and outbound transportation costs representing a hierarchical structure 

is given. After each cluster of customer and each source are allocated to an open 

terminal at the end of the second phase, in the third phase, a detailed route within 

each customer cluster is realized by solving a well known symmetric TSP. In the first 

phase, the clusters are formed considering the vehicle constraints, so there is no 

feasibility problem. The methodology proposed is tested on a set of real data 

provided by a large logistics firm in USA. Since the problem size that can be solved 

with exact LRP algorithms is limited, it is not possible to compare the algorithm with 

those methods. But the efficiency of the methodology is evaluated with the data set 

with regard to computational time and total savings in travel distances relative to the 

non-consolidated routing problem. 

 

Wasner and Zäpfel (2004) deal with the network problem of a parcel service 

provider. The decisions to be made within the problem are the location of depots and 

hubs, the allocation of postal zones to depots and the transportation routes between 

customers, depots and hubs. Hence, the structure of the problem is a bit different 

from the ones mentioned above, as the two interrelated problems are the pickup and 

delivery design problem and the line haul design problem. The two problems can be 

handled in a mixed integer optimization model which allows a pure raster system (no 

hub transports) as well as the location of multiple hubs (depot-hub-depot traffic). The 

objective function includes distance related variable costs, fixed costs for depots and 
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vehicles and the constraints represent all problem specific issues such as the number 

of hubs and depots, the assignments of postal zones to depots, the route sequences. 

However, the computational difficulty of the problem leads the authors to a solution 

methodology hierarchical in structure but which allows upgrades by feedback loops. 

The steps of the algorithm can be summarized as follows: 

♦ Determining the number of depots as the initialization phase: even if there 

is lack of knowledge on the optimal number of depots, some intervals are  

examined to find a reasonable starting point. 

♦ Determining the depot locations with regard to the demand densities: 

approximate methods such as Add or Drop algorithms can be used. 

♦ Assignments of postal zones to depots: the assignment procedure can be 

made on the basis of both time-related and distance-related constraints 

which differ especially for the border areas. So it becomes useful to make 

different assignments in different iterations. 

♦ With the depot locations and postal zone assignments, the flows between 

depots are known. The hub location problem can be formulated 

mathematically as a part of the general mixed integer problem, but it is not 

practical to solve that problem. So it is preferred that the hub-location 

decisions are taken with regard to problem specific knowledge. 

♦ After all the direct and indirect transshipments are known, the depot costs 

are calculated and a feedback helps to return to the postal zone-depot 

assignments. 

♦ Then the routing problems for the postal zones assigned to each depot are 

solved. Again a feedback is sent to the assignment phase. 

♦ The overall system cost is evaluated. Then feedbacks to the initial phases 

such as the number of the depots and the location of the depots are 

considered to improve the solution by testing totally different scenarios.  

 

The approach is used for the Austrian parcel delivery service problem and it is 

observed that significant improvements can be obtained with respect to the current 

situation.  
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Another study that deals with the location and routing issues in postal delivery 

systems is Çetiner (2003). It considers the Turkish postal delivery system and 

proposes an iterative solution technique combining the decisions of where to locate 

hubs and how to construct the related routes with each hub. In order to solve the 

problem, a two–phase approach (location-first, route-second) is studied. Different 

from a pure sequential technique, a feedback from the second phase (the routing 

phase) is used to update the distances in the first phase (the hub location and non-hub 

allocation phase). In the solution of the first phase Campbell’s multiple allocation p-

hub median formulation is used with some problem related modifications. For the 

second phase, the solution is obtained by Clarke and Wright savings heuristic 

followed by a VRP mathematical formulation. The iterative nature of the algorithm 

helps the two phases to be in interaction, so their solutions converge towards each 

other by reducing the objective function that represents the overall system costs. The 

proposed method is tested on a small problem leaving the extension of the method to 

the counties of Turkey or upgrading it to serve as a DSS with some additional 

features for further research.  

 

Ambrosino and Scutellá (2005) deal with the integrated distribution network design 

problem. Their study includes a detailed literature survey. They consider a complex 

problem with several different kinds of nodes, different layers, both static and 

dynamic scenarios for a number of periods, and they are concerned with the facility 

location, transportation and inventory decisions. The general form of the problem 

consists of 4 layers; supply points (or plants), central depots (CDs), regional facilities 

(regional depots (RDs) or transit points (TPs)) and demand points. The goal of the 

problem can be summarized as:  

 

♦ to locate CDs, RDs, TPs 

♦ to allocate the demand points to the open facilities, allocate the regional 

facilities to central depots, allocate the central depots to supply points 

♦ to determine the vehicle routes so that the capacity constraints are not 

violated and the demands are satisfied 
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♦ to determine the inventory levels at central and regional facilities. 

 

Under the static scenario, a three-index formulation of the integrated distribution 

network design problem is given with some special assumptions which make the 

problem different from the general Warehouse Location Routing Problem (WLRP) 

with the routing decisions and the presence of a fixed cost for the use of vehicles. 

Then, in a similar approach with Hansen et al. (1994), the same problem is 

formulated by the use of flow variables and flow constraints. Also the dynamic 

scenario where a number of periods are analyzed is considered. Twelve instances are 

developed and the corresponding mathematical formulations are solved using the 

commercial code CPLEX 7.0. The cost of the best integer solution, the best lower 

bound (MIP bound) and the related CPU times along with the cost of the linear 

programming bound are given. As the gap between the best integer solution and the 

higher lower bound is significant in almost all cases; it is concluded that the use of 

some heuristic approaches to close the gap may be helpful. 

 

In our study, we deal with a multistage LRP deterministic in demand nature and 

route duration among sites. Uncapacitated multiple facilities and capacitated multiple 

vehicles are elements of the environment. In addition to these characteristics, the 

problem we study on has constraints defining the time windows for customers and 

the shift times for facilities / vehicles. These time constraints are also the part of our 

environment that differ from all the studies mentioned above. As it is a multistage 

environment, a heuristic solution approach is considered. 

 

2.2 Genetic Algorithms on Location and Routing Problems 

 

As it could be seen from the first part of the literature review about LRPs, many 

different solution procedures have been proposed. The complexity of the problem 

environment and the high number of variables in both linear and non-linear 

mathematical models has led the researchers to concentrate on heuristics and 

metaheuristics. 
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Genetic algorithms are one of the metaheuristic search methods based on the 

mechanism of natural genetics.  John Holland, his colleagues and students at the 

University of Michigan, have developed GA (Goldberg, 1989). It has been applied 

on a wide range of problems in various fields and has given satisfactory results. 

Although the applications of GAs on location-routing type problems are rare, 

applications on both location and location-allocation problems may form a basis for 

the application of GA on LRP. The application of GA in the following studies are on 

a wide range of location problems, so the following studies are not grouped 

according to the problem types, but presented in chronological order only. 

 

Hosage and Goodchild (1986) present one of the first applications of the genetic 

algorithms on location problems; the problem type studied is p-median. The coding 

scheme used is binary coding, where ‘1’ corresponds to open facilities and ‘0’ 

corresponds to closed ones and it is supported by penalty function definition for the 

infeasible solutions. This representation and feasibility maintenance is the one that is 

not preferred by later studies in 2000s. Besides single point crossover operator and 

perturbation mutation, inversion operator is also invoked to replace some existing 

schema with different ones and to preserve diversity. The effects of some strategies 

and parameters are then discussed. In a 0-1 representation for the p-median problem, 

the initial population generation gains importance to maintain feasibility of 

chromosomes (the individuals more/less than p facilities are undesirable) and the 

penalty function deteriorates the natural flow of the algorithm. Although the use of 

problem-specific issues strengthens the best solution found through the runs, it is also 

declared that too many actions for fine-tuning, considering the problem structure, 

conflict with the nature of the GA and may constrain the ability of the GA. Without a 

detailed evaluation of the computational efficiency but with the above aspects 

emphasized, the results of the trial do not seem to be encouraging for later work. 

 

Preston and Kozan (2001) develop a GA based solution approach for location issues 

in modeling a seaport system in order to determine the optimum storage locations of 

containers. A non-binary representation is used for the chromosomes where for each 
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container there exists a gene that stands for the location the container is stored. The 

crossover operator is a simple single point crossover operator, however, repair 

operators are included as a different way of handling infeasibilities other than the 

penalty function. Another concept included in the algorithm is elitism, which results 

in carrying a certain percentage of the good individuals to the next generations to 

ensure that the best solutions are no worse than the previous generation. The 

proposed methodology is then applied on real data set at the Port of Brisbane and the 

results for different schedules are examined. Based on the results, the authors have 

concluded that it would be a useful tool for the port authority to determine the port 

traffic. 

 

Jaramillo et al. (2002) discuss the use of GAs to solve location problems. Different 

types of problems such as Uncapacitated Fixed Charge Problem, Capacitated Fixed 

Charge Problem, Maximum Covering Problem and Competitive Location Problems 

are considered and the major differences in GA strategies like fitness function 

evaluation are outlined. For all problem types, a binary representation like the one in 

Su (1998) is used. Different from most studies in the literature, instead of simple one 

point or two point crossover operators, fitness-based fusion operator is used for 

crossover. To cope with infeasible individuals penalty function values are also 

included in the fitness evaluation. The GA heuristic is compared with some other 

heuristics in terms of both solution quality and time efficiency. For some problem 

types, the results indicate that GA-based heuristic is robust; however for other types, 

the computational times are excessively large. 

 

Zhou, Min and Gen (2003) deal with a bi-criteria problem considering allocation of 

customers to multiple warehouses where both total shipping cost and total transit 

time between customers and warehouses are important criteria.  Each candidate 

solution is represented by a chromosome of length equal to the number of customers 

and the genes of a chromosome stand for the warehouse that a customer is allocated 

to. The bi-criteria nature of the problem is considered in the fitness evaluation phase. 

The single point crossover and perturbation mutation operators are also supported by 
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a problem-specific repair heuristic operator as in Preston and Kozan (2001) to deal 

with the capacity constraint of warehouses. The proposed methodology is then tested 

on real data from a firm that faces the problem in practice and the results are 

evaluated as successful. 

 

Alp, Erkut and Drezner (2003) also give an example of the GA application on 

location problems. The uncapacitated p-median problem is discussed and the GA is 

customized according to the characteristics of the problem. Each solution in the 

population is represented by a p-length chromosome which gives the indices for 

facilities to be opened. By this representation, the risk of facing infeasible solutions 

with more/less than p facilities is diminished. The objective function value is used as 

the fitness of each chromosome. A significant detail is that the randomness in the 

initial population generation is somewhat under control and for each gene 

approximately the same frequency is aimed in the initial population for the gene pool 

not to be biased. In parent selection, no special rule but just randomness is 

considered. Another outstanding aspect of this work is the use of a problem-related 

crossover operator instead of classical one or two point crossover operators and the 

mutation concept is not in use. Besides containing problem specific issues, a 

heuristic procedure like “drop algorithms” works within the crossover operator. The 

GA is then tested on problem instances from OR library or from Alberta, Galvao and 

Koerkel problem sets (Beasley, 1990; Galvão and ReVelle, 1996; Koerkel, 1989) and 

it proves to be quite efficient by giving very good solutions within small 

computational times. 

 

Salhi and Gamal (2003) introduce a GA solution for the uncapacitated continuous 

location-allocation problem. Continuous location-allocation problem is also an area 

where it is difficult to encounter GA solutions. The work of Salhi and Gamal 

improves the existing studies up to 2003 by adding some problem specific heuristics 

and some logical and promising aspects into standard procedures such as initial 

population generation or parent selection in the GA application. A binary 

representation scheme is not preferred as the problem deals with a continuous search 
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space. So the uses of repair mechanisms and penalty functions which can usually 

deteriorate the efficiency of the algorithm are also avoided. Another mechanism 

called injection is employed within the heuristic. It is aimed to mimic the effect of 

immigration and to maintain diversity. They have tested their algorithm on a 110 

instance set for four problem classes and they have seen that their algorithm 

outperforms the existing GA solutions in most instances.     

 

Correa, Steiner, Freitas and Carnieri (2004) deal with the capacitated p-median 

problem. The representation of individuals is the same as in Alp, Erkut and Drezner 

(2003). However, the capacity constraint for the facilities adds another step to the 

fitness evaluation phase and this step, the assignment of customers to the open 

facilities represented in each chromosome, is handled with a heuristic developed by 

Correa (2001). A ranking-based selection method is applied for parent selection. The 

crossover operator contains some problem specific issues and a new hypermutation 

operator based on the problem being solved is proposed in this work. The results 

both with and without the hypermutation operator are compared with a Tabu Search 

(TS) algorithm and the results show that GA with the hypermutation operator 

outperforms TS. This emphasizes the effect of problem specific procedures on the 

solution quality.  

 

Topçuoğlu et al. (2005) present a GA based solution technique for the uncapacitated 

hub location problem. A two-array representation is used for each chromosome; one 

being the HubArray and the second AssignArray.  In the first array, each node is a 

potential hub and binary coding is used, as ‘1’ represents a node that is a hub and ‘0’ 

represents a non-hub node. The AssignArray is used to show which hub each spoke is 

assigned to. In initial population generation, some rules which seem very logical to 

obtain good solutions quickly are applied. These rules are applied on the decision of 

the number of hubs in each chromosome and the nodes that are most likely to be a 

hub regarding the flow of traffic across them. Fitness proportional selection with 

roulette wheel sampling for parent selection and one point crossover on both 

HubArray and AssignArray is applied. The problem of infeasibility is faced after the 
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crossover operator; then a repair mechanism is developed. The results of the 

proposed algorithm are compared with the best results in the uncapacitated single 

allocation p-hub median problem literature, which are obtained by GATS (Genetic 

algorithm and tabu search) algorithm. The results demonstrate that the proposed 

algorithm surpasses the existing solution procedures for even larger problems. 

 

Ko and Evans (2005) develop a genetic algorithm based heuristic for the dynamic 

integrated forward/reverse logistics network for 3PLs. The dynamic supply chain 

management by 3PLs belongs to the class of multi-period, multi-stage, multi-

commodity and capacitated location problems. As this kind of problems belong to 

the class of NP-hard problems and moreover there exist non-linear terms in the 

objective function, so a heuristic is developed to obtain good solutions in reasonable 

times. The representation scheme includes the decision variables in the problem 

(opening/closing of a warehouse/repair center; expansion decision for open 

warehouse/repair center and the amount of expansion) and an array stands for each 

period. After the information of open warehouses/repair centers is read from the 

chromosomes, the optimal assignment of customers to open facilities is realized by a 

simplex transshipment algorithm and fitness values are calculated. Besides the 

representation seems to be appropriate for the problem structure, the drawback of the 

representation is that it allows to represent infeasible solutions, the infeasibility being 

related to the capacity limits on warehouse/repair centers and this leads to consider 

the penalty function. Binary tournament selection for the selection of parents, cloning 

operator to apply elitism, two-point crossover operator and perturbation mutation 

operator for reproduction are used. The proposed method is tested on a base-line case 

which is small when compared to the real cases. For the comparison of the results, 

the non-linear mathematical model is converted into a linear one with the use of 

additional variables and the same base-line case is also solved on this linear model. 

The GA based heuristic gives solutions in small gaps to the optimal solution and 

moreover, good solutions can be obtained in some instances which can not be solved 

optimally. 
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Other than the ones presented above; some studies on the application of GAs to the 

Vehicle Routing Problem with Time Windows (VRPTW) and the use of different 

types of operators, both problem specific or not, are also examined to gain further 

insight.  

 

Starkweather, McDaniel, Mathias and Whitley (1997) discuss six sequencing 

operators: enhanced edge recombination, two different versions of order crossover, 

partially mapped crossover, cycle crossover and position based crossover. Each of 

those operators is then used to solve a 30 city TSP and the results are compared in 

terms of the value of the best solution and the average of objective values obtained 

by a number of runs. The use of those operators on a Warehouse/scheduling problem 

instead of traveling salesman problem gives a different ranking between the 

operators as the critical information is not adjacency but critical order. They have 

concluded that the goodness of an operator depends on the information carried by 

that operator and the importance of that information to determine the solution.   

 

Thangiah et al. (1999) deal with the vehicle routing problem with time deadlines and 

propose two solution methodologies; one based on Local Algorithms and another 

based on Genetic Algorithms. In the GA based method, the customers are first 

clustered using the Genetic Sectoring Heuristic and then they are routed using the 

cheapest insertion method. The two algorithms are tested on a number of problem 

sets and the genetic based algorithm is proved to perform well for uniformly 

distributed customers and tight deadlines.  

 

Blanton and Wainwright (1999) also deal with the vehicle routing problem with time 

windows and capacity constraints. The outstanding points related with this study are 

the design of new, problem specific crossover operators and the decoding approach 

for multiple vehicles. It is a study where the use of problem specific knowledge is 

emphasized and those operators are shown to outperform other standard operators.  
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Although the GAs are applied to a variety of problems, satisfactory studies for the 

LRP or location-routing problem with time windows (LRPTW) are very rare. We 

have decided to propose a solution methodology for the LRPTW based on GA to 

evaluate the efficiency of the metaheuristic for this type of problem and to examine 

how GAs can make any contribution for the solution of such a complex environment.        
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CHAPTER 3 

 

 

MATHEMATICAL MODELING OF THE LOCATION-ROUTING 

PROBLEM 

 

 

This chapter begins with a general description of the Location-Routing Problem 

(LRP). The introduction to the model characteristics is then followed by the 

assumptions in this study, the verbal definition of our model in detail and the related 

mathematical models.  

 

3.1 LRP and the Problem Environment in the Study 

 
LRP can be defined as follows: The number, locations and demands of customers, 

the number and locations of all potential sites and the vehicle fleet properties are 

given. In LRP: 

(i)  the demand of each customer is to be satisfied,  

(ii) the capacities of both vehicles and facilities are not to be exceeded, 

(iii) each route is to begin and end at the same depot, 

and the total system cost considering both facility and transportation related costs is 

to be minimized. The decisions to be made are  the locations of the facilities to open, 

the allocation of customers to the open facilities and the routes for each open facility. 

 

The LRP is a complex problem. It is easily observed that with some extensions and / 

or reductions, it combines various components of different problems such as 

location, allocation or routing problems.  
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Besides this general definition; with the help of some assumptions at the beginning, 

we define the characteristics of the LRP environment in this study as follows: 

 

Characteristics of the LRP Environment 

 

♦ A multistage LRP is considered and the facilities to be located are 

secondary facilities, which are intermediaries between the supply sources 

and many demand points (customers).  

♦ For the inbound transportation, there is no routing consideration. The 

pricing is on per-item per-unit distance basis, as if all requirements from a 

supply source to a facility are transported by a single vehicle with a very 

large capacity.   

♦ The supply sources are already located and they are uncapacitated. 

♦ In outbound transportation, the deliveries are realized via routes consisting 

of multiple deliveries to multiple customers.  

♦ The customer demands are deterministic. 

♦ Each customer is to be delivered by a single vehicle and a single visit. 

♦ Multiple potential facility sites and multiple vehicles are allowed to be 

used.  

♦ The facilities to be opened are uncapacitated; however, the fixed cost of a 

facility differs based on capacity. 

♦ A single facility of any size is allowed at a potential facility site.  

♦ Vehicles are capacitated and of one type; that’s all the vehicles have a 

constant capacity and fixed cost. There is no limit on the number of 

vehicles in the system. 

♦ Shift time restrictions exist on the facilities to be opened. 

♦ Time windows exist for customers. Both hard and soft time-windows are 

considered, but the study focuses mainly on hard time-windows. It is 

possible to handle the soft time-window case with only a slight change in 

the routing part of the approach. 
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♦ Waiting times are allowed at both customers’ and facilities’ sites; with no 

penalty cost (however, the models are constructed so that they are able to 

cope with a unit penalty cost for waiting). 

 

3.2 Verbal Description of the LRP Studied  

 
The verbal description of the problem is given in terms of the objective function, the 

system constraints, the problem parameters and the decisions to be made. 

 

Objective Function 

To minimize the total system costs including the fixed and variable facility costs, 

fixed vehicle costs, the inbound transportation costs from the supply source to the 

intermediate facilities and the outbound transportation costs from the intermediate 

facilities to customers. 

 

System Constraints 

♦ Each customer is served from a single facility (single sourcing) and in one 

visit only. 

♦ The capacities of vehicles are not exceeded. 

♦ Each vehicle is used once and each tour starts and ends at the same facility. 

♦ The shift times that the facilities are allowed to operate within should be 

obeyed. The vehicles also operate within the working hours of the facilities. 

♦ The time windows that the customers are to be delivered within  should be 

considered (though in the soft time-window case, they are less restrictive). 

 

Parameters 

♦ The locations and the demand requirements of customers 

♦ The locations of potential facility sites 

♦ The locations of supply sources 

♦ The fixed cost for vehicles 
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♦ The breakpoints in the capacity of different types of facilities and the fixed 

costs for those facility types 

♦ Variable operating unit cost of facilities 

♦ The cost terms related to transportation 

♦ The time windows for customers and shift times for facilities 

♦ The required service times for customers (for unloading etc.) 

 

Decisions 

♦ The potential sites selected for locating the facilities 

♦ The type (size) of facilities to be located at those sites 

♦ The allocation of customers to the open facilities 

♦ The routing of customers that are allocated to the same facility 

♦ The waiting times at customer and facility sites, in order to satisfy the time 

windows 

 

3.3. Mathematical Models of the LRP Studied 
 

The mathematical model for the LRP as defined above turns out to be non-linear due 

to the existence of  shift time constraints for the potential facility sites and the time 

windows for the deliveries to the customers. In this section, the non-linear 

mathematical models are developed first, but later they are linearized. 

 
Mathematical formulations of an LRP with time windows differ, depending on 

whether the time windows are hard or soft.  Both scenarios are considered in this 

section. Hard time-window where delivery out of time window is not allowed and 

soft time-window where delivery out of time window is allowed but with penalties 

for early/late deliveries are considered.   

