TC. YOUSEK G R priy KURDLY

DOKing

NTASYON MERKEZj



COMPUTER AIDED DESIGN OF FRICTION BRAKES AND CLUTCHES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY
GULLU KIZILTAS

7{_ { Q‘ Nal

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN

THE DEPARTMENT OF MECHANICAL ENGINERING

SEPTEMBER 1998



Approval of the Graduate School of Natural and Applied Sciences.

LT

\‘ ° 1]
Prof. Dr. Tayfur OZTURK

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of

Science.

Prof, Dr. Edig\PAYKOC
Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bilgin KAFTANOGLU Assoc. Prof. Dr. Tuna BALKAN
Co-Supervisor Supervisor
Examining Committee in Charge:

Prof. Dr. Metin AKKOK (Chairman)

Assoc. Prof. Dr. Tuna BALKAN (Supervisor)
Prof. Dr. Bilgin KAFTANOGLU (Co-Supervisor)
Prof. Dr. M.ilhan GOKLER

Y. Mith. Aydm GULTEKIN




ABSTRACT

COMPUTER AIDED DESIGN OF FRICTION BRAKES AND
CLUTCHES

Kiziltag, Giilli
M.S., Department of Mechanical Engineering
Supervisor : Assoc. Prof. Dr. Tuna Balkan
Co-Supervisor: Prof. Dr. Bilgin Kaftanoglu

September 1998, 146 pages

The present study aims to develop a computer program on a PC to analyze and
optimally design certain type brakes and clutches. In a way it is an application of
CAD methods to an analysis and design problem. The program is composed of a
Visual User Interface developed in C++ Builder, a main part (source code) written

in C++ language and numerical and graphical outputs.

At the same time, the program is tried to be developed in a modular approach. The
aim is easy future development and the implementation of this study in a general
power transmission design program. Therefore the mechanical analysis is carried
out with an equivalent inertia model and certain assumptions underlie the thermal
.analysis.

The effect of the complex nature of the coefficient of friction is tried to be taken

into account where its variation with respect to temperature could be found in the

iti



literature and is implemented into the analysis using numerical techniques. Constant

deceleration and constant torque is assumed in the case of no data.

The thermal response for single, repeated and continued braking and clutching
applications with a general thermal model is investigated and their temperature
variation is displayed graphically. Optimum design of friction type brakes and
clutches is tried to be carried out based on maximum torque and minimum volume

criteria and various performance and geometrical constraints.

Keywords: Friction Type Brakes and Clutches, Coefficient of friction, Thermal
Analysis, Optimum design
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SURTUNMELI FREN VE KAVRAMALARIN BiLGISAYAR
DESTEKLI TASARIMI

Kiziltas, Giillit
Yiiksek Lisans, Makina Miihendisligi BSlimii
Tez Yoneticisi: Dog. Dr. Tuna Balkan
Yardime1 Tez Yoneticisi : Prof. Dr. Bilgin Kaftanogiu

Eyliil 1998, 146 sayfa

Bu calismada, PC ortaminda belli tip fren ve kavramalarin analizi ve optimum
tasarimina yonelik bir programin gelistirilmesi amaglanmigtr. Bu bir bakima
bilgisayar destekli tasarim metodlarinin bir analiz ve tasarim problemine
uygulanmasidir. Bu program, C++ Builder yazilim programiyla gelistirilmis gérsel
kullanic1 ortamundan, C++ programlama dilinde yazilmigs olan ana program
kodundan, sayisal ve grafiksel ¢iktilardan olugmaktadir.

Bu program aymi zamanda modiiler bir yaklasgimda gelistirilmeye caligilmugtir.
Amag, bu ¢aliymanmn ilerde kolaylikla gelistirilebilmesi ve genel bir gii¢ aktarim
elemaniarinin tasarim pograminda uygulanabilmesidir. Bu nedenle mekanik analiz,
esdeger kiitlesel atalet momenti modeli kullanilarak yapilms, 1sisal analiz de belli
kabullenmelere dayandirilmstir.

Stirtlinme katsayisinin karmagik yapisi, bunlarin literat{irde bulunan sicakhia bagh
degisimiyle dikkate alinmaya caligilmig, analizde sayisal teknikler kullamilarak
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uygulanmugtir. Bu degisimin bulunmadig durumiarda analiz diizgiin yavaslama ve
sabit tork kuvveti kabullenmelerine dayandirilmigtir.

Genel bir 151 modeliyle , bir tek, tekrarh ve siirekli fren ve kavrama uygulamalarmmn
1s1sal durumlari incelenmis ve sicaklik degisimieri grafiksel olarak elde edilmistir.
Siirtlinme tipi fren ve kavramalarin degisik performans ve geometrik simirlamalara
dayali maksimum tork kapasitesi ve minimum hacim kriterlerine gore optimum

tasarmmu da yapilmaya galisilmigtir.

Anahtar kelimeler : Siirtlinme Tipi Fren ve Kavramalar, Siirtlinme Katsayisi, Isisal
Analiz, Optimum Tasarim
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ABSTRACT

ALTERNATIVE TRANSFORM TECHNIQUES FOR MUSICAL SIGNAL
PROCESSING

GURSEL, Giirhan Giince
Ms., Department of Electrical and Electronics Engineering

Supervisor: Prof.Dr. Semih Bilgen

December 1998, 73 pages

In this thesis, various transform techniques for musical signal processing
are analyzed and applied on different musical instrument samples. These
transforms are the Constant Q and Discrete Wavelet Transforms. An efficient
algorithm for computation of the Constant Q Transform is investigated. The
transforms are compared according to their performances on the same sound files.
The comparison is based on complexities, frequency and time resolutions of each
transform. From this comparison, advantages and disadvantages of the transforms

are ascertained.

Keywords: Constant Q Transform, Wavelet, Discrete Wavelet Transform
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MUZIKSEL SINYAL ISLEMESI ICIN ALTERNATIF DONUSUM
YONTEMLERI
GURSEL, Giirhan Giince
Yiiksek Lisans,Elektrik ve Elektronik Miihendisligi

Tez Yoneticisi: Prof.Dr. Semih Bilgen

Aralik 1998, 73 sayfa

Bu tezde, miiziksel ses islemesi igin cesitli doniigim yontemleri analiz
edilmekte ve degigik miizik enstriimam ormekleri tlizerine uygulanmaktadir. Bu
donigimler, Sabit Q ve Kesikli Dalgacik doniigiimleri olarak adlandinlmaktadir.
Sabit Q Dontigimiiniin hesaplanmasi1 ig¢in verimli bir algoritma da aynca
incelenmektedir. Tiim doniiglimlerin aym ses dosyalan iizerindeki performanslar
kargilagtinlmigtir. Bu karsilagtirma, her doniigimin karmagikligs ile, frekans ve
zaman ¢ozinirlagine dayahidir. Bu kargilagtirmadan, doniigiimlerin avantaj ve

dezavantajlan ortaya konulmaktadir.

Anahtar Kelimeler: Sabit Q Déntigiimii, Dalgacik, Kesikli Dalgacik Doniigimii.
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CHAPTER 1

INTRODUCTION

1.1 Musical Sound

All sounds originate from a body in a state of vibration. For a musical sound
to be produced, vibrations of the source must be regular, that is, the frequency must
remain constant for an appreciable interval of time thus producing some semblance
of a note. With this property, a musical sound is a complex sound which has at least
one perceivable pitch and a set of time dependent partial tones variable both in
intensity and frequency. Pitch depends on the length of time in which each single
vibration is executed, or which comes to the same thing, on the number of vibrations
completed in a given time. If a second is taken as the unit of time, then the pitch
number (or frequency) of a tone is the number of vibrations which the particles of a
sounding body perform in one second of time. In musical terminology, the frequency
of a tone is called the pitch. Note is the position of the pitch in the musical scale.
Loudness of a sound is the magnitude of the auditory sensation produced by the
sound. Timbre of a tone is a multi-dimensional characteristic that distinguishes two
notes played by different instruments which have no pitch difference and furthermore
identifies the instrument which it is played on. In fact, timbre is the tonal spectrum,
or the acoustic spectrum. In the consideration of timbre of a tone, the number,
distribution, relative intensity of the partials, the inharmonic partials, the fundamental
tone, and the total intensity are the physical characteristics which determine the
quality. Any frequency component of a sound is a partial. Harmonic partials are
called overtones. The number of partials present determines the richness of the tone.
The beauty of a tone depends upon the location of the partials in the harmonic series.
The relative intensity of the partials is another important factor in determining the

quality of a tone. The conventional spectrum of a tone depicts the fundamentals and



partials as a harmonic series. The fundamental tone of different voices and
instruments varies over a large section of the audio spectrum. The total intensity of a
tone also influences the timbre. The higher the intensity level, the greater the number

of partials which are generated by the instrument ([1], [2], [3], [4], [5], [6]).

1.2 Characteristics of Musical Instruments

Each instrument produces a characteristic frequency spectrum that
distinguishes it from other instruments. The timbre of the instrument defines this
frequency spectrum. However, if one note of an instrument is examined, the
frequency spectrum changes over time. The beginning of the note often contains very
strange behavior in the frequency spectrum. Overtones may arbitrarily fluctuate
violently. Frequencies other than overtones may also be prevalent, and are likely to
be changing rapidly as well. This region of the note is called the attack. The
fluctuations in the overtones and other frequencies are called transients. These
transients quickly die away to leave the tone of the instrument. The part of the sound
without transients is called the steady state portion of the note, where the initial
conditions are irrelevant. In instruments capable of sustaining a note, a third portion
of the note, the release, the decay exists. That is, the complete musical sound
consists of a recognizable starting transient and attack followed by a steady-state
portion, then finally a decay until the sound dies up. The growth and decay
characteristics of individual instruments in the different classifications vary from
individual instrument to instrument. The steady state portion does not appear in
every instrument. For example, instruments setting strings into vibration by plucking
or hitting, can exhibit no steady state and the sound starts to decay immediately after
attack ([4], [6], [7D).

