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abstract

successive target cancelation
for radar waveform sidelobe

reduction

HALİLOG̃LU, Onur

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Ali Özgür YILMAZ

September 2006, 79 pages

Many radars suffer from masking of weaker targets by stronger ones due to

range sidelobes of pulse compression codes. We propose a method to prevent

this by successively detecting targets and canceling their effects. Performance

of the proposed method will be investigated in various scenarios with regard

to existence of noise, targets, and the Doppler effect.

Keywords: Sidelobe Suppression, Radar Signal Processing

iv



öz

RADAR DALGA BİÇİMİ YANLOB
BASTIRMASI İÇİN ARDIŞIK

HEDEF YOKETME

HALİLOG̃LU, Onur

Yüksek Lisans, Elektrik ve Elektronik Mühendislig̃i Bölümü

Tez Yöneticisi: Asst. Prof. Ali Özgür YILMAZ

Eylül 2006, 79 sayfa

Bir çok radar uygulamasında, darbe sıkıştırma kodlarının ikincil kulak-

ları (yan lobları ) nedeniyle küçük hedeflerin daha büyük hedefler tarafından

gölgelenmesi sorun teşkil etmektedir. Biz bu sorunu çözmek için, ardışık

olarak hedefleri saptayan ve saptanan hedeflerin etkilerini eleyen bir yöntem

öneriyoruz. Önerilen bu metodun performansı; gürültünün ve Doppler etk-

isinin dikkate alındıg̃ı çeşitli hedef kombinasyonlarından oluşan farklı senary-

olar için incelenecektir.

Anahtar sözcükler: Yanlob Bastırma, Radar Sinyal İşleme
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chapter 1

Introduction

Radar (Radio Detection and Ranging) is an electromagnetic system that uses

radio waves to detect and to determine the distance and/or speed of objects

such as aircraft, ships, people, and the natural environment. Since World

War II a great effort has been put into development of radar systems and

hence radar technology has immensely advanced.

A typical radar utilizes a pulse waveform. Duration of the pulse waveform

is a critical issue since the properties of a radar such as resolution and range

are determined by the pulse duration. High range resolution is provided

when short-duration pulse is used. On the contrary, long duration pulses

have lower resolution. On the other hand, long-duration pulses have some

advantages over short-duration pulses. Since the width of a pulse in time

domain is inversely proportional to its spectral bandwidth, the bandwidth

of a short pulse is large and it is known that large bandwidth can increase

system complexity. Indeed, complexity resulted from large bandwidth can

be avoided by using long pulses. In addition to this, there is a peak power

limitation problem for the short pulse. If it is aimed to transmit the signal

to long ranges, the energy of the pulse must be high. In order to achieve the

range as long as the one achieved by using a long pulse, the peak value of

the short pulse must be high since equal energy is needed for transmitting

the radar signal to the same range. However, the transmission line of a high

peak power radar can be subject to voltage breakdown. Then, the pulse

might not have sufficient energy to achieve longer ranges. This is called peak
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power limitation problem.

As a result, transmitting either a long pulse or a short pulse is advanta-

geous in some aspects and disadvantageous in others. It may be desired to

have the advantages of the two in a radar system. The solution is to use pulse

compression in which short radar pulse is lengthened before transmission to

reduce its average power level. Then at the receiver side pulse is compressed

with a pulse compression filter as soon as it is received so that the range reso-

lution of the original short pulse is restored. The pulse compression filter is a

matched filter; hence, when the noise is neglected, its output envelope is the

autocorrelation function of the input signal. Due to the non-ideal autocor-

relation of radar signals, the envelope of a matched filter has time-sidelobes.

Sometimes these sidelobes are relatively high with respect to mainlobes of

other targets. This is not usually preferable because range sidelobes can

mask weaker targets and additionally sidelobes can be mistaken as new tar-

gets during the radar signal processing. Therefore, sidelobe reduction has

been a popular issue since the invention of pulse compression radars. There

are various methods to overcome the effects of range sidelobe problem. Two

of the most popular of these techniques are Least Squares (LS) method and

Minimum Mean Square Error (MMSE) method.

LS method [1] estimates the received return radar samples by minimizing

the squared errors between the observed received return samples and the es-

timated ones. LS estimation is performed by multiplying the received signal

in the vector form by matrices obtained from code autocorrelation. Inver-

sion of a n × n matrix is necessary in this method where n is the length

of the received signal. Although the matrix inversion is done off-line, the

multiplication operation has an order of O(n2) and thus it is prohibitively

computationally intensive. Hence, the greater the number of the samples

taken for the received return signal is, the more computationally complex

the LS algorithm becomes.

2



On the other hand, in MMSE method [2] a filter is generated first by

using the matched filter output to obtain target power estimates. A signal

covariance matrix is obtained for each range bin by using target power esti-

mates. Another filter is reconstructed based on the inverse of the covariance

matrix and acts on the MF signal. Smaller targets are identified by checking

the filtered MF signal. At each iteration of the algorithm, target powers are

reestimated and filters are regenerated. The algorithm is computationally

complex due to on-line matrix inversion at every iteration. Furthermore, the

estimated covariance matrix is reportedly ill-conditioned and thus ad hoc

methods are used to avoid numerical instability in running the algorithm.

As an alternative to these two methods, we propose a new method herein.

This method is based on obtaining the target’s phasor from the MF output

and canceling part of the signal due to the target. This can be repeated for

each detected target. Since this method successively detects a target’s signal

and cancels it from the overall MF output, we will refer to it as Successive

Target Cancelation (STC). STC is based on basic operations such as addi-

tion and subtraction. It does not include matrix inversion or other complex

operations and hence is simple and easy to handle. This algorithm known as

the CLEAN algorithm in general was applied in image processing [3, 4] and

astronomy [3, 5] as a deconvolution method. It is also utilized in multiuser

communications [6] and called Successive Interference Cancelation. Except

for a couple of works in recent years, the CLEAN algorithm has rarely been

applied to detection in radar signal processing. Most recently, the CLEAN

algorithm has been applied to an extended target or contiguous clutter sce-

nario in [7]. However, performance of the CLEAN algorithm has not been

evaluated in comparison to other methods.

In summary, in this study, the performance of STC is investigated in

various scenarios with regard to existence of noise, targets, and the Doppler

effect. Moreover, the performance of the STC method is compared to other

3



methods proposed in literature. Differing from similar studies, we will study

the effects of the Doppler shift occurring in radar signals due to target ve-

locities.

4



chapter 2

Review of history

2.1 Radar

2.1.1 Basic Information [8, 9]

The term radar is an acronym for Radio, Detection, And Ranging. Radar is

essentially a ranging or distance measuring device. It is an electronic equip-

ment that uses reflected electromagnetic energy for detecting the presence,

direction, height, and distance of objects. Radars have their own source of

energy to produce images so they are active remote sensing systems. Dark-

ness does not affect the operating frequency of electromagnetic energy used

for radar, that is radar does not require sunlight. Therefore, radar systems

can determine the positions of objects that are invisible to the naked eye

due to darkness, distance or weather. Of course, in order to express the posi-

tions of the detected objects radar systems need reference coordinate systems

because of their limited field of view.

Radar is based on the transmission and reception of pulses in a narrow

beam in electromagnetic spectrum bands. A radar system requires a trans-

mitter to send the radar signal to the target or targets and a receiver to receive

the returned signal from targets. Firstly, a powerful transmitter generates the

radar signal. The reflected signal from targets, also called scattering signal,

spreads in a large number of directions. Then, a sensitive receiver picks up

the electrical signal which is called echo. The echoes returning from targets
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are then recorded and taken into consideration according to their strength,

time interval, and phase.

When the reflections from targets are in the opposite direction to the

incident rays, it is called backscattering. The power received by the antenna

board from each radar pulse transmitted is directly related with backscatter-

ing. Backscattering depends mainly on three factors: the surface roughness,

the surface humidity, and the wavelength of the radar. It is possible to declare

two surface types for backscattering: rough surface and smooth surface. The

former has higher backscattering compared to the latter since the dimensions

of the rough surface are very small in respect of the transmitted radar signal

wavelength. For instance, water surfaces with and without waves exhibit

different scattering characteristics. Unlike water surfaces which are moved

by wind effects, water surfaces without waves do not allow the incoming

energy to be scattered back to the antenna. Surface humidity has a great

influence on the electrical properties of a target. As the humidity becomes

higher, backscattering increases. Since the surface roughness is dependent

on the wavelength of the radar and also longer wavelengths result in higher

penetration capabilities, wavelength of the radar signal is an important issue

to consider with respect to backscattering.

2.2 Characteristics of Radar Systems [8, 10]

The characteristics of radar systems, which differentiate the radar systems

from each other, can be categorized into three parts: measurable character-

istics, descriptive characteristics, additional intercept characteristics.
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2.2.1 Measurable Characteristics

Measurable characteristics are the parameters that are measured to identify a

particular radar. Radio frequency, pulse repetition frequency, pulse duration,

and scan rate are the certain measurable characteristics of radar systems.

2.2.1.1 Radio frequency

Generally,conventional radars operate in the microwave region approximately

covering the frequencies from 1GHz to 30GHz. Radio frequency abbrevi-

ated as RF is a term that refers to a portion of the electromagnetic spectrum

in which an electromagnetic field suitable for wireless broadcasting and/or

communications is generated when alternating current is input to an an-

tenna. RF can be measured by either zero beat method which stands for

comparison between the radar frequency and a stable frequency source or

directly reading from a frequency counter. Radar RF can determine the size

of the components and the radar range. For instance, high radar frequencies

originating from small antennas are used at shorter ranges whereas low fre-

quencies originating from large antennas are used at longer ranges. Usually,

RF of a radar in early warning radars is lower compared to missile tracking

and control radars. Therefore, RF can also be decided according to the use

of radar. Moreover, power requirements and propagation characteristics of

the radar systems are affected by the radio frequency.