 

We have extended the basic formulations of Perl and Daskin (1984) and Wu, Low, 

Bai (2002) with regard to the types of costs included in our environment and to the 

time window issue. 
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3.3.1 Non-linear Models 
 

3.3.1.1 LRP with hard time-windows  
 

The nonlinear model for the case where the time windows are hard is developed as 

follows. First the sets, parameters, decision variables are presented; then the 

mathematical formulation is given.  

 
Sets 
 
I   set of customers                                                                 i = 1,…,n 

J   set of potential sites                                                          j =  n+1,…,m  

S  set of supply sources                                                         s = m+1,…,p 

K set of vehicles                                                                    k = 1,…,r 

L  set of potential facility types (according to the capacity) l =  1,…,t 

 
Parameters 
 
Di      demand of customer-i   (unit)  

dgh    distance between sites g and h ; JIhSJIg ∪∈∪∪∈ ,  

CV    capacity of a vehicle  (unit) 

Cl    capacity of a potential site of type-l  (unit) 

FCl     fixed cost of a potential site of type-l  

fc    fixed cost of a vehicle 

VC    variable cost of a potential site (per unit) 

TC    transportation cost from any facility site to any customer or between         

              customers (per unit distance) 

tc    transportation cost from any supply source to any facility site (per unit   

             distance per  item) 

h     the time it takes for a vehicle to cross a km  

eg    the earliest service starting time of site-g ; JIg ∪∈   

seg    the required service time of site-g; JIg ∪∈  

lag    the latest service time for site-g ; JIg ∪∈  
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wg          the cost of waiting at site-g per unit time; JIg ∪∈  

N           number of customers 

 

Decision Variables 
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qsj       =    quantity shipped from source-s to facility site-j                        JjSs ∈∈ ,                    

 

wtg    =    waiting time at site-g                                     JIg ∪∈  

  

atg   =    arrival time at site -g                                                         JIg ∪∈  

 

rtj      =    returning time to facility site-j                                         Jj∈  

     

Uik     =     auxiliary variable (for subtour elimination constraints) KkIi ∈∈ ,   
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Model 
 
Minimize      
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jijkijijkiijkiijki rtXhdXseXwtXat ≤+++        KkJjIi ∈∈∈ ,,     (3.11) 
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igikgigikggjkggikg atXhdXseXwtXat ≤+++   KkIiJIg ∈∈∈ ,,U  (3.12) 

 

ggg ewtat ≥+                               JIg ∪∈∀                                                    (3.13) 

 

iii lawtat ≤+                                 Ii∈∀                                                           (3.14) 

 

jjj ZSlart ≤                                    Jj∈∀                                                           (3.15) 

 
atj = 0                                               Jj∈∀                                                          (3.16)  

 
Xggk = 0                                             KkJIg ∈∈ ,U                                           (3.17) 

  
Xghk, Zjl, ZSj, Vk, Yij   binary              LlJjIiKkJIhg ∈∈∈∈∈ ,,,,, U            (3.18) 

 
0,,,, ≥jikggsj rtUwtatq                  KkIiJIgJjSs ∈∈∈∈∈ ,,,, U                (3.19) 

 
 

The objective function (3.1) minimizes the sum of fixed warehouse costs, fixed 

vehicle costs, variable warehouse costs, transportation costs from supply sources to 

facilities, routing costs for deliveries from facilites to customers and a penalty term 

which stands for the waiting times of vehicles at nodes  (it is also possible with this 

model to handle the case where there is no penalty cost for waiting by wg = 0 g∀ ). 

 

Constraint (3.2) requires that each customer is assigned to a single facility and a 

single vehicle. Constraint (3.3) assures that a customer can be assigned to a vehicle if 

that vehicle is being used and the capacity of that vehicle is not exceeded by the 

customers assigned to that vehicle. Constraint (3.4) is the sub-tour elimination 

(connectivity) constraints. Constraint (3.5) assures that every customer/facility node 

entered is left by the same vehicle. Constraint (3.6) assures that a vehicle can not be 

operated from multiple warehouses. Constraint (3.7) specifies that the amount 

delivered from a facility to customers is equal to the amount delivered to that facility 

from suppliers.  Constraint (3.8) requires that the prespecified capacity of any opened 

facility is not exceeded or in other words the size of the facility to be opened is 

sufficient to satisfy the demands of the assigned customers. Constraint (3.9) assures 
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that at most a single facility of a single type is opened at a potential site and the 

status of all types of potential sites determine the usage of that site. Constraint (3.10) 

requires that a customer can be assigned to a facility only if they belong to the same 

vehicle. Constraint (3.11) is used to evaluate the returning time to a facility to be 

later used in the shift time constraints. The time interval up to return to the facility 

includes the service times, the waiting times at the customers and the time spent on 

the route between nodes. Constraint (3.12) defines the arrival time of the vehicle at 

each customer site. Constraints (3.13), (3.14) and (3.15) assure that the service 

starting time for each node and the time for returning back for the facility sites is 

between the predefined time windows. Constraint (3.16) consists of an equation for 

each potential site that represents the depots as starting points of each route. 

Constraint (3.17) prevents any meaningless route from a node to itself. The last 

groups (3.18) and (3.19) define the variables’ types used in the mathematical model. 

In the model, the two constraints (3.11) and (3.12) cause the nonlinearity.    

 

3.3.1.2 LRP with soft time-windows  

 

The non-linear model of the system with soft time-windows is given below. The sets 

are the same as in the hard time-window case. The additional parameters and 

decision variables are presented below. 

 
Additional Parameters 
 
pen1        penalty cost for starting the delivery before the earliest service starting            

     time (penalty for earliness) 

pen2        penalty cost for starting the delivery after the latest service starting  

                 time (penalty for lateness) 

 
Additional Decision Variables 
  
 
ltei   =   the earliness of a delivery (the time interval between the service starting time  

             and the predefined earliest delivery time)                                                Ii∈      
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ltti    =  the tardiness of a delivery (the time interval over the predefined latest    

            delivery time )                                                                                           Ii∈  

 
(it is assured by the constraints that both earliness and tardiness are equal to zero if 

the delivery is realized within the time window)   

 
Model 
 
Minimize      

∑ ∑∑ ∑ ∑∑
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    (3.20) 

 
subject to 
  
Constraints (3.2) – (3.12) 
 
Constraints (3.15) – (3.18) 
 

iiii laseatltt −+≥                             Ii∈∀                                                         (3.21)          

 

iii atelte −≥                                      Ii∈∀                                                          (3.22) 

 

0,,,,,, ≥iijikggsj lttltertUwtatq      KkIiJIgJjSs ∈∈∪∈∈∈ ,,,,          (3.23) 

 
 
There are just few differences between the hard and soft time-window models that 

are described below: 

 

� The model with soft time-windows has two new penalty costs for 

earliness and tardiness of deliveries. 

� The objective function value has two additional terms; the total additional 

cost for the early deliveries and tardy deliveries to the customers. 

� Equation (3.21) sets the lower bounds on ltti; the time that passes between 

the delivery and the latest service time. In case the delivery is realized 
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before the latest delivery time, value of ltti becomes negative, but it is 

guaranteed to be greater than zero in the model. 

� Equation (3.22) stands for the same purpose for ltei ; it defines the lower 

bound on the amount of time between the delivery and the earliest service 

time. If the delivery is realized after the earliest delivery time, this value 

is again negative, that is zero. 

 

3.3.2 Linear Models 
 

As it can be observed from the above models, the non-linearity arises from the time 

window and shift time constraints. The definitions of the arrival time to a customer 

and returning time to a facility depend on the sequence of nodes that follow each 

other on the route and this situation is expressed with non-linear constraints. The 

models are linearized below. The variables and constraints that have been 

changed/added due to the linearization are given in bold italic. 

 

3.3.2.1 LRP with hard time-windows  
 

All the sets, parameters and decision variables are valid for the linear models. In 

addition to them the following are defined: 

M             a big constant  
  

Tghk    =    auxiliary binary variable            KkJIhg ∈∪∈ ,,   

                
 
 
The mathematical model for the hard time-window case is the same as the model in 

section 3.3.1.1 except constraints (3.11) and (3.12). Constraint (3.11) will be 

replaced by the set of inequalities defined by (3.24a) to (3.24c):  

 

ijkjijiii MTrthdwtseat ≤−+++                  KkJjIi ∈∀∈∀∈∀ ,,                 (3.24a)                

  

- ijkjijiii MTrthdwtseat ≤+−−−                 KkJjIi ∈∀∈∀∈∀ ,,                 (3.24b) 
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)1( ijkijk TMX −≤                                            KkJjIi ∈∀∈∀∈∀ ,,                 (3.24c) 

 

Constraint (3.12) is replaced by the set of equations defined by (3.25): 

 

gikigiggg TMathdwtseat ≤−+++              KkIiJIg ∈∀∈∀∪∈∀ ,,        (3.25a) 

 

gikigiggg TMathdwtseat ≤+−−−−           KkIiJIg ∈∀∈∀∪∈∀ ,,        (3.25b) 

 

)1( gikgik TMX −≤                                           KkIiJIg ∈∀∈∀∪∈∀ ,,         (3.25c) 

 

3.3.2.2 LRP with soft time-windows  
 

The model with soft time-windows can be linearized in the same way as the model 

with hard time-windows is linearized. The only point is that the non-linear 

equivalents of the returning times (rtj) to depots and the arrival times (ati) at the 

customers are defined by three inequalities which maintain the linearity. 

 

The linear soft time-window model is as in section 3.3.1.2 except that constraint 

(3.11) is replaced by the group of constraints (3.24a) to (3.24c) and (3.12) is replaced 

by the group of constraints (3.25a) to (3.25c).  

 
 
3.4 Validation of the Mathematical Models 

  

The formulation of the environment is followed by modeling the environments in the 

General Algebraic Modeling System (GAMS) which is capable of solving both MIP 

and NLMIP with the hope that the results of the mathematical model also help in 

evaluating the results of our genetic algorithm. However, for the non-linear model, as 

the version of the solver for the NLMIPs is in demo version, GAMS is capable of 

solving only problems up to 50 variables. In addition, for the rest of the study, it is 

decided to use CPLEX to solve the linear programs. So the models (both linear and 

non-linear for hard and soft time windows) translated to the GAMS language, which 

are given in Appendix A, are only used to solve very small sample problems to 
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validate the mathematical models, that’s to see if the objective function and the 

constraints are formulated so that they define the environment as desired.    
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CHAPTER 4 

 

 

THE SOLUTION METHODOLOGY  

 

 

LRPs are classified within the general class of network optimization problems 

(Golden et al., 1981) and within the family of arc-node problems (Schrage, 1981) 

since their solutions are constituted from selection of a number of nodes and arcs on 

a network. These problems are proved to be NP-hard with a great number of 

variables and constraints. Practical-size problems can not be solved to optimality 

based on their mathematical formulations. Especially in our case where time 

windows/shift times exist for nodes, it becomes much more difficult to solve the 

problem through a mathematical programming approach.  

 

After reviewing the solution approaches in the literature for LRPs, we have decided 

to base our solution methodology on GA. 

 

 In this chapter, this methodology is explained with all its details. At the beginning, 

some basic concepts and descriptions related to GA are given. While explaining the 

methodology that we propose for the solution of the problem, discussions on 

different phases and parameters of GA applications are included as well. In addition 

to those, while developing our algorithm, the solution of the VRPTW problem has 

gained great importance, and hence we have paid a significant effort for the solution 

of this subproblem in our GA approach. A brief explanation on the solutions of VRP 

/ VRPTW in the literature and how we handle this issue in our algorithm is also 

covered in this chapter.  
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4.1 Fundamentals of Genetic Algorithms 

 

Genetic Algorithms are search methods based on the genetic processes in the nature. 

They were first developed by Holland and his colleagues at Michigan University 

(Goldberg, 1989) and the basic principles were first published in Holland (1975). 

The fundamentals of GA which are in a direct analogy with the nature can be 

summarized as follows:  

♦ In nature, the individuals in a population compete with each other to survive 

and to reproduce. It is known that according to the evolution theory, better 

individuals have higher chance to stay alive and pass their genetic material to 

next generations. The GA applies to populations which are composed of 

individuals in the form of chromosomes. The individuals (or chromosomes) 

are in fact solutions for the problem represented in various ways. The 

chromosomes are made up of genes, each standing for a decision variable of 

the solution.  

♦ The probability of survival and reproduction is generally determined by how 

good an individual is in nature. The value which represents the goodness of a 

solution is the objective function value for the problem with the parameters 

represented in the solution. This is the fitness function value for a 

chromosome. As it is explained later, the fitness function may not be purely 

the objective function, but more than that.   

♦ The initial genetic material is included in a number of individuals generated 

at the beginning, which constitutes the initial population.  This population is 

then updated with processes similar to the processes of reproduction in the 

nature. During the reproduction processes, the parent selection phase 

determines the genetic data that is passed to the next generation among the 

whole data present in the population. Operators like crossover and mutation 

treat those genetic materials and generate a new offspring. Each population 

updated with one/more offspring is called a generation.  
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Like in nature, the genetic process evolves without knowing anything about the 

problem type that is being solved. However, along with applying the general 

fundamentals, it is shown that the use of problem specific knowledge to guide the 

operators towards better strings helps to improve the solutions obtained. Those 

operators designed with the help of the problem specific data were first used in 

problem types like TSP where the general operators were not sufficient.  

 
Although there exists a general framework to apply genetic algorithms as a solution 

procedure to different problems, there are some key components to be decided on. 

The components which are the fundamentals of genetic algorithms at the same time 

are as follows: 

 

♦ A genetic representation for the possible solutions in the search space 

♦ A way to generate the initial population 

♦ Fitness function evaluation for the chromosomes 

♦ Genetic operators and techniques such as the parent selection technique, the 

crossover and mutation operators and the replacement strategy that is 

followed while updating the existing generation with the offspring 

♦ Parameters for the genetic algorithm procedure such as the population size, 

crossover and mutation rates, maximum number of offspring to be 

generated 

 

4.2 The Proposed Solution Methodology and GA components 

 

The GA theory and different aspects related to each of the above components are 

explained under separate headings. How those components are adapted to the 

solution procedure for LRP with time window is also discussed in detail. 
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4.2.1 Chromosome Representation 

 

Chromosome representation is a very critical issue in the success of the GA. An 

appropriate representation must be capable of representing any possible solution for 

the problem and at the same the representation scheme must not support to include 

the infeasible solutions in the population if it is possible to do so. The evolution of 

the representation scheme for the p-median problem is a good example of the aspect 

mentioned above. In early studies the representation which shows the open and 

closed facilities but which does not restrict the number of facilities is used and this 

brings out the solutions with more/less than p facilities into the population. However, 

in later studies, representation schemes which consider only solutions with p 

facilities are preferred.  

 

The main decision is whether to use a binary or integer scheme for the 

representation. The binary coding consists of 0s and 1s. These values may be 

sufficient to represent the solution or any integer value may be converted to base 2 

from base 10 and bit strings of 0/1s are used as chromosomes.  As the fundamentals 

of GA and the genetic theory are founded on binary representation and it is easy to 

apply most operators on this kind of representation, it is used for most types of 

problems. 

 

However, for certain problem environments, a binary representation would not be 

sufficient and the work of converting the solution to base 2 may be inefficient. Then 

the use of integers for each gene becomes more appropriate. It is also an obligatory 

task to design the genetic operators according to the non-binary representation of 

chromosomes. 

 

Depending on  the problem environment and its constraints, sometimes use of non-

binary representation can be a solution to the problem of infeasible individuals. 

However, for cases where it is still possible to generate infeasible individuals in 
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initial population or by the genetic operators with an integer representation, there 

exist a number of ways to handle the infeasible individuals in the GA literature: 

 

♦ Adding a penalty function to the fitness of an infeasible chromosome so 

that the infeasibility incurs a noticeable cost in the fitness value and thus  

the possibility of being chosen for mating is decreased 

♦ Design of heuristic operators which transform infeasible solutions into 

feasible solutions and applying them before an offspring is included in the 

population 

♦ Exploring a two-population genetic algorithm such that while the aim in 

one population is maximizing/minimizing the objective value, the aim in 

the other population is minimizing the infeasibility  

 

The third method above is proposed recently and therefore not applied extensively in 

the literature. The first two methods are common wherever there is the probability of 

obtaining infeasible individuals. If there are infeasible individuals through the 

execution of the genetic algorithm, to apply one of these methods is inevitable. 

However, there is a general consensus as to the negative effect of such approaches to 

the efficiency of the overall algorithm. 

 

For the LRP that we study, the non-binary chromosome representation is chosen. For 

an n-customer, (m-n) potential facility site problem, each chromosome will consist of 

n genes and each gene takes a value ranging from n+1 to m (as the facility sites are 

numbered as nodes after the customers) which shows the potential facility site this 

customer is assigned to in that solution. The figure below illustrates the 

representation scheme for a problem of 5 customers and 2 potential facility sites. 
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Customer no                                1     2     3     4      5 

  
Assigned Facility no                   7     6     7      7     6   
 
Chromosome                

 
Figure 4.1 The Representation Scheme of a Solution in the Proposed GA  
 
 
 
The LRP with time windows could be treated as consisting of 3 sub-problems; the 

location of facilities, the assignment of customers to the open facilities (this problem 

is actually two-stage, but the assignment of facilities to suppliers is straightforward 

as the suppliers are assumed to be uncapacitated in our problem environment and 

each facility could be assigned to the nearest supplier) and the routing of the 

customers assigned to a facility considering all time-related constraints. 

 

With our representation the first two decisions (location-allocation) of a solution 

could be read from the chromosome itself.  Su (1998) that deals with the same kind 

of problem has chosen to represent each solution by chromosomes only informing us 

about the potential facility sites that will be opened and then assigns each customer 

to its nearest facility. The routing phase is also solved sequentially. However the 

routing considerations led us to think that there may exist solutions good enough to 

7 6 7 7 6 
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Fac-7 
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consider and to improve  even if customers are not assigned to the nearest facility 

and the information of “which customer will be assigned to which facility” is critical 

than the information of “which facility will be opened” in a location routing problem.    

 

A further step might be to represent the location, allocation, and moreover the 

routing decisions in the chromosome. But when the huge number of possible 

solutions containing all of these information is considered, it is obviously seen that 

any population size could hardly be capable of covering the solution space and there 

may be very poor solutions included in the population. It is not possible to eliminate 

those chromosomes in advance, because the violation of time windows is only visible 

when the whole route is constructed. The above representation is decided to be the 

most suitable one in our study, considering all those aspects and paying effort to find 

a representation which may be possible to handle in terms of length, and at the same 

time which may carry the greatest amount of information related to a solution. 

   

4.2.2 Initial Population Generation 

 

The initial population for GA is the first group of solutions among which the search 

begins. As declared in Reeves and Rowe (2003), the point in generating the initial 

population is that “every point in the search space or in other words any solution to 

the original problem could be reached from the solutions in the initial population by 

crossover only” and this could only be satisfied by the existence of each possible 

value for each gene in the initial population. This emphasizes the importance on the 

way the initial population is generated.  

 

The most common way of generating the initial population is doing this randomly 

without any control on the existence of alleles for genes. While this approach is in 

accordance with the stochastic nature of the GAs, individuals generated in this way 

do not necessarily cover the solution space and the above principle can not be 

satisfied with this random approach. So the use of some control routines on the 

chromosomes and more sophisticated statistical methods will provide advantages 
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especially with non-binary representations. An example method could be the 

generalization of the Latin hypercube (Reeves and Rowe, 2003).  

 

There are some other strategies to begin with a better initial population.  One strategy 

could be to generate a number that is twice or three times the population size and 

then use the best “population size” group of individuals as the initial population.  

Another could be to insert the known good solutions directly to the population and 

generate the remaining solutions randomly. But there is always the possibility of 

getting trapped in a certain region of the solution space and premature convergence 

in these attempts.  

 

Above all, the second important aspect to satisfy the idea by Reeves and Rowe 

(2003) mentioned in the first paragraph is working with an appropriate population 

size. 

  

Considering all the discussions in the literature related with the issues above and the 

characteristics of the problem, our “Initial Population Generation” phase is composed 

of a number of small sub-algorithms covering the topics below: 

 

Determine the feasible assignments regarding the shift times for facilities and the 

time windows for customers 

 

GA is designed to find good solutions for problems without knowing the problem 

characteristics, but including problem specific knowledge in the solution method via 

some operators is an important tool to improve the efficiency of the GA application. 

In problem types such as the one we are concerned with, when the population size 

needed to cover the whole search space is very large, it is more critical to narrow the 

solution space according to our constraints. 

 

Related with the vehicle routing problem that is solved for every open facility, the 

time windows and shift time information are very restrictive in order to obtain good 
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solutions including all the decision variables. Although the final arrival and departure 

times of customers can be revealed after the VRPTW is solved, there are some 

assignments which can easily be shown to be infeasible, considering the cases below: 

  

(i) A customer can not be reached from a facility and served before its latest service 

time, even if a vehicle directly goes from that facility to that customer, in this case it 

is obvious that any routing scenario including other customers can not be within the 

time window of that customer.  

 

(ii)The sum of the direct shipment duration from a facility to a customer, the service 

time at the customer  and the duration for the return of the vehicle from the customer 

back to the facility exceeds the desired shift time value for the facility. 

 

(iii)Even if a vehicle starts service of a customer at the earliest service starting time, 

serving him and returning back to the facility may exceed the shift time. (it is 

supplementary to the second condition; (arrival + service + return time) may seem 

feasible, but if arrival is before the earliest service time of a customer, then the 

vehicle must wait before starting service and (earliest starting time + service + return 

time) may not be feasible.) 

  

So it is necessary to eliminate solutions including these infeasible assignments. In 

order to provide this, for each customer, the set of facilities this customer can be 

assigned to is determined before the chromosomes are generated randomly.  