The duration of a tone is the length of time that a tone emitted by a musical
instrument lasts or persists without an interruption or discontinuity in the sound
output. The duration characteristics influence to some degree the pitch, loudness and
the timbre of a tone. From the standpoint of duration of a tone, musical instruments

may be classified as follows: fixed duration, variable but fixed maximum duration



and unlimited duration. The emitted tones in guitar, mandolin, bells, piano are of
fixed duration. Violin, viola, flute, accordion emits the tones in a variable but fixed
maximum duration whereas organ and electrical organ emits the tones in unlimited

duration [4].

1.3 Musical Sound Processing

Computerized processing of musical sound has long been a subject of
research. A fundamental step in musical sound processing is the recognition of the
time and frequency characteristics of the played sound. This is in all cases, the first
stage leading to further investigations such as instrument recognition, score
generation, melody and expression analysis. Discrete Fourier Transform, Hartley
Transform and Constant Q Transform are used to transform of the musical signal
from time to frequency domain ([6], [8], [9], [10], [11]). Wavelet Transform is a
transformation from time to time-frequency domain [17]. Within these transforms,
Constant Q and Wavelet Transforms are particularly important for musical sound
processing. The Constant Q Transform is important because it is created according
to the needs of musical sound processing. Wavelet Transform is important because it
is relatively a new method compared with the other transforms and therefore it is

open for future enhancements.

1.4 Scope of the Study

This work aims to comparatively study the effectiveness and efficiency of the
Constant Q, Discrete Fourier and the Wavelet Transform techniques for the

purposes of musical sound processing.

Chapter 2 is concerned with the definition and calculation of Constant Q
Transform [8]. This transform is a calculation similar to the Discrete Fourier
Transform and is mainly defined for musical applications. The spacing between two
adjacent frequencies is defined as the frequency resolution. Frequency resolution of

the Discrete Fourier transform is constant. Whereas for Constant Q Transform,



resolution is variable depending on the frequency on which information is desired.
In order to obtain a variable resolution, the window size, i.e. the number of samples
in the window, is also variable and decreases with increasing frequency. Q
corresponds to the quality factor of the transform, and is the constant ratio of center
frequency to resolution at that frequency so that two adjacent notes in the musical
scale played simultaneously can be resolved anywhere in the musical frequency
range. In Chapter 2, the Discrete Fourier Transforms of sample sound signals are
also presented so that the results of two transforms are compared. Also in Chapter 2,
an efficient algorithm [9] for calculation of the Constant Q Transform is
implemented. This method uses the Parseval Equation so that the transform is
calculated on the frequency domain instead of time domain. This makes it possible to
take full advantage of the computational efficiency of the Fast Fourier Transform.
Also with the efficient algorithm, it is seen that the number of multiplications is
reduced because the calculated values on the frequency domain are dropped if
absolute values are less than that of an adjustable parameter. This yields fewer
multiplications in the calculation of each component of the Constant Q Transform
but adds an error into the transform. For different values of the parameter, the
number of multiplications and the error added into the transform are calculated and

an optimum value for the parameter is estimated.

In Chapter 3, the Wavelet Transform is studied. The goal of the Wavelet
Transform is to give an informative, efficient and useful description of a function or
signal. If the signal is represented as a function of time, wavelets provide efficient
localization in both time and frequency. Instead of cosine waves as in the Fourier
Transform, the building blocks are wavelets. These are small waves that start and
stop, that have a finite length. All are generated from a mother wavelet. In order to
obtain time-frequency information of a signal, Wavelet Transform analyzes any
signal by using multiresolution analysis (MRA). It analyzes the signal at different
frequencies with different resolutions. The transform is designed to give good time
resolution and poor frequency resolution at high frequencies and good frequency

resolution and poor time resolution at low frequencies. In order to understand how



Wavelet Transform analyzes the signal, mathematical definitions are given with a
brief introduction. Building blocks of the wavelet system, that are the scaling and
wavelet functions are described. The definition of the Discrete Wavelet Transform is
presented in the latter part of Chapter 3. In Chapter 3, the scaling and wavelet
function coefficients are proved to be equal to the impulse responses of the filters
used during the calculation of the Discrete Wavelet Transform. Properties and

algorithms of the transform are also represented in Chapter 3.

Chapter 4 considers applications of the Discrete Wavelet Transform. As
described in Chapter 3, the calculated coefficients of the Discrete Wavelet
Transform, are the data of a 3-D graph. That is, they carry both amplitude and
frequency information as well as time information. This is the main difference
between the Wavelet Transform and the Fourier Transform. The Fourier Transform
yields information on how much each frequency exists in a signal. It provides no
information on the time plane. This difference is illustrated in the first part of this
chapter and both transforms are compared. A principle, similar to the Heisenberg’s
uncertainty principle states that the frequency and time information of a signal at
some certain point on the time-frequency plane can not be known simultaneously.
This is the problem of resolution both on time and frequency domain. Although the
Wavelet Transform provides extra information on time, it loses an amount of
information on frequency. The calculated coefficients divide the time-frequency
plane into equal portions. If these portions are defined as the tiles, these tiles
represent location of the corresponding coefficient on the time-frequency plane.
These tiles are represented graphically in Chapter 4. Different wavelet functions are
used for the calculation of the Discrete Wavelet Transform ([16], [17], [22]). These
functions are Haar, Sinc, Spline and Daubechies with different orders. The results
are compared in order to discover a mid-range wavelet system. Various different
sound samples are analyzed using the selected wavelet system and the calculated

coefficients of the Discrete Wavelet Transforms are illustrated in Chapter 4.

In Chapter 5, the bases for comparison are defined as the number of

multiplications performed during the calculation, the frequency resolution and the



time resolution of the transforms. From the number of multiplications, the
complexities of the transforms are obtained. Results of applications of the three main
techniques, the Discrete Fourier, the Constant Q and the Discrete Wavelet
Transform, on different sound samples are compared and advantages and

disadvantages are described.

Chapter 6 concludes the thesis.



CHAPTER 2
CONSTANT Q TRANSFORM
2.1 Definition

In musical applications, there is a need for information about the spectral
components produced across the wide frequency range of a particular musical
instrument. Musical composition is based on musical scales. Musical frequencies are
geometrically distributed. Western music divides the octave into 12 steps or equal
intervals, semitone intervals, called the chromatic scale or equal temperament scale.
These steps or equal intervals are called tempered half tones. A semitone, or half
tone, in the scale of equal temperament is the frequency ratio between any two tones

whose frequency ratio is the twelfth root of two ([1], [4]).
The spacing between two adjacent frequencies is defined as the frequency

resolution. The frequency resolution of Discrete Fourier Transform (DFT) is (also

called the frequency bin of DFT) [10]:

A9 =211 2.1)

The corresponding physical frequency resolution (or frequency bin), in hertz, is,

6f =S (2.2)

N

where S is the sampling rate and N is the window size in samples. Since the sampling

rate and the window size is constant, the frequency resolution of DFT is constant



and therefore the frequency components-calculated with DFT are separated with a

constant frequency difference and a constant resolution.

Constant Q Transform is defined for musical applications. The aim of the
transform is to analyze the signal with varable resolutions depending on the
frequency on which information is desired. Since the musical frequencies are
geometrically distributed, the resolution should be geometrically related to the
frequency. If the spacing is semitone spacing, the frequency of the k™ spectral

component is defined as [8]:
f, =@")f. (2.3)
Similarly, if quartertone spacing is used, the frequency is calculated from:

f, =), 2.4

The upper frequency value will be below the Nyquist frequency (half of the sampling
frequency) and f, is defined as the minimum frequency about which information is
desired. The resolution at the k™ spectral component is the difference between the
frequencies of the k+1" and the k™ spectral component. If semitone spacing is used

for frequency spacing, the resolution can be calculated as:

o, =, —f, 2.5)
of, = (@) f —Aeyf (2.6)
5, = (272 ~ 12/ ) 8 @7
5, = (272 - 1)f, = 0068, (2.8)

Similarly, if quartertone spacing is used, the resolution will be:

5, = (2% — )f, = 0,03, 2.9)



It can easily be seen that, resolution is not constant but rather, varies geometrically
and depends on frequency. But for each spectral component, there is a constant ratio
of frequency to resolution. This constant ratio is defined as the quality factor, Q
(constant Q) of the transform [8]. From Equations (2.8) and (2.9), the Q values are

calculated as:

Q=f, /0.06f, =17 (2.10)
Q=1,/0.03f, =34 2.11)

for semitone and quartertone spacing, respectively. Since frequency resolution is a
ratio of sampling rate to the number of samples in the windbw, in order to obtain
variable resolution, the window size of the k™ spectral component should be variable
because sampling rate is constant. If the number of samples in the window of the k™
spectral component is defined as N[k], it can be calculated by rewriting Equation

(2.2) and using Equation (2.10):

N[k] = §/8f (2.12)
N[k]=(§/£)Q (2.13)

From the above equation, it can be seen that window size N[k] and frequency fi are
inversely proportional. This means that, the number of samples in the window
desired for the minimum frequency is the maximum and it decreases with increasing

frequency and it has its minimum value for the Nyquist frequency of the transform.
The “Constant Q Transform” is defined as [8]:

N[k}
X[k]=—— 3 w[k,n]x[n]exp{- j2nQn/N[k]} (2.14)
N[k] n=0
The above equation is an expression for the k™ spectral component and is similar to

DFT. The digital frequency for DFT is 2nk/N, whereas in Equation (2.14), the
digital frequency is 2tQ/N[k] for the k* component. The window function, w[k,n],



has the same shape for each component but its length is determined by N[k],
therefore it is a function of k as well as n. For the window function, either Hamming

or Hanning window can be used. The window function, w[k,n] is defined typically as

[11]:

wlk,n]=a-(1-a) cos(z"‘%\l[k]) (2.15)
o=25/46 for Hamming window,

o=23/46 for Hanning window.