2.2.1.2 Pulse Repetition Frequency

Pulse repetition frequency (PRF) that is used interchangeably with pulse

repetition rate is the number of pulses emitted by radar in one second. The

reciprocal of PRF is named as pulse repetition interval that can be defined as

the time between the start of one pulse and the start of the next pulse. PRF

is crucial since it determines the maximum unambiguous target range. The
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duration between the transmitted pulses must be arranged so as to allow echo

signals belonging to one pulse to return back to the receiver antenna and to

be detected before the transmission of the next pulse. Therefore, maximum

unambiguous range of detection that the radar can reach can be formulated

as:

Rmax =
c

2 · PRF
, (2.1)

where c is the speed of light. As it can be seen from the formula, maximum

unambiguous range detection Rmax decreases with increasing PRF. The de-

tection range that exceeds Rmax is called ambiguous range and high PRF

causes range ambiguity. On the other hand, high PRF results in more hits

per sweep and higher probability of detection. Moreover, low PRF is not

sufficient when high data rates are required as in fire control radars.

It has to be mentioned that there is a minimum PRF limitation that can

be determined by the rotational speed of the antenna. For a rotationally con-

stant speed system antenna, energy beam strikes a target for a short period

of time. Sufficient number of pulses that have the total energy to provide

detection of the signal by the radar during this limited time is required.

2.2.1.3 Pulse Duration

Pulse duration is the length of the time that transmitter is actually on. It

is usually measured in milliseconds. Pulse duration determines range reso-

lution; hence, it is an important parameter for pulse compression which will

be discussed later. Range resolution is the ability of a radar to display tar-

gets separately. Targets too close together can be sensed as one target by

the radar. Range resolution is solely a function of pulse duration. For high

range resolutions the duration of the pulse must be small.

Pulse duration also determines theoretical minimum range. The theoret-

ical minimum range, at which the radar receiver is unable to receive echoes
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during the emission of pulses from the transmitter, is the minimum distance

separating the target and the radar.

Pulse duration is one of the two factors that affect total pulse energy;

the other is peak value of the transmitted power. As pulse energy increases,

probability of detection increases. High peak power values are not allowed

because of peak power limitation of radar systems. Therefore, long pulse

duration is preferred for increasing the probability of detection.

2.2.1.4 Scan Rate

Scan rate, the inverse of scan period, is the number of rotations of the an-

tenna beam in a specified period of time. In this period of time, various

functions are performed by the radar. Scan rate determines the purpose of

the radar. Detection capability increases with slow antenna scan rate since

more pulses return to the receiver antenna as the antenna beam scans the en-

vironment slowly. On the other hand, slow scan rate results in a longer time

between observations of the target which leads to inaccurate target position

prediction. Therefore there is a trade of between probability of detection and

target position prediction related to scan rate.

2.2.2 Descriptive Characteristics

Descriptive characteristics of a radar are used to modify or clarify the mea-

surable characteristics. Unlike measurable characteristics, they are non-

parameter data. Modulation type and polarization are the important de-

scriptive characteristics of the radar.

2.2.2.1 Modulation Type

Modulation type is employed according to the purpose of the radar in the

transmitter part. Usually, pulse modulation types are used in radars. Pulse

9



modulation techniques are mainly based on varying the amplitude, width,

phase, and shape of the pulse. The characteristics that the pulse duration

affects were mentioned earlier. The shape of the pulse determines the range

accuracy, minimum range, maximum range, and target resolution. Other

pulse variations will be discussed later.

2.2.2.2 Polarization

Polarization is the property of electromagnetic waves, which describes the di-

rection of their transverse electric field. The polarization type of a radar wave

is defined by the orientation of the electric field. Horizontal, vertical, circu-

lar, and elliptical are some of the polarization types. Although most radars

are linearly polarized, that is, horizontally or vertically polarized,other po-

larization types are sometimes used to enhance the detection of targets in

different environmental conditions. In both circularly and elliptically po-

larized antennas, electric field rotates at a rate equal to the RF frequency.

However, in elliptical polarization the amplitude of the electric field varies

during the rotation period.

The polarization of the radar signal can affect the radar echo from the

target. Therefore, it is possible to sense the difference between a long thin

rod and a sphere by using circular polarization or horizontal polarization.

However, it is difficult to do this for practical targets such as aircrafts. Po-

larization can also be a misleading parameter because of multipath radiation

from the surface of the ground or clutter, limitations in the polarization re-

sponse of practical antennas, and target movements that causes distorted

polarization response.
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2.2.3 Additional Intercept Characteristics

Except from the measurable and descriptive characteristics, there are other

parameters that differentiate radar systems from each other such as time of

intercept, signal strength, and antenna beamwidth.

2.2.3.1 Time of Intercept

Time of intercept can be used in analysis of radar systems that are supported

by many emitters. For operation of the radar system, functions of various

emitters can be explained by the up and down times of the signal. Time

of intercept is an important characteristic for collectors to understand the

source of interception.

2.2.3.2 Signal Strength

Signal strength is the measure of how strongly a transmitted signal is being

received, measured, or predicted at a sufficiently far away point from the

transmitter antenna. Signal strength can be measured as the quantity of

received signal power or signal voltage per square area. Distance between the

receiver and the transmitter, propagation characteristics, relative positions of

the receiving and transmitting antennas, and respective radiation patterns of

the receiving and transmitting antennas are the factors that affect the signal

strength measurement.

2.2.3.3 Beamwidth

Beamwidth (BW) is the angle between the half-power (3dB) points of the

main lobe of the radiated power. It is typically measured in degrees. Beamwidth

is limited by radar frequency, antenna size, and antenna shape. The formula

between the beamwidth and lobe duration is given below in eqn. (2.2):
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BW = (lobe duration× 360)÷ seconds per revolution. (2.2)

Lobe duration is the beam illumination time of the target when a radar

beam scans across the target. Beamwidth determines the accuracy of the

azimuth and elevation angles. Therefore, beamwidth is a factor that deter-

mines the precision of the location of the target. The selection of the width of

the beam changes according to application area of the radars. For instance,

early warning radars use wide beams on the other hand fire control radars

use narrow beams.

2.3 How does a radar work? [8]

Radar uses electromagnetic energy pulses in order to detect targets. The

basic operation of a radar can be summarized as follows. Firstly, the RF

energy is emitted to the environment. The emitted energy reflects from

the objects. Actually, a small portion of the energy reflects and returns to

the radar receiver. Radars use the received echo signals to determine the

direction and distance of the reflecting objects. The simple block diagram of

the radar is given in Figure 2.1.

Waveform generator produces the radar signal at low power. The radar

signal is the input to power amplifier. The power amplification can be realized

by a microwave vacuum tube or a solid state device. Microwave vacuum tubes

can be a magnetron, klystron, traveling wave tube or a crossed field amplifier.

Magnetron, a power oscillator, is the first invented one, it is smaller and it

has a modest capability. Klystron, a power amplifier, is used when high

average power is required. Also, it allows more complex waveforms provided

by the waveform generator. Traveling wave tube has wider bandwidth than

klystron. In some radars, crossed field amplifiers are preferred because of

their wide bandwidth, modest gain, and compact size. Modulator is the
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Figure 2.1: Simple radar block diagram.

required part of a radar in the transmitter side. In synchronism with the

radar input pulses, the transmitter is turned on and off by the modulator.

The modulator can also be used in order to generate a pulse waveform. The

modulated and amplified signal is sent to the antenna. The antenna transfers

the transmitter energy to signals in space with the required distribution and

efficiency. Therefore, the radar transmitter produces the short duration high-

power RF pulses of energy that is radiated into space by the antenna. The

transmitted radar signal radiates in space and reflects from the objects. The

reflected signal is picked up by the antenna. The antenna collects return

echoes by focusing transmitted RF energy into directional beam. The same

antenna is used for both sending and picking up the radio signal. Therefore,

a device is required to allow the usage of a single antenna on a time shared
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basis for both transmitting and receiving. Duplexer is the microwave switch

that allows the use of a single antenna for both transmit and receive cycles.

It blanks the receiver in the transmit period and blanks the transmitter in

the receive period.

In the receiver part of the radar, weak return RF signal is amplified

first. Then the amplified RF signal is down converted to an intermediate

frequency. After this process intermediate frequency (IF) stage is realized

by the IF amplifier. The signal is then fed to signal processing part of the

receiver. The signal processor filters the desired echo signal from clutter and

receiver noise. Matched filter and Doppler filter that separates the desired

moving targets from unwanted stationary clutter echoes are the examples

of a signal processor. Finally, by help of the detector the target signal is

detected from the overall output signal.

2.4 Matched Filter

In radar systems, the input signal is first transmitted from the transmitter,

then passed through the channel, and finally received by the receiver. The

received signal includes the original input signal convolved with the impulse

response of the channel and additive noise as shown in

y(t) = x(t) ∗ hc(t) + n(t), (2.3)

where y(t) is the received signal, x(t) is the original transmitted signal, hc(t)

is the impulse response of the channel, and n(t) is the additive noise. The

goal is to detect the presence of targets by estimating hc(t) from the received

signal. At this point, maximizing the output peak value of signal to noise

power ratio of a radar receiver maximizes detection probability. Signal to

noise ratio (SNR) which is defined as the ratio of the average power of the

message signal to the average power of the noise is usually preferred as a
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criterion to describe the characteristics of a matched filter. Indeed, a matched

filter (MF) is a linear filter which performs optimum detection by providing

maximum attainable SNR at the output of the filter when the noise is a white

Gaussian noise. Hence, practical receivers estimate the transmitted signal by

using matched filtering.

