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ABSTRACT 

 
 
 

INVESTIGATION OF MODEL UPDATING TECHNIQUES AND THEIR 
APPLICATIONS TO AIRCRAFT STRUCTURES 

 
 
 

KOZAK, Mustafa Tuğrul 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN  

Co-Supervisor: Dr. Mutlu D. CÖMERT 

 

 

September 2006, 140 pages 

 

 

Mathematical models that are built in order to simulate the behavior of 

structures, most often, tend to respond differently than the actual structures in their 

initial state. In order to use the mathematical models and their computational 

outputs instead of testing the real structure under every possible case, it is 

mandatory to have a mathematical model that reflects the characteristics of the 

actual structure in the best possible way. In this thesis, the so called model 

updating techniques used for updating the mathematical models in order to make 

them respond in the way the actual structures do are investigated.  

 

Case studies using computationally generated test data are performed using 

the direct and indirect modal updating techniques with the software developed for 

each method investigated. After investigating the direct and indirect modal 

updating techniques, two of them, one using frequency response functions and the 

other using modal sensitivities, are determined to be the most suitable ones for 

aircraft structures. A generic software is developed for the technique using modal 

sensitivities. A modal test is carried out on a scaled aircraft model. The test data is 
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used for updating of the finite element model of the scaled aircraft using the modal 

sensitivities and the usability of the method is thus evaluated. The finite element 

model of a real aircraft using the modal test data is also updated using the modal 

sensitivities.   

 

A new error localization technique and a model updating routine are also 

proposed in this thesis. This modal updating routine is used with several case 

studies using computationally generated test data and it is concluded that it is 

capable of updating the mathematical models even with incomplete measured 

data.  

 

Keywords: Modal Correlation, Modal Sensitivity, Mode Expansion, Model 

Reduction, Model Updating, Structural Dynamic Aircraft Finite Element Models, 

Structural Dynamics. 
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ÖZ 

 
 
 

MODEL GÜNCELLEME TEKNİKLERİ VE BU TEKNİKLERİN HAVACILIK 
YAPILARINA UYGULAMALARI 

 

 

 

KOZAK, Mustafa Tuğrul 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat ÖZGÜVEN 

Ortak Tez Yöneticisi: Dr. Mutlu D. CÖMERT 

 

 

Eylül 2006, 140 sayfa 

 

 

 

Gerçek mühendislik yapılarının davranışlarını benzetebilmek için hazırlanan 

matematiksel modellerin ilk halleri çoğunlukla yapının davranışlarını gerçekçi 

biçimde yansıtmazlar. Gerçek yapının olası her koşul altında test edilmesi yerine, 

hazırlanan matematiksel modelleri ve bu modellerin çıktılarını kullanabilmek için, 

yapının davranışlarını mümkün olan en iyi şekilde yansıtan bir matematik modele 

gereksinim vardır. Bu tezde, matematiksel modeller üzerinde değişiklikler yaparak 

bu modellerin davranışlarını gerçek yapının davranışlarıyla örtüştürmeye çalışan 

model güncelleme yöntemleri incelenmiştir. 

 

Doğrudan ve dolaylı model güncelleme yöntemleri, sayısal olarak türetilen 

test verileri ve hazırlanan kodlar kullanılarak incelenmiştir. Doğrudan ve dolaylı 

model güncelleme yöntemlerinin incelenmesi sonucunda, frekans tepki 

fonksiyonlarını ve modal duyarlılık değerlerini kullanan iki model güncelleme 

yönteminin havacılık yapılarının matematiksel modellerinin güncellenmesi için en 

uygun yöntemler olduğu sonucuna varılmıştır. Modal duyarlılık değerlerini kullanan 

model güncelleme yöntemi için genel kullanıma yönelik bir yazılım geliştirilmiştir. 
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Küçük ölçekli bir uçak modeline modal test uygulanmıştır. Bu testten elde edilen 

veriler, hazırlanan sonlu eleman modelinin modal duyarlılık değerlerini kullanan 

model güncelleme yöntemiyle güncellenmesinde ve bu sayede yöntemin 

uygunluğunun değerlendirilmesinde kullanılmıştır. Gerçek bir uçağın modal titreşim 

testi sonuçları kullanılarak, uçağın sonlu eleman modeli güncellenmiştir.   

 

Bu tez kapsamında ayrıca yeni bir hata yeri tespit tekniği ve model 

güncelleme yöntemi de geliştirilmiştir. Bu yöntemin sayısal olarak türetilen test 

verileri ile kullanıldığı model güncelleme çalışmaları sonucunda, yöntemin ölçülen 

verilerin eksik olması durumunda dahi model güncelleme işlevini yerine getirdiği 

saptanmıştır.  

 

Anahtar Kelimeler: Modal Duyarlılık, Modal Örtüştürme, Model Güncelleme, Model 

İndirgeme, Modal Veri Genişletme, Uçak Yapısal Dinamik Sonlu Eleman Modeli, 

Yapısal Dinamik.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To My Country TÜRKİYE, to my family and to my fiancée 

 
 
 
 
 
 
 
 
 
 
 

 



 ix  

 
ACKNOWLEDGEMENTS 

 
 
 

I would like to express my sincere appreciation to my supervisor Prof. Dr. H. 

Nevzat ÖZGÜVEN and to my co-supervisor Dr. Mutlu D. CÖMERT for their 

precious guidance throughout this study. 

 

The work in this thesis was performed for the practical research objectives 

of TÜBİTAK-SAGE. I wish to thank to TÜBİTAK-SAGE administration for allowing 

me to make this investigation and TÜBİTAK-SAGE for unfolding the computational 

and testing capabilities.  

 

I would like to extend my special thanks to Mr. Erdinç Nuri YILDIZ, Mr. 

Sertaç KÖKSAL and Mr. Fatih BÜKE for their cooperation in testing and 

programming stages.  

 

Enormous thanks go to my parents Fatma Perizat KOZAK and Orhan 

KOZAK and my brother Yavuz KOZAK for their incredible support, trust, 

understanding to me and their precious encouragement throughout my all life and 

education. I also would like to thank to Miss Özge GÖKÇE, who will be my 

counterpart for the rest of my life, for her encouragement from the first sight. 

 

At last, but not the least, I would like to send my thanks to my brothers in 

Middle East Technical University American Football Team METU FALCONS, with 

whom I have spilled sweat, tear and blood; have experienced triumph, 

championships and losses. 

 

 

 

 

 

 

 

 



 x  

 
TABLE OF CONTENTS 

 
 
 

PLAGIARISM.......................................................................................................... iii 
ABSTRACT............................................................................................................. iv 

ÖZ ...........................................................................................................................vi 
ACKNOWLEDGEMENTS....................................................................................... ix 

TABLE OF CONTENTS...........................................................................................x 

LIST OF TABLES ..................................................................................................xii 
LIST OF FIGURES................................................................................................xiii 
NOMENCLATURE..............................................................................................xviii 
ABBREVIATIONS.................................................................................................xix 
 
CHAPTERS 
1 INTRODUCTION...................................................................................................1 

1.1 OBJECTIVES OF THE THESIS ................................................................1 

1.2 BACKGROUND.........................................................................................1 

1.3 SCOPE OF THE THESIS ..........................................................................8 

2 OVERVIEW OF TECHNIQUES REQUIRED IN MODEL UPDATING METHODS
...............................................................................................................................10 

2.1 FINITE ELEMENT MODEL REDUCTION AND EXPERIMENTAL  
MODAL DATA EXPANSION..............................................................................10 

2.1.1 Finite Element Model Reduction.......................................................11 
2.1.2 Expansion of Measured Modal Data.................................................20 

2.2 COMPARISON AND CORRELATION TECHNIQUES............................26 
2.2.1 Direct Comparisons ..........................................................................26 
2.2.2 The Modal Assurance Criterion ........................................................27 
2.2.3 The Coordinate Modal Assurance Criterion......................................28 
2.2.4 Orthogonality Methods......................................................................28 

3 THEORY OF MODEL UPDATING METHODS...................................................30 

3.1 DIRECT METHODS.................................................................................30 
3.1.1 Methods Using Lagrange Multipliers.................................................31 
3.1.2 Error Matrix Methods ........................................................................34 
3.1.3 Direct Matrix Updating ......................................................................35 
3.1.4 Matrix Mixing Methods......................................................................36 

3.2 INDIRECT METHODS .............................................................................37 
3.2.1 Eigendynamic Constraint Method.....................................................37 
3.2.2 Inverse Eigensensitivity Method .......................................................39 
3.2.3 Response Function Method..............................................................46 
3.2.4 Model Updating Based on MCI Minimization ....................................49 



 xi  

4 SOFTWARE DEVELOPED.................................................................................56 

4.1 DETAILS OF THE SOFTWARE..............................................................56 

5 CASE STUDIES..................................................................................................60 

5.1 CASE STUDIES ON A SIX DOF SPRING MASS SYSTEM ...................60 
5.1.1 Point FRF Results for Updating with the Method Using Lagrange 
Multipliers ........................................................................................................62 
5.1.2 Point FRF Results for Updating with the Error Matrix Methods ........63 
As this method ignores the 2nd and higher order error terms, the obtained 
results are not exact ones. ..............................................................................63 
5.1.3 Point FRF Results for Updating with the Direct Matrix Updating 
Method 63 
5.1.4 Point FRF Results for Updating with the Matrix Mixing Method........64 
5.1.5 Point FRF Results for Updating with the Response Function Method
 65 
5.1.6 Point FRF Results for Updating with the MCI Minimization Method .67 

5.2 CASE STUDIES ON A 20 DOF FREE-FREE COMPOSITE BEAM USING 
THE MCI MINIMIZATION METHOD...................................................................71 

5.3 CASE STUDY ON A SCALED AIRCRAFT MODEL USING THE 
INVERSE EIGENSENSITIVITY METHOD .........................................................77 

5.4 CASE STUDIES ON AN AIRCRAFT MODEL (REAL LARGE 
STRUCTURE) USING THE INVERSE EIGENSENSITIVITY METHOD ............99 

5.4.1 Updating the Model of the Empty Aircraft .........................................99 
5.4.2 Updating of the Fully Loaded Aircraft..............................................104 

6 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK ..................................................................................................................111 

6.1 DISCUSSION.........................................................................................111 
6.1.1 Discussion on Case Studies Performed Using Direct Methods ......111 
6.1.2 Discussion on Case Studies Performed Using with Miscorrelation 
Index (MCI) Minimization...............................................................................112 
6.1.3 Discussion on the Updating of the Scaled Aircraft Finite Element 
Model 113 
6.1.4 Discussion on the Updating of the Real Aircraft Finite Element Model
 114 

6.2 CONCLUSIONS.....................................................................................115 

6.3 RECOMMENDATIONS FOR FUTURE WORK .....................................117 

 
REFERENCES.....................................................................................................118 

 
APPENDICES ......................................................................................................122 

APPENDIX A....................................................................................................122 

APPENDIX B....................................................................................................124 

APPENDIX C....................................................................................................128 
 



 xii  

LIST OF TABLES 
 

 
 
Table 1. Stiffness and Mass Values for Original Analytical and Pseudo-

Experimental Model........................................................................................61 

Table 2. Experimental and Analytical Natural Frequencies and Initial Errors in the 

Natural Frequencies of the 6 DOF Spring-Mass System ...............................61 

Table 3. Geometric Parameters for Original Analytical and Pseudo-Experimental 

Model (mm) ....................................................................................................71 

Table 4. Material Property Ratios (Experimental/Analytical) for Original Analytical to 

Pseudo-Experimental Model ..........................................................................72 

Table 5. Measurement Points and Directions.........................................................80 

Table 6. Excitation Points and Directions...............................................................81 

Table 7. Data Acquisition Details for Modal Testing of GARTEUR SM-AG19 Test-

Bed .................................................................................................................82 

Table 8. MPC Element Details ...............................................................................87 

Table 9. Material Properties Used in the Finite Element Model .............................88 

Table 10. Experimental Modes and Correlating Original Finite Element Model’s 

Modes.............................................................................................................89 

Table 11. Experimental Modes and Correlating Updated Theoretical Modes from 

the Finite Element Model................................................................................98 

Table 12. Possible Parameters for which Sensitivities can be Calculated ...........131 

Table 13. Settings for Modal Sensitivity Analysis .................................................138 

 
 
 
 
 
 
 
 



 xiii  

 
LIST OF FIGURES 

 
 
 
Figure 1. Linear Estimation on a Single Variable Function.....................................40 

Figure 2. Flowchart for Updating MSC Nastran Models Using Inverse 

Eigensensitivity Method..................................................................................45 

Figure 3. Flowchart for the Response Function Method.........................................48 

Figure 4. Flowchart for the Inverse Eigensensitivity Analysis with the Software 

Generated.......................................................................................................59 

Figure 5. Spring-Mass System Used in Case Studies............................................60 

Figure 6. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Lagrange Multipliers Method for Error in Mass Matrix 

Only (No Error in Stiffness Matrix)..................................................................62 

Figure 7. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Lagrange Multipliers Method for Error in Stiffness Matrix 

Only (No Error in Mass Matrix) .......................................................................62 

Figure 8.  Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Error Matrix Method .......................................................63 

Figure 9. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Direct Matrix Updating Method ......................................64 

Figure 10. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Matrix Mixing Method.....................................................64 

Figure 11. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 1st DOF ........................................................65 

Figure 12. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 2nd DOF .......................................................65 

Figure 13. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 3rd DOF ........................................................66 

Figure 14. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 4th DOF ........................................................66 

Figure 15. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 5th DOF ........................................................66 

Figure 16. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 6th DOF ........................................................67 



 xiv  

Figure 17. Absolute Maxima of MCI Values at All DOF‘s .......................................68 

Figure 18. Convergence of Updating Parameters ..................................................68 

Figure 19. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 1st DOF ........................................................69 

Figure 20. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 2nd DOF .......................................................69 

Figure 21. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 3rd DOF ........................................................69 

Figure 22. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 4th DOF ........................................................70 

Figure 23. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 5th DOF ........................................................70 

Figure 24. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 6th DOF ........................................................70 

Figure 25. Illustration of the Beam Model Used in Second Case Study.................72 

Figure 26. The Absolute Maxima of the Starting MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 100 N/m...................................................................73 

Figure 27. The Absolute Maxima of the Starting MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 1000 N/m.................................................................73 

Figure 28. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 1st DOF for an Elastic Cord 

Stiffness of 100 N/m .......................................................................................74 

Figure 29. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 19th DOF for an Elastic Cord 

Stiffness of 100 N/m .......................................................................................75 

Figure 30. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 9th DOF for an Elastic Cord 

Stiffness of 100 N/m .......................................................................................75 

Figure 31. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 1st DOF for an Elastic Cord 

Stiffness of 1000 N/m .....................................................................................75 

Figure 32. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 19th DOF for an Elastic Cord 

Stiffness of 1000 N/m .....................................................................................76 



 xv  

Figure 33. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 9th DOF for an Elastic Cord 

Stiffness of 1000 N/m .....................................................................................76 

Figure 34. The Absolute Maximum of the Final MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 100 N/m...................................................................77 

Figure 35. The Absolute Maximum of the Final MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 1000 N/m.................................................................77 

Figure 36. Test-Bed Tested in TÜBİTAK-SAGE.....................................................78 

Figure 37. The Dimensions and Locations of the Aluminum Plates in GARTEUR 

SM-AG19 Test-Bed (Dimensions in mm) .......................................................79 

Figure 38. Hooks for Elastic Cords.........................................................................80 

Figure 39. Excitation and Measurement Points and Coordinate Axes ...................80 

Figure 40. Detailed Photographs of Modal Testing Setup......................................82 

Figure 41. A Screenshot From LMS Modal Testing Software (Excitation and 

Measurement on z- Axis of Point 34) .............................................................83 

Figure 42. Stability Diagram From POLYMAX .......................................................84 

Figure 43. Visual Representations of the First 10 Modes Obtained From POLYMAX

........................................................................................................................85 

Figure 44. Finite Element Mesh of the Test-Bed Structure (3-D View) ..................86 

Figure 45. The Locations of the Strips in the Finite Element Model .......................86 

Figure 46. MPC Elements in The Model.................................................................87 

Figure 47. MAC Matrix between the Experimental Model and the Original Finite 

Element Model................................................................................................88 

Figure 48. Natural Frequency Comparison between the Experimental Model and 

the Original Finite Element Model ..................................................................89 

Figure 49. Visual Representations of the First 10 Modes Obtained From the 

Original Finite Element Model ........................................................................91 

Figure 50. Variation of Parameter Values through the Updating Procedure ..........92 

Figure 51. MAC Matrix between the Updated Finite Element Model and the 

Experimental Model........................................................................................93 

Figure 52. Natural Frequency Comparison between the Updated Finite Element 

Model and the Experimental Model ................................................................93 

Figure 53. Eigenvector Graphs for 1st Correlating Mode Pair................................94 

Figure 54. Eigenvector Graphs for 2nd Correlating Mode Pair ..............................94 



 xvi  

Figure 55. Eigenvector Graphs for 3rd Correlating Mode Pair ...............................94 

Figure 56. Eigenvector Graphs for 4th Correlating Mode Pair ...............................94 

Figure 57. Eigenvector Graphs for 5th Correlating Mode Pair ...............................95 

Figure 58. Eigenvector Graphs for 6th Correlating Mode Pair ...............................95 

Figure 59. Eigenvector Graphs for 7th Correlating Mode Pair ...............................95 

Figure 60. Eigenvector Graphs for 8th Correlating Mode Pair ...............................95 

Figure 61. Eigenvector Graphs for 9th Correlating Mode Pair ...............................96 

Figure 62. Eigenvector Graphs for 10th Correlating Mode Pair .............................96 

Figure 63. Point FRF Values of Node 1 in z- Direction for the Experimental, the 

Analytical and the Updated Models ................................................................96 

Figure 64. Visual Representations of the First 10 Modes Obtained From the 

Updated Finite Element Model .......................................................................97 

Figure 65. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes .........................................................100 

Figure 66. MAC Matrix before Updating Procedure .............................................100 

Figure 67. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes (for Correlating Pairs) ......................101 

Figure 68. MAC Matrix After Updating Procedure ................................................101 

Figure 69. Eigenvector Graphs for 1st Correlating Mode Pair..............................102 

Figure 70. Eigenvector Graphs for 2nd Correlating Mode Pair ............................102 

Figure 71. Eigenvector Graphs for 3rd Correlating Mode Pair .............................102 

Figure 72. Eigenvector Graphs for 4th Correlating Mode Pair .............................103 

Figure 73. Eigenvector Graphs for 5th Correlating Mode Pair .............................103 

Figure 74. Eigenvector Graphs for 6th Correlating Mode Pair .............................103 

Figure 75. Point FRF Curves for the Empty Aircraft: Measured (Experimental) and 

Calculated (Analytical and Updated Models) at the Right and the Left Wing 

Tips...............................................................................................................104 

Figure 76. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes .........................................................105 

Figure 77. MAC Matrix before Updating Procedure .............................................105 

Figure 78. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes (for Correlating Pairs) ......................106 

Figure 79. MAC Matrix after Updating Procedure ................................................106 

Figure 80. Eigenvector Graphs for 1st Correlating Mode Pair..............................107 



 xvii  

Figure 81. Eigenvector Graphs for 2nd Correlating Mode Pair ............................107 

Figure 82. Eigenvector Graphs for 3rd Correlating Mode Pair .............................107 

Figure 83. Eigenvector Graphs for 4th Correlating Mode Pair .............................107 

Figure 84. Eigenvector Graphs for 5th Correlating Mode Pair .............................108 

Figure 85. Point FRF Curves for the Fully Loaded Aircraft: Measured 

(Experimental) and Calculated (Analytical and Updated Models) at the Right 

and the Left Wing Tips..................................................................................109 

Figure 86. “Model Variables” Submenu in MSC PATRAN 2004 r2 GUI...............130 

Figure 87. The Screen in MSC PATRAN 2004 r2 GUI in which Beam Dimensions 

can be Set as Parameters ............................................................................131 

Figure 88. The Screen on which Material Properties are Defined as Design 

Variables in MSC PATRAN 2004 r2 GUI......................................................132 

Figure 89. Location of “Design Study” Submenu Under MSC PATRAN 2004 r2 .133 

Figure 90. The Screen that Appears After Selection of “Design Study” in MSC 

PATRAN 2004 r2 GUI ..................................................................................133 

Figure 91. The Screen for Selection of Updating Parameters..............................134 

Figure 92. The Screen on which Design Objective is Set in MSC PATRAN 2004 r2 

GUI ...............................................................................................................135 

Figure 93. The Screen on which Natural Frequency is Set as a Modal Response for 

Sensitivity Calculations in MSC PATRAN 2004 r2 GUI................................136 

Figure 94. The Screen on which Mode Number, Mode Shape, Node and Degree of 

Freedom are Selected for Defining Eigenvector as a Modal Response for 

Sensitivity Calculations in  MSC PATRAN 2004 r2 GUI...............................137 

Figure 95. The Screen on which Analysis Settings are Done for a Modal Sensitivity 

Analysis in MSC PATRAN 2004 r2 GUI .......................................................137 

Figure 96. Example File Format for Weight Sensitivity Values.............................138 

Figure 97. Example File Format for Natural Frequency Sensitivity Values ..........139 

Figure 98. Example File Format for Eigenvector Sensitivity Values.....................140 

 
 
 

 
 
 
 



 xviii  

 
NOMENCLATURE 

 
 
 

{ }F  Forcing vector 

 i  Unit imaginary number 

[ ]I  Identity matrix 

[ ]K  Stiffness matrix 

[ ]RK  Reduced Stiffness matrix 

[ ]M  Mass matrix 

[ ]RM  Reduced Mass matrix 

{ }x  Displacement vector 

⎭
⎬
⎫

⎩
⎨
⎧ ..
x  Acceleration vector 

[ ]α  Receptance matrix of original system 

[ ]MΔ  Updating mass matrix 

[ ]KΔ  Updating stiffness matrix 

[ ]CΔ  Updating viscous damping matrix 

[ ]γ  Receptance matrix of updated system 

{ }φ  Mass normalized undamped modal matrix 

{ }ω  Excitation frequency 

[ ]T  Transpose of a matrix 

 

 

 

 

 

 

 



 xix  

 
ABBREVIATIONS 

 

 

 

FRF Frequency Response Function 

DOF Degree of Freedom  

IRS  Improved Reduced System 

SEREP System Equivalent Reduction Expansion Process 

MCI  Miscorrelation Index 



 1  

 
CHAPTER 1 

 
 

1 INTRODUCTION 
 

 

1.1 OBJECTIVES OF THE THESIS 

The main objective of this work is to investigate the methods for correlating 

structural dynamic mathematical models to experimental data and correcting them, 

namely model updating techniques. 