Also in Equation (2.14) normalization is performed by dividing the sum by NI[k]

since the number of terms varies with k.
2.2  Calculation of the Constant Q Transform

To illustrate the calculation of the Constant Q Transform, sound files were
generated synthetically. To these sound files, both the DFT and the Constant Q
Transform were applied. For the generation of these sound files, a sampling rate of
11025 Hz was chosen. All of the sound files had ten partials with different
fundamental frequencies. The fundamental frequencies were also chosen in order to

correspond to different musical note frequencies.

Figure (2.1) and Figure (2.2) present the Constant Q Transforms of the
sound files having a fundamental at G; (G4s=392 Hz) and G#, (G#:~415 Hz)
respectively. These two fundamental frequencies are selected because there is a
semitone spacing between the frequencies. The values on the vertical axis are the
magnitudes of the complex coefficients and are normalized by dividing with the
window size. In order to obtain a better view, the frequency axes of these figures are
logarithmically scaled. As seen from the figures, there are ten peaks. These ten peaks

correspond to the fundamental frequency and the nine harmonics of the fundamental.
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Figure (2.1) Constant Q Transform of sound with fundamental at 392 Hz having 9
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Figure (2.2) Constant Q Transform of sound with fundamental at 415 Hz having 9

harmonics

Figure (2.3) and Figure (2.4) are the Discrete Fourier Transform of the same
sound files that are described in the preceding paragraph. These figures are obtained
by taking 1024-point Fast Fourier Transform of the samples. For the defined sound

samples, both of the transforms are applicable and all of the partials are resolved.
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Figure (2.3) DFT of sound with fundamental at 392 Hz having 9 harmonics
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Figure (2.4) DFT of sound with fundamental at 415 Hz having 9 harmonics

Figure (2.5) illustrates the Constant Q Transform of the sound file which is
generated from four harmonics of the fundamental frequencies at G, and G#,. Figure
(2.6) is the Discrete Fourier transform of the same sound file. From Figure (2.5), it is
seen that the first nine partials are resolved. The fourth harmonic of G#, can not be
resolved. In order to resolve this partial, the quality factor of the transform can be
increased so that the number of samples in the window is increased. Also instead of
semitone spacing, quartertone spacing can be used. For the DFT case, even though

the partials are resolved, the two fundamentals are difficult to distinguish.
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Figure (2.5) Constant Q Transform of sound with fundamentals at 392 Hz and
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Figure (2.6) DFT of sound with fundamentals at 392 Hz and 415 Hz having 4

harmonics of each fundamental

A similar sound file is also generated from the harmonics of B2 (B2=123 Hz)
and C3 (C3=139 Hz). For the calculation of Constant Q Transform of this sound file,
the minimum frequency is decreased to 100 Hz. There is semitone spacing between
the adjacent frequencies. Figure (2.7) presents this transform. All of the partials are
resolved. Figure (2.8) is the DFT of this sound file. For this case, it is impossible to
resolve the fundamental frequencies. Also there is a difficulty for the other

harmonics. Therefore for this case, the DFT is not applicable.
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Figure (2.7) Constant Q Transform of sound with fundamentals at 123 Hz and
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Figure (2.8) DFT of sound with fundamentals at 123 Hz and 130 Hz having 4

harmonics of each fundamental
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2.3  Efficient Algorithm for the Constant Q Transform

Direct evaluation of Equation (2.11) is computationally inefficient. However,

it can be shown that for any two discrete functions of time x[n] and y[n]:

N-1

x[n]y'[n]=%§X[k]Y'[k] 2.16)

=0

=]

where X[k] and Y[k] are the discrete Fourier transforms of x[n] and y[n], and Y*[k]

is the complex conjugate of Y[k]. Equation (2.16) is a form of Parseval equation

(191, [12).

A new form of Constant Q Transform is given as [9]:

q]_ Wy
xcq[ cq] N[kcq] Z w[n kcq]x[n]e ol (2.17)

where X®[k.] is the k., component of the constant Q transform. Here x[n] is a
sampled function of time, and, for each value of kg, W[n,k] is a window function of

length N[k.]. In Equation (2.17) [9]:

Wy, = (2“”2))kcq Wi (2.18)

W, =27nf_, /S (2.19)

are defined to be the digital frequencies which are separated with semitone spacing.

Also the digital frequencies can be calculated from:

27Q

qu = N—[k]‘ (2.20)

15



If Equation (2.20) is substituted into Equation (2.18), it can be seen that both of the

Constant Q Transform definitions are equivalent.

Parseval equation can be used to evaluate the Constant Q Transform as

follows [9]. Letting

w[n,kcq e " =K [nk (2.21)

N[llccq]

Equation(2.17) gives
N-1 N-1 .
X[l J= X Aol [ ke, | = _;_I.g X[KKo[kk,] 222

where Kqec[k,kog] is in the frequency domain and is called as the spectral kernels of
the transformation. Also Kiemp[n,keq] is in the time domain and is called as the
temporal kernels [9]. The spectral kernels are the Discrete Fourier Transform of the

temporal kernels, that is

Kspec[kakcq]:NZ_le[nakeq R Nk ]Zw[n X Jeete TR (2.23)
n=0 cq

In Equation (2.22), the upper bound of the summation is given as N. Here N
corresponds to a constant window size. Whereas the window size is defined as
variable depending on the frequency of the spectral component in the calculation of
Constant Q. Here the constant window size, (i.e. N) is set to a value that is nearest
to the maximum window size of the transform (corresponding to the window size of
the minimum desired frequency) and is a power of 2. This value should to be a
power of 2 because FFT is used for the calculation of the frequency domain
components. If the minimum frequency is 183 Hz, the sampling rate is 11025 Hz and

the spacing is semitone then, the maximum window size is calculated as:

N[0]= f—Q N[0]—L032-§17 => N[0]=1024.18

min

16



Therefore, N is set to 1024 throughout the calculation of the transform for the above
conditions. It is known that the window sizes (N[k] for the k™ spectral component)
corresponding to the other frequencies are less than this constant value. The
temporal kemnels are defined to be symmetric around the center of the constant
window. That is temporal kemels are zero outside the interval (N/2-
N[k}/2,N/2+N[k}/2). In the given interval, they are calculated using Equation (2.23).
The temporal kernels are constant unless the sampling rate, minimum frequency and
frequency spacing are changing. Since the spectral kernels constitute the Discrete
Fourier Transform of the temporal kernels, they are also constant under the same

condition. Also the temporal kernels are conjugate symmetric, that is:

K [0k | = _N[llc_]w ok, [e™" (2.24)
cq

K., [-nk wl-nk, )™ (229

[ al

w‘[ n, cq] (o — (1 -a)cos(———s [ ])) —w[n, cq] (2.26)

K, [-nk wnk, Je™" =K, [nk,] @27

[ )

Since the temporal kernels are conjugate symmetric, the condition for a real Discrete

Fourier Transform holds and the spectral components are real.

In order to use this efficient algorithm, the temporal kernels have to be
calculated. Then by taking N-point FFT, where N is the maximum window size, of
these kernels, the spectral kernels are evaluated. The spectral kernels are calculated
once and can be used for the same conditions that is for the same sampling rate, the
same minimum frequency and the same frequency spacing. The following five
figures, (Figure (2.9)-(2-13)) present the spectral kernels for different k., spectral
component. The spacing is semitone, the minimum is 183 Hz and the sampling rate
11025 Hz. The horizontal axis of these figures are FFT Bin Number. Since 1024
point FFT is taken, the first 512 of these are important but in order to display the

17



spectral kernels in a meaningful way, different band of values are taken. The values
of the spectral kernels are zero for the rest of the spectrum. It can be easily seen that,
with increasing k., value, the band of the spectral kernel increases. Also the position
of the band on the FFT Bin Number axis, shifts to right, to the high numbers. Figure
(2.9), is the spectral kernel calculated for the maximum bin number Kk.qma,
corresponding to the Nyquist frequency. For the calculation of this maximum bin

number, Equation (2.18) can be rewritten as:

@yt = ke
log(w, /W)

L =12 oo (2.29)

The minimum digital frequency Wi, is calculated from Equation (2.19) as:

_ 2n(183) _

The digital frequency of the Nyquist frequency is &, from Equation (2.29), kegmax 18
calculated as:

log(™105)
K eqemmae = 12———4105 =59
log(2)
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Figure (2.9) The Spectral Kernels for k=1
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Figure (2.10) The Spectral Kernels for k=10
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Figure (2.11) The Spectral Kemnels for k=30
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Figure (2.12) The Spectral Kernels for k.;=50
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Figure (2.13) The Spectral Kernels for k=59

In order to use the right side of Equation (2.22) for the calculation of
Constant Q Transform, the spectral kernels are evaluated once or called from a
previous calculation having the same condition. Then the FFT of the input sample
have to be performed. By taking the summation, defined in Equation (2.22), X*[k.]

values are found.