Matched filtering operation is realized by convolving the unknown re-

ceived signal with a time reversed version of the complex conjugate of the

known transmitted signal. It is also equivalent to correlating the known

transmitted signal with the unknown received signal in order to detect the

presence of transmitted signal in the received signal. Mathematically, the

correlation receiver and matched filter are equivalent. Frequency response of

the matched filter and impulse response of MF in time domain are given as

H(f) = KX∗(f)e−j2πfTd , (2.4)

h(t) = Kx∗(Td − t), (2.5)

where ∗ denotes the convolution operation and Td is a constant delay needed

for providing a physically realizable filter. The transfer function that is the

frequency response of MF is the complex conjugate of the Fourier transform

of the input signal x(t) except for a delay factor. A basic matched filter

system is given in Figure 2.2. The output of the matched filter is

m(t) = y(t) ∗ h(t) =

∫
y(u)h(t− u)du =

∫
y(u)Kx∗(Td− (t− u))du, (2.6)

[11]. Autocorrelation function of the transmitted signal x(t) is written as

r(t) =

∫
x(u)x∗(u− t)du. (2.7)

Therefore, the output of the matched filter can be also described in terms of

the auto-correlation function r(t).
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Figure 2.2: Basic Matched filter system.

The chip-rate sampled MF output signal is shown in Figure 2.3 where

noise is neglected, impulse response of the channel is a delta function (hc(k) =

δ(k)), and transmitted signal is a P4 code (x(k) = e(π/N)(k−1)2−π(k−1)).

As a result, matched filters are commonly used in radar systems and

provide information from the received signal which is something similar to

what was emitted from the radar transmitter. It is important to mention

that pulse compression is an example of matched filtering.
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Figure 2.3: Matched filter output of a P4 code.

2.5 Doppler Effect

Doppler effect in radars is the phenomenon that is used to describe the change

in the frequency of the electromagnetic signal propagating between the radar

and moving target. When a moving target exists, the total phase change in

the propagation path can be given as [8]

φ = 2π · 2R

λ
= 4π · R

λ
, (2.8)

where λ is the wavelength of the radar and R is the line of sight range between

the target and the radar. The number 2 along with R results from the two

way propagation path that is the path from radar to the target and the one
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from target to the radar. Since the target is in motion, the range (R) between

the target and the radar is changing and so is the phase. Therefore, angular

velocity formed by the rate of change in the time varying phase occurs and

can be formulated as

wd =
dφ

dt
=

4π

λ

dR

dt
=

4πvr

λ
= 2πfd, (2.9)

[8] where vr = dR/dt is the radial velocity and fd is the Doppler frequency

shift. Therefore, from equation (2.9), [8]

fd =
2vr

λ
=

2ftvr

c
, (2.10)

where ft is the radar frequency and equals to c/λ with c being the speed of

light.

Actually, fd is the magnitude of the frequency shift caused by the Doppler

effect. Doppler frequency shift can be positive or negative (∓fd). Positive

sign shows that the target is moving towards the radar while negative sign

shows that the target is moving away from the radar.

Since in this thesis we are dealing with pulse radars, it is convenient to

investigate the Doppler effect from the perspective of pulse radars. In pulse

radars, when the transmitted signal is At sin(2πftt), the received signal will

be Ar sin(2πft(t−Tr)) similar to the transmitted signal except for the ampli-

tude change and time shift Tr where ft is the frequency of the signals and At,

Ar are the amplitudes of the transmitted and received signal respectively. Tr

equals to 2R/c and R is represented as R0−vrt when the target is approach-

ing to the radar. As expected R0 is the initial range between the target and

the radar and vr is the radial velocity of the target with respect to the radar.

With the above substitutions the received signal becomes [8]

r(t) = Ar sin[2πft(1 +
2vr

c
)t− 4πftR0

c
] (2.11)

where the factor 2ftvr/c is the Doppler frequency shift.

18



In pulse radars, a single pulse can be adequate to detect the Doppler

frequency shift when the pulse width of the transmitted signal and Doppler

frequency of the target are sufficiently large. For the realization of this detec-

tion, the condition fdτ > 1 has to be satisfied. However, this is not usually

the case in pulse radars since the inverse of pulse duration 1/τ is generally

much greater than the Doppler frequency fd. Thus, instead of a single pulse

a pulse train consisting of many pulses is used to detect the Doppler fre-

quency shift. Besides the Doppler effect while using a single pulse that is

described earlier, another Doppler effect resulting from multiple pulses has

to be taken into account. While using multiple pulses, a frequency shift

occurs between the pulses different from the Doppler frequency in a single

pulse since the target continues to move in time duration between pulses.

How these two Doppler frequency shifts can be taken into account will be

explained in Section 4.2 where we will explain our method.

2.6 Radar Types

All radars transmit high frequency signals which are reflected at targets.

The echoes reflected of off targets or environment are received and assessed.

Although there are many different types of radars, they can be categorized

into two main groups on the basis of waveform type: continuous wave radars

and pulsed radars.

2.6.1 Continuous Wave (CW) Radar

Continuous wave radar transmits a continuous high-frequency signal instead

of pulses. The echo signal is permanently received and processed in CW

radars. CW radars have no pulsing so maximum and minimum range defini-

tions are meaningless while talking about CW radars. They can only detect
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moving targets because non-moving objects will not form a Doppler shift and

the signals from these objects will be filtered out.

Due to the lack of pulses to time, CW radars can not measure distance

directly. Frequency shifting methods are used to solve this problem. By com-

paring the frequencies of the transmitted signal and the received one, range

estimation is done. Moreover, modulated CW radars where the transmitted

signal is constant in the amplitude but modulated in the frequency is more

successful at measuring the distance than the unmodulated CW radars in

which both the amplitude and the frequency of the transmitted signal are

constant. However, for long distances it is either not possible or difficult

to measure the range even by using modulated CW radars. Actually, be-

cause of these limitations and difficulties, pulsed radars are widely used as

alternatives to CW radars today.

2.6.2 Pulsed Radar

Pulsed radar is the most conventional radar that transmits a high frequency

impulsive signal of high power. After the transmission of an impulsive signal,

no signal is sent for some time. At this listening period, the echoes of the

transmitted pulse are received before the transmission of the next pulse. This

prevents the interference between the echoes of successive pulses. Since radar

waves travel at the speed of light, range from the return can be calculated.

With the help of pulsed radars, direction, distance and sometimes the altitude

of the target can be determined.

Although they all contain the same basic functional components, some

pulsed radars can be rather complex in their composition with additional

equipment included for specific purposes. For instance, the fire control radar,

one type of a tracking radar, requires additional circuitry in order to measure

the target range.
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The most famous of the pulsed radars is the pulse Doppler radar. It has

advantages over a basic pulse radar or a CW radar. It can determine the

range and detect both moving and stationary targets. At different ranges it

can also differentiate two targets with the same radial velocity that is the

apparent speed of a target while closing on or going away from the radar.

Velocity measurements are realized by transmitting many radar pulses to-

wards each target over a very short period of time, and measuring relative

target movement between each pulse. Since received pulses are not affected

by the tangential movement, these measurements are limited to measuring

the component of the target velocity that is parallel to the radar beam.

Due to the power limitations of the transmitter and heating problems of

the semiconductors used in the radar, it is risky to increase the transmitted

power in order to enlarge the radar range. Therefore, in radar systems, it

is desirable to extend the search range without increasing the transmitted

power while maintaining the high range resolution. Pulse compression that

will be investigated in the next section is a widely used technique for this

purpose in pulsed radars [12].
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chapter 3

PULSE COMPRESSION

3.1 Short history of pulse compression [13]

Pulse compression relies on a family of techniques which are used to increase

the bandwidth of radar pulses. These techniques have been widely employed

for applications in military and aviation systems. Since 1950’s, several tech-

niques have been studied and published. However, pulse compression tech-

niques used for distributed atmospheric targets were proposed in the 1970’s.

Later, a coherent radar application using a 7-bit Barker phase-coded trans-

mit pulse and a matched-filter receiver was realized by Fetter. Moreover,

pulse compression applications for incoherent scatter observations were in-

troduced. For instance, Gray and Farley [14] studied the binary phase-coded

pulse compression used for incoherent observations. During the past few

years high power RF pulse compression systems have developed consider-

ably. Today, pulse compression techniques are widely used in modern radar

systems.

3.2 Why is pulse compression needed?

Pulse compression, also known as pulse coding, is a signal processing tech-

nique designed to maximize the sensitivity and resolution of radar systems.

Since the invention of radar systems, high range resolution and range of

detection have been important subjects for radar applications. Range reso-
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lution that is achievable in a radar system is dR = cT/2, where c is the speed

of light and T is the pulse duration.

It is obvious that as the pulse duration becomes shorter, dR decreases

and range resolution increases. Therefore, high range resolution can be ob-

tained with a short duration pulse. Indeed, long pulses result in low range

resolution. High range of detection, also called the sensitivity of the radar,

depends on the energy transmitted in the radar pulses. This can be expressed

in terms of the average transmitted power, that is, the peak power multi-

plied by the transmitter duty cycle. Transmitting longer pulses improves the

radar’s sensitivity by increasing the transmitted energy. The same transmit-

ted energy can be acquired by using short pulses with high peak transmitter

powers but the major drawback of the radars was the peak power limitations

of the transmitters. The transmission line of a high peak power radar can be

subject to voltage breakdown. Hence, in order to increase the sensitivity of

the radar long pulses are preferred.

Even if high-power transmitters are used, using high power transmitters

has some disadvantages: High power transmitters

• require high-voltage power supplies,

• have reliability problems,

• are bigger, heavier, and costlier.

As a result, transmitting either a long pulse or a short pulse is advanta-

geous in some aspects and disadvantageous in others. It is desired to have

the advantages of the two in a radar system. The solution is to use pulse

compression in which short radar pulse is lengthened before transmission to

reduce its average power level, at the receiver side pulse is compressed with a

pulse compression filter as soon as it is received so that the range resolution

of the original short pulse is restored.
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3.3 The Pulse Compression Technique

The main aim of the pulse compression is to increase the detection range

of a radar while preserving the high range resolution of a short pulse. The

average energy of the pulse to be transmitted is usually fixed by the system

constraints. Energy content of short and long pulses are shown in Figure 3.1.

Since the average energy is fixed, the goal is to send the same energy that is

Figure 3.1: A long and a short pulse with the same energy.

P1τ1 = P2τ2.