A significant number of works have been published and many model updating 

techniques have been proposed in the last twenty years. However, there are no 

exact or generally-applicable methods that ensure the model updating procedure to 

succeed. This study is an attempt to: 

• Investigate the current model updating techniques and compare their 

performances under the same conditions 

• Check the applicability of the current methods for updating of structural 

dynamic finite element models of aircraft and determine the most suitable 

one. 

• Update a real aircraft model with most suitable (current) updating 

techniques 

• Introduce a new error localization technique and a model updating method 

1.2 BACKGROUND 

The dynamic characteristic of a structure is a demanding knowledge in order to 

predict the response it will give during operation if the structure is under forces that 

vary with time continuously. The dynamic behavior of a structure can be obtained 

by using any or both of the two main methodologies, namely analytical and 

experimental. The analytical approach handles the problem by using a 
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mathematical model that represents the dynamic characteristics of the real 

structure. The experimental model is obtained by exciting the system (or using 

operational excitation) and measuring the corresponding responses. The most 

popular way for obtaining the analytical model is using the finite element method, 

where a continuous system is expressed by discrete parts (having dimensions 

larger than an infinitesimally small part) moving with known shape functions. The 

finite element method was originated in the field of structural analysis and was 

developed in the aerospace industry.  

The finite element method can simply be explained by dividing the actual physical 

structure (for the case of structural analysis) into small elements. Each element can 

be thought of as a simple unit, the behavior of which can be analyzed by 

approximations on its displacement field (shape functions). After the elements and 

their functions have been chosen, the matrices, containing the properties of 

individual elements, must be determined. For this task, one of the following four 

approaches may be used: the direct approach, the variational approach, the 

weighted variational approach, or the energy balance approach [1]. The next step 

is to assemble all the element properties. The outcome of this action is the 

composed mass and stiffness matrices of dimension N, where N is the number of 

degrees of freedom in the model. The choice of N depends on the analysis and it 

should be large enough to minimize the discretization errors. The number of 

degrees of freedom and the mass and stiffness matrices of a structure can vary 

from one analysis to another, and from one element type to another. In any case, 

an accurate representation of damping matrices is not yet possible. The most 

common approach is building a proportional damping matrix that is based on 

experimentally-derived modal damping factors. The resulting mathematical model 

is a set of equations that may or may not accurately represent the actual structure’s 

responses. The inaccuracies or uncertainties that may be present in finite element 

models can be divided into two categories: 

• discretization errors, 

• modeling errors. 

The first category includes the errors that arise because of using numerical 

techniques. The most critical one is the discretization error which arises from 



 3  

describing a continuous structure by a finite number of individual elements. The 

magnitude of this error depends on the finite element mesh quality and on the 

efficiency of the element shape functions [1]. Formulation errors arise from 

choosing elements that do not behave in the way the real structure behaves on the 

elemental scale.  

The second category includes the modeling errors arising from the assumptions 

made by the analyst. These include the choice of elements to represent a given 

geometry (these errors generally occur because of the choice of incorrect element 

types; usually choosing elements having undesired shape functions), omission of  

some details, uncertainties coming from the boundary conditions that can not be 

defined by the embedded boundary conditions available in the FE code, etc. 

Although some of these errors will primarily create elemental (i.e. local) level 

errors, others will affect the global eigenparameters. 

The coarsest possible mesh that gives satisfactory results should be obtained in 

order to have a balance between the discretization errors and computational effort. 

While having the minimum possible number of elements, the results of the finite 

element model should be similar to the one having a finer mesh. A quick and 

effective way of testing the finite element model, whether it has the minimum 

possible number of elements is as follows: First of all, the structure is divided into 

parts having a fine mesh density and the eigenvalues and eigenvectors are 

examined. After this point, the structure is modeled with a coarser mesh and the 

results are checked again. If the results of the fine and coarse meshed models fit 

each other, the structure can be modeled with even a coarser mesh density until 

the results get out of the bounds of the analyst’s tolerance band. If, on the other 

hand, the first coarse model gives miscorrelated results compared with the original 

fine meshed model, the coarse model can not be used and the structure should be 

modeled with more elements until a good correlation is achieved. 

The second way of examining the dynamic properties of a structure is testing and 

having an experimental model. Due to lack of confidence in analytical models, 

actual dynamic testing of structures has become a classical procedure to verify an 

existing finite element model or adjust it to match test results. For nearly four 

decades, modal testing has been a fast developing technique in the experimental 

evaluation of the dynamic properties. The data from a modal test has several uses: 
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• to verify finite element or other mathematical models, 

• to predict the effects of a design change by structural coupling, 

• to provide a basis for model updating. 

Modal testing basically consists of two steps: Data acquisition and data analysis for 

the extraction of modal parameters such as natural frequencies, mode shapes and 

damping ratios. Modal testing is the action of exciting a structure with known 

forcing amplitudes and frequencies and acquisition of the resulting response of the 

structure. There are two main methods for exciting a structure. The structure can 

either be excited by an impact hammer or a shaker which is connected to the 

structure through a push rod (stinger). Sometimes more than one shaker may be 

used to excite the structure. Transducers, which are made from piezoelectric 

materials (materials yielding electrical potentials with deformation), are generally 

used to measure both the response and the excitation force on the structure. The 

response can be measured at one or more points, usually by accelerometers, 

which are connected to a data acquisition device. After the measurements have 

been performed, modal identification is accomplished in order to find the modal 

properties of the system. This area has been extensively developed and various 

techniques for identifying modal models from FRF data have been proposed (some 

of which have been implemented in a wide variety of commercial modal analysis 

software). Further details on the theoretical and practical aspects of vibration 

measurement techniques can be found in the works of Ewins [2], Maia and Silva et 

al.  [3]. 

Just like analytical modeling, modal testing has also a number of problems: 

• The number of accelerometers is limited, thus the size of the experimental 

model is almost always less than that of the analytical model. 

• Yet, it is not possible to measure some degrees of freedom, such as 

rotational and internal ones (for example the structural parts under the 

structural skin of the wing of an aircraft). 

• The number of extracted modes is limited by the frequency range. 
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• The modal analysis usually yields complex mode shapes while the 

theoretical model usually uses proportional damping, thus yielding normal 

modes only. 

• Measured data are contaminated by a certain level of noise. Some modes 

of the structure may not be excited during the test or, even if excited, some 

modes may not be identified. 

• Clamped boundary conditions are very difficult to achieve while free-free 

boundary conditions are subject to suspension effects, yielding rigid body 

modes having eigenvalues not equal to zero. 

• The test structure may exhibit non-linearities while the analytical model 

usually assumes linearity. 

The sources of error arising from the two modeling approaches are explained 

above. Each effect brings a certain amount of error into the model yielding 

differences in the dynamic characteristics reflected by the experimental and 

analytical models. Considering the modal test data as more reliable, the analytical 

model of the structure may be updated by using the data obtained from the modal 

test. This approach, known as model updating, tries to fit the analytical responses 

to the experimental ones by applying numerical changes to the original (or 

previous, if an iterative approach is used) analytical system matrices i.e., the mass, 

stiffness and, if taken into account, damping matrices. 

Because of the different limitations and assumptions in the two approaches, the 

finite element model and the experimental modal model have different advantages 

and disadvantages. The finite element model provides information on dynamic 

behavior of the mathematical structure while the experimentally-derived model 

contains information from the actual structure. 

Updating of an analytical model can be performed by applying changes to some 

specific elements (if an effective error localization technique is applied and 

erroneous elements are identified) or in a global sense (if the error is scattered).  

The first model updating techniques were based on using the experimental modal 

data and updating the mathematical model directly. These methods can be 
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regarded as a class of system identification procedures rather than model updating 

schemes in indirect model updating methods. System parameters in the form of 

mass, stiffness and damping are extracted from the measured data and 

implemented in the original mathematical model.   

Pioneers in indirect model updating methods have used different forms of 

constraints for building the updating matrices. Bar-Itzhack and Baruch [4] assumed 

that the original analytical mass matrix contained no error and made the updating 

on the stiffness matrix using Lagrange multipliers and orthogonality of the 

eigenvectors.  

Berman [5] tried also to update the mass matrix. He used the same constraints 

(symmetricity and orthogonality constraints). Caesar [6] tried to update the free-free 

conditioned mathematical models by following the same approach as Berman. He 

introduced force equilibrium and rigid body modes as additional constraints in order 

to update the free-free models. 

 
Sidhu and Ewins [7] have introduced the Error Matrix Method, which updates the 

analytical models directly. The experimental modal data is used in order to extract 

the experimental matrices, and the difference between those and the analytical 

system matrices are defined as error matrices. The resulting error is assumed to be 

approximated by binomial expansion. This condition leads the method not to be an 

exact one as the second and higher order terms in error are neglected. Gypsin [8] 

have proved that this method loses accuracy in case of incomplete modes. 

Expansion yields a model that has a connectivity character different than the 

original model which can yield physically meaningless system matrices. Link [9] 

and Caesar [10] used the analytical mode shapes for the missing experimental 

data.  

 

Link et al. [11] proposed a direct model updating method known as Matrix Mixing 

Method which uses orthogonality conditions and performs updating on both 

analytical mass and stiffness matrices. 

 

The use of FRF data instead of modal data brought new advantages. Since the 

modal data are extracted from the FRF data, there are no errors that would come 
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from the modal parameter extraction (modal analysis) stage. Moreover, there are 

much more points for building the updating equations which can improve stability. 

This means that the problem can be made more overdetermined (a system of 

equations having more equations than unknowns) compared to the modal data 

based model updating techniques. 

 

Lin and Ewins [12], Larsson and Sas [13], Lammens [14] have proposed 

application of FRF data for updating the analytical models. Visser and İmregün 

[15], [16] dealt with the problem of coordinate incompleteness and introduced a 

new scheme for building the resulting set of linear equations. They proposed using 

the analytical FRF data for incomplete degrees of freedom and discarded those 

equations in the final solution.  

 

The response function method [12] is an indirect method which tries to correlate 

the experimental and analytical FRF data for the selected updating frequencies. 

Although it seems that the number of equations will be a multiple of the frequency 

points of the experimental data, there is almost no way to include all the frequency 

points as there will be contamination on the experimental FRF data for some higher 

frequency points and linear dependency of some equations built by using different 

frequency points. 

 

A frequency response based model updating method which also uses the 

sensitivities of dynamic stiffness matrices has also been proposed [3].  

 

Fox and Kapoor [17] used the first order sensitivities of modal data with respect to 

the selected updating parameters which is the origin of the Inverse Eigensensitivity 

Method. This method needs a number of corresponding modes (both in the 

experimental and analytical models) to be identified. The pairing of the 

experimental and analytical modes can be made by visual inspection (by animating 

the mode shapes) or by numerical means such as MAC matrix. As there will be 

possible frequency errors between correlated modes, there can also be some shifts 

in the ranking of some modes. The procedure needs pairing of correlated modes 

after each iteration step and computations will end until desired convergence has 

been accomplished.  
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The updating parameters are chosen after an investigation on their numerical 

values. In order to have rapidly converging systems, parameters with the highest 

sensitivity values are chosen as the updating parameters. 

 

Göge [18] worked on the Inverse Eigensensitivity Method and applied this method 

to the data and finite element model obtained from a real commercial aircraft. He 

chose the Young’s Modulus and area moments of inertia of some dimensionally 

long/large parts (which have higher sensitivities) and accomplished model updating 

of the real aircraft.  

 

İmregün and Visser [19] summarized the model updating techniques with their 

possible areas of application. 

 

Mottershead et al. [20] proposed the ways for obtaining the beat updating 

parameters in a work on an aluminum space frame model. 

 

There are also a number of MSc and PhD thesis studies accomplished in the 

Imperial College of Science and Medicine ([1], [21], [22]) and an MSc thesis 

presented in the Middle East Technical University by Karaman [23].  

 

Ewins [2], Maia, Silva et al. [3] have included chapters on model updating in their 

books on modal analysis. Also, a book that is completely on Model Updating has 

been written by Friswell and Mottershead [24]. 

1.3 SCOPE OF THE THESIS 
 
Chapter 2 includes the current methods on preliminary model updating actions, 

namely model reduction, modal data expansion and correlation techniques.  

 

Chapter 3 focuses on the methods of model updating and summarizes the 

methods under two basic categories: 

 

• Direct Model Updating Methods 

• Indirect Model Updating Methods 
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Strengths and weaknesses of the current methods are discussed in the same 

chapter. A new error localization technique and model updating method named as 

“Miscorrelation Index Minimization Technique” are also given in this chapter. 

 

Chapter 4 gives the details of the computer code generated.  

 

Chapter 5 includes the case studies performed by using seven different model 

updating methods investigated in order to draw an objective comparison among 

them. A six degree of freedom mass-spring system is solved with all of these 

methods (except the Inverse Eigensensitivity Method) in order to investigate the 

performance of the methods. Two case studies based on real experimental data 

(one of which is from a real aircraft) are solved with the Inverse Eigensensitivity 

Method. Finally, case studies to study the robustness of the MisCorrelation Index 

(MCI) minimization technique are also given in this chapter. 

 

Chapter 6 is the one containing the discussions and conclusions based on the 

case studies of Chapter 5. Recommendations for future researchers are also given 

in this chapter. 

 

Basic information on least squares regression for a set of linear equations, 

procedures for inserting system matrices in MSC Nastran and the instructions that 

should be followed in MSC Patran GUI in order to obtain the sensitivity values from 

MSC Nastran are given in Appendix A, Appendix B and Appendix C, respectively. 
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CHAPTER 2 
 
 

2 OVERVIEW OF TECHNIQUES REQUIRED IN 
MODEL UPDATING METHODS 

 
 

2.1 FINITE ELEMENT MODEL REDUCTION AND EXPERIMENTAL  
MODAL DATA EXPANSION 

 

The finite element model updating will hardly ever start as soon as the modal data 

is obtained. Some computations should be done before the model updating stage 

in order to correlate the degrees of freedom in the analytical and experimental 

models that are compared.  

Before starting the updating procedure, it is favorable to compare the analytical 

and experimental data sets to obtain insight as to whether both sets are in 

reasonable agreement so that updating is at all possible. Unfortunately, there will 

an incompatibility in the size of the analytical and experimental models to be 

correlated.  

There are two main differences between analytical and experimental models 

• Insufficient number of modes  

• Insufficient number of measured degrees of freedom. 

The former insufficiency arises from the limited bandwidth of data acquisition. This 

brings a limitation on the frequency range of the experimental data. 

The latter problem can be handled by either of the following two approaches: 

• Reduction (condensation) of the large analytical model’s slave (non-

measured) degrees of freedom without perturbing the modal and spatial 

properties of the structure. In practice, although the kinetic energy or 
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potential energy is retained, or both compromised, original system 

connectivity is lost. 

• Expansion of the smaller model to match the larger counterpart.  

 

Due to the fact that some degrees of freedom (apart from rotational ones) can not 

be measured and to the difficulty in handling the rotational degrees of freedom, the 

experimental model is usually expanded over the finite element data (not to lose 

data arising from the degrees of freedom mentioned above). However, if the 

number of the original finite element degrees of freedom that are in relation to the 

measured degrees of freedom is not large, then dilution of the modal test data and 

loss of local properties arise. If such a case is to be handled, reduction of the finite 

element model should be preferred [3].  

In the following sections, reduction of the finite element model and expansion of 

the experimental model are discussed in detail. 

2.1.1 Finite Element Model Reduction 

The aim of finite element model reduction is to bring the size of the analytical 

model’s spatial matrices to the same as that of the experimental model. In other 

words, if n  measurement locations are used for data acquisition, the linear 

degrees of freedom in the analytical model should also be n  (if no expansion is 

carried out), where the degrees of freedom kept must be in accordance with the 

experimental counterparts. 

There are three popular reduction techniques in the literature: 

• Guyan (static) reduction. 

• IRS (Improved Reduction System). 

• SEREP (System Equivalent Reduction Expansion Process. 
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2.1.1.1 Guyan Reduction  
 
This method, also known as “Static Condensation” has been proposed by Guyan 

[25] and is one of the most popular reduction techniques (embedded in some 

commercial model updating and FE codes). The method can be summarized as 

follows:  

 

For a linear system, the equation of motion can be written as 

 

[ ]{ } { }FxK =                                                                                                          (2.1)                          

 
 where            

           

[ ]K , { }x  and { }F  denote the stiffness matrix, the displacement vector and the 

forcing vector respectively. 

 

If the forcing on the system is not applied to all the degrees of freedom, then the 

matrices and vectors can be partitioned as 
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                                                                            (2.2) 

 

where indices s and p denote slave and primary, respectively. That is, the degrees 

of freedom with forcing are called as the primary ones while the rest are called as 

slave degrees of freedom. For the case of modal testing, the term primary denotes 

the degrees of freedom at which measurement is done and the term slave refers to 

the remaining degrees of freedom. 