 

Randomly generate individuals as many as the Population Size  

 

Using the elimination criteria above ((i),(ii),(iii)), “the set of facilities each customer 

can be assigned to” or in GA terms “the values each gene can take” are determined. 

By randomly choosing a feasible facility from that set for each customer, a 

chromosome can be generated. This process is repeated as many times as the 

population size.  
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 Check if there exist duplicates of individuals in the population and create a 

population of non-identical individuals  

 

As the population size is limited and the idea is to search as much of the region of the 

solution space as possible to have good solutions, it is preferred to include non-

identical individuals to maintain the diversity in the population. So the identical 

individuals are determined, the copies other than the first one are deleted from the 

population, and new, non-identical individuals are inserted into the population till the 

population size is reached.  

 

It must be noted that for problems, which have a very large solution space, to obtain 

duplicates in the population is very unlikely. In such cases, it is worth considering 

whether to include this sub-routine or not because of the computational effort it 

requires. 

 

Check whether every feasible value for each customer exists in the population, and if 

not, satisfy this requirement 

 

After the population composed of non-identical individuals is generated, it should be 

checked whether the population can satisfy the idea at the beginning of this section, 

that is, the idea of existence of each possible value for each gene.  Then, for each 

customer, it must be checked whether all the facilities in the feasible set for that 

customer are included in the initial population. If there are feasible potential facilities 

that the customer is not assigned to in any chromosome, then any other facility that 

the customer is assigned to more than once is chosen randomly and it is exchanged 

with the unused facility. Doing this check for every customer provides us to begin 

with an initial generation that is able to produce any solution possible (the infeasible 

ones being eliminated) for the problem. 
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4.2.3 Fitness Function Evaluation Including VRPTW 

 

The fitness function value for a chromosome is generally the objective function value 

for the solution the chromosome represents. The objective function value can be 

easily calculated with the help of the data directly read from the chromosome by 

decoding the chromosome or some intermediate calculations may be needed using 

the data read from the chromosome to obtain a complete solution and to reach the 

final objective function value; i.e. in a capacitated p-median as in Correa et al. 

(2004), the chromosome represents the p open facilities and the allocation to the 

capacitated facilities is realized by an algorithm developed by Correa et al (2004).   

 

In cases where the chromosomes can represent infeasible solutions as well as the 

feasible ones and the way to handle the infeasibilities is to use the penalty function, a 

penalty function value is added to the objective function value to obtain the fitness 

value. The penalty for feasible chromosomes is equal to 0. The values for the 

infeasible chromosomes are calculated according to how much the constraints are 

violated.  

 

In our solution, the objective function consists of the following terms: 

� the fixed costs of facilities 

� the variable costs of facilities 

� the transportation costs from supply sources 

� the fixed costs of vehicles 

� the costs incurred in routes from facilities to customers 

 

By decoding a chromosome, the facility each customer is assigned to is directly read. 

The facilities to which at least a customer is assigned are assumed to be open and the 

total flow of a facility is the sum of the demands of the customers assigned to that 

facility. So the fixed and variable costs related to the facilities are easily calculated. 

As the supply sources are uncapacitated, the supply sources and the facilities can be 

easily linked by assigning each open facility to the nearest supply source and this 
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gives the transportation costs from the supply sources to the facilities.  The only 

cavities in the objective function are the routing related costs: the fixed costs of the 

vehicles calculated based on the number of vehicles and the routing costs.  

 

It is observed that in many studies proposing even integrated solution approaches for 

LRP using heuristics or metaheuristics in the literature, it is assumed that there is 

direct shipment between the facilities and the customers while exploring 

neighborhoods. It is assumed that a good solution regarding the direct shipment costs 

is also a good solution when the customer demands are not directly shipped but 

routing is considered. But in our solution method, in order to be able to evaluate the 

real cost of a solution and to maintain integrity in the solution, we prefer to handle 

the VRPTW instead of replacing the routing related costs with approximate costs. 

 

However, the difficulty faced during the study is that, although VRPTW is not the 

main concern, and we focus on a general solution framework for the location-routing 

problem with time windows (LRPTW), the efficiency of the VRPTW solution has a 

great impact on the quality of the LRPTW solution. Related with our goal, to develop 

a heuristic which is guaranteed to give good solutions for VRPTW is not among our 

purposes. But the VRPTW being a very difficult problem to solve and has a 

significant effect on the LRPTW solution, it has to be handled with great emphasis.  

As a great number of VRPTWs is solved within the above approach (for each open 

facility on each gene in the initial population and for each open facility on each gene 

generated during the run), the solution method for the VRPTW has to be efficient in 

terms of computational time.  

 

With these requirements, the two alternatives below are evaluated to handle the 

VRPTW issue. 

 

� To use some simple heuristics which may provide some upper bounds on the 

VRPTW solution 
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� To use a detailed, well-defined approach which is proved to be successful to 

find the best solution in a short computational time 

In order to find a satisfactory solution, first the solution approaches in the literature 

for VRP and VRPTW are reviewed and briefly discussed below. 

 

For the VRP and TSP, which are NP-hard problems, any exact solution method does 

not give satisfactory results due to the great computational effort required. Instead, a 

number of heuristic approaches have been proposed in the literature.  Nelson et al. 

(1985) and Laporte (1992) are studies which provide an overview of both exact and 

approximate VRP algorithms. The Clarke and Wright heuristic for the capacitated 

VRP (CVRP) (Clarke and Wright, 1964) which has been studied later and 

implemented to a number of environments, the Sweep Algorithm by Gillett and 

Miller (Gillett and Miller, 1974) and the two- phase approach by Christofides, 

Mingozzi and Toth (Christofides, Mingozzi and Toth, 1979) can be listed among the 

earliest approximate approaches. Later on, a tabu search algorithm developed by 

Gendreau, Hertz and Laporte (1994), a location based heuristic for the routing 

problems by Bramel and Levi (1995) and a heuristic based on genetic clustering for 

the multi- depot VRP by Thangiah and Salhi (2001) are improvements on this 

problem. Among the exact methods are two/three indexed formulations, direct tree 

search methods and dynamic programming. A different approach is developed by 

Ghiani and Improta (2000) by the transformation of the generalized VRP to the 

capacitated arc routing problem.  

 

For the VRPTW, there exist a number of heuristics or bound calculation techniques 

based on relaxations of the problem. In Solomon (1987), a number of tour building 

heuristics for the VRPTW are discussed. Among those algorithms, “Savings 

Heuristic” which is based on the savings heuristic originally proposed by Clarke and 

Wright (1964) is an example. While the general savings equality is still valid, the 

necessary and sufficient conditions for time feasibility when inserting a customer are 

also adapted. “The time-oriented, nearest neighbor heuristic”    starts every route by 

the unrouted customer closest to the depot and assigns the customer closest to the last 
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customer at every subsequent iteration. Here, the closest measure is calculated by 

considering both the geographical and temporal closeness of customers so the time 

windows are taken into consideration in the solution. “Insertion heuristic” inserts 

customers into routes regarding several criteria which include the time feasibility of 

serving each customer and the minimization of total distances traveled. “Time-

oriented sweep heuristic” is a two-phase heuristic with clustering first and scheduling 

second. The original sweep heuristic of Gillett and Miller (Gillett and Miller, 1984) 

is improved to cover the time window constraints. Those algorithms are then 

compared according to time efficiency and the quality of results.  

 

Some other heuristics developed in other thesis studies or published in related 

journals are also examined but the main problem related to them is the long 

computational times. Lower and upper bounding heuristics are also provided in 

Kontoravdis and Bard (1995) and Kontoravdis, Bard and Yu (2002). 

 

Coding one of the Solomon’s algorithms (Solomon, 1987) or the bounding heuristics 

could be a solution for the VRPTW part of our algorithm, unless a better solution 

technique is found. However, the main drawback of this choice is that for different 

solutions the gap between the upper/lower bound and the best solution possible 

differs and a bounding technique finds near-to-optimal solutions for some instances 

while finding not-so-good solutions for the others. So the heuristic stands for some 

instances and against others in an unfair way.  

 

Considering this, our search continued for any improved technique.  

 

In addition to heuristics, another method encountered in later studies and in improved 

solution techniques is the use of constraint programming and constraint-based 

operators. Hybrid approaches which combine heuristics, metaheuristics and 

constraint programming are proven to be successful in logistics problems. As 

referred in Rousseau, Gendreau and Pesant (2002); Pesant and Gendreau 

(1996;1999), Baptiste, LePape and Nuijten (1995), Caseau and Laburthe (1998), the 
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works of the ILOG team and some other commercial VRPTW components have 

given examples of applications in which OR techniques and constraint  programming 

are combined. 

 

Finally, for solving VRPTW, the prerequisites in our case on the solution quality and 

the computation time for a good solution led us to use an algorithm with some 

predefined classes and functions within ILOG Dispatcher 4.2 for which the basics are 

defined in Backer et al.(2000). The solution method of the VRPTW is based on 

constraint programming, some local search techniques and metaheuristics. In our 

applications we followed the general framework given by ILOG documents. We 

used savings heuristic as the first solution heuristic and defined five neighborhoods 

possible in Dispatcher (2-opt, or-opt, relocate, cross, exchange) to construct and 

search for new solutions. We progressed with a first accept strategy and did not use 

the support of metaheuristics, as our routing problems and search space are not so 

huge. The role of each technique and how the algorithm is designed is discussed in 

detail in Appendix B. In the flow of our algorithm for LRP, after reading the 

customer assignment for a depot from a chromosome, the VRPTW is solved for each 

open facility and the missing cost terms of the objective function are then added. The 

fitness function calculation is thus terminated.  

 

4.2.4 Genetic Operators and Techniques 

 

Genetic operators contain a number of milestones which are playing a great role in 

the flow of the genetic algorithm. 

 

4.2.4.1 Parent selection     

 
This is the task of choosing parents from the population to generate an offspring that 

inherits properties from the parents as in the nature. From the very beginning of the 

GA literature, many methods have been used to select the parents, varying from 

random selection of two parents to complex methods. For a detailed explanation of a 
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variety of techniques, Haupt and Haupt (1998), Reeves and Rowe (2003), Beasley, 

Bull and Martin (1993) and Goldberg and Deb (1991) could be referred to. In a 

general way, the techniques could be summarized as follows: 

 

� Proportionate selection techniques such as roulette wheel selection, stochastic 

remainder selection and stochastic universal selection. After the fitness values 

for the chromosomes are calculated, selection probabilities related to each 

chromosome is calculated regarding the total fitness of the population. Parents 

are selected generating random numbers in [0,1] and using the cumulative 

probability distributions. These are comparatively easy techniques to apply, but 

they have drawbacks:  (1) while working directly with the fitness values, the 

most fit individuals dominate easily in the early generations and (2) in the later 

generations where the fitness values of individuals become close to each other;  

the cumulative probabilities are not so sensitive to choose better individuals 

which leads to low growth ratio. In addition to many other references, Whitley 

(1989) emphasizes the three disadvantages related to the selection pressure:  (i) 

Stagnation because the search lacks selective pressure, (ii) premature 

convergence because selective pressure has caused the search to narrow and 

(iii) the difficulty of maintaining adequate selective pressure when the 

population tends to be homogenous. 

 

� Ranking and scaling based techniques. Instead of using the raw fitness values 

of chromosomes, they are mapped onto a new scale and the selection is realized 

according to this scale or the chromosomes are sorted according to their fitness 

values and the selection probabilities are assigned to the ranks independent of 

the fitness values. As explained in Gen and Cheng (1997), the main intention in 

doing so is to maintain a reasonable difference between fitness ratings of 

chromosomes and to prevent a too-rapid takeover by some super chromosomes. 

Linear scaling, dynamic linear scaling, power law scaling and logarithmic 

scaling are examples of scaling techniques. Although they require 

computationally more effort than the proportionate selection methods, ranking 
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and scaling based techniques can recover the deficiencies of the proportionate 

selection techniques. 

 

� Tournament selection.  This technique depends on choosing a group of 

individuals of size equal to the tournament size, then picking the best fit one 

among them and assigning it as a parent. Although the most common 

tournament size is 2, larger tournament sizes could also be used. The best fit 

individual could win the tournament with probability ‘1’ in the deterministic 

version, whereas it could win the tournament with a probability between ‘0.5’ 

and ‘1’ in the probabilistic version. This method presents a good balance 

among computational effort/difficulty, probabilistic nature of GAs and the 

emphasis on the effects of the raw fitness values of chromosomes. It is 

computationally practical, because it only needs a preference ordering in a 

small set. 

 

When the literature is examined, the last two groups of techniques are more 

commonly preferred in later studies. The pros and cons of the methods are as 

explained above, the computational effectiveness, not causing to premature 

convergence and conserving the fitness value differences independent of ranks have 

led us to use deterministic binary tournament selection with tournament size 2 in our 

algorithm. We repeat the reproduction phase a significant number of times to give 

chance to many different individuals in the population to be parents so choosing the 

better of the two candidate parents in a deterministic fashion does not cause us to 

skip the probabilistic nature. 

 
4.2.4.2 Crossover   

 

The crossover operator recombines the genetic material from two parents to make 

one or two offspring. The type of the operator defines how the offspring is generated 

from the parents and which information is inherited from which parent. 
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It is one of the most suitable phases where the problem specific knowledge can be 

inserted into the algorithm. However, it is still very common to apply a single point 

crossover or two-point crossover with no regard of the problem characteristics in GA 

applications. As explained and illustrated in Davis (1991), the basic idea behind the 

one/two-point crossover operators is to determine the crossover points and exchange 

parts between parents to pass to the offspring. 

 

For the chromosomes being represented in a non-binary format, an example of a two- 

point crossover operator can be viewed in Figure 4.2. 

 
 
Parent 1      2     1     2   |   2      1 |    2       1        

Parent 2     1      2     2   |   1     2  |    1       1  
Child 1         2       1     2       1      2        2        1  

Child 2         1       2     2       2      1        1        1  

 
Figure 4.2  A Two-Point Crossover Operator 
 
 

In later studies, alternatives for the crossover operator are also developed.  Uniform 

crossover is one of them where a mask is determined a priori to give information on 

the crossover points and the same mask is used for each crossover, whereas the 

crossover points are generated randomly in one/two point crossovers. Also the usage 

of mask eases the application of operator with even more than two crossover points.  

 

Other advancement is the generalized fitness-based crossover operator called the 

fusion operator proposed in Beasley and Chu (1996). There the rationale is described 

below: as the overall fitness is determined by the values of genes, the genes of a 

more fit individual are more likely to produce a more fit offspring, so the chance of 

getting a gene from a parent would be proportional to the fitness of that parent in a 

probabilistic fashion in order not to create new individuals identical to their parents.  
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In permutation problems for which the most famous examples are traveling salesman 

or scheduling problems, any of the above crossover techniques may not be sufficient. 

For instance, when we think of the problem of finding the optimal order for a 6-city 

tour, the result of applying a one-point crossover on chromosomes representing 

routes {2,3,4,1,6,5} and {4,6,2,3,1,5} produces two infeasible offspring; 

{2,3,4,3,1,5} and {4,6,2,1,6,5} where some cities are visited twice and some are not 

visited at all. For such kind of problems, Goldberg (1989) discusses in “Genetic 

Algorithms in Search, Optimization and Machine Learning” some crossover 

operators appropriate for permutation problems to overcome the above difficulties 

such as the Partially Matched Crossover, Order Crossover and Cycle Crossover.    

 

In our solution methodology, we prefer to design our own crossover operator for the 

LRP instead of using the standard operators. If it were a pure location-allocation 

problem, the concern would be to minimize the distances between customers and 

open facilities via direct shipment. But the routing problem makes us think the group 

of customers assigned to the facility as a whole and leads to a check whether the  

customers closer to each other and therefore more probable to create efficient routes 

are assigned to the same facility. 

 

Moving from this idea, the crossover operator consists of two phases. The first phase 

is evaluated only once at the beginning of the heuristic after the distance data 

between customers are read and for each customer, it helps to create the order of 

customers starting from the nearest one to the farthest. The second phase uses this 

order and realizes the following steps:    

 

Step 1. For each customer, the facilities it is assigned to in each parent are read from 

the chromosomes and assigned to an array (they are the possible values to appear in 

the offspring). 

Step 2. If there are customers assigned to the same facility, then assign them to that 

facility in the offspring, else go to step 4. 
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Step 3. Check the possible facilities for the nearest customers to the ones that satisfy 

the condition in step 2. If one of the possible facilities is the one the customer in step 

2 is assigned to, then assign that nearest customer to that facility. 

Step 4. For each customer that is unassigned to a facility; starting from the nearest 

neighbor, check the possible facilities they are assigned in parents. When a common 

facility is met, assign the customer to that facility and update its possible facilities 

both being the one it is assigned to. If a common facility is not met, then assign this 

customer to the facility from the parent with better offspring. 

 

In order to clarify how this crossover operator works, a representative example is 

given. We consider a small environment of 6 customers (1-6) and 4 facilities (7-10). 

The distances among sites are already calculated. The two arrays that will be used 

are: 

pos [i]  :  to store the facilities customer-i is assigned to in the parents, in other words 

the possible facilities customer-i can be assigned to in the offspring 

near [i]  :  to store the neighbors of customer-i starting from the nearest to the 

farthest. (this array is generated for each customer at the beginning of the algorithm 

just after the distance data are calculated). 

 

In our example, assume that: 

 

near [1] = 3,6,4,5,2 

near [2] = 6,4,5,1,3 

near [3] = 1,4,6,2,5 

near [4] = 2,3,1,6,5 

near [5] = 6,2,1,4,3 

near [6] = 5,2,1,4,3 

 

parent-1:           fitness of parent-1 = 42   

 

parent-2 :   fitness of parent-2 = 30                                                  

7 8 9 7 8 9 

8 8 9 10 7 8 
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Step 1. Reading the data from parents 

 

pos [1] = 7,8 

pos [2] = 8,8 

pos [3] = 9,9 

pos [4] = 7,10 

pos [5] = 8,7 

pos [6] = 9,8 

 

Step 2.  

 

offspring :     

 

Step 3. 

nearest customer to customer-2 : assign customer-6 to facility-8 if possible  

nearest customer to customer-3 : assign customer-1 to facility-9 if possible 

 

offspring :  

 

Step 4. 

customer-1 :  

 check if it can be assigned to the facility customer-3 is assigned to : NOT 

          POSSIBLE 

 check if it can be assigned to the facility customer-3 is assigned to :  

          POSSIBLE 

offspring :  

 

update pos [1] = 8,8 

 

customer-2 :  already assigned 

customer-3 :  already assigned 

 8 9    

 8 9   8 

8 8 9   8 
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customer-4 :  

 check if it can be assigned to the facility customer-2 is assigned to : NOT 

          POSSIBLE 

 check if it can be assigned to the facility customer-3 is assigned to : NOT 

          POSSIBLE 

 check if it can be assigned to the facility customer-1 is assigned to : NOT 

          POSSIBLE 

 check if it can be assigned to the facility customer-6 is assigned to : NOT 

          POSSIBLE 

 check if it can be assigned to the facility customer-5 is assigned to : NOT 

          POSSIBLE 

assign customer-4 to the facility coming from the better parent (with lower fitness) 

offspring : 

 

update pos [1] = 10,10 

 

customer-5 : 

 check if it can be assigned to the facility customer-6 is assigned to :  

          POSSIBLE 

offspring :   

 

customer-6 :  already assigned 

 

This approach also resembles one of the most common ideas from the beginning of 

the LRP literature which is the “cluster first, route second” heuristics. As the LRPs 

contain so many variables, it is inevitable to treat the problem as the sum of sub-

problems. However, what we are trying to do in our approach is to evaluate the 

goodness of a solution based on the overall objective value of the LRP, instead of  

assessing the overall solution by the goodness of the sub-problems separately.  

 

 

8 8 9 10  8 

8 8 9 10 8 8 
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4.2.4.3 Mutation   

 

The mutation is another way to create new individuals and it is used to maintain 

diversity in the population.  In an ongoing GA, there is always the probability that 

the algorithm can converge too quickly or can be trapped in a local optimum. While 

it is called as premature convergence for early generations, it has a higher risk in 

later generations as the chromosomes are getting alike. To avoid this problem,   

randomly changing some existing chromosomes and maintaining diversity in the 

population is needed and mutation is used for this purpose.  The mutation operators 

used in the literature are mostly in totally probabilistic nature; the most common one 

being the perturbation mutation. The way the perturbation mutation works is to 

choose randomly a chromosome and then one or more genes to mutate. In a binary 

chromosome changing those genes from a 0 to a 1 or vice versa; and in a non-binary 

chromosome changing the selected genes to any possible value would work. 

 

In our solution, instead of using a standard operator, we again prefer to include some 

problem specific issues in the operator to increase the quality of the new individuals 

that will be inserted into the population. But care is to be taken about the use of 

problem specific issue in order not to destroy the randomness principle in the 

mutation. To apply the mutation operator in the algorithm, a sub-routine at the 

beginning of the algorithm must be run first to determine the nearest facility to each 

customer.  Later on, each time the realization of the mutation operator is decided in a 

probabilistic way after the crossover operator, a customer is selected at random and 

the facility it is assigned to is changed with the nearest facility to that customer. In 

this way while conserving the randomness, the quality of the solution is likely to be 

augmented. 

 

With this mutation operator, it is also guaranteed that any infeasible individual will 

not be generated because the nearest facility to a customer should always be in the 

feasible set of facilities for that customer. If not, this means the set of feasible 

facilities for that customer is empty as any farther facility should not be able to 
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satisfy the three conditions defined while determining the feasible assignment set. In 

this case, the algorithm just stops at the beginning explaining that  a customer has no 

facility to be assigned to in a feasible way in the hard time-window environment so 

there is no feasible solution for this problem instance.   