Due to the limited peak power problem and other drawbacks in the trans-

mission of a short pulse, the signal with long pulses is preferred. On the

other hand, short pulse is needed at the receiver side for high range res-

olution. Therefore, a pulse compression subsystem is made of two units:

expander and the compressor. The former modulates the transmit signal in
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order to broaden its pulse width and the latter processes the return echoes

after down-conversion to IF.

The basic block diagram of the pulse compression radar (PCR) is shown

in Figure 3.2. Modulation part is defined based on pulse compression type.

Figure 3.2: Basic PCR block diagram.

However, in all types of pulse compression, the long pulse is modulated so as

to have the same spectral bandwidth of a short pulse. The modulated long

pulse is sent through the transmitter. Then, in the mixer, the frequency of

the signal is shifted downwards and upwards by the carrier frequency. The

incoming signal is amplified in the IF amplifier stage.

On reception the modulated long pulse is passed through the pulse com-

pression filter. Pulse compression filter, can be called as the compressor part

of the system. The output envelope of the filter is the autocorrelation of
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the input. In the radar receiver, the received pulses are compressed in time

domain, resulting in a range resolution which is finer than the uncoded pulse.

Finally, a detector detects the processed return signal.

A pulse compression system is expressed by its compression ratio. Pulse

compression ratio is the ratio between the pulse durations before and after

the expander or the compressor. Incorporated into a practical radar system,

pulse compression filters can have ratios between 10 and 105.

3.4 Types of Pulse Compression

Pulse compression achieves high range resolution without an incredibly high

peak power. In pulse compression, a code with a peaky autocorrelation is

modulated onto the pulsed waveform on transmit. On the receiver side the

matched filter for the code generates peaks due to the autocorrelation at

positions where targets exist. In order to achieve pulse compression, there

are several techniques.

Modulation on the pulse simultaneously enhance the target range, the

range resolution. Selecting a pulse compression technique is dependent on the

selected waveform type, the generation method, and the processing method.

Pulse modulation can be divided into two main parts namely frequency mod-

ulation and phase modulation.

3.4.1 Frequency Modulation

For a pulse modulation, frequency modulation (chirp) is a frequency change

during transmission of a pulse. There are two types of frequency modula-

tion for the pulse compression: linear frequency modulation and nonlinear

frequency modulation.
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3.4.1.1 Linear Frequency Modulation (LFM) pulse compression

Linear frequency modulation, also known as chirp, is the most widely used

continuous phase pulse compression technique due to its ease of generation

and insensitivity to Doppler shifts. A linear FM signal has a quadratic phase

variation with time, so the instantaneous frequency varies linearly with time.

The LFM signals are characterized so that the ratio between main-lobe am-

plitude and sidelobe level is large.

In LFM pulse compression, frequency modulation is realized for the mod-

ulation part in pulse Doppler radars. Usually, FM signal has low power

when constructed first and then is amplified by a power amplifier. During

the transmission, the modulated signal is sent as pulses with duration T and

constant amplitude A. Through the pulse duration, the frequency of the

signal changes linearly. If there is a linear frequency increase with time, this

is called up-chirp. On the contrary, if there is a linear frequency decrease

with time, this is called down-chirp. The increase and decrease in frequency

can be achieved by either continuous frequency changes or discrete frequency

steps. The signal that is modulated in frequency is passed through the pulse

compression filter at the receiver side.

In the existence of Doppler effect, the frequency of the received signal

is shifted. Shift in the received signal leads to an error in range indication

which is known as range Doppler coupling. When range Doppler coupling is

so large that can not be tolerated by the system, the average of the up-chirp

and down-chirp FM is used for avoiding the unfavorable effects of Doppler

shift.
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3.4.1.2 Nonlinear Frequency Modulation (NLFM) pulse compres-

sion

Nonlinear Frequency-modulated pulse compression technique involves sweep-

ing the carrier frequency of the transmit waveform in a nonlinear fashion. The

advantage of the nonlinear FM over linear FM is that time sidelobes of the

MF output are low while using a constant amplitude waveform and an ideal

MF. Since the envelope of the signal is constant, power efficiency is high.

Moreover, nonlinear FM does not have to deal with mismatched filters that

result in SNR loss because of low time sidelobes.

Nonlinear change in frequency is similar to the amplitude shaping in LFM.

For instance, reducing the amplitude of the frequency response of the system

means spending less time over some part of the spectrum. If the frequency of

the waveform increases during one half of the pulse and decreases during the

other half of the pulse or vice versa, then this type of nonlinear FM is called

symmetrical nonlinear FM. In nonsymmetrical nonlinear FM, the waveform

uses only one half of the symmetrical waveform. Unlike non-symmetrical

one, symmetrical nonlinear FM does not tolerate Doppler effect because it is

sensitive to Doppler shifts.

One disadvantage of the non-linear FM over LFM is the system complex-

ity. Another disadvantage is the necessity for a separate FM modulation

design for each type of pulse to achieve the required sidelobe level. Finally, it

is important to mention that digital processing or SAW devices can be used

to process nonlinear FM.

3.4.2 Phase Modulation

Phase modulated pulse compression is realized by simply dividing the un-

coded pulse length to equal subpulses (chips) and then coding these subpulses

with different phases. Phase modulated pulse compressed signals have high
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spectral sidelobes due to sharpness of the phase transition and amplitude rise

time. Phase modulated pulse compression is mainly divided into two: first

one is binary phase coded pulse compression and second one is polyphase

coded pulse compression.

3.4.2.1 Binary phase (Biphase) coded pulse compression

In phase coding, the phase of the transmitter RF is shifted during the pulse

width. In binary phase coding, the binary bits can determine whether modu-

lating signal is shifted to an in-phase condition or 1800 out of phase condition

with respect to the reference. The code sequence cm is obtained as:

cm = ejθm (3.1)

where θm = 0 or π so that cm takes values +1 or −1.

For purposes of pulse compression, the bandwidth of a long pulse dur-

ing transmission can be increased by the phase change. If the number of

subpulses obtained from a long pulse by dividing it equally is N then the

output of a matched filter has a peak N times greater than that of the long

pulse. Also, pulse compression ratio is equal to the number of subpulses N

so the duration of the compressed pulse 1/N times the uncompressed one.

When the duration of the long pulse is symbolized as T , the duration of the

matched filter output becomes 2T − 1. If the phases are randomly selected,

the maximum power of sidelobe of the matched filter is about 2/N below the

compressed pulse peak.

One family of known binary codes is the Barker code. Barker binary

phase codes have the lowest possible sidelobe level. If low time sidelobes

are needed after pulse compression, completely random selection of phases is

not suitable. Therefore, usually a selection criteria is determined for phases.

For instance, one criteria of selection of subpulse phases is equalizing the

time sidelobes of the compressed pulse. The benefit of this type of selection
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is to form all the sidelobes equally by lowering the higher sidelobes. The

0, π biphase codes that have equal time sidelobes are the Barker codes. Due

to this property, Barker codes are called perfect codes. The ratio between

sidelobe level and the peak value of the MF output of the Barker code is

1/N .

3.4.2.2 Polyphase Codes

[15] Polyphase codes are obtained by dividing a long pulse into N subpulses.

Phases of these subpulses are not restricted to the two levels 0 and π. The

phase of each subpulse is formed as M discrete phases and M > 2. The code

sequence cn = ejθn and θn can be written as θn = (2π/M)n for n = 1, 2, ., M .

Compared with the binary phase codes, polyphase codes produce lower time

sidelobes. Moreover, they can tolerate Doppler effect up to moderate Doppler

frequencies. On the basis of the derivation technique, polyphase codes can

be separated into three main groups:

• Step-frequency derived (Frank and P1 codes)

• Butler matrix derived (P2 code)

• Linear frequency derived (P3 and P4 codes)

• Randomly generated.

Frank codes is described by an M ×M matrix [16] given below. In the

matrix, each number is multiplied by an equal amount of phase 2π/M . The

pulse compression ratio of the Frank codes is the same as the number of sub-

pulses that is M2 = N . because of their structural form, Frank codes have

been described as stepped phase linear FM. Frank codes have lower sidelobe

levels compared to biphase codes.
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0 0 0 . . 0

0 1 2 . . (M − 1)

0 2 4 . . 2(M − 1)

.

.

0 (M − 1) 2(M − 1) . . (M − 1)2

Like Frank codes, P1 and P2 codes have both low sidelobes and easy

implementation. Moreover, similar to Frank codes, P1 and P2 codes tolerate

Doppler shifts well. The representation of N-element P1 and P2 codes can

be given respectively as [15]

θk,l = −(π/M)[M − (2l − 1)][M(l − 1) + (k − 1)], (3.2)

θk,l = (π/2M)[M + (1− 2k)][M + (1− 2l)], (3.3)

where k and l are integers ranging from 1 to M .

Linear frequency modulation is used to derive P3 and P4 codes. While

compared to P1 and P2 codes, P3 and P4 codes have better performance in

tolerating the Doppler effect. Actually, P4 code is a rearranged version of

the P3 code. They have the same Doppler tolerance and they can tolerate

bandwidth limitation prior to pulse compression. P3 and P4 codes are given

by [17, 18]

θk = (π/N)(k − 1)2, (3.4)

θk = (π/N)(k − 1)2 − π(k − 1), (3.5)

where k is an integer ranging from 1 to N . By converting linear frequency

modulated waveform to baseband, P4 code is generated. This conversion is

realized by using a local oscillator on one end of the sweep and sampling

the waveform at the Nyquist rate. The generation of the P3 code is very
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similar to the P4 code except for the change in local oscillator frequency of

the P4 code in order to solve bandwidth problem prior to pulse compression.

The largest phase increments between code elements for P3 code are in the

middle whereas those for P4 code are on two ends of the code. That is why

P4 code has better performance in limitation of the bandwidth before the

pulse compression.