 

From the system of equations given in Eq. (2.2), the following equation can be 

written by using the first row 

 

[ ]{ } [ ]{ } { }0=+ pspsss xKxK                                                                                      (2.3) 

 

or by equating the terms, the following expression can be obtained: 



 13  

 

[ ]{ } [ ]{ }pspsss xKxK −=                                                                                            (2.4) 

 

Leaving the slave degrees of freedom alone, { }sx  can be solved as 

 

{ } [ ] [ ]{ }pspsss xKKx 1−−=                                                                                         (2.5) 

 

Rewriting the displacement vector and equation Eq. (2.2) in terms of { }px  
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                                                                       (2.6) 

 

one obtains the transformation matrix [ ]T  that relates the whole degrees of 

freedom in the model to the primary degrees of freedom. That is, 

 

{ } [ ]{ }pxTx =                                                                                                          (2.7)  

 

and 

 

{ } { } [ ]TT
p

T Txx =                                                                                                    (2.8) 

 

with 
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                                                                                           (2.9) 

 

The potential and kinetic energy relations can be written as follows: 

 

{ } [ ]{ }xKxPE T

2
1

=                                                                                              (2.10) 
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one can substitute { }x  and 
⎭
⎬
⎫

⎩
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⎭
⎬
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For the reduced system to have the same potential and kinetic energy values as 

the original system, the mass and stiffness matrices of the reduced system should 

be taken as 

 

[ ] [ ] [ ][ ]TKTK T
GR =                                                                                               (2.14) 

[ ] [ ] [ ][ ]TMTM T
GR =                                                                                             (2.15) 

So, the resulting eigenvalue problem becomes 

[ ] [ ][ ]{ } { }02 =− pGRGR uMK ω                                                                            (2.16) 

yielding rω  and { }r
pu , where the mode shape vector { }rϕ  is obtained from 

{ } [ ]{ }r
p

r uT=ϕ                                                                                                     (2.17)  

As the formulation omits the inertial effects (this is the reason why the method is 

called as static condensation), the selection of the primary degrees of freedom 

becomes very important. Poor results will be obtained by the choice of “incorrect” 

sets of degrees of freedom [1]. The omitted degrees of freedom should have mass 

effects of lower magnitude than the kept ones.  
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2.1.1.2 Improved Reduction System 
 
Including the inertial effects to the system that is described in Guyan’s reduction 

Method, Improved Reduction System proposed by O’Callahan [26], forms the 

equation of motion as 
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 where, the equality holds for ω  values equal to the natural frequencies of the 

system. Taking the upper row of the partitioned set of equations yields 

 

[ ] [ ][ ]{ } [ ] [ ][ ]{ }pspspsssss xMKxMK 22 ωω −−=−                                                   (2.19) 

 

{ } [ ] [ ][ ] [ ] [ ][ ]{ }pspspsssss xMKMKx 212 ωω −−−=
−

                                                  (2.20) 

 

{ } [ ] [ ] [ ][ ] [ ] [ ] [ ][ ]{ }pspspsssssss xMKKMKIx 21112 ωω −−−= −−−                                  (2.21) 

 
By using the binomial theorem, 

 

[ ] [ ] [ ][ ] [ ] [ ] [ ] ( )[ ]412112 ωωω OMKIMKI ssssssss ++=− −−−                                       (2.22) 

 

{ } [ ] [ ] [ ] [ ] ( )[ ][ ] [ ][ ]{ }pspspsssssss xMKOMKIKx 24121 ωωω −++−= −−                        (2.23) 

 

{ } [ ] [ ] [ ] [ ] [ ][ ] ( )( )[ ]{ }p
spssssspspsss xOKMKMKKx 4121 ωω ++−−= −−                         (2.24) 

 

where the 4ω  terms are considered in the error term which is of order four and 

higher. 

 

As the equality is only valid for the natural frequencies, one can use the ω  term as 
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[ ]{ } { }[ ]uKuM =2ω                                                                                               (2.25) 

 
or as 

 

[ ]{ } [ ]{ }pGRpGR uKuM =2ω                                                                                     (2.26) 

 
for the Guyan reduced system. Rewriting Eq. (2.26) as follows 

 

{ } [ ] [ ]{ }pGRGRp uKMu 12 −=ω                                                                                 (2.27) 

 

substituting 2ω  term with [ ] [ ]GRGR KM 1−  and omitting the 4ω  terms, Eq. (2.24) can 

be written as 

 

{ } [ ] [ ] [ ] [ ] [ ][ ]( )[ ] [ ][ ]{ }pGRGRspssssspspsss xKMKMKMKKx 111 −−− +−−=                      (2.28) 

 

In order to have Eq. (2.28) in a relatively compact form, let us call [ ] [ ][ ]spss KK 1−−  

as sT and write Eq. (2.28) as follows 

 

{ } ( ){ }pGRGRSss xKMSMTTx 1−+=                                                                         (2.29) 

 

so that the resulting transformation matrix irsT  becomes 

 

GRGRssirs KMSMTTT 1−+=                                                                                   (2.30) 

 

where sT  is 

 

[ ] [ ]spssstatics KKTT 1−−==                                                                                    (2.31) 

 

and 
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[ ] [ ]
[ ] [ ] ⎥
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ssK
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GRM , GRK  are the Guyan reduced mass and stiffness matrices respectively. 

 

Using an iterative approach (as the higher order terms are neglected, the solution 

is not exact), the transformation matrix can be obtained by 

 

iirsiirsiirssiirs KMSMTTT ,
1

,,1,
−

+ +=                                                                           (2.33)    

 

where  

 

iirsM ,  and iirsK , are the reduced mass and the stiffness matrices at the thi  iteration 

step, obtained as follows:                       
 

[ ] [ ] [ ][ ]irs
T

irsirs TKTK =                                                                                          (2.34) 

 

[ ] [ ] [ ][ ]irs
T

irsirs TMTM =                                                                                         (2.35) 

 
The procedure for the iterations is as follows, 

 

1. The static transformation matrix in Eq. (2.31) is calculated 

2. Using Eq. (2.34) and Eq. (2.35) and the static transformation matrix; iirsM , , 

iirsK ,  are calculated 

3. Using Eq. (2.33), 1, +iirsT is calculated 

4. The reduced mass and stiffness matrices are calculated using steps 2 and 

3 until convergence is achieved. 

 

The IRS method was developed in order to improve the Guyan reduction method. 

For the static case, both methods yield the same exact solution as they both use 

the full system stiffness matrices. However, Guyan reduction does not account for 
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the inertial forces so that for the dynamic case, IRS has a better the accuracy 

compared to the Guyan reduction method [1]. IRS uses the output of Guyan 

reduction as a first step and then applies a correction accounting for the inertial 

forces. Therefore, when the mass effects associated with the omitted degrees of 

freedom are significant, IRS develops better solutions than Guyan reduction does 

[27]. 

 

2.1.1.3 System Equivalent Reduction Expansion Process 
 
SEREP is a transformation technique, proposed by O’Callahan and Li [28], which 

preserves the dynamic characteristics through the collection of a set of desired 

eigenmodes. The displacement vector can be expressed in terms of mode shapes 

and generalized coordinates as 
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                                                                             (2.36) 

 
 
The displacement vector for the primary degrees of freedom, then can be written 

using the lower row in Eq. (2.36) as, 

 

{ } [ ]{ } [ ]{ }pppspsp uux ϕϕ +=                                                                                   (2.37) 

 
writing Eq. (2.36) in a compact form yields, 
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where [ ]sψ  and [ ]pψ  are the slave and primary mode shape sub-matrices, 

respectively.  

 

{ } [ ]{ }ux pp ϕ=                                                                                                       (2.39) 
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{ } [ ] { }pp xu += ϕ                                                                                                    (2.40) 

 

where [ ]+ represents the generalized inverse of a matrix. 

 

[ ]pϕ is a matrix of size pm× ,  where m is the number of degrees of freedom and p 

is the number of modes, then the generalized inverses will have the form: 

 

[ ] [ ] T
mm

T
mp ϕϕϕϕ

1−+ =  if m>p and                                                                   (2.41) 

 

[ ] [ ] 1−+ = T
mm

T
mp ϕϕϕϕ  if m<p                                                                          (2.42) 

 
The displacement vector can be written in terms of only mode shapes as 

 

{ }
{ }

[ ]
[ ] [ ] { }pp

p

s

p

s x
x
x +

⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

ϕ
ϕ
ϕ

                                                                                     (2.43) 

 
From Eq. (2.43) the transformation matrix can be extracted as, 
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                                                                                           (2.44) 

 
The eigenvalue problem, solved with SEREP reduced system matrices, preserves 

the same eigenvalues and eigenvectors (for preserved degrees of freedom) for the 

retained modes.  

 

To sum up the reduction techniques, no matter what procedure is used, spatial 

information of the finite element model will either be lost or dispersed during 

reduction techniques. Compared to the others, Guyan reduction is the best for 

comparison/correlation operations for low order modes as it preserves the low 

order modal properties for which inertial effects are relatively low (and because of 

its simplicity, it is used in many commercial software). 
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2.1.2 Expansion of Measured Modal Data 
 
An alternative approach to reducing the finite element model is to expand the 

measured mode shapes by estimating the unmeasured degree of freedom. In 

general, more confidence can be placed in the expanded results by increasing the 

number of measurement points. 

 

Basically, the expansion methods in the literature can be classified into 4 groups, 

differing by the way they approximate the unmeasured data: 

 

• Analytical eigenvector substitution: This method directly substitutes 

the analytical slave degrees of freedom for the unmeasured data, 

without using the available measurements. 
 

• Direct data generation using the finite element model and 
experimental data: The SEREP method creates a transformation 

matrix from the master degrees of freedom to the complete finite 

element coordinate system. Kidder’s method [29] creates a spatial 

transformation formulated using the analytical mass and stiffness 

matrices and partitioning the generalized eigenvalue problem. 
 

• Indirect data generation using finite element model: A geometric fit 

of the experimental data is enhanced by knowledge acquired from the 

finite element model. 
 

• Expansion of experimental data in isolation: These methods 

interpolate the experimental data by fitting a continuous function 

through the data by means of cubic splines, surface splines or 

polynomial fits. 
 
The first group of methods mentioned is based on an almost correct finite element 

model as it has no feedback from experimental results. The second and third group 

of methods use both finite element and experimental models, which can be an 

advantage for expanding the rotational degrees of freedom, compared to the fourth 

method group using only experimental data. 
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While using both analytical and experimental models seems to have an advantage 

in expanding the rotational degrees of freedom for which there exists no 

experimental data, a problem arises because of using the analytical model. Use of 

the analytical model mixes the experimental data with the analytical data for which 

a clear degree of confidence can not be shown. This means that the experimental 

data will contain the error of the analytical data.  

 

Also, another disadvantage will be the fake correlated pairs for which expansion is 

applied. As the analytical and experimental models are correlated and as 

expanded data will carry information about the analytical model, a high degree of 

correlation, although not having certainty, may be observed. 

 

Having mentioned the need for expansion and approaches in different expansion 

techniques, some popular methods that are frequently used are explained below. 

 

2.1.2.1 Kidder’s Method (Inverse Guyan Reduction) 
 
This is the most commonly used expansion method [3], which is effectively derived 

from an inverse Guyan reduction [29]. Partitioning the generalized eigenvalue 

problem for the analytical model one can obtain 
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By using the upper row of the partitioned set of equations one can write 

 

[ ] [ ][ ]{ } [ ] [ ][ ]{ }r
psprsp

r
sssrss MKMK ϕωϕϕ 22 −−=−                                                 (2.46) 

 

Then, the slave mode shape vector for the 
thr  mode can be obtained as  

 

{ } [ ] [ ][ ] [ ] [ ][ ]{ }r
psprspssrss

r
s MKMK ϕωωϕ 212 −−−=

−
                                             (2.47) 
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Now, in the mode shape vectors for the thr  mode, if p  is replaced by mea  

representing the measured coordinates and s  is replaced by exp representing the 

expanded coordinates, Eq. (2.47) can be rewritten as 

 

{ } [ ] [ ][ ] [ ] [ ][ ]{ }r
measprspssrss

r MKMK ϕωωϕ 212
exp −−−=

−
                                        (2.48) 

 
By using the above relation, measured mode shapes can be expanded by using a 

transformation matrix including analytical spatial matrix data. 

2.1.2.2 Expansion Using Analytical Modes 
 
In this expansion method, the complete coordinates in the experimental model are 

generated by assuming that each mode is constructed from a linear combination of 

the analytical modes. In other words, the relation (transfer function) between the 

responses in the measured coordinates and their counterparts in the analytical 

model is used as a reference between the unmeasured coordinates that are 

present in the analytical model. So, the method assumes that the relation will be 

valid for the unmeasured degrees of freedom. In order to formulate the method, the 

following expressions can be given. 

 

The analytical mass normalized mode shape matrix is partitioned as follows (for 

m measured modes and n  measured degrees of freedom): 
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                                                                         (2.49) 

 

The expanded experimental modal data can be constructed from a linear 

combination of the chosen analytical modes by 
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{ } [ ] { }r
AX

r
υφφ 21

exp
1 =                                     (2.51) 

 

{ } [ ] { }r
AX

r
υϕφ 21

exp
2 =                                                   (2.52) 

 

where { }rυ is the linearity relationship that is used for relating the analytical mode 

shape matrix to the thr  experimental one.  

 

{ } [ ] { } X
r

A
r

111 φφυ +=                                                                                             (2.53) 

 
Since in general, the number of measured coordinates and the number of the 

measured modes will not be the same, the matrix [ ]A11φ will not be square. The 

inverse of this matrix will be calculated by using the following ways, 

 

• If n=m, the pseudo-inverse in Eq. (2.53) becomes the standard inverse 

and { } { } X
r

X
r

1
exp

1 φφ = . This means that the expanded mode fits the 

experimental data exactly.  

• If n>m, a linear combination of analytical modes is found that fits the 

experimental data in a least-squares sense. Consequently, { } X
rexp

1φ is a 

smoothed counterpart of{ } X
r

1φ .  

• If n<m, then the pseudo-inverse in Eq. (2.53) is rank deficient and the 

solution is likely to be physically meaningless.  

 

The rotational degree of freedom data of the analytical model can be used for 

expansion of the experimental data. Assume that n  shows the mode shape data of 

the translational degrees of freedom and nN −  shows the mode shape data of the 

rotational degrees of freedom. Partitioning the analytical mode shape matrix, one 

obtains  
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Assuming also that, the translational degree of freedom data does exist in the 

experimental model, so  

 

{ } [ ] { } X
r

A
r

111 φφυ +=                (2.55) 

 
 
shows the linear relationship for the translational degrees of freedom. Then, the 

rotational degree of freedom data can be found by  

  

{ } [ ] { }r
AX

r
υφφ 21

exp
2 =                (2.56) 

 

where  [ ]A21φ is the mode shape matrix for the rotational degrees of freedom in the 

finite element model and { } X
rexp

2φ  is the mode shape vector for the rotational 

degrees of freedom in the experimental model for the thr  mode. 

 

The success of this method is critically dependent on the selected set of analytical 

modes, which must include a reasonable counterpart to each experimental mode. 

In other words, if a relation between an experimentally obtained mode and a finite 

element based mode will be obtained, and if the aim is to have a relation that will 

reflect the real case as much as possible, then a correlated pair of experimental 

and analytical modes should be selected. If a mode that does not appear in the 

experimental model is present in the matrix [ ]A11φ , then the relation vector { }rυ will 

not yield a meaningful transfer function. The results of the comparison methods 

can drive the selection. 

2.1.2.3 SEREP Expansion 
 
Expansion using SEREP is based on the same formulation as the reduction 

scheme of SEREP. The difference is that, the output is not a system of space 

matrices but a modal one. The method uses the analytical mode shapes, 

partitioned in such a manner that a transformation matrix interprets the full 

displacement solution by using only primary mode shapes. Then, this 
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transformation matrix is used to expand the experimental modal data using 

measured mode shapes.  

 

The partitioned form of the displacement vector, in terms of the mode shape matrix 

and the generalized coordinate vector is given by  
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                                                                                              (2.57) 

 
 
Using the primary set of equations, one obtains 

 

{ } [ ]{ }qx pp φ=                           (2.58) 

 
The above equation gives the relation between the primary displacements and 

primary mode shapes and generalized coordinates. If the generalized coordinate 

vector is expressed in terms of the primary mode shapes and the primary 

displacements as follows, 

 

{ } [ ] { }pp xq += φ                          (2.59) 

 
then the relation between the physical displacement set and mode shapes can be 

written as (by replacing the generalized displacement vector in Eq. (2.57) by Eq. 

(2.59)) 

 

{ } [ ]
[ ] [ ] { }pp

p

s xx +
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φ
φ

                         (2.60) 

 
The above equation gives the transformation matrix of SEREP as 
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s
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φ
φ
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Unless curve fitting techniques are used, the expanded modal data will contain 

effects of the analytical model, which contains errors. So, although the expanded 

data are not fit randomly, they will not yield the exact characteristics of the 

experimental model. Keeping this in mind, it should be remembered that a good 

correlation between the expanded experimental model and the analytical model 

does not exactly mean that the original model is almost correct. This good 

correlation may be because of the analytical data that is embedded in the 

experimental data through the expansion process. 

2.2 COMPARISON AND CORRELATION TECHNIQUES 
 
Before starting model updating, certain comparison and correlation methods have 

to be applied in order to  

• Detect how well the initial analytical model fits the experimental one (as 

well as how  the updated model fits the experimental model), 

• Detect the parts of the model that contain error, 

• Detect which mode pairs in analytical and experimental ones are 

equivalent. 

If the initial correlation between the analytical and experimental model were “good 

enough” for the frequency range of interest, then no updating action would be 

necessary. Unfortunately, because of the assumptions through FE modeling itself, 

no perfect initial correlation will be obtained; so that updating will be necessary.  

 

This section introduces the common popular methods in the literature about model 

comparison and correlation techniques.  

 

2.2.1 Direct Comparisons 
 
Natural frequencies and mode shapes coming from analytical and experimental 

models can be compared directly as follows: 

 

The natural frequencies of analytical and experimental models are plotted on the 

same graph. In the ideal case, one should end up with a line having a slope of o45 . 

Scatters from this ideal line show deficiencies in the analytical model, assuming 

that the experimental data are correct. 
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The mode shapes can be compared in a similar fashion (a method suggested by 

Allemang and Brown [30]), by plotting data from the two models. The slope of the 

best straight line passing through these data points is defined as the Modal Scaling 

Factor (MSF). MSF is given by, 

 

{ } { }( )
{ } { }
{ } { } *

*

,
A

T
A

A
T

X
AXMSF

φφ

φφ
φφ =                        (2.62) 

 

where{ }*  indicates the complex conjugate. The MSF values should be 1 for the 

mode pairs that are the same (both vectorwise and magnitudewise). Any other 

value will indicate an error in these two terms.  

2.2.2 The Modal Assurance Criterion 
 
When modal data is used in order to update the analytical models, mode pairing is 

the most crucial point. Pairing of modes can be accomplished by using the Modal 

Assurance Criterion (MAC) proposed by Allemang and Brown [30]. The modal 

assurance criterion (MAC) is used to correlate the thi analytical mode with the thj  

experimental one by using the following definition 

 

{ } { }( ) { } { }
{ } { } { } { } **

2*

,
Xj

T
XjAi

T
Ai

Xj
T

Ai

XjAiMAC
φφφφ

φφ
φφ =                                                    (2.63) 

 
MAC is a matrix and in the ideal case, the diagonal terms should be 1 (showing full 

correlation between the same modes), while the off-diagonal terms should all 

vanish (showing zero correlation between different modes). 

 

One of the advantages of MAC is that it does not require coordinate complete 

experimental data, as is the case for orthogonality methods. Partitioning the 

analytical mode shapes is sufficient. However, MAC is known to be unreliable for 

localized modes, where knowledge of only a few data points is used. 
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MAC is a very popular correlation tool that is used in almost all commercial model 

updating and modal analysis software. 

 

If the MAC values of two modes are 1 (indicating the same mode shapes) but MSF 

values are not, than this is an indication of a scaling (normalization) error (meaning 

that the MSF can be used as a means of normalization). 

2.2.3 The Coordinate Modal Assurance Criterion 
 
The Coordinate Modal Assurance Criterion (COMAC) which was proposed by  

Lieven and Ewins [31], gives an indication of the correlation between the two 

models for a given coordinate. The COMAC for coordinate i is given by, 
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A good correlation for the thi coordinate indicates itself as a number close to 1, and 

a poor one with a number close to 0. Unlike MAC, COMAC is a vector.  

 

Although it sounds like a perfect tool for error localization, numerical study shows 

that it does not go beyond some initial localization. This is because a fully 

numerical model containing error only in a coordinate yields COMAC values other 

than 1 for neighboring degrees of freedom. Using the same approach, it can be 

said that an error will affect the mode shapes of many degrees of freedom (if it is 

not a “local” one but a scattered one). So that the COMAC values for some 

degrees of freedom (for instance for a degree of freedom on a node of a beam 

element modeled exactly as the real structure) will not be 1 although they are 

modeled correctly.  