Figure (2.14) and (2.15), present Constant Q Transforms calculated using
Equation (2.22) on the sound file having 392 Hz fundamental frequency and nine
harmonics of the fundamental. For this calculation, an adjustable parameter called
MINVAL is used in order to select the spectral kernels, having absolute values
greater than MINVAL. That is, if the absolute value of the spectral kernel is less
than the value of MINVAL, the value of the kernel is set to zero. In other words, the
value of the parameter MINVAL is a cutoff value for the spectral kernels. Table
(2.1) shows the number of desired multiplications for the transform for different
values of MINVAL. As seen from the table, the number of multiplications decreases
suddenly from a small increase on the value of MINVAL. There is an error in
dropping small values of kernels. The second column of the Table (2.1) is this
estimated error. The error is calculated by summing the absolute values of the
numbers which are dropped and dividing by the sum of the absolute values of the

kernels.
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Table (2.1) Number of multiplications performed and error estimated for different

MINVAL values
MINVAL ERROR | MULTIPLICATIONS

0 0 30720
0.03 0.0844 1521
0.05 0.0997 1369
0.07 0.1438 1241
0.1 0.1541 1106
0.12 0.2289 1007
0.15 0.3413 867
0.18 0.4332 742
02 0.4636 648
025 0.6020 360

10 R il

6
Amplitude

10 10 10'
Frequency (Hz)

Figure (2.14) Constant Q Transform using efficient algorithm of sound with
fundamental at 392 Hz having 9 harmonics (MINVAL=0)
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Figure (2.15) Constant Q Transform using efficient algorithm of sound with
fundamental at 392 Hz having 9 harmonics (MINVAL=0.10)
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Figure (2.16) Error in dropping small values of kernels versus cutoff (MINVAL)

value

Figure (2.16) is obtained from the first two columns of Table (2.1). From
Table (2.1), by selecting the value of the parameter MINVAL as 0.1, there is an
approximately 15% error for the calculation of the transform. With this error rate,
there is still a constant pattern as seen in Figure (2.15). Also the number of complex
multiplications diminishes from 30720 to 1106. Since the run-time of the algorithm
depends heavily on the number of performed multiplications, this error ratio can be

tolerated with this gain on the run-time of the algorithm.
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2.4  Constant Q Transforms of Musical Instrument Samples

The following figures are the calculation of Constant Q Transform of the
musical instrument sample files. The musical instruments are flute, saxophone,
accordion, piano, guitar and org. The musical instruments are selected in order to
represent the different types of instruments. All of the musical instrument sample
files [13] are in the Waveform Audio File Format (WAYV), one of the standard
multi-media file format of Windows. The Waveform Audio Files are made up of
“chunks” ([14], [15]). In these chunks, different kinds of information are stored. One
of the chunks, that is the format header chunk, is dedicated for the information of
how the audio data is formatted in the file. Another chunk is for the audio data that
is the raw data ([14], [15]). From the format header of the instrument sample files, it
is known that all of the files are sampled at 44100 Hz. The number of channels of
audio present in the file is one, that is the sounds are monaural. The raw data is
sixteen-bit in signed integer audio data. For the calculations of the Constant Q
Transform of the all of the sample files, the efficient algorithm is used. The value of
the adjustable parameter MINVAL is set to 0.1. The audio data sets are
downsampled to 22050 Hz by eliminating the even numbered samples. There is
semitone spacing between the adjacent frequencies and the minimum frequency is
selected as 183 Hz. From the Equation (2.13), the maximum window size can be

calculated as:
N[0]=(S/f,,)Q =(22050/183) *17 = 2048

Therefore 2048 point FFT is used for the calculation of the spectral kernels from the
temporal kernels. Since all of the musical instrument samples are obtained from
22050 Hz sampling rate and the same conditions exist, the spectral kernels are

calculated once and are used for all transforms.
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Figure (2.17) Constant Q Transform using efficient algorithm of guitar playing C5
(C5=523 Hz)
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Figure (2.18) Constant Q Transform using efficient algorithm of guitar playing C5
(C5=523 Hz), the quality factor is doubled at frequency 1844.5 Hz

The above two figures represent the Constant Q Transform of the guitar
playing C5. If these two figures are compared, it is seen that from Figure (2.17) that
the resolution is insufficient for the high frequencies in the guitar spectrum.
Therefore, Q is doubled near 1850 Hz. That is Q=34 for the frequencies greater than
1850 Hz. This frequency is selected because from Figure (2.17), it is clear that the
harmonics near 2000 Hz are not resolved. With doubling the quality factor, the
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resolution is doubled. Therefore the harmonics near 2000 Hz are resolved, as seen in

Figure (2.18).
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Figure (2.19) Constant Q Transform using efficient algorithm of piano playing C5
(C5=523 Hz), the quality factor is doubled at frequency 1844.5 Hz
(MINVAL=0.1)
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Figure (2.20) Constant Q Transform using efficient algorithm of piano playing C4
(C4=261 Hz), the quality factor is doubled at frequency 1844.5 Hz
(MINVAL=0.1)

The above two figures illustrate the Constant Q Transform of piano playing
two different tones C5 (C5=523 Hz) and C4 (C4=261 Hz) respectively. Nearly all of

the overtones exist in the figures. This is the main characteristics of the string
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instruments. In the high frequency range, the amplitude of the harmonics decreases

very rapidly.

8000,

6000

4000]

Amplitude

2000;

10 10 10 10
Frequency (Hz)

Figure (2.21) Constant Q Transform using efficient algorithm of accordion playing
C5 (C5=523 Hz), the quality factor is doubled at frequency 1844.5 Hz
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Figure (2.22) Constant Q Transform using efficient algorithm of flute playing C5
(C5=523 Hz), the quality factor is doubled at frequency 1844.5 Hz

The above two figures present the Constant Q Transform of accordion and
flute, respectively. Both instruments are playing C5 (C5=523 Hz). For the accordion
case, the spectrum is rich, that is the number of overtones is large. For the flute case,

the large amount of sound power is in the fundamental with a small number of

26



overtones. This is due to the fact that the flute has one of the purest tones of all
musical instruments. Also the quality factor of the transform is doubled near 1844.5
Hz and the value of adjustable parameter, MINVAL is set as 0.1.
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Figure (2.23) Constant Q Transform using efficient algorithm of saxophone playing
C5 (C5=523 Hz), the quality factor is doubled at frequency 1844.5 Hz
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Figure (2.24) Constant Q Transform using efficient algorithm of saxophone playing
C4 (C4=261 Hz), the quality factor is doubled at frequency 1844.5 Hz

The above two figures illustrate the Constant Q Transform of saxophone
playing two different tones C5 and C4. If these two figures are compared, the
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amplitudes of the overtones are considerable. Even though it is seen that there is no

fixed pattern in the overtone structure, the number of the overtones are nearly equal.
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CHAPTER 3
WAVELET TRANSFORM
3.1 Introduction

A wave is usually defined as an oscillating function of time or space, such as
a sinusoid. Fourier analysis is wave analysis. It expands signals or functions in terms
of sinusoids (or, equivalently, complex exponentials ) which has proven to be
extremely valuable in mathematics, science, and engineering, especially for periodic,
time-invariant, or stationary phenomena. The term wavelet indicates a “small wave”
[16]. It has its energy concentrated in time to provide a tool for the analysis of
transient, nonstationary, or time-varying phenomena. It still has the oscillating
wavelike characteristic but also has the ability to allow simultaneous time and

frequency analysis with a flexible mathematical foundation ([17], [18]).

The wavelet transform is a recent method of signal analysis and synthesis
which represents signals in terms of wavelets. The wavelet transform decomposes an
arbitrary function into a two parameter family of elementary wavelets that are
obtained by shifts in time variable and by dilations that act both on the time and the

frequency variables [18].

For the wavelet expansion, a two-parameter system is constructed such that:
fl)=>>a, ¥, (1) G.D
ko j

where both j and k are integer indices and the W (t) are the wavelet expansion

function (generating wavelet or mother wavelet) that usually form an orthogonal



basis. The wavelet systems are generated from this wavelet by simple scaling and

translation [17]. This can be formulated as:
¥, (1)=2""¥(2't-k) (3.2)

In this notation, k can be thought as the parameterization of time or space location
and j as the frequency or scale. All wavelet systems satisfy the multiresolution
conditions. This means that if a set of signals can be represented by a weighted sum
of \uit-k), then a larger set (including the original) can be represented by a weighted
sum of y(2t-k). In other words, if the basic expansion signals are made half as wide
and translated in steps half as wide, they will represent a .larger class of signals

exactly or give a better approximation of any signal.
3.2  Mathematical Definitions

A function space “S”, is defined as a linear vector space (finite or infinite
dimensional) where the vectors are functions. On this space, the inner product of
two functions is a scalar, obtained from two vectors, f(t) and g(t) by an integral. It is
denoted as [17]:

a =< f(t), g(t) >= [ £"(t)g(t)dt (3.3)

in which £'(t) denotes the complex conjugate of the function f{(t). This inner product

defines a norm or length of a vector which is denoted as [17]:
[£ll= Vi< .£>] (3:4)

Two signals with non-zero norms are called orthogonal if their inner product is zero.
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On the function space “S”, any function, f(t), can be expressed as:

f(t)= Zak(pk(t) (3.5)

0k(t) is called an expansion set for the space “S”. If the representation, i.e. the set of
{ax} is unique, the expansion set forms a basis. Alternatively, for a given expansion
set or basis set, the space “S” consists of the set of all functions that can be

expressed by ox(t). This is called the span of the basis set [17].

A set of scaling functions, @x(t) can be defined in terms of integer translates

of the basis scaling function, ¢(t). This can be formulated as [17]:
o, (t)=0(t-k) (3.6)

The function space can be defined as 99 and using the scaling function, a given
function can be represented using Equation (3.5). In order to formulate the basic
requirements of multiresolution analysis (MRA), a two dimensional family of
functions, @;i(t) is generated from the basic scaling function ¢(t) by scaling and

translation by:
0;x(t) = 2" (2"t - k) (3.7)

whose span over k is ;. For j>0, the span can be larger since ¢;x(t) is narrower and
is translated in smaller steps. It, therefore, can represent finer detail. For j<0, @;x(t) is
wider and is translated in larger steps so these wider scaling functions can represent
only coarse information and the space they span is smaller ([17], [18], [19]). Because
of the definition of 3;, the spaces have to satisfy a natural scaling condition. That is,
if f(t) is in 9; then f(2t) is in 8;:; which insures that it belongs to the next space [17].
If we think @(t) is in 9 ,which means that ¢(t) is a function in the given space, it is

also a member of the function space spanned by the ¢(2t).
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This means that ¢(t) can be expressed in terms of a weighted sum of shifted ¢(2t) as
[17]:

o(t) = X h(n}W20(2t - n) (3.8)

This recursive equation is fundamental to the theory of the scaling function and is
analogous to a different equation with coefficients h(n) and solutions ¢(t) that may
or may not exist or be unique. The equation is called the refinement equation, the

multiresolution analysis (MRA) equation, or the dilation equation ([17], [19], [20]).