 

4.2.4.4 Replacement 

 

As the rational behind GA is to produce new individuals from the existing ones in 

order to improve the best solution found till that time by inserting them into the 

population and considering them as parents for the genetic operators, the strategy to 

update the population members (inserting the offspring and deleting some existing 

individuals in the population) is an important issue to decide. In the literature, there 

exist two main strategies depending on the generation gap for this phase of GA. The 

generation gap is the proportion of individuals in the population, which are replaced 

in each generation. The first strategy is the use of a generation gap equal to ‘1’, 

which is the case of replacing the whole population in each generation. This is called 

generational or non-overlapping replacement. To avoid the loss of good individuals 

while generating a totally new population, an elitist strategy which directly passes a 

number of most fit individuals to the next generation is incorporated with 

generational replacement and applied with operators like cloning. The second 

strategy is to replace only a few individuals in each generation which is called 

steady-state or overlapping replacement. While inserting a few individuals into the 

population, it is also a point of concern to decide on the individuals to replace in the 

existing population with the new ones. For this choice, a number of methods are 

applied, like replacing randomly chosen ones, replacing the worst ones, replacing the 

oldest ones, replacing the parents or choosing by Kill Tournament. A comparative 

study on the alternatives (Smith and Vavak, 1999) declares the benefits, deficiencies 

and the effects on the computational effort for these methods. Exact Markov models 

for some and approximate models for some of the replacement strategies are 

evaluated in this study and with the help of simulations, general conclusions for 

different strategies are drawn.  
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Although there is no evidence that one strategy is strictly better than the other; the 

experimental work in Syswerda (1991) has resulted on the following advantages of 

the steady-state replacement:  

• Letting new fit individuals immediately join the population and be ready for 

reproduction, while preserving the best individuals from the previous 

generation.  

• Obtaining better results in less time.  

•  Imposing the condition that identical individuals are not inserted so that the 

copies of individuals are not present in the population 

 

Evaluating all the theoretical and experimental work in the literature and with the 

above advantages, in our work we choose to apply steady state replacement without 

duplicates. In a problem with large solution space as LRPTW, it is thought to be 

advantageous to insert a good solution immediately in the population. The new 

individual generated at the end of the reproduction phase is inserted in the population 

if 

• its copy is not included in the population  

and 

• it is better than the worst individual in the population. 

 

To insert the new individual, the worst individual in the population is deleted. 

 

4.2.5 Parameter Determination 

 

Besides the above-mentioned issues important for the GA application, there are two 

other important parameters: population size, and crossover & mutation rates. The 

reason to mention these under the same topic is that they are dependent on each 

other.    The studies, Goldberg (1989), Schaffer et al. (1989), Fogarty (1989) and 

Davis (1989), all comment on those parameters and the relations between them.  
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Population size gives the number of individuals in a population, which is constant 

throughout all generations, while crossover and mutation rates determine the 

frequency for applying those operators.  

 

The first factor to decide on the population size is the length of the chromosomes. 

Some linear or exponential relations are developed between the chromosome length 

and the population size. However, applying those relations for long chromosomes 

can result in impractically large population sizes. The mostly supported idea is the 

use of a population size in the range [n, 2n] for a chromosome of length n. 

 

In general, while small populations can converge too quickly without sufficient 

exploration of the search space, very large populations lead to long waiting times for 

significant improvements. To balance those effects, higher crossover and mutation 

rates are recommended for small populations while lower rates can be used with 

larger populations. 

 

Also when the “steady-state replacement” and “replace worst” strategies are chosen, 

large populations are preferred to avoid premature convergence. 

Another point is to use varying mutation rates in accordance with the needs of the 

generations. In earlier generations, as the diversity is high and the individuals 

represent solutions scattered over different areas in the search space, what is needed 

is to find good solutions to continue with and make use of the knowledge stored in 

them. However, in later generations, the search narrows as the convergence begins 

and what is needed is to explore different regions not to get trapped to local 

optimum. To satisfy these differing needs, use of low mutation rate in earlier 

generations and higher mutation rates in later generations seem to give more efficient 

results.    

 

Based on the above-mentioned ideas in the literature, we determined the parameter 

values in our study. As it can be seen in some of the studies, a crossover rate equal to 
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‘1’ is used. This means that any two individuals chosen as parents mate. As we 

repeat the reproduction for a great number of times, it is possible to let any pair of 

parents to continue with mating. In addition a varying mutation rate is decided to be 

applied. The mutation ratio varies from 0.05 to 0.2. These ratios may seem a bit high 

for mutation, however, they are chosen so due to the fact that unlike a classical two-

point crossover operator, our operator generates the same offspring each time the 

same individuals are chosen as parents and diversity is more emphasized by 

mutation. 

 

The population size in our experiments varies with regard to the size of the problem 

(the number of customers and potential facility sites). However, the large solution 

space does not allow us to work with small populations, although it is 

computationally expensive. The values used as population size and why it is 

preferred to work with such populations are also discussed in Chapter 5.   

 

4.2.6 The Overall Algorithm 

 

The key concepts are designed as explained above in detail. The following four steps 

summarize the overall genetic algorithm-based heuristic procedure: 

 

Step 1. Read the required data and generate the initial population 

Step 2. Decode each chromosome in the initial population and evaluate the fitness 

function for each 

Step 3. Calculate the population statistics 

Step 4. Until the predetermined stopping criterion is satisfied: 

4-a Select parents from the population, 

4-b Apply the genetic operators, 

4-c Evaluate necessary checks for the offspring, calculate its fitness value and 

insert into the population if appropriate, 

4-d Update population statistics. 
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The only sub-routines not explained in detail are the calculation of population 

statistics. Being standard procedures, they are finding the best and worst fitness 

values and individuals, and the average fitness value in the population. The 

information about which individual is the worst is used to determine the individual to 

delete during replacement and the information about which individual is the best 

helps to find the globally best solution through the runs.    

 

The flowchart at the end of the chapter also summarizes our algorithm. 

 

The algorithm is coded in C++. The whole code is not presented; but the 

pseudocodes for the main body and for each procedure in the main body are given in 

Appendix C in detail. 
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Figure 4.3 The Flowchart of the Algorithm 
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Figure 4.3 (cont’d)
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CHAPTER 5 

 

 

MODEL TESTING AND COMPUTATIONAL STUDY 

 

 

In this chapter, the goal is to evaluate the accuracy and validity of the proposed 

methodology for the LRP with time windows for the customers and shift times for 

the potential sites. This evaluation consists of three phases:  

(i) Finding or generating the appropriate set of problem instances for the problem 

environment  

(ii) Determining the appropriate solution method  

(iii) Realizing the computational studies on the test problems with both our approach 

and the comparison method. 

 

5.1 Test Problem Structure and Data 

 

As described in Chapter 2, the elements of the problem environment that we deal 

with can be summarized as follows:  

 

� Supply source locations 

� Potential sites for uncapacitated facilities  

� Capacity breakpoints which determine the type of the facility 

being opened 

� Shift time intervals for the potential facilities 

� Vehicles with capacities  

� Customers with location coordinates, demand quantities, earliest 

service times (ready times), latest service times (due times) and 

service times related with the deliveries 
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� Cost parameters including the fixed and variable costs for 

potential facility sites and vehicles 

� Cost parameters for transportation 

 

Search on the test problems that exactly represent our environment unfortunately 

gave no results. This caused us to work on generating an appropriate set of data for 

testing the methodology that we propose.   

 

The most commonly used test problems are those of Solomon’s (Solomon, 2005) for 

the VRPTW. The customer related information including coordinates, demand 

quantities, time windows and service times and vehicle capacities for each instance 

could be supplied from those problems and we have decided to use those by 

completing other aspects of the problem environment. 

 

In Solomon’s problems, the geographical data are randomly generated in instances of 

R1 and R2, clustered in instances of C1 and C2, semi-clustered in RC1 and RC2. 

Problem instances R1, C1 and RC1 have a short planning horizon, while R2, C2 and 

RC2 have longer horizons. Along with the capacity of the vehicles, the scheduling 

horizon affects the number of customers a vehicle can serve. Solomon (2005) and 

Solomon (1987) could be referred to for the generation and properties of the problem 

sets. The geographical and demand data are identical within a class, but the 

difference between those groups is the time window structure (i.e. in R1 and R2, the 

customer locations and demand data are the same, but the time windows are short in 

R1 and longer in R2). Each group consists of instances ranging from 8 to 12 with 

differing time windows. The instances include 100 customers’ data; but smaller 

problems are also created from them considering only first 25 or first 50 customers. 

 

However, the data from Solomon’s problems lack two important issues. First, each 

problem instance has only one facility site as they are VRPTW instances, but not 

LRP instances. Second, as the objective function in a VRPTW may be represented as 

minimizing the total distance traveled or minimizing the number of vehicles, no cost 
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parameters to cover both location and routing costs are present in those problems. So 

these issues have needed further study. 

 

The test problem generation techniques in previous studies on LRP (the ones which 

are listed in the references) are all examined. The number and locations for potential 

sites and supply sources are determined in accordance with most of the studies in the 

literature. The cost data are supplied mainly based on Perl (1983), Perl and Daskin 

(1984), Perl and Daskin (1985) and Wu, Low and Bai (2002).  

 

The details of the problem instances can be found in Appendix D, but below is the 

proposed test problem structure in our study: 

 

5.1.1 Locations and Capacities 

 

The general issues applied in the problems are defined below. In addition, the data 

for customers and facilities are given in Appendix D.  

 

The number of customers:  25, 50 and 100. Different sized problems are based on 

Solomon’s problems as explained above. To evaluate the results of  the algorithm on 

different problem sizes, all three sizes are used. 

 

The number of potential sites:  5 potential sites for 25 customers, 10 potential sites 

for 50 customers and 15 potential sites for 100 customers exist in the test problems.   

 

The capacity of potential sites: The potential sites are uncapacitated. 

  

The number of supply sources: The algorithm has the capability to handle a                                       

number of supply sources,  but as the supply sources are uncapacitated, this is not a 

critical point. In order to avoid unnecessary complexity, the number is limited to one. 
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The locations of the customers: The coordinates of customers are from Solomon’s      

test problems. The distances between nodes are calculated as Euclidean distances and 

travel times are taken as equal to corresponding distances.  

 

The locations of potential sites: The general approach is to generate the nodes in 

[0,100]2 according to a uniform distribution. The potential sites are generated 

accordingly. The generated nodes are given below. The first 5 or 10 sites or  all of 

them can be used according to the problem size. 

 
 
 
Table 5.1 The Coordinates for the Potential Facility Sites 
  

 x coordinate y coordinate 

P1 30 94 

P2 3 27 

P3 31 1 

P4 85 21 

P5 14 76 

P6 85 41 

P7 32 28 

P8 54 16 

P9 73 41 

P10 55 5 

P11 39 86 

P12 99 10 

P13 8 98 

P14 65 43 

P15 24 58 

                                 
 
 
The location of supply source: The supply source is located outside the region 

[0,100]2.  Point (130,130) is where the supply source is located. 

 

The demands of customers: The values given in Solomon’s test problems are used.   
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The time windows of customers: The values given in Solomon’s test problems are 

used.  

 

The shift time of potential sites: In Solomon’s test problems, a depot and the ready       

and due times are present for each test problem environment. While increasing the 

number of the potential sites, the shift times are preserved and the same planning 

horizon is valid for each potential depot site. 

 

The number of vehicles: In Solomon’s problems, there is an upper bound on the 

number of vehicles but not necessarily used in our environment. 

 

The capacity of vehicles: As in Solomon’s problems (Solomon, 2005), a homogenous 

vehicle fleet for each instance is used, but the capacities differ among instances. The 

capacities specific to instances are also given in the Appendix D for each instance. 

  

5.1.2 Cost Parameters 

 

Fixed cost for potential sites:  As the warehouses are uncapacitated, to determine a 

unique fixed cost for all sizes is not suitable. So the fixed cost function is a step 

function. The fixed costs are  

� 700, 1100, 1400 for 25-customer instances 

� 1400, 2200, 2800 for 50-customer instances 

� 2800, 4400, 5600 for 100-customer instances 

 

In addition, the total demands in classes R, C, RC are different. Regarding the total 

demands in problem instances, with 25, 50 or 100 customers, the ranges of the 

function can be defined as in the following table: 
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Table 5.2 The Capacities for Three Sizes of Facilities for Different Problem Types 
 

Nature of Customer Locations   
                      Random  Clustered Random-Clustered 

Size-I total flow < 120 total flow < 160 total flow < 180 

Size-II 120 < total flow < 220 160 < total flow < 300 180 < total flow < 340 25 customer 

Size-III 220 < total flow 300 < total flow 340 < total flow 

Size-I total flow < 250 total flow < 300 total flow < 320 

Size-II 250 < total flow < 500 300 < total flow < 600 320 < total flow < 640 50 customer 

Size-III 500 < total flow 600 < total flow 640 < total flow 

Size-I total flow < 525 total flow < 650 total flow < 600 

Size-II 525 < total flow < 1025 650 <total flow < 1250 
600 < total flow < 

1150 
100 customer 

Size-III 1025 < total flow 1250 < total flow 1150 < total flow 

 
 
 
Here total flow defines the sum of demands of customers assigned to the facility. 

 

These fixed costs seem logical as they support the known fact that opening more 

facilities increases the fixed costs for depots. They also show economies of scale. 

 

Fixed cost for vehicle:    In Wu, Low and  Bai (2002), a fixed vehicle cost is added to 

the  parameters of Perl’s (1983) problem environment. Similar to that paper, we use 

fixed vehicle cost as $30. 

Variable facility cost:  Similar to Perl’s environment, it is taken as $0.75/unit. 

 

Variable vehicle cost: Considering the variable vehicle cost and the distances in 

Perl’s environments, the variable vehicle cost is determined to be $12/mile in our 

environment. 

Variable transportation cost from supply source to facilities:  It is taken as 

$0.10/mile/unit (by economies of scale). 
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5. 2 The Method Used in the Evaluation 

 

There are a number of ways to test the goodness of a heuristic; some of which are:  

 

♦ The model can be tested on a problem for which the optimal solution is 

known. 

♦ The performance of the model can be compared to that of other heuristic 

models or the best-known results in the literature developed for the same 

problem. 

♦ It may be possible to develop an expression for the worst case behavior of 

the heuristic. 

♦ The results from the heuristic can be compared to a lower bound on the 

optimal solution by relaxing some constraints of the problem or to an upper 

bound.  

♦ Some probabilistic and statistical analyses may be carried out. The 

probabilistic analysis supposes a probability distribution of problem data to 

establish statistical properties of a heuristic. The statistical analyses are 

based on estimating the point or interval the optimal value is located with 

regard to a series of iterative solutions (Zanakis and Evans, 1981).  

 

Unfortunately for the problem we deal with, the alternatives above are not very easy 

to implement. 

 

The mathematical model of the problem is given in Chapter 3. However, with so 

many variables and constraints, both the non-linear and the linear models are 

practically impossible to solve with the mixed integer programming and mixed 

integer non-linear programming solvers available. First trials on the non-linear model 

are realized with GAMS IDE 2.0.13.0. However, the non-linear mixed integer 

problem solvers DICOPT and SBB in GAMS IDE are in demo version at METU and 

are not capable of handling reasonable problem sizes. 
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Then the linear model is used to get optimal solutions for the problem. The model is 

coded with C programming language. However, obtaining optimum was not also 

possible for our test problems for 25 customers or more. Our trials to obtain the 

optimal solution are shown in section 5.3.3 along with the other computational 

studies. It is seen that this is not a valid comparison method as we cannot obtain 

solutions for the test problems. Consequently, comparing the results of our heuristic 

with the optimal solutions is not possible.  

 

Another problem faced to evaluate the quality of the proposed heuristic is the 

rareness of the studies on exactly our problem environment. Although there exist a 

number of studies in the LRP literature, the time windows for customers are not 

considered in those studies. So it was not possible to use neither some results 

obtained by other heuristics or some predetermined test problem instances. 

 

The worst case behavior is easy to determine for simple heuristics but for complex 

ones, such estimates will not be sufficient to evaluate the efficiency of the heuristic. 

As reported in Ball and Magazine (1981), some worst case bounds may be too loose 

for a good justification. 

 

Probabilistic or statistical analysis may not produce good solutions in every problem 

type. Probabilistic analysis tends to consider the probabilistic space which contains 

unrealistic situations. Statistical analysis is not preferred in cases where the true 

optimal is not known a priori. 

 

Considering all of those, in order to evaluate the accuracy of the proposed 

methodology, we have decided to use a sequential approach for the comparison. This 

approach consists of handling the problem by solving two subproblems sequentially. 

Test problems are solved to obtain an upper bound on the objective function in a 

sequential manner as well as with the methodology proposed in this study. The 

sequential approach is used also in many studies as a benchmark because it is 
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accepted as a method to yield very accurate solutions (Srivastava and Benton, 1990; 

Min,1996; Haimovich and Rinnooy, 1985). 

 

The sequential approach is based on the structure of LRP. Also mentioned before, 

this problem could be decomposed into subproblems in a number of ways. In the 

sequential approach we first solve a constrained location-allocation model to 

optimality by ILOG CPLEX by coding the model in C programming language and 

then determine the routes for each open facility by ILOG Dispatcher via a code in 

C++. The mathematical formulation of the location-allocation model is presented 

below. 

 

Sets 

 

I   set of customers                                                           i = 1,…,n 

J   set of potential sites                                                     j =  n+1,…,m  

S  set of supply sources                                                    s =  m+1,…,p 

L  set of potential site types (according to the capacity)  l =  1,…,t 

 

Parameters 

 

Di      demand of customer-i   (unit)  

dgh    distance between sites g and h ; JIhSJIg ∪∈∪∪∈ ,   

Cl    capacity of a potential site of type-l  (unit) 

FCl     fixed cost of a potential site of type-l  

VC    variable cost of a potential site 

TC    transportation cost from any facility site to any customer or between     

             customers (per unit distance) 

tc    transportation cost from any supply source to any facility site (per unit   

              distance per item) 

h     the time it takes for vehicle-k to cross a km  

eg    the earliest service starting time of site-g ; JIg ∪∈    
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seg    the required service time of site-g ; JIg ∪∈  

lag    the latest service time for site-g ; JIg ∪∈  

 
Variables 
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jij ZSY ≤                                    Ii∈∀ , Jj∈∀                                                     (5.3) 

 

∑ ∑
∈ ∈

=−
Ss Ii

ijisj YDq 0                    Jj∈∀                                                               (5.4) 

 

∑ ∑
∈ ∈

≤−
Ii Ll

jlliji ZCYD 0              Jj∈∀                                                               (5.5) 
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∑
∈

=
Ll

jjl ZSZ                           Jj∈∀                                                              (5.6) 

 
( ) 0≤−+ ijiiij Ylasedh                  Ii∈∀ , Jj∈∀                                                  (5.7) 

 
( ) 0≤−++ ijjjiiij Yladhsedh     Ii∈∀ , Jj∈∀                                                  (5.8)  

 
( ) 0≤−++ ijjjiii Yladhsee         Ii∈∀ , Jj∈∀                                                   (5.9) 

 

 Zjl, ZSj, Yij   binary                      IiLlJj ∈∈∈ ,,                                               (5.10) 

0≥sjq                     JjSs ∈∈ ,                                                       (5.11) 

 
The objective function (5.1) presents the sum of costs to be minimized. The first term 

stands for fixed facility costs and the second term stands for variable facility costs, 

which depend on the flow through that facility. The third term is for the outbound 

transportation costs. As there are no routing considerations in the location-allocation, 

the last term represents the inbound transportation costs via direct shipment.  It is 

assumed that a single vehicle leaves for each delivery and the cost is calculated on 

the basis that if a customer is assigned to a facility; the cost of the delivery is equal to 

the distance between those two points multiplied by the cost of a unit distance.  

Taking into account the two ways - both going to the customer and returning back to 

the facility - this cost is also multiplied by 2.      

 

Constraint (5.2) requires that each customer is assigned to a single facility and 

constraint (5.3) assures that each customer is assigned to an open facility. Constraint 

(5.4) and (5.5) show the equality between the quantity of goods that enter the facility 

and that leave the facility. Also the capacity of the type of the facility that is being 

opened is sufficient for supplying the demands of customers assigned to that facility. 

Constraint (5.6) is used to guarantee that at most a single type of facility is opened at 

any potential site. 

 

Constraints (5.7), (5.8) and (5.9) are additional constraints to a classical location-

allocation model, because of the shift time and time windows. Without those 
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constraints, time windows can not be considered in the model at all; then 

assignments for impossible deliveries within time windows may be done and the 

result obtained by the sequential method turns out to be infeasible. In fact it is the 

significant drawback of such a sequential method. But in order to obtain a good 

upper bound for comparison without falling in infeasibility, we have added these 

three constraints and allowed any feasible assignment even in cases in which a route 

can not be constructed including more than one delivery, but a vehicle can serve a 

single customer.  

 

Constraints (5.10) and (5.11) define positive and binary variables.  

 

After this model is solved, the location and allocation variables are taken as input for 

the second phase, for the VRPTWs, which are solved in the same way as in the 

genetic algorithms, that is, by using ILOG Dispatcher. The explanations on ILOG 

Dispatcher 4.2 are in Appendix B. The total cost is obtained by omitting the direct 

shipment costs from the objective value of the mathematical model and summing up 

the routing costs instead.  

 

5.3 The Evaluation of the Proposed Approach 

 

In this section, some discussions on different aspects of the proposed solution 

methodology are presented. First some genetic algorithm parameters and the 

effectiveness of the problem specific crossover operator are discussed. Later, after 

presenting some runs to obtain the optimum solution for LRPTW and explaining 

why it is not possible to use this approach for larger problems; the comparison of the 

proposed algorithm against the sequential method is examined. A final discussion is 

on how the genetic algorithms work and how the solution is improved through a run. 