3.5 Pulse Compression Effects

The peak value of the pulse compression process output depends on the

energy of the input signal but not on the shape of the signal. The duration

of the sidelobes of the compressed pulse is two times the duration of the

uncompressed signal. The uncompressed input signal determines the sidelobe

nature of the pulse compressed signal.

A major drawback to the pulse compression is appearance of range side-

lobes around the main signal peak which leads a smearing of the return

signals in range and introduces range ambiguities. In Figure 3.3 , the exis-

tence of a small target may not be inferred from the matched filter output

when there is a small target and a large target whose power is 10dB larger

than the small one. Although the small target is noticable when it is the

only present target in the environment, in the existence of the large target

the small target is masked by the range sidelobes of the large target.
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Figure 3.3: Matched filter output of received radar signal is examined when

there is only a small target in the environment and when except from the

small target there is also a big target whose power is 10dB greater than the

small one.

It is possible that large sidelobes can result in detecting spurious targets,

that is sidelobes can be mistaken as real targets. Since high sidelobes of

the bigger targets can mask nearby smaller targets, suppression of range

sidelobes is critical, especially in applications with multiple target systems.

This effect is tried to be minimized by using carefully chosen pairs of codes

or by amplitude weighting the long pulse over its duration. In general, it is

not very easy to design codes with very low sidelobes. Moreover, it may not

be efficient to use amplitude weighting in respect of power efficiency. For
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instance, if amplitude modulation is realized, it is obligatory to use linear

amplifiers such as Class A amplifiers. On the other hand, because of their

high power efficiency Class C amplifiers which are non-linear amplifiers are

preferred in radar systems. Due to the fact that the problems resulting from

large time sidelobes can not be overcome efficiently and/or sufficiently by

the variations on pulse coding, it is necessary to suppress the range time

sidelobes after the pulse compression. The most widely used techniques for

sidelobe reduction are LS and MMSE methods which will be explained in

the next two sections.

3.6 Least Squares (LS) Method

Least squares method is a mathematical optimization technique in order to

estimate a value or function with the highest probability from the observa-

tions with random errors. Actually, it attempts to find the best fit function

that closely approximates the given data. The least squares method min-

imizes the sum of square of residuals which are defined as the differences

between the observation and estimated values of a function. The cost func-

tion J of the LS method for deterministic linear algebraic equations is given

by [19]

J =
N∑

k=1

|x̂LS(k)− x(k)|2, (3.6)

where x̂LS is the estimate, x is the observed data, and N is an integer that

defines the length of the data. For radar applications where the target sig-

nals are not deterministic and noise is present in the environment, LS method

tries to minimize the expected value of the square of the difference between

estimated and true radar impulse response. LS estimation is optimum in

the mean squared error sense for an unbiased estimation [20]. An implicit

requirement for the least squares method to work is that errors in each mea-
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surement be randomly distributed.

Due to appearance of range sidelobes around the main signal peak after

the pulse compression, range sidelobes of the bigger targets can mask nearby

smaller targets. LS method can remedy this problem with success.

In order to understand the LS solution for range sidelobes in radar ap-

plications, it is beneficial to model the radar signals in their matrix form.

The N -length transmitted radar signal is denoted by s = [s1s2...sN ]T and

h = [h(0)h(1)...h(L− 1)]T is the L-length true radar impulse response where

(•)T represents the transpose matrix operation. The received return radar

signal can now be expressed as [22]

y = Sh + w (3.7)

where w = [w(0)w(1)...w(L + N − 2)] are the additive noise samples and

(L+N −1)×L matrix S is the convolution matrix for s that is shown below

[22]

S =




s1 0 0 . . . . . 0

s2 s1 0 0

. s2 s1 . .

. . s2 . . .

sN . . . . 0

0 sN . . s1

0 0 sN s2

. 0 . .

. . . .

0 0 . . . . . 0 sN




. (3.8)

Actually, the product Sh stands for the discrete baseband equivalent of the

convolution of the transmitted signal and the true radar impulse response.

The general form of the LS solution for radar applications in order to solve
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the sidelobe masking problem can be given as [22]

ĥLS = (SHS)−1SHy, (3.9)

where (•)H denotes the complex conjugate transpose or Hermitian operation.

In [21, 23, 1, 24, 25], LS based methods are proposed to solve the mask-

ing problem of weaker targets by stronger ones due to range sidelobes of

pulse compression codes for radar applications. In [23], low sidelobe pulse

compression method has been introduced based on a least squares solution

to the deconvolution problem. Since it is the well-known optimal estima-

tion method, it has been used in scientific works as a reference comparison

method so as to measure the performance of other sidelobe suppression meth-

ods [22, 2]. That’s why, we prefer to compare the performance of our method

with that of LS method.

Some modified versions of the LS algorithms are also used in radar sys-

tems for sidelobe suppression [26, 27, 28]. For instance, in [26] a type of

recursive least squares method that is efficient in self clutter suppression for

phase-coded radar signal is analyzed. Moreover, LS method is applied for

formulating parameters, calibration, and curve fitting.

Despite being the optimum unbiased estimation method in the mean

square error sense, the LS method has some disadvantages. As in [1, 23],

LS estimation is performed by multiplying the received signal in the vec-

tor form by matrices obtained from code auto-correlation. Inversion of an

n × n matrix is necessary in this method where n is the length of the re-

ceived signal. The multiplication operation has an order of O(n2) and thus

it is prohibitively computationally intensive. Hence, the greater the number

of samples taken for the received return signal is, the more computationally

complex the LS algorithm becomes. Additionally, in the existence of Doppler

effect, fast Fourier transform (FFT) has to be applied directly to the received

return signal since MF operation takes place in LS. In order to determine
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which FFT bins to check for possible targets, it is necessary to check all FFT

filters since MF is not applied prior to FFT.

Figure 3.4: Block diagram of LS algorithm in the existence of Doppler.

3.7 Minimum Mean Squared Error (MMSE)

Method

The MMSE estimate of a parameter h is an estimate which minimizes the

cost function

J = E[|(ĥMMSE − h)|2] (3.10)

where ĥMMSE is the estimate. The main difference between LS and MMSE

algorithms is that the latter needs statistics, namely the auto-correlation

functions or matrices, for the observed and estimated data. Additionally,

MMSE method is optimum in the mean squared error sense for a biased

estimation whereas LS method is optimum in the mean squared error sense

for an unbiased estimation.
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There are MMSE based filters used in radar signal processing such as

Kalman adaptive filter [29] and Wiener filter [30]. Kalman adaptive filter

computes the optimal linear minimum mean square errors of the finite im-

pulse response filter coefficients. On the other hand, Wiener filter reduces

the sidelobe levels.

MMSE method is also used in radar applications after pulse compression

in order to improve range sidelobe problem [22, 2, 31]. In this case, h and

ĥMMSE in eqn. (3.10) become true radar impulse response and estimated true

radar impulse response, respectively. The estimate of the MMSE algorithm

ĥMMSE can be assessed as a multiplication of some form of the received

return samples and the complex conjugate of a matrix. Therefore, the cost

function J can be rewritten as [22]

J = E[|(zH(k)ỹ(k)− h)|2] (3.11)

where [22]

ỹ(k) = [A(k)]T s + w(k). (3.12)

In eqn. (3.12), s and w(k) are transmitted radar samples and additive noise

defined in the previous section and [A(k)] is the matrix consisting of radar

impulse response coefficients given below [22]

[A(k)] =




h(k) h(k + 1) . . h(k + N + 1)

h(k − 1) h(k) .

. . .

. . h(k + 1)

h(k −N + 1) . . h(k − 1) h(k)




.

(3.13)
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By differentiating (3.11) with respect to zH(k) and then equating the

result to zero, the MMSE filter z(k) takes the form [22]

z(k) = (E[ỹ(k)ỹH(k)])−1E[ỹ(k)hH(k)]. (3.14)

It is easily deduced from (3.14) that it is needed to know the average statistics

of the radar impulse response. This is actually unknown in radar applications

since that information is actually what is to be obtained in a radar. In [22],

these average statistics are obtained from the observed instance by

E[|h(k)|2] = |m(k)

|s2| |
2, (3.15)

where the matched filter output (m(k)) in (3.15) can be expressed as [22]

m(k) = sH ỹ(k). (3.16)

Although mot optimum in any sense, by substituting (3.15) and (3.16) into

(3.14), an MMSE-like estimation of the radar impulse response is possible.

In [31], in order to prevent masking of weak signals, an MMSE estimator

is used to suppress the range sidelobes. The MMSE estimator calculates

the optimum linear weighting by using information extracted from the given

observation. In [2], MMSE algorithm is run recursively. While running the

MMSE algorithm in [2], a filter is generated by using the MF output first to

obtain target signal power estimates to be used as average statistics. A signal

covariance matrix is obtained for each range bin to be inspected from target

power estimates. Another filter is constructed based on the inverse of the

covariance matrix and acts on the MF signal. Smaller targets are identified

by checking the filtered MF signal. At each iteration of the algorithm, target

powers are reestimated and filters are regenerated. A modified version of [2]

is investigated as another reiterative MMSE method in [22].

The main disadvantage of the MMSE algorithm is its complexity. For

instance in [2], target power estimates and filters are newly formed at each
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iteration of the algorithm. Therefore, as the number of iterations increase the

algorithm becomes more complex. Moreover, the algorithm is computation-

ally complex due to on-line matrix inversion at every iteration. Furthermore,

the estimate covariance matrix is reportedly ill-conditioned and thus ad hoc

methods are used to avoid numerical instability in running the algorithm [2].
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chapter 4

Alternative Method for

Sidelobe Suppression

4.1 CLEAN Method

Deconvolution methods, as the inverse operation of convolution, have been

widely discussed in literature especially in image processing. In 1974, Högbom

developed a nonlinear technique for image processing which was basically ex-

pressed as deconvolving the obtained image beam [32]. This technique was

named as CLEAN method. After Högbom, various versions of the CLEAN

method were developed and used for different applications. The CLEAN

algorithm can be applied to Fourier transformed data (generally in astron-

omy and image processing) or MF output (mostly in radar systems). It is

an effective method in eliminating the undesirable signals from the required

data.