9:-59,59, 59

Figure (3.1) Vector Spaces Spanned by the Scaling Function

The important features of a signal can better be described or parameterized,
not by using @;x(t) and increasing j to increase the size of the subspace spanned by
the scaling functions, but by defining a slightly different set of functions Wjk(t), i.e
wavelet function, that spans the differences between the spaces spanned by the
various scales of the scaling function [17]. Therefore the wavelet functions are
orthogonal to the scaling functions; that is, if the span of the Wji(t) is W;, and the
span of the @(t) is 9; then all members of 9; are orthogonal to all members of Wi;.
That is [17]:

<0, (0, ¥,, 0 >= [0, (¥ ()t =0 (3.9)
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for all j, k values. Since the wavelets reside in the space spanned by the next
narrower scaling function, they can be represented by a weighted sum of shifted
scaling function @(2t) [17]:

¥(t)=Y h,(n)v20(2t - n) (3.10)

where hy(n) are defined as the wavelet function coefficients. Since orthogonality
between @(t) and W(t) is required, there is a close relation between the wavelet
function coefficients h;(n) and scaling function coefficients h(n). This relation is

formulated as [17]:
h,(n)=(-1)"h(1-n) 3.11)
For a finite even-length-N

h,(n)=(-1)"h(N~1-n) (.12)

3:59,59, 59

Figure (3.2) Scaling Function and Wavelet Vector Spaces
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33 Discrete Wavelet Transform

Given a function f(t), its Discrete Wavelet Transform (DWT) is defined as
[17]:

()= Y co(0n, 0+ XY AW, 0 (G.13)

K j=j0

As it can be seen from Equation (3.13), in order to calculate the Discrete Wavelet
Transform of a function both scaling and wavelet function had to be defined. Also in
Equation (3.13), choice of jo sets the coarsest scale whose space is spanned by
@jox(t), the rest is spanned by the wavelets which provide the high resolution details
of the signal. The coefficients in Equation (3.13), i.e. wavelet expansion, completely
describe the original signal and can be used in a way similar to Fourier series
coefficients for analysis, description, approximation and filtering. If the wavelet
system is orthogonal, these coefficients can be calculated by inner products of two

real functions [17]:

¢, (k) =< £(1), 9, (1) >= [ £(t)p . (t)dt (3.14)

d;(k) =< £(t), ¥}, (1) >= [ f()¥,, (t)dt (3.15)

If we use multiresolution analysis equation and scaling and translation of the scaling

function, in order to rewrite Equation (3.14):

o(t) = 2 h(n}W20(2t - n) (3.16)
0,.(t)=2"0(2't-k) (3.17)
0(2't-k) =Y h(n)v20(2(2't - k) - n) (3.18)
0(2't—k)=> h(nW20(2"t- 2k - n) (3.19)
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setting m=2k+n and rewriting the equation:

0(2't-k) = h(m-2k}W20(2""t - m) (3.20)

Using the inner product for ¢;(k):

6,(k) =< £(1),0,, (1) >= [f2% o2t -k)dt  (3.21)

c;(k) = j f(t)Z% > h(m- 2kW20(2" t-m)dt  (3.22)

¢;(k) =2 h(m - 2k) j f(t)Zj% (p(zj“'t —m)dt (3.23)

Ciy(m) = J' f(t)zj% 02"t —m)dt (3.24)
¢,(m)=> h(m - 2k)c,, (m) (3.25)

Similarly d;(m) can be calculated as [17]:

d;(m)=>"h,(m - 2k)c,,(m) (3.26)

Equation (3.25) and (3.26) state that, the scaling and wavelet coefficients at different
levels of scale can be obtained by convolving the expansion coefficients at scale j by
the time-reversed recursion coefficients h(-n) and h;(-n) then downsampling or
decimating (taking every other term, the even terms) to give the expansion
coefficients at the next level j-1. In other words, the scale-j coefficients are “filtered”
by two FIR (Finite Impulse Response) digital filters with coefficients h(-n) and hy(-n)
after which downsampling gives the next coarser scaling and wavelet coefficients.
The Discrete Wavelet Transform employs two sets of functions, called scaling
functions and wavelet functions, which are associated with lowpass and highpass
filters, respectively. The decomposition of the signal into different frequency bands is
simply obtained by successive highpass and lowpass filtering of the time domain

signal ([17], [21], [22], [23]). In Discrete Wavelet Transform, lowpass filtering
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removes half of the frequencies, which can be interpreted as losing half of the
information. Therefore, time resolution is halved after filtering operation. However,
downsampling operation after filtering does not affect the resolution, since removing
half of the spectral components from the signal makes half of samples redundant
anyway but the scale will be doubled afterwards. That is to say that after
downsampling operation, the frequency resolution is doubled because the frequency
band of the signal now spans only half the previous frequency band. The above
procedure, which is also known as the subband cbding, can be repeated for further
decomposition. At every level, filtering and downsampling will result in half the
number of samples (and hence half the time resolution) and half the frequency band
spanned (and hence double the frequency resolution) [13]. This procedure is

described in Figure (3.3) with an example.

——>Wn) o2
256 points

x[n] — Ninth Level
512 points DWT

256 points

Figure (3.3) Ninth Level DWT Coefficients Calculation

In the given example, there is a signal with 512 sample points. Figure (3.3)
shows the highest level of the Discrete Wavelet Transform calculation. In the same
figure h(n) corresponds to the impulse response of the lowpass filter, similarly h;(n)
corresponds to that of the highpass filter. These are the scaling function and wavelet
function coefficients, respectively, and are calculated according to the selected
scaling and wavelet functions for the calculation of the Discrete Wavelet Transform.
The outputs of these filters are downsampled with a ratio of two. By this way, total
number of coefficients at the outputs of the filters are equalized with number of

samples at the inputs of the filters. This procedure continues until one coefficient is
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left. For calculation of the Discrete Wavelet Transform of a 512 sample example,
there are nine levels of decomposition, each having half the number of the samples of
the previous level. The Discrete Wavelet Transform of the original signal is then
obtained by concatenating all coefficients starting from the first level of
decomposition. The Discrete Wavelet Transform provides the same number of

coefficients as the original signal.
3.4  Heisenberg Uncertainty Principle

Heisenberg Uncertainty Principle describes the fact that, a given signal x(t)
can be localized simultaneously in time and frequency but it can not be concentrated
simultaneously. The shorter-lived a function, the wider the band of frequencies given
by its Fourier Transform; the narrower the band of frequencies of its Fourier
Transform, the more the function is spread out in time [25]. In order to define the
uncertainty principle, for a given function x(t), the Fourier Transform of it can be

found from [12]:

X(f) = J:e“zmx(t)dt (3.27)
For every function x(t) (t a real number), such that

Iolx(t)lz dt=1 (3.28)

the product of the variance of t and the variance of f (the variable of X(f)) is at least
1/(167%) [25]:

2
1
|X(f)|2df] 2 (3.29)

( z (t- tm)2 x()f° dt)@(f ~£,)
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where t, and f;, are the average values of the given functions. The left side of the
inequality is the multiplication of two variances of the given functions. These
variances measure to what extent t and f take values far from their average values tp,
and £, . Thus the more f is concentrated in a small window of time, the smaller the
variance of t will be. If the signal is more spread out in time, the variance will be

larger.

In order to apply Heisenberg Uncertainty principle in time-frequency
representations, a plane in which time varies horizontally and frequency vertically,
the time-frequency plane, is defined. This plane can be tiled with rectangles of size At
and Af The width and the height of these rectangles are At and Af where At
represents the window of time; it is the standard deviation of time, and Af represents
the range of frequencies. Since the standard deviation is the square root of the

variance, the rectangle areas can be calculated from Equation (3.29):

At*Af > — (3.30)
4rn

Equation (3.30) describes the areas of rectangles in the time-frequency plane. If
precise information about time is desired, a certain vagueness about frequency has to
be accepted, similarly a precise information about frequency yields a certain

vagueness about time [25].
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CHAPTER 4
CALCULATION OF DISCRETE WAVELET TRANSFORM
4.1 Introduction

Each musical instrument produces a characteristic frequency spectrum. The
frequency spectrum of the signal changes over time. Therefore time domain analysis
for musical sound processing is important. For this analysis Fourier Transform can
not be used because it provides only frequency information. How much of each
frequency exists, is this information. Fourier Transform assumes that the
frequencies in the spectrum exist at all times. That is, it assumes that the signal is
stationary. Fourier Transforms of stationary and nonstationary signals having the
same frequencies are the same. In order to show this, two sound samples are
generated synthetically, one is stationary and the other is a nonstationary signal.
Both of the samples have two frequencies, which are 500 Hz and 2000 Hz. Within
the nonstationary signal, 500 Hz appears in the first half of the sampling duration,
and then 2000 Hz appears for the rest of this duration. Whereas these frequencies
are present at all times in the stationary signal. Figure (4.1) and (4.2) are the graphs
of these two signals respectively. These signals are sampled at a rate of 11025 Hz.
The figures show the first 1024 of these samples. Figure (4.3) and (4.4) are obtained
by taking 1024-point FFT of these samples. In the spectrum of the nonstationary
signal, there are some noises around the peaks this is due to sudden change between
the frequencies. Except these noises, both spectra are similar. These figures reveal

that 500 Hz and 2000 Hz exist in the signal.
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Figure (4.1) A nonstationary signal having 500Hz and 2000Hz
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Figure (4.2) A stationary signal having 500Hz and 2000Hz
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Figure (4.3) Spectrum of the nonstationary signal having 500Hz and 2000Hz
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Figure (4.4) Spectrum of the stationary signal having 500Hz and 2000Hz

For time-frequency analysis of musical sound, Discrete Wavelet Transform
can be used. A complete time-frequency information can not be obtained even by
the Wavelet Transform. This is due to the resolution problem. The uncertainty
principle originally found and formulated by Heisenberg, states that, the momentum
and the position of a moving particle can not be known simultaneously [18].
Similarly for the signal pfocessing case, frequency and time information of a signal
at some certain point in time-frequency plane can not be known. In other words:
what spectral component exists at any given time instant can not be known. The
best that can be done is to investigate what spectral components exist at any given

interval of time [18].