2.2.4 Orthogonality Methods 
 

Checking the orthogonality of analytical and experimental mode shapes can enable 

comparison of modal data (keeping in mind that two distinct modes will be 

orthogonal to each other). This can be accomplished by: 



 29  

 

• Cross Orthogonality (proposed by Targoff [32]) 

 

[ ] [ ] [ ] [ ]XA
T

AXA MCOM φφ=,                                                                           (2.65) 

 

• Mixed Orthogonality 

 

[ ] [ ] [ ] [ ]XA
T

XXA MMOC φφ=,                                                                           (2.66) 

 
For well-correlated models, both checks should yield an identity matrix. 
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CHAPTER 3 
 
 

3 THEORY OF MODEL UPDATING METHODS 
 
 
 

In this section, some common model updating techniques will be reviewed. The 

existing techniques can be divided into two main categories considering the 

techniques used for solution: 

• Direct methods, 

• Iterative methods. 

A different classification can also be made considering the input data the method 

uses: 

• Modal data based methods, 

• FRF data based methods. 

The following review is based on the first set of classification. 

 

3.1 DIRECT METHODS 
 
The updated mathematical model is expected to behave in the way that the 

experimental model does for the modes measured. The direct methods search for 

mathematical models that match some reference data coming from the 

experiments. 

 

The advantages of the direct methods can be summarized as follows: 

 

• There is no convergence problem (as there are no iterations), 

• Lower processing time (for the whole updating process), 

• The resulting mathematical model fits the reference model exactly. 

 

Although the exact fitting of the experimental model seems to yield the direct 

method solution as the primarily searched result, there exist some disadvantages 

that put the direct methods on the secondarily searched results side. These are 
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• High quality results and modal analysis are needed 

• In order to have a mathematical model that has the same size as the 

original mathematical model, the mode shapes must be expanded 

(there will be errors coming from expansion techniques) 

• The original coordinate connectivity in the analytical model will be lost 

and the resulting matrices will be fully populated (for example, there will 

be off-diagonal stiffness elements for the degrees of freedom where, in 

the real structure, no direct connection is present). 

• The positive definiteness of the space matrices can be disturbed (if the 

rigid body modes are not taken into account, the resulting mathematical 

model will also not have the rigid body modes, indicating a wrong 

positive definite stiffness matrix) 

After summarizing the advantages and disadvantages, the methods are introduced 

in detail below. 

 

3.1.1 Methods Using Lagrange Multipliers   
 
This method can be divided into two distinct approaches proposed by Baruch and 

Bar Itzhac [4] and Berman [5], where either the mass or stiffness matrix is assumed 

to be correct and the other one is updated. 

 

For the mass matrix reliable case (proposed by Baruch & Bar Itzhac [4]), the aim is 

to minimize the function 

 

[ ] [ ] [ ]( )[ ] 5.05.0 −− −= AAAUA MKKMε                          (3.1) 

 
by introducing the constraint equations of symmetricity and orthogonality: 

 

[ ] [ ] [ ]0=− T
AUAU KK  (stiffness matrix symmetricity condition)                           (3.2) 

 

[ ] [ ] [ ] [ ] [ ]02 =− XrXAU
T

X K OOωφφ  (orthogonality condition)                     (3.3) 
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In those expressions [ ]AM  and [ ]AK  represent the original analytical mass and 

stiffness matrices, respectively. [ ]Xφ  is the experimental mode shape matrix and  

[ ]AUK represents the updated analytical stiffness matrix and is given by: 

 

[ ] [ ] [ ]KKK AAU Δ+=                            (3.4) 

 
where (from [2]) 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ...++−−=Δ A
T

XXA
T

XXAA
T

XXAA
T

XXA MKMKMMKK φφφφφφφφ  

[ ] [ ] [ ] [ ] [ ]AT
XXrXA MM φωφ OO

2...+                                                                      (3.5) 

 

The mass matrix updating (assuming that the stiffness matrix is correct) can be 

accomplished in a similar fashion. 

 

A similar approach was used by Berman and Nagy [33] in order to update mass 

and stiffness matrices simultaneously. The error function to be minimized is: 

 

[ ] [ ] [ ]( )[ ] 5.05.0 −− −= AAAUA MMMMε                                     (3.6) 

 
with the constraint equations 

 

[ ] [ ] [ ]0=− T
AUAU MM   (stiffness matrix symmetricity condition)                        (3.7) 

 

[ ] [ ] [ ] [ ] [ ]0=− IM XAU
T

X φφ  (weighted orthogonality condition)                       (3.8) 

 
The updated mass matrix is obtained by  

 

[ ] [ ] [ ]MMM AAU Δ+=                           (3.9) 

 
where 
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[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]( )( )[ ] [ ] [ ]( ) [ ] [ ]AXXA
T

XXA
T

XXA
T

XXA MMMIMMM φφφφφφφφ
11 −−

−=Δ   (3.10) 

 
After the updated mass matrix is calculated, the stiffness matrix can be updated by 

using the minimization function 

 

[ ] [ ] [ ]( )[ ] 5.05.0
AAAUA MKKM −=ε                        (3.11) 

 
Using the same constraints given by Eq. (3.7), Eq. (3.8) and  

 

[ ] [ ] [ ] [ ] [ ]XrXAUXAU MK OO
2ωφφ =                                   (3.12) 

 
the updated stiffness matrix can be written as 

 

[ ] [ ] [ ]( )TK Δ+Δ=Δ                          (3.13) 

 

where 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ] [ ] [ ] [ ] [ ] [ ]AT
XXAA

T
XXrXA

T
XXA MKMKM φφφωφφφ −+=Δ OO

25.0   (3.14) 

 
Caesar [6] suggested a range of methods that update the mass and stiffness 

matrices directly using different cost functions and constraints. He also introduced 

some additional constraints in order to reflect the rigid body dynamics, such as 

position of CG, total mass and moments of inertia. Wei  [34] updated the mass and 

stiffness matrices simultaneously using the measured eigenvectors and 

orthogonality conditions with a different cost function to minimize. Fuh and Chen 

[35] developed a method to update a structural system with non-proportional 

damping. Heylen and Sas [36] reviewed the Lagrange multiplier updating methods 

in their work in detail. 
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3.1.2 Error Matrix Methods  
 
These methods (the original formulation proposed by Sidhu and Ewins [7]) directly 

estimate the errors in the mass and stiffness matrices. Assuming the error is small, 

the error terms can be defined in terms of the analytical and experimental modal 

data. The error matrix for mass and stiffness matrices are defined as: 

 

[ ] [ ] [ ]AX MMM −=Δ                                (3.15) 

 

[ ] [ ] [ ]AX KKK −=Δ                          (3.16) 

 

Using the orthogonality conditions [ ] [ ][ ] [ ]IMT =φφ   and [ ] [ ][ ] [ ]OO
2

r
T K ωφφ = , the 

mass and stiffness matrices can be represented by the modal data as 

 

[ ] [ ]( ) [ ] 11 −−
= φφ TM                           (3.17) 

 

[ ] [ ]( ) [ ][ ] 121 −−
= φωφ OO r

TK                         (3.18) 

 
The experimental flexibility matrix can be written as  

 

[ ] [ ] [ ] [ ] [ ]( )1111 −−−− Δ+= AAX KKKIK                                                                     (3.19) 

 
If the stiffness error is assumed to be small, so that the second and higher order 

components are omitted, the above expression can be expanded as [2] 

 

[ ] [ ] [ ] [ ][ ] 1111 −−−− Δ−≅ AAAX KKKKK                              (3.20) 

 
Using the above expression, the stiffness error matrix can be written as 

 

[ ] [ ] [ ] [ ]( )[ ]AXAA KKKKK 11 −− −=Δ                        (3.21) 

 

or using the modal data, the same matrix can be written as 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ]AT
XXrX

T
AArAA KKK φωφφωφ 1212 −− −≅Δ OOOO                       (3.22) 

 
similarly, 

 

[ ] [ ] [ ] [ ] [ ] [ ]( )[ ]AT
XX

T
AAA MMM φφφφ −≅Δ                       (3.23) 

 

He and Ewins  [37] expanded the work to figure out the damping properties. Zhang 

and Lallement [38] kept some of the second order terms in the flexibility matrix. 

Lieven and Ewins [39] proposed a modified version of the method which uses 

singular value decomposition. 

3.1.3 Direct Matrix Updating  
 

This method first performs an adjustment on the system mass matrix and uses the 

updated mass matrix to adjust the system stiffness matrix. 

 

Mass and stiffness error matrices are calculated as follows ([2]) 

 

[ ] [ ] [ ] [ ] [ ] [ ]( )[ ] [ ] [ ]AT
XAAAXA MmmImMM φφ 11 −− −=Δ                                 (3.24) 

 

where  

 

[ ] [ ] [ ] [ ]XNxmANxN
T

XmxNmxm Mm φφ=                        (3.25) 

 

and  

 

m: mode number (maximum tested) 

 

N: order of the model 

 

The corrector for the stiffness matrix is given as ([2]) 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ...2 −−+=Δ A
T

XXAA
T

XXrXAA
T

XXA
T

XXA MKMMMKMK φφφωφφφφφ
O

O

[ ] [ ] [ ] [ ]AT
XXA KM φφ−...                         (3.26) 

 
The obtained result is not a unique one since no constraints are applied for the 

modes larger than m . 

3.1.4 Matrix Mixing Methods 
 

Using the orthogonality conditions [ ] [ ][ ] [ ]IMT =φφ   and [ ] [ ][ ] [ ]OO
2

r
T K ωφφ = , the 

flexibility matrix can be calculated using the analytical and experimental modal data 

as 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )T
AArA

T
XXrXAAAU KKKK φωφφωφ OOOO

221111 −+=Δ+= −−−−   (3.27) 

 
Whereas the updated mass matrix can be calculated as 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )T
AA

T
XXAAAU MMMM φφφφ −+=Δ+= −−−− 1111                             (3.28) 

 
The expressions give exact results if the mode shape matrices are of full size (in 

that case the number of measured modes and the number of measured degrees of 

freedom are the same and equal to the number of the degrees of freedom of the 

analytical model). For the real case, where the order of the experimental model is 

less than that of the analytical model, the updating matrices (proposed by Caesar 

[10] and Link et al. [11]) for m  measured modes become 
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3.2 INDIRECT METHODS 
 
The procedure for direct updating includes adjustment on the whole system 

matrices. In the indirect methods, the adjustments are made on individual elements 

by the calculated updating factors. 

 

If L is the number of elements for which mass and stiffness adjustments will be 

made, the updating matrices for an undamped system can be expressed as 

 

[ ] [ ]i
L

i
i maM ∑

=

=Δ
1

 and  [ ] [ ]i
L

i
i kbK ∑

=

=Δ
1

                          (3.31) 

                                                                                                                        

where ia  and ib  are the updating parameters that are to be calculated and im  and 

ik  represent the mass and stiffness matrices for the thi  element. 

 

The resulting equation is in the form of [ ]{ } { }δ=pA , where [ ]A  is a matrix of 

system properties, { }p  is the updating parameter vector and { }δ  is the error 

vector. 

 

The solution can be obtained as 

 

{ } [ ] { }δ+= Ap                                 (3.32) 

 

where [ ]+A  is the generalized inverse of [ ]A . The values of {p} are obtained by 

least-squares regression if the number of equations is larger than the number of 

the unknowns. 

3.2.1  Eigendynamic Constraint Method 
 
This indirect method is based on the following eigendynamic equations: 
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=− X

r
X

r
XX MK φω                                         (3.33) 
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X
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X
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r K ωφφ =               (3.35) 

 
By applying the above equations to the system matrices, the p  values are 

obtained. The governing set of linear equations is obtained by the following 

equations: 
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and 
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where [ ] [ ]i
L

i
i maM ∑

=

=Δ
1

 and [ ] [ ]i
L

i
i kbK ∑

=

=Δ
1

. 

 

The factors that define the updating mass and stiffness matrices (ie. ia  and ib  

values) are the p values. The right hand side of Eq. (3.36) and Eq. (3.37) form the 

vector { }δ  defined in Eq. (3.32). The matrix [ ]A  is formed by leaving the p values 

alone (from the left hand side) in Eq. (3.36) and Eq. (3.37).    
 

This method concludes that, the conditions arising from  not satisfying the 

eigendynamic constraints are because of the errors in the analytical system 

matrices. As [ ]MΔ  and [ ]KΔ  matrices are the updating matrices, the sources of 

errors are directed to the absence of these matrices.   

 

Rearranging the above equations into a standard set of linear equations will yield 

the equation 

 

[ ] { } { } 1)1(122)1( xNLxLxNi pA ++ = δ               (3.38) 
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where N is the number of the degrees of freedom in the analytical model, 2L is the 

number of the updating parameters. [ ]A  and { }δ  are formed using the analytical 

spatial matrices and experimental data.  

 

If data from experiments are available for only m  modes ( Nm < ), then the set of 

equations can be rearranged as 
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which is simply in the form [ ]{ } { }δ=pA . If LNm 2)1( >+ , then the problem is over-

determined (the number of equations is larger than the number of unknowns) and a 

least-squares solution for { }p  can be found using the generalized inverse of a [ ]A , 

that is { } [ ] { }δ+= Ap . 

 

3.2.2  Inverse Eigensensitivity Method 
 
Inverse Eigensensitivity Method seeks a solution to the miscorrelation of 

experimental model and analytical model problem by trying to correlate the modal 

data of the experimental and analytical models using modal sensitivities. The 

basics of the method are described on a single variable function below.  

 

The Inverse Eigensensitivity Method tries to calculate the amount of change in the 

selected parameters in order to reach the target values (experimental data) from 

the initial values (analytical data). To give an example, the target value 1x  shown 

in Figure 1 can be calculated as  
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( )
s

yyxx 0101 −
+=

                                       (3.40)
 

 

where 1y  simulates the experimental modal data, 0y  simulates analytical modal 

data, 0x  simulates the initial parametrer value and s  simulates the modal 

sensitivity value. 

 

 

 

Figure 1. Linear Estimation on a Single Variable Function 

 

 

If multiple parameters are used, then a set of equations can be written as 
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In Eq. (3.41), { } fp is the updating parameter vector (shell thickness, Young’s 

Modulus, density etc.), { }op is the initial parameter value vector, [ ]S  is the modal 



 41  

sensitivity matrix and { }⎭
⎬
⎫

⎩
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Δ
Δ
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φ
ω

 is the difference vector between the experimental 

and analytical models’ modal data. 

 

The formulation of the Inverse Eigensensitivity Method can be described in detail if 

the sensitivity matrix is expressed in terms of the modal data and updating 

parameters.  

 

The modal data is taken as functions of updating parameters { }p  as, 
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{ } { }( )pgA
r =φ                (3.43) 

 
In order to equate related experimental modal properties to analytical ones, 

experimental values (squares for natural frequencies and modal vectors 

themselves) are expressed using Taylor Series expansion in the following form 
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Linearising the above equations by assuming that the higher order terms ( )2
ipO  

are small we obtain,  
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The difference in modal properties can further be expressed by distinguishing the p 

values. If the p values for individual stiffness and mass matrices are written 

explicitly, one obtains the following equations: 
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In the above equations, the uncertainty arises due to the truncation of  2nd and 

higher terms in Taylor Series expansion. 

 

The above equations can be written in matrix form as [ ]{ } { }Δ=pS  (the same form 

as [ ]{ } { }δ=pA ) where,  
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where, pN  is the number of the updating parameters, m is the number of the 

correlated mode pairs and N is the number of the measured degrees of freedom. 

The updating parameters are obtained as { } [ ] { }δ+= Ap . 

 

In order to have the correct solution set, the sensitivity matrix should be built in the 

correct order. That is, the sensitivity value belonging to a specific parameter and 

modal data should be in the correct row and column of the coefficient matrix [ ]S . 

For example, for a system of 4 parameters, 2 modes and 3 degrees of freedom the 

equation should be written as: 
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In the above equation, pi  is the thi  parameter, pi
jSω is the sensitivity of the thj  

natural frequency with respect to the thi  parameter, pi
k
j

S
φ

is the sensitivity of the thj  

mode shape at thk  degree of freedom with respect to the thi  parameter, jωΔ is the 

difference between the thj  experimental natural frequency and thj  analytical 
natural frequency (should be taken in Hz if MSC Nastran output is used), 

k
jφΔ  is 

the difference between the thj  experimental mode shape data and the thj  
analytical mode shape data at the thk  degree of freedom,{ }f is the final parameter 

value set and{ }o is the initial parameter set. 
 

As the modal data is related to the updating parameters in a non-linear manner, 

mostly (if the error between analytical and experimental models are not small) an 

iterative solution is required.   

 

In the application of the Inverse Eigensensitivity Method, the number of equations 

should be more than the number of unknowns. A least squares solution scheme is 

necessary in order to solve such a set of equations.  

 

A mode that is required to be updated should appear in both experimental and 

analytical models. Otherwise, there will be convergence problems or an 

unsuccessful updating trial if there is relatively a large discrepancy between the 

experimental and analytical mode shape values as they belong to different modes 

(for example trying to correlate the first wing bending mode to the second wing 

bending mode of an aircraft will cause unsuccessful convergence).    

 

The most beneficial and powerful aspect of this method is that, it does not need 

any model reduction and/or mode shape expansion schemes. Only the data at the 

measured degrees of freedom and the natural frequencies are sufficient for 

updating. On the other hand, as this method uses only the data at the natural 

frequencies, the number of equations obtained is almost always less than the 

number of equations obtained from response function method. This in turn, yields a 

limit on the number of the updating parameters (in order to have more equations 

than unknowns). Another disadvantage is that modes to be updated must appear 

in both models.  
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The modal sensitivities can be calculated in two ways: 

• Using analytical formulations  

• Introducing perturbations to the matrices and analyzing the amount 

of change in the modal response 

 

The perturbation method keeps all the parameters other than the investigated one 

as constant and applies small changes to that parameter. It is observed that if the 

amount of change is kept under 0.001% of the original value, satisfactory results 

can be obtained; then the sensitivities are calculated according to the amount of 

change in the modal data.  

 

The flowchart for Inverse Eigensensitivity Method using MSC Nastran finite 

element package is given in Figure 2. 

 

 

Figure 2. Flowchart for Updating MSC Nastran Models Using Inverse 

Eigensensitivity Method 



 46  

The routine for obtaining the modal sensitivities using MSC Nastran is described in 

detail in Appendix D. The basics of the software using this method is given in 

Chapter 4. 

 

Applications of this method to aircraft structures can be found in  [40] and [18].  
 

3.2.3  Response Function Method 
 

The Inverse Eigensensitivity Method and the Eigendynamic Constraint Method use 

modal data as experimental input. However, FRF carry many more features of the 

response data other than do modal data. Furthermore, response data is more 

exact than modal data, as the latter is extracted from the former one, and the 

inclusion or exclusion of damping can be better handled by using response data. 

 

The Response Function Method can be explained as follows: 

 

Using the thj  column of each FRF matrix, one can write [2] 
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where  

 

( )[ ] [ ] [ ] [ ]CiMKz iii Δ+Δ−Δ=Δ ωωω 2                                                                   (3.55)     

 

One can obtain an updating parameter vector{ }p , resulting in [2] 
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where ( )[ ]iR ω  is the system matrix containing the FRF properties of the analytical 

model and the individual stiffness and mass and damping elements, ( ){ }j
iH ωΔ  is 

the difference between experimental and analytical FRF’s, { }p  is the vector 
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containing the updating parameters. The above equation set can be written in the 

simple form [ ]{ } { }Δ=pR  or { } [ ] { }Δ= +Rp  which is also in the form with the 

equation set given in Eq. (3.32). 

 

If response data are available for s  discrete ω  values, then Eq. (3.56) can be 

written as 
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Determination of ( )[ ]iR ω  depends on the assembly characteristics of the spatial 

matrices as the individual stiffness and mass elements written for a node depends 

on the connected elements. 

 

The flowchart for the Response Function Method is given in Figure 3. 

 

The very first obstacle that appears in using this method is rewriting the equation 

set into the form given in Eq. (3.56) (in calculation of the matrix ( )[ ]iR ω ). This 

necessitates the calculation of the matrix ( )[ ]iR ω  by a routine instead of simple 

matrix multiplications as the right hand side of Eq. (3.54) does not directly yield the 

updating parameter vector ({ }δ in Eq. (3.32)) and the coefficient matrix ( [ ]A  in Eq. 