 

Through all this work the mathematical models are solved by CPLEX 8.1.0 on 

Pentium IV 1.6 GHz processor and 512 MB RAM running on Windows NT. Our 
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algorithm and the routing phase of the sequential approach are run on a computer 

with Pentium IV 2.4 GHz processor and 512 MB RAM running on Windows XP.   

 

In most of the trials, instance “mr101_25” was the most widely used instance. A 

problem instance can be defined by the characteristics such as the structure of 

customer locations, the length of the planning horizon, the tightness of the time 

windows and the number of customers and potential sites. This instance contains 25 

customers and 5 potential facility sites. The locations of customers are random, not 

clustered. It is the modified version of the Solomon’s instance r101 with the increase 

in the number of potential sites. The vehicle capacities are not too high and the 

planning horizons are short. This case has nothing special or is not selected on 

purpose, however it is just used so frequently when a randomly generated case is 

needed.  

 

 5.3.1 Preliminary Work on the Population Size and the Number of Maximum 

Generations 

 

As explained in Chapter 4, the population size and number of generations are two 

important parameters that are effective in determining the quality of the solution 

obtained from the genetic algorithms. Unnecessarily increasing these parameters is 

not preferred, as the computational effort needed also increases; however, limiting 

them to insufficiently small numbers causes not to evaluate the capability of the 

method properly. So, before testing the proposed approach on a number of test 

problems, we have spent some effort on determining the appropriate parameters. 

 

Most of this work is done on 25-customer problems. The conclusions obtained from 

those trials has given a general perspective on determining the parameters for also 

larger problems, so the whole evaluation realized for small problems is not repeated.  

 

We have started with small population sizes and small number of generations. We 

have progressed by increasing these parameters as long as it is not computationally 
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very expensive and the objective value is improved. Moreover, for increasing the 

parameters, the additional computational effort should be worth the improvement in 

the objective value. Some of our trials on some problem instances and the discussion 

on the parameters are given below.  

 

Problem instance mr101_25 

 
The characteristics of instance mr101_25 are already described. The results obtained 

on this problem instance with different parameter sets are given in Table 5.3, 5.4, 5.5 

and 5.6. 

 
 
 
Table 5.3 Results for instance mr101_25 for Population Size=100 & Number of 
Generation=250 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 15162 332.31 

run 2 15627 217.45 

run 3 15132 165.36 

run 4 16042 3600 

 
 
 
Table 5.4 Results for instance mr101_25 for Population Size=300 & Number of 
Generation=500 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 15627 445.57 

run 2 15587 406.78 

run 3 15627 365.54 

run 4 15627 406.56 

run 5 15873 464.42 

run 6 15587 421.35 

run 7 15610 411.78 

run 8 15177 407.7 

run 9 15162 405.54 

run 10 15327 420.89 
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Table 5.5 Results for instance mr101_25 for Population Size=500 & Number of 
Generation=850 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 15162 769.78 

run 2 15162 737.87 

run 3 15162 747.92 

run 4 15327 756.87 

run 5 15162 773.37 

run 6 15627 766.31 

run 7 15516 771.45 

run 8 15327 770.14 

run 9 15162 764.28 

run 10 15362 763.39 

 
 
 
Table 5.6 Results for instance mr101_25 for Population Size=600 & Number of 
Generation=1000 
 

  
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 15162 844 

run 2 15320 845.64 

run 3 15162 915.62 

run 4 15162 934.31 

run 5 15162 928.96 

run 6 15177 902.57 

run 7 15138 860.57 

run 8 15433 830.32 

run 9 15627 839.56 

run 10 15162 829.75 

 
 
 
Problem instance mrc207_25 

 
The instance is the extended version of Solomon’s instance rc207 with a higher 

number of potential facility sites. It contains both random and clustered locations for 

25 customers. The instance represents the case where the vehicles have high 

capacities and the planning horizon is neither too long nor too short. The results 

related with this instance are in Table 5.7 and 5.8.  
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Table 5.7 Results for instance mrc207_25 for Population Size=500 & Number of 
Generation=850 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 11254 736.46 

run 2 11254 706.29 

run 3 11254 677.03 

run 4 11254 681.79 

run 5 11782 705.32 

run 6 11254 728.82 

run 7 11254 673.45 

run 8 11254 704.12 

run 9 11254 698.09 

run 10 11254 702.65 

 
 
 
Table 5.8 Results for instance mrc207_25 for Population Size=600 & Number of 
Generation=1000 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 11254 805.12 

run 2 11254 748.68 

run 3 11254 748.65 

run 4 11254 712.06 

run 5 11254 964.79 

run 6 11254 768.42 

run 7 11254 836.89 

run 8 11254 868.04 

run 9 11254 713.07 

run 10 11254 846.37 

 
 
 
Above are the results on some arbitrarily chosen instances. The parameter pair 

(population size, number of generations) was first taken as (100,250) and seemed to 

reach good solutions. However the 4th run showed an important deficiency of small 

population size especially with our crossover operator. Unlike a single / two point 

crossover operator where the crossover point probably changes each time and a 

different offpring is generated even if the same individuals are chosen as parents; if 

the two parents are the same, the problem specific crossover operator gives the same 
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offspring so it needs to choose different parents for diversity. Since the size of the 

search is limited, it was expected that the runs would last short as it was the case with 

the first three runs. The probabilistic nature of GA allowed some of the runs to result 

in a normal way, but in the 4th run, an important issue was observed. Because of the 

criteria to accept a new individual to the population (that is, the new individual to be 

inserted must not exist in the population) that should be better than the worst 

individual in the population, it was difficult to find appropriate new individuals with 

reproduction in that small population size especially after the generation 200. The 4th 

run did not finish but was terminated at the end of 3600 seconds, which is at least 10 

times the reasonable duration, and we decided that those parameters are not 

appropriate. Then some trials with (300, 500), (500,850) and (600, 1000) were 

realized. Being both reliable enough for a problem of this size and giving satisfactory 

results; it was decided that the runs for 25 customer problems would be done with 

population size of 500, number of generations of  850. 

 

Problem instance mr101_50  

 
This is the 50-customer version of instance r101; all the other characteristics being 

the same. The results on this 50-customer instance are presented in Table 5.9 and 

5.10. 

 
Presenting some of the results below; with the same criteria to decide, population 

size 1000 & number of generations 2000 for 50 customer problems and population 

size 4000 & number of generations 10000 for 100 customer problems were accepted. 

The non-linearity of the increase of parameters versus the number of customers can 

easily be associated with the non-linear increase in the problem size and the search 

space when the number of customers increases. 
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Table 5.9 Results for instance mr101_50 for Population Size=1000 & Number of 
Generation=1750 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 28903 2926.43 

run 2 29066 2829.42 

run 3 28831 2832.84 

run 4 28785 2878.87 

run 5 29218 2879.89 

run 6 28553 2885.42 

run 7 29172 2852.06 

run 8 27710 2810.54 

run 9 28729 2849.53 

run 10 27068 2825.51 

Average of 
10 runs 28603.5  

 
 
 
Table 5.10 Results for instance mr101_50 for Population Size=1000 & Number of 
Generation=2000 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 27628 3006.42 

run 2 28057 2981.9 

run 3 28150 3066.73 

run 4 28031 2959.29 

run 5 27966 3020.92 

run 6 27345 2972.31 

run 7 26853 3004.48 

run 8 28125 2959.71 

run 9 28734 3055.51 

run 10 27840 3056.17 

Average 
of 10 runs 27872.9  

                                  
 
 
5.3.2 The Effect of Problem Specific Operators versus Classical Ones   

 

The crossover and mutation operators proposed in this study possess problem 

specific features. It is always emphasized that these problem specific operators can 
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reach better solutions by combining the nature of GAs and the effects of problem 

related knowledge. As the location routing problem with time windows is a complex 

and difficult problem, we work on problem specific crossover and mutation operators 

and embed them into the GA framework. As these operators proposed here are not 

applied in any earlier study, we think that it would be informative to evaluate their 

efficiency.  

 

For this purpose; we have coded a classical crossover and a classical mutation 

operator and realized some runs with them.  The crossover operator is a single point 

crossover operator. The crossover point is chosen randomly and the right and left 

parts of the parents are exchanged to produce two offspring. The mutation operator 

selects a gene randomly and changes it with another randomly chosen feasible 

facility for the related customer. In order to remain in accordance with the problem 

specific operator, in each generation a single new individual should be inserted to the 

population. So after the crossover is realized, each of the offspring goes through the 

mutation phase and may be mutated with regard to the mutation rate. Then better of 

the two offspring is accepted as the new individual and inserted to the population. 

The checks for not inserting a duplicate of an already existing individual in the 

population and for inserting a new individual if it is better than the worst one in the 

population are still valid. 

 

The experimental trials are realized on instance mr101_25. The results of the 

alternative GA algorithm with already known operators are so far from our results, so 

the following 5 runs were decided to be sufficient to come up with an idea on the 

problem specific operators. The data related to 10 runs of the same instance with our 

operators are already presented above in Table 5.5. The results of 5 runs with the 

known operators are shown below. Population size is 500 and the number of 

generations is 850 in these trials. 
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Table 5.11 Results Obtained with the General Crossover and Mutation Operators for 
Instance mr101_25 
 

 
Objective value for 
the best solution 

Computational 
time (sec.) 

run 1 19835 1203.50 

run 2 20998 1269.09 

run 3 20080 1259.37 

run 4 19521 1224.09 

run 5 21458 1227.29 

 
 
 
While the results with our operators change between 15162 and 15627 as given in 

Table 5.5, the results with the general operators change between 19521 and 21458. It 

is obviously seen that the known operators do not perform well for our problem 

environment. The evolutions of the averages of the populations when treated with 

those operators are also examined. 

 

The Figures 5.1 and 5.2 present the improvement in a population with the problem 

specific or the generally known operator. The graphs for other runs of the same 

classification are similar to those presented here. 

 

With the generally used operators, the best individual of the population is hardly 

improved through generations and the improvement in the average of the whole 

population can be observed from the below figures. When the nature of the routing 

issue is considered, it is seen that any arbitrarily chosen allocation scheme would not 

be promising to decrease routing related costs. By integrating the problem specific 

knowledge, we have supported the general flow of GA to produce offspring that are 

probable to represent good solutions in terms of total costs and as seen from the 

difference between the results, this highly improves the performance of the genetic 

algorithm application on location routing problems with time windows.  

 

Choosing good parents does not mean much with a one-point crossover because with 

regard to the crossover point, all the good allocations in the parents that lead to low 
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costly routes may deteriorate and very costly routes can be constructed in the 

offspring. But in our crossover operator, we have tried to produce routes using the 

knowledge carried by the parents for neighborhoods of customers. Consequently the 

application we have proposed seems effective and also supports the generally 

accepted theory that problem specific information improves the effectiveness of 

genetic algorithms.   
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Figure 5.1 The Evolution of the Population through Run4 with General Operators 
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Figure 5.2 The Evolution of the Population through Run1 with Problem Specific 
Operators   
 
 
 
5.3.3 Trials on Obtaining the Optimal and Comparison with Optimal for an 

Example Case  

 

Before deciding on the sequential approach as the comparison method, we tried to 

obtain the optimal for the test problems and compare our results with them. 

However, it has been observed that with the software and hardware configuration 

available, it is not possible to solve problems of size 25 customers or more to 

optimality because of the number of variables and constraints. In addition there was a 

significant increase in the computational time even with a small increase in the 

number of system elements. Besides all, with the aim of examining some results 

obtained by solving the mathematical model along with the results of the proposed 

approach and being able to comment on the computational time for larger problems, 

the below trials on some small problems are realized.  



 98 

The instance mr101 is chosen as the baseline case. The small test instances are 

generated choosing the first desired number of customers and potential sites from 

this instance. The cost parameters are the same with the 25 customer problems, but 

the only difference is that the capacity limits for three types of facilities are adjusted 

according to the total demand in the system. Another issue to mention about the 

problems below is related to the number of vehicles. Although there is no limit on 

the number of vehicles in our problem environment, the below instances are 

generated varying the number of vehicles. It is observed that increasing the number 

of vehicles has a significant effect on the computational time, as increasing the 

number of customers or potential sites has. To examine this effect, the small 

instances are generated as in Table 5.12 :  

  

 
 
Table 5.12 The Variation of the Computational Time with regard to the Problem 
Size 
 

Instance 
Number of 
customers 

Number 
of 

facilities 
Number of 
vehicles 

CPU time 
(sec.) Status 

1 8 2 4 344.96 Optimum obtained 

2 8 2 8 237284.6 
Error: Out of memory. A 

feasible integer solution with 
the gap 27.74% is obtained 

3 8 3 4 3216.38 Optimum obtained 

4 8 3 8 249713.3 
Error: Out of memory. A 

feasible integer solution with 
the gap 23.14% is obtained 

5 10 3 10 341016.4 
Error: Out of memory. A 

feasible integer solution with 
the gap 52.33% is obtained 

 
 
 
It is obvious that for problems of size 25 customers or more, this is not a valid 

comparison method. Yet, instances 2, 4 and 5 where we could obtain a feasible 

solution are solved also with the GA based heuristic and the sequential approach for 
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comparison.  The results are presented in Table 5.13. Though this comparison is 

presented to gain further insight, it must still be considered that a comparison of the 

optimum, sequential method and GA based heuristic for a problem of very small size 

in fact might not be totally sufficient to predict the gap among them for large 

problems. 

 
 
 
Table 5.13 The Comparison of the Results Obtained by GA-based Heuristic with  
CPLEX Results and with Sequential Approach Results 
 

Instance 
Result by 
CPLEX 

MIP Best 
Bound 

The gap of 
the 

solution by 
CPLEX 

CPU time 
for CPLEX 
solution 
(sec.) 

Result by 
the 

sequential 
approach 

Result by the 
best run of 
the GA based 
heuristic 

Average 
CPU time 
for a  GA 
run (sec.) 

2 7518.94 5433.53 27.74% 237284.6 6553 6553 15.87 

4 6909.21 5310.69 23.14% 249713.3 6526 6526 182.24 

5 8204.59 3911.15 52.33% 341016.4 8153 8153 330.6 

 
 

 

The runs for instance 2 are realized with (population size=15, number of 

generation=20); the runs for instance 4 are realized with (population size=400, 

number of generations=500) and (population size=400, number of generations=600); 

the runs for instance 5 are realized with (population size=300, number of 

generations=300) and (population size=500, number of generations=500). Here it is 

worth noting that the number of feasible solutions is significantly small compared to 

the number of feasible solutions for a 25-customer problem, so it is possible to work 

with smaller populations. Especially for instance 2; a population size within 2n 

individuals is sufficient where n is the length of the chromosome. 

 

The results also show that the GA based algorithm is giving satisfying solutions 

compared to the results obtained by the mathematical model. In addition, as observed 
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from the related columns, the results obtained by the sequential approach and the 

GA-based heuristic are the same.  

 

5.3.4 Comparison of the Algorithm with the Sequential Approach 

 

In order to evaluate the quality of our solution approach, the results of the runs we 

realized with the GA based approach are compared with the results obtained with the 

sequential method explained in detail in section 5.2. The Tables 5.14, 5.15 and 5.16 

summarize this comparison by grouping the problems according to the problem size.  

 

In those tables, “improvement by the GA based heuristic” is calculated as “(Obj. 

value by the Seq. App.) - (Obj. value of the best GA run )”  and the “%improvement 

by the GA based heuristic” is calculated as “((Imp. by the GA based heuristic ) / 

(Obj. value of the Seq. App.))*100” .  

 

Moreover, because of the probabilistic nature of genetic algorithms, each problem is 

solved more than once, 10 or 20 times. These runs and the results are all recorded. 

The terms “best GA run” and “average cost value obtained by the GA runs” are used 

for representing the run with the smallest objective value and the average of the all 

runs related to that problem, respectively.  

 

To observe the differences between the results, the Figures 5.3, 5.4 and 5.5 can also 

be examined.  

 

As it can be observed from the above tables and figures; the approach we have 

proposed has proved to be successful regardless of the problem characteristics and 

the problem size. As expected, the computational time of a run does not increase in a 

linear proportion when the customer size is doubled. It is observed that when the 

customer number increases from 25 to 50, the duration of a run approximately 

increases 4 times; and when the customer number increases from 50 to 100, the 

duration of a run increases approximately 8 times.  
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Table 5.14 Results for Problems with 25 Customers  
 

Instance Result by the 
sequential 
approach 

Result of 
the best GA 

run 

Improvement 
by the GA 
based 
heuristic 

% 
improvement 
by the GA 
based 
heuristic 

Average 
CPU time 
for a GA 
run (sec.) 

Average 
cost value 
by the GA 
runs 

mr101_25 15717 15162 555 3.53 762.14 15296.9 

mr205_25 13172 11453 1719 13.05 644.12 11636.2 

mc109_25 10842 10333 509 4.69 737.80 10336.5 

mc206_25 11348 10869 479 4.22 714.75 10878.2 

mrc103_25 13623 13113 510 3.75 762.29 13113.0 

mrc207_25 13199 11254 1945 14.73 701.70 11306.8 

 
 
Table 5.15 Results for Problems with 50 Customers 
 

Instance 

Result by the 
sequential 
approach 

Result of 
the best GA 

run 

Improvement 
by the GA 

based heuristic 

% 
improvement  
by the GA 
based 
heuristic 

Average 
CPU time 
for a GA 
run (sec.) 

Average 
cost value 
by the GA 
runs 

mr101_50 28128 26853 1275 4.53 3003.26 28184.2 

mr205_50 26083 22645 3438 13.18 3101.43 24368.3 

mc109_50 22452 21157 1295 5.77 3047.07 22402.1 

mc206_50 23995 19795 4200 17.51 3021.49 22641.2 

mrc103_50 26105 24430 1675 6.42 3116.29 25135.8 

mrc207_50 24776 21445 3331 13.45 3046.82 23475.7 

 

 

Table 5.16 Results for Problems with 100 Customers 
 

Instance 

Result by 
the 

sequential 
approach 

Result of 
the best 
GA run 

Improvement 
by the GA 
based 
heuristic 

% 
improvement  
by the GA 
based 
heuristic 

Average 
CPU 

time for a 
GA run 
(sec.) 

Average 
cost 

value by 
the GA 
runs 

mr101_100 50897 47013 3884 7.63 23985.87 48111.6 

mr205_100 46507 48937 -2430 -5.22 25327.88 52666.7 

mc109_100 46070 44474 1596 3.46 24850.74 46065.4 

mc206_100 46154 40230 5924 12.83 24126.55 46141.9 

mrc103_100 52829 47827 5002 9.47 25116.66 49831.0 

mrc207_100 51267 46738 4829 9.36 24817.75 49069.8 
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Figure 5.3 The Comparison of Results for Problems with 25 Customers 
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Figure 5.4 The Comparison of Results for Problems with 50 Customers 
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Figure 5.5 The Comparison of Results for Problems with 100 Customers 

 
 
 
This is due to the increase in the number of possible feasible solutions as well as the 

increase in the number of customers. But by adjusting the parameters, that’s 

increasing the population size and maximum number of generations, it has been 

possible to handle 100 customer-15 facility problems with an integrated approach 

while those problem sizes are impossible to solve by the mathematical models that 

contain every aspect of the problem. 

 

It is also significant that our algorithm is capable of giving better results than the 

sequential approach regardless of the changes in the problem environment such as 

the location of customers (random or clustered), the tightness of time windows or the 

vehicle capacities. 

 

Another analysis on the results would be to observe the composition of the total cost 

value.  
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Table 5.17 presents the analysis of the total cost values of both methods decomposed 

to different types of costs. The supplier related costs consist of the transportation 

costs from the supplier to the facilities, the facility related costs are the fixed and 

variable facility costs and the routing related costs include the cost of the routes from 

facility sites to customers.  

 

Observed from the table, in most of the instances, the ratios of supplier and facility 

related costs in sequential approach are higher than the same ratio in GA solutions. 

 

As explained in 5.2, the supplier and facility related costs are obtained by the 

solution of the location-allocation model which minimizes the total system costs, 

including the direct shipment costs to customers in addition to fixed and variable 

facility costs and the transportation costs from the supplier to facilities. As the direct 

shipment costs are a significant part of the objective function, to minimize the 

overall, the solutions of models mostly include higher number of open facilities, 

some of them being the ones away from the supplier but near to facilities. 

Consequently, the trade off between “the direct shipment costs” and “supplier and 

facility related costs” to minimize the total causes an increase in the “supplier and 

facility related costs”. This effect is due to ignoring the routing issue simultaneously. 

But in the GA solutions, as the total cost is evaluated considering the routing issue at 

the same time with location-allocation, better objective values could be obtained.  

 



Table 5.17 Analysis of the Total Cost Values for Both Methods 

 

 
 GA Sequential Approach 

Instance 

Supplier 
and facility 
related 
costs 

Supplier 
and 
facility 
cost % in 
total 

Routing 
related 
costs 

Routing 
cost  % 
in total 

TOTAL 
COST 

Supplier 
and facility 
related 
costs 

Supplier 
and 
facility 
cost % in 
total 

Routing 
related 
costs 

Routing 
cost % 
in total 

TOTAL 
COST 

mr101_25 7359 49 7803 51 15162 7882 50 7834 50 15717 

mr205_25 5896 51 5557 49 11453 7882 60 5289 40 13172 

mc109_25 6634 64 3699 36 10333 7677 71 3165 29 10842 

mc206_25 7630 70 3239 30 10869 7676 68 3672 32 11348 

mrc103_25 10469 80 2644 20 13113 10673 78 2950 22 13623 

mrc207_25 7544 67 3710 33 11254 10673 81 2525 19 13199 

mr101_50 14505 54 12348 46 26853 17410 62 10718 38 28128 

mr205_50 12351 55 10294 45 22645 17410 67 8672 33 26083 

mc109_50 15246 72 5911 28 21157 17628 79 4824 21 22452 

mc206_50 14434 73 5361 27 19795 17903 75 6093 25 23995 

mrc103_50 15901 65 8529 35 24430 20522 79 5583 21 26105 

mrc207_50 13779 64 7666 36 21445 20522 83 4254 17 24776 

mr101_100 28232 60 18781 40 47013 34651 68 16246 32 50897 

mr205_100 33926 69 15011 31 48937 34651 75 11856 25 46507 

mc109_100 31997 72 12477 28 44474 36726 80 9344 20 46070 

mc206_100 30225 75 10005 25 40230 37007 80 9147 20 46154 

mrc103_100 32457 66 15370 31 47827 39734 75 13095 25 52829 

mrc207_100 31893 68 14845 32 46738 39734 78 11533 22 51267 

105 
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5.3.5 More Research on Genetic Algorithms 

 

Some further observations on the application of the GA are discussed below. 