Calculation of the Discrete Wavelet Transform can be divided into different
stages. The first stage is the selection of the scaling and wavelet functions that
determine the wavelet system. The wavelet system refers both of the functions from
here after. With selection of the wavelet system, the characteristics of both highpass
and lowpass filters are selected because the wavelet system coefficients define these
filters. These coefficients are the solutions of the multiresolution analysis equation
(MRA) defined as Equation (3.8). These solutions can be found in any reference
book on wavelet transform. During the second stage, the signal is passed through

these filters at different levels. Filtering corresponds to the convolution of the signal
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with the impulse responses of these filters. The impulse response of the lowpass
filter is the scaling function coefficients, defined as h(n) in Chapter 3 and similarly
the wavelet function coefficients, defined as h,(n) in Chapter 3, and is that of the
highpass filter. In order to obtain equal number of samples after convolution, the
outputs of the filters are subsampled by two. The subsampled outputs of the
highpass filter are the wavelet coefficients at that level. The subsampled outputs of
the lowpass filter are the input coefficients for .the next level. This process can
continue until one coefficient is left but it can be stopped at any level. At any level
throughout the transform, there are 2" discrete wavelet coefficients where n
corresponds to the level number. The last stage of the transform is display of the
calculated coefficients. This stage is the most difficult part of the transform, because
the calculated wavelet coefficients carry the information both on time and frequency
at different resolution. As mentioned earlier in Section 3.4, time-frequency plane is
partitioned into tiles by the Discrete Wavelet Transform coefficients d;,, where j
defines the level, and k is the bin number at that level. Figure (4.5) is time-
frequency plane, which is divided into tiles with a five level Discrete Wavelet

Transform.

dw d—l.] dJ.Z d4.3 d-H d-‘.’ d4.6 d4.7 d4,8 d4.9 dJ.lﬂ dJ.l dJ.h d4.l dJ,l dJ.l

dyo dy; d;, dys

oy

Figure (4.5) Time-frequency relation of DWT coefficients
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If tiles are thought as boxes, it can be easily seen that although widths and heights of
these boxes change, the area is constant. That is, each coefficient of the Discrete
Wavelet Transform calculated at different levels, represents an equal portion of the
time-frequency plane, but giving different proportions to time and frequency.
Regardless of the dimensions of the boxes, the areas of all boxes are the same and
determined by Heisenberg’s inequality that is the areas of the boxes are lower
bounded by 1/(4x), as described in Section 3.4. It is observed from Figure (4.5) that
higher frequencies are better resolved in time, and lower frequencies are better
resolved in frequency. This means that, a certain high frequency component can be

located in time (with less relative error) than a low frequency component ([18], [19]).
4.2  Example Scaling Functions and Wavelets

Below, four commonly used families of scaling and wavelet functions are
defined. These are the Haar, Sinc, Spline and Daubechies. After they are defined, each
function family is used to illustrate the calculation of the Discrete Wavelet Transform
on the 500 Hz and 2000 Hz stationary and nonstationary signals, used in Section 4.1,

above.
4.2.1 Haar Wavelet
Haar Wavelet System is the oldest and most basic of the wavelet systems that

has most of the desired properties. The scaling function is a unit length step function
(i.e. (t)=1 for 0<t<1, and 0 otherwise)[17]. The unique coefficients are [17]:

11
h(n) ={—,— 4.1
(n) { > 2} (4.1)
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Figure (4.6) DWT of nonstationary signal using the Haar Wavelet System

Figure (4.7) DWT of stationary signal using the Haar Wavelet System

The above two figures are Discrete Wavelet Transforms of the nonstationary
and stationary signals using the Haar Wavelet System, respectively. These figures are
3-D representation of the transform where the axes are amplitude, bin and level. The
bin axis corresponds to time axis and the level axis corresponds to that of frequency.
For the calculation, 1024 points are sampled with a rate of 11025 Hz. If N is defined



as upper value of the level of the Discrete Wavelet Transform, it is calculated from:
N =log,(1024)=10

This means that, the operations of filtering and subsampling the outputs of the filters
by two, had to be performed at most ten times. The highest level, that is the tenth level
of the transform corresponds to a band of frequency between the Nyquist frequency
(i.e. half of the sampling rate) and half of that frequency. This band is represented
with half of the window size, in these examples 512-points. This level provides
maximum information on time. The calculated coefficients at lower levels are
represented with lower window sizes. Therefore if the calculated coefficients are
expanded so that there are 512-points at each level, a matrix having a dimension of
10x512 is obtained. The row of this matrix, is the level and the column of it, is the bin
number. The elements of this matrix are the calculated wavelet coefficients. From this

matrix, 3-D graph of the transform can be obtained.

From the above figures, it is seen that, the coefficients between the seventh
and the tenth level are meaningful. In order to obtain the frequency bands at each
level of the transform, Figure (4.5) is analyzed again. Figure (4.5) is time-frequency
plane of a five level DWT. That is frequency domain is divided into five unequal
bands. From the Nyquist theorem, the maximum frequency information is half of the
sampling rate. Therefore, frequency domain is between 0 Hz up to half of the
sampling rate. Both of the lowpass and the highpass filters used during the transform,
are half band type and therefore one removes all frequencies that are above half of the
" highest frequency of the level and the other removes all the frequencies that are
below. Similarly, 1024-point DWT divides the frequency band into ten unequal
bands. The levels and corresponding frequency bands are listed in Table (4.1) for a

sampling rate of 11025 Hz.
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Table (4.1) The Frequency Band of DWT for 1024 point and 11025 Hz

sampling rate

Level Frequency Band (Hz)
1 5.375-10.75
10.75-21.5
21.5-43
43-86.12
86.12-172.25
172.25-344.5
344.5-689
689-1378.125
1378.125-2756.25
2756.25-5512.5

O oo ] O U] B W N

—
(=]

4.2.2 Sinc Wavelet

The sinc basis set is formed by the sinc functions. The sinc function is defined

as[17]:

sine(t) = Smt(t) 4.2)
The scaling function is defined as [17]:
T T
inc(Kt) = ) sinc(KTn)sinc(—t - — 4.3
sinc(Kt) g sinc(KTn)sinc( RT' R n) 4.3)
Here the period T is %2 and the parameter K is defined as [17]:
n
K=— 44
R 4.4)
Then the scaling coefficients are calculated from [17]:
h(n) = sinc(—— n) 4.5)
2R '
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If R=1, then K=n and the scaling function generates an orthogonal wavelet system,

where n defines the number of coefficients.

Figure (4.8) DWT of nonstationary signal using the Sinc Wavelet System with an
order of 5 (n=5)

Figure (4.9) DWT of stationary signal using the Sinc Wavelet System with an order of
5 (n=5)
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4.2.3 Spline and Battle-Lemarie Wavelet System

The triangle scaling function is a special case of a more general family of
spline scaling functions. The scaling coefficient system
1 1 1
—_—,=,—=,0 (4.6)
242742 242 }

gives rise to the piecewise linear, continuous triangle scaling function [17].

h(n) = {

Figure (4.11) DWT of stationary signal using Spline Wavelet System (order 1)
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Figure (4.12) DWT of nonstationary signal using Spline Wavelet System (order 2)

4.2.4 Daubechies Wavelet System

Ingrid Daubechies constructed orthonormal wavelets with compact support
[29]. The ‘n’ values in the succeeding figures are half of the number of the scaling
and wavelet coefficients. Since these coefficients define the impulse responses of the
filters in the Discrete Wavelet Transform, both filters are represented with 2*n

coefficients [17].

BIN 600 O

Figure (4.13) DWT of nonstationary signal, using Daubechies Wavelet System (n=5)
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Figure (4.14) DWT of stationary signal, using Daubechies Wavelet System (n=5)

Figure (4.15) DWT of nonstationary signal, using Daubechies Wavelet System (n=10)
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Figure (4.16) DWT of nonstationary signal, using Daubechies Wavelet System
(n=20)

43  Comparison of the Wavelet Systems

In the previous part, four different wavelet systems are defined. These are
the Haar, Sinc, Spline and Daubechies wavelet systems. In order to compare these
systems, the Discrete Wavelet Transforms of stationary and nonstationary signals
are taken by using the related wavelet systems, respectively. Also different orders
from the defined wavelet system are taken and used to calculate the Discrete
Wavelet Transform of the nonstationary signal in order to analyze differences on
time domain from the results. From Table (4.1), it is found that 500 Hz and 2000 Hz
are within a frequency band corresponding to level seven and nine of the transform.
Since no other frequencies exist in these signals, the coefficients at the other levels

are expected to be zero or near to zero.