(3.32)). Routines considering the connectivity data are written for computer codes 

in order to have this vector and matrix. 

 

For the model updating by using this method, the sizes of the experimental and 

analytical models must be the same. So, either reduction of the analytical model or 

expansion of the experimental model should be carried out. 
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Figure 3. Flowchart for the Response Function Method 

 
 

The units of the frequency response function data should be the same for the 

experimental and analytical models. Experimental frequency response function 

data is calculated by dividing the acceleration data by the forcing data ( Nsm // 2 ). 

The analytical response function data must also be in these units (or experimental 

data should be converted to the units of the analytical data). Otherwise, there will 

be a shift that is related to the frequency even there are no errors in the analytical 

model. 

 
In the response function method, as only the FRF data are used, there is no need 

to have the same modes in both models. However, large error values will not allow 

convergence even in response function method. Finally, there are no constraints 

on damping properties in Inverse Eigensensitivity Method; therefore it is not 
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possible to update damping matrices. However, in the Response Function 

Methods, damping matrices can also be updated  

 
Case studies using this method with real test data can be found in  [41] and [42]. 

3.2.4  Model Updating Based on MCI Minimization 
 
This new error localization technique and model updating routine takes as a bases 

the work accomplished by Özer, Özgüven and Royston [43], where coordinates 

involving nonlinearity are located through a search technique. For the model 

updating case developed herein, instead of searching for coordinates carrying non-

linearity, the uncorrelated coordinates are searched for. The resulting output is a 

scatter varying with frequency. Each coordinate has its own scatter. The indicator 

of an uncorrelated coordinate is a scatter not equal to zero at some points 

throughout the frequency domain. The index, pointing out the uncorrelated 

coordinates is named as MisCorrelation Index (MCI).  

 

After analyzing the system and finding out the erroneous coordinates, if the 

analytical model carries localized errors, then updating of the analytical model by 

only inverting the portions including erroneous degrees of freedom would be a very 

efficient way instead of an updating scheme with full or partially reduced matrices. 

This new method, which is explained herein, uses the approach that Özer et al. 

[43] has followed for identification of structural non-linearity. In order to adapt this 

scheme to model updating, some simple modifications are carried out in the 

original formulation.  

 

In the work of Özer, et al. [43], non-linearity in a structure is detected by using the 

receptance of the system for a low forcing level (so that the system will behave 

linear) and the receptances for a high forcing level. The difference between the 

frequency responses is attributed to the non-linearity existing in the structure. By 

using the differences between the frequency responses under low and high forcing 

levels, a number, so-called “Non-linearity Number” is formulated. The “Non-

linearity Number” was used to figure out the coordinates carrying non-linearity and 

the degree of non-linearity. Here in this work, a similar approach is applied in 

model updating. Instead of searching for the difference arising from non-linearity, 
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the difference coming from erroneous modeling is searched for. The aim is to 

determine the coordinates carrying error (which is defined as the difference 

between experimental and analytical responses). Let us consider the equation of 

motion of a discrete system, which can be written as follows: 

[ ] [ ] [ ]{ } { }fxKxCxM =+
⎭
⎬
⎫

⎩
⎨
⎧+

⎭
⎬
⎫

⎩
⎨
⎧ ...

             (3.58) 

where { }x  is the displacement vector, { }f  is the forcing vector and [ ]M , [ ]C , [ ]K  

are mass, viscous damping and stiffness matrices respectively. 

 

For a harmonic excitation of { } { } tieFf ω= , the equation of motion will be  

 

[ ] [ ] [ ][ ]{ } { }FXKCiM =++− ωω 2               (3.59) 

 
with ω  being the excitation frequency. It is assumed that the response will also be 

harmonic and in the form { } { } tieXx ω= .  In the above expressions, { }F  and { }X  

denote the magnitude vectors of forcing and displacement, respectively. 

 

Let us define [ ]Δ  as  

 

[ ] [ ] [ ] [ ]KCiM Δ+Δ+Δ−=Δ ωω 2              (3.60) 

 

where [ ]MΔ , [ ]CΔ , [ ]KΔ  are updating mass, viscous damping and stiffness 

matrices, respectively. 

 
The equation of motion for the updated system under harmonic excitation will be  

 

[ ] [ ] [ ] [ ][ ]{ } { }FXKCiM =Δ+++− ωω 2             (3.61) 

 

Then the receptance matrix [ ]θ  will be 

 

[ ] [ ] [ ] [ ] [ ]( ) 12 −
Δ+++−= KCiM ωωθ              (3.62)  
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The receptance obtained from the analytical model can be written as  

 

[ ] [ ] [ ] [ ]( ) 12 −
++−= KCiM ωωα              (3.63) 

 

Using Eq. (3.62) and Eq. (3.63), updating matrix [ ]Δ  can be obtained as  

 

[ ] [ ] [ ] 11 −− −=Δ αθ                (3.64) 

 

Post multiplying both sides of Eq. (3.64) by [ ]θ  yields  

 

[ ][ ] [ ] [ ][ ]θθ ZI −=Δ                (3.65)  

 

Where [ ]Z  is the dynamic stiffness and is defined as [ ] [ ] 1−= αZ . 

 

The thi  column of Eq. (3.65) yields: 

 

[ ]{ } { } [ ]{ }iii Ze θθ −=Δ                (3.66) 

 

where { }ie  is a vector of which thi  element is unity while all other elements are 

zero,{ }iθ  is the thi  column of [ ]θ . The thr  row of Eq. (3.66) yields: 

 

[ ]{ } { } [ ]{ }irir
i

r Z θδθ −=Δ               (3.67) 

 

where [ ]rΔ  and [ ]rZ  represent the thr  rows of [ ]Δ  and [ ]Z  respectively and { }irδ  

is the Kronecker’s Delta whose values are 0 except for the condition ri =  (the 

value of the element of this vector for this condition is 1). 

 

The term { } [ ]{ }irir Z θδ −  is called ‘miscorrelation index’. If we consider the thr  

coordinate of the system, miscorrelation index is an indication of dissimilarity 
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between analytical and experimental models. This term is zero if the thr  row of [ ]Δ  

are all zeros. Any non-zero element in the thr  row of [ ]Δ  will yield a nonzero 

miscorrelation index for the thr  coordinate since  

 

( ) nirnirirrMCI θθθω Δ++Δ+Δ= ...2211             (3.68) 

 
Note that the right hand side of Eq. (3.67) will give 

 ( ) nirniririrr ZZZMCI θθθδω −−−−= ...2211                       (3.69) 

 

which is in terms of analytical dynamic stiffness matrix [ ]Z , experimental FRF 

vector { }iθ   and Kronecker’s Delta.  

 

The miscorrelation index indicates the error between the analytical and 

experimental models. As the need for finite element model updating arises from the 

error between these two models, the task is to make the errors vanish. The 

updating parameters for the indirect model updating methods are the parameters 

for which adjustments will be made in order to correct the finite element model. 

Instead of choosing arbitrary coordinates’ parameters, one can make use of the 

miscorrelation number and run model updating procedures on the parameters of 

coordinates carrying errors. 

 

For finding the MCI values, only a single column of the experimental FRF matrix is 

enough. However, for the unmeasured coordinates (assuming the degree of the 

analytical model is larger than that of the experimental model), one has to use the 

analytically calculated FRF values for unmeasured coordinates in the 

experimentally obtained FRF vector as if they are also a part of the experimental 

data. This operation is necessary to avoid the numerical errors coming from 

coordinate incompatibility. Although unmeasured data is inserted through the 

measured data set, as the aim is to search for the difference between the 

measured coordinates and their counterparts in the analytical model, the action 

has no physically misguiding effect. 
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Actually MCI is a matrix of size NfreqNdof ×  (where Ndof  indicates the number 

of coordinates and Nfreq  indicates the number of frequency points). As MCI 

matrix indicates the error between the analytical and experimental model, updating 

the [ ]Z  matrix in order to minimize the elements of the MCI matrix will yield the 

updated analytical model. 

 

Defining the updating matrices as follows, 

 

[ ] [ ]∑
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=Δ
N

i
iindi MmM

1
,  [ ] [ ]∑

=
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i
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i
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1
                    (3.70) 

 
the updated form of the dynamic stiffness matrix will have the form 

 

[ ] [ ] [ ] [ ]( )KKCCiMMZ up Δ++Δ++Δ+−= ωω 2            (3.71) 

 

or 
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Now defining the updating MCI matrix as  

 

[ ]{ }( ) { } [ ] { }iuprirup
i

r Z θδθ −=Δ              (3.73) 

 
or in open form 

 

( ) ( ) ( ) ( )upnirnupirupirr up
MCI θθθω Δ++Δ+Δ= ...2211            (3.74) 

 
If the response values calculated by using the updated analytical matrices are 

exactly the same as the experimental FRF values, then the MCI matrix calculated 

by Eq. (3.74) will be a null matrix of size NfreqNdof × . So, the updating set of 

equations can be stated as, 
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 { } [ ] { } { }0=− i
uprir Z θδ               (3.75) 

 
Partitioning the updated dynamic stiffness matrix, Eq. (3.75) can be written as 
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Eq. (3.76) can further be simplified by using the definition of the MCI, given in Eq. 

(3.67) as follows, 
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Eq. (3.77) indicates that, in order to vanish the error terms in MCI, the updating 

matrices should have the negative effect of the original analytical matrices that 

cause the error. If Eq. (3.77) is written for Nfreq  discrete frequency points, one will 

have a linear equation system in the form 

 

[ ]{ } { }δ=pA                           (3.78) 

 

which is the standard form of equation sets for indirect model updating algorithms. 

In Eq. (3.78), matrix [ ]A  is the coefficient matrix containing analytical system matrix 

and experimental FRF vector multiplications, { }δ  is the residual vector containing 

the original MCI values and { }p  is the updating parameter vector containing the 

im , ik , ic  values. If the number of frequency points are such that the system of 

equations is over-determined (number of equations are larger than number 

unknowns), then the solution should be searched in a least-squares sense. 

 
The updating task from this point will include  

 

- Determining the updating elements. 
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- Determining the updating frequency points. 

- Obtaining the coefficient matrix and residual vector by using Eq. (3.77). 

- Solving the linear set of equations in the form given by Eq. (3.78) by a least-

squares regression. 

 

If the experimental data is incomplete, the missing experimental frequency 

response can be calculated using the measured modal data and analytical system 

matrices. Modal data expansion is carried out in order to calculate the FRF values 

at missing degrees of freedom. After the least-squares solution is carried out with 

the expanded data, the updated analytical matrices are used to re-expand the 

measured data. This least-squares solution and expansion routine shall be 

followed until convergence is achieved for the updating parameters. 
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CHAPTER 4 
 
 

4 SOFTWARE DEVELOPED 
 
 
 

4.1 DETAILS OF THE SOFTWARE 
 

Except the Eigendynamic Constraint Method, all of the model updating methods 

(namely the Lagrange Multiplier Method, the Error Matrix Method, the Direct Matrix 

Updating Method, the Matrix Mixing Method, the Response Function Method, the 

MCI Minimization Method and the Inverse Eigensensitivity Method) discussed in 

this study have been coded for performing the case studies to be presented in 

Chapter 5. However, most of the codes generated are not generic and therefore 

they can only be used efficiently in terms of computational time for systems 

containing about a hundred DOF’s. 

 

After deciding that the Inverse Eigensensitivity Method is the best for the purpose 

of updating aircraft finite element models (as will be discussed in Chapters 5 and 

6), the software on the Inverse Eigensensitivity Method  has been developed 

further that it can be used for large structures such as a real aircraft. This can be 

considered as the main software output of this thesis because of its flexibility and 

ease of use. The software contains two Matlab codes and two Delphi based 

executable files. The file names and their purposes are: 

 

• mod_read.exe - Reordering the mode shapes by using the *.f06 file of 

MSC Nastran as an input. 

• correlate.m - Correlating the experimental and analytical models (coded in 

Matlab) 

• sens_order.exe - Reordering the sensitivity values present in the *.f06 file 

of MSC Nastran 
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• update.m - Calculating the updating parameter values by using the Inverse 

Eigensensitivity Method (coded in Matlab) 

 

The mod_read.exe file used for reordering the mode shapes is coded in Delphi. 

The code simply reads the *.f06 file and writes the mode shapes obtained in six 

cartesian coordinates of all nodes in seperate files with the related node map. 

 

The correlate.m software needs the following inputs: 

 

• The experimental mode shape data (the matrix saved as a text file) 

• The experimental natural frequencies (vector saved as a text file) 

• Analytical mode shapes (the output of the mod_read.exe) 

• The node map of the analytical mode shape data (the output of 

mod_read.exe) 

• The *.f06 file (in order to extract the analytical natural frequencies) 

• The measured nodes and related degrees of freedom and the counterparts 

of those in the analytical model (a text file with the first column containing 

the experimental nodes, second column containing the experimental 

degrees of freedom of the nodes given in the first column, and the third 

containing the analytical counterparts of the first and second columns). 

• The matching matrix of the modes to be correlated (the default value should 

be composed of two identical vectors having numerical values from 1 to n, 

where n is the number of the highest mode in concern. 

 

The software called correlate.m first orders the new set of analytical mode shapes 

at the measured degrees of freedom. This mode shape matrix is then used to 

calculate and plot the MAC matrix for which the definition is given in Sections 2.2.1 

and 2.2.2. 

 

The analytical natural frequencies are directly read by correlate.m from the *.f06 file 

and they are plotted against the experimental ones read from an external text file. 

 

The user should decide the matching mode pairs in the first run either by 

examining the MAC matrix or the display of the mode shapes (from modal analysis 
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software) and change the matching matrix accordingly. A run after this point will 

correlate the correct mode pairs and the outputs obtained since the text files will 

contain these data. The outputs of these software are: 

 

• MAC matrix and natural frequency comparison graphs. 

• Analytical mode shape matrix at the measured degrees of freedom (of the 

order of the experimental mode shape matrix) written in a text file. 

• Analytical natural frequency vector written in a text file. 

 

The outputs of correlate.m software are needed by the model updating code 

update.m, which uses the modal sensitivities calculated from MSC Nastran. The 

modal sensitivities are given in a text file in a formatted way. However, the format 

of the result file containing the sensitivity values is not directly usable. In order to 

overcome this, the Delphi based executable file sens_order.exe, is used to reorder 

the sensitivity values given in the *.f06 file.  

 

The *.f06 file shall contain the weight sensitivity values, sensitivity values for a 

single natural frequency, sensitivity values for mode shapes (no limitations in 

number) at a single natural frequency. If several other modes are investigated, 

several runs should be made using MSC Nastran and each output file should be 

ordered differently. 

 

After the sensitivity values are ordered in text files, the following inputs which are 

obtained from the Nastran output and bulk data files have to be given in order to 

calculate the updating parameters.  

 

• The initial values of the parameters and their orders in the output file 

• The order of the modal responses in the output file 

 

The software update.m reads and writes the sensitivity values that are placed in 

different text files into a single matrix. Then using the equations given in Section 

3.2.2 and using one of the two solver possibilities available, the new values of the 

updating parameters are calculated. The possible solver types are as below: 
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• Linear least-squares regression 

• Non-linear least-squares regression (needs the upper bound, lower bound 

and initial estimate factors to be input). 

 

The software update.m gives the MAC and natural frequency comparison plots by 

making calculations on the new and old sets of updating parameters and 

sensitivities (it should be noted that, the desired solution may not be obtained in a 

single iteration if the parameter sets are calculated with upper and lower bounds). 

 

After these parameter values are obtained, the user should input the new values to 

MSC Nastran and obtain the new modal responses. If the responses are not yet 

well correlated with the experimental ones, new sets of sensitivities should be 

calculated and updating parameters shall be obtained. This iterative procedure will 

continue until convergence occurs. Below is given the flowchart for the software 

developed for model correlation and updating using the Inverse Eigensensitivity 

Method. 

 

 

Figure 4. Flowchart for the Inverse Eigensensitivity Analysis with the Software 
Generated 
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CHAPTER 5 
 
 

5 CASE STUDIES 

 
 
 

5.1 CASE STUDIES ON A SIX DOF SPRING MASS SYSTEM 
 
The spring-mass system analyzed by Kabe [44] is used to demonstrate the 

application and accuracy of each updating technique discussed in this thesis (the 

Lagrange Multiplier Method, the Error Matrix Method, the Direct Matrix Updating 

Method, the Matrix Mixing Method, the Response Function Method, the MCI 

Minimization Method). The system considered is shown in Figure 5 while the 

stiffness values of the springs and the masses are tabulated in Table 1.  

 

   

Figure 5. Spring-Mass System Used in Case Studies  
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Table 1. Stiffness and Mass Values for Original Analytical and Pseudo-

Experimental Model 

Parameter Pseudo-Experimental Model 
(Actual Values) 

Original Analytical Model 
Value (Incorrect Values) 

k1 3800 (N/m) 3000 (N/m) 
k2 1900 (N/m) 1500 (N/m) 
k3 400 (N/m) 1000 (N/m) 
k4 3100 (N/m) 2000 (N/m) 
k5 1500 (N/m) 1100 (N/m) 
k6 1300 (N/m) 1400 (N/m) 
k7 1400 (N/m) 1250 (N/m) 
k8 6500 (N/m) 5000 (N/m) 
k9 2200 (N/m) 3000 (N/m) 

k10 1600 (N/m) 1000 (N/m) 
m1 0.9 (kg) 1.0 (kg) 
m2 1.1 (kg) 1.5 (kg) 
m3 1.2 (kg) 1.2 (kg) 
m4 1.8 (kg) 2.0 (kg) 
m5 2.4 (kg) 2.5 (kg) 
m6 1.6 (kg) 1.1 (kg) 

 

Table 2. Experimental and Analytical Natural Frequencies and Initial Errors in the 

Natural Frequencies of the 6 DOF Spring-Mass System 

Mode Number Experimental Natural 
Frequency (Hz) 

Analytical Natural 
Frequency (Hz) 

Initial % Error in 
Natural 

Frequencies 

1 3.9 3.8 3.7 

2 6.0 6.7 -11.1 

3 6.6 7.4 -11.7 

4 9.2 7.9 13.3 

5 15.2 13.8 8.9 

6 17.7 15.6 11.7 
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5.1.1 Point FRF Results for Updating with the Method Using Lagrange 
Multipliers  

 
Results (point FRF plots for the degree of freedom of mass 1) obtained by using 

Eq. (3.5) and Eq. (3.10) are given in Figure 6 and Figure 7. For the given plots, 

there are no errors in the stiffness matrix and in the mass matrix respectively. 

Direct Methods are not investigated as candidates for methods that will be used for 

real structures; therefore no noise has been added to the experimental data and 

this case is solved only for demonstration.  
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Figure 6. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Lagrange Multipliers Method for Error in Mass Matrix Only (No 

Error in Stiffness Matrix) 
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Figure 7. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Lagrange Multipliers Method for Error in Stiffness Matrix Only 

(No Error in Mass Matrix) 
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The updated results for both cases are exactly the same as the experimental 

results as the method is a direct one using the analytical matrices.  

5.1.2 Point FRF Results for Updating with the Error Matrix Methods 
 
Point FRF plot for the mass-spring system updated using the Error Matrix Method 

is given in Figure 8. Direct Methods are not investigated as candidates for methods 

that will be used for real structures; therefore no noise has been added to the 

experimental data and this case is solved only for demonstration. 
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Figure 8.  Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Error Matrix Method 

 

As this method ignores the 2nd and higher order error terms, the obtained results 

are not exact ones. 

5.1.3 Point FRF Results for Updating with the Direct Matrix Updating 
Method 

 
Point FRF plot for the mass-spring system updated using the Direct Matrix 

Updating Method is given in Figure 9. Direct Methods are not investigated as 

candidates for methods that will be used for real structures; therefore no noise has 

been added to the experimental data and this case is solved only for 

demonstration. 
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Figure 9. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Direct Matrix Updating Method 

 

 

The updated results are exactly the same as the experimental results as the 

method is a direct one using the analytical matrices.  