The CLEAN method is an iterative procedure widely used in image

processing [3, 4] and astronomy [33, 5] as a beam removing deconvolution

method. A similar method is called Successive Interference Cancelation in

communication literature [6] and is usually employed for multi-user detec-

tion. Additionally, CLEAN algorithm was used for communication channel

characterization problems. For instance, in [34] CLEAN algorithm processes

ultra wideband measurements and provides estimates of time interval, angle

of interval and waveform shape.
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Except for a couple of works in recent years, the CLEAN algorithm has

rarely been applied to detection in radar signal processing. Most recently,

the CLEAN algorithm has been applied to an extended target or contiguous

clutter scenario in [7]. In [7], two CLEAN based methods are investigated

and performances of the two methods are compared. These two methods

are the well-known basic CLEAN method and a modified one consisting of

inner and outer loops. According to the performance analysis of the study,

basic CLEAN algorithm is found suitable for discrete point targets and mod-

ified CLEAN algorithm performs well for contiguous scattering sources. In

this study, it is stated that the modified CLEAN algorithm has better per-

formance than the basic one. However, it is mentioned that computational

complexity of the modified one is higher than the basic and the computa-

tional complexity of modified CLEAN algorithm depends on inner and outer

loop parameters. The Doppler effect on the received return radar signal is

assumed to be negligible or to be overcome before matched filtering. Hence,

Doppler is not taken into account. Finally, performance of any of the CLEAN

algorithms has not been evaluated in comparison to other methods.

In radar applications, the received signal y(k) is passed through the

matched filter and then the CLEAN algorithm is applied to the matched

filter output m(k). The representation of discrete time forms of the received

signal and the MF output are respectively given below:

y(k) = h(k) ∗ s(k) + w(k), (4.1)

m(k) = y(k) ∗ s∗(−k), (4.2)

where s(k) is the transmitted signal, w(k) is the additive noise, and ’∗’ de-

notes the convolution operation. The basic CLEAN algorithm is presented

in its entirety in Table 4.1.
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Table 4.1 CLEAN Algorithm

1. Obtain the MF output m(k), initialize all estimates h(k) to

zero.

2. Find the peak in |m(k)| > τ . If no such point exists, halt.

3. If the peak exceeds τ and its location is u so that |m(u)| is

the largest, estimate the target at k = u by

h(u) = h(u) + λ
m(u)

r(0)
, (1 ≥ λ > 0). (4.3)

4. Cancel the effect of the most recently estimated target by

m(k) = m(k)− λ
m(u)

r(0)
r(k − u). (4.4)

5. Go to step 2.

The threshold τ is important for detection of radar signals. When the

threshold is small, weak radar signals can be detected. However, selecting a

small τ allows the estimation of unwanted noise signals as a false radar signal.

Therefore, the threshold has to be defined according to the noise level. For

Gaussian noise, the threshold τ can be readily found as:

τ =
√
−N ·N0 ·M · ln(FAR) (4.5)

where N is the length of the transmitted signal s(k), N0 is the noise power,

M is the number of transmitted pulses, and FAR is the false alarm rate.

Additionally, a small value of τ increases the process time of the algorithm

since there will be more signals surpassing the threshold.

The parameter λ directly affects the computational complexity of the
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algorithm. If the parameter λ is very small, the number of iterations increases

by a large amount because the peak value that exceeds the threshold is

decreased by a small amount and has to be detected many times. On the

other hand, when λ is close to 1, the estimated peak value times λ can be

larger than the actual mainlobe peak of the target because of the additive

effects of sidelobes of other target signals on the mainlobe of detected target.

4.2 Successive Target Cancelation (STC)

Successive target cancelation (STC), which is a CLEAN-based algorithm,

can be used in sidelobe reduction as an alternative to LS and MMSE al-

gorithms. In radar applications, it provides a solution to range sidelobe

masking by obtaining the target’s phasor from the MF output and canceling

part of the signal due to the target. This process can be repeated for each

detected target. Since this method successively detects a signal and cancels

the signal from the overall MF output, we will refer to it as Successive Target

Cancelation (STC).

In order to have a clear conception on the basic idea of the proposed

method, it is beneficial to analyze the simplest scenario where only two tar-

gets exist both at zero Doppler frequency. In this analysis, the effect of noise

will be taken into consideration whereas clutter is neglected. For simplicity,

the value of λ is taken as 1. It is considered that the power difference between

two targets is larger than the code sidelobes so that the weak target cannot

be detected by simply checking the matched filter output.

Suppose we send a radar pulse with

s(t) =
L−1∑
p=0

apg(t− pTc), (4.6)

where L is the number of chips in the code, ap’s denote the code sequence,

g(·) is taken to be the rectangular pulse in [0, Tc], and Tc is the chip duration.
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Assume we have two targets whose signals arrive k1 and k2 (both are assumed

to be integers) chip durations later after we send a pulse. Thus, we have the

following discrete-time impulse response observed by the receiver

h(k) = α1δ(k − k1) + α2δ(k − k2), (4.7)

where α1 and α2 are the phasors of targets 1 and 2, respectively. Rather than

using the continuous time notation for the signals, we will use the discrete

time baseband equivalent model exemplified in (4.7) throughout the paper.

The phasors are circularly symmetric zero-mean complex Gaussian random

variables with high enough signal-to-noise ratios (SNR) for detection. So,

target powers are quite above the noise level.

The received signal is given by

y(k) = h(k) ∗ s(k) + w(k) = α1s(k − k1) + α2s(k − k2) + w(k), (4.8)

where the front-end receiver filters and samples are constructed in a way that

w(k) is an additive white Gaussian noise (AWGN) with time index k. The

AWGN is taken to be circularly symmetric complex Gaussian with mean

0 and variance N0. The received signal is passed through a matched filter

(MF). Neglecting the time shift for causality in MF, we obtain the MF output

m(k) by

m(k) = y(k) ∗ s∗(−k) = α1r(k − k1) + α2r(k − k2) + n(k), (4.9)

where n(k) = w(k) ∗ s∗(−k) and the autocorrelation of s(k) is r(k) = s(k) ∗
s∗(−k).

Recalling that |α1|2 > |α2|2, the largest peak of |m(k)| will be observed

at k = k1 with high probability since the noise power is very small compared

to target powers. The MF output at k = k1 is

m(k1) = α1r(0) + α2r(k1 − k2) + n(k1) (4.10)
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and there is a priori information on neither the powers nor the time shifts of

targets. Then, the best estimate we can have for α1 is

α̂1 =
m(k1)

r(0)
= α1 + α2

r(k1 − k2)

r(0)
+

n(k1)

r(0)
. (4.11)

We thus obtain an estimate of α1 which is biased. The mean of the estimate

has an additive term affected by α2, though its effect is through the sidelobes

so that the code employed reduces this effect. The last term of the estimate

of α1 results from the noise in the environment and the noise effect is also

reduced by the employed code.

We will now subtract the signal that is due to target 1 using its phasor

estimate. This can be done both at the MF output or the video signal.

Although the results are identical in the ideal case due to linearity, issues

such as quantization is important in deciding which one is to be preferred in

practice. We will perform cancelation at MF output in this study. Denote

this new signal by m′(k) such that

m′(k) = m(k)− α̂1r(k − k1)

= α2r(k − k2)− α2
r(k1 − k2)

r(0)
r(k − k1)

+n(k)− n(k1)

r(0)
r(k − k1). (4.12)

We now like to detect target 2 based on this updated MF signal. As seen in

(4.12), the largest peak of |m′(k)| will be at k = k2 with high probability. At

k = k2,

m′(k2) = α2r(0)− α2
|r(k1 − k2)|2

r(0)
+ n(k2)− r(k2 − k1)

r(0)
n(k1) (4.13)

so that the phasor of target 2 can be estimated as

α̂2 =
m′(k2)

r(0)
= α2 − α2

|r(k1 − k2)|2
r2(0)

+
1

r(0)
n(k2)− r(k2 − k1)

r2(0)
n(k1). (4.14)
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There is no contribution from the first target in α̂2 as shown in (4.14). The

second term with α2 has a squared multiplicative term and is very small

compared to the first term when the maximum sidelobe levels of pulse com-

pression codes used in practice are considered. The same argument holds for

the second noise term. So, the signal-to-noise ratio (SNR) for α2 approaches

the SNR value |α2|2r(0)
N0

. If there was only target 2 in the system, we would

have the same SNR for the estimate of its phasor. This suggests that the

masking problem due to sidelobes is alleviated to a large extent with the

method explained in this section.

At this point we have a good phasor estimate for target 2 and can subtract

its effect from the MF output. The reason of such an iteration is the existence

of a term related to α2 in α̂1. Though weaker compared to target 1, target

2 still has sidelobes and it affected the phasor estimate of target 1 as seen

in (4.11). This overshooting may be corrected by another iteration of the

algorithm. When target 2 is canceled from the MF output currently held by

the algorithm, the following is obtained:

m′′(k) = m′(k)− α̂2r(k − k2)

= −r(k1 − k2)

r(0)
α2r(k − k1) +

|r(k1 − k2)|2
r2(0)

α2r(k − k2)

+n(k)− n(k1)

r(0)
r(k − k1)− n(k2)

r(0)
r(k − k2)

+
r(k2 − k1)n(k1)

r2(0)
r(k − k2). (4.15)

Once again, |m′′(k)| has its peak at k = k1 with high probability and we have

the chance to estimate the overshoot term by m′′(k1)
r(0)

. We will now add this
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overshoot term to the current estimate for α1:

α̂′1 = α̂1 +
m′′(k1)

r(0)

= α1 +
r(k1 − k2)|r(k1 − k2)|2

r3(0)
α2 +

[
1 +

|r(k1 − k2)|2
r2(0)

]
· n(k1)

r(0)

−r(k1 − k2)

r(0)
· n(k2)

r(0)
. (4.16)

When this new estimate is carefully examined and compared to (4.11), it

can be seen that the effect of target 2 is now reduced by the |r(k1−k2)|2
r2(0)

term

whereas the noise terms almost have the same variance.