 

5.3.5.1 The behavior of genetic algorithms within a run 

 

It is discussed in section 5.3.4 that, in almost all instances of different sizes, the 

results of the proposed solution methodology are satisfactory when compared to the 

sequential approach with which we have also solved our problems. Besides 

evaluating the results, we have also examined the improvement of the objective 

function through a run. The progresses of the best individual in the population, the 

worst individual in the population and the average objective value of the population 

are presented in Figure 5.6.  

 
 
 

The Evolution of the Population through a Run
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Figure 5.6 The Evolution of the Population with regard to Minimum, Maximum and 
Average Objective Values 
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The representative graph is for a 25-customer run of instance mr205. Trial with the 

least number of generations is chosen on purpose for the ease of examining the 

graph. It is observed that the fundamental behavior is similar for other instances or 

for larger problems. 

 
The  parameters (population size, number of generations) are adjusted as defined in 

section 5.3.1. As explained in that section, increasing the parameters does not 

improve the objective value  of the best individual obtained.   

 

In this figure, the ongoing progress through a run is summarized.  

 

As expected, the improvement in the objective of the best individual is as a step 

function. While the process continues, the population gets better as the average and 

the worst individual always improves, but the best of the population may not change 

in each generation. Besides being linear, concave or convex which are the 

characteristics that may change from a run to another with regard to the initial 

population or pairs of  parents chosen for each reproduction, the general behavior 

representing the improvement also verifies that the GA has worked without any 

unexpected deficiencies. 

 
The borders of the search space that the population occupies and we have worked on 

through the run are drawn by the lines standing for the best and worst individuals of 

each generation. The dashed line between these represents the average of the 

population, which is always in the expected range. 

 
 
5.3.5.2 A further study on initial population generation 

  

When the problem size gets larger, it is obvious that the search space also gets larger. 

We have a very large search space for the 100 customer, 15 potential facility sites 

problem. Although we have worked with a large population and increased the 

number of generations to terminate the run, we want to see the effect of starting with 
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a better population. For this reason we have modified the function for generating the 

initial population in the algorithm and made some trials to evaluate the effect of this 

modification. 

 

Instead of generating individuals up to a number equal to the population size, 

replacing the duplicates with new ones, checking the population for covering all the 

alleles of all genes and starting the reproduction phase with that population; we have 

developed a modification by generating individuals as many as two times the 

population size, deleting the duplicates and then taking the best individuals up to the 

population size before passing to reproduction.  This has given us the chance to work 

with a better population.   

 

On test instance mr101_100, we have realized 5 runs with this modified version of 

the algorithm. The results of these 5 runs compared with the results of 5 runs 

obtained by the non-modified version are below. 

 
 
 
Table 5.18 Results Obtained with both the Modified and the Non-Modified Initial 
Population Generation 
 

 
Modified Initial Population 

Generation 
Non-Modified Initial Population 

Generation 

Runs 
Objective value for 
the best solution 

Computational 
time (sec.) 

Objective value for 
the best solution 

Computational 
time (sec.) 

run1 47545 30872.96 48129 24676.76 

run2 48810 31132.37 47785 23740.81 

run3 47911 31222.67 47894 23994.09 

run4 48534 31164.95 47497 24554.68 

run5 47911 31167.12 47013 24061.35 

 
 
 
Although it may be thought that after a greater number of runs, better results with the 

modified version could also be obtained, the results we got after 5 runs were not as 

good as we expected. Starting the procedure with a better population, a significant 

improvement on the cost value for the best solution was expected. However, as seen 
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from the results, we did not observe this improvement. Moreover, the version 

working with a randomly generated initial population has reached even better results 

in shorter time. As a greater number of individuals are generated and evaluated to be 

sorted in the modified version, the computational time of a run increased.  

 

It is possible to comment on this issue that not working with a more limited upper 

region of the solution space but working with a more diversified initial population 

instead has given better results with our crossover operator. Consequently, it was not 

preferred to work with this modification through the runs for other instances.  
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CHAPTER 6 

 

 

CONCLUSIONS AND DIRECTIONS FOR FURTHER 

RESEARCH 

 

 

In this study, we have searched the solution techniques for location routing problems 

with time windows and shift times. First, we have presented both non-linear and 

linear mathematical formulations for the problem. We try to represent a realistic 

environment for the LRP, that is frequently encountered in real life distribution 

systems. Observing that solving the mathematical models and thus reaching the 

optimum solutions for problems of reasonable size is not possible, we have focused 

on the application of metaheuristics. 

 

In our solution methodology, we have developed a solution approach based on 

genetic algorithms including a number of problem specific characteristics. Through  

this work, we have tried to avoid constructing a multi-phase approach or  

decomposing the LRPTW and shift times into subproblems and then solving them 

sequentially. In our GA approach, one of the subproblems of the main problem 

VRPTW has posed great difficulty to handle within the general framework. Through 

the entire search on solution techniques for VRPTW, it has been observed that it is 

worth to work on VRPTW solution techniques, which produce good results within 

short computational times because most of the proposed solutions based on heuristics 

require a great computational effort. But as our main concern is not VRPTW, but 

LRP with time windows; we have searched, found and used some predefined 

libraries that could be embedded to our code.  
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In our computational studies, we have tested our solution approach on a number of 

test problems developed from those of Solomon. As well as developing a solution 

approach, the needs for an appropriate comparison method and appropriate test 

instances also has formed an important part of the study.  

 

In addition to evaluating the efficiency of the proposed approach for LRPTW and 

shift times, we have also considered the determination of some GA related 

parameters with regard to the problem size and problem characteristics. It is observed 

that the representation scheme for a solution of the problem also has importance in  

determining the size of the search space and this has a significant effect on GA 

parameters like the population size and the duration of the search. The possibility of 

representing a complete solution including the routes was also one of the issues we 

were concerned at the beginning of the study, but then ceased from because we did 

not come up with an appropriate chromosome representation. From the experimental 

studies, we have concluded that such a representation would also be inappropriate, 

because there would be a huge number of alternatives that needed to be searched,  

decreasing the  efficiency. 

  

Also it can be concluded that problem specific operators in a GA application improve 

the performance of the algorithm. This has also been encountered in some studies in 

the literature with or without some numeric applications to test its validity. In our 

study we have also observed that the problem specific crossover and mutation 

operators support this idea.  

 

Another conclusion drawn from the experimental work is the change in the duration 

of a run with regard to the problem size. The problem size has one direct and one 

indirect effect on the duration of a run. First, the increase in the number of customers 

and in the number of potential sites mostly results in a higher number of open 

facilities which increases the computational time of the fitness function for a single 

solution. Second, in an indirect way, because the problem size and the search space 
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get larger, the parameters, namely the population size and maximum number of 

generations of GA increase, and as a consequence the duration of a run lengthens.    

 

Having discussed the main conclusions above in detail, when we think about the 

general contribution of this study; it can be first pointed out that we have worked on 

an environment, which is rarely considered even in LRP literature. The LRP itself 

being very complex, the time window and shift time issues are not included in the 

literature to the best of our knowledge. Moreover, we did not prefer to handle the 

problem by a multi-phase sequential approach and developed an integrated approach 

based on metaheuristics. Although the GA is widely used and results in satisfactory 

solutions for different types of problems, we encounter only a single GA application 

for LRP but for a very simple environment where the reliability of the method and 

the experimental work seems unsatisfactory (Su, 1998). So our study has been a 

leading one when both the problem environment and the solution approach are 

thought. The problem specific issues integrated within the general GA framework 

starting from the initial population generation to the operators are also contributions 

in the study.  

 

We have tested the performance of our GA approach against the sequential approach 

which is known to be a good upper bound in the literature. Our GA approach has 

outperformed the sequential approach in 17 of the 18 instances by an amount ranging 

from 3.5% to 17.5% in the objective function value. 

 

Further Research Issues: 

 

For further research on the solution methodology proposed, one can construct an 

efficient GA application for the VRPTW as well and embed it within the general GA 

framework for the LRPTW. In this way, two GA applications can be integrated and a 

pure GA application can thus be generated for the LRPTW and shift times. 

 



 113 

Based on the observation drawn in this study that problem specific operators bring 

out better solutions than the generally known operators, other problem specific 

operators apart from these may be generated and evaluated. In addition, other 

improving problem specific characteristics may be included in different phases of the 

algorithm. 

  

Besides improving the GA application for the LRP, one can work on other solution 

methodologies for this problem type. During our researches, we have observed that 

the constraint programming based approaches are efficient for complex problems 

such as VRPTW. A solution methodology based on constraint programming can be  

considered for LRP with time window as well. 

 

In our study, we have used a mathematical formulation based benchmark technique 

which is the upper bound obtained by the sequential approach. Studies on the 

performance analysis techniques of LRP with time windows and shift times which 

are NP-hard problems can be carried out; for example worst-case analysis, average-

case analysis or other mathematical formulation based techniques such as a good 

lower bound could be developed.  

 

Other aspects in the location-routing framework may also be to consider as proposed 

in Min (1998). Stochasticity in customer demands and travel times;  multiple periods 

reflecting the changing nature of LRP parameters over time to the models, multiple 

objectives such as maximizing system benefits in addition to minimizing total system 

cost may be some of those aspects. Emphasizing multiple layers for including both 

inbound and outbound flows and considering the inventory decisions related to 

locations and routes are also further steps in system-wide approaches.   

 

 

  



 114 

REFERENCES 
 

 

Alp, O., Erkut, E. and Drezner, Z., 2003. An Efficient Genetic Algorithm for the p-

Median Problem. Annals of Operations Research 122, 21-42.  

 

Ambrosino, D. and  Scutella, M.G., 2005. Distribution Network Design: New 

Problems and Related Models. European Journal of Operational Research 165, 610-

624. 

       
Backer, B., Furnon, V., Shaw, P., Kilby, P. and  Prosser, P., 2000. Solving Vehicle 

Routing Problems Using Constraint Programming and Meta heuristics. Journal of  

Heuristics 6, 501-523.  

 

Ball, M., Magazine M., 1981. The Design and Analysis of Heuristics. Networks 11, 

215-219. 

 

Ballou, R.H., 1990. A Continued Comparison of Several Popular Algorithms for 

Vehicle Routing and Scheduling. Journal of Business Logistics 11 (1), 111-127. 

        

Bard, J.F., Kontoravdis, G. and Yu G, 2002. A Branch-and-Cut Procedure for the 

Vehicle Routing Problem with Time Windows. Transportation Science 36 (2) , 250-

269.   

 

Beasley, J.E., 1990. OR-Library-Distributing Test Problems by Electronic Mail. 

Journal of Operational Research Society 41 (11), 1069-1072. 

 

Beasley, D., Bull, D.R. and Martin, R.R., 1993. An Overview of Genetic Algorithms-

Fundemantals. University Computing 15 (2), 58-69.  



 115 

Beasley, J.E. and Chu, P.C., 1996. A Genetic Algorithm for the Set Covering 

Problem. European Journal of Operational Research 94, 392-404. 

 

Blanton, J.L. and Wainwright, R.L., 1999. Multiple Vehicle Routing with Time and 

Capacity Constraints Using Genetic Algorithms in in Foundations of Genetic 

Algorithm- 5 by Banzhaf W., Morgan Kaufmann Publishers, San Francisco, 452-459. 

 

Bookbinder, J.H. and Reece, K.E., 1988. Vehicle Routing Considerations in 

Distribution System Design. European Journal of Operational Research 37, 204-

213.   

 

Bramel, J. and Simchi-Levi, D., 1995. A Location Based Heuristic for General 

Routing Problems. Operations Research 43 (4), 649-660. 

 

Campbell, J.F., 1994a. Integer Programming Formulations of Discrete Hub Location 

Problems. European Journal of Operational Research 72 (2), 387-405.    

 

Cappanera, P., Gallo, G. and Maffioli, F., 2004. Discrete Facility Location and 

Routing of Obnoxious Activities. Discrete Applied Mathematics 133, 3-28. 

 

Chien, T.W., 1993. Heuristic Procedures for Practical Sized Uncapacitated Location-

Capacitated Routing Problems. Decision Sciences 24 (5), 995-1021. 

 

Christofides, N., Mingozzi, A. and Toth, P., 1979. The Vehicle Routing Problem. 

Combinatorial Optimization.. Wiley, New York. 

 

Clarke, G. and Wright, J.W., 1964. Scheduling of Depots from a Central Depot to a 

Number of Delivery Points. Operations Research 12, 568-581. 

 

Cooper, M.C., 1983. Freight Consolidation and Warehouse Location Strategies in 

Physical Distribution Systems.  Journal of Business Logistics 4 (2), 53-74. 



 116 

Correa, E.S., Steiner, M.T.A., Freitas, A.A. and Carnieri, C., 2004. A Genetic 

Algorithm for Solving Capaciated p-Median Problem. Numerical Algorithms 35, 

373-388.  

 

Çetiner, S., 2003. An Iterative Hub Location and Routing Problem for Postal 

Delivery Systems. M.S. Thesis, Middle East Technical University, Ankara. 

 

Davis, L., 1989. Adapting Operator Probabilities in Genetic Algorithms in 

Proceedings of the Third International Conference on Genetic Algorithms, Morgan 

Kaufmann Publishers, Cali, 61-67.  

 

Davis, L., 1991. Handbook of Genetic Algorithms.  Van Nostrand Reinhold, New 

York. 

 

De Backer, B. and Furnon, V., 1997. Meta-heuristics in Constraint Programming 

Experiments with Tabu Search on the Vehicle Routing Problem in Proceedings of 

the Second International Conference on Metaheuristics (MIC’97), Sophia Antipolis, 

France. 

 

Fogarty, T.C., 1989. Varying the Probability of Mutation in the Genetic Algorithms 

in Proceedings of the Third International Conference on Genetic Algorithms, 

Morgan Kaufmann Publishers, Cali, 104-109.  

 

Galvão, R.D. and ReVelle, C., 1996. A Lagrangean Heuristic for the Maximal 

Covering Location Problem. European Journal of Operations Research 88, 114-123. 

 

Gen, M. and Cheng, R., 1997. Genetic Algorithms and Engineering Design. John 

Wiley & Sons, London. 

 

Gendreau, M., Hertz, A. and Laporte, G.,1994. A Tabu Search Heuristic for the 

Vehicle Routing Problem. Management Science 40 (10), 1276-1290. 



 117 

Ghiani, G. and Improta, G., An Efficient Transformation of the Generalized Vehicle 

Routing Problem. European Journal of Operational Research 122,11-17. 

 

Gillett, B.E. and Miller L.R., 1974. A Heuristic Algorithm for the Vehicle Dispatch 

Problem. Operations Research 22, 340-349. 

 

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine 

Learning.  Addison-Wesley, Boston. 

 

Goldberg, D.E., 1989. Sizing Populations for Serial and Paralel Genetic Algorithms 

in Proceedings of the Third International Conferene on Genetic Algorithms by 

Schaffer, J. D., Morgan Kaufmann Publishers, San Mateo, 70-79.                  

 

Goldberg, D.E. and Deb K., 1991. A Comparative Analysis of Selection Schemes 

Used in Genetic Algorithms in Foundations of Genetic Algorithms by Rawlins, 

G.J.E., Morgan Kaufmann Publishers, San Mateo, 69-93. 

 

Golden, B.L., Ball, M. and Bodin, L.D., 1981. Current and Future Research 

Directions in Network Optimization. Computers and Operations Research 8, 71-81. 

 

Haimovich, M. and Rinnooy Kan, A.H.G., 1985. Bounds and Heuristics for 

Capacitated Routing Problems. Mathematics of Operations Research 10, 527-542. 

 

Hall, R.W., 1987.  Consolidation Strategy: Inventory, Vehicles and Terminals. 

Journal of Business Logistics 8 (2), 57-73. 

 

Hansen, P.H., Hegedahl, B., Hjortkjaer, S. and Obel, B., 1994. A Heuristic Solution 

to the Warehouse Location-Routing Problem. European Journal of Operational 

Research 76, 111-127. 

 



 118 

Haupt, R.L. and Haupt, S.E., 1998. Practical Genetic Algorithms.  John Wiley and 

Sons, Inc., New York. 

 

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. The University of 

Michigan Press, Ann Arbor, MI. 

 

Hosage, C.M. and Goodchild, M.F., 1986. Discrete Space Location-Allocation 

Solutions From Genetic Algorithms. Annals of Operational Research 6, 35-46. 

 
ILOG Dispatcher 4.1 User’s Manual,  ILOG S.A., Cedex, 2005 
 
ILOG Dispatcher 4.2 Reference Manual,  ILOG S.A., Cedex, 2006 
 
ILOG Dispatcher 4.2 Release Notes,  ILOG S.A., Cedex, 2006 

 
Jaramillo, H.J., Bhadury, J. and Batta, R., 2002. On the Use of Genetic Algorithms to 

Solve Location Problems. Computers and Operations Research 29, 761-779. 

 

Khumawala, B.M., 1972. An Efficient Branch and Bound Algorithm for The 

Warehouse Location Problem.  Management Science 18, 718-731. 

 

Koerkel, M., 1989. On the Exact Solution of Large-Scale Simple Plant Location 

Problems. European Journal of Operations Research 39,157-173. 

      

Ko, H.J. and Evans, G.W., 2006. A Genetic Algorithm Based Heuristic for the 

Dynamic Integrated Forward/Reverse Logistics Network for 3PLs. Computers & 

Operations Research, Forthcoming. 

       
Kontoravdis, G. and Bard, J. F, 1995. A GRASP  for the Vehicle Routing              

Problem with Time Windows. ORSA Journal on Computing  7 (1), 10-23 . 

 

Laporte G., 1992. The Vehicle Routing Problem: An overview of Exact and 

Approximate Algorithms. European Journal of Operational Research 59, 345-358. 

 



 119 

Laporte, G., 1988. Location Routing Problems in Vehicle Routing: Methods and 

Studies by Golden B.L., Assad A.A., North Holland Publishing, Amsterdam, 163-198. 

 

Laporte, G., Nobert, Y. and Arpi, D., 1986. An Exact Algorithm for Solving a 

Capacitated Location-Routing Problem.  Annals of Operational Research 6, 293-310. 

 

Laporte, G., Nobert, Y. and Taillefeer, S., 1988. Solving a Family of Multi-Depot 

Vehicle Routing and Location-Routing Problems. Transportation Science 22 (3), 

161-172. 

 

Lin, C.K.Y., Chow, C.K. and Chen, A., 2002. A Location-Routing-Loading Problem 

for Bill Delivery Services. Computers & Industrial Engineering 43, 5-25. 

 

Min, H., 1996. Consolidation Terminal Location-Allocation and Consolidated 

Routing Problems. Journal of Business Logistics 17 (2), 235-263. 

 

Min, H., Jayaraman, V. and Srivastava, R., 1998. Combined Location-Routing 

Problems: A Synthesis and Future Research Directions. European Journal of 

Operational Research 108, 1-15. 

 

Nelson, M.D., Nygard, K.E., Griffin, J.H. and Shreve W.E., 1985. Implemantation 

Techniques for the Vehicle Routing Problem. Computers & Operations Research 12 

(3), 273-283. 

 

Or, I. And Pierskalla, W.P., 1979. A Transportation Location-Allocation Model for 

Regional Blood Banking. AIIE Transactions 11 (2), 86-95. 

 

Perl, J., 1983. A Unified Warehouse Location-Routing Methodology. Ph.D. 

Dissertation, Northern University. 

 



 120 

Perl, J. and Daskin, M.S., 1984. A Unified Warehouse Location-Routing 

Methodology. Journal of Business Logistics 5 (1), 92-111. 

 

Perl, J. and Daskin, M.S., 1985. A Warehouse Location-Routing Problem. 

Transportation Research Part B: Methodological 19, 381-396. 

 

Preston, P. and Kozan, E., 2001. An Approach to Determine Storage Locations of 

Containers at Seaport Terminals. Computers & Operations Research 28,983-995. 

 

Reeves, C.R. and Rowe, J.E., 2003. Genetic Algorithms: Principles and Perspectives, 

A Guide to GA Theory. Kluwer Academic Publishers, London.  

       
Rousseau, L., Gendreau, M. and Pesant, G, 2002.  Using Constrained-Based  

Operators to Solve the Vehicle Routing Problem with Time Windows. Journal of    

Heuristics 8, 43-58.  

 

Salhi, S. and Gamal, M.D.H, 2003. A Genetic Algorithm Based Approach for the 

Uncapacitated Continuous Location-Allocation Problem. Annals of Operations 

Research 123, 203-222. 

 

Salhi, S. and Rand, G., 1989. The Effect of Ignoring Routes When Locating Depots. 

European Journal of Operational Research 39, 150-156. 

 

Sambola, M.A., Diaz, J.A. and Fernandez, E., 2005. A Compact Model and Tight 

Bounds for a Combined Location-Routing Problem. Computers & Operations 

Research 32, 407-428. 

 

Schaffer, J.D., Caruana, R.A., Eshelman, L.J and Das R., 1989. A Study of Control 

Parameters Affecting Online Performance of Genetic algorithms for Function 

Optimization in Proceedings of the Third International Conference on Genetic 

Algorithms, Morgan Kaufmann Publishers, Cali, 51-60.  