 

5.1.4 Point FRF Results for Updating with the Matrix Mixing Method 
 

Point FRF plot for the mass-spring system updated using the Matrix Mixing Method 

is given Figure 10. In this example, FRF’s are assumed to be measured at all 

degrees of freedom. Direct Methods are not investigated as candidates for 

methods that will be used for real structures; therefore no noise has been added to 

the experimental data and this case is solved only for demonstration. 
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Figure 10. Point Receptance (DOF of Mass 1) Plots (Experimental, Theoretical, 

Updated) Solved by Matrix Mixing Method 
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The updated results are exactly the same as the experimental results as the 

method is a direct one using the analytical matrices.  

 

5.1.5 Point FRF Results for Updating with the Response Function Method 
 
Point FRF plot for the mass-spring system updated using the Response Function 

Method is given in Figure 11-Figure 16. The FRF values of the pseudo-

experimental model are polluted (random noise of maximum 5%) in order to 

simulate the experimental noise. Also, the experimental model has viscous 

damping (the dampers are placed at spring locations and their values are 0.0003 

times of spring constant values) while the original analytical model contains no 

damping. 
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Figure 11. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 1st DOF 
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Figure 12. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 2nd DOF 
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Figure 13. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 3rd DOF 
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Figure 14. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 4th DOF 
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Figure 15. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 5th DOF 
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Figure 16. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 6th DOF 

 

 

About 1400 frequency points (a sweep from 0.1 Hz to 140 Hz with 0.1 Hz 

increments) are used as updating frequencies. Although the experimental model 

contains a random error level of 5%, the updating procedure can exactly update 

the original model. The method can also update damping matrix whether the initial 

model contains damping or not.  
 

5.1.6 Point FRF Results for Updating with the MCI Minimization Method 
 
Point FRF plots for the mass-spring system updated using the MCI Minimization 

Method is given in Figure 19-Figure 24. The FRF values of the pseudo-

experimental model are polluted in order to simulate the experimental noise. The 

pseudo-experimental model is constructed using the responses that are assumed 

to be measured from coordinates 2, 3 and 4. The rest of the frequency responses 

are calculated using expanded modal data. This case study is performed in order 

to see the capability of the method under noisy and incomplete experimental 

model. In total, 16 parameters are searched for updating (10 spring constants and 

6 mass values). The absolute maximum values of MCI values at each iteration and 

convergence plot are given in Figure 17 and Figure 18 respectively. The pseudo-

experimental, analytical and updated models’ point receptance plots (after 

convergence) are given in Figure 19-Figure 24. 
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Figure 17. Absolute Maxima of MCI Values at All DOF‘s 

 

 

 

Figure 18. Convergence of Updating Parameters 
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Figure 19. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 1st DOF 

 

 

Figure 20. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 2nd DOF 

 

 

Figure 21. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 3rd DOF 
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Figure 22. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 4th DOF 

 

 
Figure 23. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 5th DOF 

 

 
Figure 24. FRF Plots of Experimental, Original and Updated Models when 

Excitation and Response are at 6th DOF 
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The method expands the experimental data and searches for the updated solution 

with expanded experimental data. As the expansion process uses analytical 

matrices that are updated after each iteration, the expanded data are also updated. 

This expansion and updating procedure continues till convergence at updating 

parameter values is achieved. 

 

5.2 CASE STUDIES ON A 20 DOF FREE-FREE COMPOSITE BEAM 
USING THE MCI MINIMIZATION METHOD 

 
The beam structure analyzed in the second case study is shown in Figure 25 and 

the physical properties of the analytical model and the pseudo-experimental model 

are given in Table 3 and Table 4. 

Table 3. Geometric Parameters for Original Analytical and Pseudo-Experimental 

Model (mm) 

Element #  / 
Geometric 
Parameter 

Outer 
Diameter 

(Experimental 
Model) 

Inner 
Diameter 

(Experimental 
Model) 

Outer 
Diameter 

(Analytical 
Model) 

Inner 
Diameter 

(Analytical 
Model) 

1 10.50 8.40 10.00 8.00 

2 10.20 8.30 9.00 8.00 

3 10.00 8.00 9.00 8.00 

4 9.10 6.20 9.00 6.00 

5 9.90 6.12 9.00 6.00 

6 9.10 6.11 9.00 6.00 

7 7.20 5.56 7.00 5.50 

8 7.10 5.43 7.00 5.50 

9 7.40 5.12 7.00 5.50 

 

The structure is modeled by using beam elements with 2 DOF at each node. There 

are in total 9 beam elements in the model. The pseudo-experimental model is 

suspended with soft cords at nodes 1 and 10. The stiffness values of these cords 

are added to the related diagonal term of the matrices of the elements having 

these nodes. 
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Figure 25. Illustration of the Beam Model Used in Second Case Study 

 

Table 4. Material Property Ratios (Experimental/Analytical) for Original Analytical to 

Pseudo-Experimental Model 

Element #  Young’s 
Modulus Ratio  

Mass Density 
Ratio  

Ratio for Poisson’s 
Ratio  

1 1.20 1.05 1.50 

2 1.20 1.05 1.50 

3 1.20 1.05 1.50 

4 1.05 0.98 0.80 

5 1.05 0.98 0.80 

6 1.05 0.98 0.80 

7 0.96 1.00 1.20 

8 0.96 1.00 1.20 

9 0.96 1.00 1.20 

 

 
It is assumed that responses from all the degrees of freedom are available and the 

excitation is applied at the 5th node. No artificial noise is applied to the pseudo-

experimental response. 

 

The starting MCI plots of the pseudo-experimental models having 100 N/m and 

1000 N/m elastic cords are given in Figure 26 and Figure 27 respectively. 
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Figure 26. The Absolute Maxima of the Starting MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 100 N/m 

 

 
Figure 27. The Absolute Maxima of the Starting MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 1000 N/m 

 

The elastic cords affect the rigid body modes, so if the updating frequencies are 

selected away from the low frequency band (0-20 rad/s for this case), convergent 

solutions are obtained. However, if the updating frequencies include those omitted 

frequency values, then the algorithm seeks for an analytical model that is 

connected to the ground. As the updating is based on finding the multipliers of the 

individual elements, any connection to the ground like the one in the pseudo-
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experimental model can not be obtained and the relation between the pseudo-

experimental and updated model responses can not be satisfied perfectly even for 

the larger values of frequencies. Also, the effect of the 1000N/m elastic cord on the 

rigid body modes is higher. So at lower frequency values, the correlation between 

the pseudo-experimental and analytical FRF values of data with the 100 N/m 

elastic cord is better than the data with the 1000 N/m elastic cord.   

 

In Figure 28-Figure 33, the updating frequencies are taken between 40-80 rad/s 

(only the equations between these two frequencies are used for updating). As it 

can be seen from the graphs, the FRF plots of the updated model do have rigid 

body modes (having frequencies higher than zero) that are influenced by the cords. 

However, getting away from the first two elastic mode natural frequencies, close 

agreement between the pseudo-experimental and updated model responses are 

obtained. 
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Figure 28. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 1st DOF for an Elastic Cord 

Stiffness of 100 N/m 
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Figure 29. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 19th DOF for an Elastic Cord 

Stiffness of 100 N/m 
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Figure 30. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 9th DOF for an Elastic Cord 

Stiffness of 100 N/m 
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Figure 31. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 1st DOF for an Elastic Cord 

Stiffness of 1000 N/m 
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Figure 32. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 19th DOF for an Elastic Cord 

Stiffness of 1000 N/m 
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Figure 33. FRF Plots of the Experimental, the Original and the Updated Models 

when Excitation is at 9th DOF and Response is at 9th DOF for an Elastic Cord 

Stiffness of 1000 N/m 

 
 

The MCI plots after applying the updating procedure are also given in Figure 34-

Figure 35. As it is mentioned above, the effect of the cords could not be reflected 

on the updated model with an updating scheme of multiplying the individual 

matrices with updating parameters. So, at the end of the updating procedure, error 

is located only in the coordinates to which the cords are connected. For the rest of 

the coordinates, the updating algorithm effectively nullifies the error.  
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Figure 34. The Absolute Maximum of the Final MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 100 N/m 

 

 

Figure 35. The Absolute Maximum of the Final MCI Values at All DOF’s for an 

Elastic Cord Stiffness of 1000 N/m 

 
 
Detailed discussions on the results obtained by MCI minimization technique on 

given case studies are given in 6.1.2. 

 

5.3 CASE STUDY ON A SCALED AIRCRAFT MODEL USING THE 
INVERSE EIGENSENSITIVITY METHOD 

 
Another case study on Inverse Eigensensitivity Method was conducted on a real 

test structure. The test-bed is a one-to-one replication in dimensions of the test-bed 
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designed and used by GARTEUR (Group for Aeronautical Research and 

Technology in Europe). The test-bed is special in the sense that, a community in 

Europe uses the results of the tests conducted on the same structure and continue 

with different or the same approaches on the same test data. The difference of the 

test-bed used in this thesis with the one used by GARTEUR is in the joints. For the 

test-bed under consideration in this thesis the wing-fuselage, fuselage-vertical 

stabilizer and vertical stabilizer-horizontal stabilizer are joined by welding, whereas 

in the original GARTEUR model these are joined by bolts. Also, in the original 

GARTEUR model a viscoelastic tape was placed on the upper surface of the 

wings, however such an additional damper was not used for the tests conducted in 

this thesis. The test-bed used in this thesis, which was manufactured and tested in 

TÜBİTAK-SAGE is shown in Figure 36. 

 

Modal impact tests were conducted on the test bed and the results of the tests 

were used for model updating of the finite element model of the structure. 

 

The dimensions of the aluminum plates and their locations are given in Figure 37 

(dimensions are in millimeters).  

 

 

 
 

Figure 36. Test-Bed Tested in TÜBİTAK-SAGE 
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Figure 37. The Dimensions and Locations of the Aluminum Plates in GARTEUR 

SM-AG19 Test-Bed (Dimensions in mm) 

 
 
The test-bed was hung from the hooks (for which the details are given in Figure 38) 

in order to obtain the free-free boundary conditions applied in the associated finite 

element model. The rigid body modes of the test-bed were determined  to be about 

1 Hz. 

 

The modal tests were conducted by using accelerometers, a modal hammer and a 

modal sledge hammer. A total of 12 accelerometers, 36 impact points and 66 

impact degrees of freedom were used throughout the tests. The FRF set is re-

ordered by using the reciprocity rule in order to have 36 measurement and 12 

excitation points. In the line model below, the nomenclature for excitation and 

measurement is shown. The points and degrees of freedom used for excitation and 

measurement are given in Table 5 and Table 6.  
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Figure 38. Hooks for Elastic Cords 

 

 
Figure 39. Excitation and Measurement Points and Coordinate Axes 

 
 

Table 5. Measurement Points and Directions 

Measurement Point Degree of Freedom 

1 x-, z- 

3 z- 

6 z- 

18 z- 

21 x-, z- 

23 z- 

31 y- 

33 z- 

35 y- 

37 z- 
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Table 6. Excitation Points and Directions 

Excitation 
Points 

Degrees of 
Freedom 

Excitation 
Points 

Degrees of 
Freedom 

1 x-, y-, z- 19 x-, z- 

2 z- 20 x-, z- 

3 x-, y-, z- 21 x-, y-, z- 

4 x-, z- 22 z- 

5 x-, z- 23 x-, y-, z- 

6 x-, z- 24 z- 

7 x-, z- 25 z- 

8 x-, z- 26 z- 

9 x-, z- 27 Measured by 
Interpolation 

10 x-, z- 28 z- 

11 x-, z- 29 z- 

12 z- 30 z- 

13 x-, z- 31 y- 

14 x-, z- 32 y- 

15 x-, z- 33 x-, y-, z- 

16 x-, z- 34 x-, z- 

17 x-, z- 35 x-, z- 

18 x-, z- 36 x-, z- 

  37 x-, z- 
  
 

The modal hammer was saturated when the points on the fuselage were excited 

while the signals from the accelerometers were relatively low. In order to have high 

signals from the accelerometers without saturating the hammer signal, a modal 

sledge hammer was used to create larger impact forces for excitation of these 

points. 

 

A total of 5 excitation samples were conducted for each degree of freedom excited. 

The excitations for which, the coherence values were thought to be low were 

repeated. Coherence checks were accomplished using LMS Test.Lab software. 
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The comparisons were based on other coherence scatters from neighboring 

degrees freedom through the frequency band.   

 

Data acquisition details are tabulated in Table 7. 

 

Table 7. Data Acquisition Details for Modal Testing of GARTEUR SM-AG19 Test-
Bed 

Data Acquisition Card  LMS SCADAS III 
Max. Capacity of the Accelerometers (g) 50 
Max. Capacity of the Modal Hammer (N) 240 

Max. Capacity of the Modal Sledge Hammer (N) 22000 
Accelerometer Saturation Potential (V) 5 
Modal Hammer Saturation Potential (V) 2 

Modal Sledge Hammer Saturation Potential (V) 5 
Windowing Type Force-Exponential 

Cut-off (%) 1.5 
Frequency Resolution (Hz) 1/1024 

Data Acquisition Time (per hit) (s) 10.24 
Number of Samples (per degree of freedom) 5 

 
 
The details of accelerometers and hammers used are given in Figure 40. 
 
 
 

 
Figure 40. Detailed Photographs of Modal Testing Setup 
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A sample for FRF and coherence plots for a point FRF measurement from these 

tests is given in Figure 41 (a screenshot from modal testing software).  

 

 

 

 
 

Figure 41. A Screenshot From LMS Modal Testing Software (Excitation and 

Measurement on z- Axis of Point 34) 

 

 

 
 
After reordering of the FRF values through reciprocity principle, POLYMAX modal 

analysis software of LMS was used for successive modal analysis.  

 

The stability diagram and chosen stable roots obtained by POLYMAX are given in 

Figure 42. The model order was chosen to be 150 for modal analysis. 
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Figure 42. Stability Diagram From POLYMAX 

 
 
 
The visual representations of the modes obtained from the above stability diagram 

and corresponding natural frequencies are given in Figure 43. 

 

The construction and analysis of the finite element model of the test-bed was done 

by using MSC Patran GUI and MSC Nastran solver respectively.  

 

As the test-bed is composed of strips and the thickness to length ratio of the strips 

is less than 0.1, the thickness to width ratio of the strips is less than 0.2 (and there 

are no discontinuities like holes), the strips are modeled as beam elements. The 3-

D view of the finite element model is shown in Figure 44.  

 

The thickness of the strips were also taken into account during modeling and the 

line structure was prepared accordingly. The locations of the strips on the finite 

element model were the same as the one in the real structure. 
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Figure 43. Visual Representations of the First 10 Modes Obtained From 

POLYMAX 

 

The reason for having broken-line like behaviors in the mode shape 

representations is the hits that have higher amplitudes in those points. 
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Figure 44. Finite Element Mesh of the Test-Bed Structure (3-D View) 

 
 

 
 

Figure 45. The Locations of the Strips in the Finite Element Model 

 
 
 
The differences in the positions of the neutral axes of the beam elements (used for 

realistic modeling) in z- axis led to discontinuities in the mating junctions of the 

model. In order to overcome this problem, rigid elements called “Multi Point 

Constraint – MPC” were used between Outer Wing Strips-Wings, Wing-Fuselage 
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and Fuselage-Vertical Stabilizer. The details of the rigid elements are given in 

tabulated form in Table 8.  

 

Table 8. MPC Element Details 

Parts That MPC 
Connects 

Part That Has the 
Independent Node 

Part That Has the 
Dependent Node 

Outer Wing Strips-
Wings (Right Wing) 

Wing Outer Wing Strips 

Outer Wing Strips-
Wings (Left Wing) 

Wing Outer Wing Strips 

Wing-Fuselage Fuselage Wing 
Fuselage-Vertical 

Stabilizer 
Fuselage Vertical Stabilizer 

   
 

The rigid elements conduct the motion on the independent node through the length 

of the connection. The MPC elements used in the model are shown in Figure 46 in 

detail. 

 
 
 

 
Figure 46. MPC Elements in The Model 

 
 
The section dimensions of the beam elements are all the same in the original finite 

element model as they are given in Figure 37. There are 6 more nodes in the finite 

element model than those in the experimental model. The nomenclature and 
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positioning of the rest of the nodes are the same for both models (experimental 

and finite element models). A total of 39 beam elements and 43 nodes (258 

degrees of freedom) were used in the finite element model. The beam elements 

are 3-D 2 noded elements with 6 DOF’s at each node. The material properties 

assigned are tabulated in Table 9.  

 

Table 9. Material Properties Used in the Finite Element Model 

Material Property Value  
Young’s Modulus  (GPa ) 70 

Densitiy  ( 3/kg m ) 2800 

Poisson’s Ratio (υ ) 0.3 
 

 
The MAC matrix and natural frequency comparison for the first 10 elastic modes 

between the experimental model and the original finite element model and the 

visual representations of the first 10 elastic modes obtained from the original finite 

element model are given in Figure 47 and Figure 48 respectively. 
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Figure 47. MAC Matrix between the Experimental Model and the Original Finite 

Element Model 
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Figure 48. Natural Frequency Comparison between the Experimental Model and 

the Original Finite Element Model 

 
 
 
Through analyzing the original MAC matrix, it is obvious that the ordering of the 

symmetric and anti-symmetric wing torsional modes and vertical stabilizer torsional 

mode are wrong. In Table 10, experimental natural frequencies and the correlating 

finite element model natural frequencies are given.  

 

Table 10. Experimental Modes and Correlating Original Finite Element Model’s 
Modes 

Experimental 
Mode 

Natural 
Frequency 

(Hz) 

Original Finite 
Element Model 

Mode 

Natural 
Frequency 

(Hz) 
1 5.65 1 5.66 
2 15.73 2 16.54 
3 36.79 5 37.05 
4 37.51 3 34.57 
5 37.65 4 34.67 
6 43.73 6 43.17 
7 50.32 7 50.35 
8 55.00 8 54.75 
9 60.66 10 74.43 

10 68.23 9 72.16 
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Good correlation of the mating mode shapes is observed through inspection of the 

original MAC matrix (a minimum of 80% MAC value for mating pairs), but the 

natural frequencies are out of order. For this reason, changing the natural 

frequencies without contaminating the mode shapes is necessary.  

 

In this study, it was tried to accomplish the updating with the minimum possible 

number of updating parameters. After reviewing the mode shapes of the out-of-

order modes, it was decided to choose the parameters which are dominant on wing 

and vertical stabilizer torsional modes and vertical stabilizer mode about x- axis (it 

must be noted that the effect of these parameters on the rest of the modes should 

be low). To do that,  

 

•  2 torsional springs about y axis from the node that node12 is connected 

with an MPC to the tips of the wings (node 2 for the right wing and node 22 

for the left wing)  

• a torsional spring about the z axis from node 31 to node 35 

• the beam thickness in the y direction of the elements forming the vertical 

stabilizer 

 

are created or defined as updating parameters. The spring constants are taken as 

250000 Nmm/rad and 1000000 Nmm/rad for wings and vertical stabilizers 

respectively. 

 
After defining the parameters, modal sensitivities of the first 10 modes were 

calculated using MSC Nastran SOL 200 solver. The iterations were stopped as the 

natural frequencies calculated by MSC Nastran converged to the experimental 

natural frequencies. At each step, checks on possible contaminations on the mode 

shapes were also done.   

 

A total of 6 iteration steps were enough for the parameters to converge. The 

convergence and the parameter values at each iteration step are given in Figure 

50. 
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Figure 49. Visual Representations of the First 10 Modes Obtained From the 

Original Finite Element Model 
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Figure 50. Variation of Parameter Values through the Updating Procedure 

 
 
 
The MAC matrix plot after the updating procedure is given in Figure 51. The natural 

frequency comparison plot and the table containing the experimental and the 

analytical natural frequencies are given in Figure 52 and Table 11 respectively.  

 

In order to show how the mode shape vectors correlate in detail, mass normalized 

mode shape value plots (for first ten modes) of the updated finite element model 

and the experimental model are also given. Although these plots have no physical 

meaning, they are given in order to show how exactly the experimental and the 

analytical mode shape values at measurement points fit each other. These plots 

are given in Figure 53-Figure 62. They show the experimentally obtained mode 

shape values at the measurement points and the analytically obtained counterparts 

at the same points. Point FRF values of the experimental, the analytical and the 

updated models measured at z- direction of node 1 is shown in Figure 63. 