Figure (4.6) and (4.7) illustrate the Discrete Wavelet Transforms of the
nonstationary and stationary signals, using the Haar Wavelet System, respectively.
From the DWT of the stationary signal, it is seen that these frequencies exist at all
times. From the DWT of the nonstationary signal, it is seen that separation of these

frequencies in time is perfect. But from the frequency point of view, although the
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coefficients at the levels seven and nine have the maximum values, the coefficients
at the eighth and tenth level are also meaningful. DWTs of the signals using the
Haar Wavelet System give rise to error on the lower levels because there is some

information below the seventh level.

Figure (4.8) and Figure (4.9) represent the Discrete Wavelet Transforms of
the defined signals, using the Sinc Wavelet System with an order of 5. It is seen
from these figures that, the Sinc Wavelet System provides. information neither on

the time domain nor on the frequency.

Figure (4.10) and Figure (4.11) represent the Discrete Wavelet Transforms
of the defined signal using the first order Spline Wavelet System. Figure (4.12) is
the graph of DWT of the nonstationary signal using the second order Spline
Wavelet System. It is seen from these three figures that, the calculated coefficients
are near zero for the levels lower than seven. Also the magnitudes of calculated
coefficients at the eighth and tenth level are lower than the corresponding level
coefficients of the calculation based on the Haar Wavelet System. Therefore, the
second order Spline Wavelet System provides the best frequency information if the
Haar and both of the Spline Wavelet Systems are compared. But from the
comparison of time information provided by these systems, the Haar Wavelet

System has still the perfect information.

From the calculations using the different orders of the Daubechies Wavelet
System, it is seen that the frequency information provided increases with increasing
transform orders. Figure (4.16) is the most meaningful figure from the frequency
point of view, because the coefficients at the lower levels are near zero. The
magnitudes of the coefficients at the eighth and tenth level are dropped by an
appreciable amount. But the time localization of the frequencies are worse for this

system, compared with all other systems.
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In all, a wavelet system that is seen to provide best time and frequency
information together can not be found. A gain on time information corresponds to a
lose on frequency information. Therefore a “mid-range” wavelet system had to be
searched. Spline Wavelet System of order 2 and Daubechies Wavelet System of
order 10 can be selected as candidate from the calculations on stationary and
nonstationary signals. But in order to observe the performances on instrument
samples, also the other wavelet systems are applied to the same samples. Evaluation

of these attempts and comparison from the results will be presented below.

44  Discrete Wavelet Transforms of Musical Instrument Samples

The musical instrument sample files used throughout this part, are selected
from the files defined in Chapter2. For the time-frequency analysis, first 16384
integer samples are taken from these files. In order to obtain 22050 Hz sampling
rate, the even numbered samples are dropped, leading to 8192 samples for the
calculation of Discrete Wavelet Transform. Table (4.2) defines the frequency bands
corresponding to the levels of the transform. The total number of samples leads toAa
13-level DWT. The frequency bands corresponding to the first and second level are
small, near 0, therefore these values are not calculated. Also for calculation of
Constant Q Transforms of these files, the minimum frequency is selected as 183 Hz.
This frequency is in the level eight in Table (4.2). Therefore, the calculations are
stopped at that level. The Daubechies Wavelet System of order 10 is applied to all
of the instrument samples. Also the other wavelet systems are applied and their

results are compared with results from DWT using the Daubechies Wavelet System.

Figure (4.17) is the figure of the first 8192 samples of saxophone playing C5
(C5=525 Hz). Figure (4.18) is the DWT of this sample file. Instead of bin axis, in
Figure (4.18) there is time axis. The values on time axis are calculated from bin
numbers of the calculated coefficients. The level axis and the related frequencies
are in Table (4.2). If both figures are examined, with DWT the time information of
the signal is preserved. Variations of the frequencies m time can be well defined but
the exact values of the frequencies can not. If saxophone sample signal is analyzed
by using Figure(4.17), gray lines correspond to lower frequencies and darker ones

to higher frequencies. If the lower frequency of the signal is taken as the
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fundamental frequency, as it is the true case, the variation of the fundamental is
represented at the ninth level of the DWT. Also since the first harmonic of this
fundamental falls in the band of level ten, the tenth level of the transform represents
this time variation of the first harmonic. Figure (4.19) illustrates the DWT of the

same sample file using the second order Spline Wavelet System.

Table (4.2) The Frequency Band of DWT for 8192 point and 22050 Hz sampling

rate

Level Frequency Band (Hz)
*

%k

1

2

3 5.375-10.75
4 10.75-21.5
3 21.5-43

6 43-86.12

7 86.12-172.25
8 172.25-344.5
9

10

11

12

13

344.5-689
689-1378.125
1378.125-2756.25
2756.25-5512.5
5512.5-11025

Figure (4.20) is the figure of the first 8192 samples of guitar playing CS5
(C5=525 Hz). For the plucked-string instruments, the decay time of the emitted tone
is relatively long and these instruments do not produce a steady-state output [4].
Figure (4.21) illustrates the DWT of the guitar sample. The fundamental frequency
is at the same level. The magnitude of the fundamental frequency has a peak at the
attack part of the signal and decreases during the decay part of the signal. At the
other levels of the transform, there appear the harmonics of the fundamental
frequency. The harmonics also have a maximum magnitude at the attack part of the
signal. These values decrease also during the decay part. For the time after 300 ms,
there are only the fundamental and the first harmonic of the signal. Figure (4.22)
represents the DWT of the same file using the Haar Wavelet System. The

coefficients at the eighth level are not zero for this calculation.
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Figure (4.17) The sample of saxophone playing C5

(n=10)

Figure (4.19) DWT of saxophone playing C5, using Spline Wavelet System
(order 2)
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Figure (4.20) The sample of guitar playing- C5
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Figure (4.21) DWT of guitar playing C5, using Daubechies Wavelet System (n=10)

Time-(ms)

Figure (4.22) DWT of guitar playing C5, using Haar Wavelet System
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Figure (4.23) presents the first 8192 samples of piano playing C5 (C5=525
Hz). For the struck-string instruments, the decay time of the emitted tone is longer
than the plucked-string instruments and also this kind of instruments do not produce
a steady-state output [4]. Figure (4.24) illustrates the DWT of the piano sample. The
attack and the decay part of the signal can be extracted from the DWT of the
instrument sample signal. The decay time of the emitted tone from piano is longer
than that of the guitar. It is seen that during the decay time, the fundamental
frequency and the first two harmonics of the fundamental subsist. Figure (4.25)
illustrates the DWT calculation of the same file using the Sinc Wavelet System of

order 5.

i
AL

Figure (4.23) The sample of piano playing C5

Figure (4.24) DWT of piano playing C5, using Daubechies Wavelet System (n=10)
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Figure (4.25) DWT of piano playing C5, using the Sinc Wavelet System (n=5)
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CHAPTER 5

DISCUSSION

All of the codes written in this thesis have been developed separately with
MATLAB and C++. The codes developed on MATLAB have been used because
MATLAB is designed to cover the requirements of signal processing. Results and
graphics obtained from MATLAB Notebook Suite have been included in the related

chapters.

In the first chapters, DFT and Constant Q Transforms were applied to the
same sound files. Based on a comparison of the results, it was shown that the
Constant Q Transform was able to fulfill musical sound processing requirements to a
better extent than DFT. DFT was not as effective because musical sound frequencies
are distributed geometrically and DFT supplies constant frequency resolution for all
of the frequencies. Constant Q Transform can be used as it supplies a constant
pattern to recognize fundamental frequency from the frequency spectrum. Another
result obtained from the calculation of Constant Q Transform is that, although
Constant Q Transform supplies the above advantages, its calculation is inefficient.
For this reason, a study was carried out to find out a method like Fast Fourier
Transform for faster calculation of Constant Q Transform. But as sampling window
is variable for each frequency bin, this could not be implemented. Instead, an
efficient algorithm for the calculation of Constant Q Transform was attempted. This
efficient algorithm is based on Parseval Equation. This fast method basically moves
the calculation from time domain to frequency domain. Therefore, it was shown that,
a calculation done with the same frequency spacing, same sampling rate and same
minimum desired frequency can be used for another transform calculation. Further,

the efficiency of the transform was enhanced with a parameter whose value can be



controlled. With the value of this parameter, a specific amount of error was added to
the transformation, and based on the desired calculation efficiency and tolerance for

this error, a default value was determined for the related parameter.

In order to compare the run-times of two Constant Q methods and DFT, the
number of complex multiplications that are performed for the calculation are taken
as a basis. For calculation of Fourier transform, FFT is used. If N is the width of the
sample window, the complexity of FFT is defined as O(Nlog,N), similarly the
complexity of DFT is defined as O(N?) [24]. In order to define the complexities of
two methods for the calculation of Constant Q Transforms, the following series of
steps are performed. If semitone spacing is presumed between adjacent frequencies,
the window size desired for the calculation of the k™ bin is defined in Equation

(2.13) as:

N[k]=(S/£,)Q (5.1)
Similarly for the (k+1)™ bin:

N[k + 1] =(8/f.1)Q (5.2)
The ratio of these two window sizes is evaluated as:

N[k +1] _ £,
Nk] f..