The overshoot terms added at later iterations act as correction terms

and enhance the estimation. The iterations can be repeated as many times

as desired. However, the estimates will be very accurate after some time

and the correction terms will be only due to noise. That’s why we suggest

only the correction terms which can pass a certain threshold be taken into

consideration. This also gives way to a stopping criterion for the algorithm.

In this study, we take the threshold to be equal to the constant false alarm

rate (FAR) threshold τ for the noise at the MF output for a chosen FAR.

If a target has non-zero Doppler then the received signal is distorted due

to frequency shift. This distortion has to be taken into consideration. In

the STC method, after the MF output is obtained from the received return

signal, we assume for simplicity that fast Fourier transform (FFT) is applied

to the MF output for Doppler processing. The STC algorithm can be run

for each FFT bin.
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Figure 4.1: Block diagram of STC algorithm in the existence of Doppler.

By checking the maximum absolute signal in a filter, it can be determined

whether at least a single target is present in that filter. If at least one target

exists, then the STC algorithm is run for that filter. In the STC method,

the distortion due to Doppler is taken into account by modifying the auto-

correlation c(k). In this case, the auto-correlation is taken as

c(k) = (ej2πPRF.Tc. b−1
K

(0:K−1) ⊗ s(k)) ∗ s∗(−k), (4.17)

where b corresponds to the FFT bin number, PRF is the pulse repetition

frequency, K is the number of pulses in a burst, and ⊗ denotes the Kronecker

product. This modification stems from the fact that the received signal due

to a target with non-zero Doppler is shifted in frequency. For the bth FFT

filter, it is hypothesized that the Doppler shift equals (b− 1)PRF.Tc

K
.
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4.3 Simulation Results

In this chapter the performance of the STC algorithm is investigated with

Monte Carlo simulations. We compare the performance of our method in

comparison to the LS method which is optimum in the least squared sense.

Moreover, the performance of STC method is examined for different values

of the parameter λ. To demonstrate the performance of the STC algorithm,

we investigate mainly two cases. First one is the multiple targets case. In

this case, there are many targets (more than two) in the environment. The

aim of this scenario is to estimate the true radar impulse response as close to

the actual as possible. Therefore, we pay attention to the difference between

estimated and true radar impulse response. The second case is the two targets

scenario consisting of a bigger target and a smaller target that is masked by

the range sidelobes of the bigger one. In this scenario, we try to demonstrate

that our method can eliminate sidelobe masking of the bigger target on the

smaller target and the smaller target can thus be detected in the existence of

bigger target. Thus, probability of detection (Pd) of the small target versus

SNR curves of STC and LS methods are compared. In addition to this,

another comparison of Pd-SNR curves of the small target is done when two

targets exist and when only small target exists. This comparison will clarify

whether STC solves the sidelobe masking problem completely or not.

In both cases the transmitted waveform is the P4 code [35] of length N =

30 and the noise is modeled as a white circularly symmetric complex Gaussian

noise with power spectral density N0. The length of the environment response

is 90 chips. In all of the simulations, the fast Fourier transform (FFT) in

its plain form, i.e., no windowing, is applied to the matched filter output to

account for Doppler processing. The number of transmitted pulses is 8, so

the number of FFT filters is also 8. The pulse repetition frequency (PRF) is

8000Hz.
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4.3.1 Multiple Targets Case

In this case, we investigate the relation between the target density and the

residual error power. Residual error power (RP ) is defined as the average

power of the difference signal between the true radar impulse response and

the estimated radar impulse response as given below:

RP =
1

L

L∑

k=1

|h(k)− ĥ(k)|2 (4.18)

where L is the length of the environment. We use the target density param-

eter to indicate the number of targets in a given environment. Mathematical

representation of the target density (TD) is given by

TD =
NT

L
, (4.19)

where NT is the number of targets in the environment. Through this scenario,

we can investigate the performance at the zero Doppler filter where many

impulses due to clutter, which can be considered as targets around zero

velocity, are expected. Moreover, multiple targets at other filters can be

inspected within this scenario as well. When the target density is zero, there

is no target in the environment. When it is 1, there exists a target signal in

each range bin. When it is NT

L
, a randomly chosen set of NT bins out of L are

filled with targets. The target signals are modeled as circularly symmetric

zero-mean complex Gaussian random variables with variance 1. The noise

variance N0 = 10−4 and the threshold τ in STC is set for a false alarm rate

(FAR) of 0.1. The noise and target signals are formed 1000 times randomly

for each target density value. Multiple targets case is investigated for both

the zero and non-zero Doppler. In the existence of Doppler, three intervals

are defined for the Doppler frequencies on targets. Multiple targets case is

simulated for these three different Doppler frequency intervals: −200-200Hz,

−500-500Hz, and 1500-2500Hz. For the first two and no Doppler, first one of
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the eight FFT filters, which operates in between −500(7500)-500Hz, is used.

For the last one, third FFT filter operating between 1500-2500Hz is used.

4.3.1.1 No Doppler on Targets

The residual error performance in this case is depicted in Figure 4.2. When

there is no Doppler on targets, performance of the STC method varies ac-

cording to the parameter λ. Generally, the residual error power of the STC

method increases as λ decreases. On the other hand, for the target density

values smaller than 0.2, higher λ leads to bigger residual errors. But the

differences in the residual error powers for λ < 0.2 are very small. Therefore,

it can be concluded that the residual error performance of STC is best for

λ = 1 at zero Doppler. The performance of the STC method for λ = 1 leads

LS method approximately up to target density of around 0.35 as seen in Fig-

ure 4.2. For the values of target density above 0.35, LS method is obviously

better than the STC method. However, it is highly unlikely that more than

half of the range bins at a given direction are filled with the target signals

even for the zero-Doppler filter.
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Figure 4.2: Residual error performances of LS method and STC method for

5 different λ values with respect to target density, zero Doppler, λ = 0.5, 0.8,

0.9, 0.95, and 1.

Actually, the residual error performance of any method can not be better

than that of the LS method because residual error power is equivalent to

the cost function of the LS method and LS method is optimum in the mean

squared error sense for an unbiased estimation. However, the missing point

is that our method STC obtains a biased estimate. Therefore, residual error

performance of the STC method can be better than that of the LS method.

Figure 4.3 demonstrates the biasedness of the STC algorithm. In this figure,

STC algorithm is run 50, 250, and 10000 times for the same 9 targets in

the environment and then averaged. Target signals with zero Doppler are

deterministic and target locations are constant. The difference, namely the

error, between the true radar impulse response and the mean of the estimated
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impulse response. The real and imaginary parts of the error are drawn. As

seen in Figure 4.3, as the number of Monte Carlo runs used in averaging

increases the random errors tend to diminish in most range bins. However, at

bins where there are targets present the expected value of the error does not

change. Hence, we can conclude that STC is a biased estimation algorithm.
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Figure 4.3: Real and imaginary parts of the average error of the STC method

for N = 50, 250, and 10000.

In Figure 4.4, number of iterations in STC algorithm versus target density

is examined for 5 different λ values. This figure gives us an idea about how

the complexity of STC algorithm changes according to the parameter λ. As

expected, number of iterations in STC increases when there are more targets

in the environment (at high target density values). Moreover, decreasing

λ results in higher number of iterations. When λ is small, comparatively

small part of the found signal is canceled out from the matched filter output.
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Canceling some part of the found signal instead of the whole of it can lead to

false alarms at high target densities where sidelobes effect on the mainlobe of

a target is more dominant. Therefore, the increase in the number of iterations

for small λ values can result from detecting new targets and/or redetecting

the same targets many times. We can understand the factor that leads to

higher number of iteration for smaller λ values from Figures 4.5 and 4.6.
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Figure 4.4: Number of iterations of STC method for λ = 0.5, 0.8, 0.9, 0.95,

and 1 with respect to target density, zero Doppler.

In Figure 4.5, number of discrete targets that are detected is shown with

respect to the target density. Although the number of discrete detected

targets increases with decreasing λ, the results are very close for all λ’s.
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Figure 4.5: Number of discrete target detections of STC method for λ =

0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, zero Doppler.

However, numbers of target redetections (detecting the same target) are con-

siderably different as seen in Figure 4.6. As λ decreases number of target

redetections increases. Therefore, increase in the number of iterations with

decreasing λ mainly results from the redetected target iterations. It is cru-

cial to investigate the detection probability of false alarms which has to be

minimized especially in radar applications. At first glance, it seems that the

difference between detected number of discrete targets and number of targets

in the environment gives us the number of false alarms. However, it is not

true when all the targets in the environment are not detected. Therefore,

number of false alarms is observed in another simulation.
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Figure 4.6: Number of target redetections of STC method for λ =

0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, zero Doppler.

In Figure 4.7, the probability of false alarm (PFA) performance of STC

algorithm for λ = 0.5, 0.8, 0.9, 0.95, and 1 is examined. When λ gets smaller,

PFA increases. As it is mentioned earlier, range sidelobes leads to detect

spurious targets. Therefore, due to increasing sidelobe effect, the probability

of false alarm of STC increases with increasing target density.
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Figure 4.7: Probability of false alarm performances of STC method for λ =

0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, zero Doppler.

4.3.1.2 Doppler on Targets

When there is Doppler on targets, STC performance comes even closer to LS

performance. As seen in Figures 4.8 and 4.9, when the Doppler frequency

increases, the performances of both methods deteriorate. However, the per-

formance degradation in STC is less than that in LS. The degradation in LS

method increases with increasing target density because as the target density

increases, Doppler effect on the range bins of the radar received return sam-

ples increases. Up to some target density value, STC algorithm with smaller

λ’s has slightly better performance. This target density value gets bigger as

the Doppler frequency increases. It can be concluded that with respect to
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the residual error power performance, STC can be preferred against LS when

the targets do not occupy more than half of the range bins and the effect

of variations in the parameter λ on the residual error performance loses its

importance with improving Doppler.
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Figure 4.8: Residual error performances of LS method and STC method for

λ = 0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between −200 and 200Hz.
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Figure 4.9: Residual error performances of LS method and STC method for

λ = 0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between −500 and 500Hz.