 

The visual representations of the mode shapes obtained from the updated finite 

element model are given in Figure 64. 
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Figure 51. MAC Matrix between the Updated Finite Element Model and the 

Experimental Model 

 
 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Frequency (Hz)

Fr
eq

ue
nc

y 
(H

z)

Test-Test
Test-FE

 
Figure 52. Natural Frequency Comparison between the Updated Finite Element 

Model and the Experimental Model 
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Figure 53. Eigenvector Graphs for 1st Correlating Mode Pair 
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Figure 54. Eigenvector Graphs for 2nd Correlating Mode Pair 
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Figure 55. Eigenvector Graphs for 3rd Correlating Mode Pair 
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Figure 56. Eigenvector Graphs for 4th Correlating Mode Pair 
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Figure 57. Eigenvector Graphs for 5th Correlating Mode Pair 
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Figure 58. Eigenvector Graphs for 6th Correlating Mode Pair 
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Figure 59. Eigenvector Graphs for 7th Correlating Mode Pair 
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Figure 60. Eigenvector Graphs for 8th Correlating Mode Pair 
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Figure 61. Eigenvector Graphs for 9th Correlating Mode Pair 
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Figure 62. Eigenvector Graphs for 10th Correlating Mode Pair 
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Figure 63. Point FRF Values of Node 1 in z- Direction for the Experimental, the 

Analytical and the Updated Models 
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Figure 64. Visual Representations of the First 10 Modes Obtained From the 

Updated Finite Element Model 

 
The natural frequencies of the first two (symmetric and anti-symmetric) wing 

torsional modes are raised by adding torsional springs (see Figure 49 and Figure 

64). This is the reason for the resonance shifts at about 38 Hz. The vertical 

stabilizer is bent in the first anti-symmetric wing bending mode. In order to correlate 

the modes including the bending and torsional motions of the vertical stabilizer, the 
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beam thickness of the vertical stabilizer is enlarged yielding a higher natural 

frequency in the first anti-symmetric wing bending mode (about 16 Hz). Although 

this updating procedure yielded a shift in the resonance value of the first anti-

symmetric wing bending mode (that made the correlation worse for that mode), the 

other modes are brought in a better correlation.   

 
 
The original finite element model and the experimental model had differences in 

both natural frequencies and ordering of some modes. After applying the Inverse 

Eigensensitivity scheme to the parameters selected, the updated model had less 

errors in natural frequencies and the ordering of the modes were corrected. After 

reviewing the MAC plot and natural frequency comparison plot given in Figure 51 

and Figure 52 respectively, it can be concluded that updating of the selected 

parameters corrected the errors without contaminating the modes that were 

originally in good correlation (both in frequency and mode shape vector sense). 

Also, the plots giving the mode shape values of the experimental and analytical 

models show that the natural modes from the updated finite element model and 

those experimentally obtained are in good correlation, and consequently updating 

of the GARTEUR model by applying the Inverse Eigensensitivity Method is 

successful. 

 

Table 11. Experimental Modes and Correlating Updated Theoretical Modes from 

the Finite Element Model 

Experimental 
Mode 

Natural 
Frequency 

(Hz) 

Updated 
Finite 

Element 
Model Mode 

Natural 
Frequency 

(Hz) 

% 
Absolute 

Error 

1 5.65 1 5.66 0.18 
2 15.73 2 16.88 7.3 
3 36.79 3 36.44 0.95 
4 37.51 4 37.54 0.08 
5 37.65 5 37.63 0.05 
6 43.73 6 43.17 1.28 
7 50.32 7 49.83 0.97 
8 55.00 8 54.76 0.44 
9 60.66 9 60.79 0.21 

10 68.23 10 68.24 0.01 
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More comments on updating of the GARTEUR model by applying the Inverse 

Eigensensitivity Method is given in section 6.1.3 

 

5.4 CASE STUDIES ON AN AIRCRAFT MODEL (REAL LARGE 
STRUCTURE) USING THE INVERSE EIGENSENSITIVITY METHOD 

 

In this case study, the finite element model of a real fighter aircraft is updated using 

the Inverse Eigensensitivity Method by using the experimental data obtained from a 

ground vibration testing. 

The finite element model of an aircraft was built in MSC Patran GUI and the modal 

analyses were carried out in MSC Nastran solver. The model consists of shell, 

beam and point (mass) elements and MPC’s (multi point constraints) resulting in 

about 3200 degrees of freedom. 3-D beam elements (for spars, ribs, stiffeners and 

bulkheads) and constant thickness (quad and triad) shell elements (for the 

structural skin) are used for the mesh. The mass matrix is forced to be lumped in 

the translational degrees of freedom. That is, the mass elements for rotational 

degrees of freedom are taken to be zero. 

 

Models for empty aircraft and aircraft with fuel and external loads are prepared 

separately. 

 

5.4.1 Updating the Model of the Empty Aircraft 
 
The natural frequency comparison and MAC matrix of the original finite element 

model and experimentally obtained model are shown in Figure 65 and Figure 66. 
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Figure 65. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes 
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Figure 66. MAC Matrix before Updating Procedure 

 

 

Results obtained after updating by using the Inverse Eigensensitivity Method are 

shown in Figure 67 and Figure 68. 
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Figure 67. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes (for Correlating Pairs) 
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Figure 68. MAC Matrix After Updating Procedure 
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In Figure 69-Figure 74, are shown the comparison of the mass normalized mode 

shape values of the experimental model and the updated analytical model for the 

first 6 modes. The experimental eigenvector values are scaled with respect to the 

maximum value of the analytical eigenvector for better visualization.   
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Figure 69. Eigenvector Graphs for 1st Correlating Mode Pair 
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Figure 70. Eigenvector Graphs for 2nd Correlating Mode Pair 
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Figure 71. Eigenvector Graphs for 3rd Correlating Mode Pair 
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Figure 72. Eigenvector Graphs for 4th Correlating Mode Pair 
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Figure 73. Eigenvector Graphs for 5th Correlating Mode Pair 
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Figure 74. Eigenvector Graphs for 6th Correlating Mode Pair 

 

 
Point FRF values for the experimental, the analytical and the updated models are 

shown in Figure 75. 
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Figure 75. Point FRF Curves for the Empty Aircraft: Measured (Experimental) and 

Calculated (Analytical and Updated Models) at the Right and the Left Wing Tips  

 

5.4.2 Updating of the Fully Loaded Aircraft 
 
 The natural frequency comparison and MAC matrix of the original finite element 

model and experimental model are in Figure 76 and Figure 77. 
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Figure 76. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes 
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Figure 77. MAC Matrix before Updating Procedure 

 

 

Results obtained after updating by using the Inverse Eigensensitivity Method are 

shown in Figure 78 and Figure 79. 
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Figure 78. The Natural Frequency Graph for Experimental-Experimental and 

Experimental-Analytical Model Modes (for Correlating Pairs) 
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Figure 79. MAC Matrix after Updating Procedure 

 

In Figure 80-Figure 84, are shown the comparison of the mass normalized mode 

shape values of the experimental model and the updated analytical model for the 

first 5 modes. The experimental eigenvector values are scaled with respect to the 

maximum value of the analytical eigenvector for better visualization.   
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Figure 80. Eigenvector Graphs for 1st Correlating Mode Pair 
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Figure 81. Eigenvector Graphs for 2nd Correlating Mode Pair 
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Figure 82. Eigenvector Graphs for 3rd Correlating Mode Pair 
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Figure 83. Eigenvector Graphs for 4th Correlating Mode Pair 
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Figure 84. Eigenvector Graphs for 5th Correlating Mode Pair 

 
 

 
Point FRF Values for the experimental, the analytical and the updated models are 

shown in Figure 85. 

 

If the updated results for the real aircraft are examined, it is observed that the 

maximum absolute values of error for natural frequencies are below 5%. Examining 

the MAC matrices, it is seen that MAC values of over 80% are obtained for the first 

7-8 modes. With these results, after examining the eigenvector value plots of 

correlating modes, it is concluded that the experimental and analytical models are 

in good agreement after updating, as far as the first 7-8 modes are concerned.  

 

On the other hand, for the modes for which MAC values are relatively low, the 

character of the correlating modes seem to be in good correlation if the eigenvector 

plots are examined. The low MAC values are due to the fact that, experimental 

mode shape results (obtained from measured FRF values) are not in good 

condition for frequency values above 25 Hz.  

 

The experimental and the analytical results obtained for the first 10 degrees of 

freedom in the eigenvalue plots do not seem to be in good agreement in almost all 

of the modes. Special care was taken on this part of the aircraft but no satisfactory 

results were obtained. It is believed that the shaker placed in this area 

contaminates the experimental data.  

 

The reason why off-diagonal terms in MAC matrices are not “0” is the 

accelerometer placement resolution. The placement resolution is not fine enough 

for the formulation of MAC to distinguish similar modes. That is, the modes in 
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which the wing of the aircraft has a first wing bending like behavior will yield off-

diagonal terms in MAC matrix which are not zero as the number of accelerometers 

found on parts other than wings are not enough to have eigenvectors that can 

sufficiently distinguish the behavior of the modes. 

 

  

 

Figure 85. Point FRF Curves for the Fully Loaded Aircraft: Measured 

(Experimental) and Calculated (Analytical and Updated Models) at the Right and 

the Left Wing Tips 

 
 

Some modes are out of order in the two models (see modes 4 and 5 in Figure 76 

and Figure 78). Effort was made to keep the experimental order in the analytical 

model but as iteration numbers were increased, contaminations in the mode 

shapes were obtained. So, neighboring but out of order modes were kept in the 

best position possible without getting them in the correct order.  
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The given FRF plots of the aircraft are in the stiffness controlled region. The 

original finite element model is less stiff than the experimental model since the FRF 

values of the experimental model is lower in magnitude. As the FRF matrix in the 

stiffness controlled region may be thought to be the inverse of the stiffness matrix, 

lower magnitudes mean higher stiffness. After updating, the finite element FRF 

values are also lowered which means that there occurred almost an overall 

stiffness increase in the finite element model. This can also be seen in the shifts of 

the first two resonance values of the original analytical model. The resonance 

values of these two modes are increased. On the other hand, the Young’s Modulus 

values of the fuselage components had decreases in value which yielded a 

negative shift in the resonance values of the third and fourth modes of the original 

analytical model. 

 

The (y- axis) values of point FRF plots do not seem to be in good agreement. 

However, model updating has reduced the differences (both magnitude-wise and 

frequency-wise) which can be seen from the comparison of these values with the 

original FRF values. The reason for the remaining discrepancy between the 

updated FRF data and experimental data is the starting finite element model itself. 

If a better model had been constructed for the aircraft at the very beginning, a more 

successful updating would have been obtained.   

 

After examining the natural frequency values, MAC matrices and eigenvector plots 

of correlating modes, it was concluded that the updating procedure of the real 

aircraft satisfies the practical needs which are to have a finite element model that 

has the similar natural frequencies and mode shapes in the frequency band 0-20 

Hz. 
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CHAPTER 6 
 
 

6 DISCUSSION, CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE WORK 

 

 

6.1 DISCUSSION 
 
 
The main objectives of this thesis are to investigate the model updating techniques 

that are used to correlate the experimental and the analytical models and to decide 

the methods that are the best for updating of large structural models.   

 

Case studies on computationally generated experimental models are used in order 

to evaluate the efficiencies of direct methods (namely the Lagrange Multiplier 

Method, the Error Matrix Method, the Direct Matrix Updating Method and the Matrix 

Mixing Method), the Response Function Method and the MCI Minimization Method 

which is a new method developed in this thesis. 

 

On the other hand, case studies on real structures one of which is a real aircraft 

are solved with the Inverse Eigensensitivity Method. 

 

In this section, discussions about the case studies examined are given.  

 

6.1.1 Discussion on Case Studies Performed Using Direct Methods  
 

The six DOF mass-spring system is analyzed with all of the direct methods (namely 

the Lagrange Multiplier Method, the Error Matrix Method, the Direct Matrix 

Updating Method and the Matrix Mixing Method) investigated in this study. As it 

can be seen from the point FRF plots given, all of the methods except the Error 

Matrix Method yield exact solutions once the required number of experimental 



 112  

values are supplied. The error in Error Matrix Method arises from the linearization 

procedure (omitting the second and higher order terms).  

 

Although the direct methods seem to yield direct solutions and thereby seem to be 

the first candidate for updating procedures, they also yield system matrices without 

realistic connection behavior.  

6.1.2 Discussion on Case Studies Performed Using with Miscorrelation 
Index (MCI) Minimization 

 
The new error localization method (MCI Method) and the updating technique (the 

so called MCI Minimization Method) developed in this thesis are investigated 

through the case studies. The error localization technique depends on the fact that 

in an ideally correct analytical model the dynamic stiffness matrix will be the 

inverse of the experimental model receptance matrix. Based on this fact, the 

numerical values obtained by multiplication of these two matrices shall yield an 

identity matrix (or using the analytical dynamic stiffness matrix and a column of the 

experimental receptance matrix one will yield a vector having 1 in one element and 

all zeros elsewhere). Although the localization technique is successful for locating 

the error, the numerical values obtained do not reflect the degree of error 

connected to a single DOF. On the other hand, if the error in one DOF is increased, 

the MCI values are also increased.  

 

The model updating method (MCI minimization) developed depends on the 

minimization of the error locating index MCI. Since these numerical values are non-

zero if an error between the theoretical and experimental models exists, trying to 

minimize these values would yield an updated system that will yield responses 

similar to those of the experimental model. However, there is a possibility of having 

the ‘trivial solution’ that yields ‘0’ MCI values but having system matrices with 

elements close to null. This case occurs if the updating parameters can not reflect 

the error behavior present or if there is too much noise in the experimental data. If 

this is the case, weighting or using penalty functions in the solution step may yield 

meaningful system matrices. 
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The two case studies performed are different in the sense that, in the mass-spring 

model all the parameters in the system matrices are updated. In the second case, 

where a free-free beam model is analyzed, the updating parameters are used in 

order to update the individual element matrices. Results from both updating cases 

are successful. In the first case study, expanded experimental data is used for 

updating the parameters, on the other hand, all the experimental data is assumed 

to be available for the second case study. 

 

For the six DOF mass-spring system example solved with this method, although 

half of the degrees of freedom are not measured, the updating procedure yields 

reliable results thus indicating that the method is capable of handling cases with 

incomplete measured data. 

 

In the example for a beam model hung with soft springs solved with this method, 

effort was made to simulate soft springs in the experimental response data. 

However, the updating scheme based on updating all the element system matrices 

did not yield any similar behavior between the experimental and analytical 

responses when the updating frequencies were chosen close to the static case. 

For this reason, the rigid body modes in the analytical model were replaced with 2 

elastic modes in the experimental model. If one chooses the updating frequencies 

away from these ‘elastic mode’ frequencies, the updating algorithm fits the 

experimental data in the regions relatively away from these frequencies. The 

agreement between the experimental response and the updated analytical 

response start at frequencies above 10 rad/s in the examined case studies.  

 

6.1.3 Discussion on the Updating of the Scaled Aircraft Finite Element 
Model 

 

As can be seen from the MAC matrix plot, the mode shape vectors and natural 

frequency rankings of the two models are in good correlation. In order to conclude 

whether the converged model is equivalent to the experimental model (apart from 

damping), the natural frequency comparison plot should also be investigated. This 

plot indicates that almost the same natural frequencies are obtained from the two 

models.    
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As both the mode shape and natural frequencies of the updated finite element and 

experimental models are in good agreement, it is concluded that the applied 

Inverse Eigensensitivity updating procedure is successful. This method is capable 

of coping with out-of-order modes in the two models. 

 

6.1.4 Discussion on the Updating of the Real Aircraft Finite Element Model 
 
If the updated results for the real aircraft are examined, it is observed that the 

maximum absolute values of error for natural frequencies are below 5%. Examining 

the MAC matrices, it is seen that MAC values of over 80% are obtained for the first 

7-8 modes. With these results, after examining the eigenvector value plots of 

correlating modes, it is concluded that the experimental and analytical models are 

in good agreement after updating, as far as the first 7-8 modes are concerned.  

 

On the other hand, for the modes for which MAC values are relatively low, the 

character of the correlating modes seem to be in good correlation if the eigenvector 

plots are examined. The low MAC values are due to the fact that, experimental 

mode shape results (obtained from measured FRF values) are not in good 

condition for frequency values above 25 Hz.  

 

The experimental and the analytical results obtained for the first 10 degrees of 

freedom in the eigenvalue plots do not seem to be in good agreement in almost all 

of the modes. Special care was taken on this part of the aircraft but no satisfactory 

results were obtained. It is believed that the shaker placed in this area 

contaminates the experimental data.  

 

The reason why off-diagonal terms in MAC matrices are not “0” is the 

accelerometer placement resolution. The placement resolution is not fine enough 

for the formulation of MAC to distinguish similar modes. That is, the modes in 

which the wing of the aircraft has a first wing bending like behavior will yield off-

diagonal terms in MAC matrix which are not zero as the number of accelerometers 

found on parts other than wings are not enough to have eigenvectors that can 

sufficiently distinguish the behavior of the modes. 
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Some modes are out of order in the two models (see modes 4 and 5 in Figure 76 

and Figure 78). Effort was made to keep the experimental order in the analytical 

model but as iteration numbers were increased, contaminations in the mode 

shapes were obtained. So, neighboring but out of order modes were kept in the 

best position possible without getting them in the correct order.  
 

After examining the natural frequency values, MAC matrices and eigenvector plots 

of correlating modes, it was concluded that the updating procedure of the real 

aircraft satisfies the practical needs which are to have a finite element model that 

has the similar natural frequencies and mode shapes in the frequency band 0-20 

Hz. 
 

Also, updating of the finite element model of the real aircraft was tried to be 

performed by using the Response Function Method. However, the number of the 

parameters and the number of the equations led to unrealistic analysis times. On 

the other hand, problems with the formulation have been faced when the number 

of the parameters were tried to be reduced.  Therefore, usage of this method with 

the real aircraft case was omitted. 

6.2 CONCLUSIONS 
 
The direct methods, which yield exact results, are only recommended to be used 

for small mass-spring systems as they contaminate the connection data in the finite 

element models. The modal properties can be exactly obtained by using these 

methods but the static responses obtained from the updated models by using 

these models will be more or less different from those of the real structures. 

 

For the case of indirect methods, there are two main alternatives used by today’s 

researchers: 

 

• The Response Function Method 

• The Inverse Eigensensitivity Method 
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Both methods are used for obtaining the updated model for the real aircraft case. 

However, the coefficient matrix extraction for the Response Function Method 

needs complicated programming loops and if the number of updating frequency 

points and the number of updating parameters are chosen to be large, the loop 

requires unrealistic computation time. For the case of updating the aircraft model, 

the estimated computation time was about a couple of months, so although the 

method is programmed to be used, it was not applied to the aircraft model (the 

number of updating parameters was several thousands and if that was decreased 

feasible estimated times would be obtained). Furthermore, methods that 

contaminate the finite element model like model reduction and mode shape 

expansion are necessary for the Response Function Method. Instead of dealing 

with complications other than the model updating technique itself, the Inverse 

Eigensensitivity Method was chosen to be the updating procedure for the aircraft.  

 

By the use of the MSC Nastran finite element software, the updating of the aircraft 

with the Inverse Eigensensitivity Method was accomplished relatively easily. The 

definitions of the updating parameters and updating responses were done easily 

and the coding was not that complicated compared to the Response Function 

Method. 

 

For the case of aircraft structures, where the model includes beam and shell 

elements and point masses, the updating can easily be done with the Inverse 

Eigensensitivity Method using MSC Nastran because of its simplicity in defining the 

parameters and coding.  

 

The only disadvantage of using the Inverse Eigensensitivity Method is not being 

able to update the damping properties. This could have been accomplished if the 

Response Function Method was used. However, the results obtained with the 

Inverse Eigensensitivity Method are reliable enough for the upcoming analyses, so 

it is concluded in this thesis that this method can be used for updating 

mathematical models obtained by finite element software for large structures. 

 

The MCI minimization routine proposed in this study is also a reliable method for 

updating routine. The biggest advantage of this method is that there is no need for 
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calculation of the analytical FRF data (unlike the case in the Response Function 

Method). However, as coordinate incompatibility is always present, there is a need 

for calculation of the analytical modal data for expansion processes.  