 121 

Schrage, L., 1981. Formulations and Structure of more Complex / Realistic Routing 

and Scheduling Problems. Networks 11, 229-232. 

 

Shaw, P., 1998. Using Constraint Programming and Local Search Methods to Solve 

Vehicle Routing Problems in Principle and Practice of Constraint Programming—

CP98 Pisa, Italy, Springer-Verlag LNCS, Berlin.  

 

Smith, J. and Vavak, F., 1999. Replacement Strategies in Steady State Genetic 

Algorithms : Static Environments in Foundations of Genetic Algorithms-5 by 

Banzhaf W., Morgan Kaufmann Publishers, San Francisco,219-233.              

       
Solomon, M.M., 1987. Algorithms for the Vehicle Routing and Scheduling   

Problems with Time Windows. Operations Research 35 (2), 254-265.  

 

Solomon, M.M., (last updated) 24 March 2005. VRPTW Benchmark Problems. 

http://w.cba.neu.edu/~msolomon/problems.htm (last accessed 22 May 2006)   

 

Srivastava R., 1993. Alternate Solution Procedures for the Location-Routing 

Problem. Omega International Journal of Management Science 21 (4), 497-506.  

 

Srivastava, R. and Benton W.C., 1990. The Location-Routing Problem: 

Considerations in Physical Distribution System Design. Computers & Operations 

Research 5, 427-435.  

 

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D. and Whitley C., 1997. A 

Comparison of Genetic Sequencing Operators in Proceedings of Seventh 

International Conference on Genetic Algorithms by Back, T., Morgan Kaufmann 

Publishers, San Francisco, 69-76. 

 

Su, C.T., 1998. Locations and Vehicle Routing Designs of Physical Distribution 

Systems. Production Planning & Control 9 (7), 650-659. 



 122 

 

Syswerda, G., 1991. A Study of Reproduction in Generational and Steady-State 

Genetic Algorithms in Foundations of Genetic Algorithms by Rawlins, G.J.E., 

Morgan Kaufmann Publishers, San Mateo, 94-101.         

 

Thangiah, S.R. and Salhi, S., 2001. Genetic Clustering: An Adaptive Heuristic for 

Multi-depot Vehicle Routing Problems. Applied Artificial Intelligence 15, 361-383. 

 

Thangiah, S.R., Vinayagamoorthy, R. and Gubbi, A.V., 1999. Vehicle Routing with 

Time Deadlines using Genetic and Local Algorithms in Foundations of Genetic 

Algorithm- 5 by Banzhaf W., Morgan Kaufmann Publishers, San Francisco, 506-513. 

 

Tillman, F., 1969. The Multiple Terminal Delivery Problem with Stochastic 

Demands. Transportation Science 3,192-204. 

 

Topçuoğlu, H., Corut, F., Ermis, M. and Yılmaz, G., 2005. Solving the 

Uncapacitated Hub Location Problem Using Genetic Algorithms. Computers & 

Operations Research 32, 967-984. 

 

Tuzun, D. and Burke, L.I., 1999. A Two-phase Tabu Search Approach to the 

Location Routing Problem. European Journal of Operational Research 116, 87-99. 

 

Wasner, M. and Zäpfel, G., 2004. An Integrated Multi-Depot Hub-Location Vehicle 

Routing Model for Network Planning of Parcel Service. International Journal of 

Production Economics 90, 403-419. 

 

Whitley, D., 1989. The Genitor Algorithm and Selection Pressure :  Why Rank-

Based Allocation of Reproductive Trials is Best in Proceedings of the Third 

International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, 

Cali, 116-121. 

 



 123 

Wu, T.H., Low, C. and Bai, J.W., 2002. Heuristic Solutions to Multi-Depot Location 

Routing Problems. Computers & Operations Research 29, 1393-1415.  

 

Zanakis, S.H. and Evans, J. R.,1981. Heuristic ‘Optimization’: Why, When, and How 

to Use It. Interfaces 11 (5), 84-90. 

Zhou, G., Min, H. and Gen, M., 2003. A Genetic Algorithm Approach to the Bi-

criteria Allocation of Customers to Warehouses. International Journal of Production 

Economics 86, 35-45. 

 



 124 

APPENDIX A 

 

 

GAMS MODELS  

 

 

The mathematical formulations translated to GAMS are presented below. The 

number of customers or potential facility sites and the related numerical data in the 

models are not included and the emphasis is on the definition of the elements of the 

model, the objective function and the constraints.  

 
Linear Model for the Environment with Hard Time-Windows 
 
 
Sets 

 
  n nodes: customers and potential facility sites  

  c(n)  customers  

  f(n)  potential facility sites  

  s     suppliers  

  k     vehicles  

  l     facility types                                ; 

 

alias (n,p,r), (c,ab)                                ; 
 
Scalars 

 
  tc0 transportation cost from supply source to facility sites  

  tc1 transportation cost among nodes(facilities and customers)  

  h   time it takes to cross a km  

  w   the cost of waiting for a unit  

  Kp  the capacity of a vehicle  
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  FV  the fixed cost of a vehicle  

  VF  the variable cost for potential sites  

  CONST a constant big enough                                    ; 

 
Parameters 

 
  de(c) demand of customers  

  FF(l) the fixed costs for different types of facilities  

  Cp(l) the capacity limits for different types of facilities  

  e (n)  the earliest service starting time for nodes  

  se(n)  the required service time for customers or facility sites  

  la (n) the latest service time for nodes  

  d2(f)  distance between supply source and potential sites(km)  

  m      the number of customers ; m = card(c); 

 
Table d (n,p) distance between node pairs  ; 
 
 
Binary Variables 

 
  x(n,p,k) decides if a node in n precedes another in p on the route of vehicle-k 

  z(f,l)   decides if a facility of type l is opened at that site 

  zs(f)    decides if a site is used to open any type of facility 

  y(c,f)   decides if a customer is assigned to a potential facility site 

  v(k)     decides if a vehicle is used or not 

  t(n,p,k) auxiliary binary variable                     ; 

 
Positive variables 

 
  q(s,f)     the quantity shipped from a supply source to a facility 

  wt(n)     waiting time at a node 

  at(n)      starting time of service at a node 

  u(c,k)    auxiliary variable 

  rt(f)       returning time to a facility                        ; 
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Variable    o  the objective value                             ; 
 
Equations 

 
  tcost   "total objective cost of the system" 

  eq1(c)  "each customer assigned to a single DC/vehicle" 

  eq2(k)  "capacity of each vehicle not exceeded" 

  eq3(c,ab,k) "subtour elimination constraints" 

  eq4(p,k)"every node entered is left" 

  eq5(k)  "every vehicle is used at most from one fac. site" 

  eq6(f)  "balance equation between input/output for fac. sites" 

  eq7(f)  "capacity control for each fac. site" 

  eq8(f)  "at most one type of facility is opened at a potential site" 

  eq9(f)  "whether the site is used or not is related with whether a facility is opened at 

that site" 

  eq10(c,f,k) "a customer can be assigned to a vehicle only if they belong to the same 

vehicle" 

  eq11a(c,f,k) "determines the relations between arrival of nodes and returning time 

to facilities" 

  eq11b(c,f,k) "determines the relations between arrival of nodes and returning time 

to facilities" 

  eq11c(c,f,k) "determines the relations between arrival of nodes and returning time 

to facilities" 

  eq12a(n,c,k) "determines the relations between arrival times of nodes" 

  eq12b(n,c,k) "determines the relations between arrival times of nodes" 

  eq12c(n,c,k) "determines the relations between arrival times of nodes" 

  eq13(n) "assures not to violate earliest service starting time for a node" 

  eq14(c) "assures not to violate latest service time for a customer" 

  eq15(f) "assures not to violate latest service time for a facility"      ; 

 
tcost ..  o =e=  sum ((f,l), FF(l)*z(f,l) ) + sum ( k,  FV * v(k) ) + sum (f , VF * sum 

(c, de(c)*y(c,f) )) + sum((s,f) , tc0 * q(s,f) * d2(f)) + sum ((n,p,k) , tc1 * d(n,p) * 

x(n,p,k)) + sum( n , w * wt(n)); 
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eq1(c) ..      sum ( (n,k), x (n,c,k) ) =e= 1                           ; 

eq2(k) ..      sum ( c, de(c) * sum( n, x(n,c,k))) =l= Kp * v(k)    ; 

eq3(c,ab,k) ..   u(c,k) - u(ab,k)+ m * x(c,ab,k) =l= m - 1            ; 

eq4(p,k) ..    sum ( n, x(p,n,k) ) - sum (n, x(n,p,k) ) =e= 0           ; 

eq5(k) ..      sum ( (c,f), x(c,f,k) )  =l= 1                           ; 

eq6(f) ..      sum ( s, q(s,f) ) - sum ( c, de(c) * y(c,f) ) =e= 0      ; 

eq7(f) ..      sum ( c, de(c) * y(c,f) ) - sum( l, Cp(l) * z(f,l)) =l= 0   ; 

eq8(f) ..      sum ( l, z(f,l) ) =l= 1   ; 

eq9(f) ..      sum ( l, z(f,l) ) =e= zs(f) ; 

eq10(c,f,k) ..  -y(c,f) + sum (r, ( x(c,r,k) + x(r,f,k) ) ) =l= 1     ; 

eq11a(c,f,k) .. at(c) + wt(c) + se(c) + d(c,f) * h - rt(f) =l= CONST * t(c,f,k); 

eq11b(c,f,k) .. -at(c) - wt(c) - se(c) - d(c,f) * h + rt(f) =l= CONST * t(c,f,k); 

eq11c(c,f,k) .. x(c,f,k) =l= CONST - (CONST * t(c,f,k)); 

eq12a(n,c,k) .. at(n) + wt(n) + se(n) + d(n,c) * h - at(c) =l= CONST * t(n,c,k); 

eq12b(n,c,k) .. -at(n) - wt(n) - se(n) - d(n,c) * h + at(c) =l= CONST * t(n,c,k); 

eq12c(n,c,k) .. x(n,c,k) =l= CONST - (CONST * t(n,c,k)); 

eq13(n) ..  at(n) + wt(n) =g= e(n); 

eq14(c) ..  at(c) + wt(c) =l= la(c) ; 

eq15(f) ..  rt(f) =l= la(f) * zs(f) ; 

 
*exclude diagonal  ref:awktsp.gms 
 
 x.fx(n,n,k) = 0 ; 
 
*depolarin baslangic noktasi oldugunu gostermek icin 
 
 at.fx(f) = 0 ; 
 
model LRP1 / all / ; 
 
solve LRP1 using mip minimizing o ; 
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Non-Linear Model for the Environment with Hard Time-Windows 
 
Sets 

 
  n nodes: customers and potential facility sites  

  c(n)  customers  

  f(n)  potential facility sites  

  s     suppliers  

  k     vehicles  

  l     facility types                                ; 

 
alias (n,p,r), (c,ab)                                       ; 
 
 

 

Scalars 

 
  tc0 transportation cost from supply source to facility sites  

  tc1 transportation cost among nodes(facilities and customers) 

  h   time it takes to cross a km  

  w   the cost of waiting for a unit  

  Kp   the capacity of a vehicle  

  FV  the fixed cost of a vehicle  

  VF  the variable cost for potential sites                ; 

 
Parameters 

 
  de(c) demand of customers  

  FF(l) the fixed costs for different types of facilities  

  Cp(l) the capacity limits for different types of facilities 

  e (n)  the earliest service starting time for nodes  

  se(n)  the required service time for customers or facility sites  

  la (n)  the latest service time for nodes  

  d2(f)  distance between supply source and potential sites  

  m      the number of customers ; m = card(c); 
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Table d (n,p) distance between node pairs  ; 
 
 
Binary Variables 

 
  x(n,p,k) decides if a node in n precedes another in p on the route of vehicle-k 

  z(f,l)   decides if a facility of type l is opened at that site 

  zs(f)    decides if a site is used to open any type of facility 

  y(c,f)   decides if a customer is assigned to a potential facility site 

  v(k)     decides if a vehicle is used or not           ; 

 
Positive variables 

 
  q(s,f)     the quantity shipped from a supply source to a facility 

  wt(n)      waiting time at a node 

  at(n)      starting time of service at a node 

  u(c,k)     auxiliary variable 

  rt(f)      returning time to a facility                        ; 

 

Variable    o  the objective value                             ; 
 
Equations 

 
  tcost   "total objective cost of the system" 

  eq1(c)  "each customer assigned to a single DC/vehicle" 

  eq2(k)  "capacity of each vehicle not exceeded" 

  eq3(c,ab,k) "subtour elimination constraints" 

  eq4(p,k)"every node entered is left" 

  eq5(k)  "every vehicle is used at most from one fac. site" 

  eq6(f)  "balance equation between input/output for fac. sites" 

  eq7(f)  "capacity control for each fac. site" 

  eq8(f)  "at most one type of facility is opened at a potential site" 

  eq9(f)  "whether the site is used or not is related with whether a facility is opened at 

that site" 
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  eq10(c,f,k) "a customer can be assigned to a vehicle only if they belong to the same 

vehicle" 

  eq11(c,f,k) "determines the relations between arrival of nodes and returning time to 

facilities" 

  eq12(n,c,k) "determines the relations between arrival times of nodes" 

  eq13(n) "assures not to violate earliest service starting time for a node" 

  eq14(c) "assures not to violate latest service time for a customer" 

  eq15(f) "assures not to violate latest service time for a facility"      ; 

 

tcost ..  o =e=  sum ((f,l), FF(l)*z(f,l) ) + sum ( k,  FV * v(k) ) + sum (f , VF * sum 

(c, de(c)*y(c,f) )) + sum((s,f) , tc0 * q(s,f) * d2(f)) + sum ((n,p,k) , tc1 * d(n,p) * 

x(n,p,k)) + sum( n , w * wt(n)); 

 

eq1(c) ..      sum ( (n,k), x (n,c,k) ) =e= 1                           ; 

eq2(k) ..      sum ( c, de(c) * sum( n, x(n,c,k))) =l= Kp * v(k)    ; 

eq3(c,ab,k) ..   u(c,k) - u(ab,k)+ m * x(c,ab,k) =l= m - 1            ; 

eq4(p,k) ..    sum ( n, x(p,n,k) ) - sum (n, x(n,p,k) ) =e= 0           ; 

eq5(k) ..      sum ( (c,f), x(c,f,k) )  =l= 1                           ; 

eq6(f) ..      sum ( s, q(s,f) ) - sum ( c, de(c) * y(c,f) ) =e= 0      ; 

eq7(f) ..      sum ( c, de(c) * y(c,f) ) - sum( l, Cp(l) * z(f,l)) =l= 0   ; 

eq8(f) ..      sum ( l, z(f,l) ) =l= 1   ; 

eq9(f) ..      sum ( l, z(f,l) ) =e= zs(f) ; 

eq10(c,f,k) ..  -y(c,f) + sum (r, ( x(c,r,k) + x(r,f,k) ) ) =l= 1     ; 

eq11(c,f,k) .. at(c) * X(c,f,k) + wt(c) * X(c,f,k) + se(c)* X(c,f,k) + d(c,f) * h * 

X(c,f,k) =l= rt(f); 

eq12(n,c,k) .. at(n) * X(n,c,k) + wt(n) * X(n,c,k) + se(n)* X(n,c,k) + d(n,c) * h * 

X(n,c,k) =l= at(c); 

eq13(n) ..  at(n) + wt(n) =g= e(n); 

eq14(c) ..  at(c) + wt(c) =l= la(c) ; 

eq15(f) ..  rt(f) =l= la(f) * zs(f) ; 
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*exclude diagonal  ref:awktsp.gms 
 
 x.fx(n,n,k) = 0 ; 
 
*depolarin baslangic noktasi oldugunu gostermek icin 
 
 at.fx(f) = 0 ; 
 
model LRP1 / all / ; 
 
solve LRP1 using minlp minimizing o ; 
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APPENDIX B 

 

 

ILOG DISPATCHER 

 

 

In our work, we decided to use the approach developed by the ILOG team, the ILOG 

Dispatcher which proposes a method using local search techniques in a constraint 

programming (CP) framework. Constraint programming issued from the field of 

artificial intelligence has been helpful in solution of real world problems from a 

number of different domains as it provides good modeling flexibility (Rousseau, 

2002). However, despite some improving studies, the search techniques in constraint 

programming cause long execution times difficult to handle. That’s why the use of 

heuristics with constraint programming in the same framework offers better 

solutions.  As referred to in Rousseau (2002); studies of DeBacker & Furnon (1997) 

and Shaw (1998) are examples of efficient techniques combining CP and heuristics. 

 

In the field of Vehicle Routing, based on the above ideas, the ILOG equips 

developed a solution methodology within Constraint Programming. It can also be 

described as a specialized case of ILOG Solver (CP solver) enriched by local search 

techniques and metaheuristics. The basics of ILOG Dispatcher are defined in Backer 

et al. (2000).  

 

This proposes a method using local search techniques in a constraint programming 

framework. Because of long execution times, in ILOG Dispatcher constraint 

programming is not used to search the solution space. Instead local search techniques 

which are promising in finding good solutions in very short periods are used for the 

search and constraint programming is used to check the validity of solutions and 

determine the values of the constrained variables. In addition to these, in order to 
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avoid getting trapped in local optima, metaheuristics such as tabu search and guided 

local search are enabled to be used. So a complete search method is developed to 

solve the highly constrained vehicle routing problems. How the algorithm works and 

the techniques possible to use within the classes and functions of ILOG Dispatcher 

are as follows. More detailed knowledge on Dispatcher can be obtained from ILOG 

Dispatcher 4.1 User’s Manual (2005), ILOG Dispatcher 4.2 Reference Manual 

(2006) and ILOG Dispatcher 4.2 Release Notes (2006). 

 

1. First Solution Heuristics are used to generate a first solution to a routing 

problem, where the first solution is a “good” feasible solution obtained very 

quickly. The available first solution heuristics that could be included in the 

related code are: 

� Enumeration Heuristic 

It builds a solution to the problem using an algorithm that completely 

explores the search space. Hence, it should be used in small problems.  

� Savings Heuristic 

It is based on the trade-off between more vehicles with shorter routes and 

fewer vehicles with longer routes. It depends basically on 

Clarke&Wright’s savings algorithm, but improved to handle additional 

constraints such as time windows.  

� Sweep Heuristic 

This method uses angles calculated regarding a reference point, the 

location of the depot and the customer locations. As long as the capacity 

and time window constraints are satisfied, the vehicles are loaded by 

customers in an increasing angle order. 

� Nearest-to-depot Heuristic 

In this heuristic, the routes are constructed by adding a customer without 

violating constraints starting from the one nearest to the depot at each 

iteration. If this is not possible, this route is assumed to be completed and 

another route is started.  

� Nearest Addition Heuristic 
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This heuristic also progresses as the nearest-to-depot heuristic. But the 

difference is that the customers are not added to the routes according to 

their nearness to the depot but according to their nearness to the last 

customer on the partial route. 

 

� Insertion Heuristic 

This heuristic depends on the positioning of customers with the least cost 

increase in a feasible way in existing or new routes.   

 

2. After good, feasible first solution is found quickly by one of the first solution 

heuristics; they are moreover improved by searching the neighborhoods. To 

perform this search, there exist a number of predefined neighborhoods within 

Dispatcher libraries. The neighborhoods define a set of solution changes over 

an existing solution and reach new solutions by this way. The neighborhoods 

in Dispatcher can be classified and explained as follows: 

� Intra-Route Improvements 

o 2-opt: It reverses a section of a tour by deleting two arcs and 

replacing them with two others. 

o Or-opt: It moves arcs related with 1, 2 or 3 adjacent nodes and 

replaces them with other possible alternatives. 

� Inter-Route Improvements 

o Relocate : A visit within a route is replaced within another route 

by this operator, if the constraints are still satisfied. 

o Cross : This operator exchanges the ends of two routes. 

o Exchange : It swaps two visits from two different routes if the 

constraints are still satisfied. 

� Other Improvement Operators 

Those operators search the neighborhood by changing whether a visit is 

performed or unperformed within a route.  
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3. The third important element in the search is the definition of the solutions that 

will be accepted. Basic heuristics for the search is strictly accepting a  

neighbor better than the existing one. Based on this criterion, there exist two 

search techniques within Dispatcher. First accept search takes the first 

encountered cost decreasing legal solution, whereas best accept searches all 

legal neighborhoods and takes the most improving one. The way how the 

neighborhoods are created is already defined by the second phase. 

 

4. Along with these search heuristics, metaheuristics can also be included in the 

solution of the Dispatcher if needed. The basic searches by first accept or best 

accept stop when there are no improving moves. However, in some cases, it 

may be profitable to go on searching even improving a worst solution to 

reach better regions and to prevent getting trapped in local optima. Dispatcher 

provides two metaheuristics; tabu search and guided local search for this 

purpose. Tabu Search carries features like tabu lists and aspiration criterion. 

Guided local search works by making a series of greedy searches by 

minimizing the true objective of the problem added to a penalty cost for a 

local minimum. Guided tabu search (combination of simple tabu search and 

guided local search) is also possible to use. 

 

Among these; in our algorithm we have used the savings heuristic as the first 

solution heuristic, the defined five neighborhoods for search and first accept strategy.  
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APPENDIX C 

 

 

THE PSEUDOCODES FOR THE GA-BASED HEURISTIC 

 

 
The pseudocodes which are the basis of the code of the algorithm are presented here. 

First the main flow is given as a whole composed of small procedures. Then each 

procedure is explained in the order of appearance in the main body of the algorithm. 

 

The first group of procedures bordered by the curly brackets are realized only once at 

the beginning of the algorithm to read the data and construct initial arrays; generate, 

test and evaluate the initial population. 