In the existence of Doppler, the number of iterations still increases with

both increasing target density and decreasing λ as seen in Figure 4.10.
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Figure 4.10: Number of iterations of STC method for λ = 0.5, 0.8, 0.9, 0.95,

and 1 with respect to target density, Doppler randomly distributed with the

uniform density between −200 and 200Hz.

Moreover, for lower λ values both the number of discrete target detections

(Figure 4.11) and the number of target redetections (Figure 4.12) increase

when there is Doppler. As the Doppler increases, there can be seen an

increase in the number of iterations for the same λ values.
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Figure 4.11: Number of discrete target detections of STC method for λ =

0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between −200 and 200Hz.
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Figure 4.12: Number of target redetections of STC method for λ =

0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between −200 and 200Hz.

When comparing the results in Figures 4.5-4.6 and 4.11-4.12, it can be said

that the increase in the number of iterations due to Doppler mainly results

from detecting more discrete targets. In fact, the higher the Doppler fre-

quency, the more discrete targets are detected.
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In Figures 4.13 and 4.14, it can be observed that decreasing λ increases

the PFA of STC in the existence of Doppler. Moreover, PFA of STC algorithm

is higher for high Doppler frequencies. As the target density increases, PFA

of STC increases when there is Doppler. When the Doppler frequencies of

the targets become higher as in Figure 4.14, PFA performances with respect

to target density also increases.
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Figure 4.13: Probability of false alarm performances of STC method for

λ = 0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between −200 and 200Hz.
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Figure 4.14: Probability of false alarm performances of STC method for

λ = 0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between −500 and 500Hz.

In Figures 4.15 and 4.16, the third FFT filter is observed since the Doppler

frequency of the targets is distributed between 1500 and 2500Hz. The resid-

ual error performances of Figures 4.9 and 4.15 are not very different. In

addition to this, the complexity performances and false alarm detection

characteristics of the two scenarios, in which the target Doppler frequen-

cies are distributed between −500-500Hz and 1500-2500Hz, are nearly the

same. When the correlation function is corrected for the center frequency

of the studied filter as explained before, it can be concluded that the STC

algorithm performs well even Doppler effect exists.
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Figure 4.15: Residual error performances of LS method and STC method

for λ = 0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler

randomly distributed with the uniform density between 1500 and 2500Hz.
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Figure 4.16: Probability of false alarm performances of STC method for

λ = 0.5, 0.8, 0.9, 0.95, and 1 with respect to target density, Doppler randomly

distributed with the uniform density between 1500 and 2500Hz.

4.3.2 Two Targets Case

In the second case, there is a large target and a small target in the environ-

ment. The small target is masked by the range sidelobes of the large target.

We will check out the probability of detection (Pd) performance versus signal

to noise ratio (SNR) of the small target. In many radar applications, targets

are in motion. Therefore, Doppler effect is taken into account in this case in

order to be more realistic. The third FFT filter which operates in between

1500-2500Hz is used.

STC aims to eliminate the adverse effects of sidelobes by estimating and
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canceling target signals. In order to observe whether STC can resolve the

masking problem, we will compare the small-large target case (a) with the

case that there is no masking (b), i.e., only the small target is present. If two

cases have similar Pd performance, then STC will have fulfilled its promise.

In Figure 4.17, both target signals are deterministic, have fixed powers,

and are 7 range bins apart from each other. In this figure, the power of the

large target is 28dB higher than the power of the small target. The Doppler

frequencies of the large target and the small target are 2200Hz and 1700Hz

respectively. The noise power N0 is varied so that the SNR effect on Pd can

be examined. 1000 samples are taken for each N0 value. The performance

of detection based only on MF output in the single target scenario is also

depicted for comparison and bears virtually no difference with STC. As seen

in Figure 4.17, whether the large target is present in the environment or not,

there is not much difference in Pd of the small target between LS and STC

methods. Moreover, when STC method is applied, Pd of the small target

does not change much according to the existence of the large target. Pd-

SNR curves of the STC algorithm are different for different λ values: Pd

performances of small λ values are worse.
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Figure 4.17: Probability of detection versus signal to noise ratio is examined

for a) A deterministic small target at 1700 Hz Doppler masked by a deter-

ministic large target at 2200 Hz Doppler whose power is 28dB higher than

the small one. b) Only a deterministic small target. 0.5, 0.8, 0.9, 0.95, and

1 refers to 5 different values of λ.

In Figure 4.18, all the conditions and properties of target signals are the

same as the ones in Figure 4.17 except from the Doppler effect on targets.

Doppler frequency of the big target is again 2200Hz whereas Doppler fre-

quency of the small target is 1550Hz. In this figure, it is aimed to investigate

the Pd performance of the small target when the Doppler frequency of the

small target is far away from the center frequency of the studied FFT filter.

Although third FFT filter is used in this simulation, nearly the same amount

of the target signal in the region of third FFT filter is in the region of second
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FFT filter since the Doppler frequency of the small target is very close to

the intersection of these two FFT filters. In Figures 4.17 and 4.18, it can

be observed that the Pd performances of both LS and STC methods reduce

as the Doppler frequency of the small target is moved away from the center

frequency of the studied FFT filter.
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Figure 4.18: Probability of detection versus signal to noise ratio is examined

for a) A deterministic small target at 1550 Hz Doppler masked by a deter-

ministic large target at 2200 Hz Doppler whose power is 28dB higher than

the small one. b) Only a deterministic small target. 0.5, 0.8, 0.9, 0.95, and

1 refers to 5 different values of λ.

In Figure 4.19, the small target signal is formed randomly with a complex

Gaussian distribution for each 1000 samples while the large target is deter-

ministic. The SNR of the big target is 50dB and N0 of the noise is constant.
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However, noise and small target signal are randomly generated. The Doppler

frequency of the small target is randomly distributed with the uniform den-

sity between 1500 and 2500 Hz. In this figure, STC and LS methods give so

close results that Pd-SNR curves of the methods can not easily be differenti-

ated. Pd-SNR curve of the STC method in the existence of a large target is

nearly the same as the one when the large target does not exist.
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Figure 4.19: Probability of detection versus signal to noise ratio is examined

for a) A randomly formed small target and a deterministic large target. b)

Only a random small target. 0.5, 0.8, 0.9, 0.95, and 1 refers to 5 different

values of λ.

As it is mentioned earlier, range sidelobes of big targets can be mistaken

as targets during the radar signal processing. In Figure 4.19, the detection

probability of the small target in the existence of the big target is greater
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than zero even at 0dB SNR. This unexpected result is due to the the range

sidelobes of the big target.

Compared to Figure 4.17, in Figure 4.19 λ does not affect the Pd-SNR

performance of STC algorithm so much because the average sidelobe effect

in 4.19 is lower than that of 4.17.

In conclusion, it is obviously observed from the two figures that STC

reduces most of the adverse effects of the sidelobe of the large target. Indeed,

STC almost achieves optimum sidelobe reduction in the squared error sense

with a reasonable complexity.
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chapter 5

Conclusion

Pulse compression is ubiquitously used in radar applications. The pulse

compression known as standard matched filtering not only solves the limited

peak power problem but also maximizes the received SNR of the target in

the existence of white noise. However, this technique has the problem of

sidelobe masking of smaller targets in the vicinity of large targets due to

non-ideal correlation properties. To overcome this problem, the Successive

Target Cancelation (STC) method which is a CLEAN algorithm is studied.

Basically, the STC method detects target signals and cancels them out

from the matched filter output successively. We investigated the performance

of the STC method in comparison to the LS method. Moreover, STC algo-

rithm was performed for different loop gain parameter (λ) values. The effect

of the parameter λ with respect to complexity, false alarm rate, residual error

power, and probability of detection were inspected. Furthermore, the effects

of the Doppler shift on the received radar signals have been examined and

the STC method was correspondingly modified.

According to simulation results, STC performs well as long as the number

of targets in the received signal is not excessively large. Besides this, STC

performs better than the LS method for small target densities in the environ-

ment. The Doppler effect can be easily taken into account in STC without

much degradation in performance. Although residual error performance of

STC decreases with decreasing λ for very small target densities, both the

complexity and the number of false alarms increase. Additionally, the Pd is
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higher when λ is high. By taking into account that the enhancement in the

residual error performance is not much and this enhancement reduces with

increasing Doppler, it can be concluded that performing STC with λ = 1 is

preferable for sidelobe reduction in pulse compression radars. However, STC

can be run for small λ’s in applications where estimating the data with as

small residual error as possible is important such as in image processing.

STC is based on basic operations such as addition and subtraction. It

does not include matrix inversion or other complex operations and hence

is simple and easy to handle. Due to inversion of a n × n matrix and the

multiplication operation on the order of O(n2) where n is the length of the

received signal, the computational complexity of LS method is high. More-

over, the greater the number of the samples taken for the received return

signal is, the more computationally complex the LS algorithm becomes. On

the other hand, while running MMSE method a signal covariance matrix

is obtained for each range bin to be inspected from target power estimates

and a filter is constructed based on the inverse of the covariance matrix and

acts on the MF signal. At each iteration of the algorithm, target powers

are reestimated and filters are regenerated. Therefore, MMSE algorithm is

computationally complex due to on-line matrix inversion at every iteration

and ad hoc methods used to avoid numerical instability in MMSE method

resulting from ill-conditioned estimated covariance matrix.

In general, STC method almost carries out the optimum performance in

the squared error sense. Moreover, it has lower complexity compared to other

methods. Hence, it presents a viable solution to sidelobe problem in pulse

compression radars.

As a future work, the effects of clutter suppression filters and windowed

FFT operations can be studied. The performance of the proposed algorithm

with constant false alarm rate detectors will be investigated.
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