(5.3)

There is semitone spacing between the frequencies, therefore the frequency of the k™

bin is calculated from Equation (2.3):

f, =(V)*f (5.4)
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If Equation (5.3) is rewritten using Equation (5.4):

N[k+1] @) £,
= me_ — N[k +1] = N[k
NE oyt [k +1]=N[k]——

(5.5)
(2/ 2)

If the bin number of the minimum frequency of the transform is designated as O then:

N[1]=NJo 5.6

[1] [](2%2) (5.6)

N[2] = N[1]—— = N[0]—— (5.7
N[k]=Njo 5.8

[] [](2%z)k (5.8)

Since the window size corresponds to the number of complex multiplications for
each bin number, the total multiplications performed for transform calculation is the

sum of all of these. That is:

Number of multiplications = N[0] + N[1] +N[2}+.... +N[k] (5.9
=N[0]+ N[0] <~ 7 /2 +N[0]—— 7 /2) ..... +N[0] o %12 . (5.10)
_N[o]g (2/2) (5.11)
The power series are expanded as [26]:
$xr = 12X (5.12)
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Similarly for infinite sum power series expansion [26]:
0 0 1
> xt=— (5.13)

Using Equation (5.12) and taking N[0] as N, Equation (5.11) can be altered as:

1
X 1 = Ko
Number of multiplications=N_ A N—2 :
meky L

2/

) k+1

(5.14)

The highest value for the bin number corresponds to Nyquist frequency of the
transform, therefore depends on the sampling rate. For 1024 point Constant Q
Transform with 11025 Hz sampling rate, the upper index of the summation is found
as 60. For calculation of the complexity of Constant Q Transform, Equation (5.14)
can be simplified. If instead of finite series expansion, infinite summation can be

applied in Equation (5.11), a new equation can be obtained as:

k
Number of multiplications=N_ yl =N 11 =17N  (5.15)
By )
ZAZ

Equation (5.15) can be defined as the complexity of the transform. In the same way
if quartertone spacing is used, the complexity of the transform can be obtained by
replacing power of two with 1/24 instead of 1/12. This is calculated as 34*N. The
quality factors (Q) of the transform for the above conditions are the same values
respectively (From Equation (2.10) and (2.11)). This is by no chance because the
expression in right part of Equation (5.15) is the quality factor of the transform.
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Therefore the complexity of Constant Q Transform can be evaluated from:

Complexity of Constant Q = O(QN) (5.16)

In the calculation of Constant Q Transform using efficient algorithm, FFT of
input signal is taken. Furthermore according to an error rate, some multiplications
are desired for the calculation. The amount of these is tolerable, therefore the
complexity of the efficient algorithm is the same as that of FFT. If the two methods
on calculation of Constant Q Transform are compared, it is seen that for 1024 point
calculation and semitone spacing, the efficient algorithm runs approximately twice as
faster the direct calculation of Constant Q Transform (Q/log21024=17/ 10). If
quartertone spacing is used, this ratio is doubled and the efficient algorithm leads to

an increase by a factor of roughly 3.5 in computational efficiency.

The definitions and properties of the Wavelet Transform are described in
Chapter 3 and different wavelet systems are described and results of calculations of
Discrete Wavelet Transform are presented in Chapter 4. The first reason why
Discrete Wavelet Transform is applied in a part of this thesis is its newly developed
concept, nearly having a background of 10-15 years, there are lots of mathematicians
and engineers working on it and therefore it is open for future enhancements. The
second reason is that it provides time-frequency information at the same time. Since
scientists from different disciplines have worked on wavelet systems, their
representation of transform and notations differ. This makes the transform difficult to
realize at the outset. Although this can be considered as a disadvantage of the

transform, it is obvious that this will disappear in time.

From the investigation of the calculation of Discrete Wavelet Transforms of
musical instrument- samples, it is observed that, the frequency resolution of DWT is
the worst compared with that of Constant Q and DFT. The frequency bands
corresponding to each level of the transform are geometrically distributed. Initially
this has been thought as an advantage of DWT on musical sound processing, but it is

realized soon that more than one harmonic of fundamental frequency fall into the
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upper levels, because frequency bands increase so much at the higher levels of the
transform. From the results, the ﬁmdaﬁlental frequency and first two or three
harmonics are resolved. But from this amount of information the complete frequency
spectrum or the timbre of a musical instrument can not be determined. On the other
hand, it must be noted that each instrument produces some information on time
domain. The duration of a note, attack, decay and steady-state characteristics can be
given as examples to this information. From the results of calculation of DWT, it is
seen that, the above examples can be described. Attack, decay and steady-state parts
of the musical instrument samples are easily observed in the time analysis of the

transforms.

For calculation of the complexity of DWT, a similar work that is performed
for calculation of the complexity of Constant Q Transform, is done. During
calculation of DWT, successive convolution and downsampling operations are
performed. With downsampling operation, sample size of the input signal is halved at
each level of the transform. Therefore sample size at level k is half of that at level
k+1. At any level, two convolutions are performed. One for highpass filter and other
for lowpass filter. Complexity of the convolution operation is directly related to
sample size of the input signal and to number of coefficients of the filter. If c is
defined as number of coefficients of the filter, and N represents sample size of the
signal, then complexity of convolution can be calculated as N*c. At each level of the
transform, the convolution operation is applied two times, therefore complexity of
DWT at a level can be defined as 2¥*N*c, where N defines the sample size of the
input signal at a level. The process can be continued until one coefficient remains.

Therefore the complexity of DWT can be formulated as:

logy N
Complexity of DWT =2cN Z (%)n =2¢cN —11— =4cN=0(cN) (5.17)
n=0 1-—

2

For the expansion of the power series, Equation (5.13) is used. The complexity of
DWT can not be directly compared with the complexity of FFT, because calculations

both in FFT and Constant Q Transform are complex, whereas DWT calculations are



all real. It is seen that the complexity of DWT depends on the sample size and the
filter coefficients linearly. Also the Discrete Wavelet Transform can be interrupted at
any level, the coefficients up to that level represent the DWT of the signal. But
although it is seen that DWT have some advantages at higher sample sizes compared
with FFT, it must be recalled that the results of DWT are slightly more complex to
implement. This is due to the fact that the calculated wavelet coefficients carry
information on time-frequency domain. On MATLAB or on similar mathematical
programs, implementation of the results of DWT can be performed easily. Also the
calculation of DWT on this kind of programs is faster than any of defined transforms
in this study.
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CHAPTER 6
CONCLUSIONS

In this thesis, alternative transform techniques on musical signal processing
were described and performed on some musical instrument samples and the results

are compared.

First, the Constant Q Transform was described in Chapter 2. Need for this
kind of transform was illustrated on synthetically generated samples. It was observed
from these illustrations that for musical signal processing, the frequency resolution of
DFT was not good. This was due to constant frequency resolution of DFT. For
musical signal processing applications, transform should provide a geometrical
frequency resolution depending on frequency of interest. Constant Q Transform
provides this kind of frequency resolution. An efficient algorithm proposed in the
literature for Constant Q Transform computation was implemented. This algorithm is
based on evaluation of the transform in frequency domain, instead of time domain.
Parseval equation defines this. The algorithm is thought to be efficient because it
enables the use of FFT for the frequency components. The spectral kernel values,
defined in Chapter 2, were small enough so that some of these values could be
dropped during the calculation of the transform. The calculation was repeated with
different values of an adjustable parameter which defined the lower value of
acceptable spectral kernel values. It was observed that increasing the value of this
parameter, error added into the calculated coefficients increased but number of
multiplications performed were decreased. Therefore a value for this parameter was
searched yielding minimum multiplications and acceptable error on the calculated

coefficients.



-

Chapters 3 and 4 were reserved for the Wavelet Transform. In Chapter 3, the
definitions of the Wavelet Transform were presented. In Chapter 4, the calculation of
the Discrete Wavelet Transform was presented using different wavelet systems.
Performances of these wavelet systems were compared according to the results of
DWT calculation. The Discrete Wavelet Transforms of the musical instrument

samples were illustrated in Chapter 4.

In Chapter 5, all of the transforms described in this thesis were compared.
The comparison was based on the complexities, time and frequency resolutions of
the transforms. The complexities of the transforms were analyzed in this chapter. It
was observed that the complexity of the direct calculation of the Constant Q
Transform linearly depends on the window size and the quality factor of the
transform. Complexity of the efficient algorithm was found to be equal to that of
FFT. It was determined that if there was quartertone spacing between adjacent
frequencies, the efficient algorithm lead to an increase of a factor 3.5 in
computational efficiency. Similarly this factor of increase was observed to be equal
to half of 3.5 for semitone spacing. Complexity of the Discrete Wavelet Transform
was also found to be linearly depending on the sample size. But it was also
discovered that there was a linear relation between complexity of the transform and
the number of coefficients of the filter. It was observed that since the Haar filters
were represented with only two coefficients, it was the fastest compared with other

wavelet systems whereas it provided the worst frequency information.

From all of the results of the transforms, it was seen that Constant Q
Transform provided the finest frequency information and its calculated coefficients
mapped to musical frequencies in better way. Therefore for the applications where
there is a need for recognition of fundamental frequency, or musical instrument
timbre, this transform can be used which yields better information. It resolves
semitone spaced frequencies which is the true case for musical frequencies. From the
complexities of these transforms, it was observed that the Constant Q Transform
was worst for lower window sizes because the quality factor of the transform, Q is

greater than logarithm of the window size. From this point of view, efficient
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algorithm can be used which has a bétter complexity than that of the direct
calculation. The same sound samples were used for the calculation of the Discrete
Wavelet Transform. From these results, it was seen that the frequency resolution of
the Discrete Wavelet Transform was the worst because the Discrete Wavelet
Transform did not provide the exact values of the frequencies rather it provided a
frequency band. Therefore it can not be used in pitch recognition applications. But
from time-domain analysis of the Discrete Wavelet Transform, it was observed that
the variations of the partials could be analyzed. These variations can be used in order
to recognize the temporal characteristics of the sound generated by different musical

instruments.

As a future study, the developing wavelet systems can be applied for the
calculations of the Discrete Wavelet Transform. Within these systems, a best basis
can be searched for musical signal processing. Depending on the results of the
Discrete Wavelet Transforms, musical instrument recognition based on temporal
characteristics, can be implemented. The Constant Q Transform can be repeated for
different window sizes in a sample file, so that it can be implemented in order to

provide time information.
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