 
Main Body of the Algorithm 
 
Procedure ReadData 

Procedure FeasAssign 

if (there exists at least one customer that can’t be assigned to a facility feasibly) then 
 display “the problem has no feasible solutions” 
 stop the algorithm 
else 

Procedure Nearness 

Procedure Nearfac 

Procedure PopGen 

Procedure Dup 

Procedure CoverCheck 
 

for  k=1 to PopulationSize  do  
Procedure Decod 

for j=CustomerNo to NodeNo 
   if facility-j is closed 
    display “facility-j in individual-k is closed” 
             else generate the input files for the VRPTW for each      
                                            open facility-j  
                   solve the VRPTW for each open facility-j 
                   assign the routing cost to array RCost   
 Procedure CalcCost    
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endfor 
 

assign a very large number to minf 
assign a very large number to globalminf 
 

Procedure PopStatus1 

Procedure PopStatus2 

Procedure PopStatus3 

Procedure Worst 

Procedure GlobalCheck 

 
while (NumberOfGeneration =< MaximumGeneration)  do 

             NEWGEN:  
Procedure ParentSelect 

Procedure Cross /*output newindiv*/ 

generate a random number in [0,1] 

assign this to mut 

             if (mut < Pmut) 
             Procedure Mutation/*output newindiv*/ 

  Procedure IndCheck  for the newindiv 
  if  (newindiv exists in the population)  then 
              return NEWGEN 
  else     
             for the newindiv 

   Procedure Decod    
for j=CustomerNo to NodeNo 

    if facility-j is closed 
     display “facility-j in newindiv is closed” 
                         else generate the input files for the VRPTW for    
                                                      each open facility-j  
                          solve the VRPTW for each open facility-j 
                            assign the routing cost to array RCost   

 Procedure CalcCost    
             endfor 
  if (fitness of the newindiv < fitness of the worst) then 
    Procedure DelIns 

  else return NEWGEN    
 
 Procedure PopStatus1 

 Procedure PopStatus2 

Procedure PopStatus3 

 Procedure Worst 

 Procedure GlobalCheck 
 
 endwhile 
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Procedure ReadData    
 
for  i=1 to CustomerNo do   
 
           read x coordinate and assign to array ap 
           read y coordinate and assign to array or 
           read demand and assign to array dem 
           read ready time and assign to array ear 
           read due time and assign to array lat 
           read service time and assign to array ser 
  
endfor 
 
for i=CustomerNo  to NodeNo (NodeNo=CustomerNo+FacilityNo)  do  
 read x coordinate and assign to array ap 
 read y coordinate and assign to array or 
            read ready time and assign to array ear 
            read shift time and assign to array lat 
            read service time and assign to array ser 
endfor 
 
for i=NodeNo to NodeNo+SupplierNo  do 
           read x coordinate and assign to array ap 
 read y coordinate and assign to array or 
endfor 
 
for i=1 to NodeNo do 
 for j=1 to NodeNo do 
             calculate Euclidean distances among nodes  
  assign to array dist 
 endfor 
endfor 
              
for i=NodeNo to NodeNo+SupplierNo do 
 for j=CustomerNo to NodeNo do 
  calculate Euclidean distance between suppliers and potential facility 
  sites  
  assign to array dist 
            endfor 
endfor 
 
for i=NodeNo to NodeNo+SupplierNo do 
 for j=CustomerNo to NodeNo do 
  calculate distances’ costs by multiplying array dist with unit cost and           
                       assign to array Mdist 
            endfor 



 139 

endfor 
 
for i=1 to NodeNo do 
 for j=1 to NodeNo do 
             calculate Euclidean times among nodes by multiplying array dist with 
  time coefficient to cross a unit distance 
                        assign to array Hdist 
 endfor 
endfor 
 
display all the arrays defined above in file Outdata   
 
 
Procedure  FeasAssign 
 
for  i=1 to CustomerNo do 
 for j=CustomerNo to NodeNo do  
  if ((the time it takes from fac-j to cust-i +the service time at cust-i+the    
                        time it takes from cust-i to fac-j =< shift time-j) and (the time it takes   
                        from fac-j to cust-i +the service time at cust-i=<latest service time-i)     
                        and (the earliest delivery time at cust-i+the service time at cust-i+the   
                        time it takes from cust-i to fac-j=<shift time-j)) then  
  assign this facility to array FeAl-i which is the set of facilities cust-i    
                        can be feasibly assigned 
  endif 
 endfor 
endfor 
 
count the number of facilities each customer can be assigned to   
calculate the probability each feasible facility has in order to be chosen for each 
customer  
  
display the arrays for each customer  
 
Procedure Nearness 
 
for i=1 to CustomerNo do 

assign each customer as the nearest customer to itself (0th element in the 
array near1 related with each customer) 

 for j=1 to CustomerNo do 
  if  (j is different than i) then 
   compare the distance cust-i / cust-j and cust-i / the last  
              customer  assigned to the array near1 related with cust-i 
   if  (greater) then 

assign this customer as the last element in the array 
near1 of cust-i 
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else  continue to compare distanceij with the distances between      
         cust-i  and other customers assigned to array near1               
         starting from the end of the array  

            place customer-j to the appropriate rank in the array  
            near1  
   end else 
  endif 
 endfor 
endfor 
 
for i=1 to CustomerNo do  
 construct array near2  by deleting each customer from its own array near1 
endfor 
 
 
Procedure Nearfac 
 
for  i=1 to CustomerNo do 
 compare the distances of facilities to the cust-i 
 find the nearest facility to cust-i 
 assign it as the ith  element of array nearfac 
endfor 
 
Procedure PopGen 
 
for k=1 to PopulationSize do 
 Procedure IndGen 

endfor 
 
Procedure Dup 
 
for i=1 to PopulationSize do 
 for j=i+1 to PopulationSize do 
  compare each gene of individual-i with individual–j 
  if (all the genes are identical) then  

delete the duplicate from the population and move the rest of 
the population towards the beginning of the population by one  
update the counter for customer-facility pairs for each gene of 
the deleted individual 
increase nodeleted by one 
continue to check the rest of the population for the duplicates 
of  cust-i 

endif 
 endfor 
endfor 
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for i=1 to nodeleted  do 
Procedure IndGen 

Procedure IndCheck 

if  (the new individual created by IndGen doesn’t exist in the population)   
            then             

            add this individual to the population 
else    decrease the counter for each cust-facility pair of the new individual by     
           one 

return to Procedure IndGen 
endfor 
 
 
Procedure IndGen 
 
for i=1 to CustomerNo do 
  choose a facility from the feasible set of customer-i randomly 
  assign customer-i to that facility  
  increase the counter for the  above mentioned customer-facility pair     
                        by one 
endfor 

 

Procedure IndCheck 
 
compare each gene of the new individual with all individuals present in the 
population 
if   (all genes are identical to any of the present individuals)  then 
 display “identical individual exists” 
else    display  “no identical exists” 

 

Procedure CoverCheck 
 
for i=1 to CustomerNo do 

if (a facility that is in the feasible set for that customer(determined by               
Procedure FeasAssign) is not used in any of the individuals(call it poor)) then 

choose randomly another facility from the feasible set of that   
customer(call it exchange) 

  if (exchange is used once or less than once) then  
return to the previous step and choose another exchange 

  else     choose randomly an individual(call it victim)  
if (victim  contains exchange for the mentioned  customer)then 
 replace exchange by poor  
else return to choosing another victim 

  end else 
endif 



 142 

endfor 
 
Procedure Decod 
 
for i=1 to CustomerNo do 
 for j=CustomerNo to NodeNo do     
  if ( facility-j stands for the gene related with that customer) then 
   assign      Yijk =1 
  else    assign       Yijk =0 
 endfor 
endfor 
 
for j=CustomerNo to NodeNo do 
  if  (any Yijk=1 for that facility-j) then 
  assign Zjk=1 

else Zjk =0  
endfor 
 
Procedure CalcCost   
 
for j=CustomerNo to NodeNo do 
 if (facility-j is open) 
  add the routing cost to TotalCost-j 
  add the variable facility cost to TotalCost-j 
  add the transportation cost from supply source to facility to     
                        TotalCost-j 

add the facility fixed cost to TotalCost-j regarding the capacity of the             
facility  

 endif 
endfor 
 
Procedure Popstatus (PopStatus1, PopStatus2, PopStatus3, Worst, 
GlobalCheck) 
 
(PopStatus1) 

 
for k=1 to PopulationSize do 
 if (fitness of the individual-k < minf) then 
  update minf = fitness of the individual-k 
  update minfit = minf 
            endif 
endfor 
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(PopStatus2) 

 
for k=1 to PopulationSize  do 
 if  (fitness of the individual-k > maxf) then 
  update maxf = fitness of the individual-k 
  update maxfit = maxf 
 endif 
endfor 
 
(PopStatus3) 

 

for k=1 to PopulationSize do 
 add the fitness of individual-k to sum 
endfor 

calculate the average fitness of the population by dividing sum with population size 

 
(Worst) 

 
for   k=1 to PopSize do 
 if (fitness of individual-k = maxfit) then 
  assign  indexworst = k 
  assign  Worstindiv = individual-k  
            endif 
endfor 
 

(GlobalCheck) 

 
if  (the best fitness value for that generation (minf found in PopStatus1) is better than 
globalmin) then 
 for k=1 to PopulationSize do 
  Search the population to find the individual with fitness equal to minf 
 assign indexbest = k 
 assign Globalbest = individual-k   
endif  
 
Procedure ParentSelect 
 
for i=1 to ParentNo do 
 for j=1 to TournamentSize do 
  choose randomly individuals 
  assign them as candidate parents 
 endfor 
 find the candidate parent with the smallest fitness 
 assign this candidate parent as a parent  
endfor 
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Procedure DelIns 
 
display the new individual  coming out from IndCheck and its fitness 
replace the worst individual in the population with the new individual 
replace the fitness of the worst individual in the population with the fitness of new 
individual 
for i=CustomerNo to NodeNo do 

replace the total demands of facilities in the worst individual with total      
demands in the  new individual 
replace the routing costs in worst individual with routing costs in the new  
individual 

            replace the open/close variables in worst individual with the variables in the    
            new individual 
endfor    
 
Procedure Cross   /*output newindiv*/ 
 
for i=1 to CustomerNo do 

for j=1 to ParentNo do 
 determine the facilities each customer is assigned to in each parent            
            (by reading the gene value related with each customer) 

construct the array pos related with each customer using the above 
data 

endfor 
endfor 
 
for i=1 to CustomerNo do 

mark each customer as unassigned  
endfor 
for i=1 to CustomerNo do  
 if (a customer is assigned to the same facility in both customers) then 

assign this customer to that facility in the offspring 
 mark it as assigned 
 if (the nearest customer to that customer has that facility in a parent)      
            then 
  assign it to that facility 
  mark as assigned 
  update the array pos related to this customer 
           endif 
endif 

endfor 
 

for j=1 to CustomerNo do 
 if (cust-j is unassigned) then 
  assign i=0 /*i stands as the nearness index*/   
  ASSIG: 
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  assign k as the ith nearest element in array near2 
  if (any facilities possible for cust-j also possible for cust-k)        

then 
   if ( both possible facilities are equal )  then 

increase i by 1        /* Pass to the next customer   
                                         in the array  near2*/ 
 return to ASSIG   

else if ( the 1st elmt. of array pos-j is present in array  
pos-k ) then  
assign cust-j to the first element of  array pos-j 
in the newindiv         

       else assign cust-j to the second element of array         
              pos-j  in the  newindiv 

            endif 
                       else if (it is not the most distant neighbor customer)  then 

increase i by 1        /* Pass to the next customer in the     
                                                                array near2*/ 
return to ASSIG 

         else choose the parent with better fitness 
      assign cust-j to the facility coming from that parent in    
                                                         the  newindiv 
  end else 
 endif     

endfor 
 
 
 
 
Mutation 
 
choose randomly a customer 
change the gene related with this customer with the related element of array nearfac 
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APPENDIX D 

 

 

TEST PROBLEM INSTANCES 

 

 

In the following, the data sets that we have used in the evaluation of our algorithm 

are given. The names of the sets start with “m” which stands for “modified”; then the 

reference Solomon’s instance is pointed as r101, rc207; the last two digits show the 

number of customers included in the instance (i.e. mr101_25, mrc207_100). 

 

The nodes can be classified as customers, potential sites and the supply source in the 

order of appearance. The columns represent “x coordinate”, “y coordinate”, 

“demand”, “ready time”, “due time” and  “service time”, respectively.  

 

The example of the data structure is given for a single instance for 3 sizes of 

problem. For the rest, the followings are valid: 

♦ The customer data is the same as those in Solomon’s related instance. 

♦ The potential size locations for the same size problems of different 

instances are the same. (i.e. for each 25 customer problem, the potential site 

data is the same as mr101_25) 

♦ The vehicle capacities and the shift times for potential sites are declared 

under each subtitle. 

 

mr101_25 

Vehicle capacity = 200 

Shift time            = 230 
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x coord.    y coord.   demand    ready time   due time    service time   

41              49              10               161             171                  10 

35              17                7                 50               60                  10 

55              45              13               116             126                  10 

55              20              19               149             159                  10 

15              30              26                34                44                  10 

25              30                3                99              109                  10 

20              50                5                81                91                  10 

10              43                9                95              105                  10 

55              60              16                97              107                  10 

30              60              16              124              134                  10 

20              65              12               67                 77                  10 

50              35              19               63                 73                  10 

30              25              23             159               169                  10 

15              10              20               32                 42                  10 

30                5                8               61                 71                  10 

10              20              19               75                 85                  10 

  5              30                2             157               167                  10 

20              40              12              87                  97                  10 

15              60              17              76                  86                  10 

45              65                9            126                136                  10 

45              20             11               62                  72                  10 

45             10              18               97                107                  10 

55               5              29              68                   78                  10 

65             35                3             153                163                  10 

65             20                6             172                182                  10 

    

30             94                                  0                 230                     0    

  3         27                                  0                 230                     0 

31           1                                  0                 230                     0 

85         21                                  0                 230                     0   
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14            76                                  0                 230                     0 

130        130 

 

mr101_50 

Vehicle capacity = 200    

Shift time            = 230 

 

x coord.    y coord.   demand    ready time   due time    service time   

41              49              10               161             171                  10 

35              17                7                 50               60                  10 

55              45              13               116             126                  10 

55              20              19               149             159                  10 

15              30              26                34                44                  10 

25              30                3                99              109                  10 

20              50                5                81                91                  10 

10              43                9                95              105                  10 

55              60              16                97              107                  10 

30              60              16              124              134                  10 

20              65              12               67                 77                  10 

50              35              19               63                 73                  10 

30              25              23             159               169                  10 

15              10              20               32                 42                  10 

30                5                8               61                 71                  10 

10              20              19               75                 85                  10 

  5              30                2             157               167                  10 

20              40              12              87                  97                  10 

15              60              17              76                  86                  10 

45              65                9            126                136                  10 

45              20             11               62                  72                  10 

45             10              18               97                107                  10 

55               5              29              68                   78                  10 
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65             35                3             153                163                  10 

65             20                6             172                182                  10 

   45             30              17             132                142                  10 

   35             40              16              37                   47                  10 

41             37              16              39                   49                  10 

64             42                9              63                   73                  10 

40            60               21              71                   81                  10 

31            52               27              50                  60                   10 

35            69               23            141                151                   10 

53            52               11             37                   47                   10 

65            55               14           117                 127                   10 

63            65                8            143                 153                   10 

  2            60                5             41                    51                   10 

20            20                8           134                 144                    10 

  5              5              16             83                   93                   10 

60            12              31             44                   54                   10 

40            25                9             85                   95                   10 

42             7                 5             97                 107                   10 

24           12                 5             31                    41                  10 

23             3                 7           132                  142                  10 

11          14                18             69                    79                  10 

  6          38                16             32                    42                  10 

  2          48                  1           117                  127                  10  

  8          56                27             51                    61                  10 

13          52                36           165                  175                  10 

  6          68                30           108                  118                  10 

47          47                13           124                  134                  10 

 

30      94                                  0                   230                    0 

  3      27                                  0                   230                    0 

31        1                                  0                   230                    0 
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85      21                                  0                  230                   0 

14          76                                  0                  230                   0 

85      41                                  0                  230                   0 

32      28                                  0                  230                   0 

54      16                                  0                  230                   0 

73      41                                  0                  230                   0 

55        5                                  0                  230                   0 

130       130 

 

mr101_100 

Vehicle capacity = 200    

Shift time            = 230 

 

x coord.    y coord.   demand    ready time   due time    service time   

41              49              10               161             171                  10 

35              17                7                 50               60                  10 

55              45              13               116             126                  10 

55              20              19               149             159                  10 

15              30              26                34                44                  10 

25              30                3                99              109                  10 

20              50                5                81                91                  10 

10              43                9                95              105                  10 

55              60              16                97              107                  10 

30              60              16              124              134                  10 

20              65              12               67                 77                  10 

50              35              19               63                 73                  10 

30              25              23             159               169                  10 

15              10              20               32                 42                  10 

30                5                8               61                 71                  10 

10              20              19               75                 85                  10 

  5              30                2             157               167                  10 
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20              40              12              87                  97                  10 

15              60              17              76                  86                  10 

45              65                9            126                136                  10 

45              20             11               62                  72                  10 

45             10              18               97                107                  10 

55               5              29              68                   78                  10 

65             35                3             153                163                  10 

65             20                6             172                182                  10 

   45             30              17             132                142                  10 

   35             40              16              37                   47                  10 

41             37              16              39                   49                  10 

64             42                9              63                   73                  10 

40            60               21              71                   81                  10 

31            52               27              50                  60                   10 

35            69               23            141                 151                  10 

53            52               11              37                   47                  10 

65            55               14            117                 127                  10 

63            65                8             143                 153                  10 

  2            60                5               41                   51                  10 

20            20                8             134                 144                  10 

  5              5              16               83                   93                  10 

60            12              31               44                   54                  10 

40            25                9               85                   95                  10 

42             7                 5               97                 107                  10 

24           12                 5               31                   41                  10 

23             3                 7             132                 142                  10 

11          14                18               69                   79                  10 

  6          38                16               32                   42                  10 

  2          48                  1             117                 127                  10  

  8          56                27               51                   61                  10 

13          52                36             165                 175                  10 
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  6          68              30            108                 118                  10 

47          47              13            124                 134                  10 

   49          58              10              88                   98                  10 

27          43                9              52                   62                  10 

37          31             14               95                 105                  10 

57          29             18             140                 150                  10 

63          23               2             136                 146                  10 

53          12               6             130                 140                  10 

32          12               7             101                 111                  10 

36          26             18             200                 210                  10 

21          24             28               18                   28                  10 

17          34               3             162                 172                  10 

12          24             13               76                  86                   10 

24          58             19               58                  68                   10 

27          69             10               34                  44                   10 

15          77               9               73                 83                    10 

62          77             20               51                 61                    10 

49          73             25             127               137                    10 

67            5             25               83                 93                    10 

56          39             36             142              152                     10 

37         47                6              50                 60                     10 

37         56                5            182               192                     10 

57         68             15               77                 87                     10 

47         16             25               35                 45                     10 

44         17               9               78                 88                     10 

46         13               8             149               159                     10 

49         11             18               69                 79                     10 

49         42             13               73                 83                     10 

53         43             14             179               189                     10 

61         52               3               96               106                     10 

57         48             23              92                102                     10 
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56         37             6               182               192                    10 

55         54           26                 94               104                    10 

15        47            16                 55                 65                    10 

14        37            11                 44                 54                    10 

11        31              7               101               111                    10 

16        22            41                 91               101                    10 

4          18            35                 94               104                    10 

28        18            26                 93               103                    10 

26        52              9                 74                 84                    10 

26        35            15               176               186                    10 

31        67              3                95                105                    10 

15        19              1              160                170                    10 

22        22              2                18                  28                   10 

18        24            22              188                198                   10 

26        27            27              100                110                   10 

25        24            20                39                  49                   10 

22        27            11              135                145                   10 

25        21            12              133                143                   10 

19        21            10                58                  68                   10 

20        26              9                83                  93                   10 

18        18           17               185                195                   10 

 

30      94                                  0                230                   0 

  3      27                                  0                230                   0 

31        1                                  0                230                   0 

85      21                                  0                230                   0 

14          76                                  0                230                   0 

85      41                                  0                230                   0 

32      28                                  0                230                   0 

54      16                                  0                230                   0 

73      41                                  0                230                   0 
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55        5                                0                  230                   0 

   39      86                                0                  230                0                

   99       10                              0                  230                0                

    8      98                              0              230                0                

  65      43                              0              230                0                

  24     58                              0              230                0                

 130       130 

 

mr205_25 

Vehicle capacity = 1000 

Shift time            = 1000 

 

mr205_50 

Vehicle capacity = 1000 

Shift time            = 1000 

 

mr205_100 

Vehicle capacity = 1000 

Shift time            = 1000 

 

mc109_25 

Vehicle capacity = 200    

Shift time            = 1236 

 

 

mc109_50 

Vehicle capacity = 200    

Shift time            = 1236 

 

mc109_100 

Vehicle capacity = 200    
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Shift time            = 1236 

 

mc206_25 

Vehicle capacity = 700 

Shift time            = 3390 

mc206_50 

Vehicle capacity = 700 

Shift time            = 3390 

 

mc206_100 

Vehicle capacity = 700 

Shift time            = 3390 

 

mrc103_25 

Vehicle capacity = 200    

Shift time            = 240 

 

mrc103_50 

Vehicle capacity = 200    

Shift time            = 240 

 

mrc103_100 

Vehicle capacity = 200    

Shift time            = 240 

 

mrc207_25 

Vehicle capacity = 1000 

Shift time            = 960 

 

mrc207_50 

Vehicle capacity = 1000 
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Shift time            = 960 

 

mrc207_100 

Vehicle capacity = 1000 

Shift time            = 960 