 

Finally, after investigation of the current model updating techniques and studies on 

the real aircraft case, the Response Function Method and the Inverse 

Eigensensitivity Method are concluded as the most promising methods for the 

updating of aircraft structural models. But if the magnitudes in the FRF data and 

the damping properties are not of primary concern (correlation of mode shapes and 

natural frequencies are the primary objectives) the Inverse Eigensensitivity Method 

should be selected as the updating method. 

 

6.3 RECOMMENDATIONS FOR FUTURE WORK  
 

The main method used in this study is the Inverse Eigensensitivity Method. 

Although, the studies have been carried out using computer programs, inputting 

the new values of the updating parameters to MSC Nastran was a time consuming 

activity. Writing a computer code that can drive MSC Nastran, so that the iterations 

are done without any interruption in the code is recommended for the future work. 

 

Also, work on weighting the equations (as there can be two or three orders of 

magnitude difference between sensitivities of natural frequencies and mode 

shapes) will facilitate the convergence of the updating process. At least, some rules 

of thumb can be generated for the weighting matrix that is going to be used in 

sensitivity based model updating processes. 
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APPENDICES 

APPENDIX A 
 
 

Least-Squares Regression 
 

 

For a linear system of equations in the form of { } [ ] { }δ+= Ap , if the number of 

equations is more than the number of unknowns, the problem is said to be over-

determined. In such a case, the solution is obtained by a least-squares solution. 

 

For the system 

 

kj

n

j
kj bxa =∑

=0
 ( )mk ≤≤0                             (A.1) 

 

if m>n, then the problem is over-determined. If  ( )nxxxx ,...,,, 210  are substituted 

on the left hand side, the difference between the two sides of the thk  equation is 

termed as the thk  residual. Ideally, all residuals should be equal to zero. If it is not 

possible to select ( )nxxxx ,...,,, 210  so as to make all residuals zero, the system is 

said to be inconsistent or incompatible. In this case, an alternative is to minimize 

the sum of the squares of the residuals. So, we are led to minimize the expression 
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by making an appropriate choice of ( )nxxxx ,...,,, 210 .  

 

The least-squares solution equations are obtained by taking partial derivatives with 

respect to the ix and equating them to zero. 
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This is a linear system of just n+1 equations involving n+1 

unknowns ( )nxxxx ,...,,, 210 . It can be shown that this system is consistent, provided 

that the column vectors in the original coefficient array are linearly independent. 

This system can be solved, for instance by Gauss elimination. The solution of 

system represented by Eq. (A.3) is then the best approximate solution to equation 

Eq. (A.1) in the least-squares sense. 

 

For the system{ } [ ] { }mmxnn Ap Δ= + , the Gauss elimination is applied to  
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APPENDIX B 
 
 
Assigning System Matrices to Finite Element Models 

Built in MSC Patran 
 

 

Structures for which modal data are available, can be described using system 

matrices by using the orthonormal equations that can be expressed as: 

 

[ ] [ ]( ) [ ] [ ]( ) 121 −−
= φωφ OO r

TK                (B.1) 

 

[ ] [ ]( ) [ ] [ ]( ) 11 −−
= φφ IM T

                           (B.2) 

 

[ ] [ ]( ) [ ] [ ]( ) 11 −−
= φφ OO r

T cC                (B.3) 

 

In order to be able to calculate the system matrices, the mode shape matrices must 

be square. This condition necessitates either the mode shape data to be reduced 

to the size of the number of the modes that are calculated by modal analysis or 

expanding the mode shape data in a fashion that the number of the modes will be 

equal to the number of degrees of freedom. The second case is more beneficial in 

the sense that the analyst will have more degrees of freedom that can define the 

motion. However, the analyst shall synthesize pseudo-modes that are orthogonal 

to all the other modes (calculated or synthesized).  

 

After synthesizing orthogonal pseudo-modes one can calculate the system 

matrices by using Eq. (B.1), Eq. (B.2) and Eq. (B.3).   

 

In order to input the finite element system matrices that are built in an environment 

other than MSC Patran, the element matrices should be saved in a file in a format 

that defines each element of the matrices by 16 characters (which corresponds to 
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12 significant digits). This is necessary to avoid the ill-conditioning of the system 

matrices calculated by using synthesized orthogonal pseudo-modes; because, 

when the elements of matrices are represented by a smaller number of digits, 

inaccurate results are obtained. However, experience shows that having the 

system matrices defined by 16 characters (for each element) yields the same 

eigenvalue problem solution for the mathematical model itself and MSC Nastran 

model. 

 

The calculated system matrices should be saved as a text document in the format 

defined by “MSC NASTRAN Quick Reference Guide - Bulk Data Entry - DMIG”. 

Given below is an example format that defines the system matrices as a bulk data 

entry for MSC Nastran. 

 

DMIG    KMAT           0       6       2       2                                 

DMIG*   KMAT                          10               3 

*                     10               3  9.587453525D+8 

DMIG*   KMAT                         100               3 

*                     10               3 -7.664488759D+8 

*                    100               3  1.771983160D+9 

... 

... 

DMIG    MMAT           0       6       2       2                                 

DMIG*   MMAT                          10               3 

*                     10               3  2.284211654D+3 

DMIG*   MMAT                         100               3 

*                     10               3 -4.442938415D+3 

*                    100               3  1.333789877D+4 

DMIG*   MMAT                         101               3 

*                     10               3 -6.830911917D+2 

*                    100               3  2.947263170D+3 

*                    101               3  2.165343810D+3 

... 

... 
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In the example given above, the entries having “KMAT” and “MMAT” as headers 

define stiffness and mass entries respectively. The integers values other than 16 

character ones, define the connectivity data. A “*” sign at the beginning of a line 

indicates that the degree of freedom given in that line shall connect to the degree 

of freedom given above in the line with a header “DMIG*   KMAT” or “DMIG*   

MMAT”. For example, the expression  

 

DMIG*   KMAT                         100               3 

*                     10               3 -7.664488759D+8 

 

yields a stiffness value of “-7.664488759D+8” between the 3rd degree of freedom 

of node 100 and 3rd degree of freedom of node 10.  

 

After defining the system matrices in the format defined above, the related text file 

should be saved as “file_name.bdf”.  

 

An important point here is that, the node numbers given in “file_name.bdf” shall 

also be defined in the MSC Nastran finite element model. The finite element model 

that is built in MSC Patran should include the points that coincide with the 

accelerometer points and nodes should be defined on each point with numbers 

coinciding with numbers in the file “file_name.bdf”. After creating the nodes, point 

mass elements with a magnitude of zero should be created on each node in order 

to assemble the mass matrix. For the stiffness matrix, spring elements should be 

placed between each node that are defined for the degrees of freedom found in the 

stiffness matrix. 

 

For the degrees of freedom for which no measurements are present, null 

displacement boundary conditions are applied as these degrees of freedom will not 

be present in the system matrices. 

 

After creation of the finite element model that is composed of point masses and 

springs, the file containing the numerical data for system matrices, “file_name.bdf” 

should be entered to the finite element code. In order to do this, the command 
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INCLUDE 'file_name.BDF' 

 

SHOULD BE ENTERED TO THE “ANALYSİS-DİRECT TEXT INPUT-BULK DATA 

SECTİON” OF THE MSC PATRAN GUI. ALSO, THE COMMANDS 

 

K2GG=KMAT 

M2GG=MMAT 

 

should be entered to the “Analysis-Direct Text Input-Case Control Section”. This 

command will indicate that the headers KMAT and MMAT will define the stiffness 

and mass matrices respectively. The file “file_name.bdf” must be found under the 

Nastran working directory. 

 

After this point, the system matrices are defined in MSC Patran GUI. With 

necessary actions needed for MSC Nastran solver (like defining subcase 

parameters), either static or modal analysis can be performed using this finite 

element model. 
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APPENDIX C 
 
 
Obtaining the Modal Sensitivities Using MSC Nastran 

SOL200 
   
 

The MSC Nastran finite element solver is able to calculate the sensitivities of some 

design responses (modal variables such as natural frequency and mode shape 

value are called as “modal responses” in MSC Nastran) with respect to selected 

design parameters by using the solver SOL 200.  

 

Modal sensitivity in MSC Nastran can be briefly defined as the amount of change in 

the design response with a unit change in the design parameter.  

 

As is the case for other indirect methods, a least-squares solution is followed for 

most of the time. The updating parameters will be recomputed for each iteration 

step and the least-squares solution will be repeated (this procedure will be followed 

until the updating parameter values converge). An important point about using the 

sensitivity values is that, the linear extrapolation is valid when the absolute value of 

the parameter changes is below 10%. The reason for that is the non-linear 

behavior of the modal responses against modeling changes and misguiding effect 

of sensitivity values under large parameter changes. Enveloping the parameter 

changes will facilitate the convergence of the solution. For that issue, non-linear 

least squares solver function of MATLAB program is outstanding. The lower and 

upper boundaries of the parameter values can be set separately by this command 

which is embedded in MATLAB. Below is given the command and the related 

parameters. 

 

pf=lsqnonlin(@(x) [S*x-res_vek], IV*po, LB*po, UB*po) 
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For the above command line, pf is the final parameter vector, po is the initial 

parameter vector, S is the modal sensitivity matrix, res_vek is the multiplication of 

the inverse of the modal sensitivity matrix and modal difference vector, IV is the 

starting point for iterations for non-linear least squares solver, LB is lower bound 

(ratio) for updating parameter vector, UB is the upper bound (ratio) for the updating 

parameter vector. 

 

Convergence problems arise if there are more than 2 orders of magnitude 

difference between different rows of the sensitivity matrix (for example, 

convergence problems have been faced if no weighting have been applied for an 

analysis where both eigenvalue and eigenvector sensitivities are used). In order to 

overcome this difficulty, weighting of the equations are necessary. Weighting is 

accomplished by a matrix (called the weighting matrix) which is diagonal in form 

(off-diagonal terms are zeros) and yields the participation factor of each equation in 

the final solution. There are no definite ways (although there are some rules of 

thumb) to define the weighting matrix and the analyst should define the values in 

the weighting matrix through inspection of the sensitivity values.  

 

If there are different mode sets in the two models under consideration and/or if the 

ranking of the correlating modes in two models are different, then it is crucial to put 

the sensitivity matrix and the modal response difference vector in order (the 

equations must be set for correlating modes). The modes can be correlated 

through inspection of the mode shape animations and/or by examining the MAC 

matrix. If there are missing modes in a model (usually due to modes that are not 

excited and/or modes that can not be calculated by finite element analysis and that 

seem to be the mathematical modes in the modal analysis of the test results), 

these modes should be ignored (even though they continue to appear in the 

theoretical model). 

 

Before starting the calculation of the sensitivity values by using the MSC Nastran 

SOL 200 solver, a finite element model is needed for which mesh, element 

properties and necessary boundary conditions are all defined. After preparation of 

the model, it is possible to calculate the sensitivity values by using the MSC Patran 

2004 r2 GUI.  
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First of all, it is necessary to enter the “Model Variables” submenu under the 

“Tools” menu. The screenshot of the GUI for this command is shown in Figure 86. 

 

After choosing this submenu, the screen shown in Figure 87 will appear. Available 

updating properties will appear on the right hand side of the screen if “Create” is 

selected under “Action” process and “Variable” under “Object” process. Available 

updating parameters are tabulated in Table 12. 

 

After selection of any of the possible specifications defined above, possible 

parameters become visible on the screen. For example, if it is desired to define the 

beam dimensions, the screen will become as given in Figure 87. 

The box, in which beam section type is set, filters and re-orders the available 

parameters for the type chosen. After selection of the section from the box in which 

section names are found, the desired property should be selected. After this point, 

the software assigns a name for the property. If “Apply” is pressed at this point, the 

parameter is saved in the database file. More than one section can be selected 

under the section name box. As the software does nomenclature of the updating 

properties automatically there are no misguiding effects in defining the parameters 

by this way (which is very time saving).  

 

 

 

Figure 86. “Model Variables” Submenu in MSC PATRAN 2004 r2 GUI 
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Table 12. Possible Parameters for which Sensitivities can be Calculated 

Specification Possible Parameters 

Value Model Value 

Property Shell thickness, point mass value, spring constant etc 

Beam Dimension Beam element properties (beam height, thickness, width 

etc.) 

Material Material properties (Young’s Modulus, density, 

Poisson’s Ratio etc.) 

 

 

 

 

Figure 87. The Screen in MSC PATRAN 2004 r2 GUI in which Beam Dimensions 

can be Set as Parameters 

 
 
   

Setting the material properties as parameters is done in a similar fashion. In Figure 

88, the screen of MSC Patran GUI for assigning the material properties as 

variables is shown.  

 

After defining the variables, the user should enter the “Design Study” submenu 

where updating parameters and design responses are set and these items are 
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saved under a study. The GUI location of that submenu and the screen that will 

appear after choosing this submenu are shown in Figure 89 and Figure 90 

respectively. 

 

At this point, the desired variables should be selected as updating parameters 

(undesired ones are omitted). In the resulting result file (with an extension of “f06”) 

only the sensitivity values of the selected parameters are given. The screen for 

selecting the parameters is shown in Figure 91.  

 

 

 

Figure 88. The Screen on which Material Properties are Defined as Design 

Variables in MSC PATRAN 2004 r2 GUI 
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Figure 89. Location of “Design Study” Submenu Under MSC PATRAN 2004 r2 

 

 

 

Figure 90. The Screen that Appears After Selection of “Design Study” in MSC 

PATRAN 2004 r2 GUI 
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Figure 91. The Screen for Selection of Updating Parameters 

 
 
 
MSC Nastran SOL 200 solver is basically designed for design through optimization 

processes. The optimization process is based on calculating the sensitivities of 

some basic model responses to model variables and setting the variables in order 

to reach the desired responses. Sol 200 solver can also output the sensitivity 

values without any optimization. In order to obtain the sensitivity values, a design 

objective should be set since the primary objective of the solver is an optimization 

process. In Figure 92, the GUI screen for selection of the design objective is 

shown. 

 

After this point, the modal responses for which the sensitivities will be calculated 

should be chosen. As the sensitivity calculation will be based on modal variables 

for dynamic finite element model updating procedures, the modal responses that 

will be chosen will be natural frequencies and eigenvectors. 

 

For selection of the natural frequencies as modal responses, the following should 

be defined 
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• The ranking of the mode (among the calculated ones) 

• The name of the modal response 

• The lower and upper bounds for which the natural frequency is desired to 

be in (this is for optimization analysis but these values should be in the bulk 

data file if the sensitivities are to be output). Any two numerical values can 

be set if the aim is only to obtain the sensitivities. 

The screen on which the properties defined above are set is given in Figure 93. 

 

 

 

Figure 92. The Screen on which Design Objective is Set in MSC PATRAN 2004 r2 

GUI 

 
 
 
For the eigenvectors to be set as the modal responses for which the sensitivity 

values will be calculated, following steps are needed: 

• The degree of freedom for which the eigenvector is calculated 

• The name of the modal response  

• The lower and upper bounds for which the eigenvector value is desired to 

be in (this is for optimization analysis but these values should be in the bulk 

data file if the sensitivities are to be output). Any two numerical values can 

be set if the aim is only to obtain the sensitivities. 
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Figure 93. The Screen on which Natural Frequency is Set as a Modal Response 

for Sensitivity Calculations in MSC PATRAN 2004 r2 GUI 

 
 

The screen on which the properties defined above are shown is given in Figure 94. 

 

After setting the desired modal responses, the analyst should go back to the 

“Design Study” menu and the design study in which the updating parameters, 

design objective and modal responses are found, should be saved in the database 

file. 

 

In order to have the sensitivity values in the output file (*.f06), the analysis type 

should be chosen as “Optimization”. In Table 13, needed sub-menus and entries 

under “Analysis” menu for making a modal sensitivity analysis are given. The 

screen for these operations is shown in Figure 95.  
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Figure 94. The Screen on which Mode Number, Mode Shape, Node and Degree of 

Freedom are Selected for Defining Eigenvector as a Modal Response for 

Sensitivity Calculations in  MSC PATRAN 2004 r2 GUI 

 
 

 

Figure 95. The Screen on which Analysis Settings are Done for a Modal Sensitivity 

Analysis in MSC PATRAN 2004 r2 GUI 



 138  

Table 13. Settings for Modal Sensitivity Analysis 

Menu Expression 

Action Optimize 

Method Analysis Deck 

Direct Text Input – Case 

Control Section 

DSAPRT(FORMATTED, END=SENS) 

 

 

The remaining settings shall be done as usual for a modal analysis (the Subcase 

settings) and ”Apply” button should be selected for creation of the Nastran input file 

(*.bdf). The sensitivity values will be output on the result file (*.f06) if the Nastran 

input file is run with MSC Nastran solver.   

 

Example file formats for weight, natural frequency and eigenvector sensitivities are 

given in Figure 96, Figure 97 and Figure 98, respectively.  

 

 

 

Figure 96. Example File Format for Weight Sensitivity Values 
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Figure 97. Example File Format for Natural Frequency Sensitivity Values 

 
 
 
In order not to change the mass matrix throughout the updating procedure, the 

weight sensitivities (for which an example file format is given in Figure 96) should 

be used (if density or geometrical dimensions are chosen as updating properties). 

The following equation should be inserted in the equation set for natural frequency 

and eigenvectors.  
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In the above expression, pi  is the ith parameter, pi
wS  is the sensitivity of the 

weight against the ith parameter, { }f  is the final parameter vector and { }o is the 

initial parameter vector. 
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Figure 98. Example File Format for Eigenvector Sensitivity Values 
 

 

 

According to the above expression, the multiplication of the difference vector of 

parameter values and weight sensitivity matrix should be “0”. If it is desired that the 

mass values of some specific elements do not change, similar expressions should 

be written for those elements (for example if the weight of the wing of an aircraft is 

known exactly, changes in the parameters of those element modeling the wing can 

be forced to keep its weight constant).  


	CHAPTER 2  
	2.1.1 Finite Element Model Reduction 
	2.1.1.1 Guyan Reduction  
	2.1.1.2 Improved Reduction System 
	2.1.1.3 System Equivalent Reduction Expansion Process 

	2.1.2 Expansion of Measured Modal Data 
	2.1.2.1 Kidder’s Method (Inverse Guyan Reduction) 
	2.1.2.2 Expansion Using Analytical Modes 
	2.1.2.3 SEREP Expansion 

	2.2.1 Direct Comparisons 
	2.2.2 The Modal Assurance Criterion 
	2.2.3 The Coordinate Modal Assurance Criterion 
	2.2.4 Orthogonality Methods 

	CHAPTER 3  
	3.1.1 Methods Using Lagrange Multipliers   
	3.1.2 Error Matrix Methods  
	3.1.3 Direct Matrix Updating  
	3.1.4 Matrix Mixing Methods 
	3.2.1  Eigendynamic Constraint Method 
	3.2.2  Inverse Eigensensitivity Method 
	3.2.3  Response Function Method 
	3.2.4  Model Updating Based on MCI Minimization 


	CHAPTER 4  
	CHAPTER 5  
	5.1.1 Point FRF Results for Updating with the Method Using Lagrange Multipliers  
	5.1.2 Point FRF Results for Updating with the Error Matrix Methods 
	As this method ignores the 2nd and higher order error terms, the obtained results are not exact ones. 
	5.1.3 Point FRF Results for Updating with the Direct Matrix Updating Method 
	5.1.4 Point FRF Results for Updating with the Matrix Mixing Method 
	5.1.5 Point FRF Results for Updating with the Response Function Method 
	5.1.6 Point FRF Results for Updating with the MCI Minimization Method 
	5.4.1 Updating the Model of the Empty Aircraft 
	5.4.2 Updating of the Fully Loaded Aircraft 


	CHAPTER 6  
	6.1 DISCUSSION 
	6.1.1 Discussion on Case Studies Performed Using Direct Methods  
	6.1.2 Discussion on Case Studies Performed Using with Miscorrelation Index (MCI) Minimization 
	6.1.3 Discussion on the Updating of the Scaled Aircraft Finite Element Model 
	6.1.4 Discussion on the Updating of the Real Aircraft Finite Element Model 

	6.2 CONCLUSIONS 
	6.3 RECOMMENDATIONS FOR FUTURE WORK  

	REFERENCES 
	APPENDIX A 
	APPENDIX B 
	APPENDIX C